CN113088865B - 一种抗气蚀性能优异的NiTi-TiB2复合涂层及其制备方法 - Google Patents

一种抗气蚀性能优异的NiTi-TiB2复合涂层及其制备方法 Download PDF

Info

Publication number
CN113088865B
CN113088865B CN202110299174.2A CN202110299174A CN113088865B CN 113088865 B CN113088865 B CN 113088865B CN 202110299174 A CN202110299174 A CN 202110299174A CN 113088865 B CN113088865 B CN 113088865B
Authority
CN
China
Prior art keywords
niti
tib
composite coating
coating
layered composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110299174.2A
Other languages
English (en)
Other versions
CN113088865A (zh
Inventor
李辉
龚利强
宋柱国
曲浩然
林健
符寒光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202110299174.2A priority Critical patent/CN113088865B/zh
Publication of CN113088865A publication Critical patent/CN113088865A/zh
Application granted granted Critical
Publication of CN113088865B publication Critical patent/CN113088865B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/137Spraying in vacuum or in an inert atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明公开了一种抗气蚀性能优异的NiTi‑TiB2层状复合涂层及其制备方法。所述涂层可以发挥NiTi合金的超弹性与TiB2陶瓷复高硬度、高耐磨性的优点,而NiTi弹性好可以抵消TiB2陶瓷相脆性大的缺点。在氩气保护环境下,将粉末与丝材依次送入等离子焰流中,喷涂至基体表面制备NiTi‑TiB2层状复合涂层。其中层状复合涂层喷涂参数为:电流400‑600A,电压50‑70V,氩气流量30‑40SLPM,氢气流量6‑12SLPM,喷涂距离:80‑150mm,送丝速度:3‑5m/min,送粉率:20‑40g/min。所制备的涂层TiB2部分的体积比在10%‑50%之间,NiTi部分的体积比在50%‑90%之间。制备的涂层表现出较为优异的抗空蚀性能,适合用作水轮机的涡轮叶片、泵、阀门等过流件的表面防护材料。

