WO2004053177A1 - Ni基単結晶超合金 - Google Patents

Ni基単結晶超合金 Download PDF

Info

Publication number
WO2004053177A1
WO2004053177A1 PCT/JP2003/015619 JP0315619W WO2004053177A1 WO 2004053177 A1 WO2004053177 A1 WO 2004053177A1 JP 0315619 W JP0315619 W JP 0315619W WO 2004053177 A1 WO2004053177 A1 WO 2004053177A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
less
single crystal
based single
crystal superalloy
Prior art date
Application number
PCT/JP2003/015619
Other languages
English (en)
French (fr)
Inventor
Toshiharu Kobayashi
Yutaka Koizumi
Tadaharu Yokokawa
Hiroshi Harada
Yasuhiro Aoki
Mikiya Arai
Shouju Masaki
Original Assignee
Independent Administrative Institution National Institute For Materials Science
Ishikawajima-Harima Heavy Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Independent Administrative Institution National Institute For Materials Science, Ishikawajima-Harima Heavy Industries Co., Ltd. filed Critical Independent Administrative Institution National Institute For Materials Science
Priority to CA2508698A priority Critical patent/CA2508698C/en
Priority to JP2004558425A priority patent/JP3814662B2/ja
Priority to DE60326083T priority patent/DE60326083D1/de
Priority to US10/537,477 priority patent/US20060011271A1/en
Priority to AU2003289214A priority patent/AU2003289214A1/en
Priority to EP03777308A priority patent/EP1568794B1/en
Publication of WO2004053177A1 publication Critical patent/WO2004053177A1/ja
Priority to US12/900,896 priority patent/US8968643B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%

