WO2004060843A1 - アルコール及び/又はケトンの製造方法 - Google Patents

アルコール及び/又はケトンの製造方法

Info

Publication number
WO2004060843A1
WO2004060843A1 PCT/JP2003/016722 JP0316722W WO2004060843A1 WO 2004060843 A1 WO2004060843 A1 WO 2004060843A1 JP 0316722 W JP0316722 W JP 0316722W WO 2004060843 A1 WO2004060843 A1 WO 2004060843A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
reaction
amount
reactor
oxide catalyst
Prior art date
Application number
PCT/JP2003/016722
Other languages
English (en)
French (fr)
Inventor
Takashi Tsunoda
Kenji Akagishi
Atusi Watanabe
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to US10/541,367 priority Critical patent/US7291755B2/en
Priority to JP2004564523A priority patent/JP4547270B2/ja
Priority to EP03786307A priority patent/EP1582510A4/en
Priority to AU2003296112A priority patent/AU2003296112A1/en
Publication of WO2004060843A1 publication Critical patent/WO2004060843A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/10Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxidation of hydrocarbons
    • C07C27/12Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxidation of hydrocarbons with oxygen
    • C07C27/14Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxidation of hydrocarbons with oxygen wholly gaseous reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/03Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2
    • C07C29/04Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2 by hydration of carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • C07C29/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups with molecular oxygen only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/002Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by dehydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/28Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of CHx-moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a process for producing the corresponding alcohol and z or ketone from alkenes in the gas phase using an oxide catalyst in the presence of steam.
  • Examples of the production of the corresponding alcohols and z or ketones from alkenes by gas phase reaction in the presence of steam include, for example, the production of acetone from propylene, the methyl ethyl ketone from 1-butene or 2-butene (MEK) And cyclohexanone from cyclohexene, and tert-butanol from isobutene. All of these products are industrially very important chemical substances as chemical starting materials and solvents.
  • the prior art of the above reaction mainly includes a Picker-type reaction using a noble metal catalyst such as a palladium compound, and a reaction using a composite oxide catalyst of a non-noble metal such as molybdenum, tungsten, tin, and cobalt. No.
  • Examples of the former Pecker-type reaction include the use of a catalyst in which palladium and Z or a palladium compound and copper chloride are supported on a carrier such as silica or alumina, in the presence of olefin, oxygen, and water vapor to form a carbonyl derivative.
  • a catalyst in which palladium and Z or a palladium compound and copper chloride are supported on a carrier such as silica or alumina, in the presence of olefin, oxygen, and water vapor to form a carbonyl derivative.
  • JP-A-49-72209 disclose the production of methylethyl ketone (MEK) from 1-butene using a catalyst in which palladium chloride and copper chloride are supported on silica. .
  • a salted product is not used as a catalyst
  • palladium is used as a catalyst in producing gaseous aldehydes or ketones by subjecting olefins to gas phase oxidation with oxygen or an oxygen-containing gas in the presence of steam.
  • a catalyst in which a salt and a vanadyl salt are supported on activated carbon see, for example, JP-A-59-163335.
  • Japanese Patent Application Laid-Open No. 59-163335 discloses an example in which acetone is produced from propylene using a catalyst in which palladium sulfate and vanadyl sulfate are supported on activated carbon.
  • these catalysts use very expensive noble metals, and according to additional tests by the present inventors, both catalysts showed degradation of activity in a short time.
  • an example of the latter without using a noble metal catalyst is that molybdic acid and fine particles of tin oxide uniformly distributed on a carrier and a catalyst consisting of power are used to convert olefin and oxygen in the presence of water vapor.
  • a noble metal catalyst See, for example, Japanese Patent Publication No. 47-84046.
  • acetone is produced from propylene using a catalyst in which tin dioxide and molybdenum trioxide are supported on silica.
  • JP-A-49-61112 there is a description that MEK is produced from transbutene using a catalyst in which tin dioxide, molybdenum trioxide and sodium are supported on silica.
  • Another method is to use a similar catalyst and alternately contact a gas consisting of olefin and water vapor containing a small amount of oxygen in the reaction raw material with a gas containing a large amount of oxygen (see, for example, — See 3 4 6 52 2).
  • Examples of the publication of Japanese Examined Patent Publication No. 493-134652 include production of MEK from n-butene using a catalyst in which tin dioxide and molybdenum trioxide are supported on silica.
  • the present invention relates to a reaction for producing a corresponding alcohol and / or ketone from an alkene in a gas phase using an oxide catalyst in the presence of water vapor, the production of a carbonaceous substance that accumulates on the catalyst during the reaction. It is an object of the present invention to provide a production method in which the selectivity of a target product (alcohol and Z or ketone) is significantly improved while suppressing the production.
  • the present inventors have conducted intensive studies in order to solve the above-mentioned problems. It has been found that using a catalyst containing oxides of butene and / or tin and (b) controlling the amount of carbonaceous material on the catalyst to a specific range may be suitable for the purpose, The present invention has been accomplished based on this finding.
  • the present invention relates to a manufacturing method described below.
  • the oxide catalyst is the oxide catalyst
  • the accumulation amount of the carbonaceous substance on the oxide catalyst is controlled in a range of 0.1 to 10% by mass
  • the oxide catalyst used for the reaction is withdrawn from the reactor, and the oxide catalyst is regenerated in the presence of an oxygen-containing gas. (1) above or using a catalyst circulation system that returns the product catalyst to the reactor again
  • the amount of the oxide catalyst returned to the reactor is in the range of 0.5 to 100, and is described in any one of the above items (3) to (5). the method of.
  • Atomic ratio of molybdenum to tin in the oxide catalyst X ⁇ Mo / (S n + Mo);
  • Mo is the number of molybdenum atoms in the oxide catalyst
  • Sn is the number of tin atoms in the oxide catalyst.
  • the raw material containing 1-butene and Z or 2-butene as an alkene contains at least one or more selected from the group consisting of isopten, butadiene, tert-butylalcohol, methinolate tert-butylether, The method described in (14) above.
  • the catalyst used in the method of the present invention is a catalyst containing an oxide of molybdenum and / or tin. These oxides may be used alone, but by using both molybdenum and tin oxides as a mechanically mixed and Z or composite oxide, the catalytic activity and selectivity of the target product can be improved. It is effective and more preferable. Further, oxides of other elements can be added in order to further improve the catalytic activity and the selectivity of the target product.
  • Elements belonging to the fourth, fifth, sixth, eighth, ninth, tenth, tenth, eleventh, fourteenth, and fifteenth groups of the periodic table are preferred, and more preferably,
  • the Group 4 elements are titanium and zirconium, the Group 5 elements are vanadium and niobium, the Group 6 elements are tungsten and chromium, the Group 8 elements are iron, and the Group 9 elements are cobalt.
  • Group 10 elements are nickel, Group 11 elements are copper, Group 14 elements are lead, and Group 15 elements are bismuth, antimony, and phosphorus.
  • the periodic table referred to here is the Periodic Table of the Group 18 elements described on page 56 of the Basic Handbook of Chemical Chemistry, I revised 4th edition (edited by The Chemical Society of Japan, Maruzen, 1993). If it is a trace amount, an oxidized product of an alkali metal such as sodium, potassium or rubidium or an alkaline earth metal such as magnesium, calcium or barium may be further added.
  • these acids are used by being supported on a suitable carrier.
  • a suitable carrier inorganic oxides such as silica, silica alumina, alumina, titania, silica titania, zirconia, and silica zirconia are preferable, and silica is particularly preferable.
  • clay such as kaolin or talc may be added to increase the mechanical strength of the catalyst.
  • the oxide catalyst contains an oxide of molybdenum and tin
  • ⁇ Force S preferably in the range other than 0.29 and 0.51; more preferably in the range 0 ⁇ X ⁇ 0.50 (excluding 0.29); 0.011 ⁇ X ⁇ 0.24 Is more preferable, the range of 0.05 ⁇ X ⁇ 0.24 is still more preferable, and the range of 0.08 ⁇ X ⁇ 0.15 is particularly preferable.
  • the catalyst preparation mainly includes 1) a step of preparing a catalyst raw material solution, 2) a step of drying the catalyst raw material solution, and a step of calcining the catalyst precursor.
  • the term “oxide” includes the complex oxide.
  • a salt or compound that forms an oxide at 200 to 100 ° C. is used.
  • commercially available oxides can be used as they are.
  • one or more of the raw materials is sufficiently dissolved in water or a suitable solvent at 20 to 80 ° C.
  • the liquid property of the solution may be controlled to be acidic or alkaline! / ,.
  • hydrogen peroxide or the like may be added.
  • the raw material solution may be dried as it is, it is preferable that the raw material solution is sufficiently mixed with a powder, a solution, a sol, a gel, or the like containing a carrier component, in order to be supported on an appropriate carrier as described above.
  • the oxide material when nitrate, sulfate, chloride, or the like is used as the oxide material, corrosive gas is generated in the subsequent firing step, so that it is preferable to add ammonia water to convert to hydroxide.
  • the liquid property of the mixed solution may be adjusted to an acidic alkaline property.
  • the catalyst raw material solution (hereinafter, the term “catalyst raw material solution” also includes the case where a carrier component is included) is obtained by removing the solvent by force drying to obtain a catalyst precursor, followed by calcination, etc. And converting the catalyst into an acid catalyst.
  • the method for drying the catalyst raw material solution is not particularly limited.
  • a method in which the solvent is removed from the catalyst raw material solution under reduced pressure at 50 to 90 ° C. by an evaporator and then dried at 50 to 150 ° C. for 1 to 48 hours in a vacuum dryer A method of spraying and drying the catalyst raw material solution on a hot plate heated to 50 to 300 ° C. with a nozzle, a method of drying using a spray drier (spray hot air drier), and the like.
  • Industrially spray Drying with one drier is preferred.
  • the spray drier is a hot air drier consisting of a drying chamber, a raw material liquid fog section, hot air intake * exhaust section, and a dry powder recovery section.
  • Preferred spray drying conditions are as follows.
  • the catalyst raw material solution is supplied using a pump. Then, it is sprayed into the drying chamber by a rotary atomizer (centrifugal atomizer), pressurizing nozzle, two-fluid nozzle (gas atomizer), etc.
  • the sprayed droplets of the catalyst raw material solution are brought into contact with hot air controlled at an inlet temperature of 150 to 500 ° C. in countercurrent or cocurrent to evaporate the solvent, and are recovered as a dry powder.
  • firing is performed in an electric furnace at 400 to 100 ° C. for 0.5 to 48 hours under a flow of an inert 1 ′′ raw gas such as nitrogen and a Z or oxygen-containing gas.
  • treatment may be performed with steam at 150 to 500 ° C for 0.5 to 48 hours before or after calcination.
  • the catalyst of the present invention is formed into a columnar shape, a cylindrical shape, a spherical shape, or the like by a known molding method such as tablet molding, extrusion molding, spray molding or the like, depending on the type of the reaction, and then subjected to the reaction.
  • the shaping may be performed on the catalyst precursor or may be performed after calcination.
  • the reaction of the present invention is carried out in a fluidized bed reaction mode, the catalyst raw material solution is dried using a spray drier and shaped.
  • Particularly preferred is a method of obtaining the catalyst precursor and calcining the mixture at 500 to 800 ° C. for 1 to 24 hours while flowing an oxygen-containing gas.
  • the catalyst used in the reaction of the present invention is a catalyst in which the accumulated amount of carbonaceous material (defined below) on the catalyst during the reaction is controlled in the range of 0.1 to 10% by mass.
