EP3710610B1 - Superalliage a base de nickel, aube monocristalline et turbomachine - Google Patents

Superalliage a base de nickel, aube monocristalline et turbomachine Download PDF

Info

Publication number
EP3710610B1
EP3710610B1 EP18821710.3A EP18821710A EP3710610B1 EP 3710610 B1 EP3710610 B1 EP 3710610B1 EP 18821710 A EP18821710 A EP 18821710A EP 3710610 B1 EP3710610 B1 EP 3710610B1
Authority
EP
European Patent Office
Prior art keywords
superalloy
nickel
superalloys
rhenium
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18821710.3A
Other languages
German (de)
English (en)
Other versions
EP3710610A1 (fr
Inventor
Jérémy RAME
Virginie JAQUET
Joël DELAUTRE
Jean-Yves Guedou
Pierre Caron
Odile Lavigne
Didier Locq
Mikael PERRUT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Office National dEtudes et de Recherches Aerospatiales ONERA
Safran SA
Original Assignee
Office National dEtudes et de Recherches Aerospatiales ONERA
Safran SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office National dEtudes et de Recherches Aerospatiales ONERA, Safran SA filed Critical Office National dEtudes et de Recherches Aerospatiales ONERA
Publication of EP3710610A1 publication Critical patent/EP3710610A1/fr
Application granted granted Critical
Publication of EP3710610B1 publication Critical patent/EP3710610B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/132Chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/177Ni - Si alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/607Monocrystallinity

