WO2004069760A1 - ガラス基板表面の異物除去方法 - Google Patents

ガラス基板表面の異物除去方法 Download PDF

Info

Publication number
WO2004069760A1
WO2004069760A1 PCT/JP2004/001041 JP2004001041W WO2004069760A1 WO 2004069760 A1 WO2004069760 A1 WO 2004069760A1 JP 2004001041 W JP2004001041 W JP 2004001041W WO 2004069760 A1 WO2004069760 A1 WO 2004069760A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
laser beam
tin
glass
pulse
Prior art date
Application number
PCT/JP2004/001041
Other languages
English (en)
French (fr)
Inventor
Kuniaki Hiromatsu
Yuzo Watanabe
Motoichi Iga
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Publication of WO2004069760A1 publication Critical patent/WO2004069760A1/ja
Priority to US11/196,401 priority Critical patent/US7767929B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • B08B7/0042Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like by laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium

Definitions

  • the present invention relates to a method for removing a tin-containing foreign substance present on a glass substrate surface manufactured by a float method, and a glass substrate obtained by removing a tin-containing foreign substance by an obstruction method.
  • the roof area of the glass substrate is 70% or more, and the pulse width, wavelength, and energy density per unit area on the glass substrate surface.
  • the present invention relates to a method for irradiating a pulsed laser beam satisfying a specific relationship to remove foreign matter containing tin on the surface of a glass substrate, and a glass substrate obtained by removing foreign matter containing tin by the method.
  • the main method for glass substrates is the float method.
  • This is called a molten metal bath, in which molten glass is continuously flowed on a bath surface filled with molten metal tin to form a glass ribbon, and this glass ribbon is advanced while floating along the irritated molten gold valley surface.
  • This method is extremely superior in mass-producing highly flat glass substrates.
  • tin Disadvantages a foreign substance containing tin, called a bottom stick, more specifically, a foreign substance mainly composed of tin metal or tin oxide (hereinafter referred to as “tin Disadvantages).
  • This pot specification may adhere to the glass substrate as a foreign matter larger than the top specification.
  • the top specification of molten metal tin is unavoidable even on the upper side of the glass ribbon.
  • the top specification means that the tin component evaporated from the molten gold valley condenses on the ceiling or wall, which is the upper part of the bath, and the condensate or this condensate that has turned into a metallic state falls as small particles on the glass substrate. It is a tin defect with a size of several meters to several ten im on the upper surface of a glass ribbon.
  • a tin defect having a visible size is found on a manufactured glass substrate, the sound including the tin defect of the glass substrate is defective. Will be disposed of.
  • the glass substrate is treated with a treatment solution consisting of hydrogen fluoride ⁇ ⁇ night or divalent chromium.
  • a treatment solution consisting of hydrogen fluoride ⁇ ⁇ night or divalent chromium.
  • the Rezapi Ichimu of easily ultraviolet region is absorbed in the material with a pulse width 1 0 0 ns or less, and by irradiation with an energy density 0. 1 J / cm 2 or more, the foreign matter that the glass surface moment Foreign matter is generated by heat generation, transpiration, and heat generation.
  • the laser beam in the ultraviolet region used in this method is absorbed by the glass itself and has a relatively wide V-less width of 50-1000 ns and a width of 0.1 J / cm 2 or more (relatively When the laser beam is irradiated at a high energy density, the surface of the glass substrate is thermally processed. May be damaged.
  • Japanese Patent Application Laid-Open No. 5-154474 states that foreign matter could be completely evaporated and diverged without any damage to the glass surface. No indication is given as to whether the glass laser beam incident surface is damaged or not. Further, the method disclosed in Japanese Patent Application Laid-Open No. 5-154474 is intended to remove dust, dust and the like attached to the surface of a window glass installed in a high-rise building or the like.
  • Japanese Patent Application Laid-Open No. 5-154474 is intended to remove dust, dust and the like attached to the surface of a window glass installed in a high-rise building or the like.
  • the present inventors have conducted intensive studies to achieve the above object, and found that a pulsed laser beam having a high transmittance in a glass substrate and therefore relatively hard to be absorbed by glass has a pulse width, a wavelength, and a unit in a glass substrate surface. It has been found that by irradiating under conditions where the energy density per area satisfies the specific relationship, it is possible to form tin-containing foreign substances on the glass substrate surface without damaging the glass substrate surface. This has led to the present invention.
  • a surface of a glass substrate subjected to SSi by a float method is irradiated with a pulsed laser beam having an index of 70% or more in the glass substrate and satisfying the following expressions (1) and (2).
  • a method for removing foreign matter containing tin from a substrate surface is provided.
  • the three-pulse laser beam more preferably satisfies at least one of the following formulas (3) and (4). 5.0X10 8 ⁇ E / t (3)
  • the three-pulse laser beam has an awakening rate of 75% or more in the negative glass substrate.
  • the three-pulse laser beam preferably has a wavelength of 350 to 1200 nm.
  • the observation pulse laser beam has a wavelength of 400-1200 nm. Further, in the method of the present invention, it is preferable that the disgusting pulse laser beam has a pulse width of 20 ns sec or less;
  • the pulse width of the negative S-pulse laser beam is more preferably not more than 10 Sec, and further preferably not more than 15 Sec.
  • the disturbing laser beam is preferably applied to the entire width of the disgusting glass substrate.
  • the disgusting glass substrate is preferably a glass substrate for a flat panel display.
  • the knitted glass substrate may have a reaction of more than 3 watts, but preferably has a thickness of 0.4 mm or more and 3 mm or less. It is more preferable that the Kamikami glass substrate has not more than 1 marauder.
  • the disgusting glass substrate preferably has the following castle. S i 0 2: 40 ⁇ 85 mass%
  • the quenching of the glass substrate is as follows.
  • the name of the disgusting glass substrate be T.
  • the present invention provides a glass substrate from which tin-containing foreign matters are removed by the method of the present invention for removing tin-containing foreign substances from the surface of a glass substrate, which is difficult by the float method.
  • FIG. 1 is a view for explaining the method of the present invention, and is a cross-sectional view of a portion of a glass substrate having a tin defect on its surface.
  • FIG. 2 is a conceptual diagram of a system of a pulse laser irradiating apparatus that makes a pulse laser beam spread in the width direction of a glass substrate by a mirror.
  • FIG. 3 is an explanatory diagram showing a positional relationship of spots formed by a plurality of incident laser beams on a glass substrate surface in the pulse laser irradiation apparatus of FIG.
  • FIG. 4 is an explanatory diagram showing a relationship between a scanning direction of a pulse laser beam and a moving direction of a glass substrate in a preferred embodiment of the present invention.
  • Fig. 5 is a conceptual diagram of the pulse laser irradiation system in which the 3 ⁇ 4 ⁇ system is different from that of Fig. 3.
  • Figure 6 is a conceptual diagram of one example of a glass production line using the float method to remove tin defects online.
  • FIG. 1 is a diagram for explaining the method of the present invention, and shows a cross section of a foreign substance 2 containing tin on the surface of a glass substrate 1, that is, a portion where a tin defect occurs, which is peeled off.
  • a tin defect foreign matter containing tin, specifically foreign matter containing tin metal or tin oxide as a main component, adhering to the surface of a glass substrate obtained by the float process
  • a tin defect a foreign matter containing tin adhering to the surface of the glass substrate to be removed by the method of the present invention is referred to as a tin defect.
  • the disadvantage of tin is that it often contains 90 to 100% by mass of tin and also contains other components such as Fe, Zn, Pb, Cu, and O, and the degree of oxidation of tin varies. Often.
  • the disadvantage of tin adhering to the surface of a glass substrate manufactured by the contact method is that it adheres to the lower surface of a glass ribbon (glass substrate) that comes in contact with molten tin in the process of producing a glass substrate called a bottomsock.
  • the tin component evaporated from the molten gold sculpture, called the top spec, condensed on the ban part or wall at the top of the bath, and the condensate or this condensate turned into metal ⁇ II is glass Some particles fall as small particles on the substrate and adhere to the upper surface of a glass lipon (glass substrate) with a size of several m to several 10 m.
  • the bottom specification attached to the side of the glass substrate may be larger than the top specification attached to the upper side.
  • the method of the present invention can overcome any of these disadvantages.
  • a portion of the surface of the glass substrate 1 where the tin defect 2 is present is irradiated from the laser light source 10 with a pulsed laser beam having a glass substrate with a reflectance of 70% or more.
  • tin defects 2 evaporate or pass from the surface of the glass substrate 1.
  • the pulsed laser beam is applied to the surface of the glass substrate 1 on which the tin defect 2 is adhered from the side of the glass substrate 1.
  • the surface of the glass substrate 1 on which the tin defects 2 are adhered may be directly irradiated with the pulsed laser beam, and the effect of the present invention that the tin defects are totaled from the glass substrate surface is not impaired. .
  • the method of the present invention is characterized in that a pulsed laser beam having a transmittance of 70% or more in a glass substrate is used.
  • a pulsed laser beam with a glass substrate with a porosity of 70% or more the irradiated pulsed laser beam is not substantially absorbed by the glass substrate but is absorbed only by tin defects existing on the glass substrate surface. You. Therefore, the tin defect existing in the portion irradiated with the laser beam in a short time without damaging the surface of the glass substrate, specifically, the tin defect existing at the portion irradiated with the laser beam is almost simultaneously with the irradiation of the pulsed laser beam.
  • the pulse laser beam has an efficiency of 75% or more in the glass substrate.
  • the transmittance of the pulsed laser beam on the glass substrate is 75% or more
  • the irradiated pulse laser beam is more excellent in that it is not substantially absorbed by the glass substrate, and the glass substrate surface is not damaged.
  • the effect of the method of the present invention for eliminating tin defects from the glass substrate surface is further excellent.
  • the ratio of the pulse laser beam on the glass substrate is more preferably 80% or more, and particularly preferably 85% or more.
  • the transmittance of a pulsed laser beam through a glass substrate depends on the wavelength of the pulsed laser beam, the composition and thickness of the glass transmitted by the beam, and the like.
  • the glass substrate used in the method of the present invention include, for example, a plasma display (PDP), an electroluminescent display (ELD) including an organic electroluminescence (EL) display, an FED (Fie 1 d Emissi on Display),
  • PDP plasma display
  • ELD electroluminescent display
  • EL organic electroluminescence
  • FED Fie 1 d Emissi on Display
  • a glass substrate for a flat panel display such as a TN (Twisted Nematic) liquid crystal panel, a STN (Super Twisted Nematic) liquid crystal panel, or a thin film transistor control liquid crystal display (TFT-LCD) is preferable.
  • TFT-LCD thin film transistor control liquid crystal display
  • glass substrates currently used for flat panel displays include those with fineness or less. Sincerity
  • the composition is as follows.
  • a pirate has the following power.
  • the glass substrate for flat panel displays is usually 0.4 mm or more and 3 mm or less, and those with less than 1 mm and 0.7 mm or less are also increasing in calories.
  • the glass substrate used as an image by the method of the present invention is this! However, it may be larger than W9-3 mm.
  • the wavelength of the laser beam is usually in the range of 300 to 2750 nm. From the viewpoint of efficiency, the wavelength of the laser beam is more preferably 350 to 1200 nm, and may be 350 to 40 Onm, or 400 to 700 nm. It may be near red at 700 to 1200 nm.
  • the pulsed purple laser beam is relatively absorbed by the glass substrate compared to the visible or near-infrared pulsed laser beam. Tends to be easy. For this reason, it is necessary to increase the energy density of the pulse laser beam in order to reduce the tin defect.
  • the wavelength of the laser beam is more preferably from 400 to 1200 nm, which is a visible region and a near red region. If the wavelength of the laser beam is within the above range, the glass substrate surface will not be damaged if the pulse laser beam satisfies the conditions (1) and (2) shown later, without causing any damage to the glass substrate surface. The effect of the method of the present invention for eliminating tin defects from the surface is particularly excellent. If the wavelength of the laser beam is in the above range, a commercially available pulsed laser beam irradiation device can be used.
  • the pulsed laser beam used in the method of the present invention has a glass substrate having a bandgap ratio of 70% ⁇ ⁇ , and has a laser beam width, a wavelength, and an energy density per unit on the glass substrate surface.
  • a glass substrate having a bandgap ratio of 70% ⁇ ⁇ , and has a laser beam width, a wavelength, and an energy density per unit on the glass substrate surface.
  • the method of the present invention irradiates a pulsed laser beam having a wavelength range overlapping with a glass substrate. It is considered that tin defects existing on the surface of the glass substrate can be removed without damaging the surface mainly for the following two reasons.
  • the method according to the present invention provides a method for controlling a pulse laser beam used to remove a foreign substance, by comparing w / w between a pulse width, a wavelength, and an energy density per unit difficulty at a glass substrate surface. Use a new relationship that is completely different from the one that was obtained. The relationship will be described later in detail.
  • Japanese Patent Laid-Open No. 5-154474 discloses that P iron removes dirt attached to window glass.
  • organic materials are used as images, whereas the method of the present invention uses metallic tin or tin oxide as a component. It targets tin defects, that is, inorganic substances.
  • the tin defect referred to by the method of the present invention is that the HIS has a thickness of about 0.5 zm to 3 / xm.
  • the foreign matter that becomes P-tetsutsu is an organic substance in the former and an inorganic substance in the latter, so that the absorption coefficient for each wavelength of the pulse laser beam differs greatly from the inorganic substance.
  • the type of foreign matter (organic and inorganic) is different, and the condition is that the former has almost no thickness, whereas the latter has a thickness of about 0.5 m to 3 m. Therefore, the heat capacity of the former differs greatly from that of the latter, and it is considered that the total amount of heat energy required for evaporation and the energy density per unit time are greatly different.
  • the energy density was larger than the energy density causing damage to the glass surface. It is considered necessary to illuminate the laser beam.
  • the tin defect existing on the glass substrate surface is an organic substance such as oily magic adhered to the glass surface, and can be reduced by irradiating the glass substrate with a pulse laser beam having a high S ratio.
  • the pulse laser beam used in the present invention has a wavelength of 70% or more in the glass substrate, and the glass substrate does not substantially absorb the laser beam.
  • the energy density may be insufficient to cause tin defects in the glass substrate,
  • the glass substrate surface is damaged by thermal processing. They may cause scratches.
  • the flame example shown later Roh less width 80 nsec, when using a pulsed laser beam having a wavelength of 1 064 nm, the energy density per unit area in the glass substrate surface. 2. 08 J / cm 2 in the glass base ⁇ reaction surface The tin defect could not be removed, and when irradiated with a 11.32 JZcm 2 laser beam, the glass substrate surface was damaged.
  • the present inventors have found that in order to eliminate tin defects without damaging the glass substrate surface, the pulse width t of the laser beam used, the wavelength ⁇ , and the unit per unit on the glass substrate surface are considered. It was found that it was necessary to establish a new relationship between the energy density ⁇ of and a relationship completely different from the one assumed.
  • the pulse width t, the wavelength ⁇ , and the energy density ⁇ ⁇ ⁇ ⁇ per unit area on the surface of the glass substrate satisfy the following expressions (1) and (2) simultaneously. It is necessary.
  • ⁇ ⁇ ⁇ ⁇ is the energy-per-unit density of the laser beam on the glass substrate surface [J / cm 2 ]
  • t is the pulse width of the laser beam [sec]
  • is the wavelength of the laser beam. [nm].
  • the glass substrate surface will not be damaged.
  • tin defects can be ⁇ ⁇ .
