WO2004069783A1 - メタクリル酸エステルの製造方法 - Google Patents

メタクリル酸エステルの製造方法 Download PDF

Info

Publication number
WO2004069783A1
WO2004069783A1 PCT/JP2004/001036 JP2004001036W WO2004069783A1 WO 2004069783 A1 WO2004069783 A1 WO 2004069783A1 JP 2004001036 W JP2004001036 W JP 2004001036W WO 2004069783 A1 WO2004069783 A1 WO 2004069783A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
distillation column
methyl methacrylate
alcohol
methanol
Prior art date
Application number
PCT/JP2004/001036
Other languages
English (en)
French (fr)
Inventor
Junichi Doi
Yoshihiko Satou
Yoshiyuki Taniguchi
Masanori Tokuda
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to JP2004553529A priority Critical patent/JP4758649B2/ja
Priority to US10/540,924 priority patent/US7241916B2/en
Publication of WO2004069783A1 publication Critical patent/WO2004069783A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C67/54Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/62Use of additives, e.g. for stabilisation

Definitions

  • the present invention relates to a method for producing a methacrylic ester (including a phenol ester).
  • methacrylic acid esters have been industrially produced by an esterification reaction of methacrylic acid and an alcohol or phenol in the presence of an acid catalyst, or a methacrylic acid ester and an alcohol or phenol in the presence of an ester exchange catalyst. And is produced by a transesterification reaction.
  • both raw materials and products are esters and alcohols or phenols, and it is relatively easy to separate the products by distillation and purification, and no wastewater is generated. Many methods for producing esters are used.
  • R represents an alkyl group, an aryl group, an alkenyl group, or an aralkyl group.
  • the transesterification shown in the general formula (1) is an equilibrium reaction, The reaction does not proceed beyond a certain conversion. If the conversion is low, after the reaction, the mixture of the raw material methyl methacrylate (A), the starting alcohol (B), the target product methyl acrylate (C), and the by-product methanol (D) All components must be separated, which complicates the operation.
  • the by-product methanol (D) is removed out of the system together with the azeotropic solvent.
  • the raw material methyl methacrylate (A) forms an azeotropic mixture with the by-product methanol (D)
  • the number of moles of the raw material methyl methacrylate (A) exceeds the number of moles of the raw material alcohol (B).
  • the removal of by-product methanol (D) as an azeotrope with methyl methacrylate (A) has been carried out.
  • JP-A-55-87747, JP-A-63-115580, and JP-A-3-118352 have a distillation column.
  • the method for producing the target methacrylate by subjecting the transesterification reaction between methyl methacrylate and alcohol or phenols using a reactor that has been used only the top temperature of the distillation column is controlled and methyl methacrylate and methanol are produced. It is described that an ester exchange reaction is carried out while extracting an azeotropic mixture of the above. Disclosure of the invention
  • An object of the present invention is to remove methyl by-product from methyl methacrylate and alcohol or alcohol while removing by-product methanol under reflux conditions as an azeotrope with methyl methacrylate. It is an object of the present invention to provide a method for producing a methacrylic acid ester by controlling the reflux ratio in a method for producing a methacrylic acid ester by performing a transesterification reaction with phenols.
  • the present invention uses a reaction apparatus equipped with a distillation column to remove methyl by-produced under reflux conditions as an azeotrope with methyl methacrylate outside the system via a distillation column.
  • the temperature at the top is 63 to 68 ° C
  • a methacrylic acid ester characterized in that the reaction is carried out while controlling the reflux ratio such that the temperature of the intermediate stage is 68 to 90 ° C and the temperature of the lowermost stage is 90 to 100 ° C. And a method for producing the same.
  • the present invention uses a reactor equipped with a distillation column, and removes methanol, which is a by-product under reflux conditions, as an azeotrope with methyl methacrylate through the distillation column to outside the system.
  • the temperature of the uppermost stage is 63 to 68 ° C
  • the temperature of the middle stage is 68 to 90 ° C
  • the temperature of the lowermost stage is 90 ° C.
  • a method for producing a methacrylic acid ester wherein the reaction is carried out while controlling the reflux ratio so as to maintain the temperature in the distillation column, when the conversion of alcohol or phenols is in the range of 10 to 90%. .
  • the present invention when the temperature in the distillation column is converted into a temperature at normal pressure after the conversion of alcohol or phenols exceeds 97%,
  • the reflux ratio is controlled so that the temperature of the intermediate stage and the temperature of the lowermost stage are at least 95 ° C, and the temperature of the middle stage and the lowest stage is at least 99 ° C, and the methanol by-produced as an azeotrope with methyl methyl acrylate is completely systematized.
  • the present invention relates to the above-mentioned method for producing a methacrylate ester, which is removed to the outside to terminate the reaction.
  • the ⁇ reflux ratio '' means that after the vaporized vapor from the reactor of the reactor is condensed in the condenser via the distillation column, a part of the condensate is distilled and the rest is refluxed. It refers to the ratio of the reflux amount to the distillate amount of the liquid.
  • the method for converting the temperature inside the distillation column to the temperature at normal pressure is as follows.
  • the liquid composition of a mixed solution of methanol and methyl methacrylate at which the actual temperature in the distillation column becomes the boiling point is determined from the boiling point-composition diagram at the pressure.
  • the boiling point at normal pressure of the mixed solution of methanol and methyl methacrylate of the liquid composition is determined from the boiling point-normal composition diagram at normal pressure, and this is defined as “temperature at normal pressure”.
  • the reflux ratio is too high, the efficiency of removing by-product methanol out of the system will deteriorate, and the methanol concentration in the entire distillation column will rise more than necessary, and in some cases, the methanol concentration in the reactor Also lead to a rise. As a result, it is difficult to drive the equilibrium reaction toward the product.
  • the reflux ratio is too low, the concentration of methanol in the azeotrope to be removed outside the system will be reduced, and unnecessary methyl methacrylate will be removed outside the system.
  • the amount of methyl methacrylate charged is too small, all of the methyl methacrylate will be distilled off until the desired conversion is obtained, and the reaction will not proceed further.
  • the production rate of by-produced methanol varies depending on various factors such as the molar ratio of the raw materials, the catalyst used, and the like. Sufficiently increased the methanol concentration of It can be removed outside the system in a state.
  • the raw material alcohol or phenol may be appropriately determined according to the target methacrylate.
  • Examples of raw material alcohols or phenols include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, t-butanol, n-pentanol, and t-amyl alcohol.
  • the mixing ratio of the raw material methyl methacrylate and the raw material alcohol or phenol may be appropriately determined according to the raw material and the catalyst used.
  • the amount of methyl methacrylate used is preferably at least 1.2 mol per mol of alcohol or phenol, and at least 20 mol per mol of alcohol or phenol. Below is preferred.
  • the amount of methyl methacrylate used is preferably an amount obtained by multiplying the above value by the valency of the polyhydric alcohol.
  • methyl methacrylate is usually reacted with an alcohol or a phenol in the presence of a catalyst.
  • the catalyst used in the present invention is not particularly limited, and any catalyst having transesterification activity can be used.
  • the catalyst include titanium compounds such as tetramethyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, tetra-2-ethylhexyl titanate and tetrastearyl titanate; dibutyl tin oxide, dioctyl tin oxide and the like.
  • the amount of the catalyst to be used may be appropriately determined according to the raw materials and the catalyst used, but is usually preferably 0.001 mol or more per mol of the alcohol or phenol, and 1 mol of the alcohol or phenol. Is preferably at most 0.2 mol.
  • methyl methacrylate is also present in the distillation column, distillation is carried out to prevent polymerization, as in the reactor. It is preferable to supply a polymerization inhibitor to the entire column.
  • the polymerization inhibitor may be dissolved in methyl methacrylate, and the solution may be supplied from the uppermost stage of the distillation column.
  • the polymerization inhibitor used in the present invention is not particularly limited, and any one can be used as long as it has a polymerization preventing effect on methacrylic acid ester.
  • Examples of the polymerization inhibitor include phenolic compounds such as hydroquinone and paramethoxyphenol; phenothiazine, N-phenyl N 'r-sopropylparaphenylendiamine, N, N'-G2-naphthylparaphenyl.
  • N-phenyl N '— (1,3-dimethylbutyl) amine compound such as para-diene diamine; 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, 4 —Benzoyloxy-1,2,2,6,6-tetramethylpiperidine—N-oxyl, 4-acetylamino—2,2,6,6-tetramethylpiperidine—N-oxyl, or represented by the following general formula (2)
  • N-oxyl compounds such as N-oxyl compounds are exemplified.
  • One type of polymerization inhibitor may be used, or two or more types may be used in combination.
  • R 11 and R 12 both represent a hydrogen atom, or one of R 11 and R 12 represents a hydrogen atom and the other represents a methyl group.
  • R 13 , R 14 , R 15 , R 16 represents a linear or branched alkyl group, R 17 represents a hydrogen atom or a (meth) acryloyl group, and n is an integer of 1 to 18.
  • an oxygen-containing gas is supplied into the reactor and the distillation column by bubbling air into the reaction solution or the like. May be paid.
  • methyl methacrylate, alcohol or phenols, a catalyst and a polymerization inhibitor are charged into a reactor of a reactor equipped with a distillation column, heated to the reaction temperature, and produced as a by-product under reflux conditions.
  • the transesterification is carried out while removing methanol as an azeotrope with methyl methacrylate outside the system.
  • the azeotropic mixture of methanol and methyl methacrylate methanol Z methyl methacrylate azeotrope
  • this is performed by distilling off a part of the condensed liquid.
  • the distillation column used in the present invention is not particularly limited, and includes, for example, a packed column filled with a packing such as a helipack, a McMahon, a cascade mini-ring, an tray type, a tray type column such as a lift tray.