Description

一种抗气蚀性能优异的NiTi-TiB2复合涂层及其制备方法
技术领域
本发明属于工程材料表面防护领域,涉及一种抗气蚀性能优异的层状金属陶瓷复合涂层及其制备方法,具体涉及到采用在惰性气氛保护下,以原料 NiTi丝、35wt.%Ni-65wt.%TiB2粉末依次堆叠的方式,使用等离子喷涂制备 NiTi-TiB2复合涂层的工艺方法。
背景技术
水轮机的涡轮叶片、螺旋桨、泵、阀门等过流件的空蚀损伤造成的失效问题十分严重,如何防止空蚀对设备造成的损坏,延长设备服役时间,是材料表面防护研究的重点。
空蚀是由于气泡溃灭时的冲击压强所引起的,而材料的抗空蚀性能与材料本身的结构与物理化学性质有关。目前,水轮机机组常用抗气蚀材料主要是不锈钢,但不锈钢抗气蚀磨损能力不强。因此采用表面防护材料是保护水轮机母材的有效方法之一。近年来国内外对水轮机抗气蚀涂层方面展开了大量研究,目前常使用的喷涂制备工艺有:堆焊,超弹性软体耐磨涂层,热喷涂涂层,但上述方法均存在各种各样的缺点:
(1)堆焊不锈钢材料:堆焊不锈钢材料是目前水轮机修复常用的方法,存在焊层与基体结合强度高,但该处理方法焊层厚度不均匀,金属补焊又会使工件变形,增加制造和检修工期加工余量大,对工件材料可焊性要求高。
(2)超弹性软体耐磨涂层,常用的软体材料有金属合金NiTi涂层、或高分子材料聚氨酯、环氧树脂、复合尼龙等。其弹性模量很低,在较低气蚀强度下,抗气蚀性能优异,但由于硬度较低,在气蚀强度很大时,材料会突然撕裂导致失效。
(3)热喷涂涂层:传统喷涂方法会使用高硬度合金如碳化钨喷枪熔化在过流件表面形成保护涂层。该项技术目前已获得广泛应用,但喷涂后的韧性差、脆性大,受强气蚀冲击时,会先从脆性部分开始破坏,后逐渐脱落。
专利CN111270187 A中采用镍钛合金粉末与钛包镍粉末制备工作层,虽可形成具备一定抗气蚀性能的复合涂层,但由于钛极易氧化,从而生成较多氧化物,导致复合涂层抗气蚀性能不理想。专利CN111304648A中采用Ni 粉、TiB2粉及Ti粉混合作为熔覆材料,在钛合金表面激光熔覆制备复合涂层。虽可形成NiTi和TiBw物相,却不可避免的生成Ni3Ti、Ni3B和Ni4B3等杂相,还存在较高含量的Ti和TiB2,且无法生成高体积分数的NiTi涂层。
NiTi合金具有超弹性、形状记忆效应、抗腐蚀性能和高加工硬化能力, NiTi合金具备良好的超弹性可以吸收高压、高速液流冲击,因而可使气泡溃灭时产生的高强度冲击迅速衰减,同时,通过向韧性相NITI复合金属陶瓷相TiB2,可增加材料的硬度,提高涂层耐磨性,而NiTi合金的超弹性可以抵消TiB2陶瓷相的脆性,形成的层状复合涂层同时具有金属相的超弹性与金属陶瓷相的高硬度、高耐磨性。
本发明提出一种易于实现、低成本、一种抗空蚀性能优异的NiTi-TiB2层状复合涂层及其制备方法。
发明内容
本发明提供了一种抗空蚀性能优异的NiTi-TiB2层状复合涂层,含有TiB2层和NiTi层,所述层状复合涂层厚度为200-500μm,该层状复合涂层可应用于水轮机的涡轮叶片、泵、阀门等过流件的表面防护材料。
根据本发明的另一方面,提供一种抗空蚀性能优异的NiTi-TiB2层状复合涂层的制备方法:其特征在于以丝径为0.5mm-3.5mm的NiTi丝、粒度为 15-120μm的35wt.%Ni-65wt.%TiB2(以下简称35Ni-65TiB2)粉末为原料,在氩气保护环境下采用等离子喷涂方式制备NiTi-TiB2层状复合涂层。
具体包括以下步骤:
(1)将35Ni-65TiB2粉末置于送粉器中,将NiTi丝材置于送丝桶中,并通入氩气,保持喷涂环境处于惰性气体保护中。
(2)在氩气保护环境下,将步骤(1)中的原料采用不同方式的道次喷涂基体表面制备NiTi-TiB2复合涂层。
优选地,步骤(2)中其中层状复合涂层喷涂参数为:电流400-600A,电压50-70V,氩气流量30-40SLPM,氢气流量6-12SLPM,喷涂距离: 80-150mm,送丝速度:3-5m/min,送粉率:20-40g/min。
优选地,步骤(2)中制备NiTi-TiB2层状复合涂层,需要在喷涂过程中通惰性气体保护,并对基板和涂层进行冷却处理。
所述制备层状复合涂层的方法需要如下设备:同时送丝,送粉的设备,冷却基板的设备。
所述层状复合涂层在空蚀120min之后,在氩气下制备的NiTi-TiB2复合涂层在空蚀下的质量累计损失远小于WC-12CO涂层在空蚀下的质量累计损失。其体积损失也小于WC-12CO涂层在空蚀下的体积损失。本发明所述的 NiTi-TiB2层状复合涂层可应用于水轮机的涡轮叶片、泵、阀门等过流件的表面防护材料。
附图说明
为了更清楚地说明本发明实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅只是本发明的一些实施例。
图1为氩气环境下制备的抗空蚀的NiTi-TiB2层状复合涂层(35Ni-65TiB2体积比23%-28%)的XRD图谱与形貌图
图2为氩气环境下制备的抗空蚀的NiTi-TiB2层状复合涂层(35Ni-65TiB2体积比37%-43%)的XRD图谱与形貌图
图3为NiTi-TIB2层状复合涂层、WC-12CO涂层的质量累计损失曲线图
图4为NiTi-TIB2层状复合涂层、WC-12CO涂层的体积累计损失曲线图