Definitions

  • This presentation relates to nickel-based superalloys for gas turbines, in particular for stationary blades, also called distributors or rectifiers, or vanes of a gas turbine, for example in the field of aeronautics.
  • nickel-based superalloys for single-crystal blades have undergone significant changes in chemical composition, with the aim in particular of improving their creep properties at high temperature while maintaining resistance to the very aggressive environment in which these superalloys are used.
  • metallic coatings adapted to these alloys have been developed in order to increase their resistance to the aggressive environment in which these alloys are used, in particular the resistance to oxidation and the resistance to corrosion.
  • a ceramic coating of low thermal conductivity, performing a thermal barrier function can be added to reduce the temperature at the surface of the metal.
  • a complete protection system has at least two layers.
  • the first layer also called sub-layer or bonding layer
  • the first layer is deposited directly on the part to be protected in nickel-based superalloy, also called substrate, for example a blade.
  • the deposition step is followed by a step of diffusion of the underlayer in the superalloy.
  • the deposition and the diffusion can also be carried out during a single step.
  • the second layer is a ceramic coating comprising for example yttria zirconia, also called “YSZ” according to the English acronym for " Yttria Stabilized Zirconia” or “YPSZ” in accordance with the English acronym for “Yttria Partially Stabilized Zirconia” and having a porous structure.
  • This layer can be deposited by various processes, such as evaporation under an electron beam (“EB-PVD” in accordance with the English acronym for “Electron Beam Physical Vapor Deposition”), thermal spraying (“APS” in accordance with the English acronym for “Atmospheric Plasma Spraying” or “SPS” in accordance with the English acronym for “Suspension Plasma Spraying”), or any other process making it possible to obtain a porous ceramic coating with low thermal conductivity.
  • EB-PVD electron beam
  • APS in accordance with the English acronym for “Atmospheric Plasma Spraying” or “SPS” in accordance with the English acronym for “Suspension Plasma Spraying”
  • any other process making it possible to obtain a porous ceramic coating with low thermal conductivity.
  • inter-diffusion phenomena occur on a microscopic scale between the nickel-based superalloy of the substrate and the metal alloy of the underlayer.
  • These phenomena of inter-diffusion, associated with the oxidation of the underlayer modify in particular the chemical composition, the microstructure and consequently the mechanical properties of the underlayer from the manufacture of the coating, then during the use of dawn in the turbine.
  • These inter-diffusion phenomena also modify the chemical composition, the microstructure and consequently the mechanical properties of the superalloy of the substrate under the coating.
  • a secondary reaction zone can thus form in the superalloy under the sub-layer to a depth of several tens, or even hundreds, of micrometers.
  • the mechanical characteristics of this ZRS are clearly inferior to those of the superalloy of the substrate.
  • There ZRS formation is undesirable because it leads to a significant reduction in the mechanical strength of the superalloy.
  • foundry defects are liable to form in the parts, such as blades, during their manufacture by directional solidification. These defects are generally parasitic grains of the "Freckle" type, the presence of which can cause premature failure of the part in service. The presence of these defects, related to the chemical composition of the superalloy, generally leads to the rejection of the part, which leads to an increase in the cost of production.
  • US5366695 describes superalloys not comprising ruthenium.
  • This presentation aims to propose compositions of nickel-based superalloys for the manufacture of single-crystal components, presenting increased performance in terms of service life and mechanical resistance and making it possible to reduce the costs of production of the part (reduced scrap rate) compared to existing alloys.
  • These superalloys exhibit superior high temperature creep resistance than existing alloys while showing good microstructural stability within the bulk of the superalloy (low susceptibility to PTC formation), good microstructural stability under the coating underlayer of the thermal barrier (low sensitivity to the formation of ZRS), good resistance to oxidation and corrosion while avoiding the formation of parasitic grains of the "Freckle" type.
  • the present disclosure relates to a nickel-based superalloy comprising, in mass percentages, 4.0 to 5.5% rhenium, 1.0 to 3.0 ruthenium, 2.0 to 14.0% cobalt, 0.30-1.00% molybdenum, 3.0-5.0% chromium, 2.5-4.0% tungsten, 4.5-6.5% aluminum, 0.50 to 1.50% titanium, 8.0 to 9.0% tantalum, 0.15 to 0.30% hafnium, preferably 0.16 to 0.30% hafnium, preferably 0.17 to 0 .30% hafnium, preferably 0.18 to 0.30% hafnium, preferably 0.08 to 0.12% silicon, even more preferably 0.10% silicon, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, the remainder consisting of nickel and inevitable impurities.
  • This superalloy is intended for the manufacture of monocrystalline gas turbine components, such as fixed or moving blades.
  • the creep resistance is improved compared to existing superalloys, in particular at temperatures which can go up to 1200°C.
  • This alloy therefore has improved creep resistance at high temperature. This alloy also exhibits improved corrosion and oxidation resistance.
  • These superalloys have a density less than or equal to 9.00 g/cm 3 (gram per cubic centimeter).
  • a single-crystal nickel-based superalloy part is obtained by a process of directed solidification under a thermal gradient in the lost-wax foundry.
  • the single-crystal nickel-based superalloy comprises an austenitic matrix with a face-centered cubic structure, nickel-based solid solution, known as the gamma (“ ⁇ ”) phase.
  • This matrix contains gamma prime hardening phase precipitates (“ ⁇ '”) of ordered cubic structure L1 2 of the Ni 3 Al type.
  • the assembly (matrix and precipitates) is therefore described as a ⁇ / ⁇ ' superalloy.
  • this composition of the nickel-based superalloy allows the implementation of a heat treatment which redissolves the ⁇ ′ phase precipitates and the ⁇ / ⁇ ′ eutectic phases which are formed during the solidification of the superalloy. It is thus possible to obtain a monocrystalline nickel-based superalloy containing ⁇ ′ precipitates of controlled size, preferably between 300 and 500 nanometers (nm), and containing a small proportion of ⁇ / ⁇ ′ eutectic phases.
  • the heat treatment also makes it possible to control the volume fraction of the ⁇ ′ phase precipitates present in the single-crystal nickel-based superalloy.
  • the percentage by volume of the ⁇ ' phase precipitates can be greater than or equal to 50%, preferably greater than or equal to 60%, even more preferably equal to 70%.
  • the major addition elements are cobalt (Co), chromium (Cr), molybdenum (Mo), rhenium (Re), ruthenium (Ru), tungsten (W), aluminum (Al), titanium (Ti) and tantalum (Ta).
  • the minor addition elements are hafnium (Hf) and silicon (Si), for which the maximum mass content is less than 1% by mass.
  • Unavoidable impurities include sulfur (S), carbon (C), boron (B), yttrium (Y), lanthanum (La) and cerium (Ce). Unavoidable impurities are defined as those elements which are not intentionally added to the composition and which are added with other elements.
  • tungsten, chromium, cobalt, rhenium, ruthenium or molybdenum makes it possible to reinforce the austenitic matrix ⁇ of face-centered cubic crystal structure (fcc) by hardening in solid solution.
  • Rhenium (Re) makes it possible to slow down the diffusion of chemical species within the superalloy and to limit the coalescence of ⁇ ' phase precipitates during service at high temperature, a phenomenon which leads to a reduction in mechanical strength. Rhenium thus makes it possible to improve the creep resistance at high temperature of the nickel base superalloy.
  • too high a concentration of rhenium can lead to the precipitation of PTC intermetallic phases, for example ⁇ phase, P phase or ⁇ phase, which have a negative effect on the mechanical properties of the superalloy. Too high a rhenium concentration can also cause the formation of a secondary reaction zone in the superalloy under the underlayer, which has a negative effect on the mechanical properties of the superalloy.
  • the addition of ruthenium makes it possible in particular to displace part of the rhenium in the ⁇ ' phase and to limit the formation of PTC.
  • the simultaneous addition of silicon and hafnium makes it possible to improve the resistance to hot oxidation of nickel-based superalloys by increasing the adhesion of the layer of alumina (Al 2 O 3 ) which forms on the surface. high temperature superalloy.
  • This layer of alumina forms a passivation layer on the surface of the nickel-based superalloy and a barrier to the diffusion of oxygen coming from the exterior towards the interior of the nickel-based superalloy.
  • hafnium without also adding silicon or conversely add silicon without also adding hafnium and still improve the resistance to hot oxidation of the superalloy.
  • chromium or aluminum makes it possible to improve the resistance to oxidation and to corrosion at high temperature of the superalloy.
  • chromium is essential for increasing the hot corrosion resistance of nickel-based superalloys.
  • too high a chromium content tends to reduce the solvus temperature of the ⁇ ' phase of the nickel-based superalloy, i.e. the temperature above which the ⁇ ' phase is completely dissolved in the ⁇ matrix, which is undesirable.
  • the chromium concentration is between 3.0 to 5.0% by mass in order to maintain a high solvus temperature of the ⁇ ' phase of the nickel-based superalloy, for example greater than or equal to 1250° C. but also to avoid the formation of topologically compact phases in the ⁇ matrix highly saturated with alloying elements such as rhenium, molybdenum or tungsten.
  • cobalt which is an element close to nickel and which partially substitutes for nickel, forms a solid solution with the nickel in the ⁇ matrix.
  • Cobalt makes it possible to reinforce the ⁇ matrix, to reduce susceptibility to PTC precipitation and ZRS formation in the superalloy under the protective coating.
  • too high a cobalt content tends to reduce the solvus temperature of the ⁇ ' phase of the nickel-based superalloy, which is undesirable.
  • the addition of ruthenium makes it possible to reinforce the ⁇ matrix and to reduce the sensitivity of the superalloy to the formation of PTC.
  • the addition of ruthenium makes it possible in particular to displace part of the rhenium in the ⁇ ' phase and to limit the formation of PTC.
  • the addition of ruthenium can also have a beneficial effect on the adhesion of the ceramic coating.
  • refractory elements such as molybdenum, tungsten, rhenium or tantalum makes it possible to slow down the mechanisms controlling the creep of nickel-based superalloys and which depend on the diffusion of chemical elements in the superalloy.
  • a very low sulfur content in a nickel-based superalloy increases the resistance to oxidation and hot corrosion as well as the spalling resistance of the thermal barrier.
  • a low sulfur content less than 2 ppm by mass (part per million by mass), or even ideally less than 0.5 ppm by mass, makes it possible to optimize these properties.
  • Such a mass content of sulfur can be obtained by producing a low-sulphur mother casting or by a desulfurization process carried out after casting. In particular, it is possible to maintain a low sulfur content by adapting the process for producing the superalloy.
  • Nickel-based superalloys are understood to mean superalloys in which the mass percentage of nickel is predominant. It is understood that nickel is therefore the element whose mass percentage in the alloy is the highest.