  • a packing such as a helipack, a McMahon, a cascade mini-ring, an tray type, a tray type column such as a lift tray.
  • the number of theoretical plates in the distillation column is preferably 5 or more, more preferably 10 or more, from the viewpoint of separation ability.
  • the number of theoretical plates in the distillation column is preferably 50 or less, more preferably 30 or less, from the viewpoint of suppressing the pressure difference.
  • the transesterification is carried out under normal pressure, reduced pressure or slightly increased pressure. Specifically, 660 to 200 Pa is preferable.
  • the reaction temperature (the temperature in the reactor) may be determined as appropriate, but when the reaction is carried out at normal pressure, the temperature is usually preferably from 100 to 150 ° C.
  • methyl methacrylate is charged in excess as compared to alcohol or phenol as described above. After charging the raw materials in the reactor, it is heated to the reaction temperature to bring it into a reflux state.However, since methyl methacrylate is charged in excess, methyl methacrylate is mainly distributed in the distillation column at the beginning of the reaction. ing. When the transesterification proceeds and methanol is produced together with the methacrylate, the by-product methanol azeotropes with methyl methacrylate and goes up to the distillation column.
  • temperature control of only the top stage of the distillation column deviates from the azeotropic composition. Therefore, from the viewpoint of more stable operation, it is preferable to adjust the temperature of the middle stage and the lowest stage of the distillation column.
  • the conversion of alcohol or phenols is in the range of 10 to 90%, preferably 5 to 95%, particularly preferably 4 to 97%.
  • the temperature in the theoretical stage) should be in the range of 63 to 68 ° C when converted to the temperature at normal pressure.
  • the temperature at the uppermost stage of the distillation column is preferably 63 to 65 ° C when converted to a temperature at normal pressure. This temperature is close to the azeotropic temperature of methanol and methyl methacrylate at normal pressure.
  • the temperature of the middle stage of the distillation column is converted to the temperature at normal pressure. If so, keep the temperature in the range of 68-90 ° C.
  • the temperature in the middle stage of the distillation column when converted to a temperature at normal pressure, is preferably 70 ° C. or higher, and more preferably 80 ° C. or lower. If the temperature in the middle stage of the distillation column is too low, methanol reaches the bottom stage of the distillation column and returns to the reactor, increasing the methanol concentration in the reactor and suppressing the transesterification reaction. Sometimes. If the temperature of the middle stage of the distillation column is too high, the uppermost stage of the distillation column tends to deviate from the azeotropic composition, and there is a concern that the amount of methyl methacrylate distilled out may increase.
  • the middle stage of the distillation column refers to the shelf plate (theoretical plate in the case of a packed tower), which is half the number of all plates (rounded up below the decimal point) counted from the top stage (theoretical plate in the case of a packed column).
  • the temperature of (1) should be in the range of 90 to 100 ° C when converted to the temperature at normal pressure.
  • the temperature at the bottom of the distillation column is preferably from 99 to 100 ° C. when converted to a temperature at normal pressure.
  • the entire temperature is maintained until the temperature reaches the above-mentioned temperature range, and after the temperature reaches the above-mentioned range, the methanol / methyl methacrylate azeotropic mixture is removed from the system. It is preferable to start.
  • the temperature in the distillation column is converted to the temperature at normal pressure. Controlling the reflux ratio so that the temperature is at least 95 ° C, the temperature at the middle stage and the temperature at the lowest stage are at least 99 ° C, and completely converting the by-product methanol as an azeotrope with methyl methacrylate It is preferable to remove it outside.
  • a method for completely removing the methanol present in the distillation column out of the system for example, a method in which the reflux ratio is gradually lowered to increase the ratio of distilling, or a method in which the reflux ratio is 0, that is, the total distillation
  • a method of removing all condensate circulating in the condenser and the reflux line from the upper stage of the distillation column by discharging the condensate to the outside of the system for example, a method in which the reflux ratio is gradually lowered to increase the ratio of distilling, or a method in which the reflux ratio is 0, that is, the total distillation
  • A represents the number of moles of the obtained target product
  • B represents the number of moles of alcohol or phenols charged
  • C represents the number of moles of unreacted alcohols or phenols.
  • the composition of the methanol Z azeotropic mixture of methyl methacrylate and the composition of the reaction solution were calculated as follows.
  • D indicates the mass of the target compound
  • E indicates the total mass of all the compounds.
  • a 3 L four-necked flask (reactor) equipped with a 20-stage Oldasha distillation column was used as a reactor.
  • This device is configured so that the vapor that has risen to the distillation column by heating is cooled by a capacitor and returned to the top of the distillation column by a reflux line.
  • lauryl alcohol 652.2 g (3.5 mol 1) 4-acetylamino-2,2,6,6- 0.04 g of tetramethylpiperidine-N-oxyl was charged, heated, and the system was dehydrated for 1 hour under total reflux.
  • the reflux ratio was set to 0 in order to completely remove the methanol contained in the liquid refluxing to the top of the distillation column again from the top of the distillation column via the condenser line to the reflux line via the condenser. All the liquid in the reflux line was distilled off until the temperature was maintained at 97 ° C or more, and the reaction was completed. The reaction time was 4 hours. During this period, the temperature of the uppermost stage of the distillation column was maintained at 95 ° C or higher, and the temperature of the middle stage and the lowermost stage was maintained at 99 ° C or higher. '
  • the amount of the extracted methanol Z azeotropic mixture of methyl methacrylate was 215.2, the content of methanol was 52.2% (112.3 g), and the content of methyl methacrylate was 47.5% (102.2%). g).
  • Example 2 The same reactor as in Example 1 was used. First, 750.9 g (7.5 mol) of methyl methacrylate, 676.3 g (2.5 mol) of stearyl alcohol, 4-acetylamino-2,2,6,6-tetramethyl 0.042 g of piperidine-1-N-xyl was charged, heated, and the system was dehydrated for 1 hour under total reflux. Thereafter, the reactor was cooled, and 1.23 g (0.005 mol) of tetramethyl titanate (purity: 70%) was charged and heating was started again. Then, a transesterification reaction was carried out in the same manner as in Example 1. At the beginning of the reaction, total reflux was reached.
  • the amount of the extracted methanol Z azeotrope of methyl methacrylate was 124.5 g, the content of methanol was 62.8% (78.2 g), and the content of methyl methacrylate was 37.2% (46. 3 g).
  • the obtained reaction solution (1299.7 g) in the reactor was analyzed by gas chromatography to find that methyl methacrylate was 35.0%, stearyl alcohol was 0%, stearyl methacrylate was 64.8%, and the yield was 99%. It was 3%.
  • the temperature at the bottom and middle stages of the distillation column is not controlled, and only the temperature at the top of the distillation column is controlled.
  • the transesterification reaction was carried out in the same manner as in Example 1 except that the reflux ratio was controlled in the range of 2 to 10 so as to maintain the temperature at 3 to 68 ° C.
  • the temperature in the middle stage of the distillation column became 70 to 100 ° C
  • the methanol concentration in the distillation column decreased
  • the composition deviated from the original azeotropic composition (91: 9) and the temperature at the top became 68 ° C many times, and stable operation was not possible.
  • the conversion was 97%, and the temperature at the middle stage of the distillation column was 94 ° C.
  • the reflux ratio was set to 0 in order to completely remove the solvent contained in the liquid refluxed from the top of the distillation column to the top of the distillation column again through the reflux line via the condenser, and the distillation ratio was set to 0. All the liquid in the reflux line was distilled off until the temperature at the top of the column stably maintained at 98 ° C or higher, and the reaction was completed.
  • the reaction time was 5 hours.
  • Example 1 The amount of the extracted methanol / methyl methacrylate azeotrope was 316.8 g, the content of methanol was 35.1% (111.2 g), and the content of methyl methyl acrylate was 64.7 % (205.0 g). Comparative Example 1 had more methyl methacrylate mouths than Example 1.
  • the transesterification reaction was performed in the same manner as in Comparative Example 1 except that the control range of the reflux ratio was set to 10 to 100. As a result, the temperature at the top of the distillation column was maintained at 63-65 ° C, but the temperature at the middle stage was 63-68 ° C, and the methanol removal rate was reduced.
  • the amount of the extracted methanol Z azeotrope of methyl methacrylate was 212.4 g, the content of methanol was 52.5% (111.5 g), and the content of methyl methacrylate was 46.5% ( 98.8 g).
  • the reflux ratio was controlled at 5 to 50, and the same procedure as in Example 1 was carried out except that the reaction was terminated without complete distillation while maintaining the reflux ratio at the time when the conversion reached 97%.
  • a transesterification reaction was performed.
  • the temperature at the top of the distillation column did not rise above 91 ° C, and the heating to the reactor was stopped to terminate the reaction.
  • the reaction time was 4 hours.
  • the amount of the extracted methanol / methyl methacrylate azeotrope was 157.7 g, the content of methanol was 67.0% (105.7 g), and the content of methyl methacrylate was 32.8% (51. 7 g).
  • -1529.6 g of the reaction solution obtained in the reactor was analyzed by gas chromatography and found to be 41.7% of methyl methacrylate, 1.4% of lauryl alcohol, and 55.9% of lauryl methacrylate. The rate was 96%. Lauryl alcohol remained 3.2% of the charged amount.
  • methacrylic acid ester can be manufactured with good productivity by controlling the temperature of a distillation column, and controlling a reflux ratio.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 蒸留塔を備えた反応装置を使用し、還流条件下で副生するメタノールをメタクリル酸メチルとの共沸混合物として系外に除去しながら、メタクリル酸メチルとアルコールまたはフェノール類とのエステル交換反応を行い、メタクリル酸エステルを製造する方法において、蒸留塔内の温度が、常圧における温度に換算した場合、最上段の温度が63~68℃、中間段の温度が68~90℃、最下段の温度が90~100℃に到達した後に、メタノールとメタクリル酸メチルとの共沸混合物の系外への除去を開始し、アルコールまたはフェノール類の転化率が0~95%の範囲において、前記蒸留塔内の温度を維持するように還流比を制御することにより、生産性よくメタクリル酸エステルを製造する。