图5为NiTi-TIB2层状复合涂层的结构示意图
图6为装置示意图
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面对本发明作进一步地详细描述。
本发明选用粒径15-120μm的35Ni-65TiB2粉末与丝径为0.5mm-3.5mm 的NiTi丝为原料。在此基础上进行优化设计,具体内容如下:
实施例1
本实施例提供一种抗空蚀性能优异的NiTi-TiB2层状复合涂层的制备方法,包括如下步骤:
(1)前期准备:使用25×25×6的304不锈钢作为基体,选用粒径13-75 μm的35Ni-65TiB2粉末与丝径为1.2mm的NiTi丝为原料。
(2)涂层制备:喷涂设备为Metco 9Mb等离子喷涂系统,在氩气环境下使用等离子喷涂方法喷涂制备NiTi-TiB2层状复合涂层,其中NiTi涂层的等离子喷涂参数为:电流600A,电压60V,氩气流量40SLPM,氢气流量8 SLPM,喷涂距离:100mm,送丝速度4.115m/min。其中35Ni-65TiB2涂层等离子喷涂参数为:电流600A,电压70V,氩气流量40SLPM,氢气流量10 SLPM,喷涂距离:100mm,送粉率:30g/min。喷涂厚度为415μm。
层状复合涂层的喷涂道次为3层NiTi--3层35Ni-65TiB2--3层NiTi--3层 35Ni-65TiB2--3层NiTi--3层35Ni-65TiB2--3层NiTi
惰性气氛下使用等离子喷涂制备NiTi-TiB2层状复合涂层,其中NiTi层的厚度为21μm,35Ni-65TiB2层的厚度为15μm。其中35Ni-TiB2体积比为 25%,NiTi体积比为75%。惰性气氛下使用等离子喷涂制备NiTi-TiB2层状复合涂层的硬度为HV0.2812.6,相较于大气环境下使用等离子喷涂制备 NiTi-TiB2层状复合涂层的硬度HV0.2887.7有所下降,对于NiTi-TiB2层状复合涂层来说,空蚀120min之后,在氩气下制备的涂层在空蚀下的质量累计损失(32.1mg)几乎只有空气下制备的涂层质量累计损失的一半(54.8mg)。
实施例2
本实施例提供一种抗空蚀性能优异的NiTi-TiB2层状复合涂层的制备方法,包括如下步骤:
(1)前期准备:使用25×25×6的304不锈钢作为基体,选用粒径13-75 μm的35Ni-TiB2粉末与丝径为1.2mm的NiTi丝为原料。
(2)涂层制备:喷涂设备为Metco 9Mb等离子喷涂系统,在氩气环境下使用等离子喷涂方法喷涂制备NiTi-TiB2层状复合涂层,其中NiTi涂层的等离子喷涂参数为:电流600A,电压60V,氩气流量40SLPM,氢气流量8 SLPM,喷涂距离:100mm,送丝速度4.115m/min。其中35Ni-65TiB2涂层等离子喷涂参数为:电流600A,电压70V,氩气流量40SLPM,氢气流量10 SLPM,喷涂距离:100mm,送粉率:30g/min。喷涂厚度为440μm。
层状复合涂层的喷涂道次为2层NiTi--3层35Ni-65TiB2--2层NiTi--3层 35Ni-65TiB2-2层NiTi--3层35Ni-65TiB2--2层NiTi。
惰性气氛下使用等离子喷涂制备NiTi-TiB2层状复合涂层,其中NiTi层的厚度为29μm,35Ni-TiB2层的厚度为21μm。其中35Ni-TiB2部分体积比为41%,NiTi部分体积比为59%。所述复合涂层在空蚀120min之后,在氩气下制备的NiTi-TiB2层状复合涂层在空蚀下的质量累计损失(15.7mg)远小于WC-12CO涂层在空蚀下的质量累计损失(43.9mg)。其体积损失(2.49cm3) 也小于WC-12CO涂层在空蚀下的体积损失(2.83cm3)。
实施例中所使用的对比样为超音速火焰喷涂制备的WC-12CO涂层。
表1为实施例1,2及WC-12CO涂层进行测试,测试结果见表1。
图1显示了通过实例1制备的NiTi-TiB2层状复合涂层的XRD衍射分析以及涂层表面形貌。如图1所示,惰性气氛下使用等离子喷涂制备的层状复合涂层的主要成分为NiTi和TiB2,涂层中的黑色颗粒为TiB2呈圆角状,白色的为粘结相NiTi。其NiTi区的氧含量为4.68at%小于大气环境下制备的复合涂层的NiTi区氧含量6.69at%。
图2显示了通过实例2制备的NiTi-TiB2层状复合涂层的XRD衍射分析以及涂层表面形貌。如图2所示,优化结构后的层状复合涂层的主要成分为 NiTi和TiB2
图3显示了通过实例1,2制备的NiTi-TiB2层状复合涂层、WC-12CO涂层的质量累计损失曲线图。实施例2制备的NiTi-TiB2层状复合涂层表现出最为优异的耐空蚀性能。复合涂层在空蚀120min之后,在氩气下制备的 NiTi-TiB2层状复合涂层在空蚀下的质量累计损失(15.7mg)远小于WC-12CO 涂层在空蚀下的质量累计损失(43.9mg)。
图4显示了通过实例1,2制备的NiTi-TiB2层状复合涂层、WC-12CO涂层的体积累计损失曲线图。NiTi-TiB2层状的体积损失(2.5cm3)也小于 WC-12CO涂层在空蚀下的体积损失(2.8cm3)。
表1涂层性能测试结果
Figure BDA0002985496850000061

