WO2004074535A2 - Verbundwerkstoff aus intermetallischen phasen und keramik und herstellungsverfahren - Google Patents

Verbundwerkstoff aus intermetallischen phasen und keramik und herstellungsverfahren Download PDF

Info

Publication number
WO2004074535A2
WO2004074535A2 PCT/DE2004/000221 DE2004000221W WO2004074535A2 WO 2004074535 A2 WO2004074535 A2 WO 2004074535A2 DE 2004000221 W DE2004000221 W DE 2004000221W WO 2004074535 A2 WO2004074535 A2 WO 2004074535A2
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
wire
composite material
composite
phases
Prior art date
Application number
PCT/DE2004/000221
Other languages
English (en)
French (fr)
Other versions
WO2004074535A3 (de
Inventor
Stefan Grau
Michael Scheydecker
Karl Weisskopf
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Priority to US10/546,133 priority Critical patent/US7553563B2/en
Publication of WO2004074535A2 publication Critical patent/WO2004074535A2/de
Publication of WO2004074535A3 publication Critical patent/WO2004074535A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/027Compositions based on metals or inorganic oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0414Layered armour containing ceramic material
    • F41H5/0421Ceramic layers in combination with metal layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0038Surface treatment
    • F16D2250/0046Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the invention relates to a composite material made of intermetallic phases and ceramics, in particular in the form of a coating on metallic substrates, and an arc wire spraying process for producing the composite material, in which the intermetallic phases to be deposited and the ceramic during the deposition process from the components of the supplied wires by chemical reaction be newly formed.
  • the invention further relates to wear protection layers, tribological layers and armor material formed by the composite material.
  • arc wire spraying is characterized by simple process control and high removal rates under thermal spraying processes.
  • the coating of near-net-shape components from inexpensive materials by means of arc wire spraying (LDS) often already fulfills the requirements for the production of series components and is therefore widely used in series applications.
  • LDS arc wire spraying
  • the production of thin metallic layers is part of the state of the art. Layer thicknesses of approx. 0.05 to 0.3 mm are achieved per spray transition (coating cycle). Higher layer thicknesses have to be set by multiple coating, ie several coating cycles.
  • the LDS is a typical process for the production of thin layers. Higher layer thicknesses or the possibility of manufacturing entire components can be achieved by spray compacting using thermal spraying.
  • the materials are atomized as powder or wire in a flame or an arc and processed into semi-finished products.
  • the basic principle of the LDS currently restricts the choice of materials for the layers to be formed, because the wire materials must be electrically conductive and meltable under process conditions. For this reason, predominantly only metallic materials are used or metallic layers are created. Ceramic high-temperature materials are hardly accessible through this process.
  • the most suitable materials include
  • intermetallic phases / ceramics intermetallic phases / ceramics
  • intermetallics / metal intermetallics / metal
  • the wear-resistant layer typically contains 40% by weight Ti0 2 and the metals Sn, Zn, Cu and / or Al.
  • the porosity is about 20%.
  • This composite layer is preferably deposited by spraying a cored wire made of a metallic sheath made of Cu and / or Al and a fill made of TiO 2 , and the metals Sn, Zn, Cu and / or Al.
  • the Ti02 ceramic content of the cored wire and the deposited layer remains essentially unchanged.
  • the high hardness required for wear protection layers, semi-finished products for friction systems or protective armor for ballistic effects while at the same time having high fracture toughness (ductility) is not yet satisfactorily achieved by this composite material.
  • the porosity is also too high.
  • the object is achieved by providing a composite material made of intermetallic phases and ceramic phases, the components of which are at least partly formed by a high-temperature reaction between a metal or the main component of a metal alloy and ceramic particles during its construction by means of LDS, and by an LDS method in which at least a composite wire made of metal or metal alloy and ceramic particles is used in such a way that spray particles with new intermetallic phases and new ceramic phases are formed by high temperature reaction between metal or metal alloy and ceramic particles.
  • the LDS process according to the invention thus includes a reaction, in particular a high-temperature reaction, between the individual components of the at least one supplied composite wire, so that newly formed materials are present in the deposited layer.
  • the newly formed materials contain intermetallic phases and ceramics.
  • the components can also be made by additional composite wires, or else through one or more solid wires, that is, purely metallic wires.
  • reaction scheme of the main reaction during the LDS process between the metals or metal alloys and the ceramic particles can be generalized as follows:
  • M metal (possibly as an alloy component)
  • a concrete reaction example is the reaction between metallic aluminum and titanium oxide. 7 AI + 3 Ti0 2 - 2 A1 2 0 3 + 3 TiAl
  • the LDS process according to the invention makes material combinations of a quality accessible to the composite material that would not be available in any other way. This applies in particular to high-melting intermetallics and ceramics, and to a particularly large extent to compounds that cannot be melted without decomposing.
  • the composite material according to the invention is initially present as a material layer.
  • the layer thickness is in principle not limited.
  • the layer thickness can thus be substantially greater than the thickness of the substrate.
  • the so-called layer can therefore also be regarded as an independent material or as an independent component.
  • the substrate can also be removed completely in order to obtain the deposited layer as a separate component.
  • the composite material according to the invention contains, as newly formed intermetallic phases (intermetallics) in the LDS process, compounds of at least two elements from the group Al, Ti, V, Fe, Co, Ni, Cr, Mo, W, Si or B.
  • suicides and borides are also listed for the intermetallic phases, because according to the reaction scheme according to the invention in the LDS process, suicides and borides are also available from the metallic and ceramic components of the spray wire. Due to their chemical properties, these compounds are closer to intermetallics than to typical ceramics.
  • the composite material preferably comprises one or more of the intermetallic phases titanium aluminide, titanium silicide, nickel aluminide, NiTi intermetallics, molybdenum silicide, and / or titanium boride.
  • the specified material designations include all intermetallic phases that occur in the corresponding material systems.
  • the following compounds are particularly preferred individually or in combination: TiAl, T1AI3, NiAl, NiTi, NiTi 2 , NiTi 3 , Ni 4 Ti 3 , TiSi, Ti 5 Si 3 , MoSi, V 5 Si 3 , TiB, TiB 2 .
  • the proportion of intermetallics in the composite material according to the invention is above 20% by volume.
  • the intermetallics content is preferably in the range from 30 to 80% by volume.
  • the intermetallics occurring in the composite material need not exclusively be the intermetallics newly formed in the LDS process.
  • the LDS process is also suitable for separating intermetallics that are already in the spray wire. According to the invention, however, the proportion of newly formed intermetallics far outweighs their proportion. At least 70 vol% of the Intermetallics contained in composite material are newly formed.
  • the composite material according to the invention contains oxides, nitrides, carbides, suicides and / or borides from at least one of the elements from the group Al, Ni, Fe, Ti, Co, Mo, or W as ceramic phases newly formed in the LDS process
  • Composite material at least one newly formed ceramic phase made of Ti, or Al oxide, or nitride, in particular of A1 2 0 3 , A1N, Ti0 2 , or TiN.
  • the newly formed ceramic phases are also to be understood as those which may be formed by a reaction between metal or metal alloy with the carrier gas or a reactive component of the carrier gas during the LDS process.
  • These include in particular the oxides or nitrides which are formed by reacting the metal or the metal alloy with oxygen or nitrogen in the carrier gas. This is due to the LDS method according to the invention
  • Typical structures and typical material properties caused by high-temperature reactions are also achieved by the direct reaction between metal (or metal alloy) and oxygen or nitrogen, since these reactions are also high-temperature reactions.
  • the proportion of the ceramic or ceramic particles in the composite material according to the invention is below 80% by volume. Their content is preferably in the range from 20 to 70% by volume.
  • the ceramic part is composed of the newly formed ceramic, as well as any residues of unreacted ceramic particles of the composite wire. According to the invention, the proportion of newly formed ceramic is above 70% by volume of the total ceramic content.
  • the composite material according to the invention is essentially composed of intermetallic phases containing Al and A1 2 0 3 containing Ceramic phases built up by a
  • Metal alloy and an oxide ceramic powder were produced.
  • the intermetallic phase is particularly preferred
  • composition of the material according to the invention is preferably selected such that it has only a low content of low-melting phases, in particular metals or alloys. This can naturally be achieved by a high turnover of the metals or metal alloys used with the ceramic particles used.
  • the maximum permissible metal content in the deposited material depends on the intended use, but is usually below approx. 10% by volume. Metal contents below 5% by volume are preferred for wear protection layers or tribo layers.
  • the process according to the invention also enables intermetallic / ceramic composites with metal contents below 2% by volume.
  • the composite materials preferably have a comparatively high density or low porosity.
  • the closed porosity is preferably below 5% by volume.
  • intermetallic phases are formed from titanium aluminides and at least 20% by weight of ceramic phases from aluminum oxide.
  • the content of metallic aluminum in particular this is not to be understood as the intermetallic bound AI) below 2% by weight and the closed porosity is a maximum of 5% by volume.
  • the thickness of the layer according to the invention on a substrate or also as a cantilever layer is above approximately 0.05 mm. This lower value results from the lowest technically reasonable deposition rate of the LDS process. However, the layer thickness is preferably above 0.5 mm.
  • the thickness of the material layer essentially results from the intended use.
  • the layer thickness is preferably in the range between 0.5 to 3 mm, for tribo layers, for example as a friction layer for brake or clutch discs, preferably 0.5 to 5 mm and for protective armor, for example as armor material for ballistic effects, preferably 3 up to 50 mm.
  • All materials that are also suitable for the known thermal spray processes are suitable as a substrate for the deposition of the layer.
  • the substrates are typically formed from metallic materials or ceramic materials. Fiber-reinforced ceramics are particularly suitable for this.
  • the intermediate layer is preferably built up at least partially from one of the metallic components of the metals or metal alloys fed in by the LDS method.
  • the intermediate layer is particularly preferably formed from the material that can be reacted with the ceramic particles in the LDS method according to the invention.
  • Intermediate layers containing Cr or Ni are particularly suitable for ferrous metal or steel substrates.
  • the LDS method according to the invention provides for using at least one composite wire made of metal or metal alloy and ceramic particles in such a way that spray particles with new intermetallic phases and new ceramic phases are formed during the deposition. The formation of these new compounds takes place essentially through a high-temperature reaction between the metal or the metal alloy and the ceramic particles which are supplied via the at least one composite wire.
  • the LDS method according to the invention can be carried out with one or with two or more wires.
  • the metallic components can also be supplied through further composite wires, or also through one or more solid wires, that is to say purely metallic wires.
  • the ceramic components are preferably supplied in the form of a composite wire (metal / ceramic composite wire).
  • Two wires are preferably used, a first wire made of metal or metal alloy being a solid wire and a second wire being a composite wire.
  • Fig. 1 shows the micrograph of a coating according to the invention according to embodiment 1, with the substrate made of gray cast iron (1), an adhesive layer (2) made of NiTi5 and a composite material layer (3), the phases made of titanium aluminide and A1 2 0 3 (4), NiTi5 (5), nickel aluminide (6) and Ti0 2 (7).
