WO2004055459A1 - 供給装置のシール機構 - Google Patents

供給装置のシール機構 Download PDF

Info

Publication number
WO2004055459A1
WO2004055459A1 PCT/JP2003/016145 JP0316145W WO2004055459A1 WO 2004055459 A1 WO2004055459 A1 WO 2004055459A1 JP 0316145 W JP0316145 W JP 0316145W WO 2004055459 A1 WO2004055459 A1 WO 2004055459A1
Authority
WO
WIPO (PCT)
Prior art keywords
trough
duct
liquid
furnace
plate
Prior art date
Application number
PCT/JP2003/016145
Other languages
English (en)
French (fr)
Inventor
Osamu Tsuge
Gilbert Yould Whitten
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to AU2003292561A priority Critical patent/AU2003292561A1/en
Publication of WO2004055459A1 publication Critical patent/WO2004055459A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0033Charging; Discharging; Manipulation of charge charging of particulate material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B13/00Furnaces with both stationary charge and progression of heating, e.g. of ring type, of type in which segmental kiln moves over stationary charge
    • F27B13/06Details, accessories, or equipment peculiar to furnaces of this type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0025Charging or loading melting furnaces with material in the solid state
    • F27D3/0032Charging or loading melting furnaces with material in the solid state using an air-lock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D2003/0034Means for moving, conveying, transporting the charge in the furnace or in the charging facilities
    • F27D2003/0038Means for moving, conveying, transporting the charge in the furnace or in the charging facilities comprising shakers