Claims (4)

1.一种抗气蚀性能优异的NiTi-TiB2层状复合涂层的制备方法,其特征在于:所述涂层为NiTi-TiB2层状复合涂层,由NiTi层与35Ni-65TiB2层依次堆叠而成,其中NiTi层的厚度为10μm-35μm,35Ni-65TiB2层的厚度为10μm-50μm;在惰性气氛保护的条件下,以丝径0.5mm-3.5mm的NiTi丝和粒径15-120μm的35Ni-65TiB2粉末为原料,使用等离子喷涂技术在金属基体表面喷涂NiTi-TiB2层状复合涂层,所制备的涂层含有NiTi相和TiB2相。
2.根据权利要求1所述的一种抗气蚀性能优异的NiTi-TiB2层状复合涂层的制备方法,其特征在于,所述复合涂层厚度为200-500μm。
3.根据权利要求1所述的一种抗气蚀性能优异的NiTi-TiB2层状复合涂层的制备方法,其特征在于,喷涂过程中需要使用氩气对涂层进行保护,减少NiTi层的氧化。
4.根据权利要求1所述的一种抗气蚀性能优异的NiTi-TiB2层状复合涂层的制备方法,其特征在于,在惰性气氛保护的条件下采用等离子喷涂方法,层状复合涂层喷涂参数为:电流400-600A,电压50-70V,氩气流量30-40SLPM,氢气流量6-12SLPM,喷涂距离:80-150mm,送丝速度:3-5m/min,送粉率:20-40g/min。
CN202110299174.2A 2021-03-21 2021-03-21 一种抗气蚀性能优异的NiTi-TiB2复合涂层及其制备方法 Active CN113088865B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110299174.2A CN113088865B (zh) 2021-03-21 2021-03-21 一种抗气蚀性能优异的NiTi-TiB2复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110299174.2A CN113088865B (zh) 2021-03-21 2021-03-21 一种抗气蚀性能优异的NiTi-TiB2复合涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN113088865A CN113088865A (zh) 2021-07-09
CN113088865B true CN113088865B (zh) 2022-12-09