  • the method of the present invention provides a method of selecting a pulsed laser beam to satisfy the above-described equations (1) and (2) without deteriorating the glass substrate surface, Can eliminate tin defects.
  • the laser beam beam satisfies the following expression (3).
  • the pulse width of the pulse laser beam is determined according to the conditions.
  • the pulsed laser beam more preferably satisfies the following expression (4).
  • the pulse width, wavelength, energy density, irradiation time of the laser beam to be used, and the quenching of the glass substrate and the surface of the glass substrate may be reduced.
  • the damages and scratches are more than the damages that occur on the glass substrate surface at ⁇ / ( ⁇ t 1/2 )> 1000 described above, and they occur less frequently. Even with glass substrates for flat panel displays, the potential for problems is small. However, it is preferable that such damage is not present on the glass substrate surface if it can be avoided without incurring great cost.
  • the pulse laser beam to be used is expressed by the above formula (3) or Both (4) and (4) are satisfied. If the normal laser beam also satisfies the deviations of the above equations (3) and (4), the tin defect can be completely eliminated from the glass substrate surface and there is no possibility of damaging the glass substrate surface .
  • the pulse laser beam used in the method of the present invention is not substantially absorbed by the glass substrate because the transmittance of the glass substrate is 70% or more.
  • the relationship between the irradiation direction of the pulsed laser beam and the surface of the glass substrate on which the tin defect exists is not particularly limited. That is, even if a pulse laser beam is directly applied to the glass substrate surface where tin defects exist, or if the glass substrate is irradiated with a pulsed laser beam from the ⁇ side, tin defects can be generated from the glass substrate surface! ⁇ .
  • the transmittance of the pulsed laser beam on the glass substrate is 75% or more.
  • the pulsed laser beam is not directly applied to the surface of the glass substrate where tin defects are present, but is applied to the glass substrate from the back side.
  • tin defects are formed on the glass substrate surface by the irradiation of the laser beam with the following mechanism.
  • the distance from the surface irradiated with the pulsed laser beam, which is a tin defect, to 0.5 m depth The irradiation will be 1 l with irradiation of one pulse.
  • the pulsed laser beam is irradiated on the interface (t m) with the glass substrate having the tin defect.
  • the adhesion of the tin defect to the glass substrate is peeled off by the irradiation of the pulsed laser beam.Thus, it is considered that tin irradiation with a thickness of 0.5 m or more can be achieved by one pulse of the pulsed laser beam. Is received.
  • the tin defect attached to both surfaces can be removed at the same time.
  • a number called “Topsick” is attached to the upper surface of a glass substrate manufactured by the flat-plate method; tin defects having a size of Lim are attached.
  • a so-called shortcoming is attached.
  • the ability to remove tin defects adhering to the glass surface with a single pulsed laser beam irradiation is preferable for removing tin defects from a glass substrate formed by the float method. .
  • the pulsed laser beam In the case of detecting tin defects adhering to the surface of the glass substrate, it is preferable to irradiate the pulsed laser beam from the surface side of the glass substrate to which the smaller tin defects adhere.
  • the bottom spec may be larger than the top spec. Therefore, it is preferable to irradiate the pulse laser beam from the top surface of the glass substrate to which the top specification is attached.
  • the laser light source used in the method of the present invention widely includes a laser light source that generates a laser beam having a wavelength in the above-described range as a pulsed laser beam that simultaneously satisfies the relationships of the above equations (1) and (2). Therefore, the laser light source of the present application is generally an excitation type in addition to a laser light source of a type in which an excitation light source called a pulsed laser oscillates in a pulsed manner. Including. Specific examples of such a laser light source include a Q-switch (Q-Switch) laser and a mode-locked (Mode-lock) laser.
  • Q-Switch Q-switch
  • Mode-lock mode-locked
  • a laser light source applicable to the method of the present invention may be a gas laser such as a helium neon laser, a helium cadmium laser, an argon laser, a krypton laser, or a ruby laser, a YAG laser, or a glass laser. It may be a solid-state laser.
  • a YAG laser is preferable because it is easy to generate a pulse laser beam that satisfies the relations of the above equations (1) and (2).
  • the pulse laser beam preferably satisfies the conditions described above, and has a pulse width of not more than 2 Onsec.
  • the pulse width of the pulse laser beam used in the present invention is preferably short, More specifically, it is preferably 20 nsec or less. If the pulse width is 2 Onsec or less, the effect of eliminating tin defects without damaging the glass substrate surface when the pulse laser beam satisfies the above equations (1) and (2) Is excellent.
  • the nozzle width is short.
  • the pulse width is more preferably equal to or less than 10 ns sec, and still more preferably equal to or less than 100 s sec.
  • the pulse width of laser beams has reached the femtosecond level at short intervals.
  • currently available femtosecond lasers have poor stability and are difficult to use for industrial applications.
  • the spread of femtosecond lasers is improved and the Wei property is increased, there is a possibility that it can be used in the method of the present invention.
  • the method of the present invention has the following advantages by using a pulse laser beam that satisfies the relations of the above equations (1) and (2).
  • the pulse width is shortened under the conditions satisfying the above equations (1) and (2), the laser beam having a much smaller energy density than expected is considered. Irradiation can remove tin defects from the glass substrate surface without damaging the glass substrate surface.
  • the area where I * is possible for the foreign matter is expanded, which is a power feature.
  • the tin defect of a wider area can be eliminated with one pulse laser irradiation device. It is thought that iron will be possible.
  • the method of the present invention it is possible to remove a tin defect from a wider glass substrate surface without damaging the glass substrate surface by a single pulsed laser beam irradiation than was thoroughly considered. is there.
  • a laser with a high repetition rate it is possible to remove tin defects from a wider glass substrate surface without damaging the glass substrate surface.
  • a preferred difficulty form of the method of the present invention is a method of irradiating a glass substrate having a certain width with a pulsed laser beam over the entire width.
  • the entire glass substrate can be processed at once by moving the glass substrate in the longitudinal direction. The time it takes to get rid of the drawbacks will be reduced.
  • the laser light source may be moved to move the irradiation surface of the laser beam in the longitudinal direction of the glass substrate.
  • a mirror is used to make the spot of the pulse laser beam spread in the width direction of the glass substrate. Just fine.
  • FIG. 2 is a conceptual diagram of a laser beam irradiation apparatus for making a spot of a Noriless laser beam in the width direction of a glass substrate.
  • the glass substrate 1 is shown in a cross section cut in the width direction. Tin defects 2 exist on the surface of the glass substrate 1.
  • the surface of the tin defect 2 of the glass substrate 1 is irradiated with a pulse laser beam 3 from the ⁇ side through the glass substrate 1.
  • the pulsed laser beam 3 from the light source is turned in the width direction of the glass substrate 1 by using a mirror 4 that can be rotated about a direction (a direction penetrating the drawing) that is perpendicular to the traveling direction of the laser beam 3.
  • the laser beam 3 is converted into a TO by the mirror 5 and is irradiated from the tin defect 2 on the surface of the glass substrate 1 to the surface J.
  • Fig. 3 is a conceptual diagram showing a positional relationship of a spot where a pulsed laser beam crossed in the width direction of the glass substrate is shaped SK "on the surface of the glass substrate by the pulsed laser irradiation apparatus of Fig. 2.
  • the pulse laser beam is spread over the entire width W of the glass substrate.
  • the glass substrate and the scanning direction of the pulse laser beam are shown in FIG.
  • the width of the substrate is W [m] and the degree of the pulsed laser beam in the width direction of the glass substrate is V! [m / sec], the spot diameter of the pulsed laser beam is ⁇ [m], and the repetition frequency of the pulsed laser beam is R [Hz]. It suffices that the condition is such that [m / sec] is at least smaller than ⁇ ⁇ ⁇ [m / sec]. Further, in FIG.
  • the irradiation width shared by each irradiation device may be set as described above.
  • the method of irradiating the pulse laser beam over the entire width of the glass substrate is not limited to the method of applying the pulse laser beam by the above-described mirror.
  • a laser beam 3 may be expanded by a beam expander 6 and then collimated by a lens 5 to expand the beam diameter for irradiation.
  • Preferable method of the present invention for irradiating a pulsed laser beam over the entire width of a glass substrate (According to the embodiment, in a glass $ Si process by a float method, a tin defect can be formed online from a glass substrate surface.
  • FIG. 6 is a conceptual diagram of one example of a glass production line using the float method to remove tin defects online.
  • molten glass 12 is continuously discharged from a melting furnace 7 onto a bath surface called molten metal bath (float bath) 8 filled with molten metal tin 11 to form a glass ribbon.
  • the glass lipon moves forward while floating along the surface of the molten gold, and goes against it.
  • the strict glass substrate is pulled out by a drawer roll 15 and carried on a line in a state of being connected in the longitudinal direction.
  • the glass substrate 12 carried on this line is irradiated with the pulse laser beam 3 from the pulse laser irradiation device 14 over the entire width. If the pulsed laser beam 3 continues to be applied while the glass substrate 12 moves on the line, the position of the tin defect on the surface of the glass substrate and the number of tin defects on the surface of the glass substrate do not affect the tin on-line.
  • the number of the laser beam irradiating devices 14 is one, but may be two or more, which is more preferable. If two or more Norse laser irradiators 14 are provided and the pulse laser beam 3 is irradiated over the entire width of the glass substrate 12 as a whole, Irradiating a pulsed laser beam 3 of sufficient energy to remove tin defects over the ⁇ of the glass substrate 1 2 moving on the line without recruiting the substrate surface Tin defects can be detected online from the glass substrate surface by the tip method.
  • the method of the present invention in which a glass substrate surface is irradiated with a pulsed laser beam to remove tin defects, is capable of ironing tin defects from the glass substrate surface in a short time, and is thus suitable for such online use.
  • the method of the present invention is used on-line for a glass substrate carried on a line by the float method, it is not affected by the position and the number of tin defects on the surface of the glass substrate. Tin defects can be identified from the entire surface. In this method, it is not necessary to find tin defects on the surface of the glass substrate and to locate the spot of the pulsed laser beam on the tin defects. The yield of glass substrates can be greatly improved.
  • the pulsed laser beam is applied by making the glass substrate thigh from the side. Irradiation can remove tin defects. If tin defects adhere to both surfaces of glass, a single pulse laser beam irradiation can remove tin defects adhered to both surfaces simultaneously. . This is also $ 3 ⁇ 4g by the float method and is preferred for removing tin defects online from the glass substrate surface moving on the line.
  • a preferred form of the method of the present invention is the off-line, i.e., the glass substrate taken out of the line by the float method, as well as the use of the glass substrate S8t by the float method online. It is also preferable to use them. That is, the glass-substrate or the J-less laser light source may be moved in the longitudinal direction of the glass substrate while irradiating the pulsed laser beam over the entire width of the cut glass substrate. This makes it possible to eliminate tin defects from the entire surface of the glass substrate in one operation.
  • a glass substrate having tin defects formed on the surface of the glass substrate by the above-described method there is also provided a glass substrate having tin defects formed on the surface of the glass substrate by the above-described method.
  • the glass substrate of the present invention is ugly as a glass substrate for a flat panel display because tin defects on the surface of the glass substrate, which are inevitable for a glass substrate manufactured by the float method, are removed. ⁇ Example)
  • the glass substrate had a thickness of 0.6 mm and the composition was as follows.
  • the wavelength, pulse width and energy density of the pulsed laser beam were changed four times as shown in Table 1 in each of 12 ways (Examples! To Example 12). The results are shown in Table 1.
  • Example 1 Except that the Q-switch laser was used instead of the pulse laser of the type in which the excitation light source pulsed, the same procedure as in Example 1 was used to irradiate the glass substrate surface with tin defects with ⁇ The presence of tin defects and the glass substrate surface (both surface) after laser irradiation were examined for damage. The results are shown in Table 1.
  • Difficult case 3 Except for using a mode-locked laser instead of a pulsed laser with a pumping light source, the same procedure as in Difficult Example 1 was used to irradiate a pulsed laser beam from the ⁇ side to the glass substrate surface with tin defects. Then, the presence or absence of damage on the glass substrate surface of the tin defect and the laser tertiary wheat were examined. The results are shown in Table 1.
  • the wavelength, pulse width, and energy density of the norr laser beam were changed in three ways (Examples 15 to 18) as shown in Table 1, and each was difficult four times. The results are shown in Table 1.
  • Example 9 Example 10 Example 11 Example 12 Example 13 Example 14 Continuous oscillation
  • pulse laser of the transmittance before the glass substrate 3 ⁇ 4i laser beam beam I in and the glass base after «pulse rates - respectively lasers boats I out of Zabimu 1 ⁇ can (En er gy / P owe r me ter: 3 sigma, Probe: PM-30, M ec lectron De tec tor Inc.
  • Example 7 Example 11 and Example 13 of Example 1. 3 ⁇ 4 and the surface of the glass substrate (Surface and damage were examined. As a result, even when the pulsed laser beam was directly applied to the surface of the glass substrate where the tin defect exists, the glass substrate was Similar to the case of irradiation, it was confirmed that a tin defect without damaging the surface of the glass substrate was observed.
  • the glass substrate by the float method ⁇ g shown in Fig. 6 is used to try to detect tin defects online from the surface of the glass substrate that is manufactured by the float method and moves on the line. You.
  • a pulsed laser beam irradiation device that superimposes the laser beam by a mirror as shown in Fig. 2 is placed, and the ⁇ ⁇ of the laser beam is set to 10 cm on a 10 cm wide glass substrate.
  • the pulsed laser beam is irradiated over the entire width of the glass substrate.
  • the specifications of the laser beam irradiator and glass substrate used are as follows.
  • YAG laser Key lock fungus (mode-lock laser)
  • Irradiation device 1 unit
  • Width 10 cm (W) Thickness: 0.6mm
  • the pulsed laser beam is continuously irradiated on the glass substrate carried on the line under the above conditions. Then, the glass substrate is cut out at a length of 10 cm and a width of 5 cm, and the presence (or surface) of the glass substrate is examined for tin defects and scratches. As a result, no tin defects and no displacement of the member scratches were observed on the glass substrate surface.
  • tin defects existing on the surface of the glass substrate can be removed very quickly without collecting iii the surface of the glass substrate which is enriched by the float method.
  • a pulse laser beam is directly applied to a surface of a glass substrate where a tin defect is present, or a pulse laser is formed by pressing the glass substrate from the side of the glass substrate where the tin defect is present. Even if the laser beam is irradiated, tin defects can be found on the glass substrate surface, and if both surfaces of the glass substrate have tin defects, the tin defects on both surfaces can be detected once. At the same time by irradiation with a pulsed laser beam.
  • the preferred mode of the method of the present invention for irradiating a pulsed laser beam over the entire width of a glass substrate is a glass S3 ⁇ 4i line by a float method, in which a tin defect is generated on-line from the glass substrate surface carried on the line! ⁇ 3 ⁇ 4 Can be used preferably.
  • Such online use makes tin defects continuous from the entire surface of the glass substrate moving on the line, so the time required to remove the tin defects is further reduced, and the yield of the produced glass is greatly improved. I do.
  • the glass substrate of the present invention does not exhibit tin defect E on the surface of the glass substrate and is suitable for a glass substrate for flat panel display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laser Beam Processing (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