Definitions

  • the present invention relates to a sealing mechanism of a vibrating feeder used when supplying raw materials and the like to a moving-bed type furnace such as a rotary hearth furnace flat grate, and more specifically, penetrates a lower portion of the vibrating feeder and a furnace ceiling.
  • the present invention relates to a seal mechanism for preventing gas in the furnace from being released out of the furnace from a gap above a supply duct.
  • a shaft furnace method typified by a midrex method has hitherto been used. It has been known.
  • This type of direct ironmaking method is a method in which a reducing gas produced from natural gas or the like is blown from the tuyere at the lower part of the shaft furnace, and the reducing power is used to reduce iron oxide to obtain metallic iron.
  • the main focus is on reducing iron production processes that use coal and other carbon materials as a reducing material in place of natural gas. Specifically, the so-called SL / RN method has already been put into practical use.
  • the mixture containing iron oxide and the carbonaceous reducing agent is charged into the moving bed type heating furnace, the mixture charged into the hearth using a vibrating feeder as a supply device is mixed with the mixture in the hearth width direction.
  • Z or uniform thickness I have to.
  • FIG. 4 is a schematic explanatory view of a general supply device using a vibration feeder.
  • the material to be supplied such as a mixture, stored in the hopper 10 is supplied to the trough 11 of the vibrating feeder 12 by the fixed amount supply mechanism 8 provided in the hopper 10.
  • the mixture on the trough 11 is sequentially moved in the direction of the falling holes 13 of the trough by the vibration applied by the shaker 7 while adjusting the thickness of the mixture on the trough so as to be uniform throughout.
  • the liquid is continuously dropped and supplied to the hearth 2 from the drop hole 13 through the supply nozzle 14 and the duct 15.
  • the supply nozzle 14 provided on the lower surface of the trough along the hole opening edge and the duct 15 provided through the furnace ceiling 3 are not provided.
  • the contact state is 18 (it may be a non-contact part).
  • the non-contact portion 18 is left open, there is a problem that high-temperature furnace gas flows out of the non-contact portion out of the furnace, and dust is scattered out of the furnace with the outflow gas. Occurs.
  • the high-temperature gas flowing out of the contacted portion deteriorates peripheral devices of the vibration feeder.
  • the supply nozzle and the duct are connected by a rubber boot 19 to shield the non-contact portion.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a seal mechanism that is easy to maintain and can exhibit high shielding properties. Disclosure of the invention
  • the present invention relates to a sealing mechanism of a supply device for supplying agglomerate and / or powder into a moving bed type heating furnace, wherein the supply device comprises: (A) the agglomerate and / or powder A vibratory feeder having a trough with a drop hole for supplying into the furnace, and (B) agglomerate and / or Z or powder falling from the drop hole are placed on the hearth of the heating furnace.
  • the seal mechanism is a water seal mechanism composed of a skirt plate, a weir plate, a duct side surface, and a liquid.
  • the skirt plate has an upper end portion of the duct.
  • a lower end side of the trough is provided so as to surround an outer peripheral edge of the skirt plate so that a lower end opening thereof is located below the upper end of the duct. , And the upper end opening of the skirt plate is lower than the lower end of the skirt plate.
  • the liquid is placed in a tank formed by the duct side surface and the weir plate from the lower end of the skirt plate. It also has the gist that the liquid is retained so that the liquid level goes up.
  • FIG. 1 is a schematic cross-sectional view of a moving bed type heating furnace in which a supply device having a seal mechanism of the present invention is installed.
  • FIG. 2 is a schematic plan view of a main part of a moving bed type heating furnace in which a supply device provided with the seal mechanism of the present invention is installed.
  • FIG. 3 is a schematic cross-sectional view of a main part of a moving bed heating furnace in which a supply device provided with the seal mechanism of the present invention is installed.
  • FIG. 4 is a schematic cross-sectional view for explaining a conventional supply device and a sealing mechanism.
  • Figure 5 is a schematic diagram of a rotary hearth furnace. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention relates to a sealing mechanism of a supply device for supplying agglomerates and / or powders (hereinafter, sometimes referred to as “feed materials”) into a moving bed type heating furnace.
  • a vibratory feeder having a trough having a drop hole for supplying the material into the inside of the heating furnace, and (B) a duct for guiding the feedstock falling from the drop hole to the hearth of the heating furnace.
  • the sealing mechanism is a water sealing mechanism composed of a skirt plate, a weir plate, a duct side surface, and a liquid.
  • the skirt plate surrounds the outer peripheral edge of the upper end of the duct, and The lower end opening is provided on the lower surface side of the trough so as to be located below the upper end of the duct.
  • the weir plate surrounds the lower end peripheral edge of the skirt plate, and The upper end opening is above the lower end of the skirt plate
  • the liquid is placed in a tank formed by the duct side surface and the weir plate from the lower end of the force plate. This also has the gist that the liquid is retained so that the liquid level is upward.
  • Such a sealing mechanism is easy to maintain and has high shielding properties.
  • the agglomerate and / or powder (feed material) supplied using the supply device of the present invention refers to one type of powder, a mixed powder obtained by mixing two or more types of powder, or a pellet thereof. Aggregate formed into an arbitrary shape such as a pre-packet shape, regardless of raw materials, auxiliary raw materials, and additives.
  • various raw material powders such as iron oxide-containing powder and carbonaceous powder, or an agglomerate obtained by molding the mixed powder into an arbitrary shape such as a pellet briquette
  • hearth repair material for example, of the same material as the hearth
  • melting point modifier alumina, Mug Nesya etc.
  • the raw material to be supplied is not limited to the above examples, but may be any powder or agglomerate supplied to the furnace. Therefore, the seal mechanism of the present invention can be provided in each supply device of the raw material.
  • the moving bed type heating furnace examples include a heating furnace in which the hearth moves, such as a rotary hearth furnace / straight great.
  • the moving bed heating furnace may be, for example, any of a reduction furnace, a heating furnace, and a reduction melting furnace.
  • a reduction melting furnace using a rotary hearth furnace is desirable because it can efficiently perform reduction to melting in the furnace, and is particularly suitable for the production of metallic iron.
  • JP-A-2000-144424 For a specific method for producing metallic iron using a moving bed heating furnace, reference is made to JP-A-2000-144424.
  • the supply device is a device for supplying a supply material into the heating furnace, and includes at least a supply material supply hopper, a vibrating feeder, and a duct.
  • Fig. 5 is a schematic view of a rotary hearth furnace having a dome-shaped structure having a donut-shaped rotary moving floor.
  • Figs. 1 and 3 are cross-sectional views taken along the line A-A in Fig. 5, and Figs. (B) is a top view of the installation part of the supply device of the moving bed type heating furnace.
  • reference numeral 1 denotes a moving bed type heating furnace, and a feedstock 9 (shown as agglomerates in the illustrated example) is supplied from a supply device onto a hearth 2 of the moving bed heating furnace 1. .
  • the hopper 10 is charged with the feedstock 9.
  • the raw material 9 is supplied from the hopper 10 via the fixed quantity supply mechanism 8 to the trough 11 of the vibrating feeder or an indirect transport means such as a belt conveyor (not shown) communicating with the trough 11 of the vibrating feeder.
  • a gutter frame is provided on the periphery of the trough to prevent the supply material from falling off due to the vibration of the trough.
