EP0971041A1 - Superalliage monocristallin à base de nickel à haut solvus phase gamma prime - Google Patents

Superalliage monocristallin à base de nickel à haut solvus phase gamma prime Download PDF

Info

Publication number
EP0971041A1
EP0971041A1 EP99401533A EP99401533A EP0971041A1 EP 0971041 A1 EP0971041 A1 EP 0971041A1 EP 99401533 A EP99401533 A EP 99401533A EP 99401533 A EP99401533 A EP 99401533A EP 0971041 A1 EP0971041 A1 EP 0971041A1
Authority
EP
European Patent Office
Prior art keywords
alloys
alloy
phase
temperature
monocrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99401533A
Other languages
German (de)
English (en)
Other versions
EP0971041B1 (fr
Inventor
Pierre Caron
Jean-Louis Raffestin
Serge Naveos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Office National dEtudes et de Recherches Aerospatiales ONERA
Original Assignee
Office National dEtudes et de Recherches Aerospatiales ONERA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office National dEtudes et de Recherches Aerospatiales ONERA filed Critical Office National dEtudes et de Recherches Aerospatiales ONERA
Publication of EP0971041A1 publication Critical patent/EP0971041A1/fr
Application granted granted Critical
Publication of EP0971041B1 publication Critical patent/EP0971041B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%

Definitions

  • the present invention relates to superalloys based on nickel particularly suitable for the manufacture of monocrystalline blades stationary and mobile gas turbine engines, and showing a high creep resistance at very high temperatures while retaining good environmental resistance of combustion. These alloys are more particularly suitable to applications in aeronautical engines used to propulsion of airplanes and helicopters.
  • the nickel-based monocrystalline superalloys are the the most efficient materials used today for manufacture of stationary and movable turbine blades aeronautical gas turbomachines. ONERA's work in this area began in the late 1970s and are translated, among other things, by the filing of various patents of invention relating to monocrystalline superalloys intended for different fields of application: FR 2 503 188, FR 2 555 204, FR 2 557 598, FR 2 599 757, FR 2 643 085, FR 2 686 902.
  • the elements Cr, Co, Mo and part of the W mainly participate in the hardening of the austenitic matrix ( ⁇ phase) where they come into solution.
  • the elements Al, Ti, Ta and Nb favor the precipitation in the ⁇ matrix of hardening particles of a second phase of the Ni 3 type (Al, Ti, Ta, Nb) ( ⁇ 'phase).
  • Minor elements weight concentrations less than 0.5%) such as silicon (Si), hafnium (Hf), can also be added in order to optimize the resistance to the environment as demonstrated in FR 2 686 902.
  • first generation monocrystalline superalloys used are called "first generation", as by example the shades AM1 and MC2 both covered by the FR patent 2,557,598 and the AM3 alloy protected by the FR patent 2,599,757.
  • the MC2 alloy is considered to be the best performing alloy in terms of resistance creep up to 1100 ° C.
  • the future needs of engine manufacturers however, require the availability of alloys to blades more efficient than these first generation alloys. In particular, it is necessary to increase the maximum admissible temperatures by the alloys constituting the turbine blades.
  • the object of the invention is therefore to propose a new family of nickel-based monocrystalline superalloys showing improved creep resistance, in particular at temperatures above 1100 ° C, but also at lower temperatures of interest to various parts of blades, compared to those of industrially exploited alloys.
  • the invention relates to a nickel-based superalloy suitable for the manufacture of parts of turbomachines by monocrystalline solidification, characterized in that its mass composition is as follows: Cr 3.5 to 7.5% Mo 0 to 1.5% Re 1.5 to 5.5% Ru 0 to 5.5% W 3.5 to 8.5% Al 5 to 6.5% Ti 0 to 2.5% Your 4.5 to 9% Hf 0.08 to 0.12% Yes 0.08 to 0.12%, the complement to 100% being constituted by Ni and any impurities.
  • the invention proposes such a superalloy having the following composition by mass: Cr 3.5 to 5.5% Mo 0 to 1.5% Re 4.5 to 5.5% Ru 2.5 to 5.5% W 4.5 to 6.5% Al 5 to 6.5% Ti 0 to 1.5% Your 5 to 6.2% Hf 0.08 to 0.12% Yes 0.08 to 0.12%, the complement to 100% being constituted by Ni and any impurities.
  • the mass composition of the superalloy is as follows: Cr 3.5 to 5.5% Mo 0 to 1.5% Re 3.5 to 4.5% Ru 3.5 to 5.5% W 4.5 to 6.5% Al 5.5 to 6.5% Ti 0 to 1% Your 4.5 to 5.5% Hf 0.08 to 0.12% Yes 0.08 to 0.12%, the complement to 100% being constituted by Ni and any impurities.
  • the invention thus provides a unique combination of features alloys, which the state of the art does not allow to predict.
  • the alloys of the invention are intended for the manufacture of monocrystalline parts, that is to say made up of a single metallurgical grain. This particular structure is obtained using a solidification process directed in a thermal gradient using a device for selecting grain or a monocrystalline germ at the beginning of solidification.
  • the superalloys essentially consist of two phases: the austenitic matrix ⁇ is a solid solution based on nickel in which particles of phase ⁇ ', an intermetallic compound whose composition is based on Ni 3 Al, precipitate during cooling to solid state.
  • the addition elements are distributed in the two phases ⁇ and ⁇ 'but generally show a particular affinity for one or the other of these two phases.
  • chromium, molybdenum, rhenium and ruthenium are distributed preferentially in the matrix ⁇ while aluminum, titanium and tantalum go preferentially in phase ⁇ '.
  • compositions of the alloys of the invention were chosen so that two-phase microstructures can be obtained ⁇ / ⁇ ', consisting of a homogeneous precipitation of particles ⁇ 'in a matrix ⁇ at the end of the solidification steps monocrystalline and heat treatments detailed by the following.
  • treatment first thermal intended to dissolve the precipitates of phase ⁇ ' contained in dendrites and eliminate eutectic phases solidified between the dendrites.
  • the dissolution of precipitated ⁇ ' is performed when the treatment temperature thermal reaches the solvent temperature ⁇ '(temperature of dissolution of the precipitates of phase ⁇ ') characteristic of the chemical composition of the alloy.
  • the value of the solvus ⁇ ' varies periodically in the alloy monocrystalline solidification crude in relation to the local alloy chemistry.
  • This start temperature of eutectic fusion is in practice assimilated to solidus temperature (melting start temperature) of the alloy.
  • the temperature of the homogenization treatment must therefore remain below the solidus temperature.
  • This sequence of heat treatments includes a first prehomogenization treatment of 3 hours at a temperature between 1300 and 1310 ° C, then a progressive increase of 30 ° C at the speed of 3 ° Ch -1 , before a new level of 3 hours at a temperature between 1330 and 1340 ° C, the final cooling to be carried out at a speed such that the final size of the precipitates of phase ⁇ 'is less than 300 nm.
  • the alloys of the invention were tested after being subjected to a sequence of homogenization treatments and dissolution of the ⁇ 'phase as described above, then two heat treatments for income allowing fix the size and the volume fraction of the precipitates of ⁇ 'phase.
  • a first income consists of a treatment of 4 to 16 hours at a temperature between 1050 and 1150 ° C allowing the size of the ⁇ 'phase precipitates to be fixed between 300 and 500 nm.
  • a second income treatment consists of in a treatment of 15 to 25 hours at a temperature included between 850 and 870 ° C to optimize the fraction of precipitated ⁇ 'phase.
  • These income treatments are compatible with coating diffusion treatments protectors and soldering treatments generally applied to monocrystalline turbine blades during their manufacturing. Micrographic examination shows that the precipitates of phase ⁇ 'are roughly cubic in shape and represent a volume fraction of at least 70% in the alloy. They are contained in the matrix ⁇ which appears in the form of fine corridors between these precipitates.
  • the resistance to creep at high temperature is all the more greater than the volume fraction of the hardening phase ⁇ ' precipitated in the alloy is high.