Description

明細書
メタクリル酸エステルの製造方法 技術分野
本発明は、 メタクリル酸エステル (フエノールエステルも含む) の製造方法に 関する。 背景技術
従来、 メタクリル酸エステルは、 工業的には、 酸触媒の存在下でメタクリル酸 とアルコールまたはフエノール類とからエステル化反応により、 あるいは、 エス テル交換触媒の存在下でメタクリル酸エステルとアルコールまたはフエノール類 とからエステル交換反応により製造されている。 近年は、 原料、 生成物ともにェ ステルとアルコールまたはフエノール類であり、 蒸留精製によって生成物を分離 することが比較的容易で、 廃水が発生しない等の点から、 エステル交換反応によ りメタクリル酸エステルを製造する方法が多く用いられている。
エステル交換反応としては、 下記一般式 (1 ) に示すようなメ夕クリル酸メチ ルを使用する反応が多用されている。
Figure imgf000002_0001
(A) (B ) (C) (D)
(式 (1 ) 中、 Rは、 アルキル基、 ァリール基、 アルケニル基、 または、 ァラル キル基を示す。 )
しかしながら、 上記一般式 (1 ) に示すエステル交換反応は平衡反応であり、 ある一定の転化率以上には反応が進行しない。 転化率が低ければ、 反応後に、'原 料メ夕クリル酸メチル (A) 、 原料アルコール (B ) 、 目的生成物であるメ夕ク リル酸エステル (C ) 、 副生メタノール (D ) のすベての成分を分離しなければ ならず、 操作が煩雑になる。
そのため、 平衡を生成物側に移動させ、 転化率をさらに上げるために、 副生す るメタノール (D) を共沸溶剤とともに系外に除去することが行われている。 例 えば、 原料メタクリル酸メチル (A) が副生メタノール (D) と共沸混合物を作 るため、 原料メタクリル酸メチル (A) の仕込みモル数を原料アルコール (B ) の仕込みモル数よりも過剰とし、 副生メタノール (D) をメタクリル酸メチル ( A) との共沸混合物として系外に除去することが行われている。
しかしながら、 反応速度、 すなわち、 副生するメタノール (D) の生成速度が 十分には速くない場合、 副生メタノール (D) を除去するためには大過剰のメタ クリル酸メチル (A) が必要となり、 生産性が悪くなる傾向がある。
そのため、 副生メタノール (D) の濃度を高めた共沸混合物を形成し、 これを 系外に除去するために、 蒸留塔を使用し、 還流比を制御しながら一部を留出させ、 残りを還流させる方法が採られている。 この方法において、 より生産性よくメタ クリル酸エステルを製造することが望まれている。
例えば、 特開昭 5 5— 8 7 7 4 7号公報、 特開昭 6 3— 1 1 5 8 5 0号公報、 特開平 3— 1 1 8 3 5 2号公報には、 蒸留塔を備えた反応器を用いてメタクリル 酸メチルとアルコールまたはフエノール類とのエステル交換反応を行って目的の メタクリル酸エステルを製造する方法において、 蒸留塔の塔頂温度だけを管理し てメタクリル酸メチルとメタノールとの共沸混合物を抜き出しながらエステル交 換反応を行うことが記載されている。 発明の開示
本発明の目的は、 還流条件下で副生するメタノールをメタクリル酸メチルとの 共沸混合物として系外に除去しながら、 メ夕クリル酸メチルとアルコールまたは フエノール類とのエステル交換反応を行い、 メタクリル酸エステルを製造する方 法において、 還流比を制御することにより、 生産性よくメタクリル酸エステルを 製造する方法を提供することである。
本発明は、 蒸留塔を備えた反応装置を使用し、 還流条件下で副生するメタノー ルをメタクリル酸メチルとの共沸混合物として蒸留塔を経由させて系外に除去し ながら、 メタクリル酸メチルとアルコ一ルまたはフエノール類とのエステル交換 反応を行い、 該アルコールまたはフエノール類のメタクリル酸エステルを製造す る方法であって、
アルコールまたはフエノール類の転化率が 1 0〜9 0 %の範囲における前記蒸 留塔内の温度が、 常圧における温度に換算した場合、 最上段の温度が 6 3〜6 8 °Cであり、 中間段の温度が 6 8〜 9 0 °Cであり、 最下段の温度が 9 0〜 1 0 0 °C であるように還流比を制御しながら反応を行うことを特徴とするメタクリル酸ェ ステルの製造方法に関する。
また、 本発明は、 蒸留塔を備えた反応装置を使用し、 還流条件下で副生するメ タノ一ルをメタクリル酸メチルとの共沸混合物として蒸留塔を経由させて系外に 除去しながら、 メタクリル酸メチルとアルコールまたはフエノール類とのエステ ル交換反応を行い、 該アルコールまたはフエノール類のメ夕クリル酸エステルを 製造する方法であって、
前記蒸留塔内の温度が、 常圧における温度に換算した場合、 最上段の温度が 6 3〜 6 8 °C、 中間段の温度が 6 8〜 9 0 °C、 最下段の温度が 9 0〜 1 0 0 °Cに到 達した後に、 メタノールとメタクリル酸メチルとの共沸混合物の系外への除去を 開始し、
アルコールまたはフエノール類の転化率が 1 0〜9 0 %の範囲において、 前記 蒸留塔内の温度を維持するように還流比を制御しながら反応を行うことを特徴と するメタクリル酸エステルの製造方法に関する。
さらに、 本発明は、 アルコールまたはフエノール類の転化率が 9 7 %を超えた 後、 前記蒸留塔内の温度を、 常圧における温度に換算した場合、 最上段の温度が 9 5 °C以上、 中間段の温度および最下段の温度が 9 9 °C以上となるように還流比 を制御し、 副生するメタノールをメ夕クリル酸メチルとの共沸混合物として完全 に系外に除去して反応を終了させる上記のメタクリル酸エステルの製造方法に関 する。
ここで 「還流比」 とは、 反応装置の反応器内から気化した蒸気が蒸留塔を経由 してコンデンサーで凝縮した後、 凝縮液の一部を留出させ、 残りを還流させるが、 その凝縮液の留出量に対する還流量の比のことを言う。
また、 常圧 (大気圧) 以外の圧力で蒸留塔を運転した場合に蒸留塔内の温度を 常圧における温度に換算する方法は、 以下の通りである。
まず、 当該圧力 (蒸留塔の運転圧力) において、 実際の蒸留塔内の温度が沸点 となるメタノールとメタクリル酸メチルとの混合液の液組成を当該圧力における 沸点—組成図から求める。 次に、 当該液組成のメタノールとメタクリル酸メチル との混合液の常圧における沸点を常圧における沸点一組成図から求め、 これを 「 常圧における温度」 とする。
本発明においては、 蒸留塔内の温度が上記範囲内になるように還流比を制御す ることによって、 目的生成物であるメタクリル酸エステルを生産性よく製造する ことを可能にしている。
還流比を上げすぎると、 副生するメタノールを系外に除去する効率が悪くなり、 蒸留塔全体のメ夕ノ一ル濃度が必要以上に上昇してしまい、 場合によっては反応 器内のメタノール濃度の上昇をも招く。 その結果、 平衡反応を生成物側に進める ことが困難になる。 一方、 還流比を下げすぎると、 系外に除去する共沸混合物中 のメタノール濃度が低下し、 必要以上のメタクリル酸メチルが系外に除去される。 その結果、 メ夕クリル酸メチルの仕込み量が少なすぎる場合は、 所望の転化率が 得られるまでにメタクリル酸メチルがすべて留出してしまい、 それ以上反応が進 まなくなる。 副生するメタノールの生成速度は原料のモル比、 使用する触媒など、 種々の要因によって異なるが、 本発明によれば、 副生するメタノールを効率よく、 しかも、 メタクリル酸メチルとの共沸混合物中のメタノール濃度を十分に高めた 状態で系外に除去することができる。
発明を実施するための最良の形態