  • the vibration feeder is a device that moves the feedstock on the trough in the direction of the drop hole 13 provided in the trough 11 by vibrating the trough by the vibrator 7.
  • Examples of such a vibration feeder include various known feeders, such as a shaking feeder, an electromagnetic vibration feeder, a conductor-driven vibration feeder, and a slip stick feeder.
  • an electromagnetic vibratory feeder is a feeder that can supply a constant amount of feed (eg, a constant width, uniform thickness, etc.) to the furnace while adjusting the feed rate of the feed. It is recommended to use
  • the trough 11 is provided with a drop hole 13 for charging the raw material onto the hearth.
  • the shape, size, and arrangement of the drop holes are not particularly limited, and may be appropriately selected according to the purpose.
  • a plurality of slit-shaped falling holes 13 may be staggered in the trough to have a length corresponding to the hearth width.
  • a series of slit-shaped drop holes having a length corresponding to the hearth width may be formed.
  • a series of slit-shaped falling holes 13 are formed diagonally to the longitudinal direction of the trough (in other words, the ends 13a and 13b of the falling holes are respectively elongated in the trough length). And formed at an angle with respect to the hearth width direction so as to be located at ends 11a and 11b in different directions), and both ends of the drop hole correspond to positions corresponding to the hearth width end. It is desirable to provide them as follows.
  • a plurality of partitions may be provided on the trough as necessary to form a passage for the feedstock.
  • a supply nozzle 14 be formed on the lower surface side of the trough 11 at an arbitrary length downward along the opening edge of the drop hole 13.
  • the feed nozzle 1 prevents the feed material falling from the drop hole 13 from scattering and ensures It functions as a guide to guide Duct 15. Accordingly, the lower end 14a of the nozzle 14 extends below the upper end 15a of the duct 15 and the upper end 15a of the opening of the duct 15 surrounds the outer peripheral edge of the nozzle. It may be arranged in such a way.
  • the duct 15 is provided through the furnace ceiling 3 of the heating furnace 1, and the upper end 15a of the duct 15 is located between the lower end 14a of the supply nozzle and the lower surface of the trough. It is provided as follows.
  • the lower end 15 b of the duct 15 is open to the upper surface of the hearth in the heating furnace 1.
  • the supply nozzle 13 provided in the trough 11 vibrates with the vibration of the trough (for example, up, down, left and right swing, etc.), this vibration causes the vibration feeder (particularly the supply nozzle 14 and the trough 11). It is necessary to keep the vibration feeder and the duct 15 in a non-contact state so that the duct 15 and the duct 15 do not come into contact with each other. On the other hand, if they are in a non-contact state, high-temperature gas dust from the furnace rises up the duct 15 and flows out of the non-contact portion. Therefore, it is desirable to make the non-contact portion as small as possible.
  • the distance between the lower surface of the trough and the upper end 15 a of the duct and the distance between the outer peripheral edge of the supply nozzle 14 and the duct 14 can be made. Preferably shorter.
  • the water sealing mechanism is not particularly limited as long as it can block gas flow inside and outside the furnace in the non-contact portion.
  • the water seal mechanism shown in FIG. 1 is composed of a skirt plate 16, a weir plate 17, a duct side surface 15, and a liquid 18.
  • the skirt plate 16 is formed so as to surround the outer peripheral edge of the upper end 15 a of the duct in order to function as a weir for stopping gas, and the lower end opening 16 a of the skirt plate 16 is formed as described above. It is provided on the lower side of the trough so as to be located below the duct upper end 15a. At this time, the skirt plate 16 may be provided at an arbitrary position between the duct 15 and the dam 17. However, in order to prevent the trough 11 from being heated extensively by the hot gas rising up the duct 15, it is desirable to install the skat plate 16 as close to the duct 15 as possible.
  • the weir plate 17 is formed so as to surround the lower edge 16 a of the skirt plate 16 in order to function as a weir for retaining liquid, and the upper end opening of the weir plate 17 is formed at the lower end of the skirt plate 1. It is erected upward from the heating furnace ceiling so that it is located above 6a.
  • the liquid 18 used for water sealing is retained in a tank formed by the side surface of the duct 15 and the dam plate 1 mm.
  • the bottom end 16a of the scat plate must always be kept immersed in the liquid regardless of the vibration of the trough 11, so that the liquid is not filled.
  • the liquid level must always be above the lower end 16a of the skirt. It should be noted that staying means that the liquid is always present in the tank, not that the liquid is not flowing.
  • the duct 11 is used to prevent the liquid from flowing out of the water seal mechanism such as the liquid flowing into the furnace due to the vibration. It is desirable to appropriately adjust the height and liquid filling amount of each of the skirt plate 16 and the weir plate 17.
  • a liquid such as water is exemplified as a liquid used for water sealing, but water is most suitable from the viewpoint of economy and safety.
  • known additives such as a boiling point regulator and a preservative may be mixed into water.
  • the weir plate 17 may be provided near the outer peripheral edge of the skirt plate 16.
  • the trough 11 on the liquid retaining portion can be formed. 2A, 2B, and 3, and more preferably over a region including the trough 11 and the hearth width below the trough 11 as shown in FIGS. That is, a weir plate 17 is provided to serve as a liquid retaining section. Since the heating furnace 1 is operated in a high temperature state, the temperature of the furnace ceiling outside the furnace also becomes considerably high.
  • the heating furnace ceiling (outside the furnace) This is preferable because the temperature rise is suppressed and the deterioration of the vibration feeder including the trough can be prevented.
  • a weir plate is installed near the duct as shown in Fig. 1, only the vicinity of the supply nozzle 14 is cooled, so the height from the furnace ceiling upper surface to the trough 11 will be reduced as described later. It cannot be reduced.
  • the liquid retaining portion is formed on the entire lower surface side of the trough to prevent the temperature of the trough from rising as described above, not only the above problem can be avoided, but also the height from the trough to the hearth can be reduced. As a result, the cracking of agglomerates and the amount of dust due to a drop impact can be reduced.
  • the area of the liquid retaining section formed below the trough and the amount of retained liquid may be determined in consideration of various factors such as the heat resistance of the raw material for the yarn 1 and the operating conditions of the heating furnace.
  • the weir plate 17 is formed in a region including the trough 11 and the furnace ceiling width existing below the trough 11, and that region is used as a liquid retaining portion.
  • the weir plate 17 is formed in a region including the trough 11 and the furnace ceiling width existing below the trough 11, and that region is used as a liquid retaining portion.
  • a supply port 21 for supplying liquid into the tank surrounded by the duct side and the weir plate, and a discharge port 22 for discharging liquid are provided. It is also recommended as a preferred embodiment to provide one or more at arbitrary positions. By appropriately providing the supply port and the discharge port in this manner, the liquid can be easily exchanged, so that maintenance work can be easily performed even in a relatively small space.
  • a flow path may be provided in the tank, or a liquid sending device may be provided in order to exert the function of the liquid refrigerant uniformly over the entire area.
  • the supply device according to the present invention is not limited to the above embodiment, and can be appropriately improved and changed without departing from the basic principle of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Tunnel Furnaces (AREA)
  • Manufacture Of Iron (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

本発明の供給装置は塊成物および/または粉体を炉内へ供給するための落下孔がトラフに形成されている振動フィーダー、および前記落下孔から落下してくる塊成物および/または粉体を前記加熱炉の炉床上に案内するためのダクトを有し、更に前記シール機構はスカート板、堰板、ダクト側面、液体で構成される水封機構を備えており、該水封機構は、該スカート板は、前記ダクト上端部外周縁を取り囲むように、且つその下端開口部が前記ダクト上端部よりも下方に位置する様にトラフ下面側に設けられており、前記堰板は、前記スカート板の下端部周縁を取り囲むように、且つその上端開口部が前記スカート板下端部よりも上側に位置する様に前記加熱炉天井から上方に向けて設けられており、前記液体は、該ダクト側面と該堰板で形成される槽内に、前記スカート板の下端部よりも液面が上になる様に滞留されている。

Description

明 細 書 供給装置のシール機構 技術分野
本発明は原料等を回転炉床炉ゃス卜レートグレートの如き移動床式 炉に供給する際に利用する振動フィーダ一のシール機構に関し、 詳細 には振動フィーダ一の下部と炉天井部を貫通する供給ダク ト上部の間 隙から炉内ガスが炉外に放出されるのを防止するためのシール機構に 関する。 背景技術
鉄鉱石や酸化鉄等の酸化鉄源を炭材ゃ還元性ガスにより直接還元し て還元鉄 (金属鉄) を得る直接製鉄法としては、 従来よりミ ドレック ス法に代表されるシャフ ト炉法が知られている。 この種の直接製鉄法 は、 天然ガス等から製造される還元性ガスをシャフ 卜炉下部の羽口か ら吹込み、 その還元力を利用し酸化鉄を還元して金属鉄を得る方法で ある。 また天然ガスに代わる還元材として石炭等の炭材を使用する還 元鉄の製造プロセスが主目されており、 具体的には所謂 S L / R N法 が既に実用化されている。
近年、 炭材を利用する方法としては、 鉄鉱石等の酸化鉄と石炭など の炭素質還元材を含む混合物を回転炉ゃストレートグレートなどの移 動床式加熱炉の炉床上に装入し、 該加熱炉内を移動する間にバーナー 加熱や輻射熱で加熱することによって、 酸化鉄を炭素質還元材で還元 し、 得られた還元鉄を、 引き続いて浸炭 · 溶融 · 凝集させると共に、 溶融スラグと分離した後、 冷却固化して粒状の固体金属鉄を炉外へ取 り出す製造方法が知られている。
上記の様に酸化鉄と炭素質還元材を含む混合物を移動床式加熱炉へ 装入するに際しては、 供給装置として振動フィーダ一を利用して炉床 に装入した混合物が炉床幅方向および Zまたは敷厚さが均一となる様 にしている。
図 4は振動フィ一ダーを利用した一般的な供給装置の概略説明図で ある。 ホッパー 1 0内に貯められた混合物等の被供給物はホッパー 1 0に設けた定量供給機構 8によって振動フィーダ一 1 2のトラフ 1 1 上へ供給される。 そしてトラフ 1 1上の混合物は加振機 7によって与 えられる振動によって、 トラフ上の混合物の厚さが全体的に均一とな る様に調整されながら トラフの落下孔 1 3方向へ順次移動し、 落下孔 1 3から供給ノズル 1 4、 ダク ト 1 5を通って炉床 2上に連続的に落 下供給される。
この様な供給装置においては、 トラフが振動するために、 孔開口縁 部に沿って卜ラフ下面に設けた供給ノズル 1 4と、 炉天井部 3を貫通 して設けられるダク ト 1 5を非接触状態 1 8 (非接触部分ということ がある。) としている。 しかし該非接触部分 1 8を開口にしたままにし ておく と、 高温の炉内ガスが該非接触部分から炉外へ流出したり、 該 流出ガスに伴ってダス卜が炉外に飛散するという問題が生じる。 しか も該被接触部分から流出してくる高温ガスは振動フィーダ一の周辺機 器を劣化させるという問題も生じる。或いは炉外空気が炉内へ流入し、 炉内雰囲気に乱れが生じる問題も起こる。 そこでこれらの問題を阻止 するため、 供給ノズルとダク トをラバーブーツ 1 9で連結して該非接 触部分を遮蔽している。
しかしながらラバーブーツを用いたシール構造では、 炉内ガス熱に よってラバーブーツが劣化したり、 或いは浮遊する粉末がラバーブ一 ッに付着してラバ ブーツの伸縮機能が低下するため、 頻繁にラバー ブーツを点検 · 交換しなければならないという問題が生じていた。 ま たラバーブーツは比較的狭いスペースに設置されているので、 十分な 作業スペースを確保できないことも多く、 ラバーブーツの設置作業及 びそのメンテナンス作業が困難であった。 或いは作業スペース確保の 為には、 フィーダ一を高い位置に設置する必要がある。 しかしながら が、 フィーダ一を高位置にすると、 フィーダ一からの供給物が炉床で の落下衝撃で破壊されたり、 吹き上げられる粉塵量が増えるという問 題が生じる。 ―
本発明はこの様な問題に鑑みてなされたものであって、 その目的は メンテナンスが容易であり、 且つ高い遮蔽性を発揮できるシール機構 を提供することにある。 発明の開示
本発明は塊成物および/または粉体を移動床式加熱炉内へ供給する ための供給装置のシール機構であって、該供給装置は (A)前記塊成物お よび/または粉体を炉内へ供給するための落下孔がトラフに形成され ている振動フィ一ダ一、および (B)前記落下孔から落下してくる塊成物 および Zまたは粉体を前記加熱炉の炉床上に案内するためのダク トを 有し、 更に前記シール機構はスカート板、 堰板、 ダク ト側面、 液体で 構成される水封機構であって、 (a) 該スカート板は、 前記ダク ト上端 部外周縁を取り囲むように、 且つその下端開口部が前記ダク ト上端部 よりも下方に位置する様にトラフ下面側に設けられており、 (b) 前記 堰板は、 前記スカート板の下端部周縁を取り囲むように、 且つその上 端開口部が前記スカート板下端部よりも上側に位置する様に前記加熱 炉天井から上方に向けて設けられており、 (c) 前記液体は、 該ダク ト 側面と該堰板で形成される槽内に、 前記スカート板の下端部よりも液 面が上になる様に滞留されていることに要旨を有する。 図面の簡単な説明
図 1は、 本発明のシール機構を備えた供給装置が設置されている移 動床式加熱炉の断面概略図である。
図 2は、 本発明のシール機構を備えた供給装置が設置されている移 動床式加熱炉の要部平面略視図である。
図 3は、 本発明のシール機構を備えた供給装置が設置されている移 動床式加熱炉の要部断面概略図である。
図 4は、 従来の供給装置及びシール機構を説明するための概略断面 図である。 図 5は、 回転炉床炉の概略図である。 発明を実施するための最良の形態
本発明は塊成物および/または粉体 (以下、 供給原料ということが ある) を移動床式加熱炉内へ供給するための供給装置のシール機構で あって、 (A )該供給原料を炉内へ供給するための落下孔がトラフに形 成されている振動フィーダ一、 および (B) 前記落下孔から落下して くる供給原料を前記加熱炉の炉床上へ案内するためのダク トを有し、 前記シール機構はスカート板、 堰板、 ダク ト側面、 液体で構成される 水封機構であって、 ( a )該スカート板は、 前記ダク ト上端部外周縁を 取り囲むように、 且つその下端開口部が前記ダク ト上端部よりも下方 に位置する様に卜ラフ下面側に設けられており、 (b ) 前記堰板は、 前 記スカート板の下端部周縁を取り囲むように、 且つその上端開口部が 前記スカート板下端部よりも上側に位置する様に前記加熱炉天井から 上方に向けて設けられており、 ( c ) 前記液体は、 該ダク ト側面と該堰 板で形成される槽内に、 該ス力一ト板下端部よりも液面が上になる様 に滞留されていることに要旨を有する。
この様なシール機構は、 メンテナンスが容易であり、 且つ高い遮蔽 性を有している。
本発明の供給装置を用いて供給される塊成物および/または粉体 (供給原料) とは、 1 種の粉体または 2種以上の粉体を混合した混合 粉体、 或いはこれらをペレツ ト状ゃプリケッ ト状などの任意の形状に 成形した塊成物をいい、 原料、 副原料、 添加材の如何を問わない。 例 えば還元鉄 (金属鉄) の製造に用いる供給原料としては、 還元鉄 (金 属鉄) の原料となる酸化鉄含有粉と炭素質含有粉とを混合して得られ た混合粉 (更に他の成分が含まれていてもよい) や、 酸化鉄含有粉、 炭素質含有粉などの各種原料粉体、 また該混合粉をペレツ トゃブリケ ッ トなど任意の形状に成形した塊成物、 或いは更に炉床上に敷設する 炭素質含有粉や、 耐火物粉、 スラグ粉、 塩基度調整剤 (石灰等)、 炉床 補修材 (例えば炉床と同一材料のもの)、 融点調整剤 (アルミナ、 マグ ネシァ等) などの各種副原料や添加材等が例示される。 勿論、 供給原 料としては上記例示に限定されず、 要するに炉内へ供給される粉体や 塊成物であればよい。 従って本発明のシール機構は各供給原料の供給 装置に設けることができる。
移動床式加熱炉としては、回転炉床炉ゃストレートグレートの如き、 炉床が移動する加熱炉が例示される。 そして移動床式加熱炉は、 例え ば還元炉、 加熱炉、 還元溶融炉などいずれであってもよい。 これらの 中でも回転炉床炉を利用した還元溶融炉は、 炉内で還元から溶融まで 効率的に行なうことができるので望ましく、 特に金属鉄の製造に適し ている。
尚、 移動床式加熱炉を利用した具体的な金属鉄の製造方法について は特開 2 0 0 0— 1 4 4 2 2 4号を引用する。
上記供給装置は、 供給原料を加熱炉内へ供給するための装置であつ て、 少なく とも供給原料供給用ホッパー、 振動フィーダ一、 ダク トか ら構成されている。
以下、 本発明を図面を参照にしながら説明するが、 本発明は下記図 示例に限定する趣旨ではなく、 本発明の効果を達成し得る限り、 適宜 設計を変更することも可能である。
図 5はドーナツ状の回転移動床を有するドーム型構造の回転炉床炉の 概略見取図であって、図 1 ,図 3は図 5における A— A線断面相当図、 また図 2 ( A ) , ( B ) は移動床式加熱炉の供給装置設置部分の上視図 である。
図中 1は、 移動床式加熱炉であって、 この移動床式加熱炉 1の炉床 2上には、 供給装置から供給原料 9 (図示例では塊成物を示す) が供 給される。 ホッパー 1 0には供給原料 9が装入されている。 この供給 原料 9は、 該ホッパー 1 0から定量供機構 8を介して振動フィーダ一 のトラフ 1 1、 或いは図示しないが振動フィーダ一のトラフ 1 1 に連 通するベルトコンベアなどの間接的な運搬手段に供給される。 尚、 図 示例では省略しているが、 トラフの振動による供給原料の脱落を防止 するため、 トラフ周縁には樋枠が設けられている。 振動フィ一ダ一とは、 加振機 7によってトラフを振動させることに よってトラフ上の供給原料をトラフ 1 1に設けた落下孔 1 3方向へ移 動させる装置をいう。
この様な振動フィーダ一としては例えばシェ一キングフィーダ一、 電磁式振動フィーダ一、 電導機駆動式振動フィーダ一、 スリップステ イツクフィーダ一など各種公知のフィーダ一が挙げられる。 これらの 中でも供給原料の供給量を調節しながら、 供給原料の流れの形を一定 (例えば一定な幅、 均一な厚さなど) にして炉内に供給できるフィー ダ一として電磁式振動フィ一ダーを用いることが推奨される。
トラフ 1 1 には、 供給原料を炉床上に装入するための落下孔 1 3が 形成されている。 この落下孔の形状、サイズ、配置は特に限定されず、 目的に応じて適宜選択すればよい。 例えば図 2 ( A ) に示す様にトラ フにスリッ ト状の複数の落下孔 1 3を千鳥配置して炉床幅に相当する 長さとしてもよい。 或いは図 2 ( B ) に示す様に炉床幅に相当する長 さを有する一連のスリツ ト状の落下孔を形成してもよい。 供給原料を 炉床幅に合せて均一に装入し、 卜ラフ先端部での供給原料の落下漏れ を抑止するためには、 図 2 ( A ) , ( B ) に示す如く、 炉床全幅に対応 する様に千鳥状、 若しくは一連のスリッ ト状の落下孔を炉床の幅方向 に斜向して設けることが好ましい。 特に図 2 ( B ) に示す如く、 一連 のスリッ ト状の落下孔 1 3がトラフ長手方向に対して斜めに形成 (即 ち、 落下孔の端部 1 3 a , 1 3 bが夫々 トラフ長手方向の異なる端部 1 1 a , 1 1 bに位置する様に炉床幅方向に対して斜向して形成)し、 且つ該落下孔の両端部が炉床幅端部に対応する位置となる様に設ける ことが望ましい。 勿論、 トラフ上には必要に応じて複数の仕切板等を 設けて供給原料の通路を形成してもよい。 尚、 図 2では省略している が、 トラフには遮蔽性を高めるためにトラフに蓋 1 l a を設置して密 閉性を高めることが望ましい。
トラフ 1 1下面側には、 落下孔 1 3の開口縁に沿って下向きに任意 の長さで供給ノズル 1 4が形成することが望ましい。 この供給ノズル 1 は落下孔 1 3から落下してくる供給原料の飛散を防止し、 確実に ダク ト 1 5に案内するためのガイ ドとして機能する。 従って該ノズル 1 4の下端部 1 4 aはダク ト 1 5上端部 1 5 aよりも下方側まで延設 すると共に、 ダク ト 1 5の開口上端部 1 5 aはノズル外周縁を取り囲 む様に配置すればよい。
ダク ト 1 5は加熱炉 1の炉天井部 3を貫通して設けられており、 該 ダク ト 1 5の上端部 1 5 aは供給ノズル下端部 1 4 aと卜ラフ下面の 間に位置する様に設けられている。 またダク ト 1 5の下端部 1 5 bは 加熱炉 1内の炉床上面に臨んで開口されている。
尚、 トラフ 1 1 に設けた供給ノズル 1 3はトラフの振動 (例えば上 下 · 左右揺動等) に伴って振動するため、 この振動によって振動フィ ーダー (特に供給ノズル 1 4やトラフ 1 1 ) とダク ト 1 5が接触しな い様に、 振動フィーダ一とダク ト 1 5は常に非接触状態に保つことが 必要となる。 他方、 これらを非接触状態とすると、 炉内からの高温ガ スゃ粉塵がダク ト 1 5を上昇して該非接触部分から流出するため、 該 非接触部分はできるだけ小さくすることが望ましい。 具体的には、 上 記の如く非接触状態を維持しつつ、 トラフ下面とダク ト上端部 1 5 a との距離、 及び供給ノズル 1 4の外周縁とダク ト 1 4との間隔はでき るだけ短いことが好ましい。