フロート法で製造されるガラス基板表面に存在するスズ欠点を、ガラスの温度に関係なく、該ガラス基板表面を損傷することなしに、短時間で除去する方法を提供する。 フロート法で製造されるガラス基板の表面に、該ガラス基板における透過率が70%以上で、かつパルス幅、波長およびガラス基板表面における単位面積当たりのエネルギー密度が特定の関係を満足するパルスレーザビームを照射して、前記パルスレーザビームが照射された表面の裏面に存在するスズを含んだ異物を除去することを特徴とするガラスの表面からスズを含んだ異物を除去する方法。

Description

明 細 書 ガラス基板表面の異物^方法 擺分野
本発明は、 フロート法で製造されるガラス基板表面に存 するスズを含んだ異物を除去す る方法、 および言妨法によりスズを含んだ異物を^ ¾されてなるガラス基板に関する。 .具体 的には、 フロート法で $giされるガラス基板表面に、 該ガラス基板における屋率が 7 0 % 以上であって、 かつパルス幅、 波長およびガラス基板表面における単位面積当たりのェネル ギー密度が特定の関係を満足するパルスレーザビームを照射して、 ガラス基板表面に るスズを含んだ異物を^ ¾する方法、 および、 該方法によりスズを含んだ異物を除去されて なるガラス基板に関する。 背景擁
'現在、 ガラス基板の な^方法はフロート法である。 これは、 溶融金属浴と呼ばれる 溶融金属スズを満たした浴面上に溶融ガラスを連続的に流してガラスリボンを形成し、 この ガラスリボンを嫌己溶融金顧谷面に沿って浮かしながら前進させて成板する方法であり、 平 坦性の高いガラス基板を大量に生産する上で極めて優れている。
しかし、 このフロート法では、 溶融スズと接するガラスリポンの下面側に、 ボトムスぺッ クと呼ばれるスズを含んだ異物、 より具体的にはスズ金属またはスズ 化物を主成分とする 異物 (以下、 「スズ欠点」 ともいう) が発生する。 このポ卜ムスペックは、 するトップ スペックよりも大きな異物としてガラス基板に付着する場合もある。
また、 フロート法では、 ガラスリボンの上面側にも溶融金属スズによるトップスペックが 避けられない。 トップスペックとは、 溶融金殿谷から蒸発したスズ成分が浴上部である天井 部や壁部に凝縮し、 凝縮物またはこの凝縮物が金属状態に ¾されたものがガラス素地上に 小粒として落下してガラスリボンの上面に数 m〜数 1 0 imの大きさをしたスズ欠点とし て ί寸着したものである。
ガラスの用 の建材の分野から電子材料の分野に拡大するにつれ、 フロート法で製 造されるガラス基板表面のトッブスぺックゃポトムスぺック等のスズ欠点が問題となってき た。
例えば、 液晶ディスプレイ、 プラズマディスプレイパネ Λ に用いられるフラットパネル ディスプレイ用ガラス基板の場合、 製造されたガラス基板に目視できるサイズのスズ欠点が 見つかつた場合、 ガラス基板のスズ欠点を含む音盼は欠陥品として処分される。
近年、 フラットパネレディスプレイ用のガラス基板の高精細化により、 ガラス基板表面に するスズ欠点の大きさに関する基準がより厳しくなつている。 またフラットパネルディ スプレイの大型化に伴い、 フラットパネルディスプレイ用のガラス基板も大型化が進み、 ス ズ欠点が発生した場合に、 欠陥品として処分されるガラス基板の画がより大きくなり、 生 産性低下の要因になる可能性がある。
フロート法で製造されるガラス基板表面からトップスペック等の異物を除去する方法とし て、 フッ化水素 ^τΚ溜夜または 2価のクロムィオンを含む隨ぉ J激夜からなる処理液にガラ ス基板を浸演して、 異物を溶 よぴ鉄する方法が提案されており、 後者については、 例 えば、 特開平 9 - 2 9 5 8 3 2号公幸およ «開平 9 - 2 9 5 8 3 3号公幸艮に開示されてい る。
しかし、 上記した処理液に浸漬する方法では、 フラットパネルディスプレイ用ガラス基板 に求められる鮮を満足できる程度までスズ欠点を するには、 処理液への浸漬時間を長 くすることが必要である。
したがって、 短時間でフロート法により難されるガラス基板の表面からスズ欠点を 11¾ する方法は られていなかった。
レ一ザビームの照射により、 ガラス表面に付着した異物を除去する方法が知られている。 例えば、 ガラス表面に付着した異物を非撤虫で^ ¾するために、 パルス幅が 1 0 0 n s以下 で、 エネルギー密度が 0 . 1 J / c m2以上の紫外線レーザ光をガラスを透過させて該異物 に照射する方法が開示されている (特開平 5 - 1 5 4 7 4号公報参照) 。
この方法においては、 物質に吸収されやすい紫外線領域のレーザピ一ムをパルス幅 1 0 0 n s以下で、 かつエネルギー密度 0. 1 J / c m2以上で照射することにより、 ガラス表面 に る異物を瞬間的に発熱させて、 蒸散、 赚させることで異物を している。 しかし、 この方法で使用される紫外線領域のレーザビームは、 ガラス自体に吸収され 5 0 - 1 0 0 n sという比較的広レ V レス幅で、 かつ 0. 1 J /c m2以上という (比較的) 高レ ネルギ一密度でレーザビ一ムを照射した塲合には、 ガラス基板表面が熱的な加工によ り損傷を受けると考えられる。
特開平 5— 1 5 4 7 4号公報では、 ガラス表面を何ら損傷させることなく完全に異物を蒸 発、 発散させることができたとしているが、 ここでいうガラス表面とはガラスの異物が付着 した面を指しており、 ガラスのレーザビームの入射面については損傷の有無は全く記載され ていない。 また、 特開平 5—1 5 4 7 4号公報の方法は、 高層ビル等に設置された窓ガラス の表面に付着した埃、 塵等を除去することを目的とするものである。 しかしながら、 上で述 ベたように、 フラットパネルディスプレイ用ガラス基板のような電子材料の分野では、 の建材の分野では無視されていたガラス基板表面の微細な欠陥でも問題となるのである。 本発明では、 上記の問題を角鞭するため、 フロー卜法で製造されるガラス基板表面に存在 するスズを含んだ異物を、 該ガラス基板表面を損傷することなしに短時間で できる、 ェ 業レベルで使用可能な方法、 および該方法によりスズを含んだ異物を除去されてなるガラス 基板を提供することを目的とする。
本発明者らは、 上記の目的を達成するため鋭意研究した結果、 ガラス基板における透過率 ヵ缟く、 したがって比較的ガラスに吸収されにくいパルスレーザビームを、 パルス幅、 波長 およびガラス基板表面における単位面積当たりのエネルギー密度が特定の関係を満足する条 件で照射することで、 ガラス基反表面を損 ί島することなしに、 該ガラス基板表面に する スズを含んだ異物を できるという知見を得て本発明に至った。
すなわち、 本発明は、 フロート法で SSiされるガラス基板表面に、 該ガラス基板における ¾ 率が 7 0 %以上であり、 かつ下記式 ( 1 ) および(2) を満足するパルスレーザビーム を照射して、 til己パルスレーザビームが照射された表面および/または Ϊ3パルスレーザビ —ムが照射された面の ¾®に るスズを含んだ異物を^ ¾することを とするフロー ト法で Stされるガラス基板表面からスズを含んだ異物を^ ¾する方法を提供する。
2. 5 X 1 08≤E t ' - · ( 1 )
E/ (λ X 11/2) ≤ 1 0 0 0 · · · (2 )
(式中、 Eはガラス基板表面における単位画貴当たりのパルスレーザビームのエネルギー密 度 [J /cm2] であり、 t ルスレーザビームのパルス幅 [ s e c ] であり、 λ WW スレーザビームの波長 [nm] である。 )
本発明の方法において、 嫌 3パルスレーザビームは、 下記式 (3) または (4) の少なく とも一方を'満足することが'さらに好ましい。 5. 0X108≤E/t · · · (3)
E/ (λ X t 1/2) ≤500 · · · (4)
(式中、 E、 tおよび; UiJi記式 (1) および(2) について定義した通りである。 ) 本発明の方法において、 編 Β 。ルスレーザビーム ½Lh記式 (3) および(4) をいずれも 満足すること力 Sさらに好ましい。
本発明の方法において、 嫌 3パルスレ一ザビームは、 嫌 3ガラス基板における醒率が 7 5 %以上であることが好ましい。
本発明の方法において、 嫌 3パルスレーザビームは、 波長が 350-1200 nmである ことが好ましい。
觀パルスレーザビームは、 波長が 400-1200 nmであることがより好ましい。 また、 本発明の方法において、 嫌己パルスレーザビームは、 20 n s e c以下のパルス幅 を; Tすることが、好ましい。
また、 嫌 Sパルスレーザビームのパルス幅は、 より好ましくは l Ons ec以下であり、 さらに好ましくは 15p s e c以下である。
本発明の方法において、 嫌 ルスレーザビームは、 嫌己ガラス基板の全幅にわたって照 Iすることが好ましい。
本発明の方法において、 嫌己ガラス基板は、 フラットパネルディスプレイ用ガラス基板で あることが好ましい。
本発明の方法において、 編己ガラス基板は、 丰應が 3醒超であってもよいが、 娜 0· 4讓以上 3 mm以下であることが好ましい。 鎌己ガラス基板は、 が 1匪以下である ことがより好ましい。
本発明の方法において、 嫌己ガラス基板は、 その城が下記であることが好ましい。 S i 02: 40〜85質量%
A 1203: 0〜35質量%
B203: 0〜25質量%
MgO + CaO + S rO+BaO+ZnO: 1〜50質量%
L i20+Na20+K20+Rb20 + Cs20: 0〜1質量%
または、 謙 3ガラス基板は、 その糸滅が下記であることが好ましい。
S i 02: 40〜85質量% Al23: 2〜35質量%
B23 : 0〜25質量%
MgO+CaO + S rO+BaO + ZnO: 1〜50質量%
L i2〇+Na2〇+K2〇+Rb20+Cs20 : 1. 1〜30質量%
また、 嫌己ガラス基板は、 その «が T記であることが好ましい。
S i02: 40〜80質量%
A 1203: 0〜2質量%
MgO + CaO + S rO+B O+ZnO: 1〜50質量%
L i20+Na20+K20+Rb20+Cs20: 1. 1〜30質量%
また、 本発明は、 フロート法で難されるガラス基板表面からスズを含んだ異物を ί鉄す る本発明の方法により、 スズを含んだ異物が除去されてなるガラス基板を提供する。 図面の簡単な説明
図 1は、 本発明の方法に説明するための図であり、 ガラス基板の表面にスズ欠点が る部分の断面図である。
図 2は、 ミラ一によりパルスレ一ザビームをガラス基板の幅方向に錢させるパルスレー ザ照射装置の 系の ¾念図である。
図 3は、 図 2のパルスレ一ザ照射装置において、 複数の ¥ί亍するレーザビームがガラス基 板表面に形成するスポッ卜の位置関係を示した説明図である。
図 4は、 本発明の好ましい実施形態において、 パルスレーザビームの走査方向と、 ガラス 基板の移動方向の関係を示す説明図である。