  • Fig. 2 shows schematically a composite wire made of a metal sheath (8) and a core (9) made of ceramic powder and composite wire (10) made of metal and disperse ceramic phase
  • Fig. 3 shows the schematic cross section through a brake disc segment with a core (11) made of gray cast iron, adhesive layers (12) and composite layers (13) which are each arranged on the two opposite friction layers.
  • Fig. 4 shows the schamtischan structure of an armor plate with a graded structure of the composite layer in cross section with a base plate (14) made of steel, and three composite layers (13, 13 13 ⁇ ) with different compositions, the ceramic content in the order of (13 , ⁇ ) increases via (13 ⁇ ) until after (13).
  • the composite wire (Fig. 1) is usually designed as a metal sheath (8) with a ceramic core (9).
  • Suitable composite wires can be produced by the usual methods. For example, it is possible to manufacture the composite wire by stretching a metal sleeve filled with ceramic particles or by rolling a metal foil loaded with ceramic powder.
  • Metal wires with an embedded disperse ceramic phase (10) are also suitable.
  • the principle of the LDS process presupposes that at least one of the supplied wires has sufficient conductivity to ignite the arc.
  • combinations of at least one conductive wire and a wire that is poorly or not at all suitable for performing the LDS process therefore also comprises combinations of at least one conductive wire and further wires essentially formed by ceramic (ceramic wire).
  • the ceramic wire can be constructed both from pure ceramic, for example as a ceramic fiber or ceramic fiber bundle, and from ceramic particles bound by means of binders. Organic polymers and / or metals can be used as binders.
  • Material combinations of metal and ceramic, which can be implemented in a high-temperature reaction, are particularly suitable as starting components for the process according to the invention.
  • Many of the suitable material combinations are known, for example, from the so-called SHS processes, "Self-propagating High Temperature Synthesis".
  • the syntheses known here include both pure solid / solid reactions and solid / gas reactions.
  • the elements Al, Ti, Si, V, Cr, Mo, W, Fe, Co or Ni, individually, in combination or as an alloy are suitable as metallic components of the composite wire or the solid wire.
  • Al and Mg and / or Si-containing Al alloys are particularly preferably used.
  • Ceramic component of the composite wire are the oxides of the elements Ti, Zr, Fe, the nitrides of the elements Ti, Zr, Si, SiC and the borides of the elements Si or Al.
  • the proportion of ceramic component in the composite wire is 1 to 50% by volume, particularly preferably 20 to 40% by volume.
  • the composite wire is particularly preferably formed from an outer metallic sheath (8) and a core (9) made of ceramic particles, the cross-sectional area of the core being in the range from 20 to 60% of the total cross section.
  • the usual designs for conventional spraying processes are suitable for the diameter and geometric configuration of the wires.
  • the composite wire is preferably round and has a diameter in the range from 1.2 to 5 mm.
  • metal or metal alloy and ceramic must be chosen according to the invention in such a way that a high-temperature reaction is supported with the formation of the new intermetallic and ceramic phases.
  • metal (metal alloy) / ceramic combinations which can be used individually or in combination, are particularly suitable:
  • the metallic Starting components selected so that they are suitable for the formation of new intermetallic phases by reaction with one another.
  • the formation of intermetallics occurs through the conversion of metallic components.
  • the metallic components can be contained both in composite wire and in solid wire.
  • the element combinations which are particularly suitable for the process according to the invention to form additional intermetallics are listed below, the corresponding elements being able to be supplied as metal or metal alloy in at least one composite or solid wire:
  • a carrier gas is used in the LDS process that is suitable for reaction with at least one of the metallic components of the at least one supplied wire.
  • 0 2 , C0 2 or N 2 which can react with one of the metallic components, in particular Al or Ti, to form oxides, carbonitrides and / or nitrides is used at least in part.
  • the conversion of the metals and the reactive components of the carrier gas is supported by the simultaneous high-temperature reaction between metal and ceramic.
  • This process variant makes it possible to further reduce the free metal content. Since the free metals, such as Al, are generally one of the components with the lowest melting point and the lowest in the composite material according to the invention Represent high temperature resistance, it is of considerable advantage to keep their share in the composite material as low as possible. Even under very favorable process conditions, a complete conversion between the metals or metal alloys and the ceramic to the intermetallics and the new ceramic is not guaranteed, so that metal residues or traces can remain. The proportion of these metal residues can be further reduced by reaction with the reactive proportions of the carrier gas in the LDS process. The high-temperature reaction in the spray particles heats the free metals to such an extent and for as long that they can react at least in the surface zone of the particles to give the corresponding oxides and / or nitrides.
  • the high-temperature reaction in the spray particles heats the free metals to such an extent and for as long that they can react at least in the surface zone of the particles to give the corresponding oxides and / or nitrides
  • a small amount of 0 2 is preferably added to the carrier gas, or the spray jet is guided in such a way that a certain mixing with the 0 2 -containing ambient air can take place in the separation zone of the spray particles.
  • N 2 can generally be used as the carrier gas, or its main component, since the nitride formation of most of the metal components preferred according to the invention is kinetically inhibited compared to the other reactions, or the formation of the intermetallics from metal and ceramic proceeds much faster and preferentially.
  • the process generally leads to a porosity of the deposited composite below 5% by volume.
  • the high material density (low porosity) that can be achieved by the LDS method according to the invention represents a further great advantage over many of the conventional thermal spraying methods.
  • the composition of the composite material is adjusted in particular by the ratio of the components supplied by means of the at least one wire.
  • the ratio of the components to one another can be set in different ways. the structure or composition of the
  • Composite wire for example the ratio between metallic sheath and ceramic core different diameters or cross-sectional areas with several wires different dosing speeds with several
  • the metallic component is preferably used sub-stoichiometrically in order to reduce the residual free metal content in the composite material.
  • a residual content of unconverted ceramic is generally far less harmful for the properties of the composite material, because even the starting ceramic usually has a significantly better one High temperature resistance and wear resistance on than the metallic components.
  • the components are preferably fed to the LDS process in such a way that the residual content of free metal is below 5% by volume and the residual content of unreacted ceramic is below 10% by volume.
  • the metallic and ceramic components supplied by means of the wires are particularly preferably fed into the LDS process in a quantity ratio such that at least the metallic component is completely converted to the new ceramic and / or intermetallic.
  • a local change in the composition of the composite material in particular a gradient structure, can be achieved in a simple manner by changing the speeds during the deposition process.
  • a metallic adhesive layer and then the composite material according to the invention are first deposited in one work step, the chemical composition gradually transitioning from the adhesive layer to the composite layer.
  • Another aspect of the invention relates to the use of the composite material layers according to the invention, or the composite material according to the invention.
  • the composite layers are ideal as wear protection layers.
  • layers are accessible that have a combination of good tribological and good wear properties. These can be used, for example, as friction layers for brakes, clutches and Insert pads.
  • the TiAl and Al 2 0 3 -containing composite materials are particularly suitable for this.
  • a particularly preferred application relates to brake discs made of iron or steel with friction surfaces made from the composite material layer according to the invention.
  • the combination of high hardness and fracture toughness gives the composite good resistance to ballistic effects.
  • the systems comprising TiAl and titanium silicide and / or titanium boride are particularly suitable as ballistic protective armor.
  • a particular advantage of the method according to the invention is that even complex-shaped components or layers on complex-shaped substrates can be produced in a simple manner. This is of particular interest for armor in the automotive or aerospace sector, where complex assemblies can no longer be sensibly protected by conventional armor plates.
  • the ballistic properties can be further improved by using ceramic or fiber-reinforced ceramic as a substrate.
  • the exemplary embodiment relates to the production of a high-performance brake disc for motor vehicles.
  • the brake disc was formed by combining a conventional cast iron brake disc with a friction layer made of a titanium aluminide / aluminum oxide composite.
  • Wire 1 the metallic wire is formed by commercially available NiTi 5 .
  • Wire 2 the composite wire, was made of a metallic sheath and a ceramic core built up.
  • the metallic shell was formed by Al (purity> 99.5%) and the soul by titanium oxide particles (rutile) with an average particle size in the range of 2 to 5 microns.
  • the wire consisted of 72% by weight of sheath material and 28% by weight of filling. The wire was obtained by stretching an Al metal sleeve filled with titanium oxide particles.
  • the diameter of both wires was 1.6 mm.
  • a conventional LDS system was used for coating, nitrogen being used as the carrier gas.
  • the LDS process was initially started only with wire 1 and an NiTi adhesive layer was deposited with a layer thickness of 0.1 mm. Thereupon, the switch was made to the deposition with the two wires. The feed speed of the wires was adjusted so that the ratio of wire 2 (Al / Ti0 2 composite wire) to wire 1 (NiTi5) in the reaction zone was about 20. By coating the substrate several times with the spray nozzle, a layer thickness of 1.5 mm is deposited.
  • the residual porosity of the deposited composite layer was a maximum of 2 vol%.
  • the micrograph of a cross section through the deposited layer is shown in FIG. 1.
  • Individual layers of titanium aluminide / Al 2 0 3 (4), NiTi5 (5), nickel aluminide (6) and Ti0 2 (7) can be seen in the deposited layer (3).
  • the phases have an elongated structure and a very dense packing, as is typical for the separation of liquid or pulpy material. Only through the high temperature reactions in the particles is a sufficiently high temperature still during the Deposition time guaranteed. No porosity can be seen on the micrograph within the deposited layer.
  • Another brake disc was manufactured without an intermediate layer under otherwise the same conditions.
  • Both brake discs were ground flat and smooth in a conventional manner.
  • the properties were tested in a coefficient of friction tester against different standard brake pads.
  • the friction layers proved to be temperature-resistant up to approx. 1100 ° C in air and showed good friction values as well as excellent wear resistance.
  • the exemplary embodiment relates to the production of a shaft provided with a wear protection layer from a spray-compacted bolt.
  • a ground steel plate was used as the base for the construction of the bolt.
  • a bolt was then deposited in a known manner in several layers by spray compacting.
  • the wear protection layer was produced by the LDS method according to the invention with two wires.
  • a conventional NiTi5 wire with a diameter of 1.5 mm was used as wire 1.
  • a composite wire composed of 65% by weight Al (purity 99.5%) and 35% by weight titanium oxide (rutile with an average particle diameter of 2 to 5 ⁇ m) was used as wire 2.
  • the AI formed a tight coat for the soul from the titanium oxide.
  • the diameter of the composite wire was 2 mm.
  • the two wires were fed to the LDS nozzle at the same and constant speed.
  • the stud and substrate were removed from the layer by machining. The remaining composite layer was sanded. The mechanical properties of the composite layer resulted in a strength of 350 MPa and an elongation at break of 0.35%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