Definitions

  • the present invention relates to a Ni-based single crystal superalloy, and more particularly to an improvement of a Ni-based single crystal superalloy for improving creep characteristics. Ming background technology
  • Typical compositions of Ni-based single crystal superalloys that have been developed as materials for moving and stationary blades at high temperatures such as aircraft and gas turbines include those shown in Table 1, for example.
  • Ni-based single crystal superalloy after performing a solution treatment at a predetermined temperature, an aging treatment is performed to obtain a Ni-based single crystal superalloy.
  • This alloy is called a so-called precipitation hardening type alloy, and has a form in which a ⁇ 'phase as a precipitated phase is precipitated in an a phase as a mother phase.
  • CMSX-2 Cannon Muskegon, see US Patent No. 4,582,548 is a first-generation alloy
  • CMSX-4 Cannon Muskegon, US Patent No. No. 4, 643, 782
  • Rene 'N6 General Electric, U.S. Pat. No. 5,455,120
  • CMS X-10K Cannon's Muskegon, U.S. Pat. No. 5,366,695 is a third-generation alloy
  • 3B (manufactured by General Electric, U.S. Pat. 1, 249) is called the fourth generation alloy.
  • first-generation alloy CMS X-2 and second-generation alloy CMS X-4 have the same cleave strength at low temperatures, but have a eutectic 7 'phase even after high-temperature solution treatment. Remains in large amounts, and its creep strength at high temperatures is inferior to that of third-generation alloys.
  • the third-generation Rene 'N6 and CMS X-10K are alloys intended to improve creep strength at higher temperatures than second-generation alloys.
  • the composition ratio of Re (5% by weight or more) exceeds the amount of Re dissolved in the parent phase ( ⁇ phase)
  • the excess Re combines with other elements to form so-called TCP at high temperatures.
  • a phase Topicologically Close Packed phase
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a Ni-based single crystal superalloy capable of preventing the precipitation of a TCP phase at a high temperature and improving the strength. . Disclosure of the invention
  • the present invention has the following configuration.
  • the components are as follows: A1: 5.0% by weight or more 7.
  • Ta 4.0% by weight or more and 10.0% by weight or less
  • Mo 1.1% by weight or more and 4.5% by weight or less
  • W 4.0% by weight or more and 10.0% by weight or less
  • Re 3.1% to 8.0% by weight
  • Hf 0% to 0.50% by weight
  • Cr 2.
  • the components are, by weight, A1: 5.0 to 7.0 wt%, Ta: 4.0 to 6.0 wt%, , Mo: 1.1 single % To 4.5 wt% or less, W: 4.0 wt% to 10.0 wt%, Re: 3.1 wt% to 8.0 wt%, Hf: 0 wt% to 0.50 %
  • Cr 2.0% by weight or more and 5.0% by weight or less
  • Co 0% by weight or more and 9.9% by weight or less
  • Ru 4.1% by weight or more and 14.0% by weight or less
  • the balance is characterized by having a composition consisting of Ni and unavoidable impurities.
  • the components are, by weight, A1: 5.0 to 7.0 wt%, Ta: 4.0 to 6.0 wt%, , Mo: 2.9% by weight or more and 4.5% by weight or less, W: 4.0% by weight or more and 10.0% by weight or less, Re: 3.1% by weight or more and 8.0% by weight or less, Hf: 0% to 0.50% by weight, Cr: 2.0% to 5.0% by weight, Co: 0% to 9.9% by weight, Ru: 4.1% to 14.%
  • the composition is characterized by containing 0% by weight or less, with the balance being Ni and unavoidable impurities.
  • the addition of Ru suppresses the precipitation of the TCP phase, which causes a decrease in strength, when used at a high temperature.
  • the lattice constant of the parent phase ( ⁇ phase) and the lattice constant of the precipitated phase ( ⁇ , phase) can be optimized. . These make it possible to improve the strength at high temperatures.
  • the composition ratio of Ru is 4.1% by weight or more and 14.0% by weight or less, the precipitation of the TCP phase, which causes a decrease in creep strength at the time of use at a high temperature, is suppressed.
  • the components are expressed by weight as follows: A1: 5.9% by weight, Ta: 5.9% by weight, Mo: 3.9% by weight, W: 5.9% by weight. % By weight, Re: 4.9% by weight, Hf: 0.10% by weight, Cr: 2.9% by weight, Co: 5.9% by weight, Ru: 5.0% by weight, the balance Preferably have a composition consisting of Ni and unavoidable impurities.
  • the creep durability temperature at 137 MPa and 1000 hours can be 1344 K (1071 ° C).
  • the components are expressed by weight as follows: Co: 5.8% by weight, Cr: 2.9% by weight, Mo: 3.1% by weight, W: 5. 8% by weight, A1: 5.8% by weight, Ta: 5.6% by weight, Ru: 5.0% by weight, Re: 4.9% by weight, Hf: Desirably, the composition contains 0.1% by weight and the balance is composed of Ni and unavoidable impurities. '
  • the creep durability temperature at 137 MPa and 1000 hours can be 1366 K (1093 ° C).
  • the components are expressed by weight as follows: Co: 5.8% by weight, Cr: 2.9% by weight, Mo: 3.9% by weight, W: 5. 8% by weight, A1: 5.8% by weight, Ta: 5.8% by weight (5.82% by weight) or 5.6% by weight, Ru: 6.0% by weight, Re: 4.9% by weight, It is desirable that Hf: 0.10% by weight be contained and the balance be composed of Ni and unavoidable impurities.
  • the creep durability temperature at 137 MPa and 1000 hours can be 1375 K (1102 ° C) or 1379 K (1106 ° C).
  • Ni-based single crystal superalloy described above may further contain Ti in a weight ratio of 0% to 2.0% by weight.
  • Nb in a weight ratio of 0% to 4.0% by weight may be further contained.
  • Ni-based single crystal superalloy may include at least one of B, C, Si, Y, La, Ce, V, and Zr.
  • the individual components are, by weight, B: 0.05% by weight or less, C: 0.15% by weight or less, Si: 0.1% by weight or less, Y: 0.1% by weight or less, La: 0.1% by weight or less, Ce: 0.1% by weight or less, V: 1% by weight or less, Zr: 0.1% by weight or less.
  • the components are more desirably in a weight ratio: A 1: 5.0% by weight to 7.0% by weight, Ta: 4.0% by weight to 10% by weight. 0.0% by weight or less, Mo: 1.1% by weight or more and 4.5% by weight or less, W: 4.0% by weight or more and 10.0% by weight or less, Re: 3.1% by weight or more and 8.0% by weight or less , Hf: 0% to 0.50% by weight, Cr: 2.0% to 5.0% by weight, Co: 0% to 9.9% by weight, Ru: 10.0% by weight or more 14.0% by weight or less, Nb: 4.0% by weight or less, Ti: 2.0% by weight or less, B: 0.05% by weight or less, C: 0.15% by weight %, S: 0.1% by weight, Y: 0.1% by weight, La: 0.1% by weight, Ce: 0.1% by weight, V: 1% by weight, Z r: has a composition of 0.1% by weight or less.
  • the components are more desirably in a weight ratio: A 1: 5.8% by weight to 7.0% by weight, Ta: 4.0% by weight to 5% by weight. 6% by weight or less, Mo: 3.3% by weight or more and 4.5% by weight or less, W: 4.0% by weight or more and 10.0% by weight or less, Re: 3.1% by weight or more and 8.0% by weight or less , Hf: 0% to 0.50% by weight, Cr: 2.9% to 4.3% by weight, Co: 0% to 9.9% by weight, Ru: 4.1% by weight 14.0% by weight or less, Nb: 4.0% by weight or less, Ti: 2.0% by weight or less, B: 0.05% by weight or less, C: 0.15% by weight or less, Si: 0 1 wt% or less, Y: 0.1 wt% or less, La: 0.1 wt% or less, Ce: 0.1 wt% or less, V: 1 wt% or less, Zr:
  • the components are more desirably in a weight ratio: A 1: 5.0% by weight to 7.0% by weight, Ta: 4.0% by weight to 10% by weight. 0 wt% or less, Mo: l.
  • the components are, by weight, A 1: 5.0% by weight to 7.0% by weight, and Ta: 4.0% by weight to 6% by weight. 0.0% by weight or less, Mo: 3.3% by weight or more and 4.5% by weight or less, W: 4.0% by weight or more and 10.0% by weight or less, Re: 3.1% by weight or more and 8.0% by weight or less , Hf: 0% to 0.50% by weight, Cr: 2.0% to 5.0% by weight, Co: 0% to 9.9% by weight, Ru: 4.1% by weight More than 14.0% by weight, Nb: 4.0 weight %, T: 2.0% by weight or less, B: 0.05% by weight or less, C: 0.15% by weight or less, Si: 0.1% by weight or less, Y: 0.1% by weight or less , La: 0.1% by weight or less, Ce: 0.1% by weight or less, V: 1% by weight or less, Zr: 0.1% by weight or less.
  • Ni-based single crystal superalloy described above is more desirably composed of components by weight: A 1: 5.0% by weight to 7.0% by weight, Ta: 4.0% by weight to 5% by weight. 6% by weight or less, Mo: 3.3% by weight or more and 4.5% by weight or less, W: 4.0% by weight or more and 10.0% by weight or less, Re: 3.1% by weight or more and 8.0% by weight or less Hf: 0% to 0.50% by weight, Cr: 2.0% to 5.0% by weight, Co: 0% to 9.9% by weight, Ru: 4.1% by weight % To 14.0% by weight, Nb: 4.0% by weight or less, Ti: 2.0% by weight or less, B: 0.05% by weight or less, C: 0.15% by weight or less, Si: 0.1 wt% or less, Y: 0.1 wt% or less, La: 0.1 wt% or less, Ce: 0.1 wt% or less, V: 1 wt% or less, Zr: 0.1 wt% It
  • the components are more desirably in a weight ratio: A 1: 5.0% by weight to 7.0% by weight, Ta: 4.0% by weight to 10% by weight. 0.0 wt% or less, Mo: 3.1 wt% to 4.5 wt%, W: 4.0 wt% to 10.0 wt%, Re: 3.1 wt% to 8.0 wt% , Hf: 0% to 0.50% by weight, Cr: 2.0% to 5.0% by weight, Co: 0% to 9.9% by weight, Ru: 4.1% by weight 14.0% by weight or less, Nb: 4.0% by weight or less, B: 0.05% by weight or less, C: 0.15% by weight or less, Si: 0.1% by weight or less, Y: 0. 1% by weight or less, La: 0.1% by weight or less, Ce: 0.1% by weight or less, V: 1% by weight or less, Zr: 0.1% by weight or less.
  • the components are more desirably in a weight ratio: A 1: 5.8% by weight or more and 7.0% by weight or less, Ta: 4.0% by weight or more; L 0.0% by weight or less, Mo: 3.1% by weight or more 4.5% by weight, W: 4.0% by weight or more 10.0% by weight or less, Re: 3.1% by weight or more 8.0% by weight %, Hf: 0% to 0.5% by weight, Cr: 2.0% to 5.0% by weight, Co: 0% to 9.9% by weight, Ru: 4.1% by weight % To 14.0% by weight, Nb: 4.0 weight %, T: 2% by weight, B: 0.05% by weight, C: 0.15% by weight, Si: 0.1% by weight, Y: 0.1% by weight, La: 0.1% by weight or less, Ce: 0.1% by weight or less, V: 1% by weight or less, Zr: 0.1% by weight or less.
  • the components are more desirably in a weight ratio: A 1: 5.0% by weight to 7.0% by weight, Ta: 4.0% by weight to 10% by weight. 0.0% by weight or less, Mo: 3.1% by weight or more and 4.5% by weight or less, W: 4.0% by weight or more and 10.0% by weight or less, Re: 3.1% by weight or more and 8.0% by weight or less , Hf: 0% to 0.50% by weight, Cr: 2.9% to 4.3% by weight, Co: 0% to 9.9% by weight, Ru: 4.1% by weight or more 14.0% by weight or less, Nb: 4.0% by weight or less, Ti: 2% by weight or less, B: 0.05% by weight or less, C: 0.15% by weight or less, Si: 0.1 % By weight, Y: 0.1% by weight, La: 0.1% by weight, Ce: 0.1% by weight, V: 1% by weight, Zr: 0.1% by weight or less Have
  • the Ni-based single crystal superalloy of the present invention is more desirably composed of components in a weight ratio of A1: 5.0 wt% or more and 7.0 wt% or less, and Ta + Nb + Ti: 4.0. Weight% or more 10.0% by weight or less, Mo: 3.3% by weight or more and 4.5% by weight or less, W: 4.0% by weight or more and 10.0% by weight or less, Re: 3.1% by weight or more 8 0.0% by weight or less, Hf: 0% by weight or more and 0.50% by weight or less, Cr: 2.0% by weight or more and 5.0% by weight or less, Co: 0% by weight or more and 9.9% by weight or less, Ru: 4.
  • Ni-base single crystal superalloy of the present invention is the Ni-base single crystal superalloy described above, wherein a2 is a lattice constant of a mother phase and a2 is a lattice constant of a precipitated phase. ⁇ 0.999 al.
  • the lattice constant of the mother phase is al and the lattice constant of the precipitated phase is a2
  • the relationship between al and a2 is a2 ⁇ 0.999 al. Is less than 0.1% of the lattice constant al of the matrix
  • the precipitated phase is precipitated so as to extend continuously in the direction perpendicular to the load direction, and dislocation defects are less likely to move in the alloy structure under stress.
  • the strength at high temperatures can be increased as compared with the conventional Ni-based single crystal superalloy.
  • the lattice constant a2 of the crystal of the precipitated phase is set to 0.9965 or less, which is the lattice constant al of the crystal of the mother phase.
  • the Ni-based single crystal superalloy of the present invention is characterized in that the transition network spacing in the alloy is 40 nm or less.
  • FIG. 1 is a diagram showing the relationship between lattice misfit and creep life.
  • FIG. 2 is a diagram showing the relationship between the transition network interval and the creep life.
  • FIG. 3 is a transmission electron micrograph of the Ni-based single crystal superalloy, illustrating the transition network of the Ni-based single crystal superalloy of the present invention and the spacing therebetween.
  • the Ni-based single crystal superalloy of the present invention contains components such as Al, Ta, Mo, W, Re, Hf, Cr, Co, and Ru, and Ni (remainder), and further contains unavoidable impurities. Alloy.
  • Ni-based single crystal superalloy has, for example, a composition ratio of A1: 5.0% by weight to 7.0% by weight, Ta: 4.0% by weight to 10.0% by weight, and Mo: 1%. 1 wt% or more 4.5 wt% or less, W: 4.0 wt% or more and 10.0 wt% or less, Re: 3.1 wt% or more 8.0 wt% or less, Hf: 0 wt% Not less than 0.50% by weight, Cr: 2.
  • the Ni-based single crystal superalloy described above has, for example, a composition ratio of A1: 5.0 wt% to 7.0 wt%, Ta: 4.0 wt% to 6.0 wt%, : l. 1% by weight or more and 4.5% by weight or less, W: 4.0% by weight or more: L 0.0% by weight or less, Re: 3.1 Hf: 0 to 0.5% by weight, Cr: 2.0 to 5.0% by weight, Co: 0 to 9.9% by weight
  • Ru is an alloy containing from 4.1% by weight to 14.0% by weight, with the balance being Ni and unavoidable impurities.
  • the Ni-based single crystal superalloy described above has, for example, a composition ratio of A1: 5.0% by weight to 7.0% by weight, Ta: 4.0% by weight to 6.0% by weight, and Mo: : 2.9% by weight or more 4.5% by weight or less, W: 4.0% by weight or more and 10.0% by weight or less, Re: 3.1% by weight or more and 8.0% by weight or less, Hf: 0% by weight or more 0.5% by weight or less, Cr: 2.0% by weight or more and 5.0% by weight or less, Co: 0% by weight or more and 9.9% by weight or less, Ru: 4.1% by weight or more and 14.0% by weight or less Is an alloy containing Ni and inevitable impurities.
  • Each of the above alloys has an ⁇ -phase (matrix), which is an austenite phase, and an ⁇ ′ phase (precipitation phase), which is an intermediate ordered phase dispersed and precipitated in the matrix.
  • the r ′ phase is mainly composed of an intermetallic compound represented by Ni 3A1, and the high temperature strength of the Ni-based single crystal superalloy is improved by the ⁇ ′ phase.
  • Cr is an element having excellent resistance to oxidation and improves the high-temperature corrosion resistance of a Ni-based single crystal superalloy.
  • the composition ratio of Cr is preferably Cr: 2.0% by weight or more and 5.0% by weight or less, more preferably 2.9% by weight or more and 5.0% by weight or less, and 2.9% by weight or more.