  • the carbonaceous material mentioned here is a heavy material mainly composed of carbon, which accumulates on the catalyst by a chemical reaction via an organic compound, and accumulates without scattering from the catalyst during the reaction.
  • heavy substances that accumulate on the catalyst when producing the corresponding alcohol and Z or ketone from the alkene, or by contact with a highly reactive organic compound separately from the reaction are highly reactive organic compound separately from the reaction.
  • the range of the amount of carbonaceous material accumulated on the catalyst needs to be controlled in the range of 0.1 to 10% by mass as described above, and preferably 0.3 to 8% by mass. And more preferably 0.3 to 5% by mass, and still more preferably 0.5 to 5% by mass. %, Particularly preferably 1 to 5% by mass. If the amount of accumulated carbonaceous material is less than 0.1% by mass, the effect of suppressing the formation of carbonaceous material due to the reaction described below tends to be insufficient, and if it exceeds 10% by mass, the catalytic activity is insufficient. It tends to be.
  • the amount of carbonaceous material accumulated on the catalyst is defined by the following formula, using a CHN coder used for organic elemental analysis to measure the carbon mass of the catalyst in which the carbonaceous material is accumulated.
  • Amount of carbonaceous material accumulated on the catalyst (% by mass) BZ (A— B) XI 0 0
  • the analysis conditions of the CHN coder could be the general measurement conditions of the CHN coder, but specifically, Samples of several mg to several tens of mg (depending on the amount of carbonaceous material accumulated on the catalyst) were analyzed in a helium stream containing a certain amount of oxygen gas in a combustion furnace at 850 ° C. The organic component is burned, and the mass of carbon is measured from the combustion gas.
  • the method of controlling the amount of carbonaceous material accumulated on the catalyst can be controlled within the above range by selecting appropriate reaction conditions represented by the reaction conditions described in the present specification, for example.
  • the catalyst when regenerating the catalyst after the reaction in which the carbonaceous substance has accumulated on the catalyst, for example, by selecting appropriate regeneration conditions typified by the regeneration conditions described in this specification, the catalyst is again subjected to the reaction.
  • the amount of carbonaceous material accumulated on the regenerated catalyst By controlling the amount of carbonaceous material accumulated on the regenerated catalyst, the amount of carbonaceous material accumulated on the catalyst in the reactor can be controlled within the above range.
  • the reaction to produce the corresponding alcohol and z or ketone from the alkene is performed by circulating the catalyst between the fluidized bed reactor and the regenerator, return from the regenerator to the reactor under the following regeneration conditions It is preferable to control the amount of carbonaceous material accumulated on the catalyst within the above range. That is, the oxygen gas concentration is maintained at 100 to 550 ° C. for 10 seconds to 10 hours in an atmosphere containing oxygen gas having an oxygen gas concentration of 10 to 21% by volume.
  • the temperature is more preferably from 270 to 550 ° C, and particularly preferably from 270 to 500 ° C. Below 270 ° C, the recovery of catalytic activity tends to be inadequate when the reaction conditions used are severe, and above 550 ° C, the carbonaceous material on the catalyst is completely (Ie, below the lower limit of the range specified in the present invention).
  • lattice oxygen of an oxide catalyst is used as an oxygen source during the reaction.
  • treatment under the above-mentioned regeneration conditions is preferable because lattice oxygen can be replenished at the same time.
  • Another method is to control the amount of carbonaceous material accumulated on the catalyst by contacting the catalyst with a reactive organic compound such as aromatic hydrocarbons or gens under appropriate processing conditions. (For example, treatment at 130 to 500 ° C. in a gaseous atmosphere of the above compound is preferable).
  • reaction conditions, regeneration conditions, treatment conditions, etc. are appropriately selected, and the amount of carbonaceous material accumulated on the catalyst can be controlled within the range of 0.1 to 10% by mass during the reaction. is important.
  • a fresh catalyst or a catalyst that has little or no carbonaceous material accumulated on the catalyst ie, a catalyst in which the amount of carbonaceous material accumulated on the catalyst falls below the lower limit of the range specified by the present invention
  • the yield of the target product with respect to the supplied alkene that is, the selectivity of the target product in the product
  • the yield of the target product with respect to the supplied alkene is significantly reduced because the amount of the carbonaceous substance generated by the reaction and accumulated in the catalyst is extremely large.
  • the catalyst of the present invention in which the amount of carbonaceous material accumulated is controlled to be in a specific range can significantly suppress the accumulation of carbonaceous material produced by the reaction on the catalyst, and consequently the target product Can be greatly improved. Moreover, the productivity of the target product can be made comparable to that of a fresh catalyst by using the catalyst of the present invention.
  • the catalyst is frequently regenerated in an atmosphere containing oxygen gas in order to maintain catalytic activity. Must. This is because it is necessary to supplement the lattice oxygen of the oxide catalyst used as the oxygen source for the reaction.
  • the method of the present invention is a reaction in which a raw material containing an alkene is brought into contact with an oxide catalyst in a gas phase in the presence of steam to carry out a reaction and produce a corresponding alcohol and Z or ketone from the alkene.
  • the present inventors first produced an alcohol by a hydration reaction between the alkene and water vapor, and then produced the alcohol and gaseous molecular oxygen or solid oxygen (ie, It is presumed that ketones are formed by the oxidative dehydrogenation reaction with the lattice oxygen of the oxide catalyst).
  • the alkene contained in the reaction raw material preferably includes propylene, 1-butene, 2-butene (cis and / or trans), pentene, hexene, cyclohexene, heptene, otaten, cyclootaten and the like. More preferred are propylene, 1-butene, 2-butene (cis and Z or trans) and cyclohexene, and particularly preferred are 1-butene and 2-butene (cis and / or trans). These may be used alone or in combination of two or more.
  • Butaje switch (1, 2-butadiene and / or 1, 3-butadiene) by extraction from C 4 fraction obtained by thermal cracking of naphtha for industrial or C 4 Rafuine one toe 1 except the, C 4 raffinate an 1 is reacted with H 2 0 or methanol, C 4 raffinate one 2 except converted to the tert- butyl alcohol or methyl-tert- Buchirue one ether
  • Isobuten included is a useful raw material.
  • 1 mol or less preferably 0.5 mol or less, more preferably 0.1 mol or less, particularly preferably 1 mol or less per mol of 1-butene and Z or 2-butene.
  • Isobutene, butadiene, tert-butyl alcohol, methyl-tert-butyl ether and the like may be contained within the range of 0.05 mol or less. This is a beneficial feature that can reduce raw material refining costs.
  • a gas inert to the reaction such as nitrogen gas, argon gas, carbon dioxide gas, methane gas, ethane gas, propane gas, butane gas or the like may be mixed and brought into the reaction raw material as a diluting gas or carrier gas.
  • the amount of steam supplied to the reactor / the amount of alkene supplied to the reactor is preferably in the range of 0.05 to 10.0, and more preferably in the range of 0.2 to 5.0. And particularly preferably in the range of 0.5 to 2.0. If the molar ratio is less than 0.05, the reaction rate tends to decrease, and if the molar ratio is too high, the reaction rate tends to increase. Extra energy is needed.
  • Molecular oxygen may or may not be present in the above reaction. As described above, the present inventors presume that when molecular oxygen is not present in the gas phase, lattice oxygen of the oxide catalyst is used as the oxygen source for the reaction.
  • the amount of oxygen gas supplied to the reactor / the amount of alkene supplied to the reactor is preferably in the range of 0.0 to 5.0, more preferably 0.0 to 1.0. Within the range, more preferably within the range of 0.0 to 0.5, and particularly preferably within the range of 0.0 to 0.3. Excess oxygen tends to decrease the selectivity of the desired product in the product.
  • the molar ratio of 0.0 means that molecular oxygen is not present and lattice oxygen of the oxide catalyst is used for the reaction. In the reaction of the present invention, it is most preferable that this molecular oxygen is not present.
  • WH SV weight hourly space velocity
  • Weight space velocity (WHSV) is defined by the following equation.
  • WHS V (Hr — 1 ) Alkene supply amount (KgZHr) / catalyst amount (Kg)
  • the preferred range of the reaction temperature varies depending on the raw material, but generally 130 to 500 ° C. is preferred.
  • the temperature is more preferably from 200 to 450 ° C, and particularly preferably from 230 to 350 ° C.
  • the reaction pressure is not particularly limited. It is preferably from 0.01 to 1 MPa, more preferably from 0.03 to 0.5 MPa, and particularly preferably from 0.05 to 0.3 MPa.
  • the reaction system used in the method of the present invention includes a fixed bed reaction system, a moving bed reaction system, a fluidized bed reaction system and the like.
  • a fluidized bed reaction system in which the reaction temperature can be easily controlled is preferable.
  • the catalyst used for the reaction is continuously or intermittently withdrawn to the regenerator while the reaction is carried out in a fluidized bed reaction method, regenerated under the conditions described above, and the catalyst returned from the regenerator to the reactor is returned to the reactor. Replenish the lattice oxygen.
  • the amount of the oxide catalyst returned to the reactor / the amount of the alkene supplied to the reactor is preferably 0.5 to 100, more preferably 2 to 100, and particularly preferably. Is from 100 to 100. If the mass ratio is less than 0.5, the steady-state activity of the catalyst tends to be low, and if it is 100 or more, the effect of increasing the steady-state activity of the catalyst tends to be small.
  • the catalyst In the fluidized bed reactor or the catalyst regenerator, the catalyst is continuously or intermittently supplied or discharged, so the internal catalyst is stirred by the flowing gas, but the amount of carbonaceous material accumulated on the catalyst May result in a local distribution of In such a case, a homogeneous sample is obtained as much as possible by sampling the catalyst from the line that extracts the catalyst from the reactor to the regenerator or the line that returns the catalyst from the regenerator to the reactor, and accumulates on the catalyst. By measuring the amount of carbonaceous material collected, the amount of carbonaceous material accumulated on the catalyst in the reactor or from the regenerator to the reactor is defined. Specifically, it is preferable to sample at least 1 g of the catalyst and at least three samples, measure the amount of each carbonaceous substance, and take the arithmetic average.
  • Figure 1 shows a schematic diagram of a fluidized bed reactor and a catalyst regenerator. That is, sampling the catalyst from S 2 of S l catalyst recycle line 2 in and withdrawing the catalyst drawing lines 1, measuring the carbonaceous material amount accumulated on the catalyst.
  • the carbonaceous material amount accumulated on the catalyst in the reactor is from 0.1 to 1 0 wt 0/0, so preferably 0. It I is controlled to a range of 3-5 wt% , According, if carbonaceous or material weight in the range of the average is the range of the carbonaceous material of the sample from the S 1 beauty S 2 samples from S E and / or S 2. Alcohol and / or ketone is recovered from the reaction mixture containing alcohol and / or Z or ketone obtained by the above-mentioned reaction by known recovery, separation and purification operations such as cooling, distillation and extraction. it can. Unreacted alkenes can be recycled as needed after separation from the reaction mixture and recycled as necessary.
  • the recovered water obtained after cooling or liquefying all or part of the steam supplied to the reaction can be reused in the reaction even if it contains a certain amount of reaction by-products.
  • recovered water containing by-products such as acetone and acetic acid by-produced by the reaction of 1-butene can be reused in the reaction. This is a useful feature that can greatly reduce the burden of wastewater treatment.
  • the reaction mixture when producing MEK from 1-butene and / or 2-butene, the reaction mixture is cooled and the MEK and water vapor are condensed. After gas-liquid separation, MEK is recovered from the pseudo-liquor by distillation. All or part of the recovered water, including by-products after the recovery of MEK, is recycled back to the reactor as steam.
  • the non-condensed gas phase is compressed and cooled to liquefy and recover the MEK entrained in the gas phase, and unreacted 1-butene and / or 2-butene is separated from light gases such as carbon dioxide, Recycle the reactor.
  • FIG. 1 is a schematic diagram of a reactor and a regenerator when the reaction of the present invention is carried out by a fluidized bed reaction by a catalyst circulation system. Among them, 1 indicates the catalyst extraction line, and 2 indicates the catalyst recycling line.
  • the analyzer used and the analysis conditions are described below.
  • Catalyst B having a different composition was prepared in substantially the same manner as in Reference Example 1.
  • the composition of this catalyst B is SnO. 48% by mass, Mo 0 3 1 1% by mass 1 %, Si 0 2 4 1% by mass Was.
  • the Mo / (Sn + Mo) atomic ratio of this catalyst B was 0.19, and it had a smooth spherical shape suitable for a fluidized bed catalyst and had sufficient mechanical strength.
  • Catalyst C having a different composition was prepared in substantially the same manner as in Reference Example 1. This set configuration of Catalyst C, S n O 2 65% by mass, M o O 3 5% wt%, and the S i O 2 30% by weight.
  • the Mo / (Sn + Mo) atomic ratio of this catalyst C was 0.07, and it had a smooth spherical shape suitable for a fluidized bed catalyst and had sufficient mechanical strength.
  • Catalyst D was prepared in substantially the same manner as in Reference Example 1. The composition of this catalyst D is
  • Mo / (Sn + Mo) of the fluidized bed catalyst is preferably less than 0.50, more preferably 0.24 or less.
  • Catalyst E composed of acid and Cr and Mo was prepared in substantially the same manner as in Reference Example 1 except that chromium trichloride hexahydrate was used in place of stannic salt pentahydrate.
  • the composition of this catalyst E is, C r 2 O 3 42 wt%, Mo Og 1 7% wt%, and the S i O 2 41 weight 0/0.
  • the Mo / (Cr + Mo) atomic ratio of this catalyst E was 0.18, and it had a smooth spherical shape suitable for a fluidized bed catalyst and had sufficient mechanical strength.
  • Catalyst F composed of oxides of Ti and Mo was prepared in substantially the same manner as in Reference Example 1, except that tetrachloride titanium was used instead of stannic salt pentahydrate.
  • the composition of this catalyst F is, T i O 2 44 weight 0/0, M o O 3 1 7% by weight 0/0, S I_ ⁇ 2 39 weight 0 /. Met.
  • the catalyst F had a Mo / (T i + Mo) atomic ratio of 0.18, had a smooth spherical shape suitable for a fluidized bed catalyst, and had sufficient mechanical strength.
  • Catalyst G consisting solely of Sn oxidized product was prepared in substantially the same manner as in Reference Example 1 except for removing the molybdate ammonium.
  • the composition of this catalyst G is Sn_ ⁇ 2 45 mass %, And Si0 2 55% by mass.
  • This catalyst G had a smooth sphere suitable for a fluidized bed catalyst, and had sufficient mechanical strength.
  • Catalyst H was prepared in substantially the same manner as in Reference Example 1, except that alumina sol was used as a part of the carrier.
  • the composition of the catalyst H is, S N_ ⁇ 2 51 mass 0/0, Mo 0 3 7 wt%, S 1_Rei 2 28 wt%, and the A 1 2 0 3 14 mass 0/0.
  • This catalyst H had a Mo Z (S n + Mo) atomic ratio of 013, had a smooth spherical shape suitable for a fluidized bed catalyst, and had a higher mechanical strength than a carrier having only a sily force.
  • a reactor consisting of a fluidized bed reactor and a catalyst regenerator as shown in Fig. 1 is charged with catalyst A, and the reaction and catalyst regeneration are continuously performed while circulating catalyst A between the reactor and the regenerator.
  • the fluidized bed reaction was carried out in a manner.
  • the reaction temperature was 250 ° C.
  • a gas mixture of air and N 2 was supplied to the regenerator.
  • the regeneration temperature was 320 ° C.
  • the ratio of the amount of catalyst circulated (that is, the amount of catalyst returning from the regenerator to the reactor) for one supplied feedstock is 15 (mass ratio), and the amount of carbonaceous material accumulated on the catalyst returning from the regenerator to the reactor is 3 It was 5% by mass.
  • the above reaction was continued for about 10 hours, and a part of the result of the reaction for an arbitrary hour is shown in Table 1. The reaction results were almost constant during the reaction.
  • the amount of ME K generated (Cmo 1): The amount of ME K generated in one hour
  • 2-Butene a product of the 1-butene isomerization reaction, was treated as an unreacted product because it can be reused as a raw material.
  • the by-products in the table C_ ⁇ 2, co, acetone, acetic acid, butyl alcohol, is 5 or more oligomers first class carbon.
  • the carbonaceous substance selectivity in the table is the selectivity of the carbonaceous substance newly generated by the reaction.
  • Example 1 Except that the regeneration temperature was set at 600 ° C., a fluidized bed reaction using a catalyst circulation system was performed under substantially the same conditions as in Example 1. At this time, the accumulated amount of the carbonaceous substance on the catalyst returned to the reactor from the regenerator was 0.03% by mass, and the carbonaceous substance on the catalyst was almost completely removed. The above reaction was continued for about 10 hours, and a part of the reaction results for an arbitrary hour is shown in Table 1. The reaction results were almost constant during the reaction.
  • Example 1 From a comparison between Example 1 and Comparative Example 1, the amount of MEK produced was controlled by controlling the amount of carbonaceous material accumulated on the catalyst returning from the regenerator to the reactor in the range of 0.1 to 10% by mass. Nevertheless, it can be seen that the suppression of the formation of new carbonaceous materials greatly improved the selectivity of MEK.
  • Example 2 the value of the MEK selectivity excluding the generated carbonaceous material, which indicates the purity of the generated MEK, is extremely high, indicating that the separation and purification of MEK are easy.
  • Example 2 the value of the MEK selectivity excluding the generated carbonaceous material, which indicates the purity of the generated MEK, is extremely high, indicating that the separation and purification of MEK are easy.
  • a catalyst-circulating fluidized bed reaction was performed under substantially the same conditions as in Example 1 except that the amount of air supplied to the regenerator was reduced. At this time, the accumulated amount of carbonaceous material on the catalyst returning to the reactor from the regenerator was 3.3% by mass.
  • the above reaction was continued for about 10 hours, and a part of the reaction results for an arbitrary hour is shown in Table 1. The reaction results were almost constant during the reaction.
  • the regeneration temperature was set at 280 ° C, and the catalyst
  • the fluidized bed reaction of the catalyst circulation system was performed under almost the same conditions as in Example 1 except that the ratio of the circulation amount was set to 60 (mass ratio). At this time, the accumulated amount of carbonaceous material on the catalyst returning from the regenerator to the reactor was 3.7% by mass.
  • the above reaction was continued for about 10 hours, and a part of the reaction results for an arbitrary hour is shown in Table 1. The reaction results were almost constant during the reaction.
  • Example 5 Example in which the amount of accumulated carbonaceous material is 0.5% by mass using catalyst B
  • Example 7 (Example of reusing a reaction recovery solution containing a reaction by-product)
  • a fluidized bed reaction using a catalyst circulation system was carried out under substantially the same conditions as in Example 1 except that the residual liquid obtained by distilling and separating MEK from the reaction solution of Example 1 was used instead of water.
  • This residue contained 4% by mass of acetic acid as a by-product and 0.5% by mass of high-boiling components.
  • the accumulated amount of the carbonaceous substance on the catalyst returning from the regenerator to the reactor was 3.5% by mass.
  • the above reaction was continued for about 10 hours, and a part of the reaction results for an arbitrary hour is shown in Table 1. The reaction results were almost constant during the reaction.
  • Example 8 Example in which the raw material is changed to C 4 rough rice 1 to 2
  • Example 10 (Example using Mo, Cr oxidizing catalyst E)
  • a fluidized bed reaction using a catalyst circulation system was carried out under substantially the same conditions as in Example 1 except that the catalyst E was used. At this time, the accumulated amount of the carbonaceous substance on the catalyst returned to the reactor from the regenerator was 3.3% by mass.
  • the above reaction was continued for about 10 hours, and a part of the reaction results for an arbitrary hour is shown in Table 1. The reaction results were almost constant during the reaction.
  • Example 11 (Example using Mo, Ti acid catalyst F)
  • a fluidized bed reaction of a catalyst circulation system was performed under substantially the same conditions as in Example 1 except that catalyst F was used. At this time, the accumulated amount of the carbonaceous substance on the catalyst returned to the reactor from the regenerator was 3.7% by mass. The above reaction was continued for about 10 hours, and a part of the reaction result for an arbitrary hour is shown in Table 1. The reaction results were almost constant during the reaction.
  • Example 12 (Example using catalyst G containing only Sn oxide)
  • Example 13 Example using a silica-alumina catalyst
  • a fluidized bed reaction using a catalyst circulation system was performed under substantially the same conditions as in Example 1 except that the catalyst H was used. At this time, the accumulated amount of the carbonaceous substance on the catalyst returned from the regenerator to the reactor was 4.2% by mass. The above reaction was continued for about 10 hours, and a part of the reaction result for an arbitrary hour is shown in Table 1. The reaction results were almost constant during the reaction.
  • Example 14 Example of pretreating catalyst to accumulate carbonaceous material
  • a pretreatment device was provided between the regenerator and the reactor, and the reaction was performed in substantially the same manner as in Example 1.
  • the regeneration temperature was 600 ° C., and the amount of carbonaceous material accumulated on the catalyst from the regenerator to the pretreatment device was almost completely removed as in Comparative Example 1.
  • This catalyst was treated in a pretreatment device with 30 volumes of benzene 0 /. , 1, 2-, 1, 3-butadiene 20 volume 0 /.
  • Was accumulated carbonaceous material on the catalyst is contacted with gas and 3 5 0 ° C consisting of N 2 5 0 Capacity%.
  • the amount of carbonaceous material accumulated on the catalyst returning from the pretreatment device to the reactor was 2.0% by mass.
  • the above reaction was continued for about 10 hours, and a part of the reaction results for an arbitrary hour is shown in Table 1. The reaction results were almost constant during the reaction.
  • Example 1 A 0.13 3.5 15 0.0 2.0 320 632 86 4 10 95.6 Comparative Example 1 A 0.13 0.03 15 0.0 2.0 600 624 50 4 4S 92.6 Example 2 A 0.13 3.3 15 0.0 2.0 320 520 90 4 6 95.7 Example 3 A 0.13 3.1 15 0.0 1.0 320 648 91 3 6 96.8 Example 4 B 0.19 3.7 60 0.0 2.0 280 616 85 5 10 94.4 Example 5 B 0.19 0.5 15 0.0 2.5 500 376 70 5 25 93,3 Example 6 C 0.07 2.5 0.5 0.2 2.0 280 500 86 10 4 89.6 Example 7 A 0.13 3.5 15 0.0 2.0 320 640 86 4 10 95.6 Example 8 A 0.13 '4.5 15 0.0
  • Catalyst Catalyst composition anti] 3 ⁇ 4, 3 ⁇ 4 To catalyst circulation amount ⁇ 2 Steam regeneration MEK MEK By-product Carbonaceous material MEK * 1
  • Example 11 In Example 11 only, the total value of MEK and butanol is shown. That is, the amount of MEK production is the sum of MEK 305 mmo 1 and butal 331 mmo 1.
  • the production method of the present invention has an effect of suppressing the accumulation of carbonaceous substances on a catalyst during a reaction when producing a corresponding alcohol and / or ketone from an alkene in a gas phase using an oxide catalyst. Therefore, the selectivity of the target product can be greatly improved. Therefore, it is possible to suppress the loss of the raw material alkene due to the generation of carbonaceous materials and to reduce the utility cost required for catalyst regeneration, etc., and to provide a method for producing the target product with extremely high productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明は、水蒸気の存在下、酸化物触媒を用いて、気相でアルケンから対応するアルコール及び/又はケトンを製造する方法に関する。本発明によれば、水蒸気の存在下、気相でアルケンを含有する原料を酸化物触媒と接触させて反応を行うことによって、アルコール及び/又はケトンを製造する方法であって、酸化物触媒が、(a)モリブデン及び/又はスズの酸化物を含有すること、及び(b)反応中において、酸化物触媒上の炭素質物質の蓄積量が0.1~10質量%の範囲に制御されていることの要件を満たす、上記方法が提供される。