Verbundwerkstoff oder Verbundwerkstoffschicht aus intermetallischen Phasen und Keramik, die zumindest teilweise durch eine Hochtempreaturreaktion zwischen den metallischen und keramischen Komponenten von mindestens einem Compositedraht während der Abscheidung mittels eines Lichtbogendraht-Spritzverfahrens gebildet wurden und Lichtbogendrahlt-Spritzverfahen mit mindestens einem Compositedraht aus metallischen und keramischen Komponenten, die zur chemischen Reaktion miteinander unter Bildung von intermetallischen Phasen und neuen Keramiken geeignet sind.

Description

Verbundwerkstoff aus intermetallischen Phasen und Keramik und
Herstellungsverfahren
Die Erfindung betrifft einen Verbundwerkstoff aus intermetallischen Phasen und Keramik, insbesondere in der Form einer Beschichtung auf metallischen Substraten, sowie ein Lichtbogendrahtspritzverfahren zur Herstellung des Verbundwerkstoffes, bei dem die abzuscheidenden intermetallischen Phasen und die Keramik während des Abscheideprozesses aus den Komponenten der zugeführten Drähte durch chemische Reaktion neu gebildet werden. Die Erfindung betrifft des weiteren durch den Verbundwerkstoff gebildete Verschleißschutzschichten, tribologische Schichten und Panzerungsmaterial .
Bei der Herstellung von Werkstoff-Schichten zeichnet sich das Lichtbogendrahtspritzen unter den thermischen Spritzverfahren durch eine einfache Prozessführung und hohe Abtragsraten aus. Die Beschichtung von endkonturnahen Bauteilen aus kostengünstigen Werkstoffen mittels Lichtbogen-Drahtspritzens (LDS) erfüllt vielfach bereits die Anforderungen zur Herstellung von Serienbauteilen und findet deshalb verbreitet Einsatz in Serienanwendung. Die Herstellung von dünnen metallischen Schichten gehört hierbei zum Stand der Technik. Pro Spritz- Übergang (Beschichtungszyklus) werden Schichtdicken von ca. 0,05 bis 0,3 mm erreicht. Höhere Schichtdicken müssen durch Mehrfachbeschichtung, d. h. mehrere Beschichtungszyklen eingestellt werden. Das LDS ist ein typisches Verfahren zur Herstellung von dünnen Schichten. Höhere Schichtdicken, bzw. die Möglichkeit der Herstellung ganzer Bauteile können durch Sprühkompaktieren mittels thermischem Spritzen erreicht werden. Hierbei werden die Werkstoffe als Pulver oder Draht in einer Flamme oder einem Lichtbogen verdüst und zu Halbzeugen verarbeitet.
Nachteile der LDS-Spritzschichten und des Sprühkompaktierens zur Herstellung von Schichten und Halbzeugen sind bisher die ungenügende Haftung der Schichten auf dem Grundwerkstoff (Substrat), die hohe Sprödigkeit, die hohe Porosität und die Inhomogenität der Schichten. Insbesondere ist die Neigung zur Rissbildung bei dickeren Schichten, d. h. über ca. 1 mm Dicke, sehr störend.
Das Grundprinzip des LDS schränkt zur Zeit die Werkstoffauswahl der zu bildenden Schichten stark ein, denn die Draht-Werkstoffe müssen elektrisch leitfähig, sowie unter Prozessbedingungen schmelzbar sein. Daher werden überwiegend nur metallische Werkstoffe eingesetzt, bzw. metallische Schichten erzeugt. Keramische Hochtemperaturwerkstoffe sind durch dieses Verfahren kaum zugänglich.
Zu den besonders geeigneten Werkstoffen gehören
Verbundwerkstoffe aus Metall/Keramik, intermetallics/Keramik
(intermetallische Phasen/Keramik) oder intermetallics/Metall .
Aus dem Patent DE 198 41 618 C2 ist ein LDS-Verfahren zur Herstellung von tribologischen Beschichtungen für Synchronringe aus einem Metall/Keramik-Verbundwerkstoff bekannt. Die verschleißbeständige Schicht enthält typischerweise 40 Gew% Ti02 und die Metalle Sn, Zn, Cu und/oder AI. Die Porosität liegt ca. 20%. Die Abscheidung dieser Verbundschicht erfolgt bevorzugt über das Verspritzen eines Fülldrahtes aus einer metallischen Hülle aus Cu und /oder AI und einer Füllung aus Ti02, sowie den Metallen Sn, Zn, Cu und/oder AI. Der Ti02-Keramikgehalt von Fülldraht und abgeschiedener Schicht bleibt im wesentlichen unverändert. Die für Verschleißschutzschichten, Halbzeuge für Reibsysteme oder Schutzpanzerungen für ballistische Einwirkungen erforderliche hohe Härte bei gleichzeitig hoher Bruchzähigkeit (Duktilität) wird durch diesen Verbundwerkstoff noch nicht zufriedenstellend erreicht. Ebenso liegt die Porosität zu hoch.
Es ist daher Aufgabe der Erfindung ein temperaturstabiles und verschleißbeständiges Bauteil, oder eine entsprechende Werkstoffschicht aus einem Verbundwerkstoff bereitzustellen, das hohe Härte bei gleichzeitig hoher Bruchzähigkeit aufweist, sowie ein kostengünstiges und schnelles Verfahren zu dessen Herstellung oder Abscheidung.
Die Aufgabe wird durch Bereitstellung eines Verbundwerkstoffes aus intermetallischen Phasen und Keramikphasen gelöst, dessen Komponenten zumindest zum Teil durch eine Hochtemperaturreaktion zwischen einem Metall oder der Hauptkomponente einer Metalllegierung und Keramikpartikeln während seines Aufbaus mittels LDS neu gebildet werden, sowie durch ein LDS-Verfahren bei dem mindestens ein Compositedraht aus Metall oder Metallegierung und Keramikpartikeln in der Weise verwendet wird, dass durch Hochtemperaturreaktion zwischen Metall oder Metallegierung und Keramikpartikeln während der Abscheidung Spritzpartikel mit neuen intermetallischen Phasen und neuen Keramikphasen gebildet werden.
Der erfindungsgemäße LDS-Prozess beinhaltet somit eine Reaktion, insbesondere eine Hochtemperaturreaktion, zwischen den einzelnen Komponenten des mindestens einen zugeführten Compositedrahtes, so dass in der abgeschiedenen Schicht neugebildete Werkstoffe vorliegen. Die neugebildeten Werkstoffe beinhalten intermetallische Phasen und Keramiken. Die Komponenten können dabei neben dem mindestens einen Compositedraht auch durch weitere Compositedrähte, oder auch durch einen oder mehrere Massivdrähte, das heißt rein metallische Drähte zugeführt werden.
Das Reaktionsschema der Hauptreaktion während des LDS- Prozesses zwischen den Metallen oder Metallegierungen und den Keramikpartikeln lässt sich wie folgt verallgemeinern:
M + M\Xb "> McM d + MeXf
M: Metall (gegebenenfalls als Legierungsbestandteil)
MΛ: Metall
X: Nichtmetall
MΛ aXb und MeXf: Keramik
McM d: intermetallische Phase (intermetallic)
Ein konkretes Reaktionsbeispiel stellt die Umsetzung zwischen metallischem Aluminium und Titanoxid dar. 7 AI + 3 Ti02 - 2 A1203 + 3 TiAl
Durch den erfindungsgemäßen LDS-Prozess werden für den Verbundwerkstoff Materialkombinationen in einer Qualität zugänglich, die auf andere Weise nicht erhältlich wären. Dies gilt insbesondere für hochschmelzende intermetallics und Keramiken, sowie in besonderem Maße für nicht unzersetzt schmelzbare Verbindungen.
Der erfindungsgemäße Verbundwerkstoff liegt durch das Herstellungsverfahren bedingt zunächst als Werkstoffschicht vor. Da das Material aber quasi unbegrenzt in nahezu gleich bleibender Qualität abgeschieden werden kann, ist die Schichtdicke im Prinzip nicht begrenzt. Somit kann die Schichtdicke wesentlich über der Dicke des Substrates liegen. Die so genannte Schicht kann daher auch als eigenständiger Werkstoff bzw. als eigenständiges Bauteil betrachtet werden. Gegebenenfalls kann das Substrat auch ganz entfernt werden, um die abgeschiedene Schicht als separates Bauteil zu erhalten. Der erfindungsgemäße Verbundwerkstoff enthält als im LDS- Verfahren neugebildete intermetallischen Phasen (intermetallics) Verbindungen aus mindestens zwei Elementen der Gruppe AI, Ti, V, Fe, Co, Ni, Cr, Mo, W, Si oder B.
Aus systematischen Gründen werden auch die entsprechenden binären oder multinären Suizide und Boride bei den intermetallischen Phasen aufgeführt, denn nach dem erfindungsgemäßen Reaktionsschema bei dem LDS-Prozess sind auch Suizide und Boride aus den metallischen und keramischen Komponenten des Spritzdrahtes erhältlich. Auch aufgrund ihrer chemischen Eigenschaften stehen diese Verbindungen den intermetallics näher als den typischen Keramiken.