原料アルコールまたはフエノ一ル類は、 目的とするメタクリル酸エステルに応 じて適宜決めればよい。 原料アルコールまたはフエノール類としては、 具体的に は、 メタノール、 エタノール、 n—プロパノール、 i—プロパノ一ル、 n—ブタ ノール、 iーブタノール、 tーブ夕ノール、 n—ペン夕ノール、 tーァミルアル コール、 n—へキサノール、 n—ヘプ夕ノール、 n—ォクタノ一ル、 2—ェチル へキシルアルコール、 n—ノナノール、 n—デカノール、 n—ゥンデ力ノール、 n—ドデカノール、 ラウリルアルコール、 ステアリルアルコール、 エチレングリ コール、 1 , 3—プロパンジオール、 1, 2—プロパンジオール、 1 , 4ーブ夕 ンジオール、 1 , 5 —ペンタンジオール、 1 , 6—へキサンジオール、 1 , 8— オクタンジオール、 1, 9—ノナンジオール、 1, 1 0—デカンジオール、 1, 1 2—ドデカンジオール、 グリセロールなどの脂肪族飽和アルコール;ァリルァ ルコール、 1, 1ージメチルァリルアルコール、 プレノール、 イソプレノールな どの脂肪族不飽和アルコール; シクロへキサノール、 メチルシクロへキサノール、 シクロへキサン一 1 , 4ージメタノール、 ノルポルナン _ 2 —メタノール、 5— ノルボルネン一 2—メタノール、 1ーァダマン夕ノール、 2—メチルー 2—ァダ マンタノールなどの脂肪族環状アルコール; グリシドール、 イソプロピリデング リセロール、 グリセリンカーボネートなどの官能基含有アルコール; フエノール、 2—フエニルフエノールなどのフエノール類;ベンジルアルコール、 1—フエ二 ルエチルアルコール、 2—フエニルエチルアルコールなどのァリール基含有アル コール等が挙げられる。 原料メタクリル酸メチルと原料アルコールまたはフエノール類との仕込み混合 比率は、 用いる原料や触媒などに応じて適宜決めればよい。 メタクリル酸メチル の使用量は、 通常、 アルコールまたはフエノール類 1モルに対して 1 . 2モル以 上が好ましく、 また、 アルコールまたはフエノール類 1モルに対して 2 0モル以 下が好ましい。 なお、 原料が多価アルコールの場合、 メ夕クリル酸メチルの使用 量は、 上記の値に多価アルコールの価数を乗じた量とすることが好ましい。
本発明においては、 通常、 触媒の存在下、 メタクリル酸メチルとアルコールま たはフエノール類とを反応させる。
本発明において用いる触媒は特に限定されず、 エステル交換反応活性を有する 触媒であればいずれも用いることができる。 触媒としては、 例えば、 テトラメチ ルチタネート、 テトライソプロピルチタネート、 テトラ— n—ブチルチタネート、 テトラー 2—ェチルへキシルチタネート、 テトラステアリルチタネ一卜などのチ タン化合物;ジブチルスズォキシド、 ジォクチルスズォキシド、 ジメチルスズジ メトキシド、 ジブチルスズジメトキシド、 ジブチルスズジメタクリレート、 テト ラブチル—ジァセトキシジスタノキサン、 テトラブチル—ジメタクリロイルォキ シジスタノキサン、 テトラプチルージァクリロイルォキシジス夕ノキサン、 テト ラオクチルージメタクリロイルォキシジスタノキサン、 テトラオクチルージァク リロイルォキシジスタノキサンなどのスズ化合物;炭酸カリウム、 炭酸ナトリウ ム、 炭酸マグネシウム、 炭酸カルシウム、 炭酸リチウムなどのアルカリ金属また はアルカリ土類金属の炭酸塩;塩化カルシウム、 塩化ナトリウム、 塩化マグネシ ウム、 塩化カリウム、 塩化リチウムなどのアルカリ金属またはアルカリ土類金属 の塩化物;水酸化ナトリウム、 水酸化カリウム、 水酸化リチウム、 水酸化マグネ シゥム、 水酸化カルシウムなどのアルカリ金属またはアルカリ土類金属の水酸化 物;アルミニウムイソプロポキシド、 ナトリウムメトキシドなどの金属アルコキ シド等が挙げられる。 触媒は、 1種を用いても、 2種以上を併用してもよい。
触媒の使用量は、 用いる原料や触媒などに応じて適宜決めればよいが、 通常、 アルコールまたはフエノール類 1モルに対して 0 . 0 0 0 1モル以上が好ましく、 また、 アルコールまたはフエノール類 1モルに対して 0 . 2モル以下が好ましい。 本発明では、 メタクリル酸エステルの重合を防止する目的で、 反応器内に重合 防止剤を添加してエステル交換反応を行うことが好ましい。 また、 蒸留塔内にも メタクリル酸メチルが存在するので、 反応器内と同様、 重合防止の目的で、 蒸留 塔内全体に重合防止剤を供給することが好ましい。 具体的には、 重合防止剤をメ タクリル酸メチルに溶解させ、 その溶液を蒸留塔最上段より供給すればよい。 本発明において用いる重合防止剤は特に限定されず、 メタクリル酸エステルに 対して重合防止効果を有するものであればいずれも用いることができる。 重合防 止剤としては、 例えば、 ハイドロキノン、 パラメトキシフエノール等のフエノー ル系化合物;フエノチアジン、 N—フエ二ルー N' rソプロピルパラフエニレ ンジァミン、 N, N' —ジー 2—ナフチルパラフエ二レンジァミン、 N—フエ二 ルー N' — (1, 3—ジメチルブチル) パラフエ二レンジァミン等のアミン系化 合物; 4ーヒドロキシ— 2, 2, 6, 6—テトラメチルピペリジン一 N—ォキシ ル、 4—ベンゾィルォキシ一 2, 2, 6, 6—テトラメチルピペリジン— N—ォ キシル、 4ーァセチルァミノ— 2, 2, 6, 6ーテトラメチルピペリジン— N— ォキシル、 あるいは、 下記一般式 (2) で示される N—ォキシル系化合物などの N—ォキシル化合物等が挙げられる。 重合防止剤は、 1種を用いても、 2種以上 を併用してもよい。
Figure imgf000008_0001
(式 (2) 中、 R11 R12はともに水素原子を表すか、 または、 R11, R12の 一方が水素原子を表し、 他方がメチル基を表す。 R13、 R14、 R15、 R16はそ れぞれ直鎖状または分岐状のアルキル基を表す。 R 17は水素原子または (メタ) ァクリロイル基を表す。 nは 1〜18の整数である。 )
また、 本発明では、 メタクリル酸エステルの重合を防止する目的で、 反応液中 へのエア一バブリング等によって、 反応器内および蒸留塔内に酸素含有ガスを供 給してもよい。
本発明においては、 蒸留塔を備えた反応装置の反応器内に、 メタクリル酸メチ ル、 アルコールまたはフエノール類、 触媒および重合防止剤を仕込み、 反応温度 にまで加熱し、 還流条件下で副生するメタノールをメ夕クリル酸メチルとの共沸 混合物として系外に除去しながらエステル交換反応を行う。 このとき、 メタノ一 ルとメタクリル酸メチルとの共沸混合物 (メタノール Zメ夕ケリル酸メチル共沸 混合物) の系外への除去は、 反応器内から気化した蒸気が蒸留塔を経由してコン デンサ一で凝縮した後、 凝縮液の一部を留出させることにより行う。
本発明において用いる蒸留塔としては特に限定されず、 例えば、 ヘリパック、 マクマホン、 カスケードミニリング等の充填物を充填した充填塔、 オルダーショ ゥ、 リフトトレイなどのトレイタイプの塔が挙げられる。
蒸留塔の理論段数は、 分離能力の点から、 5段以上が好ましく、 1 0段以上が より好ましい。 また、 蒸留塔の理論段数は、 差圧を低く抑える点から、 5 0段以 下が好ましく、 3 0段以下がより好ましい。
エステル交換反応は、 常圧、 減圧または微加圧下で行う。 具体的には、 6 6 0 0〜2 0 2 0 0 0 P aが好ましい。
反応温度 (反応器内の温度) は適宜決めればよいが、 常圧で反応を行う場合は 通常 1 0 0〜 1 5 0 °Cが好ましい。