Description

アルコール及び Z又はケトンの製造方法 技術分野
本発明は、 水蒸気の存在下、 酸化物触媒を用いて、 気相でアルケンから対応す るアルコール及び z又はケトンを製造する方法に関する。
背景技術 明
水蒸気の存在下、 気相反応によりアルケンから対応するアルコール及び z又は ケトンを製造する例としては、 例えば、 プロピレンからのアセトンの製造、 1一 ブテン又は 2—ブテンからのメチルェチルケト書ン (ME K) の製造、 シクロへキ センからのシ口へキサノンの製造、 イソブテンからの t e r tーブタノールの製 造等が挙げられる。 これらの生成物はいずれも化学出発原料や溶剤として工業上 極めて重要な化学物質である。
上記の反応の従来技術には、 主として、 パラジウム化合物等の貴金属触媒を用 いるヮッカー型の反応と、 モリブデン、 タングステン、 スズ、 コバルト等の非貴 金属の複合酸化物触媒を用レ、る反応が挙げられる。
前者のヮッカー型反応の例としては、 パラジウム及び Z又はパラジウム化合物 と塩化銅をシリカ、 アルミナ等の担体に担持した触媒を用いて、 ォレフィン、 酸 素、 水蒸気の存在下でカルボ二ルイ匕合物を製造する方法がある (例えば、 特開昭 4 9 - 7 2 2 0 9号公報参照) 。 特開昭 4 9 - 7 2 2 0 9号公報の実施例には、 塩化パラジウムと塩化銅をシリカに担持した触媒を用いて、 1—ブテンからメチ ルェチルケトン (ME K) を製造する記載がある。
他に塩ィ匕物を触媒に用いない例として、 ォレフィン類を水蒸気の存在下に酸素 又は酸素含有気体によって気相酸ィ匕してァセトアルデヒド又はケトン類を製造す るに際し、 触媒としてパラジウム塩及ぴバナジル塩を活性炭に担持させた触媒を 使用する方法がある (例えば、 特開昭 5 9— 1 6 3 3 3 5号公報参照) 。 特開昭 5 9 - 1 6 3 3 3 5号公報の実施例には、 硫酸パラジウムと硫酸バナジルを活性 炭に担持した触媒を用いて、 プロピレンからアセトンを製造する記載がある。 しかしながら、 これらの触媒は非常に高価な貴金属を用いる上、 本発明者らの 追試によれば、 両触媒共に短時間で活性劣化が認められた。
一方、 貴金属触媒を用いない後者の例としては、 モリブデン酸ィヒ物と均一に担 体に分布した微粒子状のスズ酸化物と力 らなる触媒を用いて、 ォレフィンと酸素 とを水蒸気の存在下で反応させる方法がある (例えば、 特公昭 4 7— 8 0 4 6号 公報参照) 。 特公昭 4 7 - 8 0 4 6号公報の実施例には、 二酸化スズと三酸化モ リブデンをシリカに担持した触媒を用いて、 プロピレンからアセトンを製造する 記載がある。
また、 類似の触媒を用いた例として、 酸ィ匕モリプデン、 酸化スズ、 特定量のァ ルカリ金属及び /又はアル力リ土類金属を担体に担持させた触媒を用いて、 ォレ フィンと蒸気との混合物を反応させる方法がある (例えば、 特開昭 4 9一 6 1 1
1 2号公報参照) 。 特開昭 4 9 - 6 1 1 1 2号公報の実施例には、 二酸化スズ、 三酸化モリブデン、 ナトリウムをシリカに担持した触媒を用いて、 トランスブテ ンから ME Kを製造する記載がある。
他に、 類似の触媒を用い、 反応原料中に酸素を少量含むォレフィンと水蒸気か らなるガスと、 酸素を多量に含むガスとを交互に触媒に接触させる方法がある (例えば、 特公昭 4 9— 3 4 6 5 2号公報参照).。 特公昭 4 9一 3 4 6 5 2号公 報の実施例には、 二酸化スズ、 三酸ィ匕モリブデンをシリカに担持した触媒を用い て、 n—ブテンから ME Kを製造する記載がある。
しかしながら本発明者らの追試によれば、 これらの非貴金属触媒を用いるいず れの場合においても、 反応により触媒上に極めて多くの炭素質物質が生成するた め、 供給したアルケンに対する目的生成物であるケトンの選択率が低くなるとい う欠点が判明した。
発明の開示
本発明は、 水蒸気の存在下に、 酸化物触媒を用いて、 気相でアルケンから対応 するアルコール及び/又はケトンを製造する反応において、 反応の際に触媒上に 蓄積する炭素質物質の生成を抑制して、 目的生成物 (アルコール及ぴ Z又はケト ン) の選択率を大幅に向上させた製造方法を提供することを目的とする。
本発明者らは、 上記課題を解決するために鋭意研究を重ねた結果、 (a ) モリ ブデン及び/又はスズの酸化物を含有し、 (b) 触媒上の炭素質物質の蓄積量が 特定の範囲に制御された触媒を用いることが、 その目的に適合しうることを見い だし、 この知見に基づいて本発明をなすに至った。
すなわち、 本発明は下記に示された製造方法に関する。
(1) 水蒸気の存在下、 少なくとも一種のアルケンを含有する原料を気相で酸化 物触媒と接触させて反応を行うことによって、 該アルケンに対応するアルコール 及ぴ Z又はケトンを製造する方法であって、
前記酸化物触媒が、
(a) モリブデン及ぴ Z又はスズの酸化物を含有すること、 及び
(b) 前記反応中において、 前記酸化物触媒上の炭素質物質の蓄積量が 0. 1〜 10質量%の範囲に制御されていること、
の要件を満たす、 上記アルコール及び Z又はケトンの製造方法。
(2) 前記反応によって得られた反応混合物から未反応のアルケン、 アルコール 及び/又はケトンを回収し、 未反応のアルケンは原料の一部としてリサイクルす ることを含む、 上記 (1) 項記載の方法。
(3) 前記反応を流動床反応方式で行う際に、 反応に供した酸化物触媒を反応器 から抜き出し、 酸素含有ガスの存在下で該酸化物触媒を再生処理し、 該再生処理 済みの酸化物触媒を再度反応器に戻す触媒循環方式を用いる、 上記 (1) 又は
(2) 項に記載の方法。
(4) 反応器に戻る酸化物触媒上の炭素質物質の蓄積量を 0. 1〜10質量%の 範囲に制御する、 上記 (3) 項記載の方法。
(5) 酸素含有ガス存在下での酸化物触媒の再生処理温度が 270〜550°Cで ある、 上記 (3) 又は (4) 項に記載の方法。
(6) 反応器に戻る酸化物触媒量 Z反応器に供給するアルケン量 (質量比) 、 0. 5〜 100の範囲である、 上記 (3) 〜 (5) 項のいずれか 1項に記載の方 法。
(7) 酸化物触媒上の炭素質物質の蓄積量を 0. 3〜 5質量%の範囲に制御する、 上記 (1) 〜 (6) 項のいずれか 1項に記載の方法。
(8) 酸化物触媒中のモリプデンとスズの原子比 X {Mo/ (S n+Mo) ;こ こで、 Moは該酸化物触媒中のモリブデンの原子数であり、 S nは該酸化物触媒 中のスズの原子数である。 } 力 0. 2 9及び0. 5 1以外の範囲である、 上記 (1) 〜 (7) 項のいずれか 1項に記載の方法。
(9) 酸化物触媒中のモリブデンとスズの原子比 X {Mo/ (S n+Mo) ; こ こで、 Moは該酸ィヒ物触媒中のモリプデンの原子数であり、 S nは該酸化物触媒 中のスズの原子数である。 } カ、 0≤X< 0. 5 0 (0. 29を除く) の範囲で ある、 上記 (1) 〜 (7) 項のいずれか 1項に記載の方法。
(1 0) 酸ィ匕物触媒中のモリブデンとスズの原子比 X {Mo/ (S n+Mo) ; ここで、 Moは該酸ィヒ物触媒中のモリブデンの原子数であり、 S nは該酸化物触 媒中のスズの原子数である。 } ヽ 0. 0 1≤X≤ 0. 24の範囲である、 上記 (1) 〜 (7) 項のいずれか 1項に記載の方法。
(1 1) 反応器に供給する酸素ガス量 Z反応器に供給するアルケン量 (モル比) 力 0. 0〜0. 5の範囲である、 上記 (1) 〜 (1 0) 項のいずれか 1項に記 載の方法。
(1 2) 反応器に供給する水蒸気量 Z反応器に供給するアルケン量 (モル比) 、 0. 0 5〜: 1 0. 0の範囲である、 上記 (1) 〜 (1 1) 項のいずれか 1項に記 載の方法。
(1 3) 前記反応後の回収水の全部又は一部を再度該反応に使用する、 上記
(1) 〜 (1 2) 項のいずれか 1項に記載の方法。
(1 4) アルケンが 1ープテン及び Z又は 2—プテンである、 上記 (1) 〜 (1 3) 項のいずれか 1項に記載の方法。
(1 5) アルケンとして 1ーブテン及ぴ Z又は 2—ブテンを含有する原料が、 ィ ソプテン、 ブタジエン、 t e r t—ブチルアルコーノレ、 メチノレー t e r t—プチ ルエーテルからなる群から選ばれる少なくとも 1種以上を含む、 上記 (1 4) 項 記載の方法。
発明を実施するための最良の形態
以下に本発明を詳細に説明する。
本発明の方法に用いられる触媒は、 モリブデン及び/又はスズの酸化物を含有 する触媒である。 これらの酸化物は、 単独で用いても良いが、 モリブデンとスズの酸化物の両方 を機械的混合及び Z又は複合酸化物として用いることにより、 触媒活性や目的生 成物の選択率を向上させる効果がありより好ましい。 また、 触媒活性や目的生成 物の選択率の更なる向上のために、 他元素の酸化物を添加することもできる。 周 期律表第 4族、 第 5族、 第 6族、 第 8族、 第 9族、 第 10族、 第 1 1族、 第 14 族、 第 15族に属する元素が好ましく、 より好ましくは、 第 4族元素がチタン、 ジルコニウムであり、 第 5族元素がバナジウム、 ニオブであり、 第 6族元素がタ ングステン、 クロムであり、 第 8族元素が鉄であり、 第 9族元素がコバルトであ り、 第 10族元素がニッケルであり、 第 1 1族元素が銅であり、 第 14族元素が 鉛であり、 第 15族元素がビスマス、 アンチモン、 リンである。 ここで言う周期 律表とは、 化学便覧基礎編 I改訂 4版 (日本化学会編、 丸善、 1993年) I一 56頁記載の 18族型元素周期律表のことである。 微量であれば、 ナトリウム、 カリウム、 ルビジウム等のアルカリ金属やマグネシウム、 カルシウム、 バリウム 等のアル力リ土類金属の酸ィ匕物を更に添カ卩しても良い。
また、 これらの酸ィヒ物は適切な担体に担持して用いることがより好ましい。 担 体としてはシリカ、 シリカアルミナ、 アルミナ、 チタニア、 シリカチタニア、 ジ ルコニァ、 シリカジルコニァ等の無機酸化物が好ましく、 特に好ましくはシリカ である。 更に、 触媒の機械的強度を増すためにカオリン、 タルク等の粘土を添加 しても良い。
酸化物触媒がモリブデンとスズの酸化物を含む場合には、 モリブデンとスズの 原子比 X {Mo/ (Sn+Mo) ; ここで、 Moは該酸化物触媒中のモリプデン の原子数であり、 S nは該酸化物触媒中のスズの原子数である。 } 力 S、 0. 29 及ぴ 0. 51以外の範囲であることが好ましく、 0≤X<0. 50 (0. 29を 除く) の範囲がより好ましく、 0. 01≤X≤0. 24の範囲が一層好ましく、 0. 05≤X≤ 0. 24の範囲が更に一層好ましく、 0. 08≤X≤0. 1 5の 範囲が特に好ましい。 Xが 0. 01未満では、 触媒活性が低い傾向があり、 また、 0. 29以上では選択率が低下する傾向があり、 さらに 0. 51以上では触媒を 焼成する際にモリブデンの結晶が触媒外部に析出し、 流動床方式の反応に用いる ときに触媒の流動性を低下させる傾向がある。 触媒の流動性及ぴ目的物質の選択 率の両面において好ましい範囲は、 0 . 0 1≤X 0 . 2 4である。
以下、 本発明に用いる酸化物触媒の調製方法について詳細に述べる。
触媒調製は、 主に 1 ) 触媒原料溶液の調製工程、 2 ) 触媒原料溶液の乾燥工程 及び触媒前駆体の焼成工程から成る。
1 ) 触媒原料溶液の調製工程
触媒の活性種である酸化物 (以降、 用語 「酸化物」 は複合酸ィ匕物も包含するも のとする) を形成する原料の化学的形態に特に制限はない。 好ましくは、 2 0 0 〜1 0 0 0 °Cにおいて酸化物を形成する塩、 化合物を用いる。 例えば、 硝酸塩、 硫酸塩、 酉乍酸塩、 シユウ酸塩、 アンモニゥム塩、 塩化物、 水酸化物等である。 ま た、 市販の酸化物をそのまま用いることもできる。
通常、 原料の 1種以上を水又は適切な溶媒に、 2 0〜 8 0 °Cで十分に溶解させ る。 この時該原料の溶解度を高めるため、 溶液の液性を酸性又はアルカリ性に制 御しても良!/、。 難溶性の場合は過酸ィヒ水素等を添加する場合もある。