Family

ID=76668764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110299174.2A Active CN113088865B (zh) 2021-03-21 2021-03-21 一种抗气蚀性能优异的NiTi-TiB2复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN113088865B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086105B (zh) * 2021-11-22 2024-02-20 中国人民解放军陆军装甲兵学院 一种丝粉同步送料等离子喷涂铝基陶瓷涂层的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10306919B4 (de) * 2003-02-19 2006-08-17 Daimlerchrysler Ag Verbundwerkstoff aus intermetallischen Phasen und Keramik, Herstellungsverfahren und Verwendung
CN106119762B (zh) * 2016-06-22 2019-02-19 天津市特种设备监督检验技术研究院 一种硼化物金属陶瓷涂层材料及制备方法
CN108356274A (zh) * 2018-03-09 2018-08-03 华南理工大学 一种热喷涂用TiB2-Ni基金属陶瓷复合结构喂料及其制备方法
CN108546898B (zh) * 2018-04-10 2020-06-16 北京工业大学 一种NiTi合金与TiB2陶瓷复合的涂层材料及其制备方法
CN111304648B (zh) * 2020-04-09 2022-05-17 南华大学 一种TiBw-NiTi复合涂层及其制备方法

Also Published As

Publication number Publication date
CN113088865A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
RU2352686C2 (ru) Наноструктурные системы покрытий, компоненты и соответствующие способы изготовления
CN102218857B (zh) 覆有SiC-Fe基合金层的复合材料及其制备方法
CN105648296B (zh) 一种含Re的抗高温碳化钨基金属陶瓷复合粉末、涂层及其制备工艺
KR20080063449A (ko) 액체에 의해 부식되는 기관의 처리방법 및 부식방지 피복합금
CN112626443A (zh) 一种耐磨防腐涂层及其制备方法
CN113088865B (zh) 一种抗气蚀性能优异的NiTi-TiB2复合涂层及其制备方法
CA2454883C (en) Wear-resistant, corrosion-resistant ni-cr-mo thermal spray method and component coated thereby
CN114214555B (zh) 一种抗空蚀耐腐蚀金属-陶瓷基复合材料及其制备方法
CN108893696B (zh) 一种高抗冲蚀且抗爆裂的纳米碳化物增强碳化钨基复合粉末、涂层及其制备方法
CN102363877A (zh) 一种超音速火焰喷涂制备耐磨TiB2-Co涂层的方法
EP2816138B1 (en) Cermet film, coated metal body having cermet film, method for producing cermet film, and method for producing coated metal body
Lv et al. Effects of WC addition on the erosion behavior of high-velocity oxygen fuel sprayed AlCoCrFeNi high-entropy alloy coatings
CN108893695B (zh) 一种抗气蚀抗冲蚀的纳米碳化物增强碳化钨基复合粉末、涂层及其制备方法
CN113122836B (zh) 钛基合金表面抗气蚀涂层及其制备方法
US20130216798A1 (en) Coated article and process of coating an article
CN101691647B (zh) 一种具有高性能的热喷涂涂层
JP2005213605A (ja) 複合材料、溶射皮膜被覆部材およびその部材の製造方法
CN112626442A (zh) 一种耐高温氧化、耐腐蚀的涂层及其制备方法
CN114632949B (zh) 一种增材制造金属零件表面防腐防污复合处理方法
CN109913787B (zh) 一种冶金结合的耐磨耐腐蚀复合涂层的制备方法
CN111270186A (zh) 一种金刚石-铁基复合涂层及其作为高温阀门的密封层的应用
CN110318016A (zh) 一种非晶强化碳化钨涂层及其制备方法
CN110684979A (zh) 一种冷喷涂制备硬质合金涂层的方法
JPH08254173A (ja) 水車及びその製造方法
Wei et al. Cold Spray in Practical and Potential Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant