WO2004074400A1 - Beschichteter leuchtstoff, lichtemittierende vorrichtung mit derartigem leuchtstoff und verfahren zu seiner herstellung - Google Patents

Beschichteter leuchtstoff, lichtemittierende vorrichtung mit derartigem leuchtstoff und verfahren zu seiner herstellung Download PDF

Info

Publication number
WO2004074400A1
WO2004074400A1 PCT/DE2004/000325 DE2004000325W WO2004074400A1 WO 2004074400 A1 WO2004074400 A1 WO 2004074400A1 DE 2004000325 W DE2004000325 W DE 2004000325W WO 2004074400 A1 WO2004074400 A1 WO 2004074400A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
coated
coating
coated phosphor
layer
Prior art date
Application number
PCT/DE2004/000325
Other languages
English (en)
French (fr)
Inventor
Rainer Schirmer
Franz Zwaschka
Martin Zachau
Thorsten Fries
Bert Braune
Original Assignee
Patent-Treuhand-Gesell Schaft Für Elektrische Glü Hlampen Mbh
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent-Treuhand-Gesell Schaft Für Elektrische Glü Hlampen Mbh, Osram Opto Semiconductors Gmbh filed Critical Patent-Treuhand-Gesell Schaft Für Elektrische Glü Hlampen Mbh
Priority to JP2006501508A priority Critical patent/JP4557293B2/ja
Priority to US10/544,497 priority patent/US7678293B2/en
Priority to DE112004000210.9T priority patent/DE112004000210B4/de
Publication of WO2004074400A1 publication Critical patent/WO2004074400A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the invention relates to a coated phosphor according to the preamble of claim 1. It is in particular a phosphor for use in light-emitting devices such as lamps or LEDs or lights with these radiation sources. Another aspect of the invention relates to the production of the coated phosphor.
  • a coated phosphor, light-emitting device with such phosphor and method for its production are known, in which an LED and a phosphor layer are used.
  • the phosphor used is SrS: Eu, which is coated with SiO2 with a layer thickness of 100 nm in order to improve the service life.
  • the proposed stabilization facilitates the introduction of the phosphor into the device.
  • this provides a means of specifically controlling the refractive index of the phosphor and adapting it to its surroundings, for example a resin.
  • the method according to the invention is based on the high reactivity of nanoscale particles, as are usually produced by flame hydrolysis. Typical surfaces of these particles are 30 to 500 m 2 / g according to BET.
  • inorganic substances such as metal oxides, in particular oxides of Al, Si, Ti, or Zr, are suitable as particles. These particles can simply be mixed with the phosphor powder, in a dry way, for example in a ball mill, or in a tumble mixer. It is a homogenizing mixture, not a grinding. There is no need for a wet chemical reaction or temperature treatment. The coating takes place during the mixing process due to the large surface area and the adsorption capacity of the nanoscale material. Its primary grain size is typically at a mean value d 50 of 5 to 30 nm.
  • the layer thickness on the phosphor core is at least 20 nm, 50 to 100 nm are typical, but significantly higher layer thicknesses are also possible.
  • a typical characteristic of such a dry applied layer is its particulate character, which means that the membership of the layer components to individual primary grains is still clearly recognizable.
  • the phosphor grains are coated with inorganic particles of nanometer size, and the resulting layer thickness can consist of several layers of these particles.
  • This coating can be achieved using a simple dry mixing process.
  • the particles of the coating material can be hydrophilic or hydrophobic.
  • the layer thicknesses are very uniform. There is a risk that cracks will easily form in the layer if the thermal expansion coefficients of the grain and layer material are not well matched. In contrast, inhomogeneous ne layers are not very sensitive in this regard, since their character is mainly characterized by the primary grains in the coating.
  • Examples of the original phosphors are moisture-sensitive phosphors with a hydrophilic surface for use in LEDs (typical excitation between 350 and 490 nm), for example chlorosilicate such as the known chlorosilica Eu or chlorosilicate: Eu, Mn, as from DE 100 26 435 known, or thiogallates as known from DE 100 28 266.
  • chlorosilicate such as the known chlorosilica Eu or chlorosilicate: Eu, Mn, as from DE 100 26 435 known, or thiogallates as known from DE 100 28 266.
  • This can be damaged by moisture and temperature during processing, especially by the diffusion of moisture into the resin in the presence of blue radiation, as is often used as the primary emission of an LED in the operation of such a device.
  • the incorporation of the hydrophilic phosphors into a hydrophobic resin leads to agglomeration and increased sedimentation.
  • a strontium aluminate in particular the well-known Sr4AI14O25: Eu for use in Hg low-pressure fluorescent lamps or Hg high-pressure discharge lamps, is a particularly successfully tested phosphor with coating for lamp applications (typical excitation at 150 to 260 nm).
  • Specific examples of coating materials are:
  • Al 2 O 3 flame hydrolytically produced, nanocrystalline Al 2 O 3 , in particular the Al 2 O 3 from Degussa with the trade name aluminum oxide C (Alon C);
  • Nanoscale phosphors such as nano-Y2O3: Eu.
  • these coatings allow the phosphors to be evenly introduced into other hydrophobic media, such as that Epoxy resin in the case of LEDs, improved, which is almost indispensable for a high-quality LED.
  • a concrete example is hydrophobic Aerosil.
  • the coating is made with nano-TiO2 or other materials with a high ⁇ refractive index, such as ZrO2, the nano-layer forms a zone with a medium refractive index that lies between that of the phosphor and that of the surrounding medium (resin), which reduces reflection losses .
  • phosphors which are suitable for coating are YAG: Ce, TbAG: Ce, chlorosilicates and thiogallates, in particular Mg-containing thiogallates.
  • the layer described here can also be applied as a second layer to an already primarily coated grain.
  • grain means original grain including primary coating.
  • Figure 1 is a semiconductor device that serves as a light source (LED) for white light;
  • Figure 2 shows a lighting unit with phosphors according to the present
  • FIGS. 3 and 4 show an SEM image of uncoated and coated phosphor according to the present invention
  • FIG. 5 shows an SEM image of coated phosphor according to the present invention after installation in a lamp