  • the range is more preferably 4.3% by weight or less, and most preferably 2.9% by weight.
  • composition ratio of Cr is less than 2.0% by weight, the desired high-temperature corrosion resistance cannot be ensured, which is not preferable. If the composition ratio of Cr exceeds 5.0% by weight, the precipitation of a and phase is suppressed. In addition, harmful phases such as the ⁇ phase and the phase are formed and the high-temperature strength is reduced, which is not preferable.
  • Mo in the coexistence with W and Ta, forms a solid solution in the matrix a phase, which increases the high-temperature strength, and also contributes to the high-temperature strength by precipitation hardening. Mo greatly contributes to the lattice misfit and dislocation network spacing (described later), which are characteristics of this alloy.
  • the composition ratio of Mo is preferably in the range of 1.1% to 4.5% by weight, more preferably 2.9% to 4.5% by weight, and more preferably 3.1% to 4.5%. weight%
  • composition ratio of Mo is less than 1.1% by weight, the desired high-temperature strength cannot be ensured, which is not preferable.
  • composition ratio of Mo exceeds 4.5% by weight, the high-temperature strength decreases, and Is not preferred because the high-temperature corrosion resistance also decreases.
  • W improves the high-temperature strength by the action of solid solution strengthening and precipitation hardening in the presence of Mo and Ta as described above.
  • composition ratio of W is preferably in the range of 4.0% by weight to 10.0% by weight, and most preferably 5.9% by weight or 5.8% by weight.
  • composition ratio of W is less than 4.0% by weight, the desired high-temperature strength cannot be ensured, so that it is not preferable. If the composition ratio of W exceeds 10.0% by weight, the high-temperature corrosion resistance is lowered, so that it is preferable. Absent.
  • T a improves the high-temperature strength by the action of solid solution strengthening and precipitation hardening in the co-presence of Mo and Mo as described above, and partially precipitates and hardens the ⁇ ′ phase. And improve high temperature strength.
  • the composition ratio of Ta is preferably in the range of 4.0% by weight to 10.0% by weight, more preferably in the range of 4.0% by weight to 6.0% by weight, and more preferably 4.0% by weight or more.
  • the range of 6% by weight or less is more preferable, and the range of 5.6% by weight or 5.82% by weight is most preferable.
  • composition ratio of Ta is less than 4.0% by weight, a desired high-temperature strength cannot be ensured, so that it is not preferable. If the composition ratio of Ta exceeds 10.0% by weight, a ⁇ phase or a phase is generated. This is undesirable because the high-temperature strength is reduced.
  • a 1 is combines with N i, ⁇ to finely uniformly dispersed and precipitated in the matrix phase, an intermetallic compound represented by N i 3 A 1) constituting a phase, 60% to 70% by volume fraction To improve high temperature strength.
  • composition ratio of A1 is preferably in a range of 5.0% by weight to 7.0% by weight, more preferably in a range of 5.8% by weight to 7.0% by weight, and is preferably 5.9% by weight or 5. Most preferably, it is 8% by weight.
  • composition ratio of A1 is less than 5.0% by weight, the precipitation amount of the ⁇ 'phase becomes insufficient. It is not preferable because the desired high-temperature strength cannot be secured. If the composition ratio of A1 exceeds 7.0% by weight, a large number of coarse ⁇ phases called eutectic ⁇ ′ phases are formed, and the solution treatment becomes impossible. However, it is not preferable because high temperature strength cannot be secured.
  • Hf is a segregation element at the grain boundaries, and is localized at the grain boundaries of the r phase and the a ′ phase to strengthen the grain boundaries, thereby improving the high-temperature strength.
  • composition ratio of Hf is preferably in the range of 0.01% by weight to 0.50% by weight, and most preferably 0.10% by weight.
  • the composition ratio of No. 11 is less than 0.01% by weight, the precipitation amount of the ⁇ 'phase becomes insufficient, and the desired high-temperature strength cannot be ensured.
  • the composition ratio of Hf may be 0% by weight or more and less than 0.01% by weight.
  • the composition ratio of Hf exceeds 0.50% by weight, local melting may be caused to lower the high-temperature strength, which is not preferable.
  • Co increases the solid solution limit of Al, Ta, etc. in a parent phase at high temperatures, and disperses and precipitates a fine ⁇ -phase by heat treatment, thereby improving high-temperature strength.
  • the Co composition ratio is preferably in the range of 0.1% by weight to 9.9% by weight, and most preferably 5.8% by weight.
  • the composition ratio of ⁇ 0 is less than 0.1% by weight, the precipitation amount of the ⁇ 'phase becomes insufficient, and the desired high-temperature strength cannot be ensured.
  • the composition ratio of Co may be 0% by weight or more and less than 0.1% by weight. If the Co composition ratio exceeds 9.9% by weight, the balance with other elements such as Al, Ta, Mo, W, Hf, and Cr will be lost, and harmful phases will precipitate to lower the high-temperature strength. Is not preferred.
  • Re forms a solid solution in the ⁇ phase, which is a parent phase, and improves high-temperature strength by solid solution strengthening. It also has the effect of improving corrosion resistance.
  • a harmful TCP phase may precipitate at high temperatures, and the high-temperature strength may decrease.
  • composition ratio of Re is preferably in the range of 3.1% by weight to 8.0% by weight, and most preferably 4.9% by weight.
  • composition ratio of Re is less than 3.1% by weight, the solid solution strengthening of the ⁇ phase is insufficient, and the desired high-temperature strength cannot be secured. Exceeding this is preferred because the TCP phase precipitates at high temperatures, making it impossible to ensure high high-temperature strength. Difficult 15619
  • Ru suppresses the precipitation of the TCP phase, thereby improving the high-temperature strength.
  • composition ratio of Ru is in the range from 4.1% by weight to 14.0% by weight, or in the range from 10.0% by weight to 14.0% by weight, or in the range from 6.5% by weight to 14.0% by weight.
  • the following range is preferable, and most preferably 5.0% by weight, 6.0% by weight or 7.0% by weight.
  • composition ratio of No. 11 is less than 1.0% by weight, a TCP phase is precipitated at a high temperature, and high high-temperature strength cannot be secured. Further, when the composition ratio of Ru is less than 4.1% by weight, the high-temperature strength is lower than when the composition ratio of Ru is 4.1% by weight or more. On the other hand, if the composition ratio of Ru exceeds 14.0% by weight, the ⁇ phase precipitates and the high-temperature strength decreases, which is not preferable.
  • the lattice constant of the a-phase and the lattice constant of the a′-phase can be adjusted.
  • the calculated lattice misfit and dislocation network spacing (described below) are set in optimal ranges to improve the high-temperature strength, and by adding Ru, the precipitation of the TCP phase can be suppressed.
  • the composition ratio of A1, Cr, Ta, and Mo as described above, the production cost of the alloy can be reduced.
  • the lattice constant of the crystal constituting the mother phase, a is defined as al, and the ⁇ 'phase, which is a precipitated phase, is formed.
  • the lattice constant of the crystal is a2
  • the relationship between al and a2 is a2 ⁇ 0.999 al. That is, it is preferable that the lattice constant a2 of the crystal of the precipitated phase is equal to or less than 0.1% of the lattice constant a1 of the crystal of the mother phase.
  • the lattice constant a2 of the crystal of the precipitated phase is not more than 0.9965 which is the lattice constant al of the crystal of the mother phase.
  • the relationship between al and a2 described above is a2 ⁇ 0.9955 al.
  • the percentage of the lattice constant a2 of the crystal of the precipitated phase to the lattice constant al of the crystal of the mother phase is referred to as “lattice misfit”.
  • the lattice constants of the two have such a relationship, when the precipitated phase is precipitated in the parent phase by the heat treatment, the precipitated phase is deposited so as to extend continuously in the direction perpendicular to the load direction. Therefore, dislocation defects are less likely to move in the alloy structure under stress, and the creep strength is increased.
  • Figure 1 shows the relationship between lattice misfit and the time until creep rupture of the alloy (creep life).
  • a more preferable lattice misfit is set to 0.35 or less. In order to reduce the lattice misfit to less than 0.35, it is necessary to adjust the composition ratio of other constituent elements while keeping the composition ratio of Mo high.
  • the addition of Ru suppresses the precipitation of the TCP phase, which causes a decrease in creep strength, when used at high temperatures.
  • the lattice constant of the mother phase (r phase) and the lattice constant of the precipitated phase ( ⁇ 'phase) can be set to optimal values. Will be possible. As a result, the cleave strength at high temperatures can be improved.
  • the above-mentioned Ni-based single crystal superalloy may further contain Ti.
  • the composition ratio of Ti is preferably in a range from 0% by weight to 2.0% by weight. When the composition ratio of Ti exceeds 2.0% by weight, a harmful phase is precipitated and the high-temperature strength is reduced, which is not preferable.
  • the above-mentioned Ni-based single crystal superalloy may further contain Nb.
  • the composition ratio of Nb is preferably 0% by weight or more and 4.0% by weight or less. If the composition ratio of Nb exceeds 4.0% by weight, it is not preferable because a harmful phase is precipitated and the high-temperature strength is reduced.
  • the high-temperature strength can also be improved by setting the composition ratio of Ding &, ⁇ , and 1 ⁇ to be 4.0% by weight or more and 10.0% by weight or less in total (Ta + Nb + Ti). It can be done.
  • Ni-based single crystal superalloy may contain, for example, B, C, Si, Y, La, Ce, V, Zr, etc., in addition to the inevitable impurities.
  • the composition ratios of the various components are as follows: B: 0.05% by weight or less, C: 0.15% by weight or less, S: i: 0.1% by weight or less, Y: 0.1% by weight or less, La: 0.1% by weight or less, Ce: 0.1% by weight or less, V: 1% by weight or less, Zr: 0 It is preferably at most 1% by weight. If the composition ratio of the individual components exceeds the above range, a harmful phase is precipitated and the high-temperature strength decreases, which is not preferable. In the above-mentioned Ni-based single crystal superalloy, it is desirable that the transition network spacing in the alloy is 40 nm or less.
  • the transition network indicates dislocations (displacements of atoms connected in a line) formed in a network in the alloy.
  • the spacing between the meshes is defined as a dislocation network spacing.
  • Fig. 2 shows the relationship between the transition network spacing and the time until the alloy breaks the clip (creep life).
  • the creep life satisfies the required value (the value indicated by the dotted line on the vertical axis of the figure) if the distance between the dislocation networks is approximately 40 nm or less. Therefore, in the present invention, a preferable transition network spacing is set to 40 nm or less. In order to keep the transition network interval at 40 nm or less, it is necessary to adjust the composition ratio of other constituent elements while maintaining the composition ratio of Mo high.
  • FIG. 3 is a transmission electron micrograph of the Ni-based single crystal superalloy illustrating the transition network and the interval of the Ni-based single crystal superalloy of the present invention (Example 3 described later).
  • FIG. 3 shows that the Ni-based single crystal superalloy of the present invention has a transition network spacing of 40 nm or less.
  • the conventional Ni-based single crystal superalloy includes an alloy that causes reverse distribution, but the Ni-based single crystal superalloy according to the present invention does not cause reverse distribution.
  • the aging treatment consists of a primary aging treatment at 1273K to 1423K (1000 ° C to 1150 ° C) for 4 hours and a secondary aging treatment at 1143K (870 ° C) for 20 hours. went.
  • Reference example 1 209.35 105.67 -0.39 Reference example 2 283.20 158.75 -0.40 Reference example 3 219.37 135.85 -0.56 Reference example 4 274.38 153.15 1 0 58 Reference Example 5 328.00 487.75 -0.58 Reference Example 6 203.15 -0.41
  • Example 1 509.95 326.50 -0.60
  • Example 2 420.60 753.95 — 0. 42
  • Example 6 400.00-1.45
  • Example 8 682.00 -0.63
  • Example 9 550.00 -0.42
  • Example 10 658.50 — 0.45
  • Example 11 622.00 -0.48
  • Example 12 683.50-1 0. 51
  • Example 13 412.7 766.35-1.62
  • Example 14 152.00-1.45 Table 4
  • Comparative Example 5 (3B)-0.25
  • the samples of Reference Examples 1 to 6 and Example 114 were all subjected to high temperature conditions of 1273K (1000 ° C) or higher. It can be seen that these steels also have high strength.
  • Reference Example 5 in which the composition ratio of Ru was 4.0% by weight, and Examples 1, 2, 4, 9, 10, and 11, in which the composition ratio of Ru was approximately 5.0% by weight, and the composition of Ru.
  • Examples 3 and 12, 13 in which the ratio is 6.0% by weight and Example 14 in which the composition ratio of Ru is 7.0% by weight have high high-temperature strength.
  • the lattice misfit of the comparative example is not less than 0.35, whereas the samples of Reference Examples 1 to 6 and Examples 1 to 14 are all It can be seen that the lattice misfit is less than 0.35.
  • Examples 1 to 14 all have high service temperatures (Example 1: 1344K (1071 ° C), Example 2: 1368K (1093.C), Example 3: 1375K (1102 ° C), 4: 1372K (1099 ° C), Example 5: 1379K (1106 ° C), Example 6: 1379K (1106 ° C), Example 7: 1379K (1106 ° C), Example 8: 1363K (1090 ° C), Example 9: 1358 K (1085 ° C), Example 10: 1362 K (1089 ° C), Example 11: 136 IK (1088 ° C), Example 12: 1363 K (1090 ° C) ° C), Example 13: 1366 K (1093 ° C :), Example 14: 1384 K (111 ° C.) Accordingly, Examples 1 to 14 show the conventional Ni. It has a higher heat resistance temperature than the base single crystal superalloy, indicating that it has excellent high temperature strength.
  • the amount of Ru increases more than necessary, the ⁇ phase precipitates and the high-temperature strength decreases, so that the Ru content is within a range where the balance with other elements is maintained.
  • it is preferably set to 4.1% by weight or more and 14.0% by weight or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