Bevorzugt umfasst der Verbundwerkstoff eine oder mehrere der intermetallischen Phasen Titanaluminid, Titansilizid, Nickelaluminid, NiTi-Intermetallics, Molybdänsilizid, und/oder Titanborid. Die angegebenen Materialbezeichnungen umfassen dabei alle in den entsprechenden Materialsystemen auftretenden intermetallischen Phasen. Besonders bevorzugt sind die folgenden Verbindungen einzeln oder in Kombination: TiAl, T1AI3, NiAl, NiTi, NiTi2, NiTi3, Ni4Ti3, TiSi, Ti5Si3, MoSi, V5Si3, TiB, TiB2.
Der Anteil der intermetallics im erfindungsgemäßen Verbundwerkstoff liegt oberhalb 20 Vol%. Bevorzugt liegt der Gehalt an intermetallics aber im Bereich von 30 bis 80 Vol% .
Bei den im Verbundwerkstoff auftretenden intermetallics muss es sich nicht ausschließlich um die im LDS-Verfahren neugebildeten intermetallics handeln. Das LDS-Verfahren ist ebenso geeignet, intermetallics die bereits in dem Spritzdraht vorliegen mitabzuscheiden. Der Anteil der neugebildeten intermetallics überwiegt erfindungsgemäß jedoch deren Anteil bei weitem. Mindestens 70 Vol% der im Verbundwerkstoff enthaltenen intermetallics sind dabei neugebildet.
Des weiteren enthält der erfindungsgemäße Verbundwerkstoff als im LDS-Verfahren neugebildete keramische Phasen Oxide, Nitride, Carbide, Suizide und/oder Boride aus mindestens einem der Elemente der Gruppe AI, Ni, Fe, Ti, Co, Mo, oder W. Bevorzugt enthält der Verbundwerkstoff mindestens eine neugebildete keramische Phase aus Ti-, oder AI-Oxid, oder- Nitrid, insbesondere aus A1203, A1N, Ti02, oder TiN.
Unter den neugebildeten keramischen Phasen sind auch diejenigen zu verstehen, welche gegebenenfalls durch eine Umsetzung zwischen Metall oder Metallegierung mit dem Trägergas oder einer Reaktivkomponente des Trägergases während des LDS-Verfahrens gebildet werden. Hierzu zählen insbesondere die Oxide oder Nitride, welche durch Umsetzung des Metalls, oder der Metallegierung mit Sauerstoff oder Stickstoff im Trägergas gebildet werden. Das durch die, dem erfindungsgemäßen LDS-Verfahren zueigne
Hochtemperaturreaktion hervorgerufene typische Gefüge und typischen Werkstoffeigenschaften werden auch durch die direkte Reaktion zwischen Metall (bzw. Metallegierung) und Sauerstoff oder Stickstoff erreicht, da es sich auch bei diesen Umsetzungen um Hochtemperaturreaktionen handelt.
Der Anteil der Keramik, beziehungsweise Keramikpartikel im erfindungsgemäßen Verbundwerkstoff liegt unterhalb 80 Vol%. Bevorzugt liegt deren Gehalt im Bereich von 20 bis 70 Vol%. Der Keramikanteil setzt sich dabei aus der neugebildeten Keramik, sowie gegebenenfalls Resten an nicht umgesetzten Keramikpartikeln des Compositedrahtes zusammen. Erfindungsgemäß liegt der Anteil an neugebildeter Keramik oberhalb 70 Vol% des Gesamtkeramikgehaltes.
In einer bevorzugten Ausführung ist der erfindungsgemäße Verbundwerkstoff im wesentlichen aus AI beinhaltenden intermetallischen Phasen und A1203 beinhaltenden Keramikphasen aufgebaut, die durch eine
Hochtemperaturreaktion zwischen AI, als Metall oder
Metalllegierung und einem oxidischen Keramikpulver erzeugt wurden.
Besonders bevorzugt wird die intermetallische Phase dabei aus
TiAl und/oder Ti3Al und die keramische Phase aus A1203 gebildet .
Bevorzugt wird die Zusammensetzung des erfindungsgemäßen Werkstoffes so gewählt, dass er nur einen geringen Gehalt an niedrigschmelzenden Phasen, insbesondere Metallen oder Legierungen aufweist. Dies ist naturgemäß durch einen hohen Umsatz der eingesetzten Metalle oder Metalllegierungen mit den eingesetzten Keramikpartikeln zu erreichen. Der im abgeschiedenen Werkstoff maximal zulässige Gehalt an Metall richtet sich nach dem späteren Verwendungszweck, liegt aber üblicherweise unterhalb ca. 10 Vol%. Für Verschleißschutzschichten oder Triboschichten werden Metallgehalte unterhalb 5 Vol% bevorzugt.
Im Gegensatz zu den üblichen thermischen Spritzverfahren sind durch das erfindungsgemäße Verfahren auch intermetallic/Keramik-Verbundwerkstoffe mit Metallgehalten unterhalb 2 Vol% erhältlich.
Bevorzugt weisen die Verbundwerkstoffe eine vergleichsweise hohen Dichte, beziehungsweise geringe Porosität auf. Für die Verwendung als Verschleißschutzschicht, Triboschicht oder Schutzpanzerung liegt die geschlossene Porosität bevorzugt unterhalb 5 Vol%.
In einer besonders vorteilshaften Ausgestaltung des erfindungsgemäßen Verbundwerkstoffes sind mindestens 50 Gew% intermetallische Phasen aus Titanaluminiden und mindestens 20 Gew% keramische Phasen aus Aluminiumoxid gebildet. Der Gehalt an metallischem Aluminium (hierunter ist insbesondere nicht das im intermetallic gebundene AI zu verstehen) liegt dabei unterhalb 2 Gew% und die geschlossene Porosität beträgt dabei maximal 5 Vol%.
Die Dicke der erfindungsgemäßen Schicht auf einem Substrat oder auch als freitagende Schicht liegt oberhalb ca. 0,05 mm. Dieser untere Wert ergibt sich durch die unterste technisch sinnvolle Abscheiderate des LDS-Verfahrens. Bevorzugt liegt die Schichtdicke jedoch oberhalb 0,5 mm.
Die Dicke der Werkstoffschicht ergibt sich dabei im wesentlichen durch den angestrebten Verwendungszweck. Im Falle von Verschleißschutzschichten liegt die Schichtdicke bevorzugt im Bereich zwischen 0,5 bis 3 mm, für Triboschichten, beispielsweise als Reibschicht für Bremsoder Kupplungsscheiben, bevorzugt bei 0,5 bis 5 mm und für Schutzpanzerungen, beispielsweise als Panzermaterial für ballistische Einwirkungen, bevorzugt bei 3 bis 50 mm.
Als Substrat für die Abscheidung der Schicht eigenen sich alle Werkstoffe, die auch für die bekannten thermischen Spritzverfahren geeignet sind. Typischerweise werden die Substrate durch metallische Werkstoffe oder keramische Werkstoffe gebildet. Faserverstärkte Keramiken sind hierfür besonders geeignet.
Gegebenenfalls ist es zweckmäßig zwischen Substrat und erfindungsgemäßer Schicht eine Zwischenschicht zur Haftvermittlung oder zum Ausgleich unterschiedlicher thermophysikalischer Eigenschaften zu verwenden. Bevorzugt ist die Zwischenschicht zumindest teilweise aus einer der metallischen Komponenten der im LDS-Verfahren zugeführten Metalle oder Metallegierungen aufgebaut. Besonders bevorzugt wird die Zwischenschicht aus dem Material gebildet, dass im erfindungsgemäßen LDS-Verfahren mit den Keramikpartikeln umsetzbar ist. Für Eisenmetall- oder Stahlsubstrate sind Cr- oder Ni-haltige Zwischenschichten besonders geeignet. Das erfindungsgemäße LDS-Verfahren sieht vor, mindestens einen Compositedraht aus Metall oder Metallegierung und Keramikpartikeln in der Weise zu verwenden, dass während der Abscheidung Spritzpartikel mit neuen intermetallischen Phasen und neuen Keramikphasen gebildet werden. Die Bildung dieser neuen Verbindungen erfolgt dabei im wesentlichen durch eine Hochtemperaturreaktion zwischen dem Metall oder der Metallegierung und den Keramikpartikeln die über den mindestens einen Compositedraht zugeführt werden.
Das erfindungsgemäße LDS-Verfahren kann sowohl mit einem, als auch mit zwei oder mehreren Drähten durchgeführt werden. Die metallischen Komponenten können dabei neben dem mindestens einen Compositedraht auch durch weitere Compositedrähte, oder auch durch einen oder mehrere Massivdrähte, das heißt rein metallische Drähte zugeführt werden. Die keramischen Komponenten werden bevorzugt in Form eines Compositedrahtes (Metall/Keramik-Compositedrahtes) zugeführt .
Wesentliche Anforderung zur Durchführung des LDS-Verfahrens ist dabei, dass der oder die Drähte eine ausreichende elektrische Leitfähigkeit zur Zündung des Lichtbogens aufweisen.