図 5は、 図 3の装置とは異なる ¾ ^系を^ ϋしたパルスレーザ照射装置の 系の概念図 で
図 6は、 オンラインでスズ欠点を除去するフロート法によるガラス製造ラインの 1例の概 念図である。
(符号の説明)
1 :ガラス基板
2:スズ欠点 (スズを含んだ異物)
3:パルスレーザビーム 4:ミラー
5:レンズ .
6:ビームエキスパンダ
7:溶融窯
8:フロートバス
1 0:レーザ光源
1 1 :溶融スズ
1 2:溶融ガラス (ガラス基 ¾)
1 4:レーザ照射装置
1 5:引出しロール 発明を実施するための最良の形態
以下、 図面を参照して本発明の方法を説明する。伹し、 以下の図面は、 本発明の方法の理 解を容易にするために例示したものであり、 本発明の方法はこれに されない。
図 1は、 本発明の方法を説明するための図であり、 ガラス基板 1の表面にスズを含んだ異 物 2、 すなわちスズ欠点、 が る部分を断面図で示している。 ガラス 分野におい て、 フロート法で |¾ されるガラス基板表面に付着するスズを含んだ異物、 具体的にはスズ 金属またはスズ酸化物を主成分とする異物のことを一般にスズ欠点と呼ぶ。 以下、 本発明の 方法が除去対象とするガラス基板表面に付着するスズを含んだ異物をスズ欠点と記す。 なお 、 スズ欠点は、 スズを 9 0〜1 0 0質量%含み、 他に F e、 Z n、 P b、 C u、 O等の成分 を含むものである場合が多く、 スズの酸化度も各々異なっていることが多い。
フ口一ト法で製造されるガラス基板表面に付着するスズ欠点には、 ボトムスぺックと呼ば れる ガラス基板の製 程において溶融スズと接するガラスリボン (ガラス基 ¾) の下面 側に付着するものと、 トップスペックと呼ばれる、 溶融金雕から蒸発したスズ成分が浴上 部でぁる潘部や壁部に凝縮し、 凝縮物またはこの凝縮物が金属^ IIに ¾されたものがガ ラス素地上に小粒として落下してガラスリポン (ガラス基板) の上面に付着した数 m〜数 1 0 mの大きさのものとがある。 なお、 ガラス基板の 側に付着するボトムスペックは 、 上面側に付着するトップスペックよりも大きレ場合もある。 本発明の方法は、 これらのス ズ欠点のいずれも!^ ¾できる。 本発明の方法では、 ガラス基板 1表面のスズ欠点 2が る部分に、 レーザ光源 10か ら該ガラス基板における ¾1率が 70 %以上のパルスレーザビームを照射する。 これにより 、 ガラス基板 1表面からスズ欠点 2が蒸発して、 または道して^ ¾される。 ここで、 理由 については後で詳述するが、 パルスレーザビームは、 図 1に示すように、 ガラス基板 1のス ズ欠点 2が付着した面に対して颜側から照射することが好ましい。 ただし、 本発明の方法 では、 ガラス基板 1のスズ欠点 2が付着した面に直接パルスレーザビームを照射してもよく 、 ガラス基板表面からスズ欠点が総されるという本発明の効果は損なわれない。
本発明の方法は、 ガラス基板における透過率が 70%以上のパルスレーザビームを使用す ることを特徴とする。 ガラス基板における ¾1率が 70%以上のパルスレーザビームを用い ることにより、 照射されたパルスレーザビームは、 ガラス基板に実質的に吸収されず、 ガラ ス基板表面に存 するスズ欠点にのみ吸収される。 したがって、 ガラス基板表面を損傷する ことなしに、 スズ欠点を短時間で、 具体的に «Λ°ルスレーザビームが照射された部分に存在 するスズ欠点がパルスレーザビームの照射とほぼ同時に される。
パルスレーザビームは、 ガラス基板における ¾ϋ率が 75%以上であることがより好まし い。 パルスレーザビームのガラス基板における透過率が 75 %以上であると、 照射されたパ ルスレーザビームがガラス基板に実質的に吸収されないという点でより優れており、 ガラス 基板表面に損傷を生じることなく、 ガラス基板表面からスズ欠点を^ ¾する本発明の方法の 効果がさらに優れている。 同様の理由から、 パルスレーザビームのガラス基板における邏 率は 80 %以上であることがさらに好ましく、 85 %以上であることが特に好ましい。
パルスレーザビームのガラス基板における透過率は、 パルスレーザビームの波長、 該ビ一 ムが透過するガラスの組成および厚さ等によって異なる。 本発明の方法に用いられるガラス 基板としては、 例えばプラズマディスプレイ (PDP) 、 有機エレクトロルミネッセンス ( EL) ディスプレイを含むエレクト口ルミネッセンスディスプレイ (ELD) 、 FED (F i e 1 d Em i s s i on Di s p l ay) 、 TN (Tw i s t e d Nema t i c ) 液晶パネル、 STN (Supe r Twi s t ed Nema t i c)液晶パネル、 薄膜卜 ランジス夕制御液晶ディスプレイ (TFT-LCD) 等のフラットパネルディスプレイ用の ガラス基板が好ましい。
現在フラットパネルディスプレイ用に使用されているガラス基板の具体例としては、 繊 力以下のもの力ある。 誠
S i〇2 : 40〜85質量%
A 1203: 0〜35質量%
B203: 0〜25質量%
MgO + CaO + S rO+BaO+ZnO: 1〜50質量%
L i20+Na20+K20+Rb20 + Cs20: 0〜: L質量%
また、 フラットパネルディスプレイ用ガラス基板の別の具体例として、 組成が以下のもの 力ある。
糸滅
S i02: 40〜85質量%
A 1203: 2〜35質量%
B203: 0〜25質量%
MgO+CaO + S rO + BaO+ZnO: 1〜50質量%
L i20+Na20+K20+Rb20+Cs20: 1. 1〜30質量%
また、 フラットパネルディスプレイ用ガラス基板のさらに別の具体例として、 糸賊が以下 のもの力ある。
S i 02: 40〜80質量%
A 1203: 0〜2質量%
MgO + CaO + S rO + BaO+ZnO: 1〜50質量%
L i20+Na20+K20+Rb20 + Cs20: 1. 1〜30質量%
フラットパネルディスプレイ用ガラス基板の娜は、 通常 0. 4謹以上 3 mm以下であ り、 '爾 1醒以下、 さらには 0. 7 mm以下のものも増カロしている。 ただし、 本発明の方 法が像とするガラス基板はこれに! されず、 W9- 3 mm超であってもよい。
上に例示したフラッ卜パネルディスプレイ用ガラス基板における透過率が 70%以上であ るためには、 通常 レスレーザビームの波長が 300〜2750 nmの範囲であればよい 。ノ レスレーザビームの波長は、 率の観点から 350〜 1200 nmであることが、より 好ましく、 350〜40 Onmの紫舰であってもよく、 400〜700 nmの可視域であ つてもよく、 700〜 1200 nmの近赤舰であってもよい。 但し、 紫舰のパルスレー ザビームは、 可視域や近赤外域のパルスレーザビームに比べて比較的ガラス基板に吸収され やすい傾向がある。 このため、 スズ欠点を^ ¾するのにパルスレーザビームのエネルギ一密 度を大きくする必要がある。 しかしながら、 ガラス基板に比較的吸収されやすいという特性 により、 パルスレーザビームのエネルギー密度を大きくした場合に、 ガラス基板表面に損傷 を生じるおそれがある。 したがって、 上記の波長の中でも、 可視域および近赤舰である 4 0 0〜1 2 0 0 nmであることがより好ましい。 ノ\°ルスレーザビームの波長が上記の範囲で あれば、 パルスレーザビームがさらに後に示 Τϊζ ( 1 ) および(2) を満足する場合に、 ガ ラス基板表面に損傷を生じることなく、 ガラス基板表面からスズ欠点を^ ¾する本発明の方 法の効果が特に優れている。 また、 ノ\°ルスレーザビームの波長が上記の範囲であれば市販の パルスレーザビーム照射装置を利用できる。
本発明の方法で使用するパルスレ一ザビームは、 ガラス基板における匪率が 7 0 %¾± であることに加えて、 ノ レス幅、 波長およびガラス基板表面における単位顧当たりのエネ ルギ一密度の間に、 後で述べる特定の関係が成り立つことが必要である。
上記した本発明の方法で使用するノ レスレーザビームと波長の範囲が重複するノ レスレ一 ザビームをガラス表面に照射して異物を除去する試みが、 特開平 5— 1 5 4 7 4号公報でな されている。特開平 5— 1 5 4 7 4号公報では、 予鶴験としてパルス幅 1 〔m s e c〕 、 波長 1. 0 6 m ( 1 0 6 0 nm) の赤外線レーザをガラス裏面側より透過させて表面側の 異物 (油性マジック) に対して照射した処、 単位面積当たりのエネルギー密度が 9 0 JZc m2という膨大なエネルギーを必要とする上、 かかるエネルギー密度が 4 0 J /cm2を越え た時は、 ガラス表面に損傷を発生する結果となったとしている。 すなわち、 ガラス表面から 異物を l ¾するためには、 ガラス表面に損傷を発生させるエネルギー密度よりも高いェネル ギ一密度のレーザビームを照射する必要があるとしている。
特開平 5— 1 5 4 7 4号公報の方法では、 上記のような結果であったにもかかわらず、 本 発明の方法では 波長の範囲が重複するパルスレーザビームを照射することで、 ガラス基板 表面を損傷させることなしに、 ガラス基板表面に存在するスズ欠点を除去できるのは、 主に 以下の 2つの理由によると考えられる。
(a) l ¾文像となる異物が本発明の方法と特開平 5— 1 5 4 7 4号公報の方法では異なつ ている。
(b) 本発明の方法は、 異物を^ ¾するのに使用するパルスレーザビームに関して、 パルス 幅、 波長およびガラス基板表面における単位難当たりのエネルギー密度との間に、 w えられていた関係とは全く異なる新たな関係が成り立つものを使用する。 なお、 該関係につ いては、 後で詳しく示す。
理由 (a) 、 すなわち^ ¾通となる異物が異なることにつレゝてさらに述べると、 特開平 5— 1 5 4 7 4号公報は、 窓ガラスに付^"る汚れを P鉄することを目的としており、 魏 例で油性マジックを使用していることから明らかなように、 有機物を文像としている。 これ に対して、 本発明の方法は、 金属スズまたはスズ酸化物を 分とするスズ欠点、 すなわち 無機物を対象としている。
また、 特開平 5— 1 5 4 7 4号公報が通とする窓ガラスの汚れは、 油性マジックのよう に非常に薄い層としてガラス基板表面に付着する。 これに対して、 本発明の方法が文豫とす るスズ欠点は HISに 0. 5 zm〜 3 /xm程度の厚さを有している。
これらの違いが、 パルスレーザビームを照射して異物を除去する際の条件にどのように影 響するかについて説明する。
