RU2633118C2 - Система гранулирования шлака и способ работы - Google Patents

Система гранулирования шлака и способ работы Download PDF

Info

Publication number
RU2633118C2
RU2633118C2 RU2014152329A RU2014152329A RU2633118C2 RU 2633118 C2 RU2633118 C2 RU 2633118C2 RU 2014152329 A RU2014152329 A RU 2014152329A RU 2014152329 A RU2014152329 A RU 2014152329A RU 2633118 C2 RU2633118 C2 RU 2633118C2
Authority
RU
Russia
Prior art keywords
slag
air
molten
pipe
blast tube
Prior art date
Application number
RU2014152329A
Other languages
English (en)
Other versions
RU2014152329A (ru
Inventor
Уилльям Барри ФЕДЕРСТОН
Original Assignee
Прайметалз Текнолоджиз Аустриа ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Прайметалз Текнолоджиз Аустриа ГмбХ filed Critical Прайметалз Текнолоджиз Аустриа ГмбХ
Publication of RU2014152329A publication Critical patent/RU2014152329A/ru
Application granted granted Critical
Publication of RU2633118C2 publication Critical patent/RU2633118C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/026Methods of cooling or quenching molten slag using air, inert gases or removable conductive bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/052Apparatus features including rotating parts
    • C21B2400/054Disc-shaped or conical parts for cooling, dispersing or atomising of molten slag rotating along vertical axis
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/08Treatment of slags originating from iron or steel processes with energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Furnace Details (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

Изобретение относится к металлургии, а именно к системе и способу гранулирования шлака твердой консистенции с рекуперацией тепла. Система для гранулирования шлака содержит устройство гранулирования шлака с камерой гранулирования шлака, в которой установлен вращающийся распылительный гранулятор для распыления расплавленного шлака и подвод воздуха для подачи воздуха в расплавленный шлак перед распылением шлака, механизм подачи шлака в камеру гранулирования шлака, имеющий трубу, соединенную с входом для шлака камеры гранулирования шлака, воздушную дутьевую трубку, установленную внутри трубы механизма подачи шлака, причем подвод воздуха соединен с одним концом воздушной дутьевой трубки, удаленным от камеры гранулирования шлака, а дутьевая трубка имеет перфорированную секцию, удаленную от упомянутого подвода воздуха, с помощью которой воздух подается в расплавленный шлак. Обеспечивается повышение эффективности распыления, рекуперации тепла и гранулирования шлака. 2 н. и 7 з.п. ф-лы, 6 ил.

Description

СИСТЕМА ГРАНУЛИРОВАНИЯ ШЛАКА И СПОСОБ РАБОТЫ
Данное изобретение относится к системе гранулирования шлака и к способу работы, в частности, для гранулирования шлака твердой консистенции с рекуперацией теплоты.
Шлаковый материал может быть любого типа, например, на основе металла, такого как железо; оксида металла, такого как оксид титана; не металла, такого как шлак, создаваемый в качестве побочного продукта процесса получения металлов; или их смесей. В данном примере рассматривается шлак, получаемый в процессе получения металлов.
При обычном гранулировании шлака твердой консистенции, расплавленный шлак подается на диск в камере гранулирования шлака через трубу, соединенную со шлаковой канавкой из шахтной печи. Размер камеры гранулирования шлака зависит от расстояния, требуемого для достаточного охлаждения шлака, так что шлак не прилипает к стенкам камеры гранулирования шлака при соударении гранулята со стенками. Пространство всегда ограничено в цехе шахтной печи, так что желательно уменьшать общую опорную поверхность камеры гранулирования шлака.
В уровне техники известны системы и способы гранулирования шлака, см. например WO 9942623 A1, С21В 3/08, 26.08.1999, и таким образом, в настоящем изобретении ставится задача
усовершенствования известных систем и способов для увеличения эффективности распыления и гранулирования шлака.
Согласно первому аспекту данного изобретения, система гранулирования шлака содержит устройство гранулирования шлака, содержащее камеру гранулирования шлака; вращающийся распылительный гранулятор для распыления расплавленного шлака, при этом вращающийся распылительный гранулятор установлен в камере гранулирования шлака; и подвод воздуха для подачи воздуха в расплавленный шлак перед распылением шлака; при этом система гранулирования шлака дополнительно содержит механизм подачи шлака в камеру гранулирования шлака, при этом механизм подачи шлака содержит трубу, соединенную с входом для шлака камеры гранулирования шлака; и при этом система гранулирования шлака 2
дополнительно содержит воздушную дутьевую трубку, установленную внутри трубы механизма подачи шлака; подвод воздуха, соединенную с одним концом воздушной дутьевой трубки, удаленным от камеры гранулирования шлака; и перфорированную секцию воздушной дутьевой трубки, удаленную от подвода воздуха, с помощью которой воздух подается в расплавленный шлак.
Подаваемый в расплавленный шлак воздух быстро расширяется для улучшения распыления шлака.
Предпочтительно, устройство управления скоростью потока расплавленного шлака установлено с возможностью перемещения на воздушной дутьевой трубке.
Предпочтительно, система гранулирования шлака дополнительно содержит разливочное устройство, соединенное с механизмом подачи шлака, и в разливочном устройстве установлено устройство управления скоростью потока расплавленного шлака.
Предпочтительно, расстояние между выпускным концом трубы механизма подачи шлака и верхней поверхностью вращающегося распылительного гранулятора меньше 40 мм.
Это благоприятствует прохождению потока шлака на диск вращающегося распылительного гранулятора и предотвращает отскакивание расплавленного шлака, которое может происходить при падении с большой высоты.
Предпочтительно, система гранулирования шлака содержит вход для технологического воздуха; выход для технологического воздуха и механизм рекуперации теплоты.
Система гранулирования шлака имеет функцию рекуперации теплоты, а также гранулирования, за счет чего поток технологического воздуха, проходящий над наружной поверхностью расплавленного шлака во время процесса гранулирования, нагревается, и возможна рекуперация теплоты.
Согласно второму аспекту данного изобретения, предлагается способ гранулирования шлака в упомянутой системе, при этом способ содержит подачу воздуха в поток расплавленного шлака; и гранулирование расплавленного шлака в камере гранулирования шлака; соединение механизма подачи шлака, содержащего трубу, с входом для шлака камеры гранулирования шлака и подачу 3
расплавленного шлака в камеру гранулирования шлака через трубу; установку воздушной дутьевой трубки внутрь трубы механизма подачи шлака; соединение подвода воздуха с одним концом воздушной дутьевой трубки, удаленным от камеры гранулирования шлака; и подачу воздуха в расплавленный шлак через перфорированную секцию воздушной дутьевой трубки, удаленную от подвода воздуха.
Предпочтительно, способ дополнительно содержит вращение диска вращающегося распылительного гранулятора; измерение диаметра проб гранулированного шлака; сравнение измеренного диаметра с ожидаемым диаметром при заданной скорости вращения; и согласование скорости потока воздуха в расплавленный шлак в зависимости от результата сравнения.
Расширение шлака за счет подачи воздуха позволяет уменьшать скорость чаши и обеспечивает более длительное время полета по более короткой дистанции, за счет чего уменьшается полная опорная поверхность системы гранулирования шлака, однако слишком большой размер частиц гранулированного шлака может приводить к образованию частиц, которые не имеют твердую консистенцию в центре, так что необходимо, соответственно, согласовывать поток воздуха.
Предпочтительно, способ дополнительно содержит пропускание потока технологического воздуха через камеру гранулирования шлака для охлаждения гранулированного шлака и рекуперацию теплоты из технологического воздуха в механизме рекуперации теплоты.
Предпочтительно, способ дополнительно содержит перемещение устройства управления скоростью потока расплавленного шлака через ряд положений для управления скоростью потока шлака через механизм подачи шлака.
Ниже приводится описание примера выполнения системы гранулирования шлака и способа работы, согласно данному изобретению, со ссылками на прилагаемые чертежи, на которых изображено:
фиг. 1 - устройство для гранулирования шлака твердой консистенции с рекуперацией теплоты;
4
фиг. 2 - устройство для гранулирования шлака твердой консистенции, согласно данному изобретению, с рекуперацией теплоты;
фиг. 3а и 3b - стопорное устройство для использования с данным изобретением;
фиг. 4а и 4b - вариант выполнения данного изобретения; и
фиг. 5а и 5b - источник воздуха для использования с данным изобретением;
фиг. 6 - способ управления скоростью потока шлака во время гранулирования в устройстве, согласно фиг. 1.
В обычном способе гранулирования расплавленного шлака, шлак выгружают из желоба для шлака на вращающийся распылительный гранулятор, который может быть выполнен в виде плоского диска или неглубокой чаши или стола. Шлак распыляется на кромке диска и приводит к образованию капель шлака, частично охлажденных до температуры, при которой они имеют достаточно стабильную оболочку, так что они не прилипают при соударении с окружающей наклонной, охлаждаемой водой стенкой. После соударения шлак падает в охлаждаемый воздухом слой, где происходит дальнейшее охлаждение перед выгрузкой.
Однако желательно иметь возможность уменьшения опорной поверхности камеры гранулирования шлака и увеличения эффективности распыления во время гранулирования шлака.
На фиг. 2 показано устройство для гранулирования шлака твердой консистенции, согласно данному изобретению, с рекуперацией теплоты. Вращающийся распылительный гранулятор, содержащий вращающийся элемент 5, обычно диск или стол, вращающийся на приводном валу б в направлении стрелки 7, установлен в камере 13 гранулирования шлака. Ряд входов 10 для технологического воздуха и выход 11 для технологического воздуха обеспечивают путь прохождения воздушного потока через камеру 13 гранулирования шлака к механизму 12 для рекуперации теплоты. Камера гранулирования шлака снабжена охлаждаемыми водой стенками 15 и охлаждаемым слоем 16. Как показано в этом примере выполнения, вертикальная, труба 4, соединенная через выход 3 с разливочным устройством 2, принимает шлак 9 из шлаковой канавки 5
8. Внутри трубы 4 установлена воздушная дутьевая трубка 14, соединенная с подводом воздуха (не изображен) и контроллер 18 для управления подачей воздуха в нее. На конце воздушной дутьевой трубки, удаленном от подвода воздуха, перфорированная секция 34 воздушной дутьевой трубки позволяет воздуху входить в шлак 9.
На фиг. 3-5 показаны признаки, которые можно использовать в системе гранулирования шлака твердой консистенции, такой как система, описание которой приведено выше со ссылками на фиг. 1 и 2, с рекуперацией теплоты, показанной на этих фигурах, или без нее. Система гранулирования шлака содержит механизм подачи шлака, осуществляющий подачу шлака обычно через шлаковую канавку 8 из шахтной печи (не изображена) в трубу 4, выполненную футерованной. Разливочное устройство или лоток 2 могут использоваться для облегчения регулирования подачи шлака, или же шлаковая канавка может подавать шлак непосредственно в трубу. На фиг. 1, 2, 3а, 3b, 4а и 4b показаны примеры выполнения разливочного устройства, однако, если не требуется управление скоростью потока расплавленного шлака, то оно может быть исключено.
На фиг. 3а показан базовый пример выполнения управления скоростью потока расплавленного шлака, который можно использовать в системе гранулирования шлака, согласно данному изобретению, в котором шлак 9 подается от разливочного устройства 2 через трубу 4 на вращающийся элемент 5 вращающегося распылительного гранулятора в камере гранулирования шлака. Вращающийся элемент 5 в виде диска вращается на приводном валу б в направлении стрелки 7. В этом примере выполнения показана также не обязательная аэрация расплавленного шлака посредством подачи воздуха для улучшения эффективности распыления во время гранулирования через секцию трубы. Подаваемый снаружи сжатый воздух из компрессора подается через гибкую трубу (не изображена) в расплавленный шлак через перфорированную секцию 31 трубы, которая может быть расположена на конце, соседнем с вращающимся распылительным гранулятором и удаленном от источника расплавленного шлака. Воздух можно впрыскивать в поток шлака 6
либо через пористую заглушку, как показано на фиг. 3а и 3b, либо через радиальные отверстия впрыска. Конец механизма подачи шлака обычно находится на расстоянии меньше 40 мм от верхней поверхности вращающегося распылительного гранулятора, с целью предотвращения отскакивания расплавленного шлака при соударении с вращающимся распылительным гранулятором. На фиг. 3b показано, как устройство управления скоростью потока расплавленного шлака, подробное описание которого будет приведено ниже, может быть включено в систему гранулирования шлака, с помощью стопорного устройства 17, перемещаемого с помощью стержня 14 под управлением контроллера 18, как показано на фиг. 1. Не обязательный стержень стопорного устройства полностью не зависит от способа впрыска воздуха.
Система гранулирования шлака, включающая подачу воздуха в шлак, согласно данному изобретению, показана на фиг. 4а и 4b. На фиг. 4а показана воздушная дутьевая трубка 32 для впрыска сжатого воздуха, которая обеспечивает возможность направления воздуха из компрессора через подающую трубу 33 и воздушную дутьевую трубку 32 и впрыска в центр потока шлака в трубе 4. Это можно осуществлять через перфорированную секцию 34, установленную на конце трубы, наиболее близком к вращающемуся распылительному гранулятору, или в качестве альтернативного решения, через пористую заглушку или концевое отверстие, при этом воздушная дутьевая трубка может иметь небольшие отверстия, распределенные по длине, через которые воздух впрыскивается в шлак, или же может иметь отверстия в воздушной дутьевой трубке лишь на конце, наиболее близком к вращающемуся распылительному гранулятору. Сжатый воздух подается через подающую трубу 33 наверху воздушной дутьевой трубки, и им можно управлять с помощью контроллера 18. В показанном на фиг. 4b примере выполнения, воздушная дутьевая трубка 32 для впрыска воздуха комбинирована с не обязательным устройством 17 управления скоростью потока расплавленного шлака, установленным на воздушной дутьевой трубке для управления скоростью потока шлака к трубе 4. Хотя оно показано в виде стопорного устройства и стержня, можно использовать другие виды управления скоростью 7
потока расплавленного шлака, описание которых приведено со ссылками на фиг. 1. Конструкция такова, что воздушная дутьевая трубка 32 и стопорное устройство 17 можно перемещать независимо друг от друга, например, посредством движения скольжения стопорного устройства по воздушной дутьевой трубке. Воздух через подающую трубу 33 поступает вниз по воздушной дутьевой трубке 32 и выходит в поток шлака 9 через концевую секцию 34. Концевая секция может быть открытой на конце или предпочтительно имеет вид пористой заглушки. В качестве альтернативного решения, воздушная дутьевая трубка может иметь закрытый конец с рядами радиальных отверстий вместо пористой заглушки, или же отверстия могут быть в закрывающей пластине на конце воздушной дутьевой трубки. Предпочтительный вариант выполнения зависит от предполагаемого применения и расчетной скорости потока шлака.
На фиг. 5а показана другая схема подачи воздуха в шлак. Вращающийся элемент 5 в виде диска вращающегося распылительного гранулятора может снабжаться шлаком непосредственно через трубу и, не обязательно, включать устройство управления скоростью потока расплавленного шлака, хотя они и не изображены. Хотя воздух можно подавать непосредственно на кромку вращающегося распылительного гранулятора или в трубу, в данном примере выполнения сжатый воздух подается через пористую заглушку 35 наверху вращающегося распылительного гранулятора, а не в трубу механизма подачи шлака. Пористая заглушка может иметь тот же диаметр, что и диск, и воздух можно подводить к верху пористой заглушки, к центру, к кромкам или ко всей верхней поверхности. Воздух можно подавать через канал 36 в - приводном валу 6. В предпочтительном варианте выполнения воздух подается через центральную пористую футерованную подушку 37 металлического в остальном вращающегося стола 38 (как показано на фиг. 5b), через канал 36 в приводном валу 6.
Подача воздуха в расплавленный шлак в трубе механизма подачи шлака улучшает распыление за счет расширения воздуха при его выходе из подающей трубы и быстрого достижения температуры шлака. Хотя температура воздуха несколько повышается при прохождении воздуха вниз по воздушной дутьевой трубке или в 8
другой схеме подачи, воздух остается намного холоднее, чем шлак. При впрыске в шлак воздух быстро расширяется, улучшая распыление шлака, и быстро принимает температуру шлака. Как указывалось выше, капли шлака должны приобретать почти твердую поверхность перед контактом с поверхностью стенки камеры гранулирования шлака на расстоянии от вращающегося стола, с целью исключения прилипания к этой поверхности. Улучшенное распыление за счет впрыскиваемого воздуха позволяет использовать вращающейся распылительный гранулятор с меньшей скоростью вращения при том же размере капель шлака, уменьшая расстояние, необходимое для охлаждения в полете капель шлака. Это позволяет располагать наклонные стенки камеры гранулирования шлака ближе к вращающемуся распылительному гранулятору, за счет чего камера гранулирования шлака может иметь меньший диаметр, требовать меньше воздуха для обработки гранулята и обеспечивать более высокую температуру воздуха в канале 11 выхода технологического воздуха из системы гранулирования шлака, если используется механизм 12 рекуперации теплоты. Определение правильности или не правильности подачи воздуха, может включать измерение скорости вращения диска и среднего диаметра гранул шлака, сравнение измеренного диаметра с ожидаемым диаметром при скорости вращения и соответствующее согласование подачи воздуха.
Устройство управления скоростью потока расплавленного шлака, описание использования которого приведено в одновременно находящемся на рассмотрении патенте GB 1221121.5, для управления скоростью потока расплавленного шлака на вращающийся элемент, можно дополнительно использовать в данном изобретении. При использовании вариантов выполнения, показанных на фиг. 3а и 4а, с устройство управления скоростью потока расплавленного шлака, достигается преимущество более управляемого потока шлака, за счет чего предотвращается прохождение воздуха в трубу механизма подачи шлака, что уменьшает потери горячего воздуха и тем самым улучшает эффективность рекуперации теплоты. Даже без этого признака, данное изобретение улучшает распыление шлака посредством ввода воздуха в процесс гранулирования. В показанных на фиг. 3, 4 и 5 примерах выполнения возможна работа без 9
устройства управления скоростью потока расплавленного шлака, однако с улучшением распыления, согласно изобретению. Аналогичным образом, хотя описание примеров выполнения приведено применительно к устройству гранулирования шлака твердой консистенции с рекуперацией теплоты, их можно использовать также в системе гранулирования шлака твердой консистенции без механизма рекуперации теплоты. Различные примеры впрыска воздуха в расплавленный шлак можно использовать по отдельности или в комбинации.
Конструкция обычного устройства гранулирования шлака твердой консистенции такова, что температура воздуха, выходящего из камеры гранулирования шлака, достаточно велика для обеспечения рекуперации теплоты, в виде горячего
технологического воздуха для сушки и т.д. или для создания пара. В свою очередь, пар можно использовать для генерирования электричества. В случае шлака шахтной печи, гранулят имеет очень большую долю шлака твердой консистенции, что делает его пригодным для производства цемента.
Для обеспечения возможности изменений скорости потока шлака, в частности, когда вращающийся распылительный гранулятор соединен непосредственно с выходом шлаковой канавки печи, труба, направляющая шлак на диск, обычно имеет чрезмерный размер. Поэтому труба не заполняется полностью. Камера гранулирования шлака обычно работает при избыточном давлении, что приводит к потере горячего воздуха и уменьшенной рекуперации теплоты. Аналогичным образом, если камера гранулирования шлака работает при разряжении, то в нее всасывается холодный воздух, что также приводит к уменьшению рекуперации теплоты. Величина потери тепла в любом случае зависит от рабочего давления камеры гранулирования шлака и свободного пространства в трубе механизма подачи шлака.
Как указано в находящихся одновременно на рассмотрении патентных заявках GB 1221121.5 и GB 1221126.4 и в примере выполнения, согласно фиг. 1, вращающийся распылительный гранулятор, содержащий вращающийся элемент 5, обычно диск или стол, вращающийся на приводном валу 6 в направлении стрелки 7, 10
установлен в камере 13 гранулирования шлака. Вход 10 для технологического воздуха и выход 11 для технологического воздуха обеспечивают путь прохождения воздуха через камеру 13 гранулирования шлака к механизму 12 рекуперации теплоты. Камера гранулирования шлака снабжена охлаждаемыми водой стенками 15 и охлаждаемым слоем 16. Труба 4 механизма подачи шлака, выполненная вертикальной и футерованной для подачи шлака, соединенная через с выходом 3 разливочным устройством 2, принимает шлак 9 из шлаковой канавки 8. Устройство 1 управления скоростью потока расплавленного шлака, в данном примере выполнения стержень стопорного устройства в виде конической заглушки, установлен с возможностью перемещения в разливочном устройстве.
Подвижная коническая заглушка регулирует скорость потока, так что, когда шлак начинает затвердевать, поток увеличивается для предотвращения блокирования трубы затвердевающим шлаком. Высокие скорости потока обычно находятся в диапазоне от 2 до б тонн в минуту.
Управление скоростью потока также улучшает эффективность процесса рекуперации теплоты, за счет применения управления скоростью потока расплавленного шлака во время гранулирования шлака. За счет управления скоростью потока расплавленного шлака с использованием устройства управления потоком, образуется шлаковое уплотнение между устройством 1 управления скоростью потока расплавленного шлака и выходом 3 разливочного устройства, предотвращающее прохождение воздуха через трубу 4, что исключает потерю горячего воздуха из камеры гранулирования шлака, или всасывание холодного воздуха в камеру гранулирования шлака. Устройство управления скоростью потока расплавленного шлака расположено над выходом 3 разливочного устройства 2, которое обычно футеровано и содержит расплавленный шлак 9. Устройство 1 управления скоростью потока расплавленного шлака, показанное на фиг. 1, имеет вид исполнительного стержня 14, соединенного со стопорным устройством 17, который в данном примере выполнения имеет форму усеченного конуса, хотя можно использовать другие формы устройства управления скоростью потока расплавленного 11
шлака для уменьшения поперечного сечения для прохождения шлака и образования тем самым шлакового уплотнения. Выход 3 разливочного устройства 2 и труба 4 обычно футерованы. Расплавленный шлак 9 подается из трубы 4 на вращающийся элемент 5. На краю вращающегося элемента 5 шлак распыляется. Труба 4 механизма подачи шлака, выполненная футерованной, предназначена для направления максимального расчетного потока шлака на вращающийся элемент 5. Свойства шлака, такие как глубина шлака, для определения размера раскрыва и поперечного сечения, можно использовать для определения этого, однако при затвердевании шлака в трубе изменяется поперечное сечение, поэтому необходим чрезмерный размер трубы. Перемещение стопорного устройства 17 от выхода 3 разливочного устройства посредством поднимания стержня 14, позволяет проходить увеличенному потоку шлака через трубу 4. Устройство 1 управления скоростью потока расплавленного шлака может перемещаться под влиянием контроллера 18 гранулирования шлака для сохранения уровня шлака в разливочном устройстве 2, обеспечивая тем самым уплотнение для предотвращения прохождения воздуха через трубу 4.
Когда поверхность шлака нагревается согласно изобретению, например, с помощью колпаковой горелки (не изображена) и газа шахтной печи, то температура поверхности шлака сохраняется для предотвращения образования корки затвердевшего шлака, однако с возможностью образования шлакового уплотнения между стопорным устройством и расплавленным шлаком в разливочном устройстве. Затем можно использовать датчик уровня (не изображен) в разливочном устройстве для обеспечения данных для контроллера. При падении уровня до самого низкого разрешенного уровня, стопорное устройство перемещается ближе к выходу 3 разливочного устройства для предотвращения прохождения воздуха за него. При повышении уровня стопорное устройство 17 можно перемещать дальше от выхода 3 разливочного устройства без нарушения шлакового уплотнения, а затем его можно использовать для управления скоростью потока расплавленного шлака. При отсутствии нагревания поверхности шлака в разливочном устройстве, образование корки шлака предотвращается с помощью датчика уровня. В этом случае 12
можно использовать вес разливочного устройства для обеспечения данных управления. Это в комбинации с положением самого стопорного устройства позволяют контроллеру перемещать стопорное устройство по потребности.
При такой конструкции обеспечивается более управляемый поток шлака и предотвращает прохождение воздуха в трубу механизма подачи шлака как снаружи, так и из камеры гранулирования шлака, что уменьшает вход охлаждающего воздуха или потери горячего воздуха, и тем самым ведет к улучшению эффективности рекуперации теплоты.
На фиг. 6 показана блок-схема способа работы устройства, согласно фиг. 1. Расплавленный шлак подают на стадии 20 в разливочное устройство. Уровень расплавленного шлака или вес разливочного устройства и положение стопорного устройства управления потоком расплавленного шлака контролируют на стадии 21 с помощью датчиков в разливочном устройстве, или с помощью взвешивания разливочного устройства, и уровень или вес и положение сообщаются в контроллер 18. На стадии 22 выполняется сравнение с требуемым минимальным уровнем для заданного положения стопорного устройства, и если уровень равен или ниже требуемого минимального уровня для этого положения стопорного устройства, то его на стадии 23 перемещают ближе к выходу 3 разливочного устройства. Если стопорное устройство находится на минимальном уровне или ниже, то его можно перемещать от выхода разливочного устройства с существенным увеличением скорости потока во вращающийся распылительный гранулятор и управления скоростью потока расплавленного шлака во вращающийся распылительный гранулятор. Шлак, входящий во вращающийся распылительный гранулятор, гранулируют на стадии 24 и охлаждают на стадии 25. Для гранулирования шлака твердой консистенции выполняют дополнительно стадию 26 пропускания технологического воздуха над шлаком при его охлаждении и стадию 27 направления нагретого воздуха в механизм рекуперации теплоты. Для гранулирования шлака твердой консистенции можно использовать механизм измерения мощности или тока приводного электродвигателя вращающегося распылительного гранулятора, описание которого дано 13
в одновременно находящейся на рассмотрении патентной заявки GB 1221126.4, для обеспечения обратной связи для контроллера для управления скоростью потока расплавленного шлака.

Claims (16)

1. Система для гранулирования шлака, содержащая
устройство гранулирования шлака с камерой гранулирования шлака, в которой установлен вращающийся распылительный гранулятор для распыления расплавленного шлака и подвод воздуха для подачи воздуха в расплавленный шлак перед распылением шлака,
механизм подачи шлака в камеру гранулирования шлака, имеющий трубу, соединенную с входом для шлака камеры гранулирования шлака,
воздушную дутьевую трубку, установленную внутри трубы механизма подачи шлака,
причем подвод воздуха соединен с одним концом воздушной дутьевой трубки, удаленным от камеры гранулирования шлака, а дутьевая трубка имеет перфорированную секцию, удаленную от упомянутого подвода воздуха, с помощью которой воздух подается в расплавленный шлак.
2. Система по п. 1, которая дополнительно снабжена устройством управления скоростью потока расплавленного шлака, установленным с возможностью перемещения на воздушной дутьевой трубке.
3. Система по п. 1 или 2, которая дополнительно снабжена разливочным устройством, соединенным с механизмом подачи шлака, причем в разливочном устройстве установлено устройство управления скоростью потока расплавленного шлака.
4. Система по п. 1 или 2, в которой расстояние между выпускным концом трубы механизма подачи шлака и верхней поверхностью вращающегося распылительного гранулятора меньше 40 мм.
5. Система по п. 1 или 2, которая дополнительно содержит вход для технологического воздуха, выход для технологического воздуха и механизм рекуперации теплоты.
6. Способ гранулирования шлака с использованием системы гранулирования шлака по п. 1, включающий подачу воздуха в поток расплавленного шлака и гранулирование расплавленного шлака в камере гранулирования шлака, при этом
соединяют трубу механизма подачи шлака с входом для шлака камеры гранулирования шлака и подают расплавленный шлак в камеру гранулирования шлака через трубу,
устанавливают воздушную дутьевую трубку внутрь упомянутой трубы,
соединяют подвод воздуха с одним концом воздушной дутьевой трубки, удаленным от камеры гранулирования шлака, и подают воздух в расплавленный шлак через перфорированную секцию воздушной дутьевой трубки, удаленную от упомянутого подвода воздуха.
7. Способ по п. 6, в котором вращающийся распылительный гранулятор выполнен в виде вращающегося диска, причем осуществляют вращение упомянутого диска, измерение диаметра проб гранулированного шлака, сравнение измеренного диаметра с прогнозируемым диаметром для заданной скорости вращения и согласование скорости потока воздуха в расплавленный шлак в зависимости от результата сравнения.
8. Способ по п. 6 или 7, в котором пропускают поток технологического воздуха через камеру гранулирования шлака для охлаждения гранулированного шлака и осуществляют рекуперацию теплоты из технологического воздуха в механизме рекуперации теплоты.
9. Способ по п. 6 или 7, в котором перемещают устройство управления скоростью потока расплавленного шлака через ряд положений для управления скоростью потока шлака через механизм подачи шлака.
RU2014152329A 2012-11-23 2013-11-18 Система гранулирования шлака и способ работы RU2633118C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1221122.3A GB2508200B (en) 2012-11-23 2012-11-23 Slag granulation system and method of operation
GB1221122.3 2012-11-23
PCT/EP2013/074030 WO2014079797A2 (en) 2012-11-23 2013-11-18 Slag granulation system and method of operation

Publications (2)

Publication Number Publication Date
RU2014152329A RU2014152329A (ru) 2017-01-10
RU2633118C2 true RU2633118C2 (ru) 2017-10-11

Family

ID=47560581

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014152329A RU2633118C2 (ru) 2012-11-23 2013-11-18 Система гранулирования шлака и способ работы

Country Status (9)

Country Link
EP (1) EP2922975B1 (ru)
JP (1) JP6001178B2 (ru)
KR (1) KR101695171B1 (ru)
CN (1) CN104428427A (ru)
GB (1) GB2508200B (ru)
IN (1) IN2014DN10213A (ru)
RU (1) RU2633118C2 (ru)
UA (1) UA112135C2 (ru)
WO (1) WO2014079797A2 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2528972B (en) * 2014-08-08 2016-10-05 Primetals Technologies Austria GmbH Slag granulation system
KR101717196B1 (ko) 2016-11-25 2017-03-17 성일하이텍(주) 그래뉼 제조장치 및 이의 제조방법
CN106735281B (zh) * 2016-12-28 2018-07-20 重庆大学 一种半钢生产铁粉的方法
CN106492489A (zh) * 2016-12-31 2017-03-15 祝洋 一种处理聚合物浆液的闪蒸干燥器
CN106623956B (zh) * 2017-01-19 2018-07-06 重庆大学 半钢粒化法生产铁粉和蒸汽高效利用的方法
CN108004355A (zh) * 2018-02-02 2018-05-08 山东钢铁股份有限公司 一种高炉火渣处理装置及方法
CN109022761A (zh) * 2018-08-27 2018-12-18 浙江科菲科技股份有限公司 一种铅冰铜风淬水冷的粒化方法
KR102082770B1 (ko) 2019-10-25 2020-02-28 성일하이메탈(주) 고압 수분사를 이용한 용융 금속의 그래뉼 제조 장치 및 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374074A (en) * 1978-08-29 1983-02-15 Sato Technical Research Laboratory Ltd. Process for producing fibers with a specially fixed size from melts
SU1127869A1 (ru) * 1983-06-29 1984-12-07 Государственный Всесоюзный Научно-Исследовательский Институт Цементной Промышленности Установка дл гранул ции и охлаждени шлакового расплава
WO1999042623A1 (de) * 1998-02-18 1999-08-26 'holderbank' Financiere Glarus Ag Verfahren zum granulieren und zerkleinern von flüssigen schlacken sowie einrichtung zur durchführung dieses verfahrens
US20020134198A1 (en) * 2000-07-07 2002-09-26 Alfred Edlinger Method and device for atomizing molten metals

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB457707A (en) * 1935-05-03 1936-12-03 Erik Bertil Bjorkman Method of and apparatus for producing porous light-weight aggregate from liquid slag
US2880456A (en) * 1956-04-09 1959-04-07 Kuzela Jan Device for the production of a light filling from blast furnace, boiler and other slag
JPS5325276A (en) * 1976-08-20 1978-03-08 Ishikawajima Harima Heavy Ind Co Ltd Granulating apparatus for blast furnace slag
JPS53135900A (en) * 1977-05-02 1978-11-27 Mitsubishi Heavy Ind Ltd Molten slag pulverizing and heat recovering apparatus
JPS56121622A (en) * 1980-02-28 1981-09-24 Ishikawajima Harima Heavy Ind Co Ltd Granulating and collecting device for molten slag
FR2480621A1 (fr) * 1980-04-16 1981-10-23 Gagneraud Francis Procede d'obtention de granulats secs de laitiers
JPS602096B2 (ja) * 1982-09-20 1985-01-19 株式会社佐藤技術研究所 融体から特定サイズの球形粒子または繊維を製造するための装置
GB2148330B (en) * 1983-10-24 1987-05-07 British Steel Corp Improvements in or relating to the granulation of slag
AT408437B (de) * 2000-02-22 2001-11-26 Holderbank Financ Glarus Einrichtung zum zerstäuben von flüssigen schmelzen
AT410102B (de) * 2001-02-27 2003-02-25 Tribovent Verfahrensentwicklg Einrichtung zum zerstäuben von schmelzen
KR20100110222A (ko) * 2009-04-02 2010-10-12 주식회사 포스코 용융 고로 슬래그의 처리 방법 및 그 장치
AT508672B1 (de) * 2010-02-11 2011-03-15 Dieter Dipl Ing Muehlboeck Vorrichtung und verfahren zum zurückhalten von schlacke am abstich eines metallurgischen gefässes
DE102010021658A1 (de) * 2010-05-26 2011-12-01 Siemens Aktiengesellschaft Vorrichtung zur Erzeugung eines Granulats aus einer mineralischen Schmelze
CN201793584U (zh) * 2010-08-09 2011-04-13 首钢总公司 一种高炉炉渣处理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374074A (en) * 1978-08-29 1983-02-15 Sato Technical Research Laboratory Ltd. Process for producing fibers with a specially fixed size from melts
SU1127869A1 (ru) * 1983-06-29 1984-12-07 Государственный Всесоюзный Научно-Исследовательский Институт Цементной Промышленности Установка дл гранул ции и охлаждени шлакового расплава
WO1999042623A1 (de) * 1998-02-18 1999-08-26 'holderbank' Financiere Glarus Ag Verfahren zum granulieren und zerkleinern von flüssigen schlacken sowie einrichtung zur durchführung dieses verfahrens
US20020134198A1 (en) * 2000-07-07 2002-09-26 Alfred Edlinger Method and device for atomizing molten metals

Also Published As

Publication number Publication date
JP2015534533A (ja) 2015-12-03
IN2014DN10213A (ru) 2015-08-07
CN104428427A (zh) 2015-03-18
EP2922975B1 (en) 2016-07-27
KR20150086370A (ko) 2015-07-27
GB2508200A (en) 2014-05-28
EP2922975A2 (en) 2015-09-30
WO2014079797A2 (en) 2014-05-30
UA112135C2 (uk) 2016-07-25
RU2014152329A (ru) 2017-01-10
KR101695171B1 (ko) 2017-01-11
JP6001178B2 (ja) 2016-10-05
GB2508200B (en) 2015-08-05
GB201221122D0 (en) 2013-01-09
WO2014079797A3 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
RU2633118C2 (ru) Система гранулирования шлака и способ работы
EP2922976B1 (en) Dry slag granulation system and method
TWI675108B (zh) 控制冷卻氣體供應至乾式熔渣粒化系統的方法及乾式熔渣粒化系統
JP6388948B2 (ja) 溶融金属の造粒
RU2621090C2 (ru) Система сухого гранулирования шлака
CA2663831A1 (en) Method and apparatus for manufacturing granular metallic iron
KR100256864B1 (ko) 용융물질의 입상화장치 및 그 방법
WO2004055459A1 (ja) 供給装置のシール機構
GB2508199A (en) Slag granulation device with a tundish and a slag flow control means
CN108300823A (zh) 一种熔渣流输送装置及熔渣粒化取热系统
JP4307686B2 (ja) 原料供給装置および還元鉄製造方法
KR20240032741A (ko) 개선된 냉각 장치
CN208234930U (zh) 一种熔渣流输送装置及熔渣粒化取热系统
KR101562148B1 (ko) 버너 및 이를 포함하는 생석회 생산장치
KR101242691B1 (ko) 용융 슬래그 미립화 장치
KR101173499B1 (ko) 용융 슬래그의 조립화 장치
KR100370862B1 (ko) 금속용탕 미립화 장치
US20230058888A1 (en) Process and apparatus for the granulation of slag deriving from iron and steel production
SU1527203A1 (ru) Способ утилизации тепла шлаков и устройство дл его осуществлени
KR20190003237A (ko) 실리콘 비드 제조장치
US3094316A (en) Shaft furnace
KR100386895B1 (ko) 금속용탕 미립화 방법
KR20200073727A (ko) 전도성 물질 비드 제조방법 및 그 제조장치
JPH02283642A (ja) 飛翔溶融物の冷却方法
JP2002249347A (ja) 高炉水砕スラグの製造方法および製造装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181119