成分が重量比で、Al:5.0重量%以上7.0重量%以下、Ta:4.0重量%以上10.0重量%以下、Mo:1.1重量%以上4.5重量%以下、W:4.0重量%以上10.0重量%以下、Re:3.1重量%以上8.0重量%以下、Hf:0重量%以上0.50重量%以下、Cr:2.0重量%以上5.0重量%以下、Co:0重量%以上9.9重量%以下、Ru:4.1重量%以上14.0重量%以下を含有し、残部がNiと不可避的不純物からなる組成を有するNi基単結晶超合金を採用することにより、高温下でのTCP相の析出を防止して強度の向上を図ることが可能なNi基単結晶超合金を提供する。

Description

N i基単結晶超合金 技術分野
本発明は、 N i基単結晶超合金に関し、特に、 クリープ特性の向上を目的とした N i基単結晶超合金の改良に関する。 明背景技術
航空機、ガスタービンなどの高温下の動 ·静翼用の材料として開発されている N i基単結晶超合金の代表的な組成には、 例えば表 1に示したものが挙げられる。
表 1
Figure imgf000002_0001
上記 N i基単結晶超合金では、所定の温度で溶体化処理を行った後、時効処理を 行って N i基単結晶超合金を得ている。 この合金は、 いわゆる析出硬化型合金と呼 ばれており、 母相であるァ相中に、析出相である τ'相が析出した形態を有してい る。
表 1に挙げた合金のうち、 CMSX— 2 (キャノン ·マスケゴン社製、 米国特許 第 4, 582, 548号参照) は第 1世代合金、 CMSX— 4 (キャノン 'マスケ ゴン社製、 米国特許第 4, 643, 782号参照) は第 2世代合金、 Rene' N 6 (ゼネラル ·エレクトリツク社製、 米国特許第 5, 455, 120号参照)、 C MS X— 10K (キャノン 'マスケゴン社製、 米国特許第 5, 366, 695号参 照) は第 3世代合金、 3 B (ゼネラル ·エレクトリツク社製、 米国特許第 5, 15 1, 249号参照) は第 4世代合金と呼ばれている。
上記の第 1世代合金である CMS X— 2や、第 2世代合金である CMS X— 4は、 低温下でのクリーブ強度は遜色ないものの、 高温の溶体化処理後においても共晶 7' 相が多量に残存し、 第 3世代合金と比較して高温下でのクリープ強度が劣る。 また、 上記の第 3世代である Rene' N 6や CMS X— 10 Kは、 第 2世代合 金よりも高温下でのクリープ強度の向上を目的とした合金である。 し力、しながら、 Reの組成比 (5重量%以上) が母相 (ァ相) への Re固溶量を越えるため、 余剰 の R eが他の元素と化合して高温下でいわゆる T C P相 (Topologically Close Packed相) を析出させ、 高温下における長時間の使用によりこの TCP相の量が 増加してクリ一プ強度が低下するという問題があつた。
また、 N i基単結晶超合金のクリープ強度を向上させるには、 析出相 (ァ' 相) の格子定数を母相 ( T相)の格子定数よりわずかに小さくすることが有効であるが、 各相の格子定数は合金の構成元素の組成比により大きく変動するため、格子定数の 微妙な調整が困難であるためにクリープ強度の向上を図ることが難しいという問 題があった。
本発明は上記事情に鑑みてなされたものであって、高温下での TC P相の析出を 防止して強度の向上を図ることが可能な N i基単結晶超合金の提供を目的とする。 発明の開示
上記の目的を達成するために、 本発明では以下の構成を採用した。
本発明の N i基単結晶超合金は、 成分が重量比で、 A1 : 5. 0重量%以上 7.
0重量%以下、 Ta: 4. 0重量%以上 10. 0重量%以下、 Mo: 1. 1重量% 以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0重量%以下、 Re : 3. 1 重量%以上 8. 0重量%以下、 Hf : 0重量%以上 0. 50重量%以下、 C r: 2.
0重量%以上 5. 0重量%以下、 Co: 0重量%以上 9. 9重量%以下、 Ru : 4.
1重量%以上 14. 0重量%以下を含有し、残部が N iと不可避的不純物からなる 組成を有することを特徴とする。
また、 本発明の N i基単結晶超合金は、 成分が重量比で、 A1 : 5. 0重量%以 上 7. 0重量%以下、 Ta: 4. 0重量%以上 6. 0重量%以下、 Mo: 1. 1重 量%以上 4. 5重釐%以下、 W: 4. 0重量%以上 10. 0重量%以下、 Re: 3. 1重量%以上 8. 0重量%以下、 Hf : 0重量%以上 0. 50重量%以下、 C r : 2. 0重量%以上 5. 0重量%以下、 Co: 0重量%以上 9. 9重量%以下、 Ru: 4. 1重量%以上 14. 0重量%以下を含有し、残部が N iと不可避的不純物から なる組成を有することを特徴とする。
また、 本発明の N i基単結晶超合金は、 成分が重量比で、 A1 : 5. 0重量%以 上 7. 0重量%以下、 Ta: 4. 0重量%以上 6. 0重量%以下、 Mo: 2. 9重 量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0重量%以下、 Re: 3. 1重量%以上 8. 0重量%以下、 H f : 0重量%以上 0. 50重量%以下、 C r : 2. 0重量%以上 5. 0重量%以下、 Co: 0重量%以上 9. 9重量%以下、 Ru: 4. 1重量%以上 14. 0重量%以下を含有し、残部が N iと不可避的不純物から なる組成を有することを特徴とする。
上記の N i基単結晶超合金によれば、 R uを添加することにより、強度低下の原 因となる TCP相が高温使用時に析出するのが抑制される。 また、他の構成元素の 組成比を最適な範囲に設定することにより母相 (ァ相) の格子定数と析出相 (Ύ, 相) の格子定数とを最適な値にすることが可能になる。 これらにより、 高温下での 強度を向上させることが可能になる。また、 Ruの組成比が 4.1重量%以上 14. 0重量%以下であるので、高温使用時における、 クリープ強度低下の原因となる T C P相の析出が抑制される。
また、 先に記載の N i基単結晶超合金において、 成分が重量比で、 A1 : 5. 9 重量%、 Ta: 5. 9重量%、 Mo: 3. 9重量%、 W: 5. 9重量%、 Re: 4. 9重量%、 H f : 0. 10重量%、 C r : 2. 9重量%、 Co: 5. 9重量%、 R u: 5. 0重量%を含有し、 残部が N iと不可避的不純物からなる組成を有するこ とが望ましい。
上記組成の N i基単結晶超合金によれば、 137MPa、 1000時間でのクリ ープ耐用温度を 1344 K ( 1071 °C) とすることが可能になる。
また、 先に記載の N i基単結晶超合金において、 成分が重量比で、 Co: 5. 8 重量%、 C r: 2. 9重量%、 Mo: 3. 1重量%、 W: 5. 8重量%、 A 1 : 5. 8重量%、 Ta: 5. 6重量%、 Ru: 5. 0重量%、 Re: 4. 9重量%、 H f : 0. 10重量%を含有し、残部が N iと不可避的不純物からなる組成を有すること が望ましい。 '
上記組成の N i基単結晶超合金によれば、 137MP a、 1000時間でのクリ ープ耐用温度を 1366K (1093 °C) とすることが可能になる。
また、 先に記載の N i基単結晶超合金において、 成分が重量比で、 Co: 5. 8 重量%、 C r : 2. 9重量%、 Mo: 3. 9重量%、 W: 5. 8重量%、 A 1 : 5. 8重量%、 Ta: 5. 8重量% (5. 82重量%) あるいは 5, 6重量%、 Ru: 6. 0重量%、 Re : 4. 9重量%、 H f : 0. 10重量%を含有し、 残部が N i と不可避的不純物からなる組成を有することが望ましい。
上記組成の N i基単結晶超合金によれば、 137MPa、 1000時間でのクリ ープ耐用温度を 1375K (1102 °C) あるいは 1379 K ( 1106 °C) とす ることが可能になる。
また、 先に記載の N i基単結晶超合金において、 重量比で、 0重量%以上 2. 0 重量%以下の T iをさらに含有してもよい。
また、 先に記載の N i基単結晶超合金において、 重量比で、 0重量%以上 4. 0 重量%以下の Nbをさらに含有してもよい。
また、先に記載の N i基単結晶超合金において、 B、 C、 S i、 Y、 La、 Ce、 V、 Z rのうちの少なくとも一つを含んでもよい。
この場合、 個々の成分は、 重量比で、 B: 0. 05重量%以下、 C: 0. 15重 量%以下、 S i : 0. 1重量%以下、 Y : 0. 1重量%以下、 La: 0. 1重量% 以下、 Ce : 0. 1重量%以下、 V: 1重量%以下、 Z r : 0. 1重量%以下であ るのが好ましい。
また、 先に記載の N i基単結晶超合金は、 さらに望ましくは、 成分が重量比で、 A 1 : 5. 0重量%以上 7. 0重量%以下、 Ta: 4. 0重量%以上 10. 0重量% 以下、 Mo : 1. 1重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0 重量%以下、 Re : 3. 1重量%以上 8. 0重量%以下、 Hf : 0重量%以上 0. 50重量%以下、 Cr : 2. 0重量%以上 5. 0重量%以下、 Co: 0重量%以上 9. 9重量%以下、 Ru: 10. 0重量%以上 14. 0重量%以下、 Nb: 4. 0 重量%以下、 T i : 2. 0重量%以下、 B: 0. 05重量%以下、 C: 0. 15重 量%以下、 S i : 0. 1重量%以下、 Y: 0. 1重量%以下、 L a: 0. 1重量% 以下、 Ce : 0. 1重量%以下、 V: 1重量%以下、 Z r : 0. 1重量%以下から なる組成を有する。
また、 先に記載の N i基単結晶超合金は、 さらに望ましくは、 成分が重量比で、 A 1 : 5. 8重量%以上 7. 0重量%以下、 Ta : 4. 0重量%以上 5. 6重量% 以下、 Mo: 3. 3重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0 重量%以下、 Re : 3. 1重量%以上 8. 0重量%以下、 Hf : 0重量%以上 0. 50重量%以下、 C r : 2. 9重量%以上 4. 3重量%以下、 Co: 0重量%以上 9. 9重量%以下、 Ru: 4. 1重量%以上 14. 0重量%以下、 Nb : 4. 0重 量%以下、 T i : 2. 0重量%以下、 B: 0. 05重量%以下、 C: 0. 15重量% 以下、 S i : 0. 1重量%以下、 Y: 0. 1重量%以下、 La : 0. 1重量%以下、 Ce : 0. 1重量%以下、 V: 1重量%以下、 Z r : 0. 1重量%以下からなる組 成を有する。
また、 先に記載の N i基単結晶超合金は、 さらに望ましくは、 成分が重量比で、 A 1 : 5. 0重量%以上 7. 0重量%以下、 Ta : 4. 0重量%以上 10. 0重量% 以下、 Mo : l. 1重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0 重量%以下、 Re : 3. 1重量%以上 8. 0重量%以下、 Hf : 0重量%以上 0. 50重量%以下、 C r : 2. 9重量%以上 5. 0重量%以下、 Co: 0重量%以上 9. 9重量%以下、 Ru : 6. 5重量%以上 14. 0重量%以下、 Nb: 4. 0重 量%以下、 T i : 2. 0重量%以下、 B: 0. 05重量%以下、 C: 0. 15重量% 以下、 S i : 0. 1重量%以下、 Y: 0. 1重量%以下、 L a: 0. 1重量%以下、 Ce : 0. 1重量%以下、 V: 1重量%以下、 Z r : 0. 1重量%以下からなる組 成を有する。
また、 先に記載の N i基単結晶超合金は、 さらに望ましくは、 成分が重量比で、 A 1 : 5. 0重量%以上 7. 0重量%以下、 Ta: 4. 0重量%以上 6. 0重量% 以下、 Mo: 3. 3重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0 重量%以下、 Re : 3. 1重量%以上 8. 0重量%以下、 Hf : 0重量%以上 0. 50重量%以下、 C r : 2. 0重量%以上 5. 0重量%以下、 Co: 0重量%以上 9. 9重量%以下、 Ru : 4. 1重量%以上 14. 0重量%以下、 Nb: 4. 0重 量%以下、 T i : 2. 0重量%以下、 B: 0. 05重量%以下、 C: 0. 15重量% 以下、 S i : 0. 1重量%以下、 Y: 0. 1重量%以下、 La: 0. 1重量%以下、 Ce : 0. 1重量%以下、 V: 1重量%以下、 Z r : 0. 1重量%以下からなる組 成を有する。
また、 先に記載の N i基単結晶超合金は、 さらに望ましくは、 成分が重量比で、 A 1 : 5. 0重量%以上 7. 0重量%以下、 Ta: 4. 0重量%以上 5. 6重量% 以下、 Mo: 3. 3重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0 重量%以下、 Re : 3. 1重量%以上 8. 0重量%以下、 H f : 0重量%以上 0. 50重量%以下、 C r : 2. 0重量%以上 5. 0重量%以下、 Co: 0重量%以上 9. 9重量%以下、 Ru: 4. 1重量%以上 14. 0重量%以下、 Nb: 4. 0重 量%以下、 T i : 2. 0重量%以下、 B: 0. 05重量%以下、 C: 0. 15重量% 以下、 S i : 0. 1重量%以下、 Y: 0. 1重量%以下、 L a: 0. 1重量%以下、 Ce : 0. 1重量%以下、 V: 1重量%以下、 Z r : 0. 1重量%以下からなる組 成を有する。
また、 先に記載の N i基単結晶超合金は、 さらに望ましくは、 成分が重量比で、 A 1 : 5. 0重量%以上 7. 0重量%以下、 Ta : 4. 0重量%以上 10. 0重量% 以下、 Mo: 3. 1重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0 重量%以下、 Re : 3. 1重量%以上 8. 0重量%以下、 H f : 0重量%以上 0. 50重量%以下、 Cr : 2. 0重量%以上 5. 0重量%以下、 Co: 0重量%以上 9. 9重量%以下、 Ru: 4. 1重量%以上 14. 0重量%以下、 Nb: 4. 0重 量%以下、 B: 0. 05重量%以下、 C: 0. 15重量%以下、 S i : 0. 1重量% 以下、 Y: 0. 1重量%以下、 L a: 0. 1重量%以下、 C e: 0. 1重量%以下、 V: 1重量%以下、 Z r : 0. 1重量%以下からなる組成を有する。
また、 先に記載の N i基単結晶超合金は、 さらに望ましくは、 成分が重量比で、 A 1 : 5. 8重量%以上 7. 0重量%以下、 Ta : 4. 0重量%以上; L 0. 0重量% 以下、 Mo : 3. 1重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0 重量%以下、 Re : 3. 1重量%以上 8. 0重量%以下、 Hf : 0重量%以上 0. 50重量%以下、 Cr : 2. 0重量%以上 5. 0重量%以下、 Co: 0重量%以上 9. 9重量%以下、 Ru: 4. 1重量%以上 14. 0重量%以下、 Nb: 4. 0重 量%以下、 T i : 2重量%以下、 B: 0. 05重量%以下、 C: 0. 15重量%以 下、 S i : 0. 1重量%以下、 Y: 0. 1重量%以下、 La : 0. 1重量%以下、 Ce : 0. 1重量%以下、 V: 1重量%以下、 Z r : 0. 1重量%以下からなる組 成を有する。
また、 先に記載の N i基単結晶超合金は、 さらに望ましくは、 成分が重量比で、 A 1 : 5. 0重量%以上 7. 0重量%以下、 Ta : 4. 0重量%以上 10. 0重量% 以下、 Mo : 3. 1重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0 重量%以下、 Re : 3. 1重量%以上 8. 0重量%以下、 Hf : 0重量%以上 0. 50重量%以下、 Cr : 2. 9重量%以上 4. 3重量%以下、 Co: 0重量%以上 9. 9重量%以下、 Ru: 4. 1重量%以上 14. 0重量%以下、 Nb: 4. 0重 量%以下、 T i : 2重量%以下、 B: 0. 05重量%以下、 C: 0. 15重量%以 下、 S i : 0. 1重量%以下、 Y : 0. 1重量%以下、 La: 0. 1重量%以下、 Ce : 0. 1重量%以下、 V: 1重量%以下、 Z r : 0. 1重量%以下からなる組 成を有する。
また、 本発明の N i基単結晶超合金は、 さらに望ましくは、 成分が重量比で、 A 1 : 5. 0重量%以上 7. 0重量%以下、 Ta+Nb + T i : 4. 0重量%以上 1 0. 0重量%以下、 Mo: 3. 3重量%以上 4. 5重量%以下、 W: 4. 0重量% 以上 10. 0重量%以下、 Re : 3. 1重量%以上 8. 0重量%以下、 Hf : 0重 量%以上 0. 50重量%以下、 Cr : 2. 0重量%以上 5. 0重量%以下、 Co : 0重量%以上 9. 9重量%以下、 Ru: 4. 1重量%以上 14. 0重量%以下、 B : 0. 05重量%以下、 C: 0. 15重量%以下、 S i : 0. 1重量%以下、 Y: 0. 1重量%以下、 La: 0. 1重量%以下、 Ce : 0. 1重量%以下、 V: 1重量% 以下、 Z r : 0. 1重量%以下からなる組成を有する。
さらに、 本発明の N i基単結晶超合金は、 先に記載の N i基単結晶超合金であつ て、 母相の格子定数を alとし、 析出相の格子定数を a2としたとき、 a2≤0. 9 99 alであることを特徴とする。
上記の N i基単結晶超合金によれば、 母相の格子定数を alとし、 析出相の格子 定数を a2としたとき、 alと a2の関係が a2≤0. 999 alであり、 析出相の 格子定数 a2が母相の格子定数 alのマイナス 0. 1 %以下であるので、 母相中に 析出する析出相が荷重方向の垂直方向に連続して延在するように析出し、応力下で 転位欠陥が合金組織中を移動することが少なくなる。その結果、従来の N i基単結 晶超合金に比べ、 高温時の強度を高めることが可能になる。
この場合、 さらに望ましくは、 析出相の結晶の格子定数 a2を母相の結晶の格子 定数 alの 0. 9965以下とする。
さらに、本発明の N i基単結晶超合金は、合金中の転移網間隔が 40 nm以下で あることを特徴とする。 図面の簡単な説明
図 1は、 格子ミスフイットとクリープ寿命との関係を示す図である。
図 2は、 転移網間隔とクリ一プ寿命との関係を示す図である。
図 3は、本発明の N i基単結晶超合金の転移網及びその間隔を例示する、 N i基 単結晶超合金の透過電子顕微鏡写真である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を詳細に説明する。
本発明の N i基単結晶超合金は、 Al、 Ta、 Mo、 W、 Re、 Hf、 Cr、 C o、 Ru等の成分、 及び N i (残部) を含有し、 さらに不可避的不純物を含有する 合金である。
上記の N i基単結晶超合金は、 例えば、 組成比が A 1 : 5. 0重量%以上 7. 0 重量%以下、 Ta: 4. 0重量%以上 10. 0重量%以下、 Mo: 1. 1重量%以 上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0重量%以下、 Re : 3. 1重 量%以上 8. 0重量%以下、 H f : 0重量%以上 0. 50重量%以下、 Cr : 2.
0重量%以上 5. 0重量%以下、 Co: 0重量%以上 9. 9重量%以下、 Ru: 4.
1重量%以上 14. 0重量%以下であり、残部が N iと不可避的不純物からなる合 金である。
また、 上記の N i基単結晶超合金は、 例えば、 組成比が A 1 : 5. 0重量%以上 7. 0重量%以下、 Ta : 4. 0重量%以上 6. 0重量%以下、 Mo : l. 1重量% 以上 4. 5重量%以下、 W: 4. 0重量%以上: L 0. 0重量%以下、 Re : 3. 1 重量%以上 8. 0重量%以下、 Hf : 0重量%以上 0. 50重量%以下、 C r: 2. 0重量%以上 5. 0重量%以下、 Co: 0重量%以上 9. 9重量%以下、 Ru : 4. 1重量%以上 14. 0重量%以下を含有し、残部が N iと不可避的不純物からなる 合金である。
また、 上記の N i基単結晶超合金は、 例えば、 組成比が A 1 : 5. 0重量%以上 7. 0重量%以下、 Ta: 4. 0重量%以上 6. 0重量%以下、 Mo: 2. 9重量% 以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0重量%以下、 Re : 3. 1 重量%以上 8. 0重量%以下、 Hf : 0重量%以上 0. 50重量%以下、 C r: 2. 0重量%以上 5. 0重量%以下、 Co: 0重量%以上 9. 9重量%以下、 Ru : 4. 1重量%以上 14. 0重量%以下を含有し、残部が N iと不可避的不純物からなる 合金である。
上記合金はいずれも、 ォ一ステナイト相たるァ相 (母相) と、 この母相中に分散 析出した中間規則相たるァ' 相 (析出相) とを有している。 r' 相は、 主として N i 3A 1で表される金属間化合物からなり、 このァ'相により N i基単結晶超合金 の高温強度が向上する。
C rは耐酸ィ匕性に優れた元素であり、 N i基単結晶超合金の高温耐食性を向上さ せる。
C rの組成比は, Cr : 2. 0重量%以上 5. 0重量%以下の範囲が好ましく、 2. 9重量%以上 5. 0重量%以下の範囲がより好ましく、 2. 9重量%以上 4. 3重量%以下の範囲がさらに好ましく、 2. 9重量%とすることが最も好ましい。
C rの組成比が 2. 0重量%未満であると、所望の高温耐食性を確保できないの で好ましくなく、 Crの組成比が 5. 0重量%を越えると、 ァ,相の析出が抑制さ れるとともに σ相や 相などの有害相が生成し、高温強度が低下するので好ましく ない。
Moは、 W及び Taとの共存下にて、母相であるァ相に固溶して高温強度を増加 させるとともに析出硬化により高温強度に寄与する。 また、 Moは、本合金の特徴 である格子ミスフィット及び転位網間隔 (後述) に大きく寄与する。
Moの組成比は、 1. 1重量%以上 4. 5重量%以下の範囲が好ましく、 2. 9 重量%以上 4. 5重量%以下の範囲がより好ましく、 3. 1重量%以上 4. 5重量% 以下の範囲、 あるいは、 3. 3重量%以上 4. 5重量%以下の範囲がさらに好まし く、 3. 1重量%あるいは 3. 9重量%とすることが最も好ましい。
Moの組成比がl. 1重量%未満であると、所望の高温強度を確保できないので 好ましくなく、一方、 Moの組成比が 4. 5重量%を越えても、高温強度が低下し、 更には高温耐食性も低下するので好ましくない。
Wは、上記のように Mo及び T aとの共存下にて固溶強化と析出硬ィ匕の作用によ り、 高温強度を向上させる。
Wの組成比は、 4. 0重量%以上 10. 0重量%以下の範囲が好ましく、 5. 9 重量%あるいは 5. 8重量%とすることが最も好ましい。
Wの組成比が 4. 0重量%未満であると、所望の高温強度を確保できないので好 ましくなく、 Wの組成比が 10. 0重量%を越えると高温耐食性が低下するので好 ましくない。
T aは、上記のように Mo及ぴ との共存下にて固溶強ィ匕と析出硬化の作用によ り高温強度を向上させ、 また一部がァ'相に対して析出硬ィ匕し、 高温強度を向上さ せる。
T aの組成比は、 4. 0重量%以上 10. 0重量%以下の範囲が好ましく、 4. 0重量%以上 6. 0重量%以下の範囲がより好ましく、 4. 0重量%以上 5. 6重 量%以下の範囲がさらに好ましく、 5. 6重量%あるいは 5. 82重量%とするこ とが最も好ましい。
T aの組成比が 4. 0重量%未満であると、所望の高温強度を確保できないので 好ましくなく、 Taの組成比が 10. 0重量%を越えると、 σ相や 相が生成する ようになって高温強度が低下するので好ましくない。
• A 1は、 N iと化合し、母相中に微細均一に分散析出するァ,相を構成する N i 3A 1) で表される金属間化合物を、 体積分率で 60〜70%の割合で形成し、 高 温強度を向上させる。
A 1の組成比は、 5. 0重量%以上 7. 0重量%以下の範囲が好ましく、 5. 8 重量%以上 7. 0重量%以下の範囲がより好ましく、 5. 9重量%あるいは 5. 8 重量%とすることが最も好ましい。
A 1の組成比が 5. 0重量%未満であると、 ァ'相の析出量が不十分となり、 所 望の高温強度を確保できないので好ましくなく、 A 1の組成比が 7. 0重量%を越 えると、 共晶ァ'相と呼ばれる粗大なァ相が多く形成され、 溶体化処理が不可能と なり、 高い高温強度を確保できなくなるので好ましくない。
Hfは粒界偏析元素であり、 r相とァ'相の粒界に偏在して粒界を強化し、 これ により高温強度を向上させる。
Hfの組成比は、 0. 01重量%以上 0. 50重量%以下の範囲が好ましく、 0. 10重量%とすることが最も好ましい。
11 の組成比が0. 01重量%未満であると、 ァ' 相の析出量が不十分となり、 所望の高温強度を確保できないので好ましくない。但し、 必要に応じ、 Hfの組成 比を 0重量%以上 0.01重量%未満とする場合もある。また、 H fの組成比が 0. 50重量%を越えると、局部溶融を引き起こして高温強度を低下させるおそれがあ るので好ましくない。
Coは、 Al、 T a等の母相に対する高温下での固溶限度を大きくし、 熱処理に よって微細なァ' 相を分散析出させ、 高温強度を向上させる。
Coの組成比は、 0. 1重量%以上 9. 9重量%以下の範囲が好ましく、 5. 8 重量%とすることが最も好ましい。
〇0の組成比が0. 1重量%未満であると、 ァ' 相の析出量が不十分となり、 所 望の高温強度を確保できないので好ましくない。但し、 必要に応じ、 Coの組成比 を 0重量%以上 0. 1重量%未満とする場合もある。 また、 Coの組成比が 9. 9 重量%を越えると、 A l、 Ta、 Mo、 W、 Hf、 C r等の他の元素とのバランス がくずれ、 有害相が析出して高温強度が低下するので好ましくない。
Reは母相であるァ相に固溶し、固溶強化により高温強度を向上させる。 また耐 蝕性を向上させる効果もある。一方で Reを多量に添加すると、高温時に有害相で ある TC P相が析出し、 高温強度が低下するおそれがある。
Reの組成比は、 3. 1重量%以上 8. 0重量%以下の範囲が好ましく、 4. 9 重量%とすることが最も好ましい。
Reの組成比が 3. 1重量%未満であると、 ァ相の固溶強化が不十分となって所 望の高温強度を確保できないので好ましくなく、 Reの組成比が 8. 0重量%を越 えると、高温時に TCP相が析出し、高い高温強度を確保できなくなるので好まし 難 15619
12 くない。
Ruは、 TCP相の析出を抑え、 これにより高温強度を向上させる。
Ruの組成比は、 4. 1重量%以上 14. 0重量%以下の範囲、あるいは、 10. 0重量%以上 14. 0重量%以下の範囲、あるいは 6. 5重量%以上 14. 0重量% 以下の範囲が好ましく、 5. 0重量%あるいは 6. 0重量%あるいは 7. 0重量% とすることが最も好ましい。
11の組成比が1. 0重量%未満であると、 高温時に TCP相が析出し、 高い高 温強度を確保できなくなる。 さらに、 Ruの組成比が 4. 1重量%未満であると、 Ruの組成比が 4. 1重量%以上の場合に比べて、 高温強度が低くなる。 また、 R uの組成比が 14. 0重量%を越えると、 ε相が析出して高温強度が低下するので 好ましくない。
本発明では、 A l、 Ta、 Mo、 W、 Hf、 C r、 Co、 Re及び N iの組成比 を最適なものに調整することにより、 ァ相の格子定数とァ'相の格子定数により算 出される格子ミスフィット及び転移網間隔(後述) を最適な範囲に設定して高温強 度を向上させるとともに、 Ruを添加することにより、 TCP相の析出を抑制でき る。 また、特に A1と C rと T aと Moの組成比を上記のように設定することによ り、 合金の製造コストを抑えることができる。 さらに、 比強度の向上や、 格子ミス フィットゃ転移網間隔の最適値への設定が実施可能となる。
また、 1273K (1000°C) から 1373K (1100 ) のような高温で の使用環境において、 母相であるァ相を構成する結晶の格子定数を alとし、 析出 相であるァ' 相を構成する結晶の格子定数を a2としたとき、 alと a2の関係が a2≤0. 999 alであることが好ましい。即ち、 析出相の結晶の格子定数 a2が 母相の結晶の格子定数 a 1のマイナス 0. 1%以下であることが好ましい。 さらに 好ましくは、 析出相の結晶の格子定数 a2が母相の結晶の格子定数 alの 0. 99 65以下であるとよい。 この場合、 上述した alと a2の関係は、 a2≤0. 996 5 alとなる。 なお、 以下の記載中、 母相の結晶の格子定数 alに対する析出相の 結晶の格子定数 a2のパーセンテージを、 「格子ミスフィット」 と呼称する。
両者の格子定数がこのような関係を有する場合、熱処理によって母相中に析出相 が析出する際に、析出相が荷重方向の垂直方向に連続して延在するように析出する ので、応力下で転位欠陥が合金組織中を移動することが少なくなり、 クリープ強度 が高められる。
格子定数 alと格子定数 a2の関係を a2≤0. 999 alとするためには、 N i 基単結晶超合金を構成する構成元素の組成を適宜調整する必要がある。
格子ミスフィットと合金がクリープ破断するまでの時間(クリープ寿命) との関 係を図 1に示す。
図 1において、 格子ミスフィットがほぼ一 0. 35以下であれば、 クリープ寿命 が要求値(図の縦軸に点線で示した値) をほぼ満たすことがわかる。 よって、 本発 明では、 より好ましい格子ミスフィットを、 一 0. 35以下に設定した。格子ミス フィットを一 0. 35以下とするためには、 Moの組成比を高めに維持しつつ、他 の構成元素の組成比を調整する必要がある。
上記の N i基単結晶超合金によれば、 R uを添加することにより、 クリープ強度 低下の原因となる TCP相が高温使用時に析出するのが抑制される。 また、他の構 成元素の組成比を最適な範囲に設定することにより、母相 (r相) の格子定数と析 出相 (ァ' 相) の格子定数とを最適な値にすることが可能になる。 これらにより、 高温下でのクリーブ強度を向上できる。
また、上記の N i基単結晶超合金は、 T iをさらに含有してもよい。この場合、 Tiの組成比は、 0重量%以上 2. 0重量%以下の範囲が好ましい。 T iの組成比 が 2. 0重量%を超えると、有害相が析出して高温強度が低下するので好ましぐな い。
また、 上記の N i基単結晶超合金は、 Nbをさらに含有してもよい。 この場合、 Nbの組成比は、 0重量%以上 4. 0重量%以下であるのが好ましい。 Nbの組成 比が 4. 0重量%を超えると、有害相が析出して高温強度が低下するので好ましく ない。
あるいは、丁&と ^ と1^の組成比を、両者の合計(Ta + Nb + T i)で 4. 0重量%以上 10. 0重量%以下とすることによつても、高温強度を向上させるこ とができる。
また、上記の N i基単結晶超合金において、不可避的不純物以外に、例えば、 B、 C、 S i、 Y、 L a、 C e、 V、 Z rなどを含んでもよい。 B、 C、 S i、 Y、 L 003/015619
14 a、 C e、 V、 Z rのうちの少なくとも一つを含む場合、 偭々の成分の組成比は、 B: 0 . 0 5重量%以下、 C: 0 . 1 5重量%以下、 S i : 0 . 1重量%以下、 Y: 0 . 1重量%以下、 L a : 0 . 1重量%以下、 C e : 0 . 1重量%以下、 V : l重 量%以下、 Z r : 0 . 1重量%以下であるのが好ましい。 上記個々の成分の組成比 が上記範囲を超えると、 有害相が析出して高温強度が低下するので好ましくない。 また、 上記の N i基単結晶超合金において、合金中の転移網間隔が 4 0 nm以下 であることが望ましい。 転移網とは、 合金中に網目状に形成された転位 (線状に繋 がっている原子の変位)を示す。 その網目の間隔を転位網間隔と定義する。 転移網 間隔と合金がクリ一プ破断するまでの時間(クリ一プ寿命)との関係を図 2に示す。 図 2において、転移網間隔がほぼ 4 0 nm以下であれば、 クリープ寿命が要求値 (図の縦軸に点線で示した値) を満たすことがわかる。 よって、 本発明では、 好ま しい転移網間隔を、 4 0 nm以下に設定した。転移網間隔を 4 0 nm以下とするた めには、 M oの組成比を高めに維持しつつ、他の構成元素の組成比を調整する必要 がある。
また、 図 3は、 本発明 (後述する実施例 3 ) の N i基単結晶超合金の転移網及び その間隔を例示する、 N i基単結晶超合金の透過電子顕微鏡写真である。図 3から、 本発明の N i基単結晶超合金では、転移網間隔が 4 0 nm以下であることがわかる。 なお、従来の N i基単結晶超合金には、 逆分配を起こす合金が存在するが、本発 明に係る N i基単結晶超合金は、 逆分配を起こさない。
実施例
次に、 実施例を示し、 本発明の効果について説明する。
真空溶解炉を用いて各種の N i基単結晶超合金の溶湯を調整し、 この合金溶湯を 用いて組成の異なる複数の合金インゴットを铸造した。各合金インゴット (参考例 丄〜 6、 実施例 1〜: 14 ) の組成比を表 2に示す。 表 2
元素 (重量%)
試料
(合金名) A1 Ta Nb Mo W Re Hf Cr Co Ru Ni 参考例 1 6.0 5.8 3.2 6.0 5.0 0.1 3.0 6.0 2.0 残部 参考例 2 5.9 5.7 3.2 5.9 5.0 0.1 3.0 5.9 3.0 残部 参考例 3 6.0 6.0 4.0 6.0 5.0 0.1 3.0 6.0 3.0 残部 参考例 4 5.9 5.9 4.0 5.9 5.0 0.1 3.0 5.9 4.0 残部 参考例 5 5.9 5.7 3.1 5.9 4.9 0.1 2.9 5.9 4.0 残部 参考例 6 5.7 5.7 2.9 7.7 4.8 0.1 2.9 5.7 3.0 残部 実施例 1 5.9 5.9 3.9 5.9 4.9 0.1 2.9 5.9 5.0 残部 実施例 2 5.8 5.6 3.1 5.8 4.9 0.1 2.9 5.8 5.0 残部 実施例 3 5.8 5.8 3.9 5.8 4.9 0.1 2.9 5.8 6.0 残部 実施例 4 5.6 5.6 2.8 5.6 6.9 0.1 2.9 5.6 5.0 残部 実施例 5 5.6 5.0 0.5 2.8 5.6 6.9 0.1 2.9 5.6 5.0 残部 実施例 6 5.6 5.6 1.0 2.8 5.6 4.7 0.1 2.9 5.6 5.0 残部 実施例 7 5.8 5.6 3.9 5.8 4.9 0.1 2.9 5.8 6.0 残部 実施例 8 5.7 5.5 1.0 3.8 5.7 4.8 0.1 2.8 5.5 5.9 残部 実施例 9 5.8 5.6 3.1 6.0 5.0 0.1 2.9 5.8 4.6 残部 実施例 10 5.8 5.6 3.1 6.0 5.0 0.1 2.9 5.8 5.2 残部 実施例 11 5.8 5.6 3.3 6.0 5.0 0.1 2.9 5.8 5.2 残部 実施例 12 5.8 5.6 3.3 6.0 5.0 0.1 2.9 5.8 6.0 残部 実施例 13 5.9 2.9 1.5 3.9 5.9 4.9 0.1 2.9 5.9 6.1 残部 実施例 14 5.7 5.52 3.1 5.7 4.8 0.1 2.9 5.7 7.0 残部 TJP2003/015619
16 次に、合金インゴットに対して溶体化処理及び時効処理を行い、合金組織の状態 を走査型電子顕微鏡(SEM)で観察した。溶体化処理は、 1573K(1300°C) で 1時間保持した後、 1603K (1330°C) まで昇温し、 5時間保持した。 ま た、 時効処理は、 1273K〜1423K (1000 °C〜 1150 °C) で 4時間保 持する 1次時効処理と、 1143K (870°C) で 20時間保持する 2次時効処理 を連続して行った。
その結果、 各試料ともに、 組織中に TCP相は確認されなかった。
次に、溶体化処理及び時効処理を施した各試料に対して、クリーブ試験を行った。 クリーブ試験は、 表 3に示す温度及び応力の各条件下で各試料(参考例 1〜 6、 及 び実施例 1〜14) がクリープ破断するまでの時間を寿命として測定した。 また、 格子ミスフィットの値を併せて計測した。 これらの結果を表 3に示す。 さらに、 表 1に示した従来の合金(比較例 1〜比較例 5)の格子ミスフィットの値を併せて計 測した。 これらの結果を表 4に示す。
表 3
試料 クリープ試験条件/破断寿命 (h)
格子ミスフィッ卜
、口 3ΕΌ 1273 (1000°C),245MPa 1373K(1100°C),137MPa
参考例 1 209. 35 105. 67 -0. 39 参考例 2 283. 20 158. 75 -0. 40 参考例 3 219. 37 135. 85 -0. 56 参考例 4 274. 38 153. 15 一 0. 58 参考例 5 328. 00 487. 75 -0. 58 参考例 6 203. 15 -0. 41 実施例 1 509. 95 326. 50 -0. 60 実施例 2 420. 60 753. 95 — 0. 42 実施例 3 1062. 50 一 0. 62 実施例 4 966. 00 一 0. 44 実施例 5 1256. 00 -0. 48 実施例 6 400. 00 一 0. 45 実施例 7 1254. 00 -0. 60 実施例 8 682. 00 -0. 63 実施例 9 550. 00 -0. 42 実施例 10 658. 50 — 0. 45 実施例 11 622. 00 -0. 48 実施例 12 683. 50 一 0. 51 実施例 13 412. 7 766. 35 一 0. 62 実施例 14 1524. 00 一 0. 45 表 4
試料
格子 Sスフィ、、 >
(合金名)
比較例 1 (CMSX-2) -0. 26
比較例 2 (CMSX-4) 一 0. 14
比較例 3 (Rene'N6) — 0. 22
比較例 4CMSX-10K) 一 0. 14
比較例 5(3B) — 0. 25 表 3から明らかなように、参考例 1〜 6、及び実施例 1 14の試料はいずれも、 1273K (1000°C)以上の高温の条件下であっても高い強度を有しているこ とがわかる。 特に、 Ruの組成比が 4. 0重量%である参考例 5、 及び Ruの組成 比がほぼ 5. 0重量%である実施例 1、 2、 4、 9、 10、 及び 11、 Ruの組成 比が 6. 0重量%である実施例 3及び 12、 13、 Ruの組成比が 7. 0重量%で ある実施例 14は、 高い高温強度を有していることがわかる。
また、 表 3、 4から明らかなように、 比較例の格子ミスフィットは、 一0. 35 以上であるのに対して、 参考例 1〜 6、 及び実施例 1〜 14の試料は、 いずれも、 格子ミスフィットは一 0. 35以下であることがわかる。
さらに、 表 1に示した従来の合金 (比較例 1〜比較例 5)、 及び表 2に示した各 試料(参考例 1〜6、及び実施例 1〜14)に対して、クリープランチャー特性(耐 用温度) を比較した。 その結果を表 5に示す。 クリープランチャー特性は、 137 MP aの応力を 1000時間印加した条件で試料が破断するまでの温度を測定し た結果、 または試料の破断温度をその条件下に換算したものを用いている。 1 QU
試料 (合金名) 耐用温度 (°c級) 参考例 1 1315 K( 1042 °C) 参考例 2 1325K(1052°C) 参考例 3 1321K(1048°C) 参考例 4 1324 K( 1051 ) 参考例 5 1354 Κ( 1081 °C) 参考例 6 1332 K( 1059°C) 実施例 1 1344 K( 1071 °C) 実施例 2 1366 K( 1093 実施例 3 1375 K(l 1021) 実施例 4 1372 Κ( 1099 °C) 実施例 5 1379 Κ( 1106 °C) 実施例 6 1379Κ(1076°C) 実施例 7 1379Κ(1106°C) 実施例 8 1363 Κ( 1090^) 実施例 9 1358 Κ( 1085 °C) 実施例 10 1362 Κ( 1089 °C) 実施例 11 1361 Κ( 1088 ) 実施例 12 1363Κ(1090°C) 実施例 13 1366 Κ( 1093 °C) 実施例 14 1384 Κ( 1111 °C) 比較例 1 (CMSX-2) 1289Κ(1016°C) 比較例 2 (CMSX-4) 1306 Κ( 1033°C) 比較例 3 (Rene'N6) 1320 Κ( 1047°C) 比較例 4(CMSX-10K) 1345Κ(1072°C) 比較例 5 (3B) 1353 Κ( 1080 °C)
(l37MPa,1000h換算) 表 5から明らかなように、参考例 1〜 6の試料、及び実施例 1〜 14の試料はい ずれも、従来の合金(比較例 1〜比較例 5) に比べて同等以上の高い耐用温度を有 していることがわかる。 特に、 実施例 1〜14はいずれも、 高い耐用温度(実施例 1 : 1344K (1071°C)、 実施例 2: 1368K (1093。C)、 実施例 3: 1375K ( 1102 °C)、 実施例 4: 1372K (1099 °C)、 実施例 5 : 13 79K (1106°C)、 実施例 6: 1379K (1106°C)、 実施例 7 : 1379 K ( 1106 °C)、実施例 8: 1363 K ( 1090 °C)、実施例 9: 1358 K ( 1 085°C)、 実施例 10: 1362K (1089 °C)、 実施例 11: 136 IK (1 088°C)、 実施例 12 : 1363K (1090°C)、 実施例 13: 1366 K( 1 093°C:)、 実施例 14: 1384K (111 ΓΟ) を有していることがわかる。 従って、本実施例 1〜14は、従来の N i基単結晶超合金と比較して高い耐熱温 度を有しており、 優れた高温強度を有していることがわかる。
なお、 Ni基単結晶超合金では、 Ruが必要以上に増えると、 ε相が析出して高 温強度が低下するため、 Ruの含有量は、他の元素とのパランスがくずれない範囲 内 (例えば、 4. 1重量%以上 14. 0重量%以下) に定められるのが好ましい。

Claims

請求の範囲
1. 成分が重量比で、 A1 : 5. 0重量%以上 7. 0重量%以下、 Ta: 4. 0 重量%以上 10. 0重量%以下、 Mo: 1. 1重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0重量%以下、 Re: 3. 1重量%以上 8. 0重量%以下、 Hf : 0重量%以上 0. 50重量%以下、 Cr : 2. 0重量%以上 5. 0重量%以 下、 Co: 0重量%以上 9. 9重量%以下、 Ru : 4. 1重量%以上 14. 0重量% 以下を含有し、残部が N iと不可避的不純物からなる組成を有する N i基単結晶超 合金。
2. 成分が重量比で、 A1 : 5. 0重量%以上 7. 0重量%以下、 Ta: 4. 0 重量%以上 6. 0重量%以下、 Mo : l. 1重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0重量%以下、 Re : 3. 1重量%以上 8. 0重量%以下、 H f : 0重量%以上 0. 50重量%以下、 C r: 2. 0重量%以上 5. 0重量%以下、 Co : 0重量%以上 9. 9重量%以下、 Ru: 4. 1重量%以上 14. 0重量%以 下を含有し、残部が N iと不可避的不純物からなる組成を有する N i基単結晶超合
3. 成分が重量比で、 A1 : 5. 0重量%以上 7. 0重量%以下、 Ta: 4. 0 重量%以上 6. 0重量%以下、 Mo : 2. 9重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0重量%以下、 Re : 3. 1重量%以上 8. 0重量%以下、 H f : 0重量%以上 0. 50重量%以下、 C r: 2. 0重量%以上 5. 0重量%以下、 Co : 0重量%以上 9. 9重量%以下、 : Ru: 4. 1重量%以上 14. 0重量%以 下を含有し、残部が N iと不可避的不純物からなる組成を有する N i基単結晶超合 金。
4. 成分が重量比で、 A 1 : 5. 9重量%、 Ta: 5. 9重量%、 Mo: 3. 9 重量%、 W: 5. 9重量%、 Re : 4. 9重量%、 H f : 0. 10重量%、 C r : 2. 9重量%、 Co: 5. 9重量%、 Ru: 5. 0重量%を含有し、 残部が N iと 不可避的不純物からなる組成を有する請求項 1から請求項 3のいずれか一項に記 載の N i基単結晶超合金。
5. 成分が重量比で、 A 1 : 5. 8重量%、 Ta: 5. 6重量%、 Mo: 3. 1 重量%、 W: 5. 8重量%、 Re : 4. 9重量%、 H f : 0. 10重量%、 C r : 2. 9重量%、 Co: 5. 8重量%、 Ru: 5. 0重量%を含有し、 残部が N iと 不可避的不純物からなる組成を有する請求項 1から請求項 3のいずれか一項に記 載の N i基単結晶超合金。
6. 成分が重量比で、 A 1 : 5. 8重量%、 Ta: 5. 8重量%、 Mo: 3. 9 重量%、 W: 5. 8重量%、 Re : 4. 9重量%、 H f : 0. 10重量%、 C r : 2. 9重量%、 Co: 5. 8重量%、 Ru: 6. 0重量%を含有し、 残部が N iと 不可避的不純物からなる組成を有する請求項 1から請求項 3のいずれか一項に記 載の N i基単結晶超合金。
7. 重量比で、 2. 0重量%以下の T iをさらに含有する請求項 1から請求項 6 のいずれか一項に記載の N i基単結晶超合金。
8. 重量比で、 4. 0重量%以下の Nbをさらに含有する請求項 1から請求項 7 のいずれか一項に記載の N i基単結晶超合金。
9. B、 C、 S i、 Y、 L a、 Ce、 V、 Z rのうちの少なくとも一つを含有す る請求項 1から請求項 8のいずれか一項に記載の N i基単結晶超合金。
10. 重量比で、 B: 0. 05重量%以下、 C: 0. 15重量%以下、 S i : 0. 1重量%以下、 Y : 0. 1重量%以下、 La : 0. 1重量%以下、 Ce : 0. 1重 量%以下、 V: 1重量%以下、 Z r : 0. 1重量%以下である請求項 9に記載の N i基単結晶超合金。
11. 成分が重量比で、 A1 : 5. 0重量%以上 7. 0重量%以下、 Ta: 4. 0重量%以上 10. 0重量%以下、 Mo : l. 1重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0重量%以下、 Re: 3. 1重量%以上 8. 0重量%以下、 Hf : 0重量%以上 0. 50重量%以下、 C r : 2. 0重量%以上 5. 0重量%以 下、 Co: 0重量%以上 9. 9重量%以下、 Ru: 10. 0重量%以上 14. 0重 量%以下、 Nb: 4. 0重量%以下、 T i : 2. 0重量%以下、 B: 0. 05重量% 以下、 C: 0. 15重量%以下、 S i : 0. 1重量%以下、 Y: 0. 1重量%以下、 L a: 0. 1重量%以下、 C e: 0. 1重量%以下、 V: 1重量%以下、 Z r: 0.
1重量%以下を含有する請求項 1から請求項 3のいずれか一項に記載の N i基単 結晶超合金。
12. 成分が重量比で、 A 1 : 5. 8重量%以上 7. 0重量%以下、 Ta: 4. 0重量%以上 5. 6重量%以下、 Mo: 3. 3重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0重量%以下、 Re : 3. 1重量%以上 8. 0重量%以下、 Hf : 0重量%以上 0. 50重量%以下、 C r : 2. 9重量%以上 4. 3重量%以 下、 Co: 0重量%以上 9. 9重量%以下、 Ru : 4. 1重量%以上 14. 0重量% 以下、 Nb: 4. 0重量%以下、 T i : 2. 0重量%以下、 B: 0. 05重量%以 下、 C: 0. 15重量%以下、 S i : 0. 1重量%以下、 Y: 0. 1重量%以下、 L a: 0. 1重量%以下、 C e: 0. 1重量%以下、 V: 1重量%以下、 Z r: 0.
1重量%以下を含有する請求項 1から請求項 3のいずれか一項に記載の N i基単 結晶超合金。
13. 成分が重量比で、 A 1 : 5. 0重量%以上 7. 0重量%以下、 Ta: 4. 0重量%以上 10. 0重量%以下、 Mo : l. 1重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0重量%以下、 Re : 3. 1重量%以上 8. 0重量%以下、 Hf : 0重量%以上 0. 50重量%以下、 C r : 2. 9重量%以上 5. 0重量%以 下、 Co: 0重量%以上 9. 9重量%以下、 Ru : 6. 5重量%以上 14. 0重量% 以下、 Nb: 4. 0重量%以下、 T i : 2. 0重量%以下、 B: 0. 05重量%以 下、 C: 0. 15重量%以下、 S i : 0. 1重量%以下、 Y: 0. 1重量%以下、 L a: 0. 1重量%以下、 C e: 0. 1重量%以下、 V: 1重量%以下、 Z r: 0.
1重量%以下を含有する請求項 1から請求項 3のいずれか一項に記載の N i基単 結晶超合金。
14. 成分が重量比で、 A 1 : 5. 0重量%以上 7. 0重量%以下、 Ta: 4. 0重量%以上 6. 0重量%以下、 Mo: 3. 3重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0重量%以下、 Re: 3. 1重量%以上 8. 0重量%以下、 Hf : 0重量%以上 0. 50重量%以下、 Cr : 2. 0重量%以上 5. 0重量%以 下、 Co: 0重量%以上 9. 9重量%以下、 Ru : 4. 1重量%以上 14. 0重量% 以下、 Nb: 4. 0重量%以下、 T i : 2. 0重量%以下、 B: 0. 05重量%以 下、 C: 0. 15重量%以下、 S i : 0. 1重量%以下、 Y: 0. 1重量%以下、 L a: 0. 1重量%以下、 C e: 0. 1重量%以下、 V: 1重量%以下、 Z r: 0. 1重量%以下を含有する請求項 1から請求項 3のいずれか一項に記載の N i基単
15. 成分が重量比で、 A 1 : 5. 0重量%以上 7. 0重量%以下、 Ta: 4. 0重量%以上 5. 6重量%以下、 Mo: 3. 3重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0重量%以下、 Re: 3. 1重量%以上 8. 0重量%以下、 Hf : 0重量%以上 0. 50重量%以下、 Cr : 2. 0重量%以上 5. 0重量%以 下、 Co: 0重量%以上 9. 9重量%以下、 Ru : 4. 1重量%以上 14. 0重量% 以下、 Nb: 4. 0重量%以下、 T i : 2. 0重量%以下、 B: 0. 05重量%以 下、 C: 0. 15重量%以下、 S i : 0. 1重量%以下、 Y: 0. 1重量%以下、 L a: 0. 1重量%以下、 C e: 0. 1重量%以下、 V: 1重量%以下、 Z r: 0.
1重量%以下を含有する請求項 1から請求項 3のいずれか一項に記載の N i基単 結晶超合金。
16. 成分が重量比で、 A 1 : 5. 0重量%以上 7. 0重量%以下、 Ta: 4. 0重量%以上 10. 0重量%以下、 Mo : 3. 1重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0重量%以下、 Re : 3. 1重量%以上 8. 0重量%以下、 Hf : 0重量%以上 0. 50重量%以下、 C r : 2. 0重量%以上 5. 0重量%以 下、 Co: 0重量%以上 9. 9重量%以下、 Ru : 4. 1重量%以上 14. 0重量% 以下、 Nb: 4. 0重量%以下、 T i : 2重量%以下、 B: 0. 05重量%以下、 C: 0. 15重量%以下、 S i : 0. 1重量%以下、 Y: 0. 1重量%以下、 L a : 0. 1重量%以下、 C e : 0. 1重量%以下、 V: 1重量%以下、 Z r : 0. 1重 量%以下を含有する請求項 1から請求項 3のいずれか一項に記載の N i基単結晶 超合金。
17. 成分が重量比で、 A 1 : 5. 8重量%以上 7. 0重量%以下、 Ta: 4. 0重量%以上 10. 0重量%以下、 Mo : 3. 1重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0重量%以下、 Re : 3. 1重量%以上 8. 0重量%以下、 H f : 0重量%以上 0. 50重量%以下、 Cr : 2. 0重量%以上 5. 0重量%以 下、 Co: 0重量%以上 9. 9重量%以下、 Ru : 4. 1重量%以上 14. 0重量% 以下、 Nb : 4. 0重量%以下、 T i : 2重量%以下、 B: 0. 05重量%以下、 C: 0. 15重量%以下、 S i : 0. 1重量%以下、 Y: 0. 1重量%以下、 L a : 0. 1重量%以下、 Ce : 0. 1重量%以下、 V: 1重量%以下、 Z r : 0. 1重 量%以下を含有する請求項 1から請求項 3のいずれか一項に記載の N i基単結晶
18. 成分が重量比で、 A 1 : 5. 0重量%以上 7. 0重量%以下、 Ta: 4. 0重量%以上 10. 0重量%以下、 Mo : 3. 1重量%以上 4. 5重量%以下、 W: 4. 0重量%以上 10. 0重量%以下、 Re : 3. 1重量%以上 8. 0重量%以下、 Hf : 0重量%以上 0. 50重量%以下、 C r : 2. 9重量%以上 4. 3重量%以 下、 Co: 0重量%以上 9. 9重量%以下、 Ru : 4. 1重量%以上 14. 0重量% 以下、 Nb : 4. 0重量%以下、 T i : 2重量%以下、 B: 0. 05重量%以下、 C: 0. 15重量%以下、 S i : 0. 1重量%以下、 Y: 0. 1重量%以下、 L a : 0. 1重量%以下、 C e : 0. 1重量%以下、 V: 1重量%以下、 Z r : 0. 1重 量%以下を含有する請求項 1から請求項 3のいずれか一項に記載の N i基単結晶 超合金。 '
19. 成分が重量比で、 A 1 : 5. 0重量%以上 7. 0重量%以下、 T a + N b + T i : 4. 0重量%以上 10. 0重量%以下、 Mo : 3. 3重量%以上 4. 5重 量%以下、 W: 4. 0重量%以上 10. 0重量%以下、 Re: 3. 1重量%以上 8. 0重量%以下、 H f : 0重量%以上 0. 50重量%以下、 Cr : 2. 0重量%以上 5. 0重量%以下、 Co : 0重量%以上 9. 9重量%以下、 Ru : 4. 1重量%以 上 14. 0重量%以下、 B: 0. 05重量%以下、 C: 0. 15重量%以下、 S i : 0. 1重量%以下、 Y: 0. 1重量%以下、 La : 0. 1重量%以下、 Ce : 0. 1重量%以下、 V: 1重量%以下、 Z r : 0. 1重量%を含有する N i基単結晶超 合金。
20. 母相の格子定数を alとし、析出相の格子定数を a2としたとき、 a2≤0. 999 alである請求項 1から請求項 19のいずれか一項に記載の N i基単結晶超 合金。
21. 析出相の結晶の格子定数 a 2が母相の結晶の格子定数 alの 0. 9965以 下である請求項 20に記載の N i基単結晶超合金。
22. 析出相の結晶の格子定数 a 2が母相の結晶の格子定数 alの 0. 9965以 下であり、かつ成分中に Re、 Ruを含有し、 さらに重量比で、 Mo: 2. 9重量% 以上 4. 5重量%以下を含有する N i基単結晶超合金。
23. 析出相の結晶の格子定数 a 2が母相の結晶の格子定数 alの 0. 9965以 下であり、 かつ成分中に重量比で、 Mo: 2. 9重量%以上 4. 5重量%以下、 R e : 3. 1重量%以上 8. 0重量%以下、 Ru: 4. 1重量%以上 14. 0重量% 以下を含有する N i基単結晶超合金。
24. 合金中の転移網間隔が 40 nm以下である請求項 1から請求項 23のいず れか一項に記載の N i基単結晶超合金。
PCT/JP2003/015619 2002-12-06 2003-12-05 Ni基単結晶超合金 WO2004053177A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2508698A CA2508698C (en) 2002-12-06 2003-12-05 Ni-based single crystal super alloy
JP2004558425A JP3814662B2 (ja) 2002-12-06 2003-12-05 Ni基単結晶超合金
DE60326083T DE60326083D1 (de) 2002-12-06 2003-12-05 Monokristalline nickel-basis-superlegierung
US10/537,477 US20060011271A1 (en) 2002-12-06 2003-12-05 Ni-based single crystal superalloy
AU2003289214A AU2003289214A1 (en) 2002-12-06 2003-12-05 Ni-BASE SINGLE CRYSTAL SUPERALLOY
EP03777308A EP1568794B1 (en) 2002-12-06 2003-12-05 Ni-BASE SINGLE CRYSTAL SUPERALLOY
US12/900,896 US8968643B2 (en) 2002-12-06 2010-10-08 Ni-based single crystal super alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-355756 2002-12-06
JP2002355756 2002-12-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10537477 A-371-Of-International 2003-12-05
US12/900,896 Continuation-In-Part US8968643B2 (en) 2002-12-06 2010-10-08 Ni-based single crystal super alloy

Publications (1)

Publication Number Publication Date
WO2004053177A1 true WO2004053177A1 (ja) 2004-06-24

Family

ID=32500797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015619 WO2004053177A1 (ja) 2002-12-06 2003-12-05 Ni基単結晶超合金

Country Status (8)

Country Link
US (1) US20060011271A1 (ja)
EP (1) EP1568794B1 (ja)
JP (1) JP3814662B2 (ja)
CN (1) CN100357467C (ja)
AU (1) AU2003289214A1 (ja)
CA (1) CA2508698C (ja)
DE (1) DE60326083D1 (ja)
WO (1) WO2004053177A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032751A1 (en) * 2006-09-13 2008-03-20 National Institute For Materials Science Ni-BASE SINGLE CRYSTAL SUPERALLOY
CN100482824C (zh) * 2005-04-30 2009-04-29 中国科学院金属研究所 一种含铼镍基单晶高温合金及其制备工艺

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1498503B1 (en) * 2002-03-27 2011-11-23 National Institute for Materials Science Ni-BASE DIRECTIONALLY SOLIDIFIED SUPERALLOY AND Ni-BASE SINGLE CRYSTAL SUPERALLOY
US20070044869A1 (en) * 2005-09-01 2007-03-01 General Electric Company Nickel-base superalloy
JP5344453B2 (ja) * 2005-09-27 2013-11-20 独立行政法人物質・材料研究機構 耐酸化性に優れたNi基超合金
EP1997923B1 (en) * 2006-03-20 2016-03-09 National Institute for Materials Science Method for producing an ni-base superalloy
US8696979B2 (en) * 2006-03-31 2014-04-15 National Institute For Materials Science Ni-base superalloy and method for producing the same
CN100460542C (zh) * 2006-06-14 2009-02-11 中国科学院金属研究所 一种无铼第二代镍基单晶高温合金
US8388890B2 (en) * 2006-09-21 2013-03-05 Tyco Electronics Corporation Composition and method for applying an alloy having improved stress relaxation resistance
US7704332B2 (en) * 2006-12-13 2010-04-27 United Technologies Corporation Moderate density, low density, and extremely low density single crystal alloys for high AN2 applications
US9499886B2 (en) 2007-03-12 2016-11-22 Ihi Corporation Ni-based single crystal superalloy and turbine blade incorporating the same
CN101680059B (zh) * 2007-03-12 2011-07-06 株式会社Ihi Ni基单晶超合金及使用其的涡轮叶片
CN100557092C (zh) * 2007-12-17 2009-11-04 北京航空航天大学 采用籽晶法与螺旋选晶法组合制备Ni基单晶高温合金的方法
JP5467307B2 (ja) * 2008-06-26 2014-04-09 独立行政法人物質・材料研究機構 Ni基単結晶超合金とそれよりえられた合金部材
US8216509B2 (en) * 2009-02-05 2012-07-10 Honeywell International Inc. Nickel-base superalloys
US20100254822A1 (en) * 2009-03-24 2010-10-07 Brian Thomas Hazel Super oxidation and cyclic damage resistant nickel-base superalloy and articles formed therefrom
US20110076179A1 (en) * 2009-03-24 2011-03-31 O'hara Kevin Swayne Super oxidation and cyclic damage resistant nickel-base superalloy and articles formed therefrom
CN102803528B (zh) 2009-04-17 2015-04-22 株式会社Ihi Ni基单晶超合金及使用其的涡轮叶片
WO2012039189A1 (ja) * 2010-09-24 2012-03-29 公立大学法人大阪府立大学 Reが添加されたNi基2重複相金属間化合物合金及びその製造方法
US20160214350A1 (en) 2012-08-20 2016-07-28 Pratt & Whitney Canada Corp. Oxidation-Resistant Coated Superalloy
EP2943974B1 (en) 2013-01-08 2021-01-13 SK Siltron Co., Ltd. Method of detecting defects in silicon single crystal wafer
JP6226231B2 (ja) 2013-09-18 2017-11-08 株式会社Ihi 熱遮蔽コーティングしたNi合金部品及びその製造方法
CN105506387B (zh) * 2015-12-21 2017-08-08 谷月恒 一种高比蠕变强度的镍基单晶高温合金及其制备方法和应用
CN107034388A (zh) * 2017-03-17 2017-08-11 泰州市金鹰精密铸造有限公司 镍基单晶高温合金涡轮叶片的制备工艺
CN109797433B (zh) * 2019-01-23 2021-05-25 深圳市万泽中南研究院有限公司 单晶高温合金、热端部件及设备
CN111961920B (zh) * 2020-08-09 2022-02-11 浙江大学 一种高承温能力的镍基单晶高温合金及其制备方法
CN112522543A (zh) * 2020-11-18 2021-03-19 贵州工程应用技术学院 一种高浓度Re/Ru高承温能力高蠕变抗力镍基单晶超合金
CN113913942A (zh) * 2021-01-13 2022-01-11 中国航发北京航空材料研究院 镍基单晶合金、用途和热处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208645A2 (en) * 1985-06-10 1987-01-14 United Technologies Corporation Advanced high strength single crystal superalloy compositions
EP0246082A1 (en) * 1986-05-13 1987-11-19 AlliedSignal Inc. Single crystal super alloy materials
EP0848071A1 (en) * 1996-12-11 1998-06-17 United Technologies Corporation Superalloy compositions
JPH10330872A (ja) * 1997-05-29 1998-12-15 Toshiba Corp Ni基耐熱超合金及びNi基耐熱超合金部品
JPH11256258A (ja) * 1998-03-13 1999-09-21 Toshiba Corp Ni基単結晶超合金およびガスタービン部品
JPH11310839A (ja) * 1998-04-28 1999-11-09 Hitachi Ltd 高強度Ni基超合金方向性凝固鋳物
EP0971041A1 (fr) * 1998-07-07 2000-01-12 ONERA (Office National d'Etudes et de Recherches Aérospatiales) Superalliage monocristallin à base de nickel à haut solvus phase gamma prime

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582548A (en) * 1980-11-24 1986-04-15 Cannon-Muskegon Corporation Single crystal (single grain) alloy
US4643782A (en) * 1984-03-19 1987-02-17 Cannon Muskegon Corporation Single crystal alloy technology
US5151249A (en) * 1989-12-29 1992-09-29 General Electric Company Nickel-based single crystal superalloy and method of making
US5455120A (en) * 1992-03-05 1995-10-03 General Electric Company Nickel-base superalloy and article with high temperature strength and improved stability
US5366695A (en) * 1992-06-29 1994-11-22 Cannon-Muskegon Corporation Single crystal nickel-based superalloy
US5482789A (en) * 1994-01-03 1996-01-09 General Electric Company Nickel base superalloy and article
US6190471B1 (en) * 1999-05-26 2001-02-20 General Electric Company Fabrication of superalloy articles having hafnium- or zirconium-enriched protective layer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208645A2 (en) * 1985-06-10 1987-01-14 United Technologies Corporation Advanced high strength single crystal superalloy compositions
EP0246082A1 (en) * 1986-05-13 1987-11-19 AlliedSignal Inc. Single crystal super alloy materials
EP0848071A1 (en) * 1996-12-11 1998-06-17 United Technologies Corporation Superalloy compositions
JPH10330872A (ja) * 1997-05-29 1998-12-15 Toshiba Corp Ni基耐熱超合金及びNi基耐熱超合金部品
JPH11256258A (ja) * 1998-03-13 1999-09-21 Toshiba Corp Ni基単結晶超合金およびガスタービン部品
JPH11310839A (ja) * 1998-04-28 1999-11-09 Hitachi Ltd 高強度Ni基超合金方向性凝固鋳物
EP0971041A1 (fr) * 1998-07-07 2000-01-12 ONERA (Office National d'Etudes et de Recherches Aérospatiales) Superalliage monocristallin à base de nickel à haut solvus phase gamma prime

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1568794A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100482824C (zh) * 2005-04-30 2009-04-29 中国科学院金属研究所 一种含铼镍基单晶高温合金及其制备工艺
WO2008032751A1 (en) * 2006-09-13 2008-03-20 National Institute For Materials Science Ni-BASE SINGLE CRYSTAL SUPERALLOY
JP5177559B2 (ja) * 2006-09-13 2013-04-03 独立行政法人物質・材料研究機構 Ni基単結晶超合金
US8771440B2 (en) 2006-09-13 2014-07-08 National Institute For Materials Science Ni-based single crystal superalloy

Also Published As

Publication number Publication date
CA2508698C (en) 2012-05-15
CN1745186A (zh) 2006-03-08
AU2003289214A1 (en) 2004-06-30
EP1568794B1 (en) 2009-02-04
EP1568794A1 (en) 2005-08-31
JP3814662B2 (ja) 2006-08-30
CA2508698A1 (en) 2004-06-24
CN100357467C (zh) 2007-12-26
DE60326083D1 (de) 2009-03-19
JPWO2004053177A1 (ja) 2006-04-13
AU2003289214A8 (en) 2004-06-30
US20060011271A1 (en) 2006-01-19
EP1568794A4 (en) 2006-11-02

Similar Documents

Publication Publication Date Title
WO2004053177A1 (ja) Ni基単結晶超合金
JP5177559B2 (ja) Ni基単結晶超合金
EP2305845B1 (en) Ni-BASED SINGLE CRYSTAL SUPERALLOY AND ALLOY MEMBER USING THE SAME AS BASE
CA2729117C (en) Ni-based single crystal superalloy and component obtained from the same
JP4833227B2 (ja) 高耐熱性,高強度Ir基合金及びその製造方法
JP4557079B2 (ja) Ni基単結晶超合金及びこれを用いたタービン翼
CA2479774C (en) Ni-base directionally solidified and single-crystal superalloy
EP1262569B1 (en) Ni-based single crystal super alloy
US20040221925A1 (en) Ni-based superalloy having high oxidation resistance and gas turbine part
US6966956B2 (en) Ni-based single crystal super alloy
JP2010507016A (ja) ニッケル基超合金
RU2518838C2 (ru) МОНОКРИСТАЛЛИЧЕСКИЙ СУПЕРСПЛАВ НА ОСНОВЕ Ni И ЛОПАТКА ТУРБИНЫ
WO2010119709A1 (ja) Ni基単結晶超合金及びこれを用いたタービン翼
JPWO2007122931A1 (ja) Ni基超合金とその製造方法
JP5224246B2 (ja) 耐酸化性の優れたNi基化合物超合金及びその製造方法と耐熱構造材
US8968643B2 (en) Ni-based single crystal super alloy
JPH0310039A (ja) 高温強度および高温耐食性にすぐれたNi基単結晶超合金
JP2820139B2 (ja) 高温強度および高温耐食性にすぐれたNi基単結晶超合金
JPH07300639A (ja) 高耐食性ニッケル基単結晶超合金およびその製造方法
JPH0941058A (ja) Ni基単結晶合金

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004558425

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006011271

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2508698

Country of ref document: CA

Ref document number: 10537477

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003777308

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038A95013

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003777308

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10537477

Country of ref document: US