Bevorzugt werden zwei Drähte verwendet wobei ein erster Draht aus Metall oder Metallegierung als Massivdraht und ein zweiter Draht als Compositedraht ausgeführt ist.
Die folgenden schematischen Abbildungen sollen den Gegenstand der Erfindung weiter erläutern.
Fig. 1 Zeigt das Schliffbild einer erfindungsgemäßen Beschichtung gemäß Ausführungsbeispiel 1, mit dem Substrat aus Grauguss (1) , einer Haftschicht (2) aus NiTi5 und einer Verbundwerkstoffschicht (3) , die Phasen aus Titanaluminid und A1203 (4), NiTi5 (5), Nickelaluminid (6) und Ti02 (7) aufweist. Fig. 2 Zeigt schematisch einen Compositedraht aus einem Metallmantel (8) und einer Seele (9) aus Keramikpulver und Compositedraht (10) aus Metall und disperser keramischer Phase
Fig. 3 Zeigt den schematisch den Querschnitt durch ein Bremsscheibensegment mit einem Kern (11) aus Grauguss, Haftvermittlungsschichten (12) und Verbundwerkstoffschichten (13) die jeweils auf den zwei gegenüberliegenden Reibschichten angeordnet sind.
Fig. 4 Zeigt den schamtischan Aufbau einer Panzerplatte mit gradiertem Aufbau der Verbundwerkstoffschicht im Querschnitt mit einer Grundplatte (14) aus Stahl, und drei Verbundwerkstoffschichten (13, 13 13 λΛ) mit unterschiedlicher Zusammensetzung, wobei der Keramikgehalt in der Reihenfolge von (13) über (13λ) bis nach (13) zunimmt.
Der Compositedraht (Fig. 1) ist üblicherweise als Metallmantel (8) mit Keramikseele (9) ausgeführt. Die Herstellung geeigneter Compositedrähte kann nach den gängigen Verfahren erfolgen. So ist es beispielsweise möglich den Compositedraht durch Verstrecken einer mit Keramikpartikeln gefüllten Metall-Hülse oder durch Walzen einer mit Keramikpulver beaufschlagten Metallfolie zu fertigen. Ebenso sind auch Metalldrähte mit eingelagerter disperser keramischer Phase (10) geeignet.
Das Verfahrensprinzip des LDS setzt voraus, dass mindestens einer der zugeführten Drähte eine ausreichende Leitfähigkeit besitzt, den Lichtbogen zu zünden. Im Prinzip sind daher auch Kombinationen aus mindestens einem leitfähigen Draht und einem schlecht oder gar nicht leitfähigen Draht zur Durchführung des LDS-Verfahrens geeignet. Daher umfasst das erfindungsgemäße LDS-Verfahren auch Kombinationen aus mindestens einem leitfähigen Draht und weiteren im wesentlichen durch Keramik gebildeten Drähten (Keramikdraht) . Der Keramikdraht kann dabei sowohl aus reiner Keramik, beispielsweise als Keramikfaser oder Keramikfaserbündel, als auch aus mittels Bindemitteln gebundenen Keramikpartikeln aufgebaut sein. Als Bindemittel können organische Polymere und/oder Metalle Verwendung finden.
Für das erfindungsgemäße Verfahren sind als Ausgangskomponenten insbesondere Werkstoffkombinationen aus Metall und Keramik geeignet, die in einer Hochtemperaturreaktion miteinander umgesetzt werden können. Viele der geeigneten Werkstoffkombinationen sind beispielsweise aus den sogenannten SHS-Prozessen, „Self- propagating High Temperature Synthesis" , bekannt. Dabei umfassen die hierbei bekannten Synthesen sowohl reine Feststoff/Feststoff-Reaktionen, als auch Feststoff/Gas- Reaktionen.
Als metallische Komponenten des Compositedrahtes oder des Massivdrahtes sind die Elemente AI, Ti, Si, V, Cr, Mo, W, Fe, Co oder Ni, einzeln, in Kombination oder als Legierung geeignet .
Besonders bevorzugt werden AI und Mg- und/oder Si-haltige AI- Legierungen eingesetzt.
Als keramische Komponente des Compositedrahtes sind insbesondere die Oxide der Elemente Ti, Zr, Fe, die Nitride der Elemente Ti, Zr, Si, SiC und die Boride der Elemente Si oder AI geeignet.
Erfindungsgemäß liegt der Anteil an keramischer Komponente im Compositedraht bei 1 bis 50 Vol%, besonders bevorzugt bei 20 bis 40 Vol%. Besonders bevorzugt wird der Compositedraht aus einer äußeren metallischen Hülle (8) und einer Seele (9) aus Keramikpartikeln gebildet, wobei die Querschnittsfläche der Seele im Bereich von 20 bis 60% des Gesamtquerschnitts liegt.
Als Durchmesser und geometrische Ausgestaltung der Drähte sind die für die konventionellen Spritzverfahren üblichen Ausführungen geeignet. Bevorzugt ist der Compositedrahtes rund und weist einen Durchmesser im Bereich von 1,2 bis 5 mm auf.
Die Kombination aus Metall oder Metallegierung und Keramik muss erfindungsgemäß so gewählt werden, dass eine Hochtemperaturreaktion unter Bildung der neuen intermetallischen und Keramik-Phasen unterstützt wird. Geeignet sind daher insbesondere die folgenden Metall (Metallegierung) /Keramik-Kombinationen, die einzeln oder in Kombination, eingesetzt werden können:
Figure imgf000013_0001
In einer weiteren vorteilshaften Ausgestaltung des erfindungsgemäßen Verfahrens werden die metallischen Ausgangskomponenten so gewählt, dass auch diese durch Reaktion untereinander zur Bildung neuer intermetallischer Phasen geeignet sind. Als weitere während des LDS-Verfahrens auftretende Hochtemperaturreaktion tritt somit die Bildung von intermetallics durch Umsetzung metallischer Komponenten auf. Die metallischen Komponenten können dabei sowohl in Compositedraht, als auch im Massivdraht enthalten sein. Die für das erfindungsgemäße Verfahren besonders geeigneten Element-Kombinationen zur Bildung zusätzlicher intermetallics sind im folgenden aufgeführt, wobei die entsprechenden Elemente als Metall oder Metallegierung in mindestens einem Composite- oder Massivdraht zugeführt werden können:
Figure imgf000014_0001
In einer weiteren Ausgestaltung der Erfindung wird im LDS- Verfahren ein Trägergas genutzt, dass zur Reaktion mit mindestens einer der metallischen Komponenten des mindestens einen zugeführten Drahtes geeignet ist. Insbesondere wird als Trägergas zumindest anteilsmäßig, 02, C02 oder N2 eingesetzt, das mit einer der metallischen Komponenten, insbesondere AI oder Ti, zu Oxiden, Carbonitriden, und/oder Nitriden reagieren kann. Die Umsetzung der Metalle und der reaktiven Bestandteile des Trägergases wird dabei durch die gleichzeitig stattfindende Hochtemperaturreaktion zwischen Metall und Keramik unterstützt.
Durch diese Verfahrensvariante ist es möglich den Gehalt an freien Metallen weiter zu verringern. Da die freien Metalle, wie beispielsweise das AI, im allgemeinen im erfindungsgemäßen Verbundwerkstoff eine der Komponenten mit dem niedrigstem Schmelzpunkt und mit der geringsten Hochtemperaturbeständigkeit darstellen, ist es von erheblichem Vorteil deren Anteil im Verbundwerkstoff möglichst gering zu halten. Auch unter sehr günstigen Prozessbedingungen ist eine vollständige Umsetzung zwischen den Metallen oder Metallegierungen und der Keramik zu den intermetallics und der neuen Keramik nicht gewährleistet, so dass Metallreste oder -spuren zurückbleiben können. Der Anteil dieser Metallreste kann durch Umsetzung mit den reaktiven Anteilen des Trägergases im LDS-Verfahren weiter reduziert werden. Die freien Metalle werden durch die Hochtemperaturreaktion in den Spritzpartikeln soweit und solange erhitzt, dass sie zumindest in der Oberflächenzone der Partikel zu den entsprechenden Oxiden und/oder Nitriden abreagieren können.
Bei der Verwendung des Systems AI als Metall und Ti02 als Keramik wird dem Trägergas bevorzugt ein geringer 02-Anteil zudosiert, oder der Spritzstrahl so geführt, dass eine gewisse Durchmischung mit der 02-haltigen Umgebungsluft in der Abscheidungszone der Spritzpartikel stattfinden kann.
Als Trägergas, beziehungsweise dessen Hauptkomponente kann im allgemeinen N2 verwendet werden, da die Nitridbildung der meisten erfindungsgemäß bevorzugten Metallkomponenten gegenüber den anderen Umsetzungen kinetisch gehemmt ist, beziehungsweise die Bildung der intermetallics aus Metall und Keramik wesentlich schneller und bevorzugt abläuft.