本発明においては、 反応で副生するメタノールをメ夕クリル酸メチルとともに 共沸除去するため、 前述の通り、 メタクリル酸メチルはアルコールまたはフエノ ール類に対して過剰量仕込む。 反応器内に原料を仕込んだ後、 反応温度にまで加 熱して還流状態にするが、 メタクリル酸メチルを過剰に仕込んでいるため、 反応 初期は、 蒸留塔内は主にメタクリル酸メチルが分布している。 エステル交換反応 が進行し、 メタクリル酸エステルとともに、 メタノールが生成すると、 副生メタ ノールはメタクリル酸メチルとともに共沸し、 蒸留塔に上がっていく。 常圧にお けるメタノール Zメタクリル酸メチルの共沸温度は 6 4 °C、 共沸組成はメタノ一 ル:メタクリル酸メチル = 9 1 : 9 (質量比) である。 蒸留塔最上段の組成をメ 夕ノール/メタクリル酸メチル共沸組成にし、 これを系外に除去すれば、 メ夕ク リル酸メチルの留出量を低く抑えることができる。 また、 蒸留塔最上段のみの温 度管理では共沸組成から外れることが懸念される。 そのため、 より安定に運転す る点から、 蒸留塔中間段および最下段の温度も調節することが好ましい。
本発明では、 アルコールまたはフエノール類の転化率が 1 0〜9 0 %、 好まし くは 5〜9 5 %、 特に好ましくは 4〜9 7 %の範囲における蒸留塔最上段 (充填 塔の場合は理論段) の温度は、 常圧における温度に換算した場合、 6 3〜6 8 °C の範囲にする。 蒸留塔最上段の温度は、 常圧における温度に換算した場合、 6 3 〜6 5 °Cが好ましい。 この温度は、 常圧におけるメタノールとメ夕クリル酸メチ ルの共沸温度に近い温度である。 蒸留塔最上段の温度を上記範囲にすることによ り、 メタノール濃度の高い共沸混合物が系外に抜き出されることになるので、 メ タクリル酸メチルの留出量を低く抑えることができる。 その結果、 原料メタクリ ル酸メチルの仕込み量 (原料アルコールまたはフエノール類に対する混合比率) を下げることができるため、 生産性を向上させることができる。
アルコールまたはフエノール類の転化率が 1 0〜9 0 %、 好ましくは 5〜 9 5 %、 特に好ましくは 4〜9 7 %の範囲における蒸留塔中間段の温度は、 常圧にお ける温度に換算した場合、 6 8〜9 0 °Cの範囲にする。 蒸留塔中間段の温度は、 常圧における温度に換算した場合、 7 0 °C以上が好ましく、 また、 8 0 °C以下が 好ましい。 蒸留塔中間段の温度が低すぎると、 蒸留塔最下段までメタノールが到 達し、 反応器内にメタノールが戻ってしまい、 反応器内のメタノール濃度が上昇 してエステル交換反応の進行が抑制されることがある。 また、 蒸留塔中間段の温 度が高すぎると、 蒸留塔最上段が共沸組成から外れやすくなり、 メタクリル酸メ チルの留出量が増大する懸念がある。
なお、 蒸留塔中間段とは、 最上段 (充填塔の場合は理論段) から数えて全段数 の半数 (小数点以下切上げ) の位置にある棚段 (充填塔の場合は理論段) を言う。 アルコールまたはフエノール類の転化率が 1 0〜9 0 %、 好ましくは 5〜 9 5 %、 特に好ましくは 4〜9 7 %の範囲における蒸留塔最下段 (充填塔の場合は理 論段) の温度は、 常圧における温度に換算した場合、 9 0〜 1 0 0 °Cの範囲にす る。 蒸留塔最下段の温度は、 常圧における温度に換算した場合、 9 9〜 1 0 0 °C が好ましい。 蒸留塔最下段の温度を上記範囲にすることにより、 含まれるメタノ ール量が少なくなり、 反応器内にメタノ一ルが戻るのを防止することができる。 還流比を制御して蒸留塔内の温度を上記の範囲に維持しつつ、 メタノール Zメ タクリル酸メチルの共沸混合物を系外に除去しながらエステル交換反応を行うこ とにより、 特にアルコールまたはフエノール類の転化率 4〜 9 7 %の範囲におい ては、 メタクリル酸メチルのロスを最小限に抑え、 効率的に、 安定に運転するこ とが可能である。
また、 本発明においては、 メ夕クリル酸メチルのロスを抑える点から、 上記の 温度範囲に到達するまでは全還流状態とし、 到達後にメタノール /メタクリル酸 メチル共沸混合物の系外への除去を開始することが好ましい。
一方、 原料アルコールや触媒の種類、 量などによって異なるが、 アルコールま たはフエノール類の転化率が 9 7 %を超えると、 メタノールの生成速度が遅くな り、 反応器内からメタノールが蒸留塔に上がっていかなくなる。 そのため、 蒸留 塔最下段より温度が上昇し始める。
本発明においては、 アルコールまたはフエノ一ル類の転化率が 9 7 %を超えた 後、 反応を終了させるにあたっては、 蒸留塔内の温度を、 常圧における温度に換 算した場合、 最上段の温度が 9 5 C以上、 中間段の温度および最下段の温度が 9 9 °C以上となるように還流比を制御しながら、 副生するメタノールをメタクリル 酸メチルとの共沸混合物として完全に系外に除去することが好ましい。 蒸留塔内 に存在するメタノールを完全に系外に除去する方法としては、 例えば、 還流比を 徐々に下げていって留出させる割合を増やしていく方法、 あるいは、 還流比を 0、 すなわち全留出させることによって蒸留塔上段からコンデンサー、 還流ラインを 循環している凝縮液をすベて系外に除去する方法が挙げられる。
上記のような方法で系内、 例えば蒸留塔内や還流ライン内に残存しているメタ ノールを完全に除去することにより、 反応終了後に残存メタノールが蒸留塔から 反応器内に戻り、 それによつて平衡反応が原料側に戻って転化率が下がるのを防 止することができる。 実施例
以下、 実施例によって本発明を具体的に説明するが、 本発明はこれらの実施例 に限定されるものではない。
実施例および比較例において、 分析はガスクロマトグラフィーにより行った。 収率および転化率は次のようにして算出した。
収率 (%) =A/BX 1 0 0
転化率 (%) = (B - C) /BX 1 0 0
ここで、 Aは得られた目的生成物のモル数、 Bはアルコールまたはフエノール 類の仕込みモル数、 Cは未反応のアルコールまたはフエノ一ル類のモル数を表す。 また、 メタノール Zメタクリル酸メチル共沸混合物の組成および反応液の組成 は、 次のようにして算出した。
対象化合物の含量 (%) =D/EX 1 0 0
ここで、 Dは対象化合物の質量、 Eは全化合物の合計質量を示す。
ぐ実施例 1 >
反応装置として、 2 0段オルダ一ショウ蒸留塔を備えた 3 Lの 4つ口フラスコ (反応器) を使用した。 この装置は、 加熱によって蒸留塔に上がった蒸気がコン デンサ一で冷却されて還流ラインにより蒸留塔最上段に戻るように組まれている。 まず、 反応器にメタクリル酸メチル 1 0 5 1. 3 g (1 0. 5mo l ) 、 ラウ リルアルコール 6 5 2. 2 g (3. 5mo 1 ) 、 4—ァセチルアミノー 2, 2, 6, 6—テトラメチルピペリジン— N—ォキシル 0. 04 gを仕込み、 加熱し、 全還流下、 1時間かけて系内の脱水を行った。 その後、 反応器を冷却し、 テトラ メチルチタネート (純度 7 0 %) 0. 8 6 g (0. 0 0 3 5 mo 1 ) を仕込んで 再度加熱を開始した。 蒸留塔の最上段からは 4—ァセチルアミノー 2, 2, 6, 6—テトラメチルピペリジン一 N—ォキシルをメタクリル酸メチルに溶解させて 1000 p pmの濃度とした溶液を連続的に 2m 1 / rで供給し、 反応液中に は空気を 20ml /mi nで導入しながら、 反応器内温度を 1 1 1〜129°Cに 維持して常圧にてエステル交換反応を行った。 反応中、 経時的に反応器内の反応 液をサンプリングしてガスクロマトグラフィーで分析し、 転化率を測定した。 反応開始当初は全還流とし、 蒸留塔最上段の温度が 64 °C、 中間段の温度が 7 1°C, 最下段の温度が 100°Cに到達した時点 (このときの転化率は 4%) から メタノール /メタクリル酸メチルの共沸混合物の系外への抜き出しを開始した。 その後は、 転化率が 97 %に達するまで、 蒸留塔最上段の温度を 64〜65°C、 中間段の温度を 70〜80°C、 最下段の温度を 99〜100°Cに維持するため還 流比を 5〜 50の範囲に制御して反応を行った。
反応開始から 3時間後、 転化率は 97 %となり、 蒸留塔中間段の温度が 88 °C まで上昇した。 その後、 還流比を 0. 1まで徐々に下げていき、 蒸留塔最上段お よび中間段の温度を 99 °Cまで上昇させた。
次いで、 蒸留塔最上段からコンデンザ一を経由して還流ラインょり再び蒸留塔 最上段へ還流する液に含まれるメタノールを完全に系外に除去するために還流比 を 0とし、 蒸留塔最上段の温度が 97 °C以上を安定に維持するまで還流ラインの 液をすベて留出させ、 反応を終了した。 反応時間は 4時間であった。 なお、 この 間、 蒸留塔最上段の温度は 95 °C以上、 中間段の温度および最下段の温度は 99 °C以上に維持した。 '
抜き出したメタノール Zメタクリル酸メチル共沸混合物の量は 215. 2 で あり、 メタノールの含有量は 52. 2 % (112. 3 g) 、 メタクリル酸メチル の含有量は 47. 5 % (102. 2 g) であった。
得られた反応器内の反応液 1485. 8 gをガスクロマトグラフィーで分析し たところ、 メタクリル酸メチル 40. 1 %、 ラウリルアルコール 0. 13%、 ラ ゥリルメタクリレート 59. 0%であり、 収率は 98. 4%であった。
<実施例 2>
反応装置は実施例 1と同様のものを使用した。 まず、 反応器に、 メタクリル酸メチル 750. 9 g (7. 5mo 1 ) 、 ステア リルアルコール 676. 3 g (2. 5mo 1 ) 、 4ーァセチルアミノー 2, 2, 6, 6—テトラメチルピペリジン一 N—才キシル 0. 042 gを仕込み、 加熱し、 全還流下、 1時間かけて系内の脱水を行った。 その後、 反応器を冷却し、 テトラ メチルチタネート (純度 70%) 1. 23 g (0. 005mo 1 ) を仕込んで再 度加熱を開始した。 そして、 実施例 1と同様にしてエステル交換反応を行った。 反応開始当初は全還流とし、 蒸留塔最上段の温度が 64. 5°C, 中間段の温度 が 74 °C、 最下段の温度が 98. 8°Cに到達した時点 (このときの転化率は 4 % ) からメタノール メタクリル酸メチルの共沸混合物の系外への抜き出しを開始 した。 その後は、 転化率が 97%に達するまで、 蒸留塔最上段の温度を 64〜 6 5 °C、 中間段の温度を 70〜 80 °C、 最下段の温度を 99〜 100 °Cに維持する ため還流比を 5〜 50の範囲に制御して反応を行った。
反応開始から 4時間後、 転化率は 98%となり、 蒸留塔中間段の温度が 93 °C まで上昇した。 その後、 蒸留塔最上段からコンデンサーを経由して還流ラインよ り再び蒸留塔最上段へ還流する液に含まれるメタノールを完全に系外に除去する ために還流比を 0とし、 蒸留塔最上段の温度が 98°C以上を安定に維持するまで 還流ラインの液をすベて留出させ、 反応を終了した。 反応時間は 4. 5時間であ つた。 なお、 この間、 蒸留塔最上段の温度は 95 °C以上、 中間段の温度および最 下段の温度は 99 °C以上に維持した。
抜き出したメタノール Zメタクリル酸メチル共沸混合物の量は 124. 5 gで あり、 メタノールの含有量は 62. 8 % (78. 2 g) 、 メタクリル酸メチルの 含有量は 37. 2 % (46. 3 g) であった。
得られた反応器内の反応液 1297. 7 gをガスクロマトグラフィーで分析し たところ、 メタクリル酸メチル 35. 0%、 ステアリルアルコール 0 %、 ステア リルメタクリレート 64. 8%であり、 収率は 99. 3%であった。
<比較例 1 >
蒸留塔の最下段および中間段の温度を管理せず、 蒸留塔最上段の温度のみを 6 3〜 68 °Cに維持するように還流比を 2〜 10の範囲で制御し广こ以外は実施例 1 と同様にしてエステル交換反応を行った。 その結果、 蒸留塔中間段の温度が 70 〜100°Cとなり、 蒸留塔内のメタノール濃度が低下し、 メ夕クリル酸メチルの 濃度が相対的に上昇したため、 塔頂のメタノ一ルノメタクリル酸メチル組成が、 本来の共沸組成 (91 : 9) から外れ、 塔頂温度が何度も 68°Cとなって安定し た運転ができなかった。
' 反応開始から 4. 5時間後、 転化率は 97%となり、 蒸留塔中間段の温度で 9 4°Cであった。 その後、 蒸留塔最上段からコンデンサーを経由して還流ラインよ り再び蒸留塔最上段へ還流する液に含まれるメ夕ノ一ルを完全に系外に除去する ために還流比を 0とし、 蒸留塔最上段の温度が 98 °C以上を安定に維持するまで 還流ラインの液をすベて留出させ、 反応を終了した。 反応時間は 5時間であった。 抜き出したメタノール/メタクリル酸メチル共沸混合物の量は 316. 8 gで あり、 メタノールの含有量は 35. 1 % (1 1 1. 2 g) 、 メ夕クリル酸メチル の含有量は 64. 7 % (205. 0 g) であった。 比較例 1は、 実施例 1と比べ てメタクリル酸メチルの口スが多かつた。
得られた反応器内の反応液 1380. 8 gをガスクロマトグラフィーで分析し たところ、 メタクリル酸メチル 36. 2%、 ラウリルアルコール 0. 2%、 ラウ リルメタクリレート 62. 9%であり、 収率は 97. 5%であった。
ぐ比較例 2 >
還流比の制御範囲を 10〜100とした以外は比較例 1と同様にしてエステル 交換反応を行った。 その結果、 蒸留塔最上段の温度は 63〜 65°Cを維持したが、 中間段の温度が 63〜68°Cとなり、 メタノールの除去速度が低下した。
反応開始から 6時間後、 蒸留塔中間段の温度が 93 °Cまで上昇した。 その後、 蒸留塔最上段からコンデンサーを経由して還流ラインより再び蒸留塔最上段へ還 流する液に含まれるメタノールを完全に系外に除去するために還流比を 0とし、 蒸留塔最上段の温度が 98 °C以上を安定に維持するまで還流ラインの液をすベて 留出させ、 反応を終了した。 反応時間は 6. 5時間であった。 抜き出したメタノール Zメタクリル酸メチル共沸混合物の量は 212. 4 gで あり、 メタノールの含有量は 52. 5 % (1 1 1. 5 g) 、 メタクリル酸メチル の含有量は 46. 5 % (98. 8 g) であった。
得られた反応器内の反応液 1483. 4 gをガスクロマトグラフィーで分析し たところ、 メタクリル酸メチル 40. 4%、 ラウリルアルコール 0. 13%、 ラ ゥリルメタクリレート 59. 1%であり、 収率は 98. 5%であった。
比較例 2では、 メタクリル酸メチルのロス、 ラウリルメタクリレートの収率は 実施例 1と同等であつたが、 実施例 1と比べて反応時間が大幅に長くなり、 生産 性に劣っていた。
<実施例 3>
反応時には還流比を 5〜50で制御し、 転化率が 97%に達した時点の還流比 50を維持しながら、 全留出させることなく反応を終了した以外は実施例 1と同 様にしてエステル交換反応を行った。 その結果、 蒸留塔最上段の温度は 91°C以 上には上がらず、 そのまま反応器への加熱を停止して反応を終了させた。 反応時 間は 4時間であった。
抜き出したメタノール/メタクリル酸メチル共沸混合物の量は 157. 7 gで あり、 メタノールの含有量は 67. 0 % (105. 7 g) 、 メタクリル酸メチル の含有量は 32. 8 % (51. 7 g) であった。 - 得られた反応器内の反応液 1529. 6 gをガスクロマトグラフィーで分析し たところ、 メタクリル酸メチル 41. 7%、 ラウリルアルコール 1. 4%、 ラウ リルメタクリレート 55. 9%であり、 収率は 96%であった。 ラウリルアルコ ールが仕込み量に対して 3. 2 %残存する結果となった。
実施例 3は、 メタクリル酸メチルのロスは少なかったが、 実施例 1と比べて収 率が若千低く、 ラウリルアルコールが 3. 2%残存した。 これは、 メタノールを 完全に系外に除去できなかったためと思われる。 産業上の利用可能性 本発明によれば、 蒸留塔の温度管理、 還流比の制御によって、 生産性よくメタ クリル酸エステルを製造することができる。

Claims

請求の範囲
1 . 蒸留塔を備えた反応装置を使用し、 還流条件下で副生するメタノールを メタクリル酸メチルとの共沸混合物として蒸留塔を経由させて系外に除去しなが ら、 メタクリル酸メチルとアルコールまたはフエノール類とのエステル交換反応 を行い、 該アルコールまたはフエノール類のメタクリル酸エステルを製造する方 法であって、
アルコールまたはフエノール類の転化率が 1 0〜9 0 %の範囲における前記蒸 留塔内の温度が、 常圧における温度に換算した場合、 最上段の温度が 6 3〜6 8 °Cであり、 中間段の温度が 6 8〜9 0 °Cであり、 最下段の温度が 9 0〜 1 0 0 °C であるように還流比を制御しながら反応を行うことを特徴とするメタクリル酸ェ ステルの製造方法。
2 . 蒸留塔を備えた反応装置を使用し、 還流条件下で副生するメタノールを メタクリル酸メチルとの共沸混合物として蒸留塔を経由させて系外に除去しなが ら、 メタクリル酸メチルとアルコールまたはフエノール類とのエステル交換反応 を行い、 該アルコールまたはフエノール類のメタクリル酸エステルを製造する方 法であって、
前記蒸留塔内の温度が、 常圧における温度に換算した場合、 最上段の温度が 6 3〜 6 8 ° (:、 中間段の温度が 6 8〜 9 0 ° (:、 最下段の温度が 9 0〜 1 0 0 °Cに到 達した後に、 メタノールとメタクリル酸メチルとの共沸混合物の系外への除去を 開始し、
アルコールまたはフエノ一ル類の転化率が 1 0〜9 0 %の範囲において、 前記 蒸留塔内の温度を維持するように還流比を制御しながら反応を行うことを特徴と するメタクリル酸エステルの製造方法。
3 . アルコールまたはフエノール類の転化率が 9 7 %を超えた後、 前記蒸留 塔内の温度を、 常圧における温度に換算した場合、 最上段の温度が 9 5 °C以上、 中間段の温度および最下段の温度が 9 9 °C以上となるように還流比を制御し、 副 生するメタノールをメタクリル酸メチルとの共沸混合物として完全に系外に除去 して反応を終了させる請求項 1または 2に記載のメタクリル酸エステルの製造方 法。
PCT/JP2004/001036 2003-02-07 2004-02-03 メタクリル酸エステルの製造方法 WO2004069783A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004553529A JP4758649B2 (ja) 2003-02-07 2004-02-03 メタクリル酸エステルの製造方法
US10/540,924 US7241916B2 (en) 2003-02-07 2004-02-03 Process for producing methacrylic ester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003030671 2003-02-07
JP2003-030671 2003-02-07

Publications (1)

Publication Number Publication Date
WO2004069783A1 true WO2004069783A1 (ja) 2004-08-19

Family

ID=32844275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001036 WO2004069783A1 (ja) 2003-02-07 2004-02-03 メタクリル酸エステルの製造方法

Country Status (5)

Country Link
US (1) US7241916B2 (ja)
JP (1) JP4758649B2 (ja)
KR (1) KR100756158B1 (ja)
CN (1) CN1321102C (ja)
WO (1) WO2004069783A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063171A (ja) * 2005-08-30 2007-03-15 Ube Ind Ltd アクリル酸高級アルコールエステルおよびメタクリル酸高級アルコールエステルの製造方法
JP2016108334A (ja) * 2014-12-02 2016-06-20 信越化学工業株式会社 2−イソプロペニル−5−メチル−4−ヘキセン−1−イル3−メチル−2−ブテノエートの製造方法
JPWO2018221314A1 (ja) * 2017-05-31 2020-04-02 大阪有機化学工業株式会社 重合禁止剤および当該重合禁止剤を用いた(メタ)アクリル酸エステルの製造方法、精留物

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031470A1 (de) 2007-07-05 2009-01-08 Evonik Röhm Gmbh Verfahren zur Herstellung von (Meth)acrylaten
WO2010016540A1 (ja) * 2008-08-08 2010-02-11 昭和電工株式会社 イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法および製造方法
CN101514158B (zh) * 2009-04-03 2012-02-22 上海和创化学有限公司 二甲基丙烯酸乙二醇酯的制备方法
CN101781205B (zh) * 2010-03-30 2012-12-05 丽水市南明化工有限公司 一种合成取代丙烯酸苯酯的方法
KR101909324B1 (ko) * 2015-02-17 2018-10-17 주식회사 엘지화학 부틸메타크릴레이트의 연속 제조 방법
KR101991311B1 (ko) * 2015-06-30 2019-06-21 주식회사 엘지화학 부틸메타크릴레이트의 연속 제조 방법
CN105056562A (zh) * 2015-08-07 2015-11-18 无锡市悦丰化工有限公司 一种甲基丙烯酸甲酯生产用蒸馏塔
DE102015226830A1 (de) 2015-12-30 2017-07-06 Basf Se Verfahren zur Herstellung von hochsiedenden (Meth)acrylsäureestern
CN110981722A (zh) * 2019-12-30 2020-04-10 山东泰和水处理科技股份有限公司 一种含醇丙烯酸甲酯的合成方法
CN113413858A (zh) * 2021-08-23 2021-09-21 山东蓝湾新材料有限公司 一种高分子聚合物中间体生产装置及工艺流程

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0968995A1 (en) * 1998-07-01 2000-01-05 Mitsubishi Gas Chemical Company, Inc. Process for continuously producing ester of acrylic or methacrylic acid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587747A (en) 1978-12-26 1980-07-02 Kyowa Gas Chem Ind Co Ltd Preparation of dialkyl-aminoalkyl ester of acrylic or methacrylic acid
JPH0747568B2 (ja) 1986-10-31 1995-05-24 三井東圧化学株式会社 アクリル酸又はメタクリル酸のアルキルアミノアルキルエステルの製造方法
JPH03118352A (ja) 1989-09-29 1991-05-20 Sanyo Chem Ind Ltd アクリル系モノマーの製造法
US5037978A (en) * 1990-03-12 1991-08-06 Rohm And Haas Company Hafnium-catalyzed transesterification

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0968995A1 (en) * 1998-07-01 2000-01-05 Mitsubishi Gas Chemical Company, Inc. Process for continuously producing ester of acrylic or methacrylic acid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063171A (ja) * 2005-08-30 2007-03-15 Ube Ind Ltd アクリル酸高級アルコールエステルおよびメタクリル酸高級アルコールエステルの製造方法
JP2016108334A (ja) * 2014-12-02 2016-06-20 信越化学工業株式会社 2−イソプロペニル−5−メチル−4−ヘキセン−1−イル3−メチル−2−ブテノエートの製造方法
JPWO2018221314A1 (ja) * 2017-05-31 2020-04-02 大阪有機化学工業株式会社 重合禁止剤および当該重合禁止剤を用いた(メタ)アクリル酸エステルの製造方法、精留物
JP7269170B2 (ja) 2017-05-31 2023-05-08 大阪有機化学工業株式会社 重合禁止剤および当該重合禁止剤を用いた(メタ)アクリル酸エステルの製造方法、精留物

Also Published As

Publication number Publication date
CN1321102C (zh) 2007-06-13
US7241916B2 (en) 2007-07-10
CN1747924A (zh) 2006-03-15
JPWO2004069783A1 (ja) 2006-05-25
JP4758649B2 (ja) 2011-08-31
KR20050111322A (ko) 2005-11-24
KR100756158B1 (ko) 2007-09-05
US20060084823A1 (en) 2006-04-20

Similar Documents

Publication Publication Date Title
WO2004069783A1 (ja) メタクリル酸エステルの製造方法
JP6363599B2 (ja) (メタ)アクリル酸エステルの製造システム
JPS628091B2 (ja)
KR20150095887A (ko) 알킬 아크릴레이트의 제조 방법
RU2472769C2 (ru) Способ получения бутандиолдиметакрилатов
JP2000159726A (ja) ヒドロキシアルキルアクリレートの製造方法
JPWO2018221314A1 (ja) 重合禁止剤および当該重合禁止剤を用いた(メタ)アクリル酸エステルの製造方法、精留物
JP2004189650A (ja) (メタ)アクリル酸エステルの製造方法
JP3571761B2 (ja) ジフェニルカーボネートの製造方法
JP4266645B2 (ja) (メタ)アクリル酸エステルの製造方法
JP6030150B2 (ja) エステル交換による2−オクチルアクリレートの生成のための方法
JP4831715B2 (ja) モノマーの製造方法
JPH09308801A (ja) 反応蒸留装置および反応蒸留方法
KR101909324B1 (ko) 부틸메타크릴레이트의 연속 제조 방법
WO1997021660A1 (fr) Procede d&#39;elaboration de diarylesters d&#39;acide oxalique
JP5037901B2 (ja) 不飽和カルボン酸フェニルの製造方法
JP6159538B2 (ja) ヒドロキシアルキルアクリレートの製造方法
JP2006273727A (ja) ジカルボン酸ジエステルの製造方法
JP5147759B2 (ja) エチレングリコール(メタ)アクリレートの製造方法
WO1998052903A1 (en) Processes for conducting equilibrium-limited reactions
JP5964180B2 (ja) (メタ)アクリル酸エステルの製造方法
JP2000319225A (ja) メタクリル酸アルキルエステルの製造方法
KR101991311B1 (ko) 부틸메타크릴레이트의 연속 제조 방법
JP6132570B2 (ja) (メタ)アクリル酸エステルの製造方法
JP2006290850A (ja) (メタ)アルキル酸モルホリノアルキル類の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004553529

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006084823

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10540924

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057014349

Country of ref document: KR

Ref document number: 20048034750

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057014349

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10540924

Country of ref document: US