  • the light source is a semiconductor component (chip 1) of the type InGaN with a Peak emission wavelength of 460 nm with a first and second electrical connection 2, 3, which is embedded in an opaque basic housing 8 in the region of a recess 9.
  • One of the connections 3 is connected to the chip 1 via a bonding wire 14.
  • the recess has a wall 17 which serves as a reflector for the blue primary radiation of the chip 1.
  • the recess 9 is filled with a casting compound 5, which contains an epoxy casting resin (80 to 90% by weight) and phosphor pigments 6 (less than 15% by weight) as main components. Other small proportions include methyl ether and Aerosil.
  • the phosphor pigments are a mixture of several pigments, including sulfides.
  • FIG. 2 shows a section of a surface light 20 as a lighting unit. It consists of a common carrier 21, onto which a cuboid outer housing 22 is glued. Its top is provided with a common cover 23.
  • the cuboid housing has cutouts in which individual semiconductor components 24 are accommodated. They are UV-emitting light-emitting diodes with a peak emission of 380 nm.
  • the conversion to white light takes place by means of conversion layers which are seated directly in the casting resin of the individual LEDs, as described in FIG. 1, or layers 25 which are attached to all surfaces accessible to UV radiation are. These include the inner surfaces of the side walls of the housing, the cover and the base part.
  • the conversion layers 25 consist of three phosphors which emit in the yellow, green and blue spectral range using the phosphors according to the invention.
  • inventive light-emitting substances are, for example, chlorides rosilikate type Ca 8 . ⁇ - EuxMnyMg y (SiO4) 4CI2 0 ⁇ y ⁇ 0.06, which are stabilized by a 35 nm thick coating with Aerosil R 812 from Degussa.
  • Aerosil R 812 is flame-hydrolytically manufactured. They are manufactured by simply mixing both the fluorescent and aerosil components over a period of 20 hours in a tumble mixer.
  • Sr Al 14 O 25 : Eu which has been coated with hydrophilic Alon C (Al 2 O 3 ). It is used for Hg low pressure fluorescent lamps, for example T8 36 W lamps used.
  • the fluorescent water coating is carried out in the usual way. There is an increase in the luminous flux after 100 hours by typically 10%. In particular, an up to 17% improvement in the initial luminous flux or the luminous flux after 100 hours of burning time with a very low decrease in luminous flux can be determined under the same measurement conditions.
  • the luminous efficiency-related luminous efficacy after 100 hours was 113.3% uncoated (based on a standard value of 100%), while under otherwise identical conditions an Alon C coating gave a value of 123.3%, ie an increase at 9 %.
  • the loss of light caused by the phosphor was 1.4% in the case of an uncoated phosphor, whereas a slight increase of 0.3% was observed with coated phosphor.
  • FIG. 3 shows an uncoated phosphor powder in comparison to a phosphor powder coated according to the invention (FIG. 4), in each case as an SEM image in a magnification of 5000 times.
  • the particulate character of the layer can be clearly seen in FIG. 4. It looks like a sponge with pores or also like mold growth on the base material compared to the clear contours of the untreated grains of the base material, see Fig. 3. Both figures are taken at the same magnification scale.
  • the particular character of the layer means in particular that the layer on the grains of the base material is inhomogeneous and that the structure of its primary particles can still be clearly recognized, similar to a heap of rubble made of individual stones.
  • the structure created by the primary particles of the layer is significantly smaller than the typical diameter of the base material.
  • a scale difference by a factor of 100, at least a factor of 10, between the particles of the base material and the coating material is typical.
  • the primary particles of the coating material clump inhomogeneously, in contrast to processes that form homogeneous layers such as CVD or organic coating.
  • the primary particles clump together to form aggregates and agglomerates. It is not excluded that a small part of the surface of the base material is free of the coating. However, the entire surface is advantageously coated at least in one layer, which can be achieved, for example, by appropriately long dry mixing.
  • the layer thickness is highly variable and is best described by the average layer thickness over a given area, which can be derived, for example, from the applied weight per unit area. In terms of the size of the primary grain, the layer thickness varies to a similar extent as with a honeycomb structure or a surface that is covered with a coarse mesh in several layers.
  • the phosphor after it has been applied to the glass bulb of a fluorescent lamp. Although the phosphor is only mixed dry with the coating material, it shows such high adhesion that it survives the process of lamp manufacture as a coating. This property is primarily due to the small size of the primary particles of the layer and the associated high reactivity.
  • FIGS. 6 and 7 show the loss of light after 100 hours compared to the original value in percent of the original value and the absolute value of the luminous flux after 100 hours in lumens.
  • the phosphor used in the sense of the base material is Sr aluminate: Eu 2+ .
  • the coating, which was applied to the grains of the phosphor by means of dry coating, is Alon C.
  • the light loss of the lamps with uncoated phosphor after 100 hours is significantly higher, about 29%, than that of the lamps with coated phosphor, for which it is only about Is 19%; see Figure 6.
  • the absolute value of the luminous flux is already noticeably lower after 100 hours in the case of lamps with uncoated phosphor than in the case of lamps with uncoated phosphor. Similar investigations were carried out with heavily loaded T5 lamps of the 54 W power level. They tended to show the same behavior, albeit less pronounced. The light loss of these lamps with uncoated phosphor after 100 hours is higher, about 24%, than that of the lamps with coated phosphor, where it is only about 21%.
  • the duration of the mixing of the base and base materials should be between 5 and 30 hours, depending on the type and nature of the materials.
  • the size of the grains of the base material is typically in the micrometer range, in particular the value for d50 is in a range from 1 to 10 ⁇ m.