Die zur Bildung der intermetallics führenden chemischen Reaktionen sind stark exotherm und bewirken eine sehr starke Erhitzung der Spritzpartikel. Die Reaktion setzt sich teilweise auch noch in der frisch abgeschiedenen Schicht fort.
Dies hat den Vorteil, dass der Energieeintrag über die LDS- Spritzdüse in das Spritzgut reduziert werden kann und dass die Partikel auch noch in der Abscheidezone zum Teil flüssig oder weich sind. Hierdurch sind die Partikel gut verformbar und können ein sehr dichtes Materialgefüge ausbilden. Die abgeschiedenen Partikel können aufgrund ihrer hohen Temperatur auch teilweise noch zusammensintern oder verschweißen. Insbesondere Materialkombinationen die AI oder Al-Legierungen als Metallkomponente mindestens eines Drahtes beinhalten führen zu vergleichsweise dichten Schichten.
Das Verfahren führt im allgemeinen zu einer Porosität des abgeschiedenen Verbundwerkstoffes unterhalb 5 Vol%. Die durch das erfindungsgemäße LDS-Verfahren erreichbare hohe Materialdichte (geringe Porosität) stellt einen weiteren großen Vorteil gegenüber vielen der gängigen thermischen Spritzverfahren dar.
Die Zusammensetzung des Verbundwerkstoffes wird insbesondere durch das Verhältnis der mittels des mindestens einen Drahtes zugeführten Komponenten eingestellt. Die Einstellung des Verhältnis der Komponenten zueinander kann in unterschiedlicher Weise erfolgen. der Aufbau beziehungsweise die Zusammensetzung des
Compositedrahtes, beispielsweise das Verhältnis zwischen metallischem Mantel und Keramikseele unterschiedliche Durchmesser oder Querschnittsflächen bei mehreren Drähten unterschiedliche Dosiergeschwindigkeiten bei mehreren
Drähten
Im allgemeinen ist eine Dosierung der einzelnen Komponenten im exakten stöchiometrischen Verhältnis nicht notwendig. Bevorzugt wird die metallische Komponente unterstöchiometrisch eingesetzt, um den Restgehalt an freiem Metall im Verbundwerkstoff zu verringern.
Dagegen ist ein Restgehalt an nicht umgesetzter Keramik für die Eigenschaften des Verbundwerkstoffes im allgemeinen weitaus weniger schädlich, denn bereits die Ausgangs-Keramik weist in der Regel deutlich eine bessere Hochtemperaturbeständigkeit und Verschleißfestigkeit auf als die metallischen Komponenten.
Bevorzugt werden die Komponenten in dem Verhältnis dem LDS- Verfahren zugeführt, dass der Restgehalt an freiem Metall unterhalb 5 Vol% und der Restgehalt an nicht umgesetzter Keramik unterhalb 10 Vol% liegt.
Besonders bevorzugt werden die mittels der Drähte zugeführten metallischen und Keramischen Komponenten in einem Mengenverhältnis in den LDS-Prozess eingespeist, dass zumindest die metallische Komponente vollständig zur neuen Keramik und/oder intermetallic umgesetzt wird.
Insbesondere im Falle unterschiedlicher Dosiergeschwindigkeiten der Drähte ist über die Veränderung der Geschwindigkeiten während des Abscheideprozesses in einfacher Weise eine lokale Veränderung der Zusammensetzung des Verbundwerkstoffes, insbesondere ein Gradientenaufbau, erzielbar.
In einer besonders vorteilhaften Ausgestaltung der Erfindung wird in einem Arbeitsgang zunächst eine metallische Haftvermittlungsschicht und hierauf der erfindungsgemäße Verbundwerkstoff abgeschieden, wobei die chemische Zusammensetzung von der Haftvermittlungsschicht zur Verbundwerkstoffschicht graduell ineinander übergehen.
Ein weiterer Aspekt der Erfindung bezieht sich auf die Verwendung der erfindungsgemäßen Verbundwerkstoffschichten, beziehungsweise des erfindungsgemäßen Verbundwerkstoffes.
Die Verbundwerkstoffschichten eignen sich hervorragend als Verschleißschutzschichten. Insbesondere sind Schichten zugänglich die eine Kombination aus guten tribologischen und guten Verschleißeigenschaften aufweisen. Diese lassen sich beispielsweise als Reibschichten für Bremsen, Kupplungen und Beläge einsetzen. Besonders geeignet sind hierfür die TiAl und Al203-beinhaltenden Verbundwerkstoffe.
Eine besonders bevorzugte Anwendung betrifft Bremsscheiben aus Eisen oder Stahl mit Reibflächen aus der erfindungsgemäßen Verbundwerkstoffschicht .
Die Kombination aus hoher Härte und Bruchzähigkeit verleiht dem Verbundwerkstoff gute Widerstandsfähigkeit gegen ballistische Einwirkungen. Insbesondere die TiAl- und Titansilizid- und/oder Titanborid umfassenden Systeme eigen sich gut als ballistische Schutzpanzerung. Ein besonderer Vorteil des erfindungsgemäßen Verfahrens ist, dass sich auch komplex geformte Bauteile oder Schichten auf komplex geformten Substraten in einfacher Weise herstellen lassen. Dies ist insbesondere für Panzerungen im Kraftfahrzeug- oder Luftfahrtbereich interessant, wo komplexe Baugruppen nicht mehr sinnvoll durch konventionelle Panzerplatten geschützt werden können.
Die ballistischen Eigenschaften können durch die Verwendung von Keramik oder faserverstärkter Keramik als Substrat weiter verbessert werden.
Ausführungsbeispiel 1 :
Das Ausführungsbeispiel bezieht sich auf die Herstellung einer Hochleistungsbremsscheibe für Kraftfahrzeuge. Die Bremsscheibe wurde dabei durch die Kombination aus einer konventionellen Graugussbremsscheibe mit einer Reibschicht aus einem Titanaluminid/Aluminiumoxid-Verbundwerkstoff gebildet .
Hiezu wurde eine konventionelle Graugussbremsscheibe mittels Sandstrahlen für die Beschichtung vorbehandelt. Für das LDS-Verfahren wurden zwei unterschiedliche Drähte verwendet. Draht 1, der metallische Draht wird durch handelsübliches NiTi5 gebildet. Draht 2, der Compositedraht, war aus einem metallischen Mantel und einer keramischen Seele aufgebaut. Der metallische Mantel wurde durch AI (Reinheit > 99,5%) und die Seele durch Titanoxidpartikel (Rutil) mit einer mittleren Partikelgröße im Bereich von 2 bis 5 μm gebildet. Der Draht bestand zu 72 Gew% aus Mantelmaterial und zu 28 Gew% aus Füllung. Der Draht wurde durch Strecken einer mit Titanoxidpartikeln gefüllten Al-Metallhülse gewonnen.
Der Durchmesser beider Drähte betrug 1,6 mm.
Zur Beschichtung wurde eine konventionelle LDS-Anlage verwendet, wobei als Trägergas Stickstoff verwendet wurde. In einer ersten Verfahrensvariante wurde das LDS-Verfahren zunächst nur mit Draht 1 gestartet und eine NiTi-Haftschicht mit einer Schichtdicke von 0,1 mm abgeschieden. Hierauf wurde auf die Abscheidung mit den zwei Drähten umgeschaltet. Dabei wurde die Zufuhrgeschwindigkeit der Drähte so eingestellt, dass das Verhältnis von Draht 2 (Al/Ti02-Compositedraht ) zu Draht 1 (NiTi5) in der Reaktionszone bei etwa 20 lag. Durch mehrmaliges Überstreichen des Substrates mit der Spritzdüse wird eine Schichtdicke von 1,5 mm abgeschieden.
Die Restporosität der abgeschiedenen Verbundwerkstoffschicht , gemessen als geschlossene Porosität, betrug maximal 2 Vol% .
Das Schliffbild eines Querschnitts durch die abgeschiedene Schicht ist in Fig 1 abgebildet. In der abgeschiedenen Schicht (3) sind einzelne Phasen aus Titanaluminid/Al203 (4) , NiTi5 (5), Nickelaluminid (6) und Ti02 (7) zu erkennen. Die Phasen weisen eine längliche Struktur und eine sehr dichte Packung auf, wie sie für die Abscheidung von flüssigem oder breiigem Material typisch ist. Erst durch die Hochtemperaturreaktionen in den Partikeln ist eine ausreichend hohe Temperatur noch während des Abscheidezeitpunktes gewährleistet. Auf dem Schliffbild ist keine Porosität innerhalb der abgeschiedenen Schicht zu erkennen.
Eine weitere Bremsscheibe wurde wurde ohne Zwischenschicht unter sonst gleichen Bedingungen gefertigt.
Beide Bremsscheiben wurden in konventioneller Weise plan- und glattgeschliffen.