本発明では、 この様に振動フィーダ一を採用して供給ノズル 1 4と ダク ト 1 5を非接触状態とした場合に、 ダク トを上昇してくる高温ガ スやそれに伴う粉塵などがこの非接触部分から外部へ流出しない様に 水封シール機構を設ける。
水封機構としては、 該非接触部分における炉内外の気体流通を遮断 できればよく、 具体的な構成については特に限定されない。
図 1に示す水封機構は、 スカート板 1 6、 堰板 1 7、 ダク ト側面 1 5、 液体 1 8で構成されている。
スカート板 1 6は、 気体止用の堰として機能させるため、 ダク ト上 端部 1 5 aの外周縁を取り囲む様に形成されており、 且つスカート板 1 6の下端開口部 1 6 aが前記ダク ト上端部 1 5 aよりも下方に位置 する様にトラフ下面側に設けられている。 この際、 スカート板 1 6はダク ト 1 5 と堰扳 1 7との間の任意の位 置に設ければよい。 しかしながら トラフ 1 1がダク ト 1 5を上昇して くる高温ガスによって広範囲に加熱されるのを抑止するために、 スカ ート板 1 6はできるだけダク ト 1 5の近傍に設置することが望ましい, 尚、 スカート板 1 6も トラフ 1 1の振動と共に振動するので、 スカ一 ト板 1 6もダク ト 1 5ゃ堰板 1 7に対して非接触状態に維持する。 堰板 1 7は、 液体保持用の堰として機能させるため、 スカート板 1 6の下端部 1 6 a周縁を取り囲む様に形成されており、 且つ堰板 1 7 上端開口部がスカート板下端部 1 6 aよりも上方に位置する様に加熱 炉天井から上方に向けて立設されている。
水封に用いる液体 1 8は、 ダク ト 1 5側面と堰板 1 Ίで形成される 槽内に滞留させる。 この際、 高温ガスの漏出を防ぐには、 トラフ 1 1 の振動にかかわらずスカ一ト板下端部 1 6 aが常に液体中に潜った状 態に維持しなければならず、 従って液体の充填量を調整することによ り、 液面がスカート下端部 1 6 aよりも常に上になる様にしなければ ならない。 尚、 滞留させるとは、 槽内に常に液体が存在しているとい う意味であって、 液体が流動していないという意味ではない。
またトラフ 1 1の振動によって液面も振動するので、 該振動によつ て液体が炉内に流入する等、 水封機構外へ液体が流出するのを防止す るために、 ダク ト 1 1、 スカート板 1 6、 堰板 1 7の夫々の高さと液 体充填量は適切に調節することが望ましい。
水封に用いる液体としては水などの液体が例示されるが、 経済性や 安全性の観点から水が最適である。 勿論、 水に沸点調整剤や防腐剤な どの公知の添加剤を混入させてもよい。
上記水封機構によってシール効果を得るには、 堰板 1 7をスカート 板 1 6の外周縁近傍に設ければよい。 この様な水封機構を採用するこ とによって、 炉内の高温ガスや粉塵がノズル 1 4とダク ト 1 5で形成 される非接触部分から大気中への漏出するのを防止できる。 更に上記 の様な水封機構のメンテナンスは液体を交換するだけでよく、 しかも 水封状態 (液面高さや液体の性状) は簡単に目視確認できるため、 点 検も容易である。
尚、 上記水封機構においては、 例えば図 1に示す如く、 液体 1 8滞 留部をトラフ 1 1の供給ノズル 1 4を含む領域に形成しておけば、 該 液体滞留部上のトラフ 1 1が加熱されるのを防止できるので望ましい, より好ましくは図 2 ( A ) , ( B )、 図 3に示す如く、 トラフ 1 1 と該ト ラフ 1 1の下方の炉床幅を含む領域に亘つて堰板 1 7を設け、 液体滞 留部とすることである。 加熱炉 1は高温状態で稼動されるため、 炉外 の炉天井部もかなり高温になるが上記の様に水封機構の液体滞留部の 領域を広げれば、 加熱炉天井部 (炉外側) の温度上昇が抑制され、 ト ラフを含めた振動フィーダ一などの劣化も防止できるので好ましい。 例えば図 1に示す様にダク ト近傍に堰板を設置した場合、 供給ノズ ル 1 4近傍が冷却されるのみであるため、 後述する様に炉天井上面か ら トラフ 1 1までの高さを低減することができない。
一方、 図 2 ( A ) , ( B ) や、 図 3に示す様に炉天井幅に対応するト ラフ 1 1下方部の全域に液体滞留部 1 8を形成しておけば、 該液体滞 留部 1 8の上方に存在する トラフ 1 1温度上昇を抑制できる。 このよ うにトラフの温度上昇を抑制すれば、 炉天井から トラフ 1 1までの高 さを従来よりも低く設定することも可能となる。
即ち、 炉天井部からの熱によってトラフ 1 1上の供給原料が加熱さ れると、該供給原料が劣化したり、トラフ 1 1の熱変形が生じるため、 従来はこうした問題を回避するため、 トラフ 1 1を炉天井部からかな り離れた高さ位置に設置していた。
例えば上記の様な加熱炉を用いて金属鉄を製造する場合に、 炭素質 還元材と酸化鉄とを含む混合粉がトラフ上で加熱されると、 炭材揮発 分の蒸発によるトラフ内付着の問題が生じる。 或いはトラフの熱変形 により、 供給原料の均等供給が妨げられる。
ところが、 上記の様に液体滞留部をトラフの下面側全域に形成して トラフの昇温防止する構成とすれば、 上記問題がすべて回避されるば かりでなく、 トラフから炉床までの高さを低くできる結果、 落下衝撃 による塊成物の割れや粉塵量も低減できる。 尚、 卜ラフ下方に形成する液体滞留部の面積や液体の滞留量は供糸 1 原料の耐熱性や加熱炉の操業条件など種々の要因を考慮して決定すれ ばよい。 例えば炉天井幅の半分程度、 即ち トラフの落下孔側から該半 分程度までの下部に液体滞留部を形成しただけでも、 操業条件によつ ては、 供給原料の劣化等を十分に抑止できることがある。
しかしより好ましいのは、 上述した様に堰板 1 7をトラフ 1 1及び 該トラフ 1 1下に存在する炉天井幅を含む領域に形成し、 その領域を 液体滞留部とすることである。 また液体滞留部の面積を広げることに よって、 該当部分の炉天井部の耐火壁を薄くすることも可能である。 この様な温度上昇抑止効果を更に高めるため、 単位面積当りの液体量 (体積) を増大することも有望である。
液体の温度上昇による蒸発を抑止するには、 液体滞留部の液体を適 宜交換することが望ましい。 したがって図 2 ( A ), ( B ) に示す如く、 ダク ト側面と該堰板で囲まれる槽内に液体を供給するための供給口 2 1 と、 液体を排出するための排出口 2 2を任意の位置に夫々 1以上設 けることも好ましい態様として推奨される。 この様に供給口、 排出口 を適宜設けておけば、 液体の交換を簡便に行なうことができるので、 比較的狭いスペースでも容易にメンテナンス作業ができる。
また液体の温度上昇による冷却効果の低下や粉塵の混入に伴う液体 の流動性低下を抑止する観点から槽内の液体を連続的、 或いは間欠的 に給排水することも望ましい。 また液体の冷媒としての機能を全域に 亘つて均等に発揮させるため、 槽内に流路を設けたり、 或いは送液装 置を設けてもよい。
本発明に係る供給装置は上記実施例に限定されるものではなく、 本 発明の基本原理を逸脱しない範囲において適宜に改良 · 変更すること ができる。