原料溶液はそのまま乾燥しても良いが、 先述の様に適切な担体に担持させるベ く、 担体成分を含有する粉末、 溶液、 ゾル、 ゲル等と十分混合することが好まし い。
この時、 硝酸塩、 硫酸塩、 塩化物等を酸化物原料として用いる場合には、 後の 焼成工程で腐食性ガスが発生するために、 アンモニア水を添加し水酸化物に変換 することが好ましい。 更に粘度等を調節するために、 該混合液の液性を酸性ゃァ ルカリ性に調整しても良い。
2 ) 触媒原料溶液の乾燥工程 ·触媒前駆体の焼成工程
この工程は、 上記触媒原料溶液 (以降、 用語 「触媒原料溶液」 は担体成分を含 む場合も包含するものとする) 力 ら乾燥により溶媒を除去し触媒前駆体を得、 そ の後焼成等の処理をして酸ィ匕物触媒に変換する工程より成る。
触媒原料溶液の乾燥方法に特に制限はない。 例えば、 エバポレーターで該触媒 原料溶液から減圧下に 5 0〜 9 0 °Cで溶媒を除去後、 真空乾燥器にて 5 0〜1 5 0 °Cで 1〜4 8時間乾燥する方法や、 1 5 0〜3 0 0 °Cに加熱したホットプレー ト上に該触媒原料溶液をノズルで吹き付け乾燥する方法、 またスプレードライヤ 一 (噴霧熱風乾燥器) を用いて乾燥する方法等が挙げられる。 工業的にはスプレ 一ドライヤーでの乾燥が好ましい。 スプレードライヤーとは乾燥室、 原料液嘖霧 部、 熱風吸気 *排気部、 乾燥粉末回収部からなる熱風乾燥器のことであり、 好ま しい噴霧乾燥条件は、 該触媒原料溶液をポンプを用いて供給し、 ロータリーアト マイザ一 (遠心式噴霧器) 、 加圧ノズル、 二流体ノズル (ガス式噴霧器) 等によ り乾燥室内に噴霧する。 噴霧された該触媒原料溶液の液滴は、 入口温度 1 5 0〜 5 0 0 °Cに制御された熱風と向流または並流に接触され溶媒を蒸発し、 乾燥粉末 として回収される。
この様にして得た乾燥触媒前駆体を焼成する方法に特に制限はない。 好ましく は、 電気炉中で窒素等の不活 1"生ガス及び Z又は酸素含有ガスの流通下、 4 0 0〜 1 0 0 0 °Cで 0 . 5〜 4 8時間焼成する。
更に、 触媒活性種を触媒上に均一に分散させるために、 焼成前又は後に水蒸気 で 1 5 0〜5 0 0 ¾で0 . 5〜4 8時間処理しても良い。
また、 本発明の触媒は反応の形式に応じて、 打錠成形、 押し出し成形、 噴霧成 形等の公知の成形方法により、 円柱状、 円筒状、 球状等に成形して反応に供され る。 該成形は、 触媒前駆体においてなされても良いし、 焼成後になされても良い 本発明の反応を流動床反応形式で実施する場合には、 触媒原料溶液をスプレー ドライヤーを用いて乾燥し、 成形された触媒前駆体を得、 酸素含有ガスを流通さ せながら 5 0 0〜8 0 0 °Cで 1〜2 4時間焼成する方法が特に好ましい。
次に、 本発明の酸化物触媒上に蓄積される炭素質物質にっレ、て述べる。
本発明の反応に用いる触媒は、 反応中において触媒上の炭素質物質の蓄積量 (以下に定義される) を 0 . 1〜1 0質量%の範囲に制御した触媒である。
ここで言う炭素質物質とは、 炭素を主成分とする、 有機化合物を介する化学反 応により触媒上に蓄積し、 反応中には触媒上から飛散せず蓄積する重質物のこと である。 例えば、 アルケンから対応するアルコール及ぴ Z又はケトンを製造する 際に、 または、 前記反応とは別に反応性に富む有機化合物との接触によって、 触 媒上に蓄積する重質物等である。
本発明において、 触媒上での炭素質物質の蓄積量の範囲は、 上記のように 0 . 1〜 1 0質量%の範囲に制御することが必要であり、 好ましくは 0 . 3〜 8質量 %であり、 より好ましくは 0 . 3〜5質量%でぁり、 更に好ましくは 0 . 5〜5 質量%であり、 特に好ましくは 1〜5質量%である。 炭素質物質の蓄積量が、 0 . 1質量%未満では、 後述する反応による炭素質物質の生成を抑制する効果が不十 分な傾向があり、 1 0質量%を超えると触媒活性が不十分となる傾向がある。 触媒上の炭素質物質の蓄積量は、 有機元素分析に使用される C H Nコーダ一を 用いて炭素質物質が蓄積された触媒の炭素質量を測定し、 次式により定義される。 触媒上の炭素質物質の蓄積量 (質量%) = B Z (A— B ) X I 0 0
A:炭素質物質が蓄積された触媒全体の質量 (K g )
B : C H Nコーダ一で測定した炭素質物質が蓄積された触媒の炭素質量 (K g ) C H Nコーダ一の分析条件は、 C H Nコーダ一の一般的な測定条件で良いが、 具体的には、 被検体数 m g〜十数 m g (触媒上の炭素質物質の蓄積量に応じて加 減する) を 8 5 0 °Cの燃焼炉内において、 一定量の酸素ガスを含むヘリゥム気流 中で被検体中の有機成分を燃焼させ、 その燃焼ガスより炭素質量を測定する。 触媒上の炭素質物質の蓄積量を制御する方法については、 例えば本明細書に記 載の反応条件に代表される適切な反応条件を選択することによって上記範囲に制. 御できる。 また、 触媒上に炭素質物質が蓄積した反応後の触媒を再生する際に、 例えば本明細書に記載の再生条件に代表される適切な再生条件を選択することに よって、 再度反応に供される再生触媒上の炭素質物質の蓄積量を制御し、 結果的 に反応器内の触媒上の炭素質物質の蓄積量を上記範囲に制御できる。
特に、 アルケンから対応するアルコール及ぴ z又はケトンを製造する反応を流 動床反応器と再生器間で触媒を循環させる方式で行う場合には、 以下の再生条件 で再生器から反応器に戻る触媒上の炭素質物質の蓄積量を上記範囲に制御するこ とが好ましい。 すなわち、 酸素ガス濃度が 1 0容量 p p m〜2 1容量%の酸素ガ ス含有雰囲気下に 1 0 0〜 5 5 0 °Cで 1 0秒〜 1 0 H r保持することである。 温 度については、 より好ましくは 2 7 0〜5 5 0 °Cであり、 特に好ましくは 2 7 0 〜5 0 0 °Cである。 2 7 0 °C未満では、 行われた反応条件が過酷であった場合に は触媒活性の回復が不十分な傾向があり、 5 5 0 °Cを超えると、 触媒上の炭素質 物質が完全に燃焼してしまう傾向がある.(すなわち、 本発明において規定された 範囲の下限を下回る) 。
アルケンから対応するアルコール及ぴ Z又はケトンを製造する反応を分子状酸 素の存在しない条件又は極めて分子状酸素が少ない条件で行う際には、 反応時に 酸素源として酸化物触媒の格子酸素が使われる。 このような場合には、 上記再生 条件下で処理することにより、 格子酸素も同時に補充できるので好ましい。 他にも、 触媒を適切な処理条件の下、 芳香族炭化水素類やジェン類の様な反応 性に富む有機化合物と接触させることによって、 触媒上への炭素質物質の蓄積量 を制御することができる (例えば、 上記化合物の気相雰囲気下、 1 3 0〜5 0 0 °Cでの処理が好ましい) 。
いずれにしても、 反応条件、 再生条件、 処理条件等を適切に選択し、 触媒上で の炭素質物質の蓄積量を、 反応中において 0 . 1〜 1 0質量%の範囲に制御する ことが重要である。
次に、 触媒上の炭素質物質の蓄積量を特定の範囲に制御した場合の効果につき 述ぺる。
フレッシュな触媒や触媒上に炭素質物質がほとんど蓄積してレ、ない触媒 (すな わち、 触媒上の炭素質物質の蓄積量が本発明によって規定された範囲の下限を下 回る触媒) を、 アルケンから対応するアルコール及び/又はケトンを製造する反 応に用いたとする。 この場合、 反応により生成し触媒に蓄積する炭素質物質が極 めて多いため、 供給したアルケンに対する目的生成物の収率 (すなわち、 生成物 中の目的生成物の選択率) が著しく低下する。
これに対し、 炭素質物質の蓄積量が特定の範囲になるように制御した本発明の 触媒は、 反応によって生成する炭素質物質の触媒上への蓄積を著しく抑制でき、 結果的に目的生成物の選択率を大幅に向上することができる。 しかも、 本発明の 触媒により、 目的生成物の生産性をフレッシュな触媒並にすることができる。 特に、 分子状酸素の存在しない条件又は極めて分子状酸素が少ない条件で、 上 記反応を連続して行う際には、 触媒活性を維持するために、 頻繁に酸素ガス含有 雰囲気下で触媒を再生しなければならない。 反応の酸素源として使用された酸化 物触媒の格子酸素を補う必要があるからである。 この再生処理の際、 従来の様に 触媒活性を回復させる目的で触媒に蓄積した炭素質物質までもほぼ完全に除去し てしまうと、 再度反応による炭素質物質の生成及び触媒上への過度の蓄積が起こ る。 その結果、 触媒の再生頻度に比例して、 不要な炭素質物質となる原料の損失 が大きくなり、 またユーティリティーコストも増加する。 本発明の触媒により、 これらの損失を顕著に抑制することが可能となる。
次に、 本発明の方法につき詳細に述べる。
本発明の方法とは、 水蒸気の存在下、 気相でアルケンを含有する原料を酸化物 触媒と接触させて反応を行い、 該アルケンから対応するアルコール及び Z又はケ トンを製造する反応である。
反応の機構は明確ではないが、 本発明者らは、 まずアルケンと水蒸気との水和 反応によりアルコールを生成し、 次に生成したアルコールと気相の分子状酸素又 は固相酸素 (すなわち、 酸化物触媒の格子酸素) とが酸化的脱水素反応を起こし て、 ケトンを生成するものと推定している。
反応原料に含有されるアルケンは、 好ましくは、 プロピレン、 1ーブテン、 2 ーブテン (シス及ぴ /又はトランス) 、 ペンテン、 へキセン、 シク口へキセン、 ヘプテン、 オタテン、 シクロオタテン等が挙げられる。 更に好ましくはプロピレ ン、 1—プテン、 2—ブテン (シス及ぴ Z又はトランス) 、 シクロへキセンであ り、 特に好ましくは 1ーブテン、 2ーブテン (シス及び/又はトランス) である。 これらは単独で用いても良いが、 2種以上を混合して用いることもできる。 特に、 工業的にはナフサの熱分解によって得られる C 4留分から抽出によってブタジェ ン (1 , 2—ブタジェン及び/又は 1, 3—ブタジエン) を除いた C 4ラフイネ 一トー 1や、 C 4ラフィネート一 1を H 2 0又はメタノールと反応させて、 含ま れるィソブテンを t e r t—ブチルアルコール又はメチルー t e r t—ブチルェ 一テルに変換して除いた C 4ラフィネート一 2は有用な原料である。 ただし、 こ れらは完全には除けないため、 1ープテン及び Z又は 2—ブテン 1モルに対し、 1モル以下、 好ましくは 0 . 5モル以下、 より好ましくは 0 . 1モル以下、 特に 好ましくは 0 . 0 5モル以下の範囲であれば、 イソブテン、 ブタジエン、 t e r t—プチルアルコール、 メチルー t e r t—ブチルエーテル等が含まれていても 良い。 このことは原料精製コストを低減できる有益な特徴である。
また、 反応原料には窒素ガス、 アルゴンガス、 二酸化炭素ガス、 メタンガス、 ェタンガス、 プロパンガス、 ブタンガス等の反応に不活性なガスを希釈ガス、 キ ャリヤーガスとして混合、 同伴させても良い。 反応器に供給する水蒸気量/反応器に供給するアルケン量 (モル比) は、 好ま しくは 0. 05〜10. 0の範囲内であり、 より好ましくは 0. 2〜5. 0の範 圏内であり、 特に好ましくは 0. 5〜2. 0の範囲内である。 そのモル比が、 0. 05より少ないと反応速度が遅くなる傾向があり、 多い場合は反応速度は上がる 傾向があるが、 10. 0より多くしても特に効果が少なく、 水蒸気を製造する余 剰のエネルギーが必要となる。
上記反応には、 分子状酸素は存在させても良いし、 存在させなくても良い。 前 記の様に本発明者らは、 分子状酸素を気相に存在させない場合には、 酸化物触媒 の格子酸素が反応の酸素源に使用されるものと推定している。
反応器に供給する酸素ガス量/反応器に供給するアルケン量 (モル比) は、 好 ましくは 0. 0〜5. 0の範囲内であり、 より好ましくは 0. 0〜1. 0の範囲 内であり、 更に好ましくは、 0. 0〜0. 5の範囲内であり、 特に好ましくは 0. 0〜0. 3の範囲内である。 酸素が過剰になると生成物中の目的生成物の選択率 が低下する傾向がある。 そのモル比が 0. 0とは、 分子状酸素を存在させず、 酸 化物触媒の格子酸素を反応に用いる場合である。 本発明の反応においては、 この 分子状酸素を存在させない場合が最も好ましい。