まず、 P鉄通となる異物が前者は有機物であって、 後者は無機物であることにより、 パ ルスレーザビームの波長ごとの吸収係数カ堵機物と無機物とでは大きく異なっている。 さらに、 異物の種類 (有機物、 無機物) が異なることと、 その付 態が前者はほとんど 厚さをもたないのに対して、 後者は 0. 5 m〜 3 m程度の厚さを有していることから、 前者と後者とは熱容量が大きく異なっており、 蒸発させて する際に必要な熱エネルギー の総量、 および単位時間あたりのエネレギ一密度が、大きく異なっていると考えられる。 この結果、 特開平 5— 1 5 4 7 4号公報の予«験では、 ガラス表面から異物を^ ¾する ためには、 ガラス表面に損傷を発生させるエネルギー密度よりもエネルギー密度が大きレパ ルスレーザビームを照 it る必要があつたと考えられる。
すなわち、 本発明は、 ガラス基板表面に存在するスズ欠点は、 ガラス表面に付着した油性 マジックのような有機物と い、 該ガラス基板における S 率が いパルスレーザビーム を照射することで i ¾できるという、 本発明者らの知見に基づいている。
次に、 上記理由 (b) について述べると、 本発明で使用するパルスレーザビームは、 ガラ ス基板における ¾ii率が 7 0 %以上の波長であり、 ガラス基板には実質的に吸収されなレが 、 パルス幅、 波長およびガラス基板表面における単位醒当たりのエネルギー密度の関係に よっては、 エネルギー密度がガラス基 f肚のスズ欠点を するのに不十分であつつたり、 異物を^ ¾するのに必要なエネルギー密度を与えるとガラス基板表面を熱的な加工により損 傷させてしまったりする がある。 後に示す難例では、 ノ レス幅 80 n s e c、 波長 1 064 nmのパルスレーザビームを使用した場合、 ガラス基板表面における単位面積当たり のエネルギー密度が 2. 08 J/cm2ではガラス基†反表面のスズ欠点は除去することがで きず、 11. 32 JZcm2のノ\°ルスレーザビ一ムを照射した場合には、 ガラス基板表面に 損傷が瞧された。
本発明者らは、 鋭意織した結果、 ガラス基板表面に損傷を与えずスズ欠点を^ ¾するた めには、 使用するノ レスレーザビームのパルス幅 t、 波長 λおよびガラス基板表面における 単位 当たりのエネルギー密度 Εの間に、 考えられていた関係とは全く異なる新たな 関係が'成り立つことが必要であるという知見を得た。
すなわち、 本発明では、 使用するノ\°ルスレ一ザビームのパルス幅 t、 波長 λおよびガラス 基板表面における単位面積当たりのエネルギー密度 Εが、 下記式 (1) および(2) を同時 に'満足することが、必要である。
2. 5X108≤E/t · · · (1)
E/ (λ X t 1/2 ) ≤ 1000 · · · (2)
式中、 Ε« ルスレーザビームのガラス基板表面での単位醒当たりのエネルギ一密度 [J /cm2] であり、 t ¾ ルスレーザビームのパルス幅 [s ec] であり、 λ ルスレー ザビームの波長 [nm] である。
使用するパルスレーザビームのパルス幅 t、 波長 λおよびガラス基板表面における単位面 積当たりのエネルギー密度 Εが上記式 (1) および(2) を同時に満足すれば、 ガラス基板 表面に損傷を与えることなしに、 スズ欠点を^ ¾することができる。
細するノ レスレーザビームのパルス幅 t、 波長 λおよびガラス基板表面における単位面 積当たりのエネルギー密度 Εの関係が 2. 5 X 103>EZ tであると、 スズ欠点を除去す る効果カ坏十分であり、 E/ (AX t1/2) >1000であると、 パルスレーザビームの照射 によりガラス基板表面を損傷する問題がある。 この損傷は、 上で述べた «の紫外 レス レーザを照射した場合に発生すると考えられる損傷に比べると非常に «なものであるが、 フラットパネルディスプレイ用ガラス基板には被しないことが好ましい。 したがって、 本 発明の方法は、 麵するパルスレーザビームを上記式 (1) および(2)を満足する関係で « 択することにより、 ガラス基反表面を損 ί暴することなしに、 ガラス基板表面からスズ欠点を することができる。 本発明の方法において、 ノ°ルスレーザピ一ムは、 下記式 (3) を満足することがより好ま しい。
5. OX 10s≤E/t · · · (3)
式中、 Eおよび t WLb記した通りである。
2. 5X 108≤E/t <5. 0X 108であると、 スズ欠点の付着形態によっては、 完 全には除去しきれない場合もある。 しかし、 5. OX 108≤E/tであると、 ガラス基板 表面からスズ欠点を^ ¾する効果に優れており、 使用するパルスレーザビームの波長を ¾1 な範囲とすることでスズ欠点が完全に除去される。
なお、 前者でスズ欠点が鉄しきれないのは、 S¾i時の条件により、 酸化度カ犒ぃスズ 化物を含むことが原因であると考えられる。
したがって、 酸化度カ缟ぃスズ窗匕物を含むスズ欠点が発生する難条件を知ることがで き、 その酸化度を経験的に見積もることができれば、 該条件に応じてパルスレーザビームの パルス幅、 波長およびガラス基板表面における単位藏当たりのエネルギ一密度を上記式 ( 1) および(2) の関係を満足する条件で雷 S¾ "ることで、 スズ欠点の中に酸化度カ犒ぃス ズ 化物が含まれていてもスズ欠点を完全に除去することができる。
本発明の方法において、 パルスレ一ザビームは、 下記式(4) を満足することがより好ま しい。
E/ (AX 11/2) ≤ 500 · · · (4)
式中、 E、 tおよび; Uih記した通りである。
500<Ε/ (λ X t1/2) ≤1000であると、 使用するノ°ルスレーザビームのパルス幅 、 波長、 エネルギー密度、 照射時間、 およびガラス基板の糸滅ならびにガラス基板表面にお けるスズ欠点の付着といったスズ欠点の除去に関係する条件の組み合わせによっては、 ガラ ス基ネ反表面を ί員 { する場合もある。 この損、傷は 上で述べた Ε/ (ΛΧ t1/2) 〉1000で ガラス基板表面に発生する損傷よりもさらに であり、 かつ発生頻度も低いものであり、 より高精細化が進んだフラットパネルディスプレイ用ガラス基板であっても問題となる可能 性は小さいものではある。 しかしながら、 多大なコストを生じることなしに、 回避可能なの であれば、 ガラス基板表面にはこのような損傷であっても存在しないことが好ましい。
E/ (λ X 11/2) ≤500であれば、 ガラス基板表面を損傷するおそれがない。
なお、 本発明の方法は、 さらに好ましくは使用するパルスレーザビームが上記式(3) お よび(4) のいずれをも満足する。 ノ°ルスレ一ザビームが上記式 (3) および(4) のレず れをも満足すれば、 ガラス基板表面からスズ欠点を完全に^することができ、 かつガラス 基板表面を損傷するおそれがない。
上記したように、 本発明の方法で使用するパルスレーザビームは、 ガラス基板における透 過率が 7 0 %以上であるため、 ガラス基板には実質的に吸収されない。 これによる利点とし て、 本発明の方法では、 パルスレーザビームの照射方向とスズ欠点が存在しているガラス基 板の面との関係は特に限定されない。 すなわち、 スズ欠点が存在しているガラス基板表面に 直接パルスレーザピ一ムを照射しても、 その颜側からガラス基板を ¾iiさせてパルスレー ザビームを照射してもガラス基板表面からスズ欠点を!^できる。 なお、 上記利点を享受す るためには、 ガラス基板におけるパルスレーザビームの透過率は 7 5 %以上であることが好 ましい。
但し、 以下の理由から、 パルスレーザビームは、 スズ欠点が^ Ϊしているガラス基板表面 に直接照射するのではなく、 その裏面側からガラス基板を させて照射するほうが好まし い。
本発明の方法において、 ノ\°ルスレーザビームの照射によりガラス基板表面からスズ欠点が されるのは以下のメカニズムによると考えられる。
スズ欠点が^ &するガラス基板表面側に直接パルスレーザビームを照射した場合、 スズ欠 点のパルスレーザビームが照射された面からその内部へとエネルギーが伝わる。 そして、 パ ルスレーザビームが 1パルス照射されている間に、 スズ欠点のパルスレ一ザビームが照射さ れた面からある深さまでの が 点もしくは沸点まで急激に上昇し、 その深さまでのスズ 欠点が 1パルスによつて I涂去される。 したがって、 1パルス当たり深さ 0. 5 mのスズ欠 点を除去可能なパワーをもったパルスレーザビームを照射した場合、 スズ欠点のパルスレー ザビームが照射された面から深さ 0 · 5 mまでが 1ノ レスの照射で l ¾されることになる 。 一方、 麵側からガラス基板を扁させてパルスレーザビームを照射した場合、 パルスレ 一ザビームはスズ欠点のガラス基板との界面 (t m) に照射される。 その結果、 パルスレ 一ザビームの照射によって、 スズ欠点のガラス基板との接着面が剥がれるため、 パルスレー ザビームの 1パルスの照射で 0 · 5 m以上の厚さをもったスズ欠点を^ ¾できると考えら れる。
さらに、 本発明の方法によれば、 ガラスの両面にスズ欠点が付着している場合には、 1回 のパルスレーザビームの照射で両面に付着したスズ欠点を同時に除去することができる。 上記したように、 フ口一ト法で製造されるガラス基板の上面にはトッブスぺックと呼ばれ る数; Limの大きさのスズ欠点が付着し、 ガラス基板の ®にはポトムスペックと呼ばれるス ズ欠点が付着する。 した力 て、 ガラスの丽に付着したスズ欠点を 1回のパルスレーザビ —ムの照射で^ ¾できることは、 フロー卜法で^ iされるガラス基板からスズ欠点を^ ¾す るのに好ましい である。
ガラス基板の丽に付着したスズ欠点を^ ¾する場合、 パルスレーザビームは、 より小さ ぃスズ欠点が付着しているガラス基板の表面側から照射することが好ましい。 上記したトッ
Figure imgf000016_0001
ボトムスペックは、 トップスペックより も大きいものが付^ る場合がある。 したがって、 トップスペックが付着しているガラス基 板の上面』からパルスレーザビームを照射することが好ましい。
本発明の方法に用いるレーザ光源は、 上記した範囲の波長を るレーザビームを、 上記 式 (1 ) および(2) の関係を同時に満足するパルスレーザビームとして発生するものを広 く含む。従って本願のレーザ光源は、 通常パルスレーザと呼ばれる励起光源がパルス発振す るタイプのレーザ光源に加えて、 励概劂 であるが、 パルスビームとしてレーザビ ームを発生するタイプのレ一ザ光源も含む。 このようなレーザ光源としては、 具体的には例 えば、 Qスィッチ (Q- Sw i t c h) レーザ、 モードロック (Mo d e— l o c k) レ一 が挙げられる。
したがって、 本発明の方法に麵可能なレーザ光源は、 ヘリウムネオンレーザ、 ヘリウム カドミウムレーザ、 アルゴンレーザ、 クリプトンレーザのような気体レーザであってもよく 、 ルビーレーザ、 Y AGレーザ、 ガラスレーザのような固体レーザであってもよい。 上記の レ一ザ光源の中でも、 上記式 ( 1 ) および(2) の関係を満足するパルスレーザビームを発 生するのが容易であることから Y AGレーザが好ましい。
本発明の方法において、 パルスレーザビームは-, 上記した条件を満足することに加えて、 パルス幅が' 2 O n s e c以下であることが、好ましい。 ± ^したように、 パルス幅が比較的長 い 8 0 n s e cのパルスレーザビームを使用した場合、 ガラス基板表面に損傷を与えずスズ 欠点を除去するためのガラス基板表面におけるエネルギー密度の範囲は極めて狭い、 もしく は せず、 本発明を工業的に遂行することは困難であることが ¾1例により確認、されてい る。 したがって、 本発明に使用するパルスレーザビームのパルス幅は短いことが好ましく、 より具体的には 2 0 n s e c以下が好ましい。 ノ レス幅が 2 O n s e c以下であれば、 パル スレーザビームが上記式 ( 1 ) および(2) を満足する場合に、 ガラス基板表面に損傷を与 えることなしに、 スズ欠点を除去する効果に優れている。
なお、 上記式 ( 1 ) および(2) より、 ノ レス幅は短いほうがより好ましい。 具体的には 、 パルス幅は 1 0 n s e c以下であることがより好ましく、 l O p s e c以下であることが さらに好ましい。 現在、 レーザビームのパルス幅は、 短いものではフェムト秒レベルにまで 到達している。 しかし、 現在利用可育なフェムト秒、レーザは、 安定性に劣るため、 工業的な 用途に使用することが困難である。 今後フェムト秒レ一ザの擴が向上し、 魏性が増した 場合には、 本発明の方法に使用できる可能性ヵ搞い。
さらに、 本発明の方法は、 上記式 ( 1 ) および(2) の関係を満足するパルスレーザビー ムを使用することにより、 以下の利点が得られる。
上で述べたように、 本発明の方法において、 上記式 ( 1 ) および(2) を満足する条件で 、 パルス幅を短くした場合、 徹考えられていたよりもはるかに小さなエネルギー密度のレ 一ザビームを照射することで、 ガラス基板表面を損傷することなしに、 ガラス基板表面から スズ欠点を除去することができる。
したがって、 の考えと比較して、 同一出力のレーザを照射した場合に、 異物の I *可 能なエリアを広げること力河能になった。 また、 匪し周波数の高いレ一ザを用いて、 碰 するように、 レーザビームのスポットをある幅で左右に振って照射することにより、 さらに 広いェリァのスズ欠点をパルスレーザ照射装置 1台で鉄可能になると考えられる。
すなわち、 本発明の方法では、 徹考えられていたよりも、 1回のパルスレーザビームの 照射でより広いガラス基板表面から、 ガラス基板表面を損傷することなしにスズ欠点を除去 することが T能である。 また、 高い繰返し周波数のレーザを用いることにより、 さらに広い ガラス基板表面から、 ガラス基板表面を損傷することなしにスズ欠点を除去すること力河能 である。
これにより可能となる本発明の方法の好ましレ^ ¾1形態を以下に述べる。
本発明の方法の好ましい難形態は、 ある幅を^ るガラス基板に対して、 パルスレーザ ビームを全幅にわたつて照射する方法である。
パルスレ一ザビームをガラス基板の全幅にわたって照射すれば、 ガラス基板を長手方向に 移動することにより、 ガラス基板全体を 1度に処理することができ、 ガラス基板表面からス ズ欠点を^するのに要する時間が織宿される。
なお、 ガラス基板をその長手方向に移動させる代わりに、 レーザ光源を移動させてレーザ ビームの照射面をガラス基板の長手方向に移動させてもよい。
パルスレ一ザピ一ムをガラス基板の全幅にわたって照射させるには、 具体的にはたとえば 、 図 2に示すように、 ミラ一を用いてパルスレ一ザビームのスポットをガラス基板の幅方向 に趙させればよい。
図 2は、 ノリレスレーザビームのスポットをガラス基板の幅方向に させるレーザビーム 照射装置の概念図である。 図 2において、 ガラス基板 1は、 幅方向に切断した断面で示され ている。 該ガラス基板 1表面にスズ欠点 2が存在している。 このガラス基板 1のスズ欠点 2 カ^ Ϊ "る表面に、 β側からガラス基板 1を通してパルスレ一ザピ一ム 3が照射される。 ここで、 図 2のパルスレーザ照射装置では、 レ一ザ光源からのパルスレーザビーム 3を、 該 レーザビーム 3の進行方向に直^ Τる方向 (図面を貫通する方向) を軸として回動可能なミ ラ一 4を用いてガラス基板 1の幅方向に錢させる。 そして、 «されたレ一ザビーム 3は ミラ一 5によって TO化されて、 ガラス基板 1表面のスズ欠点 2力 j½Tる面の 御 Jから 照射される。
図 3は、 図 2のパルスレーザ照射装置により、 ガラス基板の幅方向に越されたパルスレ 一ザビームがガラス基板表面に形 SK "るスポットの位置関係を示した概念図である。 図 3に 示すように、 レーザビームのスポットを隣接するスポッ卜同士が一部重なった状態で隙間を 生じることなしにガラス基板の幅方向に走査させれば、 ガラス基板の全幅 Wにわたつてパル スレ一ザビームを照射することが きる。 但し、 ノ、。ルスレーザビーム照射装置 1台で、 ガラ ス基板の全幅にわたつてパルスレーザビームを走査させること〖ま必要ではなく、 2台以上の パルスレーザビーム照射装置をガラス基板の幅方向に並べて設置して、 全体としてパルスレ 一ザビームがガラス基板の全幅にわたって照射することもできる。
なお、 パルスレ一ザビームをガラス基板の幅方向に走査して、 ガラス基板の全幅にわたつ て照射するには、 ガラス基板とパルスレーザビームの走査方向との関係を示した図 4におい て、 ガラス基板の幅を W [m] 、 パルスレーザビームのガラス基板の幅方向における 度を V! [m/ s e c ] 、 パルスレーザビームのスポット径を φ [m] 、 パルスレーザビー ムの繰り返し周波数を R [H z ] とした場合に、 V! [m/ s e c ] が少なくとも Ι Χ φ [ m/s e c] よりも小さくなるように条件^ Τればよい。 さらに、 図 4において、 ガラス基板またはレーザ光源をガラス基板の長手方向に移動速度 V2 [m/ s e c ] で移動させた場合、 ガラス基板の長手方向でもパルスレーザビームのス ポット同士が"^重なるようにパルスレーザビ一ムを照射するには、 V2 [m/ s e c ] が 少なくとも RX (i> X c|)/W [m/ s e c] よりも小さくなるように条件言^ fればよい。 なお、 パルスレーザビーム照射装置 1台を用いてパルスレーザビームをガラス基板の^ ϋ にわたつて照射させる:!^を例に挙げたが、 ノ レスレーザビーム照射装置を 2台以上使用す る場合には、 ガラス基板の幅を照射装置の台数で割って求めた各照射装置が分担する照射幅 ごとに上記のように条 ί牛設^ればよい。
また、 本発明の方法において、 ガラス基板の全幅にわたってパルスレーザビームを照射す る方法は、 上に述べたミラ一によりパルスレーザビームを »Τる方法に腕されない。他 の方法としては、 具体的には、 たとえば図 5に示すようにレーザビーム 3をビームエキスパ ンダ 6で拡大し、 レンズ 5により平行化することでビーム径を拡大して照射してもよい。 ガラス基板の全幅にわたってパルスレーザビームを照射する本発明の方法の好まし ( 実施 形態によれば、 フロート法によるガラス $Siプロセスにおいて、 ガラス基板表面からオンラ ィンでスズ欠点を^できる。
図 6は、 オンラインでスズ欠点を除去するフロート法によるガラス製造ラインの 1例の概 念図である。 図 6において、 溶融金属浴 (フロートバス) 8と呼ばれる溶融金属スズ 1 1を 満たした浴面上に、 溶融窯 7から溶融ガラス 1 2を連镜的に流出させてガラスリボンを形成 し、 このガラスリポンを溶融金難面に沿って浮かしながら前進させて 反する。 厳され たガラス基板は、 引出しロール 1 5によって引き出され 長手方向に連铳した状態でライン 上を運ばれる。
本発明では、 このライン上を運ばれるガラス基板 1 2に対して、 パルスレーザ照射装置 1 4から全幅にわたってパルスレーザビーム 3を照射する。 そして、 ガラス基板 1 2がライン 上を移動する間、 パルスレーザビーム 3を照射し続ければ、 ガラス基板表面のスズ欠点の位 置およびその数に影響されることなく、 オンラインでガラス基板表面からスズ欠点を^す ること力 ?きる。
図 6では、 ノ レスレーザ照射装置 1 4は 1台で示されているが、 2台以上であってもよく 、 その方がむしろ好ましい。 ノルスレーザ照射装置 1 4を 2台以上侧して、 全体としてパ ルスレーザビーム 3がガラス基板 1 2の全幅にわたって照射されるように^ Tれば、 ガラ ス基†反表面を員{募することなしに、 スズ欠点を除去するのに十分なエネルギーのパルスレー ザビーム 3を、 ライン上を移動するガラス基板 1 2の^ にわたつて照射すること力 き、 フ口一ト法で されるガラス基板表面からオンラインでスズ欠点を^ ¾できる。
ガラス基板表面に、 パルスレ一ザビームを照射してスズ欠点を^ ¾する本発明の方法は、 短時間でガラス基板表面からスズ欠点を鉄できるので、 このようなオンラインでの使用に 謹である。
フロ一ト法で S されて、 ライン上を運ばれるガラス基板に対して、 本発明の方法をオン ラインで用いれば、 ガラス基板表面におけるスズ欠点の位置およびその数に影響されること なぐ ガラス基板表面全体からスズ欠点を^ ¾することができる。 この方法では、 ガラス基 板表面にあるスズ欠点を見つけ出し、 該スズ欠点にパルスレーザビームのスポットを位置決 めする必要がないため、 処理に要する時間が大 > に短縮され フロート法で SSiされるガラ ス基板の歩留まりを大幅に向上させることができる。
さらにまた、 本発明の方法は、 上で述べたように、 スズ欠点が付着している面に直接パル スレーザビームを照射しても、 その麵側からガラス基板を腿させてパルスレーザビーム を照射してもスズ欠点を除去することができ、 スズ欠点がガラスの両面に付着している場合 には、 1回のパルスレーザビームの照射で両面に付着したスズ欠点を同時に除去することが できる。 これもまたフロート法で $¾gされ、 ライン上を移動するガラス基板表面からオンラ ィンでスズ欠点を除去する上で好ましい。
本発明の方法の好ましい難形態は、 フロート法で S8tされるガラス基板に対してオンラ インで使用するのと同様に、 オフラインで、 すなわちフロート法により され、 ラインか ら取り出されたガラス基板に対して使用することも好ましい。 すなわち、 切り出されたガラ ス基板の全幅にわたってパルスレーザビームを照射しながら、 ガラス-基板または J レスレー ザ光源をガラス基板の長手方向に移動してもよい。 これにより、 1回の操作でガラス基板表 面全体からスズ欠点を!^することができる。
また、 本発明によれば、 上記した方法によりガラス基板表面からスズ欠点が^ ¾されたガ ラス基板も提供される。
本発明のガラス基板は、 フロート法で製造されたガラス基板にとって不可避であるガラス 基板表面のスズ欠点が除去されているため、 フラットパネルディスプレイ用ガラス基板とし て醜である。 赚例)
以下、 実施例により本発明をさらに説明する。 ただし、 以下に示す難例は、 本発明の範 囲を限定するものではない。
謹例 1
フロート法で製造されたフラットパネルディスプレイ用ガラス基板の表面にスズ欠点が存 ¾ "る画に、 励 ^源がパルスするタイプのパルスレーザ (YAGレーザ) から、 スズ欠 点を有する面の裏面側からガラス基板を透過させてパルスレーザビームを照射して、 ガラス 基板表面からのスズ欠点の^ ¾およびレーザ照謝麦のガラス基板表面 (表面およ ^ ^の両 方) における損傷の有無を光 顕微鏡 (装置名:デジタル八イビジョンマイクロスコープ VQ- 7000、 Keyenc e誦で 300〜500倍の感度で瞧して調べた。
なお、 ガラス基板は板厚 0. 6 mmであり、 組成は以下の通りであった。
糸賊
S i 02: 60質量%
A 1203: 17質量%
B203: 8質量%
MgO+CaO + S rO+BaO + ZnO: 15質量%
L i20+Na20+K20+Rb20+Cs20: 0質量%
賴施例では、 パルスレーザビームの波長、 パルス幅およびエネルギー密度を表 1に示す ように 12通り (例;!〜例 12) に変えて、 それぞれ 4回^ «した。 結果を表 1に示し た。
麵例 2
励起光源がパルスするタイプのパルスレーザの代わりに Qスィツチレーザを使用した以外 は、 禁例 1と同様の手順でスズ欠点が γ¾τるガラス基板表面に、 麵側からノ°ルスレー ザビームを照射して、 スズ欠点の! ^およびレーザ照射後のガラス基板表面 (表面おょ 面の両方) における損傷の有無を調べた。 結果を表 1に示した。
Φ ^例では、 ノ レスレーザビームの波長、 ノルス幅およびエネルギー密度を表 1に示す ように 2通り (例 13、 例 14) に変えて、 それぞれ 4回¾難した。 結果を表 1に示し た。
難例 3 励起光源がパルスするタイプのパルスレーザの代わりにモードロックレ一ザを使用した以 外は、 難例 1と同様の手順でスズ欠点が^ るガラス基板表面に、 麵側からパルスレ —ザビームを照射して、 スズ欠点の およびレーザ照謝麦のガラス基板表面における損傷 の有無を調べた。 結果を表 1に示した。
例では、 ノルスレ一ザビームの波長、 パルス幅およびエネルギー密度を表 1に示す ように 3通り (例 1 5〜例 1 8) に変えて、 それぞれ 4回ずつ難した。 結果を表 1に示し た。
表 1( 1/3 ) 例 1 例 2 例 3 例 4 例 5 例 6 例 7 例 8
レーザ発振機構 パルス発振 パルス発振 パルス発振 パルス発振 パルス発振 パルス発振 パルス発振 パルス発振 波長 λ [nm] 1064 1064 1064 1064 532 532 532 532 レーザービームの透
91 91 91 91 91 91 91 91 過率 T[%] パルス幅 t 8nsec 8nsec 8nsec 8nsec 7nsec 7nsec 7nsec 7nsec エネルギー密度
1.60 2.67 4.26 53.31 1.45 3.85 5.54 31.31 E [J/cm2]
EZt [W/cm2] 2.00X103 3.33X108 5.33X108 6.66 X109 2.06 X108 5.50 X108 7.91X108 4.47 X109
ΕΖ (λ · t"2) 1.68 X101 2.80 X101 4.48 X101 5.60 X102 3.25X101 8.66X101 1.24X102 7.03 X102 スズ欠点の除去 X Δ 〇 〇 X Δ 〇 〇 ガラス表面の損傷 〇 〇 〇 Δ 〇 〇 〇 △
例 9 例 10 例 11 例 12 例 13 例 14 連続発振
レーザ発振機構 パルス発振 パルス発振 パルス発振 パルス発振
(Q-Switch) (Q-Switch) 波長 λ [nm] 355 355 355 355 1064 1064 レ一ザ一ビームの透
84 84 84 84 91 91 過率 T[%] パルス幅 t 6nsec 6nsec 6nsec 6nsec 80nsec 80nsec エネルギー密度
1.36 3.39 4.07 22.61 2.08 11.32 E [J/cm2]
E/t [W/cm2] 2.26X108 5.65X108 6.78 X108 3.77 X109 2.60X107 1.41X108
Ε/ (λ · tiゾ 2) 4.93 X101 1.23 X102 1.48 X102 8.22 X102 9.19X101 5.00X102 スズ欠点の除去 X Δ 〇 〇 X 〇 ガラス表面の損傷 〇 〇 〇 △ 〇 X
表 1( 3/3)
Figure imgf000025_0001
なお、 表 1において、 レーザビームの透過率は ガラス基板 ¾i前のパルスレーザビーム I inおよびガラス基 « 後のパルスレ—ザビームの艘 I outをそれぞれレーザ1^ 出器 (En e r gy/P owe r me t e r : 3 s i gma, Probe: PM— 30, Mo l ec t ron De t ec t o r I n c. 翻を用レ^:検出し、 下記式により求め た。
扁率 (%) =I。ut/IinXl 00
表 1において、 スズ欠点の^ ¾およびガラス基板表面の損傷に関する欄の記号は、 以下の結 果を表している。
スズ欠点の^ ¾
X:実拖した 4回全てでスズ欠点が除去されなかった。
△:難した 4回中、 スズ欠点が! ^された場合とスズ欠点が^ ¾されなかった場合があつ た。
〇: «した 4回全てでスズ欠点が^ ¾された。
ガラス表面の損傷 -
X:実施した 4回全てでガラス基板表面 (表面または裏面のうち、 少なくとも一方) に損 傷が認められた。
△:難した 4回中、 ガラス基板表面(表面また ¾¾®のうち、 少なくとも一方) に損傷が 認められた場合と、 認められなかつた場合があった。
した 4回全てでガラス基板表面 (表面およ の両方) に損傷が認められなかつ た。
表 1に示すように、 レ一ザ光源の種類 (励^ ά源ノ レス、 Qスィッチレーザ、 Mo d e l o c kレーザ) にかかわらず、 2. 5 X 1 08≤E/ t 、 かつ EZ (λ X 11/2) ≤1 0 0 0 のパルスレーザビームを使用した場合、 ガラス基板表面からスズ欠点が P鉄されることカ镞 認された。 さらに、 5. 0 X 1 08≤E/ t、 かつ EZ (A X t 1/2) ≤ 5 0 0のパルスレー ザビームを使用した場合、 ガラス基板表面を損傷させることなぐ スズ欠点が^ ¾されるこ とが ϋ認された。
鋪例 4
ガラス基板のスズ欠点が る面に直接パルスレーザビームを照射した は、 実施例 1の例 3、 例 7、 例 1 1および例 1 3と同様に難して、 ガラス基板表面からのスズ欠点の l ¾およびガラス基板表面 (表面およ の損傷の有無を調べた。 その結果、 ガラス基 板のスズ欠点が存 ¾r る面にパルスレーザビームを直接照射した場合でも、 β側からガラ ス基板を βさせて照射した場合と同様に、 ガラス基板表面を損傷することなぐ スズ欠点 が^ ¾されることが ϋ認された。
難例 5
例では、 図 6に示すフロート法によるガラス基板^ g設備で、 フロート法で製造さ れて、 ライン上を移動するガラス基板表面からスズ欠点をオンラインで^ ¾することを試み る。
例では、 図 2に示すような、 ミラ一によりレーザビームを超させるパルスレ一ザ ビーム照射装置を配置し、 幅 10 cmのガラス基板に対して、 ノ\°ルスレ一ザビームの ¾Ψ畐 を 10 cmに^ Τることで、 ガラス基板の全幅にわたってパルスレーザビームが照射され るようにする。 使用するノ レスレーザビーム照射装置およびガラス基板の仕様は以下の通り である。
パルスレーザビーム照射装置
YAGレーザ(励織鍵菌 (モードロックレ一ザ) )
照射装置: 1台
走杳幅: 5 cm
波長: 1064腿
パルスレーザビ一ムの腿率 (%) : 91%
パルス幅 (t) : 10. 5 p s e c
ガラス基板表面におけるエネルギー密度 (E) : 3. 49 X 10— 2 J Z c m2
E/t =3. 32X 109
E/ (λ X t 1/2 ) = 1. 01 X 101
スポット径 (Φ) : 22. G m
繰り返し周波数 (R) : 50MHz
ガラス基板の幅方向の ¾¾¾J (V,) : 565m/s e c<50MHz (R) X 22. 6 X 10— 6m (Φ)
ガラス基板
フラッ卜パネルディスプレイ用ガラス基板
誠 (質量百分率表示)
S i 02: 60 %
Al23: 17%
MgO+CaO+S rO+BaO+ZnO: 15%
L i20+Na20+K2〇+Rb20 + Cs20: 0%
幅: 10 cm (W) 厚さ: 0. 6mm
長手方向の移動聽(V2) : 1 0 c m/ s e c < 5 0MH z (R) X (2 2. 6 x 1 0 -6 m ( ) ) 2 /0. 0 5m (W)
上記の条件でライン上を運ばれるガラス基板に対して、 パルスレ一ザビームを照射し続け る。 その後、 ガラス基板を長さ 1 0 cm、 幅 5 cmで切り出して、 ガラス基板表面 (表面お ょ 面) におけるスズ欠点の有無およ 員傷の有無を調べる。 その結果、 ガラス基板表面 にはスズ欠点およ Ό¾員傷のレずれも認められない。
なお、 レーザのエネ jレギー密度、 ガラス基板表面におけるスズ欠点の有無およ mi傷の有 無の測定は、 ¾ 例 1と同様とする。 難上の利用可能性
本発明の方法によれば フロート法で 豊されるガラス基板表面を iii募することなしに、 該ガラス基板表面に存在するスズ欠点を極めて速やかに除去できる。
本発明の方法によれば、 ガラス基板のスズ欠点が存¾ "る面にパルスレーザビームを直接 照射した場合、 またはスズ欠点が る面に対して麵側からガラス基板を扁させてパ ルスレーザビームを照射した場合のレ れであってもガラス基板表面に ϊ¾ΪΤるスズ欠点を することができる。 さらに、 ガラス基板の両面にスズ欠点が Ί¾する場合には、 両面に するスズ欠点を 1回のパルスレーザビーム照射で同時に除去することができる。
ガラス基板の全幅にわたってパルスレーザビームを照射する本発明の方法の好ましレ^ ¾ 形態は、 フロート法によるガラス S¾iラインで、 ライン上を運ばれるガラス基板表面からォ ンラインでスズ欠点を!^ ¾するのに好ましく使用することができる。 このようなオンライン での使用は、 ライン上を移動するガラス基板表面全体からスズ欠点を 続的に するため , スズ欠点の除去に要する時間がさらに短縮され 製造されるガラスの歩留まりが大幅に向 上する。 本発明の好ましい実施形態は、 ラインから取り出されたガラス基板に対して、 ガラ ス基板また ルスレーザ光源をガラス基板の長手方向に相対移動させながらオフラインで 翻することも好ましく、 1回の処理でガラス基板表面全体からスズ欠点を^ ¾することが できる。
本発明のガラス基板は、 ガラス基板表面にスズ欠点力 Eせず、 フラットパネルディスプ レイ用ガラス基板に好適である。