Claims

請求の範囲
1. 塊成物および または粉体を移動床式加熱炉内へ供給するための 供給装置のシール機構であって、
該供給装置は
(A)前記塊成物および Zまたは粉体を炉内へ供給するための落下 孔がトラフに形成されている振動フィーダ一、 および
(B)前記落下孔から落下してくる塊成物および Zまたは粉体を前 記加熱炉の炉床上に案内するためのダク トを有し、
更に前記シール機構はスカート板、 堰板、 ダク ト側面、 液体で構成 される下記水封機構を備えていることを特徴とする。
(a) 該スカート板は、 前記ダク ト上端部外周縁を取り囲むように、 且つその下端開口部が前記ダク ト上端部よりも下方に位置する様にト ラフ下面側に設けられており、
(b) 前記堰板は、 前記スカ一ト板の下端部周縁を取り囲むように、 且つその上端開口部が前記スカート板下端部よりも上側に位置する様 に前記加熱炉天井から上方に向けて設けられており、
(c) 前記液体は、 該ダク ト側面と該堰板で形成される槽内に、 前 記スカート板の下端部よりも液面が上になる様に滞留されている。
2. 請求項 1のシール機構において、 前記液体滞留部が平面視で前記ト ラフの供給ノズル部を含む領域に形成されているものである。
3. 請求項 1のシール機構において、 前記液体滞留部が平面視で前記ト ラフ下方の;!:戸床幅を含む領域に形成されているものである。
4. 請求項 1のシール機構において、 前記振動フィーダ一の前記落下孔 開口緣に沿ってトラフ下面側に下向きのノズルが形成されている と共に、 前記ダク ト上端部は前記供給ノズル下端部と前記トラフの 下面の間に位置しているものである。
5. 請求項 1のシール機構において、 前記ダク ト側面と堰板で形成され る槽内に液体を供給する供給口、 及び液体を排出する排出口が 1以 上形成されるものである。
6. 請求項 1のシール機構において、 該ダク ト側面と該堰板で形成され る槽内の液体は連続的、或いは間欠的に給排水しているものである,
7. 請求項 1のシール機構において、 前記移動式加熱炉として回転炉床 炉を用いるものである。
8. 請求項 7の回転炉床炉が、酸化鉄を還元させて金属鉄を製造するた めに用いられるものである。
PCT/JP2003/016145 2002-12-18 2003-12-17 供給装置のシール機構 WO2004055459A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003292561A AU2003292561A1 (en) 2002-12-18 2003-12-17 Seal mechanism for feeder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/321,445 US20040119210A1 (en) 2002-12-18 2002-12-18 Sealing mechanism of feeding device
US10/321,445 2002-12-18