Abstract

Der beschichtete Leuchtstoff ist gebildet durch ein Pulver einzelner Körner, die beschichtet sind, wobei die Schicht partikulären Charakter besitzt, mehrlagig ist und die Schichtdicke mindestens 20 nm beträgt. Dabei sind die einzelnen Primärpartikel mindestens 5 nm gross. Er wird in strahlungsemittierenden Vorrichtungen eingesetzt. Das Herstellverfahren beruht auf Trockenmischen.

Description

Titel: Beschichteter Leuchtstoff, Lichtemittierende Vorrichtung mit derartigem Leuchtstoff und Verfahren zu seiner Herstellung
Technisches Gebiet
Die Erfindung bezieht sich auf einen beschichteten Leuchtstoff gemäß dem Oberbegriff des Anspruchs 1. Es handelt sich dabei insbesondere um einen Leuchtstoff für die Anwendung bei lichtemittierenden Vorrichtungen wie Lampe oder LED oder Leuchte mit diesen Strahlungsquellen. Ein weiterer Aspekt der Erfindung bezieht sich auf die Herstellung des beschichteten Leuchtstoffs.
Stand der Technik
Aus der EP 1 199 757 sind bereits ein Beschichteter Leuchtstoff, Lichtemittierende Vorrichtung mit derartigem Leuchtstoff und Verfahren zu seiner Herstellung bekannt, bei der eine LED und eine Leuchtstoffschicht verwendet werden. In einer Ausführungsform wird als Leuchtstoff SrS:Eu verwendet, der mit SiO2 mit einer Schichtdi- cke von 100 nm beschichtet ist um die Lebensdauer zu verbessern.
Darstellung der Erfindung
Es ist Aufgabe der vorliegenden Erfindung, einen beschichteten Leuchtstoff gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, der sowohl gegen Degradation bei der Verarbeitung des Leuchtstoffs als auch bei dessen Verwendung in einer strahlungsemittierenden Vorrichtung, die den Leuchtstoff enthält, stabilisiert ist.
Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.
Die vorgeschlagene Stabilisierung erleichtert das Einbringen des Leuchtstoffs in die Vorrichtung. Hinzu kommt, dass damit ein Mittel gegeben ist, um den Brechungsindex des Leuchtstoffs gezielt zu steuern und an seine Umgebung, beispielsweise ein Harz, anzupassen.
Übliche bisherige Methoden zur Aufbringung der Schutzschichten auf die Oberfläche der Leuchtstoffpartikel verwendeten nasschemische Fällungen oder auch CVD. Diese Verfahren sind nur mit hohem Aufwand zu realisieren, zeitaufwendig und teuer. Zudem lassen sich diese Verfahren bei vielen Leuchtstoffen nicht für das Anbringen einer Beschichtung anwenden, weil die Leuchtstoffe nicht stabil genug sind gegenüber einem chemischen Verfahren, oder der dazu notwendigen thermischen Behandlung, oder auch weil sie aufgrund Ihrer Korngröße, -form oder -Verteilung nicht für ein Fließbettverfahren geeignet sind.
Das erfindungsgemäße Verfahren beruht auf der hohen Reaktivität von nanoskali- gen Partikeln, wie sie meist durch Flammenhydrolyse, hergestellt sind. Typische Oberflächen dieser Partikel liegen gemäß BET bei 30 bis 500 m2/g. Als Partikel kommen vor allen anorganische Substanzen wie Metalloxide, insbesondere Oxide des AI, Si, Ti, oder Zr in Frage. Diese Partikel können einfach mit dem Leuchtstoffpulver vermischt werden, und zwar auf trockenem Wege, beispielsweise in einer Kugelmühle, oder einem Taumelmischer. Dabei handelt es sich um eine homogenisierende Mischung, nicht um eine Vermahlung. Es ist keine nasschemische Reakti- on und auch keine Temperaturbehandlung notwendig. Die Beschichtung erfolgt beim Mischvorgang aufgrund der großen Oberfläche und dem Adsorptionsvermögen des nanoskaligen Materials. Dessen Primärkorngröße liegt typisch bei einem Mittelwert d50 von 5 bis 30 nm. Die Schichtdicke auf dem Leuchtstoffkom liegt bei mindestens 20 nm, typisch sind 50 bis 100 nm, aber auch wesentlich höhere Schichtdicken sind möglich.
Typisches Kennzeichen einer derartigen trocken aufgebrachten Schicht ist ihr partikulärer Charakter, das heißt, dass die Zugehörigkeit der Schichtbestandteile zu einzelnen Primärkörnern noch deutlich erkennbar ist.
Erfindungsgemäß erfolgt die Beschichtung der Leuchtstoffkörner mit anorganischen Partikeln in Nanometergröße, wobei die resultierende Schichtdicke aus mehreren Lagen dieser Partikel bestehen kann. Diese Beschichtung lässt sich durch ein einfaches Trockenmischverfahren realisieren. Die Partikel des Beschichtungsmaterials können hydrophil oder hydrophob sein.
Bei den vorbekannten durch Fällung oder CVD hergestellten Beschichtungen sind die Schichtdicken sehr gleichmäßig. Dabei läuft man Gefahr, dass sich leicht Risse in der Schicht ausbilden, wenn die thermischen Ausdehnungskoeffizienten von Korn und Schichtmaterial nicht gut aufeinander angepasst sind. Dagegen sind inhomoge- ne Schichten in dieser Hinsicht wenig empfindlich, da ihr Charakter hauptsächlich durch die Primärkörner in der Beschichtung geprägt ist.
Hinzu kommt die richtige Wahl des eigentlichen Leuchtstoffs. Während sich be- stimmte Leuchtstoffe wie beispielsweise Sr-Sulfid:Eu auch mittels Beschichtung nicht ausreichend stabilisieren lassen, kann bei anderen ein überraschend deutlicher Erfolg erzielt werden. Dies gilt vor allem für Chlorosilikate, Thiogallate und A- luminate.