Claims

請求の範囲
1. フロート法で $¾tされるガラス基板表面に、 該ガラス基板における腿率が 70 であり、 かつ下記式 (1) および(2) を満足するパルスレ一ザビームを照射して、 嫌 Β ° ルスレーザビームが照射された表面および/または前言 ΒΛ°ルスレーザビームが照射された面 の に るスズを含んだ異物を^することを 1 [とするガラス基板表面の異物^ ¾ 方法。
2. 5X108≤E/t · · · (1)
E/ (λ X t 1/2 ) ≤ 1000 · · · (2)
(式中、 Eはガラス基板表面における単位醒当たりのパルスレーザビームのエネルギー密 度 [J/cm2] であり、 t«Aルスレーザビームのパルス幅 [s ec] であり、 λ« °ル スレーザビームの波長 [謹] である。 )
2. 鎌己パルスレーザビームは、 嫌己ガラス基板における腿率が 75%以上である請求項 1に記載のガラス基板表面の異物 l ¾方法。
3. 編 3パルスレーザビームは、 波長が 350〜 1200 nmである請求項 1または 2に記 載のガラス基板表面の異物^ ¾方法。
4. 嫌己パルスレーザビームは、 20ns ec以下のパルス幅を有する請求項 1ないし 3の いずれかに記載のガラス基板表面の異物 方法。
5. 前記ガラス基板の全幅にわたってパルスレーザビームを照射する請求項 1ないし 4のい ずれかに記載のガラス基板表面の異物除去方法。
6. 前記ガラス基板は、 フラットパネルディスプレイ用ガラス基板である請求項 1ないし 5 のいずれかに記載のガラス基板表面の異物^ ¾方法。
7. 嫌 3ガラス基板は、 が 0. 4mm以上 3mm以下である請求項 1ないし 6のレ、ずれ かに記載のガラス基板表面の異物^ ¾方法。
8. t l己ガラス基板は、 糸滅が下記である請求項 1ないし 7のレずれかに記載のガラス基板 表面の異物 方法。
S i02: 40-85質量%
Al23: 0〜35質量%
B203: 0〜25質量% MgO + CaO+S rO+BaO + ZnO: 1〜50質量%
L i2〇+Na2〇+K2〇+Rb20+Cs2〇: 0〜1質量%
9. MEガラス基板は、 糸滅が 記である請求項 1ないし 7のレ fれかに記載のガラス基板 表面の異物 方法。
S i〇2: 40〜85質量%
A 1203: 2〜35質量%
B203: 0〜25質量%
MgO+CaO+S rO+BaO + ZnO: 1〜50質量%
L i20+Na2〇+K2〇 + Rb20 + C s20: 1. 1〜30質量%
10. 嫌 3ガラス基板は、 糸滅が 記である請求項 1ないし 7のレ fれかに記載のガラス基 板表面の異物^ ¾方法。
S i〇2: 40〜80質量%
Al23: 0〜2質量%
MgO+CaO + S rO+BaO + ZnO: 1〜50質量%
L i20+Na20+K20 + Rb20 + Cs20: 1. 1〜30質量%
11. 請求項 1ないし 10のいずれかに記載のガラス基ネ反表面の異物除去方法により、 フロ 一卜法で製造されるガラス基板表面のスズを含んだ異物が除去されてなるガラス基板。
PCT/JP2004/001041 2003-02-04 2004-02-03 ガラス基板表面の異物除去方法 WO2004069760A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/196,401 US7767929B2 (en) 2003-02-04 2005-08-04 Method for removing foreign matter on glass substrate surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-027237 2003-02-04
JP2003027237 2003-02-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/196,401 Continuation US7767929B2 (en) 2003-02-04 2005-08-04 Method for removing foreign matter on glass substrate surface

Publications (1)

Publication Number Publication Date
WO2004069760A1 true WO2004069760A1 (ja) 2004-08-19

Family

ID=32844168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001041 WO2004069760A1 (ja) 2003-02-04 2004-02-03 ガラス基板表面の異物除去方法

Country Status (3)

Country Link
US (1) US7767929B2 (ja)
KR (1) KR20050094423A (ja)
WO (1) WO2004069760A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006003878A1 (de) * 2006-01-27 2007-08-09 Schott Ag Verfahren zum Verbessern der Oberflächenqualität von gefloatetem Flachglas

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010002731A1 (de) 2010-03-10 2011-09-15 Schott Ag Verfahren zur Entfernung von Rückständen auf Floatglasoberflächen
US10357850B2 (en) * 2012-09-24 2019-07-23 Electro Scientific Industries, Inc. Method and apparatus for machining a workpiece
CN106946474B (zh) * 2017-04-10 2019-06-28 蚌埠玻璃工业设计研究院 一种电子显示用浮法平板玻璃粘锡在线去除方法
CN109082502A (zh) * 2018-09-25 2018-12-25 深圳市艺盛科五金电子有限公司 一种激光淬火装置及其工艺
DE102019134818A1 (de) * 2019-02-16 2020-08-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zum Erhöhen der Festigkeit eines Glassubstrates
WO2021003288A1 (en) * 2019-07-02 2021-01-07 Entegris, Inc. Methods of using laser energy to remove particles from a surface

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333038A (ja) * 1989-06-28 1991-02-13 Nippon Sheet Glass Co Ltd 板ガラスの表面改質法
JPH0515474A (ja) * 1991-07-09 1993-01-26 Hirokazu Nishiyama ガラス表面に付着する異物の除去方法
JPH09295832A (ja) * 1996-04-26 1997-11-18 Asahi Glass Co Ltd ガラス基板表面の異物除去方法
JPH1085684A (ja) * 1996-09-11 1998-04-07 Asahi Glass Co Ltd フロートガラス基板表面の異物除去方法
US20020010066A1 (en) * 2000-06-01 2002-01-24 Asahi Glass Company, Limited Glass for substrate and glass substrate
US6500778B1 (en) * 1999-08-24 2002-12-31 Asahi Glass Company, Limited Glass substrate for a display

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897371A (en) * 1987-02-03 1990-01-30 Nippon Sheet Glass Co., Ltd. Glass article protected from coloring by electron rays and method of using
JPH10513314A (ja) * 1995-11-24 1998-12-15 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 金属層を非金属基板から選択的に除去する方法
JPH09295833A (ja) 1996-04-26 1997-11-18 Seimi Chem Co Ltd フロートガラス基板の平坦化方法
DE19855623C1 (de) * 1998-12-02 2000-02-24 Lpkf Laser & Electronics Ag Verfahren zur Erzeugung einer Markierung in einem Glaskörper
EP1166358B1 (de) * 1999-04-07 2012-03-14 Saint-Gobain Glass France S.A. Verfahren zum abtragen von dünnen schichten auf einem trägermaterial
JP4635297B2 (ja) 1999-06-08 2011-02-23 旭硝子株式会社 基板用ガラスおよびガラス基板
DE10017701C2 (de) * 2000-04-08 2002-03-07 Schott Glas Gefloatetes Flachglas
JP2001348246A (ja) * 2000-06-01 2001-12-18 Asahi Glass Co Ltd 基板用ガラスおよびガラス基板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333038A (ja) * 1989-06-28 1991-02-13 Nippon Sheet Glass Co Ltd 板ガラスの表面改質法
JPH0515474A (ja) * 1991-07-09 1993-01-26 Hirokazu Nishiyama ガラス表面に付着する異物の除去方法
JPH09295832A (ja) * 1996-04-26 1997-11-18 Asahi Glass Co Ltd ガラス基板表面の異物除去方法
JPH1085684A (ja) * 1996-09-11 1998-04-07 Asahi Glass Co Ltd フロートガラス基板表面の異物除去方法
US6500778B1 (en) * 1999-08-24 2002-12-31 Asahi Glass Company, Limited Glass substrate for a display
US20020010066A1 (en) * 2000-06-01 2002-01-24 Asahi Glass Company, Limited Glass for substrate and glass substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006003878A1 (de) * 2006-01-27 2007-08-09 Schott Ag Verfahren zum Verbessern der Oberflächenqualität von gefloatetem Flachglas
DE102006003878B4 (de) * 2006-01-27 2010-09-02 Schott Ag Verfahren zum Verbessern der Oberflächenqualität von gefloatetem Flachglas

Also Published As

Publication number Publication date
KR20050094423A (ko) 2005-09-27
US20060032842A1 (en) 2006-02-16
US7767929B2 (en) 2010-08-03

Similar Documents

Publication Publication Date Title
KR101998761B1 (ko) 투명 재료 내에 레이저 필라멘테이션을 형성하기 위한 방법 및 장치
RU2226183C2 (ru) Способ резки прозрачных неметаллических материалов
TW201404735A (zh) 強化玻璃板之切斷方法
JP2002265233A (ja) レーザ加工用母材ガラスおよびレーザ加工用ガラス
US7767929B2 (en) Method for removing foreign matter on glass substrate surface
JP7151856B2 (ja) ガラス物品
JP2007157659A (ja) 有機el素子の配線パターンの形成方法及び有機el素子の形成装置
JP4734569B2 (ja) ガラス材料の加工法
Balage et al. Crack-free high-aspect ratio holes in glasses by top–down percussion drilling with infrared femtosecond laser GHz-bursts
Xu et al. F 2-laser patterning of indium tin oxide (ITO) thin film on glass substrate
KR100636852B1 (ko) 모드라킹된 자외선 레이저를 이용한 유리기판의 스크라이빙방법 및 절단 방법
JP2001300749A (ja) レーザ加工方法、レーザ加工物の製造方法及びクリーニング方法
Horisawa et al. Surface machining characteristics of sapphire with fifth harmonic YAG laser pulses
Mishchik et al. Ultrashort pulse laser cutting of glass by controlled fracture propagation
Bonse et al. Structuring of thin films by ultrashort laser pulses
JP2005289685A (ja) レーザー照射で異質相が形成されてなる強化ガラス
JP4400224B2 (ja) ガラス基板表面の異物除去方法
Sundar et al. Excimer laser decoating of chromium titanium aluminium nitride to facilitate re-use of cutting tools
US20120318776A1 (en) Method and apparatus for machining a workpiece
Shaheen et al. Morphological and ablation characteristics of brass and fused silica after interaction with ArF excimer laser
Zhou et al. Simulation study and experiment on laser-ablation surface cleaning
Ito et al. Multi-timescale observation of ultrashort pulse laser ablation of copper
Shin et al. A study on the effect of Cu reflector in glass drilling using a pulsed NIR laser
KR20180066205A (ko) 인듐 오버레이를 함유하는 얇은 층들의 스택의 급속 어닐링 방법
Ozkan et al. Glass processing using microsecond, nanosecond and femtosecond pulsed lasers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057012374

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11196401

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057012374

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11196401

Country of ref document: US

122 Ep: pct application non-entry in european phase