Publications (1)

Publication Number Publication Date
WO2004055459A1 true WO2004055459A1 (ja) 2004-07-01

Family

ID=32592920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016145 WO2004055459A1 (ja) 2002-12-18 2003-12-17 供給装置のシール機構

Country Status (5)

Country Link
US (1) US20040119210A1 (ja)
JP (1) JP2004198104A (ja)
AU (1) AU2003292561A1 (ja)
TW (1) TW200413673A (ja)
WO (1) WO2004055459A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262500A (ja) * 2006-03-29 2007-10-11 Ihi Corp 均熱炉
WO2013152486A1 (zh) * 2012-04-09 2013-10-17 北京神雾环境能源科技集团股份有限公司 一种处理难选铁矿石的设备及其方法
RU2634540C1 (ru) * 2016-10-19 2017-10-31 Общество с ограниченной ответственностью Научно-производственное предприятие "МЕТЧИВ" (ООО НПП "МЕТЧИВ") Методическая печь
CN110160334A (zh) * 2019-06-04 2019-08-23 深圳市时代高科技设备股份有限公司 加热装置及粉体加热炉

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186765A (ja) * 2006-01-13 2007-07-26 Sumitomo Denko Steel Wire Kk 粉末の供給方法
KR100991842B1 (ko) 2008-09-25 2010-11-29 캐터필라정밀씰 주식회사 자동화 주조시스템의 분탄공급장치
JP5483589B2 (ja) * 2010-09-01 2014-05-07 株式会社神戸製鋼所 還元鉄原料供給システム
CN103673594B (zh) * 2013-12-11 2015-10-28 北京神雾环境能源科技集团股份有限公司 一种无热载体蓄热式旋转床热解的转底机械装置
JP6403268B2 (ja) * 2015-02-03 2018-10-10 株式会社神戸製鋼所 還元鉄の製造方法及び装置
CN112357517B (zh) * 2020-09-29 2022-03-22 无锡欣鼎金属制品有限公司 一种钢管加热炉全自动错位选料装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625086A (ja) * 1985-06-28 1987-01-12 三菱重工業株式会社 粒塊状材料処理装置
JP2002212627A (ja) * 2001-01-15 2002-07-31 Sumitomo Metal Ind Ltd 加熱炉内スケール排出装置
JP2002294332A (ja) * 2001-03-29 2002-10-09 Chugai Ro Co Ltd ウォーキングビーム型加熱炉の水封装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3452972A (en) * 1966-06-23 1969-07-01 Donald Beggs Furnace hearth
US4597564A (en) * 1985-05-23 1986-07-01 The International Metals Reclamation Company, Inc. Rotary hearth

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625086A (ja) * 1985-06-28 1987-01-12 三菱重工業株式会社 粒塊状材料処理装置
JP2002212627A (ja) * 2001-01-15 2002-07-31 Sumitomo Metal Ind Ltd 加熱炉内スケール排出装置
JP2002294332A (ja) * 2001-03-29 2002-10-09 Chugai Ro Co Ltd ウォーキングビーム型加熱炉の水封装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262500A (ja) * 2006-03-29 2007-10-11 Ihi Corp 均熱炉
WO2013152486A1 (zh) * 2012-04-09 2013-10-17 北京神雾环境能源科技集团股份有限公司 一种处理难选铁矿石的设备及其方法
RU2634540C1 (ru) * 2016-10-19 2017-10-31 Общество с ограниченной ответственностью Научно-производственное предприятие "МЕТЧИВ" (ООО НПП "МЕТЧИВ") Методическая печь
CN110160334A (zh) * 2019-06-04 2019-08-23 深圳市时代高科技设备股份有限公司 加热装置及粉体加热炉

Also Published As

Publication number Publication date
JP2004198104A (ja) 2004-07-15
US20040119210A1 (en) 2004-06-24
TW200413673A (en) 2004-08-01
AU2003292561A1 (en) 2004-07-09

Similar Documents

Publication Publication Date Title
ES2255562T3 (es) Metodo para producir hierro reducido.
TW562862B (en) Method of producing metallic iron and raw material feed device
RU2533522C1 (ru) Система подачи для восстановленного железного материала
WO2004055459A1 (ja) 供給装置のシール機構
US7846235B2 (en) Method for producing metallic iron
RU2633118C2 (ru) Система гранулирования шлака и способ работы
CA2316620C (en) Method and apparatus for supplying granular raw material for reduced iron
CA2836355C (en) Method and device for charging coal-containing material and iron carrier material
JP4307686B2 (ja) 原料供給装置および還元鉄製造方法
KR101587602B1 (ko) 재료 재순환 능력을 갖는 용융금속을 생산하기 위한 전기로
JP3075722B1 (ja) 粒状還元鉄原料の供給量調整方法およびその供給装置
US7172640B2 (en) Method and device for melting down metal-containing materials
JP4212873B2 (ja) 回転炉床炉用原料供給装置
JP3583067B2 (ja) 移動炉床式熱処理炉の排出装置およびその操業方法
SU985093A1 (ru) Способ загрузки шихты на агломерационную машину и устройство дл его осуществлени
KR100840267B1 (ko) 고로 보수 방법
JP2005282915A (ja) 焼結原料の装入装置
JP2004301368A (ja) 焼結原料装入装置
KR20210101292A (ko) 고로 내벽의 보호 방법
UA73610C2 (en) A method and device for distribution of lumpy bulk material
JPH0723497B2 (ja) 製鉄精錬炉の粉状原料投入方法
CA2540914A1 (en) Method and apparatus for supplying granular raw material for reduced iron

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase