EP1211335B1 - Superalliage à base de nickel à résistance très élevée à la corrosion à chaud pour aubes monocristallines de turbines industrielles - Google Patents

Superalliage à base de nickel à résistance très élevée à la corrosion à chaud pour aubes monocristallines de turbines industrielles Download PDF

Info

Publication number
EP1211335B1
EP1211335B1 EP00403361A EP00403361A EP1211335B1 EP 1211335 B1 EP1211335 B1 EP 1211335B1 EP 00403361 A EP00403361 A EP 00403361A EP 00403361 A EP00403361 A EP 00403361A EP 1211335 B1 EP1211335 B1 EP 1211335B1
Authority
EP
European Patent Office
Prior art keywords
alloy
resistance
hot corrosion
phase
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00403361A
Other languages
German (de)
English (en)
Other versions
EP1211335A1 (fr
Inventor
Pierre Caron
Michael Blackler
Gordon Malcolm Mccolvin
Rajeshwar Prasad Wahi
André Marcel Escale
Laurent Lelait
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hahn Meitner Institut Berlin GmbH
Electricite de France SA
Office National dEtudes et de Recherches Aerospatiales ONERA
Safran Helicopter Engines SAS
Howmet Ltd
Alstom NV
Original Assignee
Hahn Meitner Institut Berlin GmbH
Electricite de France SA
Office National dEtudes et de Recherches Aerospatiales ONERA
Turbomeca SA
Howmet Ltd
ABB Alstom Power NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hahn Meitner Institut Berlin GmbH, Electricite de France SA, Office National dEtudes et de Recherches Aerospatiales ONERA, Turbomeca SA, Howmet Ltd, ABB Alstom Power NV filed Critical Hahn Meitner Institut Berlin GmbH
Priority to EP00403361A priority Critical patent/EP1211335B1/fr
Priority to DE60034797T priority patent/DE60034797T2/de
Priority to US09/999,167 priority patent/US20030047251A1/en
Priority to JP2001365809A priority patent/JP2002235135A/ja
Publication of EP1211335A1 publication Critical patent/EP1211335A1/fr
Priority to US10/460,860 priority patent/US20040033156A1/en
Priority to US11/068,085 priority patent/US20050194068A1/en
Application granted granted Critical
Publication of EP1211335B1 publication Critical patent/EP1211335B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%

Definitions

  • the invention relates to a nickel-based superalloy suitable for the controlled solidification production of stationary and mobile monocrystalline blades of industrial gas turbines.
  • Nickel-based superalloys are the most efficient materials used today for the manufacture of stationary and mobile blades for industrial gas turbines. The two main features required so far for these alloys for these specific applications are good creep resistance at temperatures up to 850 ° C and very good resistance to hot corrosion. Reference alloys commonly used in this field are those known as IN738, IN939 and IN792.
  • the blades made with these reference alloys are prepared by conventional lost-wax casting and have a polycrystalline structure, that is to say that they consist of the juxtaposition of randomly oriented crystals with respect to one another. and called grains. These grains are themselves constituted by a nickel-based austenitic gamma ( ⁇ ) matrix in which gamma prime ( ⁇ ') phase hardening particles whose base is the Ni 3 Al intermetallic compound are dispersed. These grains give these alloys high creep resistance up to temperatures close to 850 ° C., which guarantees the longevity of the blades for which life times of between 50 000 and 100 000 hours are generally sought.
  • the chemical composition of the IN939, IN738 and IN792 alloys has been defined in order to give them an excellent resistance to the environment of the combustion gases, in particular with respect to hot corrosion, a particularly aggressive phenomenon in the case of gas turbines industrial.
  • Important additions of chromium, typically between 12 and 22% by weight, are thus necessary to give these alloys the hot corrosion resistance required for the applications concerned.
  • the classification of these alloys is: IN939 ⁇ IN738 ⁇ IN792. From the point of view of resistance to hot corrosion, the classification is reversed, ie: IN792 ⁇ IN738 ⁇ IN939.
  • These monocrystalline blades are manufactured by solidification directed in lost-wax foundry.
  • the elimination of grain boundaries, which are preferred locations for creep deformation at high temperatures, has dramatically increased the performance of nickel-based superalloys.
  • the monocrystalline solidification process makes it possible to select the preferential orientation of growth of the monocrystalline part and thus to choose the ⁇ 001> orientation which is optimal from the point of view of resistance to creep and to thermal fatigue, these two mechanical stressing modes being the most harmful for turbine blades.
  • the superalloy chemical compositions developed for monocrystalline turbine blades for aeronautical applications are not suitable for blades for terrestrial or marine applications, so-called industrial applications. These alloys are indeed defined so as to favor their mechanical strength up to temperatures above 1100 ° C, and this to the detriment of their resistance to hot corrosion.
  • the chromium concentration of the superalloys for single-crystal blades of aeronautical turbines is generally less than 8% by weight, which makes it possible to reach ⁇ 'phase volume fractions of the order of 70%, favorable to resistance to high creep. temperature.
  • a chromium-rich nickel-based superalloy capable of monocrystalline solidification of industrial gas turbine parts is known under the name SC16 and described in FR 2 643 085 A. Its chromium concentration is equal to 16% by weight.
  • the creep resistance characteristics of the SC16 alloy are such that this alloy provides, relative to the reference polycrystalline alloy IN738, an operating temperature gain of approximately 30 ° C. (830 ° C. instead of 800 ° C.). at about 50 ° C (950 ° C instead of 900 ° C). Comparative tests for cyclic corrosion at 850 ° C in air at atmospheric pressure with Na 2 SO 4 contamination showed that the hot-corrosion resistance of the SC16 alloy was at least equivalent to that of the alloy polycrystalline reference IN738.
  • the object of the invention is to provide a nickel-based superalloy having a resistance to hot corrosion, in the aggressive environment of the combustion gases of industrial gas turbines, at least equivalent to that of the reference polycristalline superalloy IN738 , with a creep resistance greater than or equal to that of the IN792 reference alloy in a temperature range of up to 950 ° C.
  • This superalloy must in particular be suitable for the production by directed solidification of fixed and mobile monocrystalline blades of large dimensions (up to several tens of centimeters in height) of industrial gas turbines.
  • This superalloy must also show good microstructural stability with respect to the precipitation of chromium-rich brittle intermetallic phases during long-term high temperature holdings.
  • the alloy according to the invention has an excellent compromise between creep resistance and hot corrosion resistance. It is suitable for the manufacture of monocrystalline parts, that is to say made of a single metallurgical grain. This particular structure is obtained for example by means of a conventional method of solidification directed in a thermal gradient, using a helical or baffled grain selection device or a monocrystalline seed.
  • the invention also relates to an industrial turbine blade made by monocrystalline solidification of the superalloy above.
  • Figures 1 to 4 are graphs illustrating the properties of different superalloys.
  • SCA425 An alloy according to the invention called SCA425 was developed by aiming at the nominal composition presented in Table I. In this table are also reported the nominal concentrations in major elements of the reference alloys IN939, IN738, IN792 and SC16. Table I: Concentrations by weight in major elements (%) Alloy Or Co Cr MB W al Ti Your Nb IN939 Based 19 22.5 - 2 1.9 3.7 1.4 1 IN738 Based 8.5 16 1.7 2.6 3.4 3.4 1.7 0.9 IN792 Based 9 12.4 1.9 3.8 3.1 4.5 3.9 - SC16 Based - 16 3 - 3.5 3.5 3.5 - SCA425 Based 5 16 1 4 4 2 5 -
  • Chromium has a beneficial and preponderant effect on the resistance to hot corrosion of nickel-based superalloys.
  • the experiment has thus shown that a concentration close to 16% by weight was necessary in the alloy of the invention to obtain a resistance to hot corrosion equivalent to that of the reference alloy IN738 under the conditions of the tests. described below, which are representative of the environment created by the combustion gases of certain industrial turbines.
  • Chromium also participates in the hardening of the ⁇ matrix in which this element is distributed preferentially.
  • Molybdenum strongly hardens the matrix y in which this element is distributed preferentially.
  • the amount of molybdenum that can be introduced into the alloy is however limited because this element has a detrimental effect on the resistance to hot corrosion of the superalloys based on nickel.
  • a concentration close to 1% by weight in the alloy of the invention is not detrimental to its resistance to corrosion and significantly contributes to its hardening.
  • Cobalt also participates in solid solution hardening of the ⁇ matrix.
  • the cobalt concentration has an influence on the solution temperature of the hardening phase ⁇ '(solvus temperature ⁇ '). It is thus advantageous to increase the cobalt concentration to lower the solvus temperature of the ⁇ 'phase and to facilitate the homogenization of the alloy by heat treatment without risk of causing a start of melting. Moreover, it may also be advantageous to reduce the cobalt concentration in order to increase the solvus temperature of the ⁇ 'phase and thus to benefit from greater stability of the ⁇ ' phase at high temperature, which is favorable to the creep resistance.
  • the concentration of 5% by weight of cobalt in the alloy of the invention leads to an optimal compromise between good homogenization ability and good creep resistance.
  • the tungsten whose concentration is around 4% by weight in the alloy of the invention is distributed substantially equally between the ⁇ and ⁇ 'phases and thus contributes to their respective hardenings. Its concentration in the alloy is however limited because this element is heavy, and has a negative effect on the resistance to hot corrosion.
  • the concentration of aluminum is around 4% by weight in the alloy of the invention.
  • the presence of this element causes the precipitation of the hardening phase ⁇ '.
  • Aluminum also promotes resistance to oxidation.
  • the titanium and tantalum elements are added to the alloy of the invention in order to reinforce the ⁇ 'phase in which they substitute for the aluminum element.
  • the respective concentrations of these two elements in the alloy of the invention are close to 2% by weight for titanium and 5% by weight for tantalum.
  • experience has shown that the presence of tantalum was more favorable to the resistance to hot corrosion than that of titanium.
  • tantalum is heavier than titanium which is unfavorable vis-à-vis the density of the alloy.
  • the sum of the concentrations of tantalum, titanium and aluminum roughly defines the hardening phase volume fraction ⁇ '.
  • the concentrations of these three elements have been adjusted in such a way as to optimize the ⁇ 'phase volume fraction, while keeping the stable ⁇ and ⁇ ' phases during the long-term hold at high temperature, and taking into account that the Chromium concentration was set at about 16% by weight so as to achieve the desired corrosion resistance.
  • the SCA425 alloy was developed as ⁇ 001> orientation single crystals. The density of this alloy was measured and found to be 8.36 g.cm -3 .
  • the alloy After directed solidification, the alloy consists essentially of two phases: the austenitic matrix ⁇ , a nickel-based solid solution, and the ⁇ 'phase, an intermetallic compound whose basic formula is Ni 3 Al, which precipitates for the most part at within the matrix y in the form of fine particles smaller than one micrometer during the solid state cooling. Contrary to what is generally encountered in monocrystalline superalloys for turbine blades, the SCA425 alloy does not contain massive interdendritic particles of ⁇ 'phase resulting from a eutectic transformation of the residual liquid at the end of solidification.
  • the SCA425 alloy underwent a homogenization heat treatment at a temperature of 1285 ° C. for 3 hours with cooling in air. This temperature is higher than the solvus temperature of the ⁇ 'phase (dissolution temperature of the ⁇ ' phase precipitates), which is equal to 1198 ° C., and lower than the melting start temperature, equal to 1300 ° C.
  • the purpose of this treatment is to dissolve all of the ⁇ 'phase precipitates, the size distribution of which is very extensive in the raw state of directed solidification and to reduce the chemical heterogeneities associated with the solidification dendritic structure.
  • the difference between the solvate temperature ⁇ 'of the SCA425 alloy and its melting start temperature is very large, which allows the easy application of the homogenization treatment without risk of melting and with the certainty of obtaining a homogeneous microstructure allowing optimized creep resistance.
  • the cooling following the homogenization treatment described above was carried out by quenching in air.
  • the speed of this cooling must be sufficiently high so that the size of the particles having precipitated during this cooling is less than 500 nm.
  • the homogenization heat treatment procedure that has just been described is an example that makes it possible to obtain the desired result, ie a homogeneous distribution of fine ⁇ 'phase particles whose size does not exceed 500 nm. This does not exclude the possibility of obtaining a similar result by using another processing temperature provided that it is in the range separating the solvate temperature ⁇ 'and the melting start temperature.
  • the SCA425 alloy was tested after having been subjected to a homogenization treatment as described above, then to two tempering treatments making it possible to stabilize the size and the volume fraction of the ⁇ 'phase precipitates.
  • a first treatment of income was to heat the alloy at 1100 ° C for 4 hours with cooling in air which has the effect of stabilizing the size of ⁇ phase precipitates.
  • a second treatment of income at 850 ° C for 24 hours, followed by cooling in the air, allows to optimize the volume fraction of phase ⁇ '.
  • This ⁇ 'phase volume fraction is estimated at 50% in the SCA425 alloy.
  • most of the ⁇ 'phase precipitated in the form of cuboidal particles whose size is between 200 and 500 nm.
  • a small fraction of ⁇ 'phase fine particles whose size does not exceed 50 nm is present between the large precipitates.
  • Hot corrosion tests were carried out at different temperatures on the SCA425 alloy using the following procedure: samples are partially immersed in a crucible containing a mixture of ash whose weight composition is as follows: 4.3% Na 2 SO 4 + 22.7% CaSO 4 + 22.3% Fe 2 O 3 + 20.6% ZnSO 4 + 10.4% K 2 SO 4 + 2.8% MgO + 6.5% Al 2 O 3 + 10.4% SiO 2 .
  • a mixture of air + 0.15% SO 2 by volume passes through the ash mixture at the rate of 6 liters per hour. The ash mixture is renewed every 500 hours.
  • This environment is representative of the very aggressive environment of the combustion gases of certain industrial turbines.
  • For comparison alloy samples IN738, IN939, IN792 and SC16 were tested simultaneously.
  • the samples were sectioned and the metal depth destroyed by the corrosion phenomenon was measured.
  • the graphs in Figures 1-3 show average corrosion penetration depths for the various alloys at 700 ° C, 800 ° C and 850 ° C respectively, depending on the test time. The corrosion resistance is better the lower the depth of penetration.
  • the alloy SCA425 shows a corrosion resistance equivalent to that of the alloy IN738 and better than that of the alloy SC16.
  • the corrosion resistance of the SCA425 alloy is comparable to that of the IN738 and IN939 reference alloys.
  • the graph in FIG. 4 makes it possible to compare the creep rupture times obtained for the SCA425, IN792 and SC16 alloys.
  • On the abscissa is the applied stress.
  • On the ordinate is the value of the Larson-Miller parameter.
  • T the creep temperature in Kelvin
  • t the break time in hours.
  • Control of microstructure of SCA425 alloy specimens after creep testing demonstrated the absence of precipitation of chromium-rich brittle intermetallic particles that may occur during long-term high temperature holdovers in superalloys based on nickel where the matrix is supersaturated with addition elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