  • the superalloy may comprise, in mass percentages, 4.5 to 5.5% rhenium, 1.0 to 3.0 ruthenium, 3.0 to 5.0% cobalt, 0.30 to 0.80% molybdenum, 3.0-4.5% chromium, 2.5-4.0% tungsten, 4.5-6.5% aluminum, 0.50-1.50% titanium, 8.0 to 9.0% tantalum, 0.15 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, the balance consisting of nickel and inevitable impurities.
  • the superalloy may comprise, in mass percentages, 4.0 to 5.5% rhenium, 1.0 to 3.0 ruthenium, 3.0 to 13.0% cobalt, 0.40 to 1.00% molybdenum, 3.0-4.5% chromium, 2.5-4.0% tungsten, 4.5-6.5% aluminum, 0.50-1.50% titanium, 8.0 to 9.0% tantalum, 0.15 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, the balance consisting of nickel and inevitable impurities.
  • the superalloy may comprise, in mass percentages, 4.0 to 5.0% rhenium, 1.0 to 3.0 ruthenium, 11.0 to 13.0% cobalt, 0.40 to 1.00% molybdenum, 3.0-4.5% chromium, 2.5-4.0% tungsten, 4.5-6.5% aluminum, 0.50-1.50% titanium, 8.0 to 9.0% tantalum, 0.15 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, the balance consisting of nickel and inevitable impurities.
  • the superalloy may comprise, in mass percentages, 5.0% rhenium, 2.0 ruthenium, 4.0% cobalt, 0.50% molybdenum, 4.0% chromium, 3.0% tungsten, 5.4% aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, balance being nickel and unavoidable impurities.
  • the superalloy may comprise, in mass percentages, 5.0% rhenium, 2.0 ruthenium, 4.0% cobalt, 0.50% molybdenum, 4.0% chromium, 3.5% tungsten, 5.4% aluminum, 0.90% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the balance being made up of nickel and inevitable impurities.
  • the superalloy may comprise, in mass percentages, 4.4% rhenium, 2.0 ruthenium, 4.0% cobalt, 0.70% molybdenum, 4.0% chromium, 3.0% tungsten, 5.4% aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, balance being nickel and unavoidable impurities.
  • the superalloy may comprise, in mass percentages, 4.4% rhenium, 2.0 ruthenium, 12.0% cobalt, 0.70% molybdenum, 4.0% chromium, 3.0% tungsten, 5.4% aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the balance consisting of nickel and inevitable impurities.
  • the superalloy may comprise, in mass percentages, 5.0% rhenium, 2.0 ruthenium, 4.0% cobalt, 0.50% molybdenum, 3.5% chromium, 3.5% tungsten, 5.4% aluminum, 0.90% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the balance being made up of nickel and inevitable impurities.
  • the superalloy may comprise, in mass percentages, 4.4% rhenium, 2.0 ruthenium, 12.0% cobalt, 0.70% molybdenum, 3.5% chromium, 3.5% tungsten, 5.4% aluminum, 0.90% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the balance being made up of nickel and inevitable impurities.
  • This presentation also relates to a single-crystal blade for a turbomachine comprising a superalloy as defined above.
  • This blade therefore has an improved resistance to creep at high temperature.
  • the blade may include a protective coating comprising a metal underlayer deposited on the superalloy and a ceramic thermal barrier deposited on the metal underlayer.
  • the composition of the nickel-based superalloy Thanks to the composition of the nickel-based superalloy, the formation of a secondary reaction zone in the superalloy resulting from interdiffusion phenomena between the superalloy and the underlayer is avoided, or limited.
  • the metallic underlayer can be an alloy of the MCrAlY type or an alloy of the nickel aluminide type.
  • the ceramic thermal barrier can be a yttria-zirconia-based material or any other ceramic (zirconia-based) coating with low thermal conductivity.
  • the dawn may have a structure oriented along a ⁇ 001> crystallographic direction.
  • This orientation generally gives the blade the optimum mechanical properties.
  • This presentation also relates to a turbomachine comprising a blade as defined above.
  • Nickel-based superalloys are intended for the manufacture of single-crystal blades by a directed solidification process in a thermal gradient.
  • the use of a monocrystalline seed or of a grain selector at the start of solidification makes it possible to obtain this monocrystalline structure.
  • the structure is oriented for example along a crystallographic direction ⁇ 001> which is the orientation which generally confers the optimum mechanical properties on the superalloys.
  • As-solidified nickel-based single-crystal superalloys have a dendritic structure and consist of ⁇ ' Ni 3 (Al, Ti, Ta) precipitates dispersed in a ⁇ matrix of face-centered cubic structure, nickel-based solid solution. These ⁇ ' phase precipitates are distributed heterogeneously in the volume of the single crystal due to chemical segregations resulting from the solidification process. Furthermore, ⁇ / ⁇ ' eutectic phases are present in the inter-dendritic regions and constitute preferential crack initiation sites. These ⁇ / ⁇ ' eutectic phases are formed at the end of solidification.
  • the ⁇ / ⁇ ' eutectic phases are formed to the detriment of the fine precipitates (size less than a micrometer) of the ⁇ ' hardening phase.
  • These ⁇ ' phase precipitates constitute the main source of hardening of nickel-based superalloys.
  • the presence of residual ⁇ / ⁇ ' eutectic phases does not make it possible to optimize the hot creep resistance of the nickel-based superalloy.
  • the first heat treatment is a microstructure homogenization treatment which aims to dissolve the ⁇ ′ phase precipitates and to eliminate the ⁇ / ⁇ ′ eutectic phases or to significantly reduce their volume fraction.
  • This treatment is carried out at a temperature above the solvus temperature of the ⁇ ' phase and below the starting melting temperature of the superalloy (T solidus ). Quenching is then carried out at the end of this first heat treatment to obtain a fine and homogeneous dispersion of the ⁇ ' precipitates.
  • Tempering heat treatments are then carried out in two stages, at temperatures below the solvus temperature of the ⁇ ' phase. During a first step, to make the ⁇ ′ precipitates grow and obtain the desired size, then during a second step, to increase the volume fraction of this phase to about 70% at room temperature.
  • turbofan engine 10 comprises, from upstream to downstream according to the circulation of the air flow, a fan 12, a compressor low pressure 14, a high pressure compressor 16, a combustion chamber 18, a high pressure turbine 20, and a low pressure turbine 22.
  • the high pressure turbine 20 comprises a plurality of moving vanes 20A rotating with the rotor and stator vanes 20B (fixed vanes) mounted on the stator.
  • the stator of the turbine 20 comprises a plurality of stator rings 24 arranged opposite the moving blades 20A of the turbine 20.
  • a moving blade 20A or a stator 20B for a turbomachine comprising a superalloy as defined previously coated with a protective coating comprising a metal sub-layer
  • a turbomachine can in particular be a turbojet engine such as a turbofan engine 10.
  • the turbomachine can also be a single-flow turbojet engine, a turboprop engine or a turboshaft engine.
  • Example 6 Six nickel-based monocrystalline superalloys of this presentation (Ex 1 to Ex 6) were studied and compared to six commercial monocrystalline superalloys CMSX-4 (Ex 7), CMSX-4PlusC (Ex 8), René N6 (Ex 9), CMSX-10 (Ex 10), MC-NG (Ex 11) and TMS-138 (Ex 12).
  • the chemical composition of each of the single-crystal superalloys is given in table 1, the Ex 9 composition also comprising 0.05% by mass of carbon (C) and 0.004% by mass of boron (B), the Ex 10 composition also comprising in addition to 0.10% by mass of niobium (Nb).
  • the densities calculated for the alloys of the disclosure and for the reference alloys are less than 9.00 g/cm 3 (see table 2).
  • Table 2 presents different parameters for Ex 1 to Ex 12 superalloys.
  • Table 2 Estimated density (1) (g/cm 3 ) Measured density (g/cm 3 ) NFP RGP M d Ex 1 8.89 - 0.96 0.380 0.98 Ex 2 - - 0.91 0.376 - Ex 3 8.85 - 1.05 0.380 0.98 Ex 4 8.83 - 1.05 0.380 0.98 Ex 5 8.91 8.8 0.91 0.376 0.98 Ex 6 8.86 - 1.00 0.376 0.98 Ex 7 8.71 - 0.65 0.358 0.99 Ex 8 8.91 - 0.68 0.371 0.99 Ex 9 8.87 - 0.69 0.256 0.98 Ex 10 8.99 - 0.67 0.299 0.96 Ex 11 8.75 8.75 0.55 0.232 0.97 Ex 12 8.88 - 0.61 0.215 0.97
  • NFP % Your + 1.5 % Off + 0.5 %MB ⁇ 0.5 % % You ) / % W + 1.2 % D )
  • %Cr, %Ni, ...%X are the contents, expressed in mass percentages, of the superalloy elements Cr, Ni, ..., X.
  • the NFP parameter makes it possible to quantify the sensitivity to the formation of parasitic grains of the "Freckles” type during the directed solidification of the part (document US 5,888,451 ). To avoid the formation of “Freckles” type faults, the NFP parameter must be greater than or equal to 0.7.
  • the intrinsic mechanical strength of the ⁇ ' phase increases with the content of elements replacing the aluminum in the Ni 3 Al compound, such as titanium, tantalum and part of the tungsten.
  • the ⁇ ' phase compound can therefore be written as Ni 3 (Al, Ti, Ta, W).
  • Table 3 presents the Md values for the different elements of the superalloys.
  • Table 3 Element md Element md You 2,271 Off 3.02 CR 1,142 Your 2,224 Co 0.777 W 1,655 Neither 0.717 D 1,267 Number 2,117 HAVE 1.9 Mo 1.55 Whether 1.9 Ru 1.006
  • the sensitivity to PTC formation is determined by the parameter M d, according to the New PHACOMP method which was developed by Morinaga et al. ( Morinaga et al., New PHACOMP and its application to alloy design, Superalloys 1984, edited by M Gell et al., The Metallurgical Society of AIME, Warrendale, PA, USA (1984) pp. 523-532 ). According to this model, the sensitivity of superalloys to the formation of PTC increases with the value of the parameter M d.
  • the superalloys Ex 1 to Ex 12 present values of the parameter M d substantially equal. These superalloys therefore exhibit similar sensitivities to the formation of PTC, sensitivities which are relatively low.
  • ThermoCalc software (Ni25 database) based on the CALPHAD method was used to calculate the solvus temperature of the ⁇ ' phase at equilibrium.
  • ThermoCalc software (Ni25 database) based on the CALPHAD method was used to calculate the volume fraction (in volume percentage) of ⁇ ' phase at equilibrium in Ex 1 to Ex 12 superalloys at 950°C, 1050° C and 1200°C.
  • Ex 1 to Ex 6 superalloys contain volume fractions of ⁇ ' phase greater than or comparable to the volume fractions of ⁇ ' phase of commercial superalloys Ex 7 to Ex 12.
  • ThermoCalc software (Ni25 database) based on the CALPHAD method was used to calculate the volume fraction (in volume percentage) of phase ⁇ at equilibrium in Ex 1 to Ex 12 superalloys at 950°C and 1050°C (see Table 5).
  • ThermoCalc software (Ni25 database) based on the CALPHAD method was used to calculate chromium content (in mass percentage) in the equilibrium ⁇ phase in Ex 1 to Ex 12 superalloys at 950°C, 1050° C and 1200°C.
  • the chromium concentrations in the ⁇ phase for the Ex 1 to Ex 6 superalloys are comparable to the chromium concentrations in the ⁇ phase for the commercial superalloys Ex 7 to Ex 12, which is favorable good resistance to corrosion and hot oxidation.
  • Creep tests were carried out on Ex 2, Ex 7, Ex 9 and Ex 10 superalloys. Creep tests are carried out at 1200°C and 80 MPa according to standard NF EN ISO 204 of August 2009 (Guide U125_J) .
  • Table 6 presents the results of the creep tests in which the superalloys were loaded (80 MPa) at 1200°C. The results represent the time in hours (h) to the rupture of the specimen. Table 6 Breaking time (hour) Ex 2 63 Ex 7 7 Ex 9 9 Ex 10 59
  • the Ex 2 superalloy exhibits better creep behavior than the Ex 7 and Ex 9 superalloys.
  • the Ex 10 superalloy also exhibits good creep properties.
  • a specimen of the superalloy tested (pawn having a diameter of 20 mm and a height of 1 mm) is subjected to thermal cycling, each cycle of which includes a rise to 1150°C in less than 15 min (minutes), a plateau at 1150° C for 60 min and turbine cooling of the specimen for 15 min.
  • the thermal cycle is repeated until a loss in mass of the specimen equal to 20 mg/cm 2 (milligrams per square centimeters) is observed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

    Arrière-plan de l'invention
  • Le présent exposé concerne des superalliages à base de nickel pour des turbines à gaz, notamment pour les aubes fixes, aussi appelées distributeurs ou redresseurs, ou mobiles d'une turbine à gaz, par exemple dans le domaine de l'aéronautique.
  • Il est connu d'utiliser des superalliages à base de nickel pour la fabrication d'aubes monocristallines fixes ou mobiles de turbines à gaz pour moteurs d'avion ou d'hélicoptère.
  • Ces matériaux ont pour principaux avantages de combiner à la fois une résistance au fluage élevée à haute température ainsi qu'une résistance à l'oxydation et à la corrosion.
  • Au cours du temps, les superalliages à base de nickel pour aubes monocristallines ont subi d'importantes évolutions de composition chimique, dans le but notamment d'améliorer leurs propriétés en fluage à haute température tout en conservant une résistance à l'environnement très agressif dans lesquels ces superalliages sont utilisés.
  • Par ailleurs, des revêtements métalliques adaptés à ces alliages ont été développés afin d'augmenter leur résistance à l'environnement agressif dans lequel ces alliages sont utilisés, notamment la résistance à l'oxydation et la résistance à la corrosion. De plus, un revêtement céramique de faible conductivité thermique, remplissant une fonction de barrière thermique, peut être ajouté pour réduire la température à la surface du métal.
  • Typiquement, un système de protection complet comporte au moins deux couches.
  • La première couche, aussi appelée sous-couche ou couche de liaison, est directement déposée sur la pièce à protéger en superalliage à base de nickel, aussi appelée substrat, par exemple une aube. L'étape de dépôt est suivie d'une étape de diffusion de la sous-couche dans le superalliage. Le dépôt et la diffusion peuvent également être réalisés lors d'une seule étape.
  • Les matériaux généralement utilisés pour réaliser cette sous-couche comprennent des alliages métalliques aluminoformeurs de type MCrAlY (M = Ni (nickel) ou Co (cobalt)) ou un mélange de Ni et de Co, Cr = chrome, Al = aluminium et Y = yttrium, ou des alliages de type aluminiure de nickel (NixAly), certains contenant également du platine (NixAlyPtz).
  • La deuxième couche, généralement appelée barrière thermique ou « TBC » conformément à l'acronyme anglais pour « Thermal Barrier Coating », est un revêtement céramique comprenant par exemple de la zircone yttriée, aussi appelée « YSZ » conformément à l'acronyme anglais pour « Yttria Stabilized Zirconia » ou « YPSZ » conformément à l'acronyme anglais pour « Yttria Partially Stabilized Zirconia » et présentant une structure poreuse. Cette couche peut être déposée par différents procédés, tels que l'évaporation sous faisceau d'électrons (« EB-PVD » conformément à l'acronyme anglais pour « Electron Beam Physical Vapor Déposition »), la projection thermique (« APS » conformément à l'acronyme anglais pour « Atmospheric Plasma Spraying » ou « SPS » conformément à l'acronyme anglais pour « Suspension Plasma Spraying »), ou tout autre procédé permettant d'obtenir un revêtement céramique poreux à faible conductivité thermique.
  • Du fait de l'utilisation de ces matériaux à haute température, par exemple de 650°C à 1150°C, il se produit des phénomènes d'inter-diffusion à l'échelle microscopique entre le superalliage à base de nickel du substrat et l'alliage métallique de la sous-couche. Ces phénomènes d'inter-diffusion, associés à l'oxydation de la sous-couche, modifient notamment la composition chimique, la microstructure et par conséquent les propriétés mécaniques de la sous-couche dès la fabrication du revêtement, puis pendant l'utilisation de l'aube dans la turbine. Ces phénomènes d'inter-diffusion modifient également la composition chimique, la microstructure et par conséquent les propriétés mécaniques du superalliage du substrat sous le revêtement. Dans les superalliages très chargés en éléments réfractaires, notamment en rhénium, il peut ainsi se former dans le superalliage sous la sous-couche une zone de réaction secondaire (ZRS) sur une profondeur de plusieurs dizaines, voire centaines, de micromètres. Les caractéristiques mécaniques de cette ZRS sont nettement inférieures à celles du superalliage du substrat. La formation de ZRS est indésirable car elle conduit à une réduction significative de la résistance mécanique du superalliage.
  • Ces évolutions de la couche de liaison, associées aux champs de contraintes liés à la croissance de la couche d'alumine qui se forme en service à la surface de cette couche de liaison, aussi appelée « TGO » conformément à l'acronyme anglais pour « Thermally Grown Oxide », et aux écarts de coefficients de dilatation thermique entre les différentes couches, génèrent des décohésions dans la zone interfaciale entre la sous-couche et le revêtement céramique, qui peuvent conduire à l'écaillage partiel ou total du revêtement céramique. La partie métallique (substrat en superalliage et sous-couche métallique) est alors mise à nu et exposée directement aux gaz de combustion, ce qui augmente les risques d'endommagement de l'aube et donc de la turbine à gaz.
  • De plus, la complexité de la chimie de ces alliages peut conduire à une déstabilisation de leur microstructure optimale avec l'apparition de particules de phases indésirables lors de maintiens à haute température des pièces formées à partir de ces alliages. Cette déstabilisation a des conséquences négatives sur les propriétés mécaniques de ces alliages. Ces phases indésirables de structure cristalline complexe et de nature fragile sont dénommées phases topologiquement compactes « PTC » ou phases « TCP » conformément au sigle anglais pour « Topologically Close-Packed ».
  • En outre, des défauts de fonderie sont susceptibles de se former dans les pièces, telles que des aubes, lors de leur fabrication par solidification dirigée. Ces défauts sont généralement des grains parasites du type « Freckle », dont la présence peut provoquer une rupture prématurée de la pièce en service. La présence de ces défauts, liés à la composition chimique du superalliage, conduit généralement au rejet de la pièce, ce qui entraîne une augmentation du coût de production.
    US5366695 décrit des superalliages ne comprenant pas de ruthénium.
  • Objet et résumé de l'invention
  • Le présent exposé vise à proposer des compositions de superalliages à base de nickel pour la fabrication de composants monocristallins, présentant des performances accrues en terme de durée de vie et de résistance mécanique et permettant de réduire les coûts de production de la pièce (diminution du taux de rebut) par rapport aux alliages existants. Ces superalliages présentent une résistance au fluage à haute température supérieure à celle des alliages existants tout en montrant une bonne stabilité microstructurale dans le volume du superalliage (faible sensibilité à la formation de PTC), une bonne stabilité microstructurale sous la sous-couche de revêtement de la barrière thermique (faible sensibilité à la formation de ZRS), une bonne résistance à l'oxydation et à la corrosion tout en évitant la formation de grains parasites du type « Freckle ».
  • A cet effet, le présent exposé concerne un superalliage à base de nickel comprenant, en pourcentages massiques, 4,0 à 5,5 % de rhénium, 1,0 à 3,0 de ruthénium, 2,0 à 14,0 % de cobalt, 0,30 à 1,00 % de molybdène, 3,0 à 5,0 % de chrome, 2,5 à 4,0 % de tungstène, 4,5 à 6,5 % d'aluminium, 0,50 à 1,50 % de titane, 8,0 à 9,0 % de tantale, 0,15 à 0,30 % de hafnium, de préférence 0,16 à 0,30 % de hafnium, de préférence 0,17 à 0,30 % de hafnium, de préférence 0,18 à 0,30 % de hafnium, de préférence 0,08 à 0,12 % de silicium, encore plus de préférence 0,10 % de silicium, encore plus de préférence 0,20 à 0,30 % de hafnium, 0,05 à 0,15 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
  • Ce superalliage est destiné à la fabrication de composants monocristallins de turbine à gaz, tels que des aubes fixes ou mobiles.
  • Grâce à cette composition du superalliage à base de nickel (Ni), la résistance au fluage est améliorée par rapport aux superalliages existants, en particulier à des températures pouvant aller jusqu'à 1200°C.
  • Cet alliage présente donc une résistance au fluage à haute température améliorée. Cet alliage présente également une résistance à la corrosion et à l'oxydation améliorée.
  • Ces superalliages présentent une masse volumique inférieure ou égale à 9,00 g/cm3 (gramme par centimètre cube).
  • Une pièce monocristalline en superalliage à base de nickel est obtenue par un procédé de solidification dirigée sous gradient thermique en fonderie à la cire perdue. Le superalliage monocristallin à base de nickel comprend une matrice austénitique de structure cubique à faces centrées, solution solide à base de nickel, dite phase gamma (« γ »). Cette matrice contient des précipités de phase durcissante gamma prime (« γ' ») de structure cubique ordonnée L12 de type Ni3Al. L'ensemble (matrice et précipités) est donc décrit comme un superalliage γ/γ'.
  • Par ailleurs, cette composition du superalliage à base de nickel autorise la mise en oeuvre d'un traitement thermique qui remet en solution les précipités de phase γ' et les phases eutectiques γ/γ' qui se forment lors de la solidification du superalliage. On peut ainsi obtenir un superalliage monocristallin à base de nickel contenant des précipités γ' de taille contrôlée, de préférence comprise entre 300 et 500 nanomètres (nm), et contenant une faible proportion de phases eutectiques γ/γ'.
  • Le traitement thermique permet également de contrôler la fraction volumique des précipités de phase γ' présente dans le superalliage monocristallin à base de nickel. Le pourcentage en volume des précipités de phase γ' peut être supérieur ou égal à 50%, de préférence supérieur ou égal à 60%, encore plus de préférence égal à 70%.
  • Les éléments d'addition majeurs sont le cobalt (Co), le chrome (Cr), le molybdène (Mo), le rhénium (Re), le ruthénium (Ru), le tungstène (W), l'aluminium (AI), le titane (Ti) et le tantale (Ta).
  • Les éléments d'addition mineurs sont le hafnium (Hf) et le silicium (Si), pour lesquels la teneur massique maximale est inférieure à 1 % en masse.
  • Parmi les impuretés inévitables, on peut citer le soufre (S), le carbone (C), le bore (B), l'yttrium (Y), le lanthane (La) et le cérium (Ce). On définit comme impuretés inévitables les éléments qui ne sont pas ajoutés de manière intentionnelle dans la composition et qui sont apportés avec d'autres éléments.
  • L'addition de tungstène, de chrome, de cobalt, de rhénium, de ruthénium ou de molybdène permet principalement de renforcer la matrice austénitique γ de structure cristalline cubique à faces centrées (cfc) par durcissement en solution solide.
  • L'addition d'aluminium (AI), de titane (Ti) ou de tantale (Ta) favorise la précipitation de la phase durcissante γ'-Ni3(Al, Ti, Ta).
  • Le rhénium (Re) permet de ralentir la diffusion des espèces chimiques au sein du superalliage et de limiter la coalescence des précipités de phase γ' en cours de service à haute température, phénomène qui entraîne une réduction de la résistance mécanique. Le rhénium permet ainsi d'améliorer la résistance au fluage à haute température du superalliage à base de nickel. Toutefois, une concentration trop élevée de rhénium peut entraîner la précipitation de phases intermétalliques PTC, par exemple phase σ, phase P ou phase µ, qui ont un effet négatif sur les propriétés mécaniques du superalliage. Une concentration trop élevée en rhénium peut également provoquer la formation d'une zone de réaction secondaire dans le superalliage sous la sous-couche, ce qui a un effet négatif sur les propriétés mécaniques du superalliage. L'addition de ruthénium permet notamment de déplacer une partie du rhénium dans la phase γ' et de limiter la formation de PTC.
  • L'addition simultanée de silicium et de hafnium permet d'améliorer la tenue à l'oxydation à chaud des superalliages à base de nickel en augmentant l'adhérence de la couche d'alumine (Al2O3) qui se forme à la surface du superalliage à haute température. Cette couche d'alumine forme une couche de passivation en surface du superalliage à base de nickel et une barrière à la diffusion de l'oxygène venant de l'extérieur vers l'intérieur du superalliage à base de nickel. Toutefois on peut ajouter du hafnium sans ajouter également de silicium ou inversement ajouter du silicium sans ajouter également du hafnium et quand même améliorer la tenue à l'oxydation à chaud du superalliage.
  • Par ailleurs, l'addition de chrome ou d'aluminium permet d'améliorer la résistance à l'oxydation et à la corrosion à haute température du superalliage. En particulier, le chrome est essentiel pour augmenter la résistance à la corrosion à chaud des superalliages à base de nickel. Toutefois, une teneur trop élevée en chrome tend à réduire la température de solvus de la phase γ' du superalliage à base de nickel, c'est-à-dire la température au-dessus de laquelle la phase γ' est totalement dissoute dans la matrice γ, ce qui est indésirable. Aussi, la concentration en chrome est comprise entre 3,0 à 5,0% en masse afin de conserver une température élevée de solvus de la phase γ' du superalliage à base de nickel, par exemple supérieure ou égale à 1250°C mais également pour éviter la formation de phases topologiquement compactes dans la matrice γ fortement saturée en éléments d'alliages tels que rhénium, le molybdène ou le tungstène.
  • L'addition de cobalt, qui est un élément proche du nickel et qui se substitue partiellement au nickel, forme une solution solide avec le nickel dans la matrice γ. Le cobalt permet de renforcer la matrice γ, de réduire la sensibilité à la précipitation de PTC et à la formation de ZRS dans le superalliage sous le revêtement de protection. Cependant, une teneur trop élevée en cobalt tend à réduire la température de solvus de la phase γ' du superalliage à base de nickel, ce qui est indésirable.
  • L'addition de ruthénium permet de renforcer la matrice γ et de diminuer la sensibilité du superalliage à la formation de PTC. L'addition de ruthénium permet notamment de déplacer une partie du rhénium dans la phase γ' et de limiter la formation de PTC. L'addition de ruthénium peut également avoir un effet bénéfique sur l'adhérence du revêtement céramique.
  • L'addition d'éléments réfractaires, tels que le molybdène, le tungstène, le rhénium ou le tantale permet de ralentir les mécanismes contrôlant le fluage des superalliages à base de nickel et qui dépendent de la diffusion des éléments chimiques dans le superalliage.
  • Une teneur très basse en soufre dans un superalliage à base de nickel permet d'augmenter la résistance à l'oxydation et à la corrosion à chaud ainsi que la tenue à l'écaillage de la barrière thermique. Ainsi, une faible teneur en soufre, inférieure à 2 ppm en masse (partie par million en masse), voire idéalement inférieure à 0,5 ppm en masse, permet d'optimiser ces propriétés. Une telle teneur massique en soufre peut être obtenue par élaboration d'une coulée mère à bas soufre ou par un procédé de désulfuration réalisé après la coulée. Il est notamment possible de maintenir un bas taux de soufre en adaptant le procédé d'élaboration du superalliage.
  • On entend par superalliages à base de nickel, des superalliages dont le pourcentage massique en nickel est majoritaire. On comprend que le nickel est donc l'élément dont le pourcentage massique dans l'alliage est le plus élevé.
  • Le superalliage peut comprendre, en pourcentages massiques, 4,5 à 5,5 % de rhénium, 1,0 à 3,0 de ruthénium, 3,0 à 5,0 % de cobalt, 0,30 à 0,80 % de molybdène, 3,0 à 4,5 % de chrome, 2,5 à 4,0 % de tungstène, 4,5 à 6,5 % d'aluminium, 0,50 à 1,50 % de titane, 8,0 à 9,0 % de tantale, 0,15 à 0,30 % de hafnium, de préférence 0,17 à 0,30 % de hafnium, encore plus de préférence 0,20 à 0,30 % de hafnium, 0,05 à 0,15 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
  • Le superalliage peut comprendre, en pourcentages massiques, 4,0 à 5,5 % de rhénium, 1,0 à 3,0 de ruthénium, 3,0 à 13,0 % de cobalt, 0,40 à 1,00 % de molybdène, 3,0 à 4,5 % de chrome, 2,5 à 4,0 % de tungstène, 4,5 à 6,5 % d'aluminium, 0,50 à 1,50 % de titane, 8,0 à 9,0 % de tantale, 0,15 à 0,30 % de hafnium, de préférence 0,17 à 0,30 % de hafnium, encore plus de préférence 0,20 à 0,30 % de hafnium, 0,05 à 0,15 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
  • Le superalliage peut comprendre, en pourcentages massiques, 4,0 à 5,0 % de rhénium, 1,0 à 3,0 de ruthénium, 11,0 à 13,0 % de cobalt, 0,40 à 1,00 % de molybdène, 3,0 à 4,5 % de chrome, 2,5 à 4,0 % de tungstène, 4,5 à 6,5 % d'aluminium, 0,50 à 1,50 % de titane, 8,0 à 9,0 % de tantale, 0,15 à 0,30 % de hafnium, de préférence 0,17 à 0,30 % de hafnium, encore plus de préférence 0,20 à 0,30 % de hafnium, 0,05 à 0,15 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
  • Le superalliage peut comprendre, en pourcentages massiques, 5,0 % de rhénium, 2,0 de ruthénium, 4,0 % de cobalt, 0,50 % de molybdène, 4,0 % de chrome, 3,0 % de tungstène, 5,4 % d'aluminium, 1,00 % de titane, 8,5 % de tantale, 0,25 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
  • Le superalliage peut comprendre, en pourcentages massiques, 5,0 % de rhénium, 2,0 de ruthénium, 4,0 % de cobalt, 0,50 % de molybdène, 4,0 % de chrome, 3,5 % de tungstène, 5,4 % d'aluminium, 0,90 % de titane, 8,5 % de tantale, 0,25 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
  • Le superalliage peut comprendre, en pourcentages massiques, 4,4 % de rhénium, 2,0 de ruthénium, 4,0 % de cobalt, 0,70 % de molybdène, 4,0 % de chrome, 3,0 % de tungstène, 5,4 % d'aluminium, 1,00 % de titane, 8,5 % de tantale, 0,25 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
  • Le superalliage peut comprendre, en pourcentages massiques, 4,4 % de rhénium, 2,0 de ruthénium, 12,0 % de cobalt, 0,70 % de molybdène, 4,0 % de chrome, 3,0 % de tungstène, 5,4 % d'aluminium, 1,00 % de titane, 8,5 % de tantale, 0,25 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
  • Le superalliage peut comprendre, en pourcentages massiques, 5,0 % de rhénium, 2,0 de ruthénium, 4,0 % de cobalt, 0,50 % de molybdène, 3,5 % de chrome, 3,5 % de tungstène, 5,4 % d'aluminium, 0,90 % de titane, 8,5 % de tantale, 0,25 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
  • Le superalliage peut comprendre, en pourcentages massiques, 4,4 % de rhénium, 2,0 de ruthénium, 12,0 % de cobalt, 0,70 % de molybdène, 3,5 % de chrome, 3,5 % de tungstène, 5,4 % d'aluminium, 0,90 % de titane, 8,5 % de tantale, 0,25 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
  • Le présent exposé concerne également une aube monocristalline pour turbomachine comprenant un superalliage tel que défini précédemment.
  • Cette aube présente donc une résistance au fluage à haute température améliorée.
  • L'aube peut comprendre un revêtement de protection comportant une sous-couche métallique déposée sur le superalliage et une barrière thermique céramique déposée sur la sous-couche métallique.
  • Grâce à la composition du superalliage à base de nickel, la formation d'une zone de réaction secondaire dans le superalliage résultant des phénomènes d'inter-diffusion entre le superalliage et la sous-couche est évitée, ou limitée.
  • La sous-couche métallique peut être un alliage de type MCrAlY ou un alliage de type aluminiure de nickel.
  • La barrière thermique céramique peut être un matériau à base de zircone yttriée ou tout autre revêtement céramique (à base de zircone) à faible conductivité thermique.
  • L'aube peut présenter une structure orientée selon une direction cristallographique <001>.
  • Cette orientation confère généralement les propriétés mécaniques optimales à l'aube.
  • Le présent exposé concerne aussi une turbomachine comprenant une aube telle que définie précédemment.
  • Brève description des dessins
  • D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en référence à la figure unique annexée, sur lesquelles :
    • la figure 1 est une vue schématique en coupe longitudinale d'une turbomachine ;
    • la figure 2 est un graphique représentant le paramètre NFP (No-Freckles Parameter) pour différents superalliages ;
    • la figure 3 est un graphique représentant la fraction volumique de phase γ' à différentes températures et pour différents superalliages.
    Description détaillée de l'invention
  • Les superalliages à base de nickel sont destinés à la fabrication d'aubes monocristallines par un procédé de solidification dirigée dans un gradient thermique. L'utilisation d'un germe monocristallin ou d'un sélecteur de grain en début de solidification permet d'obtenir cette structure monocristalline. La structure est orientée par exemple selon une direction cristallographique <001> qui est l'orientation qui confère, en général, les propriétés mécaniques optimales aux superalliages.
  • Les superalliages monocristallins à base de nickel bruts de solidification ont une structure dendritique et sont constitués de précipités γ' Ni3(Al, Ti, Ta) dispersés dans une matrice γ de structure cubique à faces centrées, solution solide à base de nickel. Ces précipités de phase γ' sont répartis de façon hétérogène dans le volume du monocristal du fait de ségrégations chimiques résultant du procédé de solidification. Par ailleurs, des phases eutectiques γ/γ' sont présentes dans les régions inter-dendritiques et constituent des sites préférentiels d'amorçage de fissures. Ces phases eutectiques γ/γ' se forment en fin de solidification. De plus, les phases eutectiques γ/γ' sont formées au détriment des fins précipités (taille inférieure au micromètre) de phase durcissante γ'. Ces précipités de phase γ' constituent la principale source de durcissement des superalliages à base de nickel. Aussi, la présence de phases eutectiques γ/γ' résiduelles ne permet pas d'optimiser la tenue au fluage à chaud du superalliage à base de nickel.
  • Il a en effet été montré que les propriétés mécaniques des superalliages, en particulier la résistance au fluage, étaient optimales lorsque la précipitation des précipités γ' était ordonnée, c'est-à-dire que les précipités de phase γ' sont alignés de manière régulière, avec une taille allant de 300 à 500 nm, et lorsque la totalité des phases eutectiques γ/γ' était remise en solution.
  • Les superalliages à base de nickel bruts de solidification sont donc traités thermiquement pour obtenir la répartition désirée des différentes phases. Le premier traitement thermique est un traitement d'homogénéisation de la microstructure qui a pour objectif de dissoudre les précipités de phase γ' et d'éliminer les phases eutectiques γ/γ' ou de réduire de manière significative leur fraction volumique. Ce traitement est réalisé à une température supérieure à la température de solvus de la phase γ' et inférieure à la température de fusion commençante du superalliage (Tsolidus). Une trempe est ensuite réalisée à la fin de ce premier traitement thermique pour obtenir une dispersion fine et homogène des précipités γ'. Des traitements thermiques de revenu sont ensuite réalisés en deux étapes, à des températures inférieures à la température de solvus de la phase γ'. Lors d'une première étape, pour faire grossir les précipités γ' et obtenir la taille désirée, puis lors d'une seconde étape, pour faire croître la fraction volumique de cette phase jusqu'à environ 70% à température ambiante.
  • La figure 1 représente, en coupe selon un plan vertical passant par son axe principal A, un turboréacteur à double flux 10. Le turboréacteur à double flux 10 comporte, d'amont en aval selon la circulation du flux d'air, une soufflante 12, un compresseur basse pression 14, un compresseur haute pression 16, une chambre de combustion 18, une turbine haute pression 20, et une turbine basse pression 22.
  • La turbine haute pression 20 comprend une pluralité d'aubes mobiles 20A tournant avec le rotor et de redresseurs 20B (aubes fixes) montés sur le stator. Le stator de la turbine 20 comprend une pluralité d'anneaux 24 de stator disposés en vis-à-vis des aubes mobiles 20A de la turbine 20.
  • Ces propriétés font ainsi de ces superalliages des candidats intéressants pour la fabrication de pièces monocristallines destinées aux parties chaudes des turboréacteurs.
  • On peut donc fabriquer une aube mobile 20A ou un redresseur 20B pour turbomachine comprenant un superalliage tel que défini précédemment.
  • On peut également fabriquer une aube mobile 20A ou un redresseur 20B pour turbomachine comprenant un superalliage tel que défini(e) précédemment revêtu(e) d'un revêtement de protection comprenant une sous-couche métallique
  • Une turbomachine peut notamment être un turboréacteur tel qu'un turboréacteur à double flux 10. La turbomachine peut également être un turboréacteur à simple flux, un turbopropulseur ou un turbomoteur.
  • Exemples
  • Six superalliages monocristallins à base de nickel du présent exposé (Ex 1 à Ex 6) ont été étudiés et comparés à six superalliages monocristallins commerciaux CMSX-4 (Ex 7), CMSX-4PlusC (Ex 8), René N6 (Ex 9), CMSX-10 (Ex 10), MC-NG (Ex 11) et TMS-138 (Ex 12). La composition chimique de chacun des superalliages monocristallins est donnée dans le tableau 1, la composition Ex 9 comportant en outre 0,05 % en masse de carbone (C) et 0,004 % en masse de bore (B), la composition Ex 10 comportant en outre 0,10 % en masse de niobium (Nb). Tous ces superalliages sont des superalliages à base de nickel, c'est-à-dire que le complément à 100 % des compositions présentées est constitué par du nickel et des impuretés inévitables. Tableau 1
    Re Ru Co Mo Cr W Al Ti Ta Hf Si
    Ex 1 5,0 2,0 4,0 0,50 4,0 3,0 5,4 1,00 8,5 0,25 0,10
    Ex 2 5,0 2,0 4,0 0,50 4,0 3,5 5,4 0,90 8,5 0,25 0,10
    Ex 3 4,4 2,0 4,0 0,70 4,0 3,0 5,4 1,00 8,5 0,25 0,10
    Ex 4 4,4 2,0 12,0 0,70 4,0 3,0 5,4 1,00 8,5 0,25 0,10
    Ex 5 5,0 2,0 4,0 0,50 3,5 3,5 5,4 0,90 8,5 0,25 0,10
    Ex 6 4,4 2,0 12,0 0,70 3,5 3,5 5,4 0,90 8,5 0,25 0,10
    Ex 7 3,0 0,0 9,6 0,60 6,6 6,4 5,6 1,00 6,5 0,10 0,00
    Ex 8 4,8 0,0 10,0 0,60 3,5 6,0 5,7 0,85 8,0 0,10 0,00
    Ex 9 5,3 0,0 12,2 1,10 4,4 5,7 6,0 0,00 7,5 0,15 0,00
    Ex 10 6,0 0,0 3,0 0,40 2,0 5,0 5,7 0,20 8,0 0,03 0,00
    Ex 11 4,0 4,0 0,0 1,00 4,0 5,0 6,0 0,50 5,0 0,10 0,10
    Ex 12 4,9 2,0 5,9 2,9 2,9 5,9 5,9 0,00 5,5 0,10 0,00
  • Masse volumique
  • La masse volumique à température ambiante de chaque superalliage a été estimée à l'aide d'une version modifiée de la formule de Hull (F.C. Hull, Metal Progress, Novembre 1969, pp139-140). Cette équation empirique a été proposée par Hull. L'équation empirique est basée sur la loi des mélanges et comprend des termes correctifs déduits d'une analyse par régression linéaire de données expérimentales (compositions chimiques et masses volumiques mesurées) concernant 235 superalliages et aciers inox. Cette formule de Hull a été modifiée, notamment pour tenir compte d'éléments comme le rhénium et le ruthénium. La formule de Hull modifiée est la suivante : D = 27,68 × D 1 + 0,14037 0,00137 % Cr 0,00139 % Ni 0,00142 % Co 0,00140 % Fe 0,00186 % Mo 0,00125 % W 0,00134 % V 0,00119 % Nb 0,00113 % Ta + 0,0004 % Ti + 0,00388 % C + 0,0000187 % Mo 2 0,0000506 % Co × % Ti 0,00096 % Re 0,001131 % Ru
    Figure imgb0001
    • où D1 = 100/[(%Cr/DCr) + (%Ni/DNi)+ .... + (%X/DX)]
    • où DCr, DNi,..., DX sont les masses volumiques des éléments Cr, Ni, ..., X exprimées en Ib/in3 (livre par pouce cube) et D est la masse volumique du superalliage exprimé en g/cm3.
    • où %Cr, %Ni, ...%X sont les teneurs, exprimées en pourcentages massiques, des éléments du superalliage Cr, Ni, ..., X.
  • Les masses volumiques calculées pour les alliages de l'exposé et pour les alliages de référence sont inférieures à 9,00 g/cm3 (voir tableau 2).
  • La comparaison entre les masses volumiques estimées et mesurées (voir tableau 2) permet de valider le modèle de Hull modifié (équation (1)). Les masses volumiques estimées et mesurées sont cohérentes.
  • Le tableau 2 présente différents paramètres pour les superalliages Ex 1 à Ex 12. Tableau 2
    Masse volumique estimée (1) (g/cm3) Masse volumique mesurée (g/cm3) NFP RGP Md
    Ex 1 8,89 - 0,96 0,380 0,98
    Ex 2 - - 0,91 0,376 -
    Ex 3 8,85 - 1,05 0,380 0,98
    Ex 4 8,83 - 1,05 0,380 0,98
    Ex 5 8,91 8,8 0,91 0,376 0,98
    Ex 6 8,86 - 1,00 0,376 0,98
    Ex 7 8,71 - 0,65 0,358 0,99
    Ex 8 8,91 - 0,68 0,371 0,99
    Ex 9 8,87 - 0,69 0,256 0,98
    Ex 10 8,99 - 0,67 0,299 0,96
    Ex 11 8,75 8,75 0,55 0,232 0,97
    Ex 12 8,88 - 0,61 0,215 0,97
  • No-Freckles Parameter (NFP)
  • NFP = % Ta + 1,5 % Hf + 0,5 %Mo 0,5 % % Ti ) / % W + 1,2 % Re )
    Figure imgb0002
    où %Cr, %Ni, ...%X sont les teneurs, exprimées en pourcentages massiques, des éléments du superalliage Cr, Ni, ..., X.
  • Le paramètre NFP permet de quantifier la sensibilité à la formation de grains parasites de type « Freckles » au cours de la solidification dirigée de la pièce (document US 5,888,451 ). Pour éviter la formation de défauts de type « Freckles », le paramètre NFP doit être supérieur ou égal à 0,7.
  • Comme on peut le voir dans le tableau 2 et sur la figure 2, les superalliages Ex 1 à Ex 6 présentent tous un paramètre NFP supérieur ou égal à 0,7 alors que les superalliages commerciaux Ex 7 à Ex 12 présentent un paramètre NFP inférieur à 0,7.
  • Résistance Gamma Prime (RGP)
  • La résistance mécanique intrinsèque de la phase γ' augmente avec la teneur en éléments venant se substituer à l'aluminium dans le composé Ni3Al, comme le titane, le tantale et une partie du tungstène. Le composé de phase γ' peut donc s'écrire Ni3(Al, Ti, Ta, W). Le paramètre RGP permet d'estimer le niveau de durcissement de la phase γ' : RGP = C Ti + C Ta + C W / 2 / C Al
    Figure imgb0003
    où CTi, CTa, CW et CAl sont les concentrations, exprimées en pourcentage atomique, respectives des éléments Ti, Ta, W et AI dans le superalliage.
  • Un paramètre RGP plus élevé est favorable à une meilleure résistance mécanique du superalliage. On peut voir dans le tableau 2 que le paramètre RGP calculé pour les superalliages Ex 1 à Ex 6 est supérieur au paramètre RGP calculé pour les superalliages commerciaux Ex 7 à Ex 12.
  • Sensibilité à la formation de PTC ( d)
  • Le paramètre Md est défini comme s it : M d = i = 1 n X i Md i
    Figure imgb0004
    où Xi est la fraction de l'élément i dans le superalliage exprimée en pourcentage atomique, (Md)i est la valeur du paramètre Md pour l'élément i.
  • Le tableau 3 présente les valeurs de Md pour les différents éléments des superalliages. Tableau 3
    Elément Md Elément Md
    Ti 2,271 Hf 3,02
    Cr 1,142 Ta 2,224
    Co 0,777 W 1,655
    Ni 0,717 Re 1,267
    Nb 2,117 AI 1,9
    Mo 1,55 Si 1,9
    Ru 1,006
  • La sensibilité à la formation de PTC est déterminée par le paramètre Md, selon la méthode New PHACOMP qui a été développée par Morinaga et al. (Morinaga et al., New PHACOMP and its application to alloy design, Superalloys 1984, édité par M Gell et al., The Metallurgical Society of AIME, Warrendale, PA, USA (1984) pp. 523-532). Selon ce modèle, la sensibilité des superalliages à la formation de PTC augmente avec la valeur du paramètre Md.
  • Comme on peut le constater dans le tableau 2, les superalliages Ex 1 à Ex 12 présentent des valeurs du paramètre Md sensiblement égales. Ces superalliages présentent donc des sensibilités similaires à la formation de PTC, sensibilités qui sont relativement faibles.
  • Température de solvus de la phase γ'
  • Le logiciel ThermoCalc (base de donnée Ni25) basé sur la méthode CALPHAD a été utilisé pour calculer la température de solvus de la phase γ' à l'équilibre.
  • Comme on peut le constater dans le tableau 4, les superalliages Ex 1 à Ex 6 présentent une température de solvus γ' élevées, comparables à la température de solvus γ' des superalliages commerciaux Ex 7 à Ex 12.
  • Fraction volumique de phase γ'
  • Le logiciel ThermoCalc (base de donnée Ni25) basé sur la méthode CALPHAD a été utilisé pour calculer la fraction volumique (en pourcentage volumique) de phase γ' à l'équilibre dans les superalliages Ex 1 à Ex 12 à 950°C, 1050°C et 1200°C.
  • Comme on peut le constater dans le tableau 4 et sur la figure 3, les superalliages Ex 1 à Ex 6 contiennent des fractions volumiques de phase γ' supérieures ou comparables aux fractions volumiques de phase γ' des superalliages commerciaux Ex 7 à Ex 12.
  • Ainsi, la combinaison d'une température de solvus γ' élevée et de fractions volumiques de phase γ' élevées pour les superalliages Ex 1 à Ex 6 est favorable à une bonne résistance au fluage à haute température et très haute température, par exemple à 1200°C. Cette résistance doit être ainsi supérieure à la résistance au fluage des superalliages commerciaux Ex 7 à Ex 12. Tableau 4
    Tsolvus γ' (°C) Fraction volumique de phase γ' (% vol)
    950°C 1050°C 1200°C
    Ex 1 1338 67,0 62,0 46,0
    Ex 2 1335 67,6 62,4 45,9
    Ex 3 1337 66,6 61,1 43,2
    Ex 4 1276 60,0 51,2 22,7
    Ex 5 1344 65,0 60,0 46,0
    Ex 6 1295 58,0 50,0 38,0
    Ex 7 1290 58,0 48,0 25,0
    Ex 8 1320 63,0 57,0 36,0
    Ex 9 1283 60,0 51,0 24,0
    Ex 10 1374 65,0 60,0 46,0
    Ex 11 1348 68,0 62,0 45,0
    Ex 12 1321 67,0 58,0 35,0
  • Fraction volumique de PTC de type σ
  • Le logiciel ThermoCalc (base de donnée Ni25) basé sur la méthode CALPHAD a été utilisé pour calculer la fraction volumique (en pourcentage volumique) de phase σ à l'équilibre dans les superalliages Ex 1 à Ex 12 à 950°C et 1050°C (voir tableau 5).
  • Les fractions volumiques calculées de phase σ sont nulles à 950°C pour les superalliages Ex 3, Ex 4 et Ex 6, et relativement faibles pour les superalliages Ex 1 et Ex 5, ce qui traduit une faible sensibilité à la précipitation de PTC. Ces résultats corroborent donc les résultats obtenus avec la méthode New PHACOMP (paramètre Md).
  • Concentration massique de chrome dissous dans la matrice γ
  • Le logiciel ThermoCalc (base de donnée Ni25) basé sur la méthode CALPHAD a été utilisé pour calculer teneur en chrome (en pourcentage massique) dans la phase γ à l'équilibre dans les superalliages Ex 1 à Ex 12 à 950°C, 1050°C et 1200°C.
  • Comme on peut le constater dans le tableau 5, les concentrations en chrome dans la phase γ pour les superalliages Ex 1 à Ex 6 sont comparables aux concentrations en chrome dans la phase γ pour les superalliages commerciaux Ex 7 à Ex 12, ce qui est favorable à une bonne résistance à la corrosion et à l'oxydation à chaud. Tableau 5
    Fraction volumique de PTC de type σ (en % vol) Teneur en chrome dans la phase γ (en % massique)
    950°C 1050°C 950°C 1050°C 1200°C
    Ex 1 0,4 0,00 8,80 7,80 6,00
    Ex 2 0,00 0,00 11,30 9,90 7,30
    Ex 3 0,0 0,00 8,50 7,60 5,80
    Ex 4 0,0 0,00 8,10 5,50 4,80
    Ex 5 0,7 0,05 8,70 7,90 6,30
    Ex 6 0,0 0,00 8,10 7,00 5,20
    Ex 7 0,7 0,00 12,80 10,90 7,84
    Ex 8 1,2 0,50 7,40 6,43 4,82
    Ex 9 1,0 0,25 8,37 7,10 5,25
    Ex 10 0,9 0,40 3,62 3,36 2,77
    Ex 11 0,8 0,20 7,83 7,10 5,70
    Ex 12 0,4 0,60 5,60 4,80 3,70
  • Propriété en fluage à très haute température
  • Des essais en fluage ont été réalisés sur les superalliages Ex 2, Ex 7, Ex 9 et Ex 10. Les essais de fluage sont réalisés à 1200°C et 80 MPa selon la norme NF EN ISO 204 d'août 2009 (Guide U125_J).
  • On a présenté dans le tableau 6 les résultats des essais en fluage dans lesquels les superalliages ont été mis sous charge (80 MPa) à 1200°C. Les résultats représentent le temps en heure (h) à la rupture de l'éprouvette. Tableau 6
    Temps à rupture (heure)
    Ex 2 63
    Ex 7 7
    Ex 9 9
    Ex 10 59
  • Le superalliage Ex 2 présente un meilleur comportement en fluage que les superalliages Ex 7 et Ex 9. Le superalliage Ex 10 présente également de bonnes propriétés en fluage.
  • Propriété en oxydation cyclique à 1150°C
  • Les superalliages sont soumis à un des cycles thermiques tels que décrits dans INS-TTH-001 et INS-TTH-002 : Méthode d'essai de cyclage oxydant (Essai de perte de masse et Barrière thermique).
  • Une éprouvette du superalliage testé (pion ayant un diamètre de 20 mm et une hauteur de 1 mm) est soumise à un cyclage thermique dont chaque cycle comprend une montée à 1150°C en moins de 15 min (minutes), un palier à 1150°C de 60 min et un refroidissement turbiné de l'éprouvette pendant 15 min.
  • Le cycle thermique est répété jusqu'à observation d'une perte de masse de l'éprouvette égale à 20 mg/cm2 (milligrammes par centimètres carrés).
  • La durée de vie des superalliages testés est présentée au tableau 7. Tableau 7
    Durée de vie (heures)
    Ex 2 > 1700
    Ex 7 ∼ 230
    Ex 8 ∼ 480
    Ex 10 ∼ 100
  • On constate que le superalliage Ex 2 présente une durée de vie bien supérieure à celle des superalliages Ex 7, Ex 8 et Ex 9. On notera que les propriétés en oxydation du superalliage Ex 10 sont beaucoup moins bonnes que celle du superalliage Ex 2.
  • Stabilité microstructurale
  • Après un vieillissement de 300 heures à 1050°C, aucune phase PTC n'est observée pour le superalliage Ex 2 par analyse d'image en microscopie électronique à balayage.
  • Sensibilité à la formation de défauts de fonderie
  • Après la mise en forme par procédé de type cire perdue et solidification dirigée en four Bidgman, aucun défaut résultant du procédé de fonderie, notamment de type « Freckles », n'a été observé dans le superalliage Ex 2. Les défauts de type « Freckels » sont observés après immersion de l'éprouvette dans une solution à base de HNO3/H2SO4.
  • Quoique le présent exposé ait été décrit en se référant à un exemple de réalisation spécifique, il est évident que différentes modifications et changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l'invention telle que définie par les revendications. En outre, des caractéristiques individuelles des différents modes de réalisation évoqués peuvent être combinées dans des modes de réalisation additionnels. Par conséquent, la description et les dessins doivent être considérés dans un sens illustratif plutôt que restrictif.

Claims (14)

  1. Superalliage à base de nickel comprenant, en pourcentages massiques, 4,0 à 5,5 % de rhénium, 1,0 à 3,0 % de ruthénium, 2,0 à 14,0 % de cobalt, 0,30 à 1,00 % de molybdène, 3,0 à 5,0 % de chrome, 2,5 à 4,0 % de tungstène, 4,5 à 6,5 % d'aluminium, 0,50 à 1,50 % de titane, 8,0 à 9,0 % de tantale, 0,15 à 0,30 % de hafnium, 0,05 à 0,15 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
  2. Superalliage selon la revendication 1, comprenant 4,5 à 5,5 % de rhénium, 3,0 à 5,0 % de cobalt, 0,30 à 0,80 % de molybdène et 3,0 à 4,5 % de chrome.
  3. Superalliage selon la revendication 1, comprenant3,0 à 13,0 % de cobalt, 0,40 à 1,00 % de molybdène et 3,0 à 4,5 % de chrome.
  4. Superalliage selon la revendication 3, comprenant 4,0 à 5,0 % de rhénium et 11,0 à 13,0 % de cobalt.
  5. Superalliage selon la revendication 3, comprenant 5,0 % de rhénium, 2,0 % de ruthénium, 4,0 % de cobalt, 0,50 % de molybdène, 4,0 % de chrome, 3,0 % de tungstène, 5,4 % d'aluminium, 1,00 % de titane, 8,5 % de tantale, 0,25 % de hafnium et 0,10 % de silicium.
  6. Superalliage selon la revendication 3, comprenant 4,4 % de rhénium, 2,0 % de ruthénium, 4,0 % de cobalt, 0,70 % de molybdène, 4,0 % de chrome, 3,0 % de tungstène, 5,4 % d'aluminium, 1,00 % de titane, 8,5 % de tantale, 0,25 % de hafnium et 0,10 % de silicium.
  7. Superalliage selon la revendication 4, comprenant 4,4 % de rhénium, 2,0 % de ruthénium, 12,0 % de cobalt, 0,70 % de molybdène, 4,0 % de chrome, 3,0 % de tungstène, 5,4 % d'aluminium, 1,00 % de titane, 8,5 % de tantale, 0,25 % de hafnium et 0,10 % de silicium.
  8. Superalliage selon la revendication 3, comprenant 5,0 % de rhénium, 2,0 % de ruthénium, 4,0 % de cobalt, 0,50 % de molybdène, 3,5 % de chrome, 3,5 % de tungstène, 5,4 % d'aluminium, 0,90 % de titane, 8,5 % de tantale, 0,25 % de hafnium et 0,10 % de silicium.
  9. Superalliage selon la revendication 3, comprenant 5,0 % de rhénium, 2,0% de ruthénium, 4,0 % de cobalt, 0,50 % de molybdène, 4,0 % de chrome, 3,5 % de tungstène, 5,4 % d'aluminium, 0,90 % de titane, 8,5 % de tantale, 0,25 % de hafnium et 0,10 % de silicium.
  10. Superalliage selon la revendication 4, comprenant 4,4 % de rhénium, 2,0 % de ruthénium, 12,0 % de cobalt, 0,70 % de molybdène, 3,5 % de chrome, 3,5 % de tungstène, 5,4 % d'aluminium, 0,90 % de titane, 8,5 % de tantale, 0,25 % de hafnium et 0,10 % de silicium.
  11. Aube (20A, 20B) monocristalline pour turbomachine comprenant un superalliage selon l'une quelconque des revendications 1 à 10.
  12. Aube (20A, 20B) selon la revendication 11, comprenant un revêtement de protection comportant une sous-couche métallique déposée sur le superalliage et une barrière thermique céramique déposée sur la sous-couche métallique.
  13. Aube (20A, 20B) selon la revendication 11 ou 12, présentant une structure orientée selon une direction cristallographique <001>.
  14. Turbomachine comprenant une aube (20A, 20B) selon l'une quelconque des revendications 11 à 13.
EP18821710.3A 2017-11-14 2018-11-14 Superalliage a base de nickel, aube monocristalline et turbomachine Active EP3710610B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1760679A FR3073527B1 (fr) 2017-11-14 2017-11-14 Superalliage a base de nickel, aube monocristalline et turbomachine
PCT/FR2018/052839 WO2019097162A1 (fr) 2017-11-14 2018-11-14 Superalliage a base de nickel, aube monocristalline et turbomachine