アルケンの触媒に対する供給量 (重量空間速度 (WH S V) ) に特に制限はな レヽ。 好ましくは、 0. 01〜 10 H r— 1であり、 より好ましくは 0. 05〜 5 Hr— 1である。 特に好ましくは 0. :!〜 2Hr_1である。
重量空間速度 (WHSV) は以下の式で定義される。
WHS V (Hr_1) =アルケン供給量 (KgZHr) /触媒量 (Kg) 反応温度は原料により好ましい範囲が異なるが、 一般には 130〜500°Cが 好ましい。 より好ましくは、 200〜450°Cであり、 特に好ましくは、 230 〜350°Cである。 反応圧力には特に制限はない。 好ましくは、 0. 01〜1M P aであり、 より好ましくは 0. 03〜0. 5 MP aであり、 特に好ましくは 0. 05〜0. 3MP aである。
本発明の方法に用いられる反応方式には、 固定床反応方式、 移動床反応方式、 流動床反応方式等が挙げられる。 ただし、 本発明の反応は多くの場合発熱反応で あることから、 反応温度制御の容易な流動床反応方式が好ましい。 特に好ましい 反応方式は、 反応を流動床反応方式で行いながら、 反応に供した触媒を、 再生器 に連続的又は間欠的に抜き出し、 前記した条件で再生処理して、 再生器から反応 器へ戻る触媒の格子酸素を補充する。 それと共に、 触媒上の炭素質物質の蓄積量 を 0 . 1〜 1 0質量%の範囲に制御し、 該触媒の全部又は一部を連続的又は間欠 的に流動床反応器に戻す操作を繰り返す、 いわゆる触媒循環方式の流動床反応で ある。
この際、 反応器に戻る酸化物触媒量/反応器に供給するアルケン量 (質量比) は、 好ましくは 0 . 5〜 1 0 0であり、 より好ましくは 2〜 1 0 0であり、 特に 好ましくは 1 0〜1 0 0である。 その質量比が、 0 . 5未満では、 触媒の定常的 活性が低くなる傾向があり、 1 0 0以上では触媒の定常的活性を上げる効果が少 ない傾向がある。
上記の反応方式での触媒上の炭素質物質の蓄積量を測定するための触媒のサン プリングは次の様に行う。 .
流動床反応器内又は触媒再生器内では、 連続的又は間欠的に触媒が供給又は排 出されるため、 内部の触媒は流通ガスにより攪拌されてはいるものの、 触媒上の 炭素質物質の蓄積量の局所的な分布を生ずる可能性がある。 この様な場合には、 反応器から再生器に触媒を抜き出すライン、 又は、 再生器から反応器に触媒を戻 すラインから触媒をサンプリングすることにより極力均質なサンプルを得、 その 触媒上に蓄積された炭素質物質量を測定することで、 反応器内又は再生器から反 応器へ戻る触媒上の炭素質物質の蓄積量を定義する。 具体的には、 触媒の少なく とも 1 g以上を 3検体以上サンプリングし、 それぞれの炭素質物質量を測定して、 その算術平均をとることが好ましい。
図 1に流動床反応器と触媒再生器との概略図を示す。 すなわち、 図中触媒抜出 しライン①の S l 触媒リサイクルライン②の S 2より触媒をサンプリングし、 触媒上に蓄積された炭素質物質量を測定する。
本発明においては、 反応器内の触媒上に蓄積された炭素質物質量が 0 . 1〜1 0質量0 /0、 好ましくは 0 . 3〜 5質量%の範囲に制御されておればよいので、 S ェ及び/又は S 2からのサンプルの炭素質物質量が前記の範囲にあるか、 S 1 び S 2からのサンプルの炭素質物質量の平均がこの範囲であれば良レ、。 以上の様な反応により得られたアルコール及ぴ Z又はケトンを含有する反応混 合物から、 冷却、 蒸留、 抽出等の公知の回収、 分離、 精製操作により、 アルコー ル及ぴ /又はケトンを回収できる。 未反応のアルケンについては反応混合物から 分離後、 必要に応じリサイクルして反応原料の一部として利用できる。
また、 反応に供した水蒸気の全部又は一部を冷却液化した後に得られる回収水 は、 ある程度の量の反応副生物を含んだ状態でも、 再度反応に使用できる。 例え ば 1—ブテンの反応により副生するァセ'トンや酢酸等の副生物を含む回収水を、 再度反応に使用できる。 このことは廃液処理の負荷を大幅に低減できる有用な特 徴である。
例えば、 1ーブテン及び/又は 2—プテンから MEKを製造する場合には、 反 応混合物を冷却し、 MEKと水蒸気を凝縮させる。 これを気液分離した後、 疑縮 液から蒸留により MEKを回収する。 MEKを回収した後の副生物を含む回収水 の全部又は一部は、 再度水蒸気として反応器にリサイクルする。 凝縮しなかった ガス相は圧縮 ·冷却により、 気相に同伴した ME Kを液化 ·回収するとともに、 未反応の 1—ブテン及び/又は 2—ブテンは炭酸ガス等の軽質ガスと分離し、 再 度反応器にリサイクルする。
図面の簡単な説明
図 1は、 本発明の反応を触媒循環方式による流動床反応で行った場合の反応器、 再生器の概略図である。 その中で、 ①は触媒抜出しライン、 ②は触媒リサイクル ラインを示す。
実施例
以下、 実施例及び比較例により、 本発明を更に具体的に説明する。 尚、 本発明 はこれらの実施例に限定されるものではない。
尚、 以下に使用した分析装置と分析条件を記す。
(反応ガス分析)
ガスクロマトグラフィー: 島津 GC— 17A (島津製作所製)
キヤビラリ一力ラム : SPB— 1 (00. 25 X 60 m) (S PELCO社 製)
I N J温度: 250°C F I D温度: 250°C カラム温度: 40°CX 1 0m i n、 5°C/m i n昇温、 200°CX 8m i n 保持
(反応ガス中二酸化炭素、 一酸化炭素分析)
ガスクロマトグラフィー: 島津 GC— 8A (島津製作所製)
充填カラム : P o r a p a c Q 03 X 2m) (Wa t e r s社製) 及び M S- 5A ( ø 3 X 3 m) (島津製作所製) の並列力ラム
I N J温度: 70°C TCD温度: 70°C
カラム温度: 70°C保持
(触媒上の炭素質物質蓄積量の測定)
CHNコーダ一分析装置: 型式 MT— 5 (Ya n a c o製)
(触媒化学組成分析)
化学組成分析装置: E PMA (S c a n n i n g E l e c t r o n
M i c r o a n a l y z e r) 、 X— 6 50 (日立製作所製)
参考例 1 (触媒 Aの調製) ·
塩化第ニスズ 5水塩 9380 gを純水 60 Lに溶解し、 シリカ微粉末 (商品 名: 日本ァェ口ジル株式会社製ァエロジル 200 V) 3040 gを添加し、 50 0 r pmで攪拌しながら、 8質量%アンモニア水を pHが 5〜7になるまで添加 し、 シリカとスズ水酸化物との白色沈殿を得た。 この白色沈殿をろ過後、 純水で 十分洗浄した。 このケークにモリプデン酸アンモニゥム 6 6 0 gを純水 1 2. 7 Lに溶解した水溶液を添カ卩し、 均一なスラリーとした後、 濃硝酸を添加し、 スラ リーの pHを 2〜4とした。 このスラリーをスプレードライヤーで嘖霧乾燥し球 形の成形体粉末を得た。 得られた成形体粉末を電気炉中で空気雰囲気において 6 50。Cで 1時間焼成した。 この触媒 Aの組成を E PMA組成分析装置にて分析し たところ、 S n〇25 1質量0 /o、 M o〇 37 %質量0 /0、 S i 0242質量0 /0であ つた。 この触媒 Aの Mo/ (S n+Mo) 原子比は 0. 1 3であり、 流動床触媒 に好適な滑らかな球形をし、 十分な機械的強度を有していた。
参考例 2 (触媒 Bの調製)
参考例 1とほぼ同様の方法で組成の異なる触媒 Bを調製した。 この触媒 Bの組 成は、 S n O。 48質量%、 Mo 031 1 %質量1 ½、 S i 024 1質量%であつ た。 この触媒 Bの Mo/ (Sn+Mo) 原子比は 0. 19であり、 流動床触媒に 好適な滑らかな球形をし、 十分な機械的強度を有していた。
参考例 3 (触媒 Cの調製)
参考例 1とほぼ同様の方法で組成の異なる触媒 Cを調製した。 この触媒 Cの組 成は、 S n O 265質量%、 M o O 35 %質量%、 S i O 230質量%であった。 この触媒 Cの M o / (Sn+Mo) 原子比は 0. 07であり、 流動床触媒に好適 な滑らかな球形をし、 十分な機械的強度を有していた。
参考例 4 (触媒 Dの調製)
参考例 1とほぼ同様な方法で触媒 Dを調製した。 この触媒 Dの組成は、
S n0231質量0 /0、 M o O 330 %質量0 /。、 S i〇 239質量0 /。であった。 こ の触媒 Dの Moノ (Sn+Mo) 原子比は 0. 50であり、 成形粉末が塊を作り 焼成が均一にできず、 流動床触媒に不適であつた。
このことから流動床触媒としては、 Mo/ (Sn+Mo) は 0. 50未満が好 ましく、 より好ましくは 0. 24以下と言える。
参考例 5 (触媒 Eの調製)
塩ィ匕第二スズ 5水塩の代わりに三塩化クロム 6水塩を用いた以外は参考例 1と ほぼ同様の方法で C r及び Moの酸ィヒ物からなる触媒 Eを調製した。 この触媒 E の組成は、 C r 2 O 342質量%、 Mo Og 1 7 %質量%、 S i O 241質量0 /0 であった。 この触媒 Eの Mo/ (C r+Mo) 原子比は 0. 18であり、 流動床 触媒に好適な滑らかな球形をし、 十分な機械的強度を有していた。
参考例 6 (触媒 Fの調製)
塩ィ匕第二スズ 5水塩の代わりに四塩ィヒチタンを用いた以外は参考例 1とほぼ同 様の方法で T i及び M oの酸化物からなる触媒 Fを調製した。 この触媒 Fの組成 は、 T i O 244質量0 /0、 M o O 31 7 %質量0 /0、 S i〇 239質量0 /。であった。 この触媒 Fの Mo/ (T i +Mo) 原子比は 0. 18であり、 流動床触媒に好適 な滑らかな球形をし、 十分な機械的強度を有していた。
参考例 7 (触媒 Gの調製)
モリブデン酸アンモニゥムを除いた以外は参考例 1とほぼ同様の方法で S nの 酸ィ匕物のみからなる触媒 Gを調製した。 この触媒 Gの組成は、 Sn〇245質量 %、 S i 0255質量%であった。 この触媒 Gは流動床触媒に好適な滑らかな球 形をし、 十分な機械的強度を有していた。
参考例 8 (触媒 Hの調製)
担体の一部にアルミナゾルを用いた以外は参考例 1とほぼ同様の方法で触媒 H を調製した。 この触媒 Hの組成は、 S n〇251質量0 /0、 Mo 037質量%、 S 1〇228質量%、 A 120314質量0 /0であった。 この触媒 Hの Mo Z (S n +Mo) 原子比は 0 13であり、 流動床触媒に好適な滑らかな球形をし、 シリ 力のみの担体より機械的強度が優れていた。
実施例 1
図 1に示す様な流動床反応器と触媒再生器からなる反応装置に触媒 Aを充填し、 触媒 Aを反応器と再生器間で循環させながら、 反応及び触媒再生を連続的に行う 触媒循環方式で流動床反応を実施した。 反応器には、 1ーブテン Z水蒸気/ N2 =20/40/40 (容量比) の割合の原料を反応器の触媒量に対し、 重量空間 速度 (WHSV) =0. 2で供給した。 反応温度は 250°Cであった。 再生器に は空気と N 2の混合ガスを供給した。 再生温度は 320 °Cであつた。 供給する 1 ープテンに対する触媒循環量 (すなわち、 再生器から反応器に戻る触媒量) の比 は 15 (質量比) であり、 再生器から反応器に戻る触媒上の炭素質物質の蓄積量 は 3. 5質量%であった。 上記反応を約 10時間連続し、 任意の 1時間の反応結 果の一部を表 1に示す。 また、 反応成績は反応中はほぼ一定であった。
以下に定義を示す。 全て炭素基準で示す。
ME Kの生成量 (Cmo 1) : 1時間に生成した ME K量
各成分の選択率 (m o 1 %) =P/ (F-L) X 100
F :フィードした 1—ブテン及び Z又は 2—ブテン量 (Cmo 1)
L :未反応の 1ーブテン及び/又は 2—プテン量 (Cmo 1)
P :生成した各成分量 (Cmo 1)