  • the alloys of the invention contain a volume fraction close to 70%.
  • the ⁇ 'phase gradually dissolves in the ⁇ matrix, slowly until around 1000 ° C, then more quickly above 1000 ° C.
  • the solvent temperature ⁇ ' is exceeded, the ⁇ 'precipitates are then completely dissolved.
  • the reduction of the volume fraction of the ⁇ 'phase when the temperature increases is one of the causes of the decrease in resistance creep of superalloys.
  • One of the major contributions of the invention is to increase by significantly the temperature of ⁇ 'solvus in order to conserve a high volume fraction of ⁇ 'phase at temperatures higher than 1100 ° C and therefore obtain resistance very high creep at these temperatures.
  • the invention therefore relates to so-called "high solvus ⁇ '" alloys showing very high creep resistance above 1100 ° C.
  • the experience acquired by the inventor in the field has shown that increases in concentrations of Al, Ti, Ta, Mo and W resulted in an increase in the ⁇ 'solvus.
  • additions of the elements Cr and Co led to a decrease of the temperature of the solvent ⁇ '.
  • rhenium and ruthenium previous work has not concluded explicitly about their specific role on temperature of ⁇ 'solvus.
  • the elements Mo and W also have a beneficial effect on the ⁇ 'solvus but these elements are heavy, in particular W, and their content must be controlled so as not to increase excessively the density of the alloys.
  • improving the creep resistance of monocrystalline superalloys can be obtained by increasing the concentrations of refractory elements Mo, W, Re and Ta which play a role important in the solid solution hardening of the phases ⁇ and ⁇ '.
  • These heavy elements also slow down the set of elementary mechanisms which are controlled by the diffusion of atoms, which has beneficial consequences on the creep resistance of alloys.
  • the addition of rhenium limits the magnification of particles ⁇ 'phase during high temperature maintenance, phenomenon which contributes to degradation over time mechanical properties of superalloys.
  • increasing concentrations of refractory elements slows the thermally activated movement of dislocations which propagate strain in superalloys, which has the effect of reducing the creep rate.
  • the refractory element concentrations must be however carefully balanced so as not to excessively increase the density of the alloys.
  • the refractory element Ru in the context of the invention, has the advantage of having a density two times weaker than that of rhenium.
  • works of the inventor in this field show that the Ru favors less that rhenium the precipitation of intermetallic phases fragile.
  • the alloys according to the invention also include simultaneous additions of silicon and hafnium. Such additions make it possible to optimize the resistance to oxidation at hot alloys by improving the adhesion of the layer protective alumina formed at high temperature.
  • Alloys according to the invention have been developed, solidified in the form of crystal-oriented single crystals ⁇ 001> and tested. This crystallographic orientation is that usually used for solidification directed monocrystalline blades of turbines. It gives to these parts an optimal combination of creep resistance and resistance to thermal fatigue and fatigue mechanical.
  • the nominal chemical compositions (% by weight) of a few alloys of the invention are collated in Table I, together with that of the reference alloy MC2 described in FR 2,557,598.
  • This alloy serves as reference because it is, to the knowledge of the inventor, the most efficient in creep among the alloys containing neither rhenium nor ruthenium.
  • these alloys show variable ⁇ / ⁇ 'eutectic fractions but the application of homogenization treatments such as those described above allow us to completely restore solution of the ⁇ 'phase precipitates and eliminate the phases ⁇ / ⁇ 'eutectics without causing local alloy melting.
  • Solvent temperatures ⁇ ' were measured by analysis thermal expansion on samples of alloys previously homogenized. The values of the ⁇ 'solvus have been reported in Table II. The value of the ⁇ 'solvus of the MC2 alloy measured under similar conditions is also reported for comparison in Table II. The Solvent temperatures ⁇ 'of the alloys of the invention are always higher than that of the reference alloy MC2, the differences varying between 26 and 54 ° C depending on the alloys.
  • Creep tests in tension were carried out on test pieces machined in monocrystalline bars of orientation ⁇ 001> of various alloys of the invention.
  • the bars were previously homogenized and then returned according to the procedures described above.
  • the values of the failure times for different creep conditions and for various alloys of the invention are compared in Table III with the values obtained under the same conditions on the reference monocrystalline alloy MC2.
  • the alloys of the invention show varying lifetimes which can be higher than those of the reference alloy MC2 according to the alloy and the temperature considered. Remarkable results are obtained in particular at 950 ° C and at 760 ° C in the case of certain alloys of the invention.
  • the best performing alloys are the MC544 alloys, MC645 and MC653. They show lifetimes in creep at less equal and generally greater than that of the alloy MC2 over the entire temperature range except alloy MC544 at 760 ° C. The most lifespan gains important are obtained at 950 and 1150 ° C.
  • Cyclic oxidation tests at 1100 ° C were carried out in the air on samples of superalloys of the invention homogenized and returned according to the procedures described before. Each test cycle includes maintaining one hour at 1100 ° C followed by cooling to temperature ambient. Cyclic oxidation behaviors of different alloys are illustrated in the graphs of Figures 1a and 1b where the variations in mass are reported specific (loss of mass per unit area) of samples as a function of the number of oxidation cycles of a hour. Tests were conducted under the same conditions on the reference alloy MC2. Oxidation resistance of a superalloy is all the better as its variation in specific mass is low. All the alloys of the invention thus show superior resistance to cyclic oxidation to that of the reference alloy MC2.
  • Cyclic corrosion tests were carried out at 850 ° C. on samples of alloys of the invention and of the reference alloy MC2.
  • the samples were previously homogenized and returned according to the procedures described above. Each cycle includes a one hour hold at 850 ° C followed by cooling to room temperature.
  • the samples are contaminated with Na 2 SO 4 (0.5 mg.cm -2 ) every 50 hours.
  • the variations in the specific mass of the alloy samples are plotted as a function of the number of cycles in the graphs of FIGS. 2a and 2b. Corrosion behavior is considered satisfactory when the mass of the sample varies little: this is the incubation period.
  • An accelerated corrosion stage occurs after the incubation stage. This accelerated corrosion most often results in rapid mass gain corresponding to the formation of corrosion products.
  • the graphs show poor behavior for the reference alloy MC2 for which the accelerated corrosion stage occurs quickly.
  • the alloys of the invention show incubation stages of variable durations, but in any case longer than that characterizing the reference alloy MC2, which demonstrates better resistance to cyclic corrosion.
  • microstructures of the alloys of the invention have been checked after isothermal aging treatments 200 hours at 1050 ° C and at the end of the creep tests breaking at 760, 950, 1050, 1100 and 1150 ° C in order to control their microstructural stability vis-à-vis the unwanted intermetallic phase precipitation of the type ⁇ , ⁇ or Laves phase.
  • Only the MC820 alloy shows rhenium-rich phase needle particles at the end of the 200 hour aging treatment at 1050 ° C as well at the end of the rupture creep tests at 1050 and 1100 ° C. These particles are located in the hearts of dendrites, where the rhenium preferentially separates during the directed solidification process. All other alloys of the invention cited in Table I are free of particles of undesirable phases rich in rhenium at term aging treatments and creep tests.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Silicon Compounds (AREA)
  • Chemically Coating (AREA)
  • Supercharger (AREA)

Abstract

Le superalliage selon l'invention, adapté à la fabrication de pièces de turbomachines par solidification monocristalline, possède la composition en masse suivante: Cr, 3,5 à 7,5 %; Mo, 0 à 1,5 %; Re, 1,5 à 5,5 %; Ru, 0 à 5,5 %; W, 3,5 à 8,5 %; Al, 5 à 6,5 %; Ti, 0 à 2,5 %; Ta, 4,5 à 9 %; Hf, 0,08 à 0,12 %; Si, 0,08 à 0,12 %, le complément à 100 % étant constitué par Ni et les impuretés éventuelles.

Description

La présente invention concerne des superalliages à base de nickel adaptés notamment à la fabrication d'aubes monocristallines fixes et mobiles de turbines à gaz, et montrant une résistance au fluage élevée à très haute température tout en conservant une bonne résistance à l'environnement des gaz de combustion. Ces alliages sont plus particulièrement adaptés à des applications dans les moteurs aéronautiques servant à la propulsion des avions et hélicoptères.
Les superalliages monocristallins à base de nickel sont les matériaux les plus performants aujourd'hui utilisés pour la fabrication des aubes fixes et mobiles de turbines des turbomachines à gaz aéronautiques. Les travaux de l'ONERA dans ce domaine ont débuté dès la fin des années 1970 et se sont traduits, entre autres, par le dépôt de divers brevets d'invention relatifs à des superalliages monocristallins destinés à différents domaines d'applications: FR 2 503 188, FR 2 555 204, FR 2 557 598, FR 2 599 757, FR 2 643 085, FR 2 686 902.
L'évolution des performances des turbines à gaz aéronautiques, traduites en termes de puissance et de rendement spécifiques et de durée de vie, nécessite de pouvoir disposer d'alliages pour aubes de turbines montrant des caractéristiques mécaniques à haute température (650 à 1150°C) et une résistance à la corrosion et à l'oxydation à chaud sans cesse améliorées. Des conditions de fonctionnement extrêmes peuvent en effet amener le métal à des températures supérieures à 1100°C. Afin d'optimiser la résistance à la corrosion à chaud et à l'oxydation à chaud, les aubes monocristallines en superalliage sont par ailleurs généralement revêtues d'un dépôt protecteur du type aluminiure de nickel ou alliage MCrAlY. Afin de pallier à la fissuration et à la rupture éventuelle de ces couches protectrices sous l'effet des cyclages thermiques, qui pénaliseraient la durée de vie des pièces, les superalliages doivent cependant montrer une résistance intrinsèque importante à la corrosion et à l'oxydation.
Dans les aubes polycristallines coulées par des procédés de fonderie conventionnels, une grande partie de la déformation à chaud en cours de service se produit au niveau des joints de grains ce qui limite la durée de vie des pièces. Le développement du procédé de solidification monocristalline a permis, en éliminant les joints de grains, d'augmenter de manière spectaculaire les performances des superalliages à base de nickel. De plus le procédé permet de sélectionner l'orientation préférentielle de croissance de la pièce monocristalline et donc de choisir une orientation <001>, optimale vis-à-vis de la résistance au fluage et à la fatigue thermique qui sont les deux modes de sollicitation causant les plus grands dommages aux aubes de turbines.
Les améliorations successives des performances mécaniques, en particulier en fluage, de ces superalliages pour aubes monocristallines ont été rendues possibles par des optimisations de leurs compositions chimiques. En effet, outre le nickel qui est le constituant majeur de ces alliages, divers éléments d'addition apportent leurs contributions spécifiques aux propriétés de ceux-ci. Les rôles de ces éléments seront détaillés par la suite. Dans les superalliages monocristallins couverts par les brevets précités, les éléments d'addition majeurs (concentrations pondérales à hauteur de quelques pour-cents) ont généralement été choisis dans la liste suivante: chrome (Cr), cobalt (Co), molybdène (Mo), tungstène (W), aluminium (Al), titane (Ti), tantale (Ta), niobium (Nb). Les éléments Cr, Co, Mo et une partie du W participent principalement au durcissement de la matrice austénitique (phase γ) où ils entrent en solution. Les éléments Al, Ti, Ta et Nb favorisent la précipitation dans la matrice γ de particules durcissantes d'une seconde phase du type Ni3(Al, Ti, Ta, Nb) (phase γ'). Des éléments mineurs (concentrations pondérales inférieures à 0,5%) tels que le silicium (Si), le hafnium (Hf), peuvent également être ajoutés afin d'optimiser la résistance à l'environnement tel que démontré dans FR 2 686 902.
Depuis le début des années 1980, un grand nombre de brevets consacrés à de nouvelles compositions chimiques de superalliages pour aubes monocristallines ont été déposés dans le monde. Les évolutions les plus récentes ont consisté en particulier à incorporer dans ces alliages les éléments réfractaires rhénium (Re) et ruthénium (Ru). Ces additions visent surtout à améliorer la résistance au fluage à haute température des superalliages monocristallins tout en conservant une microstructure stable à haute température vis-à-vis de la formation de particules de phases intermétalliques qui sont susceptibles d'entraíner des pertes de propriétés de ces alliages.
Divers brevets protègent ainsi des domaines de compositions de superalliages monocristallins contenant des additions de l'un et/ou l'autre des éléments Re et de Ru, notamment US 4 719 080 (United Technologies Corporation), US 4 935 072 (Allied-Signal Inc), US 5 151 249 (General Electric) US 5 270 123 (General Electric) et US 5 482 789 (General Electric). Toutefois, les informations disponibles quant aux propriétés de ces alliages sont très limitées, et ne permettent pas de juger de l'intérêt industriel de ces additions.
En France aujourd'hui les superalliages monocristallins utilisés sont dits de "première génération", comme par exemple les nuances AM1 et MC2 couvertes toutes deux par le brevet FR 2 557 598 et l'alliage AM3 protégé par le brevet FR 2 599 757. Parmi ceux-ci, l'alliage MC2 est considéré comme l'alliage le plus performant en ce qui concerne la résistance au fluage jusqu'à 1100°C. Les besoins futurs des motoristes nécessitent cependant de pouvoir disposer d'alliages pour aubes plus performants que ces alliages de première génération. Il est en particulier nécessaire d'augmenter les températures maximales admissibles par les alliages constituant les aubes de turbines.
Le but de l'invention est donc de proposer une nouvelle famille de superalliages monocristallins à base de nickel montrant une résistance au fluage améliorée, en particulier aux températures supérieures à 1100°C, mais également à des températures moins élevées intéressant diverses parties des aubes, par rapport à celles des alliages exploités industriellement.
À cet effet, on a cherché à introduire de nouveaux éléments d'addition, sans pénaliser d'autres caractéristiques essentielles au bon comportement des alliages, telles que la masse volumique, la résistance à la corrosion et à l'oxydation à chaud et la stabilité microstructurale.
L'analyse de l'état de la technique ainsi que les résultats des travaux menés par l'inventeur ont rapidement montré que seul des alliages contenant des additions de rhénium pouvaient permettre de dépasser la résistance au fluage de l'alliage MC2 au delà de 1100°C. Pour contrebalancer certains effets néfastes du rhénium (masse volumique excessive, instabilité microstructurale), il semble par ailleurs avantageux d'incorporer du ruthénium.
L'invention vise un superalliage à base de nickel adapté à la fabrication de pièces de turbomachines par solidification monocristalline, caractérisé en ce que sa composition en masse est la suivante:
Cr 3,5 à 7,5 %
Mo 0 à 1,5 %
Re 1,5 à 5,5 %
Ru 0 à 5,5 %
W 3,5 à 8,5 %
Al 5 à 6,5 %
Ti 0 à 2,5 %
Ta 4,5 à 9 %
Hf 0,08 à 0,12 %
Si 0,08 à 0,12 %,
le complément à 100 % étant constitué par Ni et les impuretés éventuelles.
Plus particulièrement, l'invention propose un tel superalliage ayant la composition en masse suivante:
Cr 3,5 à 5,5 %
Mo 0 à 1,5 %
Re 4,5 à 5,5 %
Ru 2,5 à 5,5 %
W 4,5 à 6,5 %
Al 5 à 6,5 %
Ti 0 à 1,5 %
Ta 5 à 6,2 %
Hf 0,08 à 0,12 %
Si 0,08 à 0,12 %,
le complément à 100 % étant constitué par Ni et les impuretés éventuelles.
Plus particulièrement encore, la composition en masse du superalliage est la suivante:
Cr 3,5 à 5,5 %
Mo 0 à 1,5 %
Re 3,5 à 4,5 %
Ru 3,5 à 5,5 %
W 4,5 à 6,5 %
Al 5,5 à 6,5 %
Ti 0 à 1 %
Ta 4,5 à 5,5 %
Hf 0,08 à 0,12 %
Si 0,08 à 0,12 %,
le complément à 100 % étant constitué par Ni et les impuretés éventuelles.
Trois compositions spécifiques de superalliages selon l'invention sont données ci-après:
Cr 3,5 à 4,5 % 4,5 à 5,5 % 3,5 à 4,5 %
Mo 0,5 à 1,5 % 0,5 à 1,5 %
Re 3,5 à 4,5 % 3,5 à 4,5 % 4,5 à 5,5 %
Ru 3,5 à 4,5 % 4,5 à 5,5 % 2,5 à 3,5 %
W 4,5 à 5,5 % 5,5 à 6,5 % 5,5 à 6,5 %
Al 5,5 à 6,5 % 5,5 à 6,5 % 4,8 à 5,8 %
Ti 0 à 1 % 0 à 1 % 0,5 à 1,5 %
Ta 4,5 à 5,5 % 4,5 à 5,5 % 5,7 à 6,7 %
Hf 0,08 à 0,12 % 0,08 à 0,12 % 0,08 à 0,12 %
Si 0,08 à 0,12 % 0,08 à 0,12 % 0,08 à 0,12 %
le complément à 100 % étant constitué par Ni et les impuretés éventuelles.
Les alliages selon l'invention, élaborés sous la forme de monocristaux d'orientation <001>, présentent les propriétés suivantes:
  • une masse volumique inférieure dans tous les cas à 9 g.cm-3, et au mieux à 8,8 g.cm-3, permettant de minimiser la masse des aubes monocristallines et par conséquent de limiter la contrainte centrifuge agissant sur ces aubes et sur le disque de turbine sur lequel elles sont fixées;
  • une aptitude à l'homogénéisation par remise en solution totale des particules de phase γ', γ compris les phases eutectiques γ/γ';
  • une température élevée de mise en solution de la phase durcissante γ', dans tous les cas supérieure à celle des alliages antérieurs ne contenant ni rhénium, ni ruthénium;
  • l'absence de phases intermétalliques fragiles pouvant précipiter au cours de maintiens à haute température et susceptibles d'entraíner une réduction de la résistance au fluage et une fragilisation des alliages;
  • une tenue à la corrosion cyclique à chaud et à l'oxydation cyclique à chaud supérieure à celle des alliages antérieurs ne contenant ni rhénium ni ruthénium.
L'obtention simultanée de l'ensemble de ces caractéristiques permet d'optimiser la résistance au fluage à très haute température et la tenue à l'environnement des aubes monocristallines et donc d'augmenter leur durée de vie ainsi que les performances des turbines à gaz.
L'invention fournit ainsi une combinaison unique de caractéristiques des alliages, que l'état de la technique ne permettait pas de prévoir.
Les alliages de l'invention sont destinés à la fabrication de pièces monocristallines, c'est-à-dire constituées d'un seul grain métallurgique. Cette structure particulière est obtenue à l'aide d'un procédé de solidification dirigée dans un gradient thermique en utilisant un dispositif de sélection de grain ou un germe monocristallin en début de solidification.
Après solidification les superalliages sont essentiellement constitués de deux phases: la matrice austénitique γ est une solution solide à base de nickel dans laquelle des particules de phase γ', composé intermétallique dont la composition est basée sur Ni3Al, précipitent au cours du refroidissement à l'état solide. Les éléments d'addition se répartissent dans les deux phases γ et γ' mais montrent généralement une affinité particulière pour l'une ou l'autre de ces deux phases. Ainsi le chrome, le molybdène, le rhénium et le ruthénium se répartissent préférentiellement dans la matrice γ alors que l'aluminium, le titane et le tantale vont préférentiellement dans la phase γ'.
Dans les alliages bruts de solidification monocristalline, la répartition des particules de phase durcissante γ' est très hétérogène dans le volume du monocristal du fait de ségrégations chimiques résultant des conditions de solidification propres au procédé. La microstructure est dite dendritique. Les précipités sont très fins dans le coeur des dendrites qui se solidifie en premier au cours du refroidissement de l'alliage et deviennent plus gros dans les régions se solidifiant ensuite à partir du centre de la dendrite. De plus, en fin de solidification, des phases eutectiques constituées de particules massives de phase γ' contenant des lamelles de phase γ se solidifient dans les régions séparant les dendrites.
L'expérience a cependant montré que la résistance au fluage des superalliages à base de nickel était optimisée lorsque la distribution des particules de phase γ' était homogène dans tout le volume de l'alliage avec des tailles de précipités inférieures à 1 micromètre, la taille optimale des précipités dépendant de la composition de l'alliage. La phase γ' contenue dans les phases eutectiques ne contribue pas, en particulier, au durcissement des alliages et le potentiel de résistance au fluage des alliages n'est donc pas totalement exploité dans l'état brut de solidification. Ces blocs massifs de phase eutectique γ/γ' sont par ailleurs des sites préférentiels d'amorçage de fissures lors des sollicitations cycliques résultant de phénomènes de fatigue thermique dus au cycles de démarrage et arrêt des turbines à gaz.
Les compositions des alliages de l'invention ont été choisies de manière à pouvoir obtenir des microstructures biphasées γ/γ', constituées d'une précipitation homogène de particules γ' dans une matrice γ à l'issue des étapes de solidification monocristalline et de traitements thermiques détaillées par la suite. Afin d'atteindre cette microstructure optimisée, il est nécessaire dans un premier temps d'appliquer un traitement thermique destiné à dissoudre les précipités de phase γ' contenus dans les dendrites et d'éliminer les phases eutectiques solidifiées entre les dendrites. La dissolution des précipités γ' est réalisée lorsque la température du traitement thermique atteint la température de solvus γ' (température de mise en solution des précipités de phase γ') caractéristique de la composition chimique de l'alliage. En pratique la valeur du solvus γ' varie périodiquement dans l'alliage brut de solidification monocristalline en relation avec la chimie locale de l'alliage. Ainsi le solvus γ' augmente du coeur de la dendrite vers les régions interdendritiques du fait des ségrégations chimiques, jusqu'à atteindre la température de début de fusion de la phase γ' eutectique qui est le dernier solide formé au cours du refroidissement de l'alliage depuis l'état liquide. Cette température de début de fusion de l'eutectique est en pratique assimilée à la température de solidus (température de début de fusion) de l'alliage. La température du traitement d'homogénéisation doit donc rester en deçà de la température de solidus.
Pratiquement la dissolution complète des précipités γ' et des eutectiques γ/γ' a pu être obtenue dans les alliages de l'invention grâce à l'application de séquences de traitements thermiques incluant une homogénéisation préalable des structures dendritiques. Cette séquence de traitements thermiques comporte un premier traitement de pré-homogénéisation de 3 heures à une température comprise entre 1300 et 1310°C, puis une augmentation progressive de 30°C à la vitesse de 3°C.h-1, avant un nouveau palier de 3 heures à une température comprise entre 1330 et 1340°C, le refroidissement final devant être effectué à une vitesse telle que la taille finale des précipités de phase γ' soit inférieure à 300 nm. La totalité des phase eutectiques γ/γ' est ainsi éliminée. Ce résultat a pu être obtenu pour tous les alliages de l'invention. La séquence de traitements thermiques qui vient d'être décrite est un exemple permettant d'obtenir le résultat escompté. Ceci n'exclut pas la possibilité d'obtenir un résultat semblable en utilisant une autre séquence de traitements thermiques, le résultat du traitement étant plus important que la manière d'y parvenir. L'important est d'avoir démontré la possibilité d'obtenir un tel résultat dans le cas des alliages de l'invention.
Les alliages de l'invention ont été testés après avoir été soumis à une séquence de traitements d'homogénéisation et de mise en solution de la phase γ' telle que décrite plus haut, puis à deux traitements thermiques de revenu permettant de fixer la taille et la fraction volumique des précipités de phase γ'. Un premier revenu consiste en un traitement de 4 à 16 heures à une température comprise entre 1050 et 1150°C permettant de fixer la taille des précipités de phase γ' entre 300 et 500 nm. Un second traitement de revenu consiste en un traitement de 15 à 25 heures à une température comprise entre 850 et 870°C permettant d'optimiser la fraction de phase γ' précipitée. Ces traitements de revenus sont compatibles avec les traitements de diffusion des revêtements protecteurs et les traitements de brasage généralement appliqués aux aubes monocristallines de turbines lors de leur fabrication. L'examen micrographique montre que les précipités de phase γ' sont de forme grossièrement cubique et représentent une fraction volumique d'au moins 70% dans l'alliage. Ils sont contenus dans la matrice γ qui apparaít sous la forme de fins couloirs entre ces précipités.
La résistance au fluage à haute température est d'autant plus grande que la fraction volumique de la phase durcissante γ' précipitée dans l'alliage est élevée. A la température ambiante, les alliages de l'invention contiennent une fraction volumique voisine de 70%. Lorsque la température augmente depuis la température ambiante, la phase γ' se dissout progressivement dans la matrice γ, lentement jusqu'à environ 1000°C, puis plus rapidement au-delà de 1000°C. Lorsque la température de solvus γ' est dépassée, les précipités γ' sont alors totalement dissous. La réduction de la fraction volumique de la phase γ' lorsque la température augmente est l'une des causes de la diminution de la résistance au fluage des superalliages.
Un des apports majeurs de l'invention est d'augmenter de manière sensible la température de solvus γ' afin de conserver une fraction volumique élevée de phase γ' aux températures supérieures à 1100°C et donc d'obtenir une résistance très élevée en fluage à ces températures. L'invention concerne donc des alliages dits à "haut solvus γ'" montrant une résistance au fluage très élevée au delà de 1100°C. L'expérience acquise par l'inventeur dans le domaine a montré que les augmentations des concentrations en Al, Ti, Ta, Mo et W entraínaient un accroissement du solvus γ'. Par contre les additions des éléments Cr et Co conduisaient à une diminution de la température du solvus γ'. En ce qui concerne le rhénium et le ruthénium, les travaux antérieurs n'ont pas conclu explicitement quant à leur rôle spécifique sur la température de solvus γ'.
Les accroissements des concentrations en éléments augmentant le solvus γ' peuvent cependant conduire à des effets pouvant nuire aux propriétés des alliages. Ainsi des concentrations trop élevées en éléments Al, Ti et Ta conduisent à la formation d'une quantité excessive de phases eutectiques γ/γ' lors de la solidification des alliages; ces phases ne peuvent plus alors être totalement éliminées par des traitements thermiques ultérieurs, ce qui nuit à l'homogénéité de l'alliage et par conséquent à sa résistance au fluage. De plus la concentration en Ta doit être limitée car cet élément a une masse atomique élevée et pénalise les alliages du point de vue de la densité.
Les éléments Mo et W ont également un effet bénéfique sur le solvus γ' mais ces éléments sont lourds, en particulier W, et leur teneur doit être contrôlée pour ne pas augmenter exagérément la densité des alliages.
Par ailleurs, la solubilité de ces éléments dans la matrice γ est limitée, au même titre que celle du rhénium et à un moindre niveau celles du cobalt et du chrome, ce qui peut conduire à la précipitation de phases intermétalliques fragiles du type σ, µ, P ou phase de Laves. La présence de ces phases dénommées topologiquement compactes (en anglais T.C.P.: topologically close-packed) peut entraíner une perte de propriétés mécaniques dans les superalliages où elles précipitent. L'obtention d'alliages non susceptibles de former ces phases intermétalliques fragiles est un des arguments principaux des brevets antérieurs sur les superalliages monocristallins.
La diminution des concentrations en éléments Cr et Co entraíne une réduction de la température du solvus γ'. Ainsi une des idées majeures de l'invention est de s'abstenir de toute addition de Co dont le rôle sur la résistance au fluage des superalliages est faible comparé à celui des autres éléments d'addition. Par contre, le chrome a été maintenu car sa présence est indispensable au maintien d'une bonne tenue à la corrosion à chaud.
Les exemples de l'invention détaillés par la suite montrent que l'objectif d'obtenir des alliages à haut solvus a été atteint grâce à un choix judicieux des compositions chimiques tenant compte des considérations qui viennent d'être exposées.
Outre l'optimisation de la fraction volumique et de la température de solvus de la phase γ', l'amélioration de la résistance au fluage des superalliages monocristallins peut être obtenue par l'augmentation des concentrations en éléments réfractaires Mo, W, Re et Ta qui jouent un rôle important dans le durcissement en solution solide des phases γ et γ'. Ces éléments lourds ralentissent par ailleurs l'ensemble des mécanismes élémentaires qui sont contrôlés par la diffusion des atomes, ce qui a des conséquences bénéfiques sur la résistance au fluage des alliages. L'addition de rhénium, en particulier, limite le grossissement des particules de phase γ' au cours des maintiens à haute température, phénomène qui participe à la dégradation au cours du temps des propriétés mécaniques des superalliages. D'autre part l'accroissement des concentrations en éléments réfractaires ralentit le mouvement thermiquement activé des dislocations qui propagent la déformation dans les superalliages, ce qui a pour effet de réduire la vitesse de fluage.
Les concentrations en éléments réfractaires doivent être cependant soigneusement équilibrées de manière à ne pas augmenter de manière excessive la densité des alliages.
Les éléments W et Mo présents à des teneurs trop élevées sont néfastes vis-à-vis de la tenue à l'oxydation et à la corrosion des superalliages monocristallins alors que la présence de rhénium ne pénalise pas la tenue à l'environnement de ces alliages
De plus, l'élément réfractaire Ru, dans le cadre de l'invention, présente l'intérêt d'avoir une masse volumique deux fois plus faible que celle du rhénium. Des travaux de l'inventeur dans ce domaine montrent que le Ru favorise moins que le rhénium la précipitation des phases intermétalliques fragiles.
Les alliages selon l'invention comportent également des additions simultanées de silicium et de hafnium. De telles additions permettent d'optimiser la tenue à l'oxydation à chaud des alliages en améliorant l'adhérence de la couche protectrice d'alumine formée à haute température.
Des alliages selon l'invention ont été élaborés, solidifiés sous la forme de monocristaux d'orientation cristallographique <001> et testés. Cette orientation cristallographique est celle retenue de manière habituelle pour la solidification dirigée des aubes monocristallines de turbines. Elle confère à ces pièces une combinaison optimale de résistance au fluage et de résistance à la fatigue thermique et à la fatigue mécanique.
À titre d'exemple, les compositions chimiques nominales (% en poids) de quelques alliages de l'invention sont rassemblées dans le tableau I, conjointement à celle de l'alliage de référence MC2 décrit dans FR 2 557 598. Cet alliage sert de référence car il est, à la connaissance de l'inventeur, le plus performant en fluage parmi les alliages ne contenant ni rhénium ni ruthénium.
Alliage Ni Co Cr Mo W Re Ru Al Ti Ta Si Hf
MC2 Base 5 8 2 8 - - 5 1,5 6 - -
MC820 Base - 5 1 8 2 - 5,5 1 6 0,1 0,1
MC533 Base - 7 - 5 3 3 6 - 6 0,1 0,1
MC440 Base - 5 1 4 4 - 5,5 - 9 0,1 0,1
MC722 Base - 4,5 1 7 2,5 2,5 5,8 - 6 0,1 0,1
MC623 Base - 6 1 6 2 3 5,7 0,5 5,5 0,1 0,1
MC622 Base - 5,5 1 6 2,5 2 5,9 0,5 5 0,1 0,1
MC544 Base - 4 1 5 4 4 6 0,5 5 0,1 0,1
MC645 Base - 5 - 6 4 5 6 0,5 5 0,1 0,1
MC653 Base - 4 1 6 5 3 5,3 1 6,2 0,1 0,1
Les valeurs des masses volumiques de ces alliages ont été mesurées et sont reportées dans le tableau II. Ces valeurs sont dans tous les cas inférieures à 8,95, et pour la plupart inférieures à 8,8. Elles satisfont donc à l'objectif fixé.
Alliage Masse volumique (g.cm-3) Tsolvus γ' (°C)
MC2 8,62 1266
MC820 8,78 1300
MC533 8,64 1292
MC440 8,85 1304
MC722 8,82 1300
MC623 8,71 1294
MC622 8,68 1298
MC544 8,75 1292
MC645 8,75 1320
MC653 8,93 1308
Dans l'état brut de solidification monocristalline, Ces alliages montrent des fractions d'eutectique γ/γ' variables mais l'application de traitements d'homogénéisation tels que ceux décrits auparavant permettent de remettre totalement en solution les précipités de phase γ' et d'éliminer les phases eutectiques γ/γ' sans provoquer de fusion locale des alliages.
Les températures de solvus γ' ont été mesurées par analyse thermique dilatométrique sur des échantillons d'alliages préalablement homogénéisés. Les valeurs du solvus γ' ont été reportées dans le tableau II. La valeur du solvus γ' de l'alliage MC2 mesurée dans des conditions similaires est également reportée pour comparaison dans le tableau II. Les températures de solvus γ' des alliages de l'invention sont toujours supérieures à celle de l'alliage de référence MC2, les écarts variant entre 26 et 54°C selon les alliages.
Des essais de fluage en traction ont été réalisés sur des éprouvettes usinées dans des barreaux monocristallins d'orientation <001> de divers alliages de l'invention. Les barreaux ont été au préalable homogénéisés puis revenus selon les procédures décrites auparavant. Les valeurs des temps à rupture pour des conditions différentes de fluage et pour divers alliages de l'invention sont comparées dans le tableau III aux valeurs obtenues dans les mêmes conditions sur l'alliage monocristallin de référence MC2.
Alliage Conditions de fluage / Durées de vie en heures
T = 760°C
σ = 840 MPa
T = 950°C
σ = 300 MPa
T = 1050°C
σ = 150 MPa
T = 1100°C
σ = 130 MPa
T = 1150°C
σ = 100 MPa
MC2 369 198 485 156 5,6
MC820 386 205 439 168 105
MC533 561 298 401 151 52
MC440 154 162 198 102 52
MC722 118 274 248 87 109
MC623 455 222 289 126 62
MC622 175 232 257 129 117
MC544 162 458 486 199 151
MC645 2105 404 499 171 185
MC653 1153 456 726 216 194
Tous les alliages des exemples montrent une durée de vie en fluage à 1150°C très supérieure à celle de l'alliage de référence MC2. Le rapport entre les durées de vie varie entre 9 et 33 environ. Ce résultat est conforme au principal objectif fixé. Le gain de durée de vie à cette température est spectaculaire et est attribué, au moins en partie, à l'augmentation significative de la température de solvus γ' dans les alliages de l'invention par rapport à l'alliage de référence MC2.
Pour les autres conditions d'essai, les alliages de l'invention montrent des durées de vie variables qui peuvent être supérieures à celles de l'alliage de référence MC2 selon l'alliage et la température considérés. Des résultats remarquables sont obtenus en particulier à 950°C et à 760°C dans le cas de certains alliages de l'invention.
Les alliages les plus performants sont les alliages MC544, MC645 et MC653. Ils montrent des durées de vie en fluage au moins égales et généralement supérieures à celle de l'alliage MC2 dans tout l'intervalle de température considéré, excepté l'alliage MC544 à 760°C. Les gains de durée de vie les plus importants sont obtenus à 950 et 1150°C.
Des essais d'oxydation cyclique à 1100°C ont été conduits dans l'air sur des échantillons de superalliages de l'invention homogénéisés et revenus selon les procédures décrites auparavant. Chaque cycle d'essai comprend un maintien d'une heure à 1100°C suivi d'un refroidissement à la température ambiante. Les comportements en oxydation cyclique des différents alliages sont illustrés dans les graphiques des figures 1a et 1b où sont reportées les variations de masse spécifique (perte de masse par unité de surface) des échantillons en fonction du nombre de cycles d'oxydation d'une heure. Des essais ont été conduits dans les mêmes conditions sur l'alliage de référence MC2. La résistance en oxydation d'un superalliage est d'autant meilleure que sa variation de masse spécifique est faible. Tous les alliages de l'invention montrent ainsi une résistance à l'oxydation cyclique supérieure à celle de l'alliage de référence MC2.
Des essais de corrosion cyclique ont été menés à 850°C sur des échantillons d'alliages de l'invention et de l'alliage de référence MC2. Les échantillons ont été préalablement homogénéisés et revenus selon les procédures décrites auparavant. Chaque cycle comprend un maintien d'une heure à 850°C suivi d'un refroidissement à la température ambiante. Les échantillons sont contaminés avec Na2SO4 (0,5 mg.cm-2) toutes les 50 heures. Les variations de la masse spécifique des échantillons d'alliage sont portées en fonction du nombre de cycles dans les graphiques des figures 2a et 2b. Le comportement en corrosion est considéré comme satisfaisant lorsque la masse de l'échantillon varie peu: c'est la période d'incubation. Un stade de corrosion accéléré intervient à la suite du stade d'incubation. Cette corrosion accélérée se traduit le plus souvent par une rapide prise de masse correspondant à la formation de produits de corrosion. Les graphiques montrent un comportement médiocre pour l'alliage de référence MC2 pour lequel le stade de corrosion accéléré intervient rapidement. Les alliages de l'invention montrent des stades d'incubation de durées variables, mais dans tous les cas plus longs que celui caractérisant l'alliage de référence MC2, ce qui démontre une meilleure résistance à la corrosion cyclique.
Les microstructures des alliages de l'invention ont été contrôlées au terme de traitements de vieillissement isothermes de 200 heures à 1050°C et à l'issue des essais de fluage menés à rupture à 760, 950, 1050, 1100 et 1150°C afin de contrôler leur stabilité microstructurale vis-à-vis de la précipitation de phase intermétalliques indésirables du type σ, µ ou phase de Laves. Seul l'alliage MC820 montre des particules aiguillées de phase riche en rhénium au terme du traitement de vieillissement de 200 heures à 1050°C ainsi qu'au terme des essais de fluage à rupture à 1050 et 1100°C. Ces particules sont localisées dans les coeurs de dendrites, là où le rhénium se sépare préférentiellement au cours du processus de solidification dirigée. Tous les autres alliages de l'invention cités dans le tableau I sont exempts de particules de phases indésirables riches en rhénium au terme des traitements de vieillissement et essais de fluage.

Claims (6)

  1. Superalliage à base de nickel adapté à la fabrication de pièces de turbomachines par solidification monocristalline, caractérisé en ce que sa composition en masse est la suivante: Cr 3,5 à 7,5 % Mo 0 à 1,5 % Re 1,5 à 5,5 % Ru 0 à 5,5 % W 3,5 à 8,5 % Al 5 à 6,5 % Ti 0 à 2,5 % Ta 4,5 à 9 % Hf 0,08 à 0,12 % Si 0,08 à 0,12 %,
    le complément à 100 % étant constitué par Ni et les impuretés éventuelles.
  2. Superalliage selon la revendication 1, caractérisé en ce que sa composition en masse est la suivante: Cr 3,5 à 5,5 % Mo 0 à 1,5 % Re 4,5 à 5,5 % Ru 2,5 à 5,5 % W 4,5 à 6,5 % Al 5 à 6,5 % Ti 0 à 1,5 % Ta 5 à 6,2 % Hf 0,08 à 0,12 % Si 0,08 à 0,12 %,
    le complément à 100 % étant constitué par Ni et les impuretés éventuelles.
  3. Superalliage selon la revendication 1, caractérisé en ce que sa composition en masse est la suivante: Cr 3,5 à 5,5 % Mo 0 à 1,5 % Re 3,5 à 4,5 % Ru 3,5 à 5,5 % W 4,5 à 6,5 % Al 5,5 à 6,5 % Ti 0 à 1 % Ta 4,5 à 5,5 % Hf 0,08 à 0,12 % Si 0,08 à 0,12 %,
    le complément à 100 % étant constitué par Ni et les impuretés éventuelles.
  4. Superalliage selon la revendication 1, caractérisé en ce que sa composition en masse est la suivante: Cr 3,5 à 4,5 % Mo 0,5 à 1,5 % Re 3,5 à 4,5 % Ru 3,5 à 4,5 % W 4,5 à 5,5 % Al 5,5 à 6,5 % Ti 0 à 1 % Ta 4,5 à 5,5 % Hf 0,08 à 0,12 % Si 0,08 à 0,12 %,
    le complément à 100 % étant constitué par Ni et les impuretés éventuelles.
  5. Superalliage selon la revendication 1, caractérisé en ce que sa composition en masse est la suivante: Cr 4,5 à 5,5 % Re 3,5 à 4,5 % Ru 4,5 à 5,5 % W 5,5 à 6,5 % Al 5,5 à 6,5 % Ti 0 à 1 % Ta 4,5 à 5,5 % Hf 0,08 à 0,12 % Si 0,08 à 0,12 %,
    le complément à 100 % étant constitué par Ni et les impuretés éventuelles.
  6. Superalliage selon la revendication 1, caractérisé en ce que sa composition en masse est la suivante: Cr 3,5 à 4,5 % Mo 0,5 à 1,5 % Re 4,5 à 5,5 % Ru 2,5 à 3,5 % W 5,5 à 6,5 % Al 4,8 à 5,8 % Ti 0,5 à 1,5 % Ta 5,7 à 6,7 % Hf 0,08 à 0,12 % Si 0,08 à 0,12 %,
    le complément à 100 % étant constitué par Ni et les impuretés éventuelles.
EP99401533A 1998-07-07 1999-06-21 Superalliage monocristallin à base de nickel à haut solvus phase gamma prime Expired - Lifetime EP0971041B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9808693A FR2780982B1 (fr) 1998-07-07 1998-07-07 Superalliage monocristallin a base de nickel a haut solvus
FR9808693 1998-07-07

Publications (2)

Publication Number Publication Date
EP0971041A1 true EP0971041A1 (fr) 2000-01-12
EP0971041B1 EP0971041B1 (fr) 2002-10-02

Family

ID=9528367

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99401533A Expired - Lifetime EP0971041B1 (fr) 1998-07-07 1999-06-21 Superalliage monocristallin à base de nickel à haut solvus phase gamma prime

Country Status (7)

Country Link
EP (1) EP0971041B1 (fr)
JP (1) JP3902714B2 (fr)
AT (1) ATE225410T1 (fr)
CA (1) CA2276154C (fr)
DE (1) DE69903224T2 (fr)
ES (1) ES2181375T3 (fr)
FR (1) FR2780982B1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2813392A1 (fr) * 2000-08-28 2002-03-01 Snecma Moteurs Procede de revelation structurale pour superalliages monocristallins
WO2004053177A1 (fr) * 2002-12-06 2004-06-24 Independent Administrative Institution National Institute For Materials Science Superalliage a cristal unique a base de ni
EP1580285A1 (fr) * 2002-10-30 2005-09-28 National Institute for Materials Science Programme de prise en charge de la conception d'un superalliage a base de ni enrichi d'un element du groupe de platine renforce par la precipitation gamma rapide et appareil de prise en charge de la conception d'un superalliage a base de ni enrichi d'un element du groupe de platine renforce par la p
WO2006104059A1 (fr) * 2005-03-28 2006-10-05 National Institute For Materials Science SUPERALLIAGE A BASE DE Ni EXEMPT DE COBALT
EP1975261A1 (fr) * 2007-03-30 2008-10-01 Snecma Barrière thermique déposés directement sur superalliages monocristallins
RU2482205C1 (ru) * 2009-04-17 2013-05-20 АйЭйчАй КОРПОРЕЙШН МОНОКРИСТАЛЛИЧЕСКИЙ СУПЕРСПЛАВ НА ОСНОВЕ Ni И ВКЛЮЧАЮЩАЯ ЕГО ЛОПАТКА ТУРБИНЫ
US8968643B2 (en) 2002-12-06 2015-03-03 National Institute For Materials Science Ni-based single crystal super alloy
US9359658B2 (en) 2009-07-29 2016-06-07 Nuovo Pignone S.P.A Nickel-based superalloy, mechanical component made of the above mentioned super alloy, piece of turbomachinery which includes the above mentioned component and related methods
GB2540964A (en) * 2015-07-31 2017-02-08 Univ Oxford Innovation Ltd A nickel-based alloy
FR3057880A1 (fr) * 2016-10-25 2018-04-27 Safran Superalliage a base de nickel, aube monocristalline et turbomachine
WO2019097163A1 (fr) * 2017-11-14 2019-05-23 Safran Superalliage a base de nickel, aube monocristalline et turbomachine
FR3091709A1 (fr) * 2019-01-16 2020-07-17 Safran Superalliage à base de nickel à tenue mécanique élevée à haute température
WO2020157406A1 (fr) * 2019-01-31 2020-08-06 Safran Superalliage a base de nickel a tenue mecanique et environnementale elevee a haute temperature et a faible densite
EP3693480A1 (fr) * 2019-02-08 2020-08-12 United Technologies Corporation Chambre de combustion à haute température et alliage d'aube
CN114080467A (zh) * 2019-06-28 2022-02-22 赛峰飞机发动机公司 由单晶超级合金制成的部件的制造方法
US11396685B2 (en) 2017-11-14 2022-07-26 Safran Nickel-based superalloy, single-crystal blade and turbomachine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2881439B1 (fr) 2005-02-01 2007-12-07 Onera (Off Nat Aerospatiale) Revetement protecteur pour superalliage monocristallin
US7824606B2 (en) 2006-09-21 2010-11-02 Honeywell International Inc. Nickel-based alloys and articles made therefrom
KR101355323B1 (ko) 2006-10-02 2014-01-23 소에이 가가쿠 고교 가부시키가이샤 니켈-레늄 합금 분말 및 그것을 함유하는 도체 페이스트
US7744779B2 (en) 2006-10-02 2010-06-29 Shoei Chemical Inc. Nickel-rhenium alloy powder and conductor paste containing the same
JP5467307B2 (ja) * 2008-06-26 2014-04-09 独立行政法人物質・材料研究機構 Ni基単結晶超合金とそれよりえられた合金部材
JP5467306B2 (ja) * 2008-06-26 2014-04-09 独立行政法人物質・材料研究機構 Ni基単結晶超合金とこれを基材とする合金部材
FR2988736B1 (fr) 2012-04-02 2014-03-07 Onera (Off Nat Aerospatiale) Procede d'obtention d'un revetement d'aluminiure de nickel sur un substrat metallique, et piece munie d'un tel revetement
TWI595098B (zh) * 2016-06-22 2017-08-11 國立清華大學 高熵超合金
KR101862059B1 (ko) 2016-11-29 2018-05-29 국방과학연구소 고강도 니켈기 초내열합금의 설계 방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933483A (en) * 1972-07-14 1976-01-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Silicon-containing nickel-aluminum-molybdenum heat resisting alloy
US4222794A (en) * 1979-07-02 1980-09-16 United Technologies Corporation Single crystal nickel superalloy
US4719080A (en) * 1985-06-10 1988-01-12 United Technologies Corporation Advanced high strength single crystal superalloy compositions
US4781772A (en) * 1988-02-22 1988-11-01 Inco Alloys International, Inc. ODS alloy having intermediate high temperature strength
FR2643085A1 (fr) * 1989-02-10 1990-08-17 Onera (Off Nat Aerospatiale) Superalliage a base de nickel pour aubes de turbines industrielles
US5151249A (en) * 1989-12-29 1992-09-29 General Electric Company Nickel-based single crystal superalloy and method of making
EP0637476A1 (fr) * 1993-08-06 1995-02-08 Hitachi, Ltd. Aube de turbine à gaz, procédé de fabrication et turbine à gaz utilisant cette aube
WO1995035396A1 (fr) * 1994-06-22 1995-12-28 United Technologies Corporation Alliage a base de nickel pour la reparation de substrats
JPH08143995A (ja) * 1994-11-17 1996-06-04 Hitachi Ltd Ni基単結晶合金及びそれを用いたガスタービン
EP0789087A1 (fr) * 1996-02-09 1997-08-13 Hitachi, Ltd. Superalliage à haute résistance pour la coulée d'articles par solidification directionelle