Beispiele für die ursprünglichen Leuchtstoffe sind feuchtigkeitsempfindliche Leuchtstoffe mit hydrophiler Oberfläche für den Einsatz in LEDs (typische Anregung zwi- sehen 350 und 490 nm), beispielsweise Chlorosilikat wie das an sich bekannte Chlorosilika Eu oder Chlorosilikat:Eu,Mn, wie aus DE 100 26 435 bekannt, oder Thiogallate wie aus DE 100 28 266 bekannt. Dieses kann durch Feuchtigkeit und Temperatur bei der Verarbeitung geschädigt werden, vor allem durch die Diffusion von Feuchtigkeit ins Harz in Gegenwart von blauer Strahlung, wie sie als primäre Emission einer LED im Betrieb einer derartigen Vorrichtung häufig angewendet wird. Weiter führt die Einbringung der hydrophilen Leuchtstoffe in ein hydrophobes Harz zu Agglomeration und verstärkter Sedimentation.
Ein für Lampenanwendungen (typische Anregung bei 150 bis 260 nm) besonders erfolgreich erprobter Leuchtstoff mit Beschichtung ist Strontiumaluminat, insbeson- dere das bekannte Sr4AI14O25:Eu zur Verwendung bei Hg-Niederdruck- Leuchtstofflampen oder Hg-Hochdruckentladungslampen. Konkrete Beispiele für Beschichtungsmaterialien sind:
• Flammenhydrolytisch erzeugtes, nanokristallines AI2O3, insbesondere das AI2O3 der Fa. Degussa mit Handelsnamen Aluminiumoxid C (Alon C);
• hydrophile oder hydrophobe Aerosile, Typ SiO2, und andere pyrogene Kieselsäuren;
• Nanoskalige Leuchtstoffe wie beispielsweise nano-Y2O3:Eu.
Der besondere Vorteil dieser Beschichtungen ist, dass sie die gleichmäßige Einbringung der Leuchtstoffe in andere hydrophobe Medien, wie beispielsweise das Epoxidharz im Falle von LEDs, verbessert, was für eine qualitativ hochwertige LED nahezu unverzichtbar ist. Ein konkretes Beispiel ist hydrophobes Aerosil.
Wenn die Beschichtung mit nano-TiO2 oder anderen Materialen mit hohem Bre- chungsindex wie ZrO2 erfolgt, bildet die Nanoschicht eine Zone mit mittlerem Bre- chungsindex, der zwischen dem des Leuchtstoffs und dem des umgebenden Mediums (Harz) liegt, wodurch Reflexionsverluste verringert werden. Konkrete Beispiele für Leuchtstoffe, die sich zum Beschichten eignen, sind YAG:Ce, TbAG:Ce, Chloro- silikate und Thiogallate, insbesondere Mg-haltige Thiogallate.
Die hier beschriebene Schicht kann auch als zweite Schicht auf ein bereits primär beschichtetes Korn aufgebracht werden. In diesem Fall bedeutet der Begriff Korn hier ursprüngliches Korn einschließlich primärer Beschichtung.
Kurze Beschreibung der Zeichnungen
Im folgenden soll die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert werden. Es zeigen:
Figur 1 ein Halbleiterbauelement, das als Lichtquelle (LED) für weißes Licht dient;
Figur 2 eine Beleuchtungseinheit mit Leuchtstoffen gemäß der vorliegenden
Erfindung;
Figur 3 und 4 eine REM-Aufnahme von unbeschichtetem und beschichtetem Leuchtstoff gemäß der vorliegenden Erfindung; Figur 5 eine REM-Aufnahme von beschichtetem Leuchtstoff gemäß der vorliegenden Erfindung, nach dem Einbau in eine Lampe;
Figur 6 und 7 einen Vergleich des Lichtverlusts und des Lichtstroms bei Lampen mit unbeschichtetem und beschichtetem Leuchtstoff.
Bevorzugte Ausführung der Erfindung
Für den Einsatz in einer weißen LED zusammen mit einem GalnN-Chip wird bei- spielsweise ein Aufbau ähnlich wie in US 5 998 925 beschrieben verwendet. Der
Aufbau einer derartigen Lichtquelle für weißes Licht ist in Figur 1 explizit gezeigt.
Die Lichtquelle ist ein Halbleiterbauelement (Chip 1) des Typs InGaN mit einer Peak-Emissionswellenlänge von 460 nm mit einem ersten und zweiten elektrischen Anschluss 2,3, das in ein lichtundurchlässiges Grundgehäuse 8 im Bereich einer Ausnehmung 9 eingebettet ist. Einer der Anschlüsse 3 ist über einen Bonddraht 14 mit dem Chip 1 verbunden. Die Ausnehmung hat eine Wand 17, die als Reflektor für die blaue Primärstrahlung des Chips 1 dient. Die Ausnehmung 9 ist mit einer Vergussmasse 5 gefüllt, die als Hauptbestandteile ein Epoxidgießharz (80 bis 90 Gew.- %) und Leuchtstoffpigmente 6 (weniger als 15 Gew.-%) enthält. Weitere geringe Anteile entfallen u.a. auf Methylether und Aerosil. Die Leuchtstoffpigmente sind eine Mischung aus mehreren Pigmenten, darunter Sulfide.
In Figur 2 ist ein Ausschnitt aus einer Flächenleuchte 20 als Beleuchtungseinheit gezeigt. Sie besteht aus einem gemeinsamen Träger 21 , auf den ein quaderförmi- ges äußeres Gehäuse 22 aufgeklebt ist. Seine Oberseite ist mit einer gemeinsamen Abdeckung 23 versehen. Das quaderförmige Gehäuse besitzt Aussparungen, in denen einzelne Halbleiter-Bauelemente 24 untergebracht sind. Sie sind UV- emittierende Leuchtdioden mit einer Peakemission von 380 nm. Die Umwandlung in weißes Licht erfolgt mittels Konversionsschichten, die direkt im Gießharz der einzelnen LED sitzen ähnlich wie in Figur 1 beschrieben oder Schichten 25, die auf allen der UV-Strahlung zugänglichen Flächen angebracht sind. Dazu zählen die innen liegenden Oberflächen der Seitenwände des Gehäuses, der Abdeckung und des Bodenteils. Die Konversionsschichten 25 bestehen aus drei Leuchtstoffen, die im gelben, grünen und blauen Spektralbereich emittieren unter Benutzung der erfindungsgemäßen Leuchtstoffe.
Bei den erfindungsgemäßen Leuchtstoffen handelt es sich beispielsweise um Chlo- rosilikate des Typs Ca8.χ-yEuxMnyMg(SiO4)4CI2 mit 0 < y <0,06, die durch eine 35 nm dicke Beschichtung mit Aerosil R 812 von Degussa stabilisiert sind. Dadurch ergibt sich eine um mindestens 5 % verbesserte Maintenance gegenüber unbeschichtetem Chlorosilikat. Die Maintenance bezeichnet den Lichtstromrückgang nach 1000 Std. Betriebsdauer bei 80 °C und 80 % Luftfeuchtigkeit. Das Aerosil R 812 ist flammenhydrolytisch hergestellt. Die Herstellung erfolgt durch einfaches Mi- sehen beider Komponenten Leuchtstoff und Aerosil über 20 Stunden im Taumelmischer.
Ein weiteres Beispiel ist Sr AI14O25:Eu, das mit hydrophilem Alon C (AI2O3) beschichtet wurde. Es wird für Hg-Niederdruck-Leuchtstofflampen, beispielsweise T8- Lampen vom Typ 36 W, verwendet. Die Leuchtstoff-Wasser-Beschlämmung erfolgt in üblicher Weise. Es zeigt sich eine Zunahme des Lichtstroms nach 100 Std. um typisch 10 %. Insbesondere lässt sich eine bis zu 17% -ige Verbesserung des Anfangslichtstroms bzw. des Lichtstroms nach 100 Std. Brenndauer bei sehr niedrigem Lichtstromrückgang unter gleichen Messbedingungen feststellen.
In einem konkreten Ausführungsbeispiel betrug die Leuchtstoff-bedingte Lichtausbeute nach 100 Std. unbeschichtet 113,3 % (bezogen auf einen Standardwert von 100 %), während unter sonst gleichen Bedingungen eine Alon C Beschichtung einen Wert von 123,3 % ergab, also eine Steigerung um 9 %. Der Lichtverlust, be- dingt durch den Leuchtstoff, betrug dabei im Falle eines unbeschichteten Leuchtstoffs 1 ,4 %, hingegen war bei beschichtetem Leuchtstoff sogar eine geringfügige Zunahme von 0,3 % zu beobachten.
Fig. 3 zeigt ein unbeschichtetes Leuchtstoffpulver im Vergleich zu einem erfindungsgemäß beschichtetem Leuchtstoffpulver (Figur 4), jeweils als REM-Aufnahme in 5000-facher Vergrößerung. Deutlich ist der partikuläre Charakter der Schicht in Fig. 4 zu erkennen. Sie wirkt wie ein Schwamm mit Poren oder auch wie Schimmelbewuchs auf dem Basismaterial im Vergleich zu den klaren Konturen der unbehan- delten Körner des Basismaterials, siehe Fig. 3. Beide Figuren sind im gleichen Vergrößerungsmaßstab aufgenommen. Der partikuläre Charakter der Schicht bedeutet insbesondere, dass die Schicht auf den Körnern des Basismaterials inhomogen ist und die Struktur ihrer Primärpartikel noch gut erkennen lässt, ähnlich wie ein Geröllhaufen aus Einzelsteinen. Abhängig vom Maßstab der Vergrößerung kann er auch leicht geglättet wirken, wie wenn er noch mit Gras überwachsen ist. Die von den Primärpartikeln der Schicht erzeugte Struktur ist wesentlich kleiner als der typische Durchmesser des Basismaterials. Typisch ist ein Skalenunterschied um einen Faktor 100, mindestens ein Faktor 10, zwischen den Partikeln des Basismaterials und des Beschichtungsmaterials. Die Primärpartikel des Beschichtungsmaterials ver- klumpen inhomogen, im Gegensatz zu homogenen Schichten bildenden Verfahren wie CVD oder organisches Coaten. Dabei verklumpen die Primärpartikel zu Aggre- gaten und Agglomeraten. Es ist nicht ausgeschlossen, dass ein geringer Teil der Oberfläche des Basismaterials frei von der Beschichtung ist. Allerdings ist vorteilhaft die ganze Oberfläche mindestens einlagig beschichtet, was beispielsweise durch entsprechend langes Trockenmischen erreicht werden kann. Die Schichtdicke ist stark variabel und wird am besten durch die mittlere Schichtdicke über eine gegebene Fläche beschrieben, die beispielsweise vom aufgebrachten Gewicht pro Flächeneinheit abgeleitet werden kann. Im Maßstab der Größe des Primärkorns gesehen variiert die Schichtdicke ähnlich stark wie bei einer Wabenstruktur oder einer Oberfläche, die mit grobem Netz mehrlagig überzogen ist.
Fig. 5 zeigt den Leuchtstoff nach dem Aufbringen auf dem Glaskolben einer Leuchtstofflampe. Obwohl der Leuchtstoff mit dem Beschichtungsmaterial nur trocken gemischt ist, zeigt er eine so hohe Adhäsion, dass er den Prozess der Lampenherstellung als Beschichtung überlebt. Diese Eigenschaft ist vor allem auf die geringe Grö- ße der Primärpartikel der Schicht und die damit verbundene hohe Reaktionsfähigkeit zurückzuführen.
Eine Untersuchung an einer T5 Leuchtstofflampe mit 28 W Leistung zeigt deutliche Verbesserung durch das Beschichten des Leuchtstoffs. In Figur 6 und 7 ist der Lichtverlust nach 100 Std. verglichen mit dem ursprünglichen Wert in Prozent des ursprünglichen Werts und der absolute Wert des Lichtstroms nach 100 Std. in lumen angegeben. Der verwendete Leuchtstoff im Sinne des Basismaterials ist Sr- Aluminat:Eu2+. Die Beschichtung, die mittels Trockencoating auf die Körner des Leuchtstoffs aufgebracht wurde, ist Alon C. Der Lichtverlust der Lampen mit unbeschichtetem Leuchtstoff nach 100 Std. ist deutlich höher, etwa 29 %, als der der Lampen mit beschichtetem Leuchtstoff, bei denen er nur etwa 19 % beträgt; siehe dazu Figur 6. Der absolute Wert des Lichtstroms ist bei den Lampen mit unbeschichtetem Leuchtstoff nach 100 Std. bereits merklich geringer als bei den Lampen mit unbeschichtetem Leuchtstoff. Ähnliche Untersuchungen wurden mit höherbelasteten T5 Lampen der Leistungsstufe 54 W durchgeführt. Sie zeigten tendenziell das gleiche Verhalten, wenn auch weniger ausgeprägt. Der Lichtverlust dieser Lampen mit unbeschichtetem Leuchtstoff nach 100 Std. ist höher, etwa 24 %, als der der Lampen mit beschichtetem Leuchtstoff, bei denen er nur etwa 21 % beträgt.
Die Dauer der Mischung der Ausgangsmaterialien Basis- und Beschichtungsmaterial sollte je nach Art und Beschaffenheit der Materialien zwischen 5 und 30 Std. betragen.
Die Größe der Körner des Basismaterial liegt typisch im Mikrometerbereich, insbesondere liegt der Wert für d50 in einem Bereich von 1 bis 10 μm.

Claims

Ansprüche
1. Beschichteter Leuchtstoff, gebildet durch ein Pulver einzelner Körner eines Leucht- • Stoffs als Basismaterial, wobei die Körner mit einem Beschichtungsmaterial beschichtet sind, dadurch gekennzeichnet, dass die Schicht mehrlagig ist und partikulären Charakter besitzt, wobei die einzelnen Primärpartikel der Schicht mindestens 5 nm groß sind, und dass die mittlere Schichtdicke mindestens 20 nm beträgt.
2. Beschichteter Leuchtstoff nach Anspruch 1 , dadurch gekennzeichnet, dass der Leuchtstoff des Basismaterials ausgewählt ist aus der Gruppe der Granate, insbesondere Seltenerdgranate, Chlorosilikate, Thiogallate sowie Aluminate, insbesondere Strontiumaluminat.
3. Beschichteter Leuchtstoff nach Anspruch 1 , dadurch gekennzeichnet, dass für die Beschichtung ein anorganisches Material ausgewählt ist.
4. Beschichteter Leuchtstoff nach Anspruch 1 , dadurch gekennzeichnet, dass für die Beschichtung ein Material ausgewählt ist aus der Gruppe der flammenhydrolytisch hergestellten Metalloxide.
5. Beschichteter Leuchtstoff nach Anspruch 4, dadurch gekennzeichnet, dass die mittlere Korngröße der Primärpartikel der Schicht, verstanden als Wert d50 des Primärkorns, maximal 30 nm, bevorzugt höchstens 15 nm, beträgt.
6. Beschichteter Leuchtstoff nach Anspruch 4, dadurch gekennzeichnet, dass das Metall für die Metalloxide ausgewählt ist aus der Gruppe AI, Si, Ti, Zr, Y, insbesondere Aerosil oder Alon C.
7. Beschichteter Leuchtstoff nach Anspruch 1 , dadurch gekennzeichnet, dass für die Beschichtung selbst wieder ein Leuchtstoff, insbesondere Y2O3:Eu, verwendet wird.
8. Beschichteter Leuchtstoff nach Anspruch 1 , dadurch gekennzeichnet, dass die mittlere Schichtdicke zwischen 40 und 200 nm liegt.
9. Beschichteter Leuchtstoff nach Anspruch 3, dadurch gekennzeichnet, dass die spezifische Oberfläche des Beschichtungsmaterials nach BET zwischen 30 und 500 m2/g liegt.
10. Lichtemittierende Vorrichtung mit wenigstens einer Strahlungsquelle, die Strahlung im Bereich UV oder sichtbarer Wellenlängenbereich emittiert, und einer Leuchtstoffschicht, die die Strahlung der Strahlungsquelle zumindest teilweise in längerwellige Strahlung konvertiert, wobei die Leuchtstoffschicht aus einem beschichteten Leuchtstoff nach einem der vorhergehenden Ansprüche gebildet ist.
11. Verfahren zur Herstellung eines beschichteten Leuchtstoffs gekennzeichnet durch folgende Verfahrensschritte:
a) Bereitstellen eines Leuchtstoffpulvers als Basismaterial;
b) Bereitstellen eines flammenhydrolytisch hergestellten Metalloxids als Beschich- tungsmaterial;
c) Trockenes Mischen beider Materialien.
PCT/DE2004/000325 2003-02-20 2004-02-20 Beschichteter leuchtstoff, lichtemittierende vorrichtung mit derartigem leuchtstoff und verfahren zu seiner herstellung WO2004074400A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006501508A JP4557293B2 (ja) 2003-02-20 2004-02-20 被覆された蛍光体、この種の蛍光体を有する発光装置及びその製造方法
US10/544,497 US7678293B2 (en) 2003-02-20 2004-02-20 Coated fluorescent substance, light emitting device comprising said substance and a method for producing said substance
DE112004000210.9T DE112004000210B4 (de) 2003-02-20 2004-02-20 Lichtemittierende Vorrichtung mit beschichtetem Leuchtstoff und Verfahren zu seiner Herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10307281A DE10307281A1 (de) 2003-02-20 2003-02-20 Beschichteter Leuchtstoff, lichtemittierende Vorrichtung mit derartigem Leuchtstoff und Verfahren zu seiner Herstellung
DE10307281.0 2003-02-20

Publications (1)

Publication Number Publication Date
WO2004074400A1 true WO2004074400A1 (de) 2004-09-02

Family

ID=32797583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/000325 WO2004074400A1 (de) 2003-02-20 2004-02-20 Beschichteter leuchtstoff, lichtemittierende vorrichtung mit derartigem leuchtstoff und verfahren zu seiner herstellung

Country Status (4)

Country Link
US (1) US7678293B2 (de)
JP (1) JP4557293B2 (de)
DE (2) DE10307281A1 (de)
WO (1) WO2004074400A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180494A (ja) * 2005-12-27 2007-07-12 Samsung Electro Mech Co Ltd 蛍光体膜形成方法及びこれを用いた発光ダイオードパッケージの製造方法
CN100414727C (zh) * 2005-11-04 2008-08-27 江苏日月照明电器有限公司 一种白光led荧光粉涂覆厚度控制方法
JP2009506157A (ja) * 2005-08-24 2009-02-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 発光材料
US7718088B2 (en) * 2006-05-12 2010-05-18 Lighthouse Technology Co., Ltd Light emitting diode and wavelength converting material
JP2014145047A (ja) * 2013-01-30 2014-08-14 Sumitomo Metal Mining Co Ltd 被覆蛍光体粒子及びその製造方法、それを用いたled素子