Die Prüfung der Eigenschaften erfolgte in einem Reibwerttester gegen unterschiedliche serienübliche Bremsbeläge. Die Reibschichten erwiesen sich bis ca. 1100°C an Luft als temperaturbeständig und zeigten gute Reibwerte, sowie eine hervorragende Verschleißbeständigkeit .
Äusführungsbeispiel 2 :
Das Ausführungsbeispiel bezieht sich auf die Herstellung einer mit einer Verschleißschutzschicht versehenen Welle aus einem sprühkompaktierten Bolzen.
Als Untergrund zum Aufbau des Bolzens wurde eine geschliffene Stahlplatte verwendet. Hierauf wurde durch Sprühkompaktieren in bekannter Weise in mehreren Schichten ein Bolzen abgeschieden.
Die Verschleißschutzschicht wurde durch das erfindungsgemäße LDS-Verfahren mit zwei Drähten erzeugt.
Als Draht 1 wurde ein konventioneller NiTi5-Draht mit einem Durchmesser von 1,5 mm eingesetzt.
Als Draht 2 wurde ein Compositedraht aus 65 Gew% AI (Reinheit 99,5%) und 35 Gew% Titanoxid (Rutil mit einem mittleren Partikeldurchmesser von 2 bis 5 μm) eingesetzt. Das AI bildete dabei einen dichten Mantel für die Seele aus dem Titanoxid. Der Durchmesser des Compositedrahtes betrug 2 mm. Die beiden Drähte wurden der LDS-Düse mit gleicher und konstanter Geschwindigkeit zugeführt. Zur Untersuchung der Werkstoffeigenschaften des abgeschiedenen Verbundwerkstoffes wurden Bolzen und Substrat zerspanend von der Schicht entfernt. Die verbleibende Verbundwerkstoff- Schicht wurde geschliffen. Die mechanischen Eigenschaften der Verbundwerkstoff-Schicht ergaben als Festigkeit 350 MPa und als Bruchdehnung 0,35%.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines Verbundwerkstoffes aus intermetallischen Phasen und Keramikphasen durch Abscheidung seiner Komponenten mittels Lichtbogen-Draht- spritzens mit mindestens einem Compositedraht, d a d u r c h g e k e n n z e i c h n e t , dass der mindestens eine Compositedraht aus Metall oder Metallegierung und Keramikpartikeln gebildet wird, wobei das Metall- oder die Metallegierung und die keramischen Partikel während des Spritzprozesses zumindest zum Teil unter Bildung von intermetallischen Phasen und neuen Keramikphasen miteinander unter starker Wärmeentwicklung reagieren.
2. Verfahren nach Anspruch 1 d a d u r c h g e k e n n z e i c h n e t , dass mindestens ein Compositedraht aus Metall oder Metallegierung und Keramikpulver, sowie mindestens ein metallischer Massivdraht verwendet werden, wobei zumindest eine der metallischen Komponenten des Massivdrahtes mit dem Keramikpulver des Compositedrahtes während der Abscheidung unter Bildung von intermetallischen Phasen und neuen Keramikphasen reagiert .
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass die Wärmeentwicklung durch die Reaktion zum Teil auch noch in der neu abgeschiedenen Schicht andauert.
4. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass der Compositedraht als metallische Komponente mindestens AI, Ti, Ni, Fe, Co, Ni, Mo und/oder W als Metall oder dessen Legierung, sowie als keramische Komponente Titanoxid, Zirkonoxid, Boroxid, Eisenoxid, Nickeloxid, Siliciumcarbid, Siliziumnitrid und/oder Borcarbid enthält.
5. Verfahren nach einem der vorangegangenen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Compositedraht durch einen metallischen Mantel und eine keramische Füllung gebildet wird.
6. Verfahren nach einem der vorangegangenen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Compositedraht einen keramischen Anteil von 20 bis 40 Vol% aufweist
7. Verfahren nach einem der vorangegangenen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass während des Lichtbogen-Drahtspritzens in den Spritzpartikeln intermetallische Phasen aus mindestens zwei Elementen der Gruppe AI, B, Ni, Fe, Ti, Co, Mo, W, Si, B neu gebildet werden.
8. Verfahren nach einem der vorangegangenen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass während des Lichtbogen-Drahtspritzens in den Spritzpartikeln keramische Phasen aus Aluminiumoxid, Titancarbid, Titanborid, Titansilizid und/oder Titannitrid neu gebildet werden.
9. Verfahren nach einem der vorangegangenen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass während des Lichtbogen-Drahtspritzens Reaktivgase zugeführt werden, die zumindest mit einer der metallischen Komponenten aus dem mindestens einen zugeführten Compositedraht reagieren.
10. Verfahren nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t , dass die Reaktion mit dem Reaktivgas zu Metalloxiden und/oder Metallnitriden führt.
11. Verfahren nach einem der vorangegangenen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das nach der Reaktion zu den neuen intermetallischen Phasen oder Keramikphasen verbleibende freie Aluminium in der abgeschiedenen Schicht im wesentlichen zu Aluminiumoxid umgesetzt ist.
12. Verbundwerkstoff, erhältlich durch ein Verfahren nach einem der vorangegangenen Ansprüche.
13. Verbundwerkstoff nach Anspruch 10 d a d u r c h g e k e n n z e i c h n e t , dass die durch das Lichtbogen-Drahtspritzen neu gebildeten und abgeschiedenen intermetallischen Phasen aus mindestens zwei Elementen der Gruppe AI, B, V, Ni, Fe, Ti, Co, Cr, Mo, W, Si oder B aufgebaut sind.
14. Verbundwerkstoff nach Anspruch 10 oder 11 d a d u r c h g e k e n n z e i c h n e t , dass die intermetallischen Phasen Titanaluminide, Titan- silizide, Nickelaluminide, NiTi-Intermetallics, Molybdän- silizide, und/oder Titanborid umfassen.
15. Verbundwerkstoff nach einem der Ansprüche 10 bis 12 d a d u r c h g e k e n n z e i c h n e t , dass die durch das Lichtbogen-Drahtspritzen abgeschiedenen keramischen Phasen Oxide, Nitride, Carbide, Suizide und/oder Boride umfassen.
16. Verbundwerkstoff nach einem der Ansprüche 10 bis 13 d a d u r c h g e k e n n z e i c h n e t , dass die durch das Lichtbogen-Drahtspritzen neu gebildeten und abgeschiedenen keramischen Phasen Aluminiumoxid, Titancarbid, Titansilizid, Titancarbid und/oder Titannitrid umfassen.
17. Verbundwerkstoff nach einem der Ansprüche 10 bis 14, g e k e n n z e i c h n e t d u r c h , einen Keramikgehalt von 10 bis 70 Gew% und einen Gehalt an intermetallischen Phasen von 30 bis 90 Gew%, sowie eine Porosität unterhalb 7 Vol% .
18. Verbundwerkstoff nach einem der Ansprüche 10 bis 15 g e k e n n z e i c h n e t d u r c h ,
- mindestens 50 Gew% intermetallische Phasen aus Titan- aluminiden
- mindestens 20 Gew% intermetallische Phasen aus Nickel- aluminiden
- mindestens 20 Gew% keramische Phasen aus Aluminiumoxid
- höchstens 5 Vol% geschlossene Porosität.
19. Verbundwerkstoff nach einem der Ansprüche 10 bis 16 d a d u r c h g e k e n n z e i c h n e t , dass er einen Gehalt an freiem metallischem Aluminium unterhalb 2 Gew% aufweist.
20. Verbundwerkstoff nach einem der Ansprüche 10 bis 17 d a d u r c h g e k e n n z e i c h n e t , dass er in einer Dicke oberhalb 5 mm auf einem metallischen Substrat abgeschieden vorliegt.
21. Verwendung eines Verbundwerkstoffs nach einem der Ansprüche 10 bis 18 als Reibschicht von Bremsenkomponenten oder als Verschleißschutzschicht in Kraftfahrzeugen.
2. Verwendung eines Verbundwerkstoffs nach einem der
Ansprüche 10 bis 18 als Platte oder Schutzschicht gegen ballistische Einwirkungen..
PCT/DE2004/000221 2003-02-19 2004-02-09 Verbundwerkstoff aus intermetallischen phasen und keramik und herstellungsverfahren WO2004074535A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/546,133 US7553563B2 (en) 2003-02-19 2004-02-09 Composite material consisting of intermetallic phases and ceramics and production method for said material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10306919.4 2003-02-19
DE2003106919 DE10306919B4 (de) 2003-02-19 2003-02-19 Verbundwerkstoff aus intermetallischen Phasen und Keramik, Herstellungsverfahren und Verwendung