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933483A (en) * 1972-07-14 1976-01-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Silicon-containing nickel-aluminum-molybdenum heat resisting alloy
US4222794A (en) * 1979-07-02 1980-09-16 United Technologies Corporation Single crystal nickel superalloy
US4719080A (en) * 1985-06-10 1988-01-12 United Technologies Corporation Advanced high strength single crystal superalloy compositions
US4781772A (en) * 1988-02-22 1988-11-01 Inco Alloys International, Inc. ODS alloy having intermediate high temperature strength
FR2643085A1 (fr) * 1989-02-10 1990-08-17 Onera (Off Nat Aerospatiale) Superalliage a base de nickel pour aubes de turbines industrielles
US5151249A (en) * 1989-12-29 1992-09-29 General Electric Company Nickel-based single crystal superalloy and method of making
EP0637476A1 (fr) * 1993-08-06 1995-02-08 Hitachi, Ltd. Aube de turbine à gaz, procédé de fabrication et turbine à gaz utilisant cette aube
WO1995035396A1 (fr) * 1994-06-22 1995-12-28 United Technologies Corporation Alliage a base de nickel pour la reparation de substrats
JPH08143995A (ja) * 1994-11-17 1996-06-04 Hitachi Ltd Ni基単結晶合金及びそれを用いたガスタービン
EP0789087A1 (fr) * 1996-02-09 1997-08-13 Hitachi, Ltd. Superalliage à haute résistance pour la coulée d'articles par solidification directionelle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 096, no. 010 31 October 1996 (1996-10-31) *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184656A1 (fr) * 2000-08-28 2002-03-06 Snecma Moteurs Procédé de révélation structurale pour superalliages monocristallins
US6582585B2 (en) 2000-08-28 2003-06-24 Snecma Moteurs Method of revealing structure for single-crystal superalloys
FR2813392A1 (fr) * 2000-08-28 2002-03-01 Snecma Moteurs Procede de revelation structurale pour superalliages monocristallins
EP1580285A1 (fr) * 2002-10-30 2005-09-28 National Institute for Materials Science Programme de prise en charge de la conception d'un superalliage a base de ni enrichi d'un element du groupe de platine renforce par la precipitation gamma rapide et appareil de prise en charge de la conception d'un superalliage a base de ni enrichi d'un element du groupe de platine renforce par la p
EP1580285A4 (fr) * 2002-10-30 2006-05-24 Nat Inst For Materials Science Programme de prise en charge de la conception d'un superalliage a base de ni enrichi d'un element du groupe de platine renforce par la precipitation gamma rapide et appareil de prise en charge de la conception d'un superalliage a base de ni enrichi d'un element du groupe de platine renforce par la p
EP1568794A4 (fr) * 2002-12-06 2006-11-02 Indp Administrative Inst Nims Superalliage a cristal unique a base de ni
EP1568794A1 (fr) * 2002-12-06 2005-08-31 Independent Administrative Institution National Institute for Materials Science Superalliage a cristal unique a base de ni
US8968643B2 (en) 2002-12-06 2015-03-03 National Institute For Materials Science Ni-based single crystal super alloy
WO2004053177A1 (fr) * 2002-12-06 2004-06-24 Independent Administrative Institution National Institute For Materials Science Superalliage a cristal unique a base de ni
WO2006104059A1 (fr) * 2005-03-28 2006-10-05 National Institute For Materials Science SUPERALLIAGE A BASE DE Ni EXEMPT DE COBALT
GB2439071A (en) * 2005-03-28 2007-12-19 Nat Inst For Materials Science Colbalt-free Ni base superalloy
GB2439071B (en) * 2005-03-28 2010-09-22 Nat Inst For Materials Science Colbalt-free Ni base superalloy
EP1975261B1 (fr) 2007-03-30 2016-11-09 Snecma Barrière thermique déposée directement sur superalliages monocristallins
EP1975261A1 (fr) * 2007-03-30 2008-10-01 Snecma Barrière thermique déposés directement sur superalliages monocristallins
FR2914319A1 (fr) * 2007-03-30 2008-10-03 Snecma Sa Barriere thermique deposee directement sur superalliages monocristallins.
RU2482205C1 (ru) * 2009-04-17 2013-05-20 АйЭйчАй КОРПОРЕЙШН МОНОКРИСТАЛЛИЧЕСКИЙ СУПЕРСПЛАВ НА ОСНОВЕ Ni И ВКЛЮЧАЮЩАЯ ЕГО ЛОПАТКА ТУРБИНЫ
US8877122B2 (en) 2009-04-17 2014-11-04 Ihi Corporation Ni-based single crystal superalloy and turbine blade incorporating the same
US9359658B2 (en) 2009-07-29 2016-06-07 Nuovo Pignone S.P.A Nickel-based superalloy, mechanical component made of the above mentioned super alloy, piece of turbomachinery which includes the above mentioned component and related methods
GB2540964A (en) * 2015-07-31 2017-02-08 Univ Oxford Innovation Ltd A nickel-based alloy
US11220727B2 (en) 2016-10-25 2022-01-11 Safran Superalloy based on nickel, monocrystalline blade and turbomachine
FR3057880A1 (fr) * 2016-10-25 2018-04-27 Safran Superalliage a base de nickel, aube monocristalline et turbomachine
WO2018078269A1 (fr) * 2016-10-25 2018-05-03 Safran Superalliage a base de nickel, aube monocristalline et turbomachine.
CN109963955A (zh) * 2016-10-25 2019-07-02 赛峰集团 镍基超合金、单晶叶片以及涡轮机
US11268170B2 (en) 2017-11-14 2022-03-08 Safran Nickel-based superalloy, single-crystal blade and turbomachine
WO2019097163A1 (fr) * 2017-11-14 2019-05-23 Safran Superalliage a base de nickel, aube monocristalline et turbomachine
US11396685B2 (en) 2017-11-14 2022-07-26 Safran Nickel-based superalloy, single-crystal blade and turbomachine
US11725261B2 (en) 2017-11-14 2023-08-15 Safran Nickel-based superalloy, single-crystal blade and turbomachine
WO2020148504A1 (fr) * 2019-01-16 2020-07-23 Safran Superalliage a base de nickel a tenue mecanique elevee a haute temperature
FR3091709A1 (fr) * 2019-01-16 2020-07-17 Safran Superalliage à base de nickel à tenue mécanique élevée à haute température
WO2020157406A1 (fr) * 2019-01-31 2020-08-06 Safran Superalliage a base de nickel a tenue mecanique et environnementale elevee a haute temperature et a faible densite
FR3092340A1 (fr) * 2019-01-31 2020-08-07 Safran Superalliage à base de nickel à tenue mécanique et environnementale élevée à haute température et à faible densitée
US11873543B2 (en) 2019-01-31 2024-01-16 Safran Nickel-based superalloy having high mechanical and environmental strength at high temperatures and low density
EP3693480A1 (fr) * 2019-02-08 2020-08-12 United Technologies Corporation Chambre de combustion à haute température et alliage d'aube
EP4394065A1 (fr) * 2019-02-08 2024-07-03 RTX Corporation Chambre de combustion à haute température et alliage d'aubes
CN114080467A (zh) * 2019-06-28 2022-02-22 赛峰飞机发动机公司 由单晶超级合金制成的部件的制造方法

Also Published As

Publication number Publication date
ES2181375T3 (es) 2003-02-16
CA2276154A1 (fr) 2000-01-07
ATE225410T1 (de) 2002-10-15
JP2000034531A (ja) 2000-02-02
FR2780982A1 (fr) 2000-01-14
JP3902714B2 (ja) 2007-04-11
DE69903224T2 (de) 2003-12-11
FR2780982B1 (fr) 2000-09-08
CA2276154C (fr) 2007-09-18
EP0971041B1 (fr) 2002-10-02
DE69903224D1 (de) 2002-11-07

Similar Documents

Publication Publication Date Title
EP0971041B1 (fr) Superalliage monocristallin à base de nickel à haut solvus phase gamma prime
CA2583140C (fr) Alliage a base de nickel
EP0063511B1 (fr) Superalliage monocristallin à matrice à base de nickel, procédé d&#39;amélioration de pièces en ce superalliage et pièces obtenues par ce procédé
EP0237378B1 (fr) Superalliage à matrice à base de nickel notamment élaboré en métallurgie des poudres et disque de turbomachine constitué en cet alliage
EP3850118B1 (fr) Superalliages a base de nickel
EP2393951A2 (fr) Procede de fabrication d&#39;une piece en superalliage a base de nickel, et piece ainsi obtenue
FR2731714A1 (fr) Superalliages a base de nickel pour la production d&#39;articles monocristallins ayant une tolerance amelioree aux joints de grains a faible desorientation
FR2461016A1 (fr) Article de superalliage de nickel a structure monocristalline et procede de fabrication
FR2712307A1 (fr) Articles en super-alliage à haute résistance mécanique et à la fissuration et leur procédé de fabrication.
EP3710610B1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
FR2633942A1 (fr) Superalliage a base de nickel resistant aux pendillements par fatigue et son procede de fabrication
EP3710611B1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
EP1211335B1 (fr) Superalliage à base de nickel à résistance très élevée à la corrosion à chaud pour aubes monocristallines de turbines industrielles
WO2021116607A1 (fr) Superalliage a base de nickel
EP0792945B1 (fr) Procédé de traitement thermique d&#39;un superalliage à base de nickel
FR3081883A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
EP1211336B1 (fr) Superalliage à base de nickel pour aubes monocristallines de turbines industrielles ayant une résistance élevée à la corrosion à chaud
FR2860804A1 (fr) Superalliage a base de nickel et pieces coulees en monocristal
EP0187573B1 (fr) Alliage à base de nickel
FR2543577A1 (fr) Superalliages a base de nickel renforces par du monocarbure et pieces solidifiees unidirectionnellement obtenues a partir de ces alliages
FR3117506A1 (fr) Procede de fabrication d&#39;une piece en superalliage monocristallin
FR3117507A1 (fr) Procede de fabrication d&#39;une piece en superalliage monocristallin
WO2024047315A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
EP3990672A1 (fr) Procédé de fabrication d&#39;une pièce en superalliage monocristallin
FR3121453A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991215

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20011228

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021002

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021002

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021002

REF Corresponds to:

Ref document number: 225410

Country of ref document: AT

Date of ref document: 20021015

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69903224

Country of ref document: DE

Date of ref document: 20021107

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030102

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2181375

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030621

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 0971041E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030703

BERE Be: lapsed

Owner name: OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPAT

Effective date: 20030630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080101

ZE Nl: corrections to earlier entries in headings pe - xe

Free format text: PAT. BUL. 3/2008, RUBRIEK VE, ONDERDEEL 4, BLZ. 400: PATENT 0971041 SHOULD BE DELETED.

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180522

Year of fee payment: 20

Ref country code: CH

Payment date: 20180528

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180525

Year of fee payment: 20

Ref country code: AT

Payment date: 20180524

Year of fee payment: 20

Ref country code: IT

Payment date: 20180523

Year of fee payment: 20

Ref country code: NL

Payment date: 20180528

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20180525

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180702

Year of fee payment: 20

Ref country code: GB

Payment date: 20180522

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69903224

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20190620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190620

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 225410

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190620

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20201203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190622