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265654A (ja) * 2004-03-19 2005-09-29 Hitachi Maxell Ltd 複合化粒子
US20060192225A1 (en) * 2005-02-28 2006-08-31 Chua Janet B Y Light emitting device having a layer of photonic crystals with embedded photoluminescent material and method for fabricating the device
US7358543B2 (en) * 2005-05-27 2008-04-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Light emitting device having a layer of photonic crystals and a region of diffusing material and method for fabricating the device
CN101070471B (zh) * 2006-05-12 2012-11-07 隆达电子股份有限公司 发光二极管元件及其波长转换材料
JP2008291251A (ja) * 2007-04-26 2008-12-04 Sharp Corp 蛍光体の製造方法、波長変換部材および発光装置
JP5777242B2 (ja) * 2010-06-29 2015-09-09 株式会社日本セラテック 蛍光体材料および発光装置
TW201200580A (en) * 2010-06-29 2012-01-01 Nihon Ceratec Co Ltd Fluorescent substance material and light-emitting device
US8409960B2 (en) 2011-04-08 2013-04-02 Micron Technology, Inc. Methods of patterning platinum-containing material
CN102391691A (zh) * 2011-09-01 2012-03-28 江苏双乐化工颜料有限公司 一种蓄光颜料及其包膜处理方法
US20130092964A1 (en) * 2011-10-13 2013-04-18 Intematix Corporation Highly reliable photoluminescent materials having a thick and uniform titanium dioxide coating
DE102011116402A1 (de) * 2011-10-19 2013-04-25 Osram Opto Semiconductors Gmbh Wellenlängenkonvertierendes Partikel, Verfahren zur Herstellung von wellenlängenkonvertierenden Partikeln und optoelektronisches Bauelement mit wellenlängenkonvertierenden Partikeln
US9006966B2 (en) 2011-11-08 2015-04-14 Intematix Corporation Coatings for photoluminescent materials
JP2014136670A (ja) * 2013-01-18 2014-07-28 Shin Etsu Chem Co Ltd 強負帯電付与性疎水性球状シリカ微粒子、その製造方法及びそれを用いた静電荷現像用電荷制御剤
JP2015089898A (ja) * 2013-11-05 2015-05-11 信越化学工業株式会社 無機蛍光体粉末、無機蛍光体粉末を用いた硬化性樹脂組成物、波長変換部材および光半導体装置
US10253257B2 (en) 2015-11-25 2019-04-09 Intematix Corporation Coated narrow band red phosphor
JP2020019921A (ja) * 2018-02-06 2020-02-06 信越化学工業株式会社 蛍光体粒子
JP2020066599A (ja) * 2018-10-25 2020-04-30 ロート製薬株式会社 複合粉体、皮膚外用組成物、及び無機蛍光粉体の蛍光強度増強方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0257554A2 (de) * 1986-08-29 1988-03-02 Gte Products Corporation Phosphorpartikel, Phosphormischung und fluoreszente Lampe
JP2000265166A (ja) * 1999-01-14 2000-09-26 Sony Corp 蛍光体及びその製造方法
WO2000069986A1 (en) * 1999-05-19 2000-11-23 Sarnoff Corporation Method of coating micrometer sized inorganic particles
WO2000071637A1 (en) * 1999-05-20 2000-11-30 Isis Innovation Limited Coated phosphors
WO2001051585A1 (en) * 2000-01-14 2001-07-19 Osram-Sylvania, Inc. Luminescent nanophase binder systems for uv and vuv applications
US6322901B1 (en) * 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
EP1199757A2 (de) * 2000-10-17 2002-04-24 Philips Corporate Intellectual Property GmbH Lichtemittierende Vorrichtung mit beschichtetem Leuchtstoff

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770602A (en) * 1968-11-25 1973-11-06 Ppg Industries Inc Radiation crosslinkable polymers prepared by reacting a polyepoxy compound with an acrylic anhydride of a monocarboxylic acid
US3676398A (en) * 1968-11-25 1972-07-11 Ppg Industries Inc Polymerizable crosslinkable esters of polyepoxy compounds
US5366834A (en) 1989-11-15 1994-11-22 Nichia Kagaku Kogyo K.K. Method of manufacturing a cathode ray tube phosphor screen
US5087523A (en) * 1990-01-22 1992-02-11 Gte Laboratories Incorporated Phosphors with improved lumen output and lamps made therefrom
JP2765641B2 (ja) * 1991-09-30 1998-06-18 日亜化学工業株式会社 蛍光体組成物および低圧水銀ランプ
JP3444609B2 (ja) * 1992-09-16 2003-09-08 化成オプトニクス株式会社 混合赤色蛍光体及びカラーブラウン管
TW295672B (de) * 1994-09-20 1997-01-11 Hitachi Ltd
JPH08188774A (ja) * 1995-01-11 1996-07-23 Toshiba Lighting & Technol Corp 蛍光体、蛍光体の製造方法、蛍光体ランプおよび照明装置
JPH09104863A (ja) 1995-10-12 1997-04-22 Nec Kansai Ltd 被覆蛍光体および蛍光体の被覆処理方法および被覆蛍光体を用いた電界発光灯
JPH09255951A (ja) * 1996-03-25 1997-09-30 Kasei Optonix Co Ltd 青色発光蛍光体
JPH10195429A (ja) * 1997-01-16 1998-07-28 Toshiba Corp カラーテレビジョン用蛍光体
JPH10212475A (ja) * 1997-01-31 1998-08-11 Toshiba Corp 蛍光体およびその製造方法
JPH11250861A (ja) * 1998-02-27 1999-09-17 Toshiba Lighting & Technology Corp ラピッドスタート形蛍光ランプおよび照明装置
JPH11256149A (ja) * 1998-03-16 1999-09-21 Matsushita Electric Ind Co Ltd 赤色蛍光体とこれを用いた蛍光ランプ
DE19834377A1 (de) 1998-07-30 2000-02-03 Philips Corp Intellectual Pty Leuchtstoffzubereitung mit amidgruppen- oder urethangruppenhaltigem organischem Bindemittel
JP2003511548A (ja) 1998-08-31 2003-03-25 アメリカ合衆国 コーティングを施したカソードルミネセント蛍光体
US6251308B1 (en) * 1999-03-19 2001-06-26 Premix Highly conductive molding compounds and fuel cell bipolar plates comprising these compounds
JP2000285860A (ja) * 1999-03-30 2000-10-13 Toshiba Corp 蛍光ランプ
TWI272299B (en) * 1999-10-06 2007-02-01 Sumitomo Chemical Co A process for producing aluminate-based phosphor
DE19956779A1 (de) * 1999-11-25 2001-05-31 Bakelite Ag Vinylester mit hoher Vernetzungsdichte Verfahren zu ihrer Herstellung und Verwendung
KR100791564B1 (ko) * 1999-12-21 2008-01-03 삼성에스디아이 주식회사 희토류 산화물이 코팅된 형광체 및 그의 제조방법
JP2002080843A (ja) * 2000-06-30 2002-03-22 Nichia Chem Ind Ltd 真空紫外線励起発光蛍光体
DE10307282A1 (de) * 2003-02-20 2004-09-02 Osram Opto Semiconductors Gmbh Beschichteter Leuchtstoff, lichtemittierende Vorrichtung mit derartigem Leuchtstoff und Verfahren zu seiner Herstellung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0257554A2 (de) * 1986-08-29 1988-03-02 Gte Products Corporation Phosphorpartikel, Phosphormischung und fluoreszente Lampe
US6322901B1 (en) * 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
JP2000265166A (ja) * 1999-01-14 2000-09-26 Sony Corp 蛍光体及びその製造方法
WO2000069986A1 (en) * 1999-05-19 2000-11-23 Sarnoff Corporation Method of coating micrometer sized inorganic particles
WO2000071637A1 (en) * 1999-05-20 2000-11-30 Isis Innovation Limited Coated phosphors
WO2001051585A1 (en) * 2000-01-14 2001-07-19 Osram-Sylvania, Inc. Luminescent nanophase binder systems for uv and vuv applications
US20010048966A1 (en) * 2000-01-14 2001-12-06 Trumble Cathy Shaw Luminescent nanophase binder systems for UV and VUV applications
EP1199757A2 (de) * 2000-10-17 2002-04-24 Philips Corporate Intellectual Property GmbH Lichtemittierende Vorrichtung mit beschichtetem Leuchtstoff