  • L'invention concerne un superalliage à base de nickel, adapté à la fabrication par solidification dirigée d'aubes monocristallines fixes et mobiles de turbines à gaz industrielles.
  • Les superalliages à base de nickel sont les matériaux les plus performants utilisés aujourd'hui pour la fabrication des aubes fixes et mobiles des turbines à gaz industrielles. Les deux principales caractéristiques demandées jusqu'à maintenant à ces alliages pour ces applications spécifiques sont une bonne résistance au fluage à des températures pouvant aller jusqu'à 850 °C et une très bonne tenue à la corrosion à chaud. Des alliages de référence couramment utilisés dans ce domaine sont ceux connus sous les désignations IN738, IN939 et IN792.
  • Les aubes fabriquées avec ces alliages de référence sont élaborées par fonderie conventionnelle à la cire perdue et ont une structure polycristalline, c'est-à-dire qu'elles sont constituées de la juxtaposition de cristaux orientés de manière aléatoire les uns par rapport aux autres et appelés grains. Ces grains sont eux-mêmes constitués d'une matrice gamma (γ) austénitique à base de nickel dans laquelle sont dispersées des particules durcissantes de phase gamma prime (γ') dont la base est le composé intermétallique Ni3Al. Cette structure particulière des grains confère à ces alliages une résistance élevée en fluage jusqu'à des températures voisines de 850 °C, ce qui garantit la longévité des aubes pour lesquelles on recherche généralement des durées de vie comprises entre 50 000 et 100 000 heures. La composition chimique des alliages IN939, IN738 et IN792 a par ailleurs été définie de manière à leur conférer une excellente résistance à l'environnement des gaz de combustion, en particulier vis-à-vis de la corrosion à chaud, phénomène particulièrement agressif dans le cas des turbines à gaz industrielles. Des ajouts importants de chrome, typiquement entre 12 et 22 % en poids, sont ainsi nécessaires pour conférer à ces alliages la tenue à la corrosion à chaud requise pour les applications concernées. Du point de vue de la résistance au fluage le classement de ces alliages est: IN939 < IN738 < IN792. Du point de vue de la résistance à la corrosion à chaud, le classement est inversé, soit: IN792 < IN738 < IN939.
  • Pour améliorer les performances des turbines à gaz industrielles, en termes de rendement et de consommation, une voie consiste à augmenter la température des gaz à l'entrée de la turbine. Ceci nécessite par conséquent de pouvoir disposer d'alliages pour aubes de turbines pouvant supporter des températures de fonctionnement de plus en plus élevées, tout en conservant les mêmes caractéristiques mécaniques, en particulier en fluage, afin de pouvoir atteindre les mêmes durées de vie.
  • Le même type de problème s'est posé par le passé dans le cas des turbines à gaz de turboréacteurs et de turbomachines pour applications aéronautiques. Dans ce cas la solution retenue a consisté à passer des aubes dites polycristallines élaborées par fonderie conventionnelle aux aubes dites monocristallines, c'est-à-dire constituées d'un seul grain métallurgique.
  • Ces aubes monocristallines sont fabriquées par solidification dirigée en fonderie à la cire perdue. L'élimination des joints de grains, qui sont des lieux préférentiels de déformation en fluage à haute température, a permis d'augmenter de manière spectaculaire les performances des superalliages à base de nickel. De plus le procédé de solidification monocristalline permet de sélectionner l'orientation préférentielle de croissance de la pièce monocristalline et de choisir ainsi l'orientation <001> qui est optimale du point de vue de la résistance au fluage et à la fatigue thermique, ces deux modes de sollicitation mécanique étant les plus nocifs pour les aubes de turbines.
  • Cependant les compositions chimiques de superalliages développées pour les aubes monocristallines de turbines pour applications aéronautiques ne conviennent pas pour les aubes pour applications terrestres ou marines, dites industrielles. Ces alliages sont en effet définis de manière à privilégier leur résistance mécanique jusqu'à des températures supérieures à 1100 °C, et ce au détriment de leur résistance à la corrosion à chaud. Ainsi la concentration en chrome des superalliages pour aubes monocristallines de turbines aéronautiques est généralement inférieure à 8 % en poids ce qui permet d'atteindre des fractions volumiques de phase γ' de l'ordre de 70 %, favorables à la résistance au fluage à haute température.
  • Un superalliage à base de nickel riche en chrome et apte à la solidification monocristalline de pièces de turbines à gaz industrielles est connu sous la dénomination SC16 et décrit dans FR 2 643 085 A. Sa concentration en chrome est égale à 16 % en poids. Les caractéristiques de résistance au fluage de l'alliage SC16 sont telles que cet alliage apporte par rapport à l'alliage polycristallin de référence IN738 un gain en température de fonctionnement allant de 30 °C environ (830 °C au lieu de 800 °C) à 50 °C environ (950 °C au lieu de 900 °C). Des essais comparatifs de corrosion cyclique à 850 °C dans l'air à la pression atmosphérique avec contamination par Na2SO4 ont montré que la résistance à la corrosion à chaud de l'alliage SC16 était au moins équivalente à celle de l'alliage polycristallin de référence IN738.
  • Des essais de corrosion à chaud ont été réalisés sur l'alliage SC16 par les fabricants de turbines industrielles dans leurs propres bancs d'essai. Dans des environnements très sévères, représentatifs de conditions extrêmes de fonctionnement, il a été montré que la résistance à la corrosion à chaud de cet alliage restait inférieure à celle de l'alliage IN738.
  • Par ailleurs, la demande croissante de ces fabricants pour une augmentation de la température de fonctionnement des turbines à gaz nécessite une résistance au fluage encore améliorée des superalliages pour aubes.
  • Le but de l'invention est de proposer un superalliage à base de nickel présentant une résistance à la corrosion à chaud, dans l'environnement agressif des gaz de combustion des turbines à gaz industrielles, au moins équivalente à celle du superalliage polycristallin de référence IN738, avec une résistance au fluage supérieure ou égale à celle de l'alliage de référence IN792 dans une gamme de températures allant jusqu'à 950 °C.
  • Ce superalliage doit en particulier convenir à la fabrication par solidification dirigée d'aubes monocristallines fixes et mobiles de grandes dimensions (jusqu'à plusieurs dizaines de centimètres de hauteur) de turbines à gaz industrielles.
  • Ce superalliage doit de plus montrer une bonne stabilité microstructurale vis-à-vis de la précipitation de phases intermétalliques fragiles riches en chrome au cours de maintiens de longue durée à haute température.
  • Plus spécifiquement, on a recherché une composition d'alliage assurant:
    • Une résistance à la corrosion à chaud optimisée, dans tous les cas au moins égale à celle du superalliage polycristallin de référence IN738, et ce dans un environnement représentatif de celui des gaz de combustion des turbines industrielles;
    • Une fraction volumique maximale de précipités durcissants de phase γ' afin de favoriser la résistance au fluage à haute température;
    • Une résistance au fluage jusqu'à 950 °C au moins égale à celle de l'alliage polycristallin de référence IN792;
    • Une aptitude à l'homogénéisation par remise en solution totale des particules de phase γ', y compris les phases eutectiques γ/γ';
    • L'absence de précipitation de phases intermétalliques fragiles riches en chrome, à partir de la matrice γ, au cours de maintiens de longue durée à haute température;
    • Une masse volumique inférieure à 8,4 g.cm-3 afin de minimiser la masse des aubes monocristallines et par conséquent de limiter la contrainte centrifuge agissant sur ces aubes et sur le disque de turbine sur lequel elles sont fixées;
    • Une bonne aptitude à la solidification monocristalline d'aubes de turbines dont la hauteur peut atteindre plusieurs dizaines de centimètres et la masse plusieurs kilogrammes.
  • Le superalliage selon l'invention, apte à la solidification monocristalline, possède la composition pondérale suivante:
    • Co: 4,75 à 5,25 %
    • Cr: 15,5 à 16,5 %
    • Mo: 0,8 à 1,2 %
    • W: 3,75 à 4,25 %
    • Al: 3,75 à 4,25 %
    • Ti: 1,75 à 2,25 %
    • Ta: 4,75 à 5,25 %
    • C: 0,006 à 0,04 %
    • B: ≤ 0,01 %
    • Zr: ≤ 0,01 %
    • Hf: ≤ 1 %
    • Nb: ≤ 1 %
    • Ni et impuretés éventuelles: complément à 100 %.
  • L'alliage selon l'invention présente un excellent compromis entre la résistance au fluage et la résistance à la corrosion à chaud. Il convient à la fabrication de pièces monocristallines, c'est-à-dire constituées d'un seul grain métallurgique. Cette structure particulière est obtenue par exemple à l'aide d'un procédé classique de solidification dirigée dans un gradient thermique, en utilisant un dispositif de sélection de grain à hélice ou à chicanes ou un germe monocristallin.
  • L'invention a également pour objet une aube de turbine industrielle réalisée par solidification monocristalline du superalliage ci-dessus.
  • Les caractéristiques et avantages de l'invention seront exposés plus en détail dans la description ci-après, en se référant aux dessins annexés.
  • Les figures 1 à 4 sont des graphiques illustrant les propriétés de différents superalliages.
  • Un alliage selon l'invention dénommé SCA425 a été élaboré en visant la composition nominale présentée dans le tableau I. Dans ce tableau sont également reportées les concentrations nominales en éléments majeurs des alliages de référence IN939, IN738, IN792 et SC16. Tableau I: Concentrations pondérales en éléments majeurs (%)
    Alliage Ni Co Cr Mo W Al Ti Ta Nb
    IN939 Base 19 22,5 - 2 1,9 3,7 1,4 1
    IN738 Base 8,5 16 1,7 2,6 3,4 3,4 1,7 0,9
    IN792 Base 9 12,4 1,9 3,8 3,1 4,5 3,9 -
    SC16 Base - 16 3 - 3,5 3,5 3,5 -
    SCA425 Base 5 16 1 4 4 2 5 -
  • Le chrome a un effet bénéfique et prépondérant sur la tenue à la corrosion à chaud des superalliages à base de nickel. L'expérience a ainsi montré qu'une concentration voisine de 16 % en poids était nécessaire dans l'alliage de l'invention pour obtenir une résistance à la corrosion à chaud équivalente à celle de l'alliage de référence IN738 dans les conditions des essais de corrosion à chaud décrits plus loin, qui sont représentatives de l'environnement créé par les gaz de combustion de certaines turbines industrielles. Le chrome participe également au durcissement de la matrice γ dans laquelle cet élément se répartit préférentiellement.
  • Le molybdène durcit fortement la matrice y dans laquelle cet élément se répartit préférentiellement. La quantité de molybdène pouvant être introduite dans l'alliage est cependant limitée car cet élément a un effet néfaste sur la résistance à la corrosion à chaud des superalliages à base de nickel. Une concentration voisine de 1 % en poids dans l'alliage de l'invention n'est pas pénalisante pour sa résistance à la corrosion et participe de manière significative à son durcissement.
  • Le cobalt participe également au durcissement en solution solide de la matrice γ. La concentration en cobalt a une influence sur la température de mise en solution de la phase durcissante γ' (température de solvus γ'). Il est ainsi avantageux d'augmenter la concentration en cobalt pour abaisser la température de solvus de la phase γ' et faciliter l'homogénéisation de l'alliage par traitement thermique sans risque de provoquer un début de fusion. Par ailleurs il peut être également avantageux de réduire la concentration en cobalt afin d'augmenter la température de solvus de la phase γ' et de bénéficier ainsi d'une plus grande stabilité de la phase γ' à haute température ce qui est favorable à la résistance au fluage. La concentration voisine de 5 % en poids de cobalt dans l'alliage de l'invention conduit à un compromis optimal entre une bonne aptitude à l'homogénéisation et une bonne tenue au fluage.
  • Le tungstène dont la concentration est voisine de 4 % en poids dans l'alliage de l'invention se répartit de manière sensiblement égale entre les phases γ et γ' et contribue ainsi à leurs durcissements respectifs. Sa concentration dans l'alliage est cependant limitée car cet élément est lourd, et a un effet négatif sur la résistance à la corrosion à chaud.
  • La concentration en aluminium est voisine de 4 % en poids dans l'alliage de l'invention. La présence de cet élément provoque la précipitation de la phase durcissante γ'. L'aluminium favorise également la résistance à l'oxydation. Les éléments titane et tantale sont ajoutés à l'alliage de l'invention afin de renforcer la phase γ' dans laquelle ils se substituent à l'élément aluminium. Les concentrations respectives de ces deux éléments dans l'alliage de l'invention sont voisines de 2 % en poids pour le titane et de 5 % en poids pour le tantale. Dans les conditions d'essais de corrosion à chaud décrites plus loin, correspondant à l'application visée, l'expérience a montré que la présence de tantale était plus favorable à la résistance à la corrosion à chaud que ne l'est celle du titane. Cependant le tantale est plus lourd que le titane ce qui est défavorable vis-à-vis de la masse volumique de l'alliage. La somme des concentrations en tantale, titane et aluminium définit grossièrement la fraction volumique de phase durcissante γ'. Les concentrations de ces trois éléments ont été réglées de manière à optimiser la fraction volumique de phase γ', tout en conservant les phases γ et γ' stables au cours des maintiens de longue durée à haute température, et en tenant compte du fait que la concentration en chrome a été fixée à environ 16 % en poids de façon à atteindre la résistance à la corrosion désirée.
  • L'alliage SCA425 a été élaboré sous la forme de monocristaux d'orientation <001>. La masse volumique de cet alliage a été mesurée et trouvée égale à 8,36 g.cm-3.
  • Après solidification dirigée, l'alliage est essentiellement constitué de deux phases: la matrice austénitique γ, solution solide à base de nickel, et la phase γ', composé intermétallique dont la formule de base est Ni3Al, qui précipite en majeure partie au sein de la matrice y sous la forme de fines particules de taille inférieure à un micromètre au cours du refroidissement à l'état solide. Contrairement à ce qui est généralement rencontré dans les superalliages monocristallins pour aubes de turbines, l'alliage SCA425 ne contient pas de particules massives interdendritiques de phase γ' résultant d'une transformation eutectique du liquide résiduel en fin de solidification.
  • L'alliage SCA425 a subi un traitement thermique d'homogénéisation à la température de 1285 °C pendant 3 heures avec refroidissement à l'air. Cette température est supérieure à la température de solvus de la phase γ' (température de mise en solution des précipités de phase γ'), qui est égale à 1198 °C, et inférieure à la température de début de fusion, égale à 1300 °C. Ce traitement a pour objectif de dissoudre la totalité des précipités de phase γ' dont la distribution de tailles est très étendue dans l'état brut de solidification dirigée et de réduire les hétérogénéités chimiques liées à la structure dendritique de solidification.
  • L'écart entre la température de solvus γ' de l'alliage SCA425 et sa température de début de fusion est très grand, ce qui autorise l'application aisée du traitement d'homogénéisation sans risque de fusion et avec la certitude d'obtenir une microstructure homogène autorisant une résistance au fluage optimisée.
  • Le refroidissement succédant au traitement d'homogénéisation décrit ci-dessus a été réalisé par trempe à l'air. En pratique, la vitesse de ce refroidissement doit être suffisamment élevée pour que la taille des particules ayant précipité au cours de ce refroidissement soit inférieure à 500 nm.
  • La procédure de traitement thermique d'homogénéisation qui vient d'être décrite est un exemple permettant d'obtenir le résultat escompté, soit une distribution homogène de fines particules de phase γ' dont la taille n'excède pas 500 nm. Ceci n'exclut pas la possibilité d'obtenir un résultat semblable en utilisant une autre température de traitement pourvu qu'elle soit comprise dans l'intervalle séparant la température de solvus γ' et la température de début de fusion.
  • L'alliage SCA425 a été testé après avoir été soumis à un traitement d'homogénéisation tel que décrit plus haut, puis à deux traitements de revenu permettant de stabiliser la taille et la fraction volumique des précipités de phase γ'. Un premier traitement de revenu a consisté à chauffer l'alliage à 1100 °C pendant 4 heures avec refroidissement à l'air ce qui a pour effet de stabiliser la taille des précipités de phase γ'. Un deuxième traitement de revenu à 850 °C pendant 24 heures, suivi d'un refroidissement à l'air, permet d'optimiser la fraction volumique de phase γ'. Cette fraction volumique de phase γ' est estimée à 50 % dans l'alliage SCA425. À l'issue de l'ensemble des traitements thermiques, la majeure partie de la phase γ' a précipité sous la forme de particules cuboïdales dont la taille est comprise entre 200 et 500 nm. Une faible fraction de fines particules de phase γ' dont la taille n'excède pas 50 nm est présente entre les gros précipités.
  • Des essais de corrosion à chaud ont été réalisés à différentes températures sur l'alliage SCA425 en utilisant la procédure suivante: des échantillons sont partiellement immergés dans un creuset contenant un mélange de cendres dont la composition pondérale est la suivante: 4,3 % Na2SO4 + 22,7 % CaSO4 + 22,3 % Fe2O3 + 20,6 % ZnSO4 + 10,4 % K2SO4 + 2,8 % MgO + 6,5 % Al2O3 + 10,4 % SiO2. Un mélange d'air + 0,15 % SO2 en volume passe à travers le mélange de cendres à la vitesse de 6 litres par heure. Le mélange de cendres est renouvelé toutes les 500 heures. Cet environnement est représentatif de l'environnement très agressif des gaz de combustion de certaines turbines industrielles. Pour comparaison des échantillons d'alliages IN738, IN939, IN792 et SC16 ont été testés simultanément.
  • Les échantillons ont été sectionnés et la profondeur de métal détruit par le phénomène de corrosion a été mesurée. Les graphiques des figures 1 à 3 montrent les profondeurs moyennes de pénétration de la corrosion pour les différents alliages à 700 °C, 800 °C et 850 °C respectivement, en fonction de la durée d'essai. La résistance à la corrosion est d'autant meilleure que la profondeur de pénétration est faible. À 700 °C et 800 °C l'alliage SCA425 montre une résistance à la corrosion équivalente à celle de l'alliage IN738 et meilleure que celle de l'alliage SC16. À 850 °C, la résistance à la corrosion de l'alliage SCA425 est comparable à celles des alliages de référence IN738 et IN939.
  • Des essais de fluage en traction ont été réalisés sur des éprouvettes usinées dans des barreaux monocristallins d'orientation <001>. Les barreaux ont été préalablement homogénéisés puis revenus selon les procédures décrites auparavant. Des valeurs de temps à rupture obtenues à 750, 850 et 950 °C pour différents niveaux de contrainte appliquée sont reportées dans le tableau II. Tableau II: Durées de vie en fluage de l'alliage SCA425
    Température (°C) Contrainte (MPa) Temps à rupture (h)
    750 650 216/321,1
    750 575 984
    850 400 201/276
    850 300 2121/2945/3220
    850 250 6161
    950 250 73/76
    950 200 261/291
    950 180 578
    950 160 1098
    950 140 2109
    950 120 3872
  • Le graphique de la figure 4 permet de comparer les temps à rupture en fluage obtenus pour les alliages SCA425, IN792 et SC16. En abscisse est portée la contrainte appliquée. En ordonnée est portée la valeur du paramètre de Larson-Miller. Ce paramètre est donné par la formule P = T(20 + log t) × 10-3 où T est la température de fluage en Kelvin et t le temps à rupture en heures. Ce graphique fait apparaître que la résistance au fluage de l'alliage SCA425 est au moins équivalente à celle de l'alliage IN792, ce qui est l'objectif fixé, et supérieure à celle de l'alliage de référence SC16.
  • Le contrôle de la microstructure des éprouvettes d'alliage SCA425 à l'issue des essais de fluage a démontré l'absence de précipitation de particules intermétalliques fragiles riches en chrome susceptibles d'apparaître au cours de maintiens de longue durée à haute température dans les superalliages à base de nickel où la matrice y est sursaturée en éléments d'addition.
  • Des essais de fabrication de pièces monocristallines en superalliage SCA425 ont montré qu'il était possible de couler un large éventail de composants dont la masse peut aller de quelques grammes à plus de 10 kg, avec divers degrés de complexité. La croissance des pièces selon l'orientation cristallographique <001> est favorisée et dominante et la présence de grains orientés de manière aléatoire est minimisée. Le métal liquide est stable en ce sens qu'il ne réagit pas avec les matériaux utilisés communément pour la fabrication des moules. Le phénomène de recristallisation pouvant se produire durant le traitement d'homogénéisation à haute température est absent dans le cas de l'alliage SCA425.

Claims (2)

  1. Superalliage à base de nickel, apte à la solidification monocristalline, caractérisé en ce que sa composition pondérale est la suivante: Co: 4,75 à 5,25 % Cr: 15,5 à 16,5 % Mo: 0,8 à 1,2 % W: 3,75 à 4,25 % Al: 3,75 à 4,25 % Ti: 1,75 à 2,25 % Ta: 4,75 à 5,25 % C: 0,006 à 0,04 % B: 0,01 % Zr: 0,01 % Hf: 1 % Nb: 1 % Ni et impuretés éventuelles: complément à 100%.
  2. Aube de turbine industrielle réalisée par solidification monocristalline d'un superalliage selon la revendication 1.
EP00403361A 2000-11-30 2000-11-30 Superalliage à base de nickel à résistance très élevée à la corrosion à chaud pour aubes monocristallines de turbines industrielles Expired - Lifetime EP1211335B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP00403361A EP1211335B1 (fr) 2000-11-30 2000-11-30 Superalliage à base de nickel à résistance très élevée à la corrosion à chaud pour aubes monocristallines de turbines industrielles
DE60034797T DE60034797T2 (de) 2000-11-30 2000-11-30 Superlegierung auf Nickelbasis mit sehr hoher Beständigkeit gegen Heisskorrosion für Einkristallturbinenschaufeln von industriellen Turbinen
US09/999,167 US20030047251A1 (en) 2000-11-30 2001-11-29 Nickel-based superalloy having very high resistance to hot-corrosion for monocrystalline blades of industrial turbines
JP2001365809A JP2002235135A (ja) 2000-11-30 2001-11-30 産業用タービンの単結晶ブレードのための非常に高い耐高温腐食性をもつニッケル系超合金
US10/460,860 US20040033156A1 (en) 2000-11-30 2003-06-12 Nickel-based superalloy having very high resistance to hot-corrosion for monocrystalline blades of industrial turbines
US11/068,085 US20050194068A1 (en) 2000-11-30 2005-02-28 Nickel-based superalloy having very high resistance to hot-corrosion for monocrystalline blades of industrial turbines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP00403361A EP1211335B1 (fr) 2000-11-30 2000-11-30 Superalliage à base de nickel à résistance très élevée à la corrosion à chaud pour aubes monocristallines de turbines industrielles

Publications (2)

Publication Number Publication Date
EP1211335A1 EP1211335A1 (fr) 2002-06-05
EP1211335B1 true EP1211335B1 (fr) 2007-05-09

Family

ID=8173963

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00403361A Expired - Lifetime EP1211335B1 (fr) 2000-11-30 2000-11-30 Superalliage à base de nickel à résistance très élevée à la corrosion à chaud pour aubes monocristallines de turbines industrielles

Country Status (4)

Country Link
US (3) US20030047251A1 (fr)
EP (1) EP1211335B1 (fr)
JP (1) JP2002235135A (fr)
DE (1) DE60034797T2 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064027A1 (fr) 2003-12-26 2005-07-14 Kawasaki Jukogyo Kabushiki Kaisha Alliage a base de nickel a haute resistance thermique et constituant de turbine a gaz l'utilisant
US20060182649A1 (en) * 2005-02-16 2006-08-17 Siemens Westinghouse Power Corp. High strength oxidation resistant superalloy with enhanced coating compatibility
EP1914327A1 (fr) * 2006-10-17 2008-04-23 Siemens Aktiengesellschaft Superalliage à base de nickel
EP2431489A1 (fr) * 2010-09-20 2012-03-21 Siemens Aktiengesellschaft Superalliages à base de nickel
CN102011195B (zh) * 2010-11-23 2012-06-06 北京科技大学 一种定向凝固高铌钛铝合金单晶的制备方法
JP2014047371A (ja) * 2012-08-30 2014-03-17 Hitachi Ltd Ni基合金と、それを用いたガスタービン動翼兼ガスタービン
GB201400352D0 (en) 2014-01-09 2014-02-26 Rolls Royce Plc A nickel based alloy composition
EP3042973B1 (fr) 2015-01-07 2017-08-16 Rolls-Royce plc Alliage de nickel
GB2539957B (en) 2015-07-03 2017-12-27 Rolls Royce Plc A nickel-base superalloy
EP3604571A1 (fr) * 2018-08-02 2020-02-05 Siemens Aktiengesellschaft Composition de métal
DE102019201095A1 (de) * 2019-01-29 2020-07-30 Friedrich-Alexander-Universität Erlangen-Nürnberg Nickelbasislegierung für Hochtemperaturanwendungen und Verfahren

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3109293C2 (de) * 1980-03-13 1985-08-01 Rolls-Royce Ltd., London Verwendung einer Nickellegierung für einkristalline Gußstücke
US4961818A (en) * 1985-06-21 1990-10-09 Inco Alloys International, Inc. Process for producing single crystals
US4900394A (en) * 1985-08-22 1990-02-13 Inco Alloys International, Inc. Process for producing single crystals
US5403546A (en) * 1989-02-10 1995-04-04 Office National D'etudes Et De Recherches/Aerospatiales Nickel-based superalloy for industrial turbine blades
EP1038982A1 (fr) * 1999-03-26 2000-09-27 Howmet Research Corporation Articles monocristallins en superalliage ayant une récrystallisation des grains reduite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP1211335A1 (fr) 2002-06-05
DE60034797T2 (de) 2008-01-17
DE60034797D1 (de) 2007-06-21
JP2002235135A (ja) 2002-08-23
US20040033156A1 (en) 2004-02-19
US20050194068A1 (en) 2005-09-08
US20030047251A1 (en) 2003-03-13

Similar Documents

Publication Publication Date Title
EP1840232B1 (fr) Alliage à base de nickel
EP0971041B1 (fr) Superalliage monocristallin à base de nickel à haut solvus phase gamma prime
EP0063511B1 (fr) Superalliage monocristallin à matrice à base de nickel, procédé d&#39;amélioration de pièces en ce superalliage et pièces obtenues par ce procédé
EP0434996B1 (fr) Superalliage monocristallin à base de nickel
FR2731714A1 (fr) Superalliages a base de nickel pour la production d&#39;articles monocristallins ayant une tolerance amelioree aux joints de grains a faible desorientation
EP3710610B1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
EP1211335B1 (fr) Superalliage à base de nickel à résistance très élevée à la corrosion à chaud pour aubes monocristallines de turbines industrielles
EP3710611B1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
EP1211336B1 (fr) Superalliage à base de nickel pour aubes monocristallines de turbines industrielles ayant une résistance élevée à la corrosion à chaud
EP3802895B1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
FR2860804A1 (fr) Superalliage a base de nickel et pieces coulees en monocristal
EP3918101B1 (fr) Superalliage a base de nickel a tenue mecanique et environnementale elevee a haute temperature et a faible densite
EP3911773B1 (fr) Superalliage a base de nickel a faible densite et avec une tenue mecanique et environnementale elevee a haute temperature
FR2543577A1 (fr) Superalliages a base de nickel renforces par du monocarbure et pieces solidifiees unidirectionnellement obtenues a partir de ces alliages
FR2513269A1 (fr) Composition et traitement thermique pour alliage destine a des moulages monocristallins
FR2854165A1 (fr) Superalliage a base de nickel et pieces coulees en monocristal
EP0187573A2 (fr) Alliage à base de nickel
EP3990672A1 (fr) Procédé de fabrication d&#39;une pièce en superalliage monocristallin
FR3117507A1 (fr) Procede de fabrication d&#39;une piece en superalliage monocristallin
EP0570270B1 (fr) Superalliage monocristallin à base de nickel notamment pour aubes de turbines de moteurs-fusées, et procédé d&#39;obtention
FR3117506A1 (fr) Procede de fabrication d&#39;une piece en superalliage monocristallin
FR2735792A1 (fr) Alliage monocristallin renforce par gamma&#34; pour aube de turbine de systemes de propulsion utilisant de l&#39;hydrogene
EP0570271A1 (fr) Superalliage monocristallin à base fer-nickel, notamment pour aubes de turbines de moteurs-fusées, et procédé d&#39;obtention

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20021125

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60034797

Country of ref document: DE

Date of ref document: 20070621

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070815

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080212

REG Reference to a national code

Ref country code: FR

Ref legal event code: TQ

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191021

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191022

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191022

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60034797

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20201129