Publications (2)

Publication Number Publication Date
EP3710610A1 EP3710610A1 (fr) 2020-09-23
EP3710610B1 true EP3710610B1 (fr) 2023-04-05

Family

ID=61750233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18821710.3A Active EP3710610B1 (fr) 2017-11-14 2018-11-14 Superalliage a base de nickel, aube monocristalline et turbomachine

Country Status (7)

Country Link
US (2) US11396685B2 (fr)
EP (1) EP3710610B1 (fr)
JP (1) JP7305660B2 (fr)
CN (1) CN111630195A (fr)
CA (1) CA3081896A1 (fr)
FR (1) FR3073527B1 (fr)
WO (1) WO2019097162A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3073527B1 (fr) * 2017-11-14 2019-11-29 Safran Superalliage a base de nickel, aube monocristalline et turbomachine
FR3097879B1 (fr) * 2019-06-28 2021-05-28 Safran Aircraft Engines Procede de fabrication d’une piece en superalliage monocristallin
FR3101643B1 (fr) * 2019-10-08 2022-05-06 Safran Piece d'aeronef en superalliage comprenant du rhenium et/ou du ruthenium et procede de fabrication associe
FR3108365B1 (fr) 2020-03-18 2022-09-09 Safran Helicopter Engines Aube pour turbomachine comprenant un revetement anticorrosion, turbomachine comprenant l’aube et procede de depot du revetement sur l’aube
FR3125067B1 (fr) * 2021-07-07 2024-01-19 Safran Superalliage a base de nickel, aube monocristalline et turbomachine
FR3138451A1 (fr) * 2022-07-28 2024-02-02 Safran Procédé d’application de revêtement et aube de turbine avec revêtement appliqué suivant ce procédé

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1212020A (fr) * 1981-09-14 1986-09-30 David N. Duhl Elements mineurs d'apport aux monocristaux pour ameliorer leur resistance a l'oxydation
US5151249A (en) * 1989-12-29 1992-09-29 General Electric Company Nickel-based single crystal superalloy and method of making
US5270123A (en) 1992-03-05 1993-12-14 General Electric Company Nickel-base superalloy and article with high temperature strength and improved stability
US5366695A (en) 1992-06-29 1994-11-22 Cannon-Muskegon Corporation Single crystal nickel-based superalloy
US5482789A (en) 1994-01-03 1996-01-09 General Electric Company Nickel base superalloy and article
DE19624055A1 (de) * 1996-06-17 1997-12-18 Abb Research Ltd Nickel-Basis-Superlegierung
US6015630A (en) * 1997-04-10 2000-01-18 The University Of Connecticut Ceramic materials for thermal barrier coatings
JPH11310839A (ja) * 1998-04-28 1999-11-09 Hitachi Ltd 高強度Ni基超合金方向性凝固鋳物
FR2780982B1 (fr) 1998-07-07 2000-09-08 Onera (Off Nat Aerospatiale) Superalliage monocristallin a base de nickel a haut solvus
DE59904846D1 (de) 1999-05-20 2003-05-08 Alstom Switzerland Ltd Nickel-Basis-Superlegierung
US6444057B1 (en) 1999-05-26 2002-09-03 General Electric Company Compositions and single-crystal articles of hafnium-modified and/or zirconium-modified nickel-base superalloys
EP1498503B1 (fr) * 2002-03-27 2011-11-23 National Institute for Materials Science Superalliage a base de ni solidifie de maniere directionnelle et superalliage a cristal unique a base de ni
US6929868B2 (en) * 2002-11-20 2005-08-16 General Electric Company SRZ-susceptible superalloy article having a protective layer thereon
RU2293782C1 (ru) 2005-08-15 2007-02-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Никелевый жаропрочный сплав для монокристаллического литья и изделие, выполненное из него
JP5344453B2 (ja) * 2005-09-27 2013-11-20 独立行政法人物質・材料研究機構 耐酸化性に優れたNi基超合金
JP5146867B2 (ja) * 2006-08-18 2013-02-20 独立行政法人物質・材料研究機構 高温耐久性に優れた耐熱部材
CA2663632C (fr) 2006-09-13 2014-04-15 National Institute For Materials Science Superalliage monocristallin a base de ni
US20090123722A1 (en) * 2007-11-08 2009-05-14 Allen David B Coating system
US8449262B2 (en) 2009-12-08 2013-05-28 Honeywell International Inc. Nickel-based superalloys, turbine blades, and methods of improving or repairing turbine engine components
JP5645093B2 (ja) * 2010-10-19 2014-12-24 独立行政法人物質・材料研究機構 耐熱ボンドコート層を設けたNi基超合金部材
CN102732750B (zh) * 2011-04-08 2015-06-10 中国科学院金属研究所 一种低成本、低密度镍基单晶高温合金
US9518311B2 (en) 2014-05-08 2016-12-13 Cannon-Muskegon Corporation High strength single crystal superalloy
GB2540964A (en) 2015-07-31 2017-02-08 Univ Oxford Innovation Ltd A nickel-based alloy
DE102016202837A1 (de) 2016-02-24 2017-08-24 MTU Aero Engines AG Wärmebehandlungsverfahren für Bauteile aus Nickelbasis-Superlegierungen
FR3073527B1 (fr) * 2017-11-14 2019-11-29 Safran Superalliage a base de nickel, aube monocristalline et turbomachine

Also Published As

Publication number Publication date
FR3073527B1 (fr) 2019-11-29
JP7305660B2 (ja) 2023-07-10
WO2019097162A1 (fr) 2019-05-23
US11396685B2 (en) 2022-07-26
CN111630195A (zh) 2020-09-04
US20210246533A1 (en) 2021-08-12
EP3710610A1 (fr) 2020-09-23
BR112020009498A2 (pt) 2020-11-03
RU2020119485A3 (fr) 2021-12-15
FR3073527A1 (fr) 2019-05-17
JP2021503043A (ja) 2021-02-04
RU2020119485A (ru) 2021-12-15
CA3081896A1 (fr) 2019-05-23
US11725261B2 (en) 2023-08-15
US20220364208A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
EP3710610B1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
EP3532648B1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine.
EP3710611B1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
EP3802895B1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
WO2023281205A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
WO2022269158A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
WO2024047315A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
WO2022269177A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
FR3121453A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
WO2024209156A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
EP3911774B1 (fr) Superalliage a base de nickel a tenue mecanique elevee a haute temperature
EP3918101B1 (fr) Superalliage a base de nickel a tenue mecanique et environnementale elevee a haute temperature et a faible densite
FR3117506A1 (fr) Procede de fabrication d&#39;une piece en superalliage monocristallin
FR3117507A1 (fr) Procede de fabrication d&#39;une piece en superalliage monocristallin
WO2020260645A1 (fr) Procédé de fabrication d&#39;une pièce en superalliage monocristallin

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210901

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1558298

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018048139

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230405

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1558298

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230807

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230805

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230706

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018048139

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231019

Year of fee payment: 6

Ref country code: DE

Payment date: 20231019

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231114

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130