1—ブテンの異性化反応の生成物である 2—ブテンは原料として再使用できる ため、 未反応物として扱った。
表中の副成物とは、 c〇2、 co、 アセトン、 酢酸、 ブチルアルコール、 炭素 数 5以上のオリゴマ一等である。 表中の炭素質物質選択率とは、 反応により新たに生成した炭素質物質の選択率 である。
比較例 1
再生温度を 6 0 0 °Cとした以外は実施例 1とほぼ同様の条件で触媒循環方式の 流動床反応を実施した。 この時の再生器から反応器に戻る触媒上の炭素質物質の 蓄積量は 0 . 0 3質量%でぁり、 ほぼ完全に触媒上の炭素質物質が除去されてい た。 上記反応を約 1 0時間連続し、 任意の 1時間の反応結果の一部を表 1に示す。 また、 反応成績は反応中はほぼ一定であった。
実施例 1と比較例 1の比較から、 再生器から反応器に戻る触媒上の炭素質物質 の蓄積量を 0 . 1〜1 0質量%の範囲に制御することにより、 M E K生成量は同 等でありながら新たな炭素質物質の生成の抑制により、 ME Kの選択率が大幅に 向上したことが判る。
また実施例 1は、 生成した ME Kの純度を表す、 生成した炭素質物質を除いた ME K選択率の値が非常に高く、 M E Kの分離 ·精製が容易であることを表す。 実施例 2
再生器に供給する空気量を減少させた以外は実施例 1とほぼ同様の条件で触媒 循環方式の流動床反応を実施した。 この時の再生器から反応器に戻る触媒上の炭 素質物質の蓄積量は 3 . 3質量%であった。 上記反応を約 1 0時間連続し、 任意 の 1時間の反応結果の一部を表 1に示す。 また、 反応成績は反応中はほぼ一定で あった。
実施例 3 (水蒸気ノアルケン比 = 1 . 0、 WH S V = 0 . 4の例)
1一プテン Z水蒸気/ N 2 = 4 6 X 4 8 / 6 (容量比) の割合の原料を反応器 の触媒量に対し、 重量空間速度 (WH S V) = 0 . 4で供給した以外は実施例 1 とほぼ同様の条件で触媒循環方式の流動床反応を実施した。 この時の再生器から 反応器に戻る触媒上の炭素質物質の蓄積量は 3 . 1質量%であった。 上記反応を 約 1 0時間連続し、 任意の 1時間の反応結果の一部を表 1に示す。 また、 反応成 績は反応中はほぼ一定であつた。
実施例 4 (触媒 Bを用い、 触媒循環量 Zアルケン比 = 6 0の例)
触媒 Bを用い、 再生温度を 2 8 0 °Cとし、 供給する 1ーブテンに対する触媒の 循環量の比を 60 (質量比) とした以外は実施例 1とほぼ同様の条件で触媒循環 方式の流動床反応を実施した。 この時の再生器から反応器に戻る触媒上の炭素質 物質の蓄積量は 3. 7質量%であった。 上記反応を約 10時間連続し、 任意の 1 時間の反応結果の一部を表 1に示す。 また、 反応成績は反応中はほぼ一定であつ た。
実施例 5 (触媒 Bを用い、 炭素質物質の蓄積量が 0. 5質量%の例)
触媒 Bを用い、 再生温度を 500°Cとし、 1ーブテン/水蒸気/ N2 = 20 50/30 (容量比) の割合の原料を反応器の触媒量に対し、 重量空間速度 (W HS V) = 0. 1で供給した以外は実施例 1とほぼ同様の条件で触媒循環方式の 流動床反応を実施した。 この時の再生器から反応器に戻る触媒上の炭素質物質の 蓄積量は 0. 5質量%であった。 上記反応を約 10時間連続し、 任意の 1時間の 反応結果の一部を表 1に示す。 また、 反応成績は反応中はほぼ一定であった。 実施例 6 (触媒 Cを用い、 02/ァルケン比=0. 2の例)
触媒 Cを用い、 1 -プテン 水蒸気 N2/O2 = 20/40/36/4 (容量比) の割合の原料を反応器に供給 (02/l—プテン =0. 2) し、 供給 する 1ープテンに対する触媒の循環量の比は 0. 5 (質量比) であり、 再生温度 を 280°Cとした以外は実施例 1とほぼ同様の条件で触媒循環方式の流動床反応 を実施した。 この時の再生器から反応器に戻る触媒上の炭素質物質の蓄積量は 2. 5質量%であった。 上記反応を約 10時間連続し、 任意の 1時間の反応結果の一 部を表 1に示す。 また、 反応成績は反応中はほぼ一定であった。
実施例 7 (反応副生物を含む反応回収液を再使用した例)
実施例 1の反応液から ME Kを蒸留分離した残液を水の代わりに用いた以外は 実施例 1とほぼ同様の条件で触媒循環方式の流動床反応を実施した。 この残液に は副生物の酢酸が 4質量%及び高沸成分が 0. 5質量%含まれていた。 この時の 再生器から反応器に戻る触媒上の炭素質物質の蓄積量は 3. 5質量%であった。 上記反応を約 10時間連続し、 任意の 1時間の反応結果の一部を表 1に示す。 ま た、 反応成績は反応中はほぼ一定であった。
実施例 8 (原料を C4ラフイネ一トー 2に変更した例)
1—ブテンの代わりに C 4ラフイネ一トー 2を原料に以外は実施例 1とほぼ同 様の条件で触媒循環方式の流動床反応を実施した。 C 4ラフイネ一トー 2は、 1 ーブテン及ぴ 2—ブテン (シス及びトランス) 78%、 n—ブタン及ぴイソブタ ン 1 8 %、 イソブテン 1 %、 1, 2—及ぴ 1, 3—ブタジエン 2 %、 その他微量 成分 1 %を含んでいた。 この時の再生器から反応器に戻る触媒上の炭素質物質の 蓄積量は 4. 5質量%であった。 上記反応を約 10時間連続し、 任意の 1時間の 反応結果の一部を表 1に示す。 また、 反応成績は反応中はほぼ一定であった。 実施例 9 (原料中に TBA、 MT BEを含有する例)
原料に t e r t—ブチルアルコール (TB A) とメチル一 t e r t一プチルェ 一テル (MTBE) を、 1—ブテン Z水蒸気 ZN2ZTBAZMTBE = 20/ 40/38/1/1 (容量比) で供給した以外は実施例 1とほぼ同様の条件で触 媒循環方式の流動床反応を実施した。 この時の再生器から反応器に戻る触媒上の 炭素質物質の蓄積量は 3. 4質量%であつた。 上記反応を約 10時間連続し、 任 意の 1時間の反応結果の一部を表 1に示す。 また、 反応成績は反応中はほぼ一定 であった。
実施例 10 (Mo、 C r酸ィ匕物触媒 Eを用いた例)
触媒 Eを用いた以外は実施例 1とほぼ同様の条件で触媒循環方式の流動床反応 を実施した。 この時の再生器から反応器に戻る触媒上の炭素質物質の蓄積量は 3. 3質量%であった。 上記反応を約 10時間連続し、 任意の 1時間の反応結果の一 部を表 1に示す。 また、 反応成績は反応中はほぼ一定であった。
実施例 11 (Mo、 T i酸ィヒ物触媒 Fを用いた例)
触媒 Fを用いた以外は実施例 1とほぼ同様の条件で触媒循環方式の流動床反応 を実施した。 この時の再生器から反応器に戻る触媒上の炭素質物質の蓄積量は 3. 7質量%であった。 上記反応を約 1 0時間連続し、 任意の 1時間の反応結果の一 部を表 1に示す。 また、 反応成績は反応中はほぼ一定であった。
実施例 12 (S n酸化物のみの触媒 Gを用いた例)
触媒 Gを用いた以外は実施例 1とほぼ同様の条件で触媒循環方式の流動床反応 を実施した。 この時の再生器から反応器に戻る触媒上の炭素質物質の蓄積量は 1. 0質量%であった。 上記反応を約 10時間連続し、 任意の 1時間の反応結果の一 部を表 1に示す。 また、 反応成績は反応中はほぼ一定であった。 実施例 1 3 (担体がシリカアルミナの触媒を用いた例)
触媒 Hを用いた以外は実施例 1とほぼ同様の条件で触媒循環方式の流動床反応 を実施した。 この時の再生器から反応器に戻る触媒上の炭素質物質の蓄積量は 4 . 2質量%であった。 上記反応を約 1 0時間連続し、 任意の 1時間の反応結果の一 部を表 1に示す。 また、 反応成績は反応中はほぼ一定であった。
担体をシリカアルミナとすると反応ガス中の C〇 2が極端に減少した。
実施例 1 4 (触媒を前処理して炭素質物質を蓄積させた例)
再生器と反応器の中間に前処理器を設け、 反応は実施例 1とほぼ同様に行った。 再生温度は 6 0 0 °Cとし、 再生器から前処理器に入る触媒上の炭素質物質の蓄積 量を比較例 1と同様にほぼ完全に炭素質物質を除去した。 この触媒を前処理器内 でベンゼン 3 0容量0 /。、 1, 2—、 1, 3—ブタジエン 2 0容量0 /。、 N 2 5 0容 量%から成るガスと 3 5 0 °Cで接触させ触媒上に炭素質物質を蓄積させた。 この 前処理器から反応器へ戻る触媒上の炭素質物質の蓄積量は 2 . 0質量%であった。 上記反応を約 1 0時間連続し、 任意の 1時間の反応結果の一部を表 1に示す。 ま た、 反応成績は反応中はほぼ一定であった。
ほかに触媒 Aを用いて、 原料のアルケンを 1—ブテンからプロピレン、 シクロ へキセンに変更して実施例と同様な反応を行つても、 触媒上の炭素質物質の蓄積 量を 0 . 1〜1 0質量%に制御した触媒は、 新たな炭素質物質の生成を抑制し、 ァセトン、 シク口へキサノンの選択率を向上させる効果が認められた。
表 1
角蝶 ®¾へ 画» 。2 MEK MEK ΐ'雌 m MEK*1
Mo/(Sn+ o) /アルケン /アルケン ζアルケン 邀尺率 mm 邇尺率 職率 源子 J¾ m ) (歸 β (容 (容扇 CO (mmol) (%) (%) (%) (%) 実施例 1 A 0.13 3.5 15 0.0 2.0 320 632 86 4 10 95.6 比較例 1 A 0.13 0.03 15 0.0 2.0 600 624 50 4 4S 92.6 実施例 2 A 0.13 3.3 15 0.0 2.0 320 520 90 4 6 95.7 実施例 3 A 0.13 3.1 15 0.0 1.0 320 648 91 3 6 96.8 実施例 4 B 0.19 3.7 60 0.0 2.0 280 616 85 5 10 94.4 実施例 5 B 0.19 0.5 15 0.0 2.5 500 376 70 5 25 93,3 実施例 6 C 0.07 2.5 0.5 0.2 2.0 280 500 86 10 4 89.6 実施例 7 A 0.13 3.5 15 0.0 2.0 320 640 86 4 10 95.6 実施例 8 A 0.13 ' 4.5 15 0.0 2.0 320 610 87 5 8 94.6 実施例 9 A 0.13 3.4 15 0.0 2.0 320 628 86 5 9 94.5
触媒 触媒組成 反]¾、¾=へ 触媒循環量 〇2 水蒸気 再生 MEK MEK 副生物 炭素質物質 MEK*1
Mo/(X+Mo) 戻る触媒の /アルケン /アルケン /アルケン 温度 生成重 選択率 選択率 選択率 選択率 灰素質物質量
(原子比) (質量%) (質量比) (容量比) (容量比) (。C) 、mraol) (%) (%) (%) (%) 実施例 10 E 0.18*2 3.3 15 0.0 2.0 320 356 80 8 12 90.9 実施例 11 F 0.18*2 3.7 15 0.0 2.0 320 636*3 88*3 6 10 93.6*3 実施例 12 G Mo含まない 1.0 15 0.0 2.0 320 52 60 25 15 70.6 実施例 13 H 0.13 4.2 15 0.0 2.0 320 424 82 8 10 91.1 実施例 14 A 0.13 2.0 15 0.0 2.0 320 432 75 6 19 92.6 生成した炭素質物質を除く MEK選択率
(MEK純度) を示す。
*2 : 実施例 10では Mo/ (C r+Mo) , 実施例 1 1では Mo Z (T i +Mo) である。
* 3 : 実施例 1 1に限り、 ME Kとブタノールの合計値を示す。 すなわち、 MEK生成量とは MEK 305mmo 1、 ブ タール 331 mmo 1の合計である。
産業上の利用可能性
本発明の製造方法は、 酸化物触媒を用いて、 気相でアルケンから対応するアル コール及び/又はケトンを製造する場合に、 反応中の触媒上への炭素質物質の蓄 積を抑制する効果があり、 目的生成物の選択率を大幅に向上できる。 従って、 炭 素質物質生成による原料アルケンの損失の抑制、 触媒再生等に必要なユーティリ ティーコストの削減が可能となり、 生産性が非常に高い上記目的生成物の製造方 法が提供される。

Claims

請 求 の 範 囲
1. 水蒸気の存在下、 少なくとも一種のアルケンを含有する原料を気相で酸 化物触媒と接触させて反応を行うことによって、 該アルケンに対応するアルコー ノレ及び/又はケトンを製造する方法であって、
前記酸化物触媒が、
(a) モリブデン及ぴ Z又はスズの酸化物を含有すること、 及び
(b) 前記反応中において、 前記酸化物触媒上の炭素質物質の蓄積量が 0. 1〜 10質量%の範囲に制御されていること、
の要件を満たす、 上記アルコール及ぴ Z又はケトンの製造方法。
2. 前記反応によって得られた反応混合物から未反応のアルケン、 アルコー ル及ぴ Z又はケトンを回収し、 未反応のアルケンは原料の一部としてリサイクル することを含む、 請求項 1記載の方法。
3. 前記反応を流動床反応方式で行う際に、 反応に供した酸化物触媒を反応 器から抜き出し、 酸素含有ガスの存在下で該酸化物触媒を再生処理し、 該再生処 理済みの酸化物触媒を再度反応器に戻す触媒循環方式を用いる、 請求項 1又は 2 に記載の方法。
4. 反応器に戻る酸ィヒ物触媒上の炭素質物質の蓄積量を 0. 1〜 10質量% の範囲に制御する、 請求項 3記載の方法。
5. 酸素含有ガス存在下での酸化物触媒の再生処理温度が 270〜550°C である、 請求項 3又は 4に記載の方法。
6. 反応器に戻る酸化物触媒量/反応器に供給するアルケン量 (質量比) 1 0. 5〜 100の範囲である、 請求項 3〜 5のいずれか 1項に記載の方法。
7. 酸化物触媒上の炭素質物質の蓄積量を 0. · 3〜 5質量%の範囲に制御す る、 請求項 1〜 6のいずれか 1項に記載の方法。
8. 酸化物触媒中のモリブデンとスズの原子比 X {Mo/ (Sn+Mo) ; ここで、 Moは該酸ィヒ物触媒中のモリブデンの原子数であり、 S nは該酸化物触 媒中のスズの原子数である。 } 、 0. 29及ぴ0. 51以外の範囲である、 請 求項 1〜 7のいずれか 1項に記載の方法。
9. 酸ィヒ物触媒中のモリブデンとスズの原子比 X {Mo/ (Sn+Mo) ; ここで、 Moは該酸化物触媒中のモリブデンの原子数であり、 S nは該酸ィヒ物触 媒中のスズの原子数である。 } 、 0≤X< 0. 50 (0. 29を除く) の範囲 である、 請求項 1〜 7のいずれか 1項に記載の方法。
10. 酸化物触媒中のモリプデンとスズの原子比 X {Mo/ (Sn+Mo) ; ここで、 Moは該酸化物触媒中のモリブデンの原子数であり、 S nは該酸化物触 媒中のスズの原子数である。 } 、 0. 01≤X≤ 0. 24の範囲である、 請求 項 1〜 7のいずれか 1項に記載の方法。
1 1. 反応器に供給する酸素ガス量 Z反応器に供給するアルケン量 (モル比) 、 0. 0〜0. 5の範囲である、 請求項 1〜1 0のいずれか 1項に記載の方法。
12. 反応器に供給する水蒸気量 Z反応器に供給するアルケン量 (モル比) 、 0. 05〜1 0. 0の範囲である、 請求項 1〜1 1のいずれか 1項に記載の方法。
1 3. 前記反応後の回収水の全部又は一部を再度該反応に使用する、 請求項 1 〜12のいずれか 1項に記載の方法。
14. アルケンが 1—ブテン及び/又は 2—ブテンである、 請求項 1〜1 3の いずれか 1項に記載の方法。
15. アルケンとして 1ーブテン及び Z又は 2—ブテンを含有する原料が、 ィ ソブテン、 ブタジエン、 t e r t—ブチノレアノレコーノレ、 メチノレー t e r t一プチ ルエーテルからなる群から選ばれる少なくとも 1種以上を含む、 請求項 14記載 の方法。
PCT/JP2003/016722 2003-01-06 2003-12-25 アルコール及び/又はケトンの製造方法 WO2004060843A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/541,367 US7291755B2 (en) 2003-01-06 2003-12-25 Process for producing alcohol and/or ketone
JP2004564523A JP4547270B2 (ja) 2003-01-06 2003-12-25 アルコール及び/又はケトンの製造方法
EP03786307A EP1582510A4 (en) 2003-01-06 2003-12-25 PROCESS FOR PRODUCING ALCOHOL AND / OR KETONE
AU2003296112A AU2003296112A1 (en) 2003-01-06 2003-12-25 Process for producing alcohol and/or ketone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003000110 2003-01-06
JP2003-000110 2003-01-06

Publications (1)

Publication Number Publication Date
WO2004060843A1 true WO2004060843A1 (ja) 2004-07-22

Family

ID=32708760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016722 WO2004060843A1 (ja) 2003-01-06 2003-12-25 アルコール及び/又はケトンの製造方法

Country Status (8)

Country Link
US (1) US7291755B2 (ja)
EP (1) EP1582510A4 (ja)
JP (1) JP4547270B2 (ja)
KR (1) KR100636570B1 (ja)
CN (1) CN1735578A (ja)
AU (1) AU2003296112A1 (ja)
TW (1) TWI293291B (ja)
WO (1) WO2004060843A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1714954A1 (en) * 2004-02-10 2006-10-25 Maruzen Petrochemical Co., Ltd. Method for producing alcohol and/or ketone
CN104470875A (zh) * 2012-05-09 2015-03-25 链解决方案公司 一种通过非催化的化学反应生成含氧化合物的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482497B2 (en) * 2007-06-27 2009-01-27 H R D Corporation Method of making alcohols
US7491856B2 (en) 2007-06-27 2009-02-17 H R D Corporation Method of making alkylene glycols
US8581007B2 (en) 2011-04-04 2013-11-12 Exxonmobil Chemical Patents Inc. Use of steam to reduce coking and/or metal dusting
CN108369162B (zh) * 2015-12-16 2021-08-27 环球油品公司 用于催化剂取样的方法和装置
CN108002967B (zh) * 2017-11-28 2021-01-29 万华化学集团股份有限公司 一种惕各醛衍生物的制备方法
US11091701B2 (en) * 2019-01-10 2021-08-17 Saudi Arabian Oil Company Conversion of olefinic naphthas by hydration to produce middle distillate fuel blending components
KR102325331B1 (ko) * 2019-12-20 2021-11-10 한화토탈 주식회사 터트-부탄올로부터 이소부틸렌의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1240858A (en) * 1967-10-07 1971-07-28 Stamicarbon Process for the preparation of ketones and/or aldehydes from olefins
GB1324717A (en) * 1969-11-12 1973-07-25 Stamicarbon Process for the preparation of alkanones from olefins
US3987104A (en) * 1972-06-12 1976-10-19 Stamicarbon B.V. Process for preparing saturated ketones and a catalyst for realizing the process
EP0614872A1 (en) * 1993-03-12 1994-09-14 Nippon Shokubai Co., Ltd. Process for removal of solid organic matters

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3636156A (en) * 1968-04-25 1972-01-18 Idemitsu Petrochemical Co Process for the direct production of ketones from olefins
US4022837A (en) * 1970-07-24 1977-05-10 Chevron Research Company Production of ketones from alkenes, hydrated molybdenum(VI) oxide and water
JPS478046U (ja) 1971-02-23 1972-09-29
JPS5211782B2 (ja) 1972-08-03 1977-04-02
JPS5320485B2 (ja) 1972-11-22 1978-06-27
US4560804A (en) * 1982-09-21 1985-12-24 Exxon Research & Engineering Co. Catalytic process for the manufacture of ketones
US4737482A (en) * 1983-07-25 1988-04-12 Exxon Research & Engineering Co. Catalysts for oxidation of olefins to ketones
JPS59163335A (ja) 1983-03-09 1984-09-14 Tokuyama Soda Co Ltd オレフイン類の気相酸化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1240858A (en) * 1967-10-07 1971-07-28 Stamicarbon Process for the preparation of ketones and/or aldehydes from olefins
GB1324717A (en) * 1969-11-12 1973-07-25 Stamicarbon Process for the preparation of alkanones from olefins
US3987104A (en) * 1972-06-12 1976-10-19 Stamicarbon B.V. Process for preparing saturated ketones and a catalyst for realizing the process
EP0614872A1 (en) * 1993-03-12 1994-09-14 Nippon Shokubai Co., Ltd. Process for removal of solid organic matters

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1582510A4 *
SHOKUBAI GAKKAI: "Shokubai Koza Dai 5 Kan, (Kogakuhen 1), Shokubai Sekkei", 10 December 1985, KODANSHA SCIENTIFIC, pages: 260 - 269, XP002988279 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1714954A1 (en) * 2004-02-10 2006-10-25 Maruzen Petrochemical Co., Ltd. Method for producing alcohol and/or ketone
EP1714954A4 (en) * 2004-02-10 2008-02-13 Maruzen Petrochem Co Ltd PROCESS FOR PRODUCING ALCOHOL AND / OR KETONE
CN104470875A (zh) * 2012-05-09 2015-03-25 链解决方案公司 一种通过非催化的化学反应生成含氧化合物的方法
CN104470875B (zh) * 2012-05-09 2016-08-17 链解决方案公司 一种通过非催化的化学反应生成含氧化合物的方法

Also Published As

Publication number Publication date
US20060173220A1 (en) 2006-08-03
EP1582510A4 (en) 2006-07-05
KR100636570B1 (ko) 2006-10-19
EP1582510A1 (en) 2005-10-05
AU2003296112A1 (en) 2004-07-29
JPWO2004060843A1 (ja) 2006-05-11
TWI293291B (en) 2008-02-11
JP4547270B2 (ja) 2010-09-22
KR20050088246A (ko) 2005-09-02
CN1735578A (zh) 2006-02-15
US7291755B2 (en) 2007-11-06
TW200418780A (en) 2004-10-01

Similar Documents

Publication Publication Date Title
US7091155B2 (en) Catalyst for ester production and process for producing ester
RU2484895C2 (ru) Способ регенерации катализатора, используемого при дегидратации глицерина
JP5529547B2 (ja) アルカンおよび/またはアルケンの有益な酸素化物への選択的酸化
US3192259A (en) Production of alpha, beta-unsaturated oxygen-containing compounds
EP2830758B1 (en) Process for making ethylene and acetic acid
US7435703B2 (en) Catalyst comprising iron oxide made by heat decomposition of an iron halide and a lanthanide
WO2004060843A1 (ja) アルコール及び/又はケトンの製造方法
CN100335473C (zh) 一种耦合工艺制备γ-丁内酯和环己酮的方法
WO2013008279A1 (en) Process for preparing catalyst used in production of acrolein and/or acrylic acid and process for preparing acrolein and/or acrylic acid by dehydration reaction of glycerin
JP5796489B2 (ja) α−ヒドロキシカルボン酸エステルの製造方法
JP5662587B2 (ja) オレフィンメタセシスプロセスおよびタングステンフッ素結合を有する触媒
KR20150045682A (ko) 연속 반응-재생 및 유동식 올레핀 제조방법
TWI391371B (zh) 在基於乙烷之製程中使用化學反應自乙烷中分離乙烯以製造醋酸之方法
US5902918A (en) Catalyst and catalytic oxidative dehydrogenation of alkylaromatics and paraffins
JP2005225781A (ja) ブチルアルコール及び/又はメチルエチルケトンの製造方法
KR100757719B1 (ko) 알코올 및/또는 케톤의 제조 방법
JP2005225779A (ja) アルコール及び/又はケトンの製造法
JP7090471B2 (ja) p-キシレンの製造方法
JPS6261942A (ja) 3−エチルベンゾフエノンの製造法
JP2017218404A (ja) 3,4−ジヒドロ−2h−ピランの製造方法
JP2005225780A (ja) アルコール及び/又はケトンの製造方法
JP6718247B2 (ja) アリルアルコール類の製造方法
JP2005225778A (ja) アルコール及び/又はケトンの製法
RU2514426C1 (ru) Способ получения олефиновых углеводородов c3-c5 и катализатор для его осуществления
JPH11158102A (ja) ジブチルエーテルの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004564523

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003786307

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006173220

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020057012608

Country of ref document: KR

Ref document number: 20038A8304X

Country of ref document: CN

Ref document number: 10541367

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057012608

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003786307

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10541367

Country of ref document: US