Publications (2)

Publication Number Publication Date
WO2004074535A2 true WO2004074535A2 (de) 2004-09-02
WO2004074535A3 WO2004074535A3 (de) 2004-11-11

Family

ID=32841698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/000221 WO2004074535A2 (de) 2003-02-19 2004-02-09 Verbundwerkstoff aus intermetallischen phasen und keramik und herstellungsverfahren

Country Status (3)

Country Link
US (1) US7553563B2 (de)
DE (1) DE10306919B4 (de)
WO (1) WO2004074535A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008097358A2 (en) * 2006-09-12 2008-08-14 Jamin Micarelli Lightweight armor composite, method of making same, and articles containing the same
EP2402625A1 (de) * 2010-07-01 2012-01-04 Daimler AG Verbundbremsscheibe und Verfahren zu deren Herstellung
EP1872891B1 (de) * 2005-11-23 2012-10-31 MEC Holding GmbH Verfahren zur Herstellung von hochverschleißfesten Oberflächen durch Lichtbogenauftragsschweißung zur Herstellung einer Verschleißschutzplatte
EP2524973A1 (de) * 2011-05-18 2012-11-21 Sulzer Metco AG Lichtbogenspritzverfahren zum Herstellen einer dichten Schicht

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8689671B2 (en) 2006-09-29 2014-04-08 Federal-Mogul World Wide, Inc. Lightweight armor and methods of making
WO2008103759A1 (en) * 2007-02-20 2008-08-28 Tech M3, Inc. Composite brake disks and methods for coating
DE102007010698A1 (de) * 2007-03-06 2008-09-11 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung einer Beschichtung
BRPI0813517A2 (pt) * 2007-07-18 2015-01-06 Alcan Tech & Man Ag Material alumínio-dúplex com base em alumínio com uma primeira fase e uma segunda fase e método para produção do material alumínio-dúplex
DE102008024226A1 (de) 2008-05-19 2009-11-26 Daimler Ag Verfahren zum Beschichten eines Metallteils
JP5275509B2 (ja) * 2009-03-24 2013-08-28 アルストム テクノロジー リミテッド 基板用クロムフリーコーティング
DE102009049875A1 (de) * 2009-10-19 2011-05-12 Daimler Ag Bremsscheibe mit einem ringförmigen Reibkörper und Verfahren zum Herstellen des Reibkörpers
DE102009059806A1 (de) * 2009-12-21 2011-06-01 Daimler Ag Leichtbauverbundbremsscheibe und deren Herstellung
DE102010008202B4 (de) * 2010-02-17 2015-12-31 Daimler Ag Herstellungsverfahren für einen Reibring aus einem Verbundwerkstoff
DE102010035646B3 (de) * 2010-08-27 2011-12-15 Daimler Ag Verfahren zum Herstellen einer Bremsscheibe sowie Bremsscheibefür eine Scheibenbremse eines Kraftwagens
US9989320B2 (en) 2012-01-17 2018-06-05 General Electric Technology Gmbh Tube and baffle arrangement in a once-through horizontal evaporator
US20130337215A1 (en) * 2012-06-19 2013-12-19 Caterpillar, Inc. Remanufactured Component And FeA1SiC Thermal Spray Wire For Same
US9528008B2 (en) * 2013-03-07 2016-12-27 United Technologies Corporation Lightweight and corrosion resistant abradable coating
US10012279B2 (en) 2013-03-15 2018-07-03 Tech M3, Inc. Braking systems incorporating wear and corrosion resistant rotors
WO2014145227A1 (en) 2013-03-15 2014-09-18 Tech M3, Inc. Wear resistant braking systems
DE102013103944A1 (de) * 2013-04-18 2014-10-23 Benteler Defense Gmbh & Co. Kg Panzerungsbauteil und Verfahren zur Herstellung eines Panzerungsbauteils
US9475154B2 (en) 2013-05-30 2016-10-25 Lincoln Global, Inc. High boron hardfacing electrode
DE102014008844A1 (de) * 2014-06-14 2015-12-17 Daimler Ag Bremsscheibe für ein Kraftfahrzeug
DE102015212511B4 (de) 2014-07-24 2019-06-06 Ford Global Technologies, Llc Verfahren zur Herstellung einer Bremsscheibe sowie Bremsscheibe
EP3235925A1 (de) * 2016-04-22 2017-10-25 Linde Aktiengesellschaft Verfahren und vorrichtung zum herstellen einer panzerung für geschützte fahrzeuge
DE112019002464T5 (de) 2018-05-16 2021-01-28 Tenneco Inc. Bremsbelagträgerplatte
DE102019209424B3 (de) * 2019-06-27 2020-11-26 Robert Bosch Gmbh Reibbremskörper für eine Radbremse eines Kraftfahrzeugs, Reibbremse und Verfahren zur Herstellung eines Reibbremskörpers
CN113088865B (zh) * 2021-03-21 2022-12-09 北京工业大学 一种抗气蚀性能优异的NiTi-TiB2复合涂层及其制备方法
CN114892241A (zh) * 2022-06-07 2022-08-12 国网福建省电力有限公司 一种高温耐磨Ni-Mo基氮化物氮化物陶瓷相复合涂层及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0426608A2 (de) * 1989-10-30 1991-05-08 Lanxide Technology Company, Lp Verwendung von Metalmatrix-Verbundstoff als Panzermaterial
DE19632598C1 (de) * 1996-08-13 1997-12-11 Daimler Benz Ag Leichtpanzerung in Mehrschichtbauweise
DE19841618A1 (de) * 1998-09-11 2000-03-30 Daimler Chrysler Ag Thermisch gespritzter, verschleißfester Komfort - Synchronisierungsbelag
EP1176228A2 (de) * 2000-07-26 2002-01-30 DaimlerChrysler AG Oberflächenschicht und Verfahren zur Herstellung einer Oberflächenschicht

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4102495A1 (de) * 1991-01-29 1992-07-30 Thyssen Edelstahlwerke Ag Verfahren zum beschichten von substraten
DE4447130A1 (de) * 1994-12-29 1996-07-04 Nils Claussen Herstellung eines aluminidhaltigen keramischen Formkörpers
DE19706925C2 (de) * 1997-02-20 2000-05-11 Daimler Chrysler Ag Verfahren zum Herstellen von Keramik-Metall-Verbundkörpern, Keramik-Metall-Verbundkörper und deren Verwendung
DE19841619C2 (de) * 1998-09-11 2002-11-28 Daimler Chrysler Ag Werkstoffdraht zur Erzeugung verschleißfester Beschichtungen aus übereutektischen Al/Si-Legierungen durch thermisches Spritzen und seine Verwendung
DE10036264B4 (de) * 2000-07-26 2004-09-16 Daimlerchrysler Ag Verfahren zur Herstellung einer Oberflächenschicht
US20040105939A1 (en) * 2000-07-26 2004-06-03 Daimlerchrysler Ag Surface layer and process for producing a surface layer
DE10125814C1 (de) * 2001-05-26 2002-07-25 Daimler Chrysler Ag Metall-Keramik-Verbundwerkstoff und Verfahren zu dessen Herstellung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0426608A2 (de) * 1989-10-30 1991-05-08 Lanxide Technology Company, Lp Verwendung von Metalmatrix-Verbundstoff als Panzermaterial
DE19632598C1 (de) * 1996-08-13 1997-12-11 Daimler Benz Ag Leichtpanzerung in Mehrschichtbauweise
DE19841618A1 (de) * 1998-09-11 2000-03-30 Daimler Chrysler Ag Thermisch gespritzter, verschleißfester Komfort - Synchronisierungsbelag
EP1176228A2 (de) * 2000-07-26 2002-01-30 DaimlerChrysler AG Oberflächenschicht und Verfahren zur Herstellung einer Oberflächenschicht

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1872891B1 (de) * 2005-11-23 2012-10-31 MEC Holding GmbH Verfahren zur Herstellung von hochverschleißfesten Oberflächen durch Lichtbogenauftragsschweißung zur Herstellung einer Verschleißschutzplatte
WO2008097358A2 (en) * 2006-09-12 2008-08-14 Jamin Micarelli Lightweight armor composite, method of making same, and articles containing the same
WO2008097358A3 (en) * 2006-09-12 2008-12-11 Jamin Micarelli Lightweight armor composite, method of making same, and articles containing the same
EP2402625A1 (de) * 2010-07-01 2012-01-04 Daimler AG Verbundbremsscheibe und Verfahren zu deren Herstellung
EP2524973A1 (de) * 2011-05-18 2012-11-21 Sulzer Metco AG Lichtbogenspritzverfahren zum Herstellen einer dichten Schicht

Also Published As

Publication number Publication date
DE10306919B4 (de) 2006-08-17
US7553563B2 (en) 2009-06-30
WO2004074535A3 (de) 2004-11-11
DE10306919A1 (de) 2004-09-09
US20060078749A1 (en) 2006-04-13

Similar Documents

Publication Publication Date Title
DE10306919B4 (de) Verbundwerkstoff aus intermetallischen Phasen und Keramik, Herstellungsverfahren und Verwendung
DE69837619T2 (de) Elektrodenstab für funkenbeschichtung, verfahren zu dessen herstellung und verfahren zur beschichtung mit supraschleif-enthaltender schicht
EP2746613B1 (de) Bremsscheibe für ein fahrzeug
DE1521369C3 (de) Pulverförmige, selbstfließende Flammspritzmasse
DE10046956A1 (de) Thermisch aufgetragene Beschichtung für Kolbenringe aus mechanisch legierten Pulvern
DE102013201104A1 (de) Verfahren zur Herstellung von Chromnitrid-haltigen Spritzpulvern
DE102006038116A1 (de) Abriebwiderstandsfähige Schweißbeschichtung
DE102013201103A1 (de) Thermisches Spritzpulver für stark beanspruchte Gleitsysteme
EP3249064A1 (de) Additive fertigung von hochtemperaturbauteilen aus tial
DE19752776C1 (de) Verfahren zur Herstellung eines Bauteils aus Al¶2¶0¶3¶/Titanaluminid-Verbundwerkstoff und dessen Verwendung
EP3314033B1 (de) Eisenbasierte legierung zur herstellung thermisch aufgebrachter verschleissschutzschichten
DE2830376C2 (de) Verfahren zur Herstellung kugelförmiger Teilchen für das Spritzauftragen von Schutzschichten
DE3743167A1 (de) Fuelldraht zum erzeugen von schmelz-verbundschichten
DE102006050985A1 (de) Flüssigauftragbare verschleißbeständige Einbrennbeschichtung
EP1872891B1 (de) Verfahren zur Herstellung von hochverschleißfesten Oberflächen durch Lichtbogenauftragsschweißung zur Herstellung einer Verschleißschutzplatte
DE2317447C2 (de) Schneideinsätze
DE102006040120B3 (de) Verbundwerkstoff und Verfahren zu seiner Herstellung
DE102006005225B3 (de) Titanwerkstoff und Verfahren zu seiner Herstellung
DE10036264B4 (de) Verfahren zur Herstellung einer Oberflächenschicht
DE102007016411A1 (de) Halbzeug aus Refraktärmetallen, insbesondere aus Molybdän, welches mit einer Schutzschicht versehen ist und Verfahren zu dessen Herstellung
WO2004043875A2 (de) Keramik-metall- oder metall-keramik-komposite
DE102014002583B3 (de) Verfahren zur Herstellung eines verschleißbeständigen Leichtmetall-Bauteils
WO2005012590A2 (de) Ventilsitzringe aus co oder co/mo-basislegierungen und deren herstellung
DE10117657B4 (de) Komplex-Borid-Cermet-Körper und Verwendung dieses Körpers
DE10303351B3 (de) Bauteil aus Metall/Keramik-Verbundwerkstoff mit intermetallischer Matrix, dessen Verwendung als Panzermaterial und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006078749

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10546133

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10546133

Country of ref document: US