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 12 3 January 2001 (2001-01-03) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506157A (ja) * 2005-08-24 2009-02-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 発光材料
US8012371B2 (en) * 2005-08-24 2011-09-06 Koninklijke Philips Electronics N.V. Luminescent material
CN100414727C (zh) * 2005-11-04 2008-08-27 江苏日月照明电器有限公司 一种白光led荧光粉涂覆厚度控制方法
JP2007180494A (ja) * 2005-12-27 2007-07-12 Samsung Electro Mech Co Ltd 蛍光体膜形成方法及びこれを用いた発光ダイオードパッケージの製造方法
US7842333B2 (en) 2005-12-27 2010-11-30 Samsung Led Co., Ltd. Method of forming phosphor film and method of manufacturing light emitting diode package incorporating the same
US8226852B2 (en) 2005-12-27 2012-07-24 Samsung Led Co., Ltd. Method of forming phosphor film and method of manufacturing light emitting diode package incorporating the same
US7718088B2 (en) * 2006-05-12 2010-05-18 Lighthouse Technology Co., Ltd Light emitting diode and wavelength converting material
JP2014145047A (ja) * 2013-01-30 2014-08-14 Sumitomo Metal Mining Co Ltd 被覆蛍光体粒子及びその製造方法、それを用いたled素子

Also Published As

Publication number Publication date
JP4557293B2 (ja) 2010-10-06
DE112004000210B4 (de) 2023-04-20
US20060078734A1 (en) 2006-04-13
JP2006518398A (ja) 2006-08-10
DE112004000210D2 (de) 2005-10-06
DE10307281A1 (de) 2004-09-02
US7678293B2 (en) 2010-03-16

Similar Documents

Publication Publication Date Title
DE112004000210B4 (de) Lichtemittierende Vorrichtung mit beschichtetem Leuchtstoff und Verfahren zu seiner Herstellung
DE10349038B4 (de) Lichtquelle mit einer LED und einem Lumineszenzkonversionskörper und Verfahren zum Herstellen des Lumineszenzkonversionskörpers
EP1897152B1 (de) Wellenlängenkonvertierendes konvertermaterial, lichtabstrahlendes optisches bauelement und verfahren zu dessen herstellung
EP1644990B1 (de) Licht emittierendes bauelement mit einem lumineszenz-konversionselement
EP1501909B1 (de) Wellenlängenkonvertierende reaktionsharzmasse und leuchtdiodenbauelement
EP1611619B1 (de) Leuchtstoffbasierte led und zugehöriger leuchtstoff
DE112013002930B4 (de) Optoelektronisches Halbleiterbauelement
EP1929547B1 (de) Elektromagnetische strahlung emittierendes optoelektronisches bauelement und verfahren zur herstellung eines optoelektronischen bauelements
DE10301676A1 (de) Beschichteter Phosphorfüllstoff und Verfahren zum Bilden eines beschichteten Phosphorfüllstoffs
DE112016004313B4 (de) Stabile rote Keramikleuchtstoffe und Technologien damit
EP2313473A1 (de) Alpha-sialon-leuchtstoff
DE102013207308B4 (de) Verfahren zum Herstellen einer optoelektronischen Baugruppe und optoelektronische Baugruppe
DE102006028259B4 (de) Licht emittierende Diode und Material zur Wellenlängenwandlung
WO2011045216A1 (de) Verfahren zur beschichtung eines silikat-leuchtstoffs
EP2652806A1 (de) Verfahren zum erzeugen einer lumineszenzkonversionsstoffschicht, zusammensetzung hierfür und bauelement umfassend eine solche lumineszenzkonversionsstoffschicht
WO2006114077A2 (de) Lumineszenzkonversions-led
DE10307282A1 (de) Beschichteter Leuchtstoff, lichtemittierende Vorrichtung mit derartigem Leuchtstoff und Verfahren zu seiner Herstellung
WO2018158194A1 (de) Optoelektronisches bauelement und verfahren zur herstellung eines optoelektronischen bauelements
DE102004003135A1 (de) Beschichteter Leuchtstoff und lichtemittierende Vorrichtung mit derartigem Leuchtstoff
DE102008048653A1 (de) Optoelektronisches Halbleiterbauelement
DE102017129917A1 (de) Leuchtstoffmischung, Konversionselement und optoelektronisches Bauelement
WO2013189835A1 (de) Verfahren zur herstellung einer keramischen wellenlängenkonversionsschicht und beleuchtungselement mit einer keramischen wellenlängenkonversionsschicht
WO2024078931A1 (de) Leuchtstoff, verfahren zur herstellung eines leuchtstoffs und strahlungsemittierendes bauelement
WO2012100868A1 (de) Optoelektronischer halbleiterchip und verfahren zu dessen herstellung
DE112020000701T5 (de) Dielektrische filmbeschichtung für keramische vollkonversionsplättchen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006078734

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10544497

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006501508

Country of ref document: JP

REF Corresponds to

Ref document number: 112004000210

Country of ref document: DE

Date of ref document: 20051006

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 10544497

Country of ref document: US

122 Ep: pct application non-entry in european phase