EP3990672A1 - Procédé de fabrication d'une pièce en superalliage monocristallin - Google Patents

Procédé de fabrication d'une pièce en superalliage monocristallin

Info

Publication number
EP3990672A1
EP3990672A1 EP20734082.9A EP20734082A EP3990672A1 EP 3990672 A1 EP3990672 A1 EP 3990672A1 EP 20734082 A EP20734082 A EP 20734082A EP 3990672 A1 EP3990672 A1 EP 3990672A1
Authority
EP
European Patent Office
Prior art keywords
temperature
superalloy
homogenization
phase
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20734082.9A
Other languages
German (de)
English (en)
Inventor
Satoshi Utada
Joël DELAUTRE
Sarah Hamadi
Jonathan CORMIER
Patrick VILLECHAISE
Jérémy RAME
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecole Nationale Superieure De Mecanique Et D aerotechnique De Poitiers
Ecole Nat Superieure De Mecanique Et D Aerotechnique De Poitiers
Safran Aircraft Engines SAS
Centre National de la Recherche Scientifique CNRS
Universite de Poitiers
Original Assignee
Ecole Nationale Superieure De Mecanique Et D aerotechnique De Poitiers
Ecole Nat Superieure De Mecanique Et D Aerotechnique De Poitiers
Safran Aircraft Engines SAS
Centre National de la Recherche Scientifique CNRS
Universite de Poitiers
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole Nationale Superieure De Mecanique Et D aerotechnique De Poitiers, Ecole Nat Superieure De Mecanique Et D Aerotechnique De Poitiers, Safran Aircraft Engines SAS, Centre National de la Recherche Scientifique CNRS, Universite de Poitiers filed Critical Ecole Nationale Superieure De Mecanique Et D aerotechnique De Poitiers
Publication of EP3990672A1 publication Critical patent/EP3990672A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys

Definitions

  • TITLE PROCESS FOR MANUFACTURING A PART IN SUPERALLY
  • the present invention relates to an aircraft part, such as a turbine blade or a nozzle vane, as well as to a method of manufacturing such a part.
  • Materials made from nickel-based monocrystalline superalloys exhibit mechanical properties that allow them to resist creep at high temperatures, for example above 900 ° C, and particularly high oxidation resistance compared to other metal alloys.
  • the monocrystalline superalloy is used for the manufacture of many turbomachine parts, such as turbine blades.
  • the manufacture of monocrystalline superalloy parts comprises, in a known manner, a part foundry step, during which the superalloy in liquid form is poured into a ceramic mold, formed beforehand by molten wax.
  • the microstructure of the as-cast alloy exhibits numerous chemical heterogeneities. Indeed, the solidification of the alloy does not take place by flat growth, but by dendritic growth. Thus, the heart, the different layers of the dendrites and the interdendritic zones do not have the same chemical composition, because their solidification took place successively.
  • the Y'-genes for example Al, Ta and Ti
  • segregate in the liquid metal differently from W or Mo which are in high concentration in the heart of the dendrites.
  • Dissolution can be either partial, that is to say subsolvus, for example by treating the part at a temperature below 50 ° C than the temperature of the solvus of the superalloy. Dissolution can also be complete, supersolvus, for example by treating the part at a temperature close to the solvus of g ′, for example 50 ° C higher than the temperature of the solvus of Y ’.
  • the solution temperature 51 is between the solvus and the solidus, for example at 1300 ° C. At this temperature, clusters of eutectics dissolve, allowing better distribution of phase g ', while remaining below the melting point of the alloy. However, the size, distribution, and morphology of the g 'phase precipitates do not optimize the part's creep resistance.
  • the part is treated, after placing in solution, with a first tempering R1, at 1,100 ° C. for five hours. This treatment makes it possible to optimize the size, the morphology and the distribution of the precipitates g ′.
  • the part is treated, after the first tempering R1, with a second tempering R2, at 870 ° C., for 16 hours.
  • the second tempering R2 makes it possible to increase the volume fraction of the phase g ′ of the superalloy.
  • the superalloy AM1 comprises cubic precipitates g 'distributed in a homogeneous and aligned manner.
  • the part in monocrystalline superalloy may, during its manufacture, undergo a deformation, and in particular a plastic deformation D1, at low temperature.
  • a deformation can be caused, for example, by the action of the casting mold on the part during demolding, by a local concentration of mechanical stresses during the cooling process of the part due to a cooling rate gradient local, by the assembly of the part to another module, or by an unexpected shock when handling the part.
  • a plastic deformation is intentionally applied to the part in order to straighten it.
  • the plastic deformation D1 applied to the part causes a defect in the microstructure of the part. If the part is placed, following plastic deformation D1, in a high temperature atmosphere, for example above 900 ° C, the defect can lead to a modification of the crystalline structure of the part. This recrystallization can lead to a reduction in the life of the part under working conditions.
  • Figure 3 and Figure 4 are photomicrographs showing the structure of a superalloy after undergoing plastic deformation D1. Bands revealing the evolution of the microstructure caused by the plastic deformation D1 are visible.
  • the scale in Figure 3 corresponds to a length of 100 ⁇ m.
  • the scale in Figure 4 corresponds to a length of 10 ⁇ m.
  • An object of the invention is to provide a solution to prevent recrystallization of a nickel-based superalloy part following a plastic deformation undergone by the part.
  • the strain can be evenly distributed throughout the part before the first income.
  • recrystallization can be avoided during tempering.
  • the invention is advantageously supplemented by the following characteristics, taken individually or in any of their
  • the superalloy is predominantly composed of nickel and has a mass fraction of chromium between 7% and 9%, cobalt between 5.5% and 7.5%, aluminum between 4% and 6%, titanium between between 1% and 2%, tantalum between 7% and 9%, molybdenum between 1% and 3%, tungsten between 4.5% and 6.5%, the superalloy also comprising carbon and zirconium ,
  • the superalloy is mainly composed of nickel and preferably has a mass fraction of chromium between 2.5% and 4.5%, cobalt between 9% and 11%, aluminum between 4.5% and 6, 5%, titanium between 0.5% and 1%, tantalum between 7% and 9%, molybdenum between 0.3% and 1%, tungsten between 5% and 7%, rhenium between between 4% and 5.5%.
  • the homogenization of the crystalline structure of the part is implemented by heat treatment of the part at a second temperature T 2 greater than the solvus temperature of phase g 'and strictly lower than the first temperature T
  • the homogenization is carried out by the heat treatment of the part at a second temperature T 2 for at least 10 minutes, in particular for 20 minutes, and preferably for one hour,
  • the second temperature T 2 is strictly between 1280 C and 1350 ° C, in particular between 1280 ° C and 1300 ° C and preferably between 1285 ° C and 1295 ° C,
  • the molding step is followed by a demolding step, and the step of homogenizing the crystalline structure of the part is carried out after the demolding step,
  • the homogenization of the crystalline structure of the part is implemented by a heat treatment of the part at a temperature T between 800 ° C and 1000 ° C, a tensile stress being applied to the part during the heat treatment at the temperature T 3 so as to cause plastic deformation of the part,
  • the application of the tensile stress is oriented in a direction of traction, and is removed as soon as the length of the part in the direction of tension is greater than 1.008 times the initial length of the part in the direction of traction,
  • the first tempering is implemented at a fourth temperature T of between 1000 ° C and 1200 ° C for at least 3 hours
  • the second tempering is implemented at a fifth temperature T 5 of between 800 ° C and 900 ° C at least for 10 hours.
  • FIG. 2 illustrates a process for manufacturing the nickel-based superalloy AM1 of the prior art
  • FIG. 3 is a photomicrograph of a section of a superalloy according to the prior art
  • FIG. 4 is a photomicrograph of a section of the prior art superalloy, the scale bar corresponding to a length of 100 miti,
  • FIG. 5 illustrates a method of manufacturing the nickel-based superalloy AM1 according to one embodiment of the invention in which the homogenization of the crystalline structure of the part is implemented by a heat treatment of the part at a second temperature T 2 higher than the solvus temperature of phase y 'and strictly lower than the first temperature T 1 f the scale bar corresponding to a length of 10 miti,
  • FIG. 6 illustrates a method of manufacturing the nickel-based superalloy AM1 according to one embodiment of the invention in which the homogenization of the crystalline structure of the part is implemented by a heat treatment of the part at a temperature T 3 between 800 ° C and 1000 ° C, a tensile stress being applied to the part during the heat treatment at temperature T 3 so as to cause plastic deformation of the part,
  • FIG. 7 is a photomicrograph of a section of a superalloy according to an embodiment of the invention, the scale bar corresponding to a length of 1 ⁇ m,
  • FIG. 8 is a photomicrograph of a section of superalloy according to one embodiment of the invention, the scale bar corresponding to a length of 100 miti,
  • FIG. 9 is a photomicrograph of a section of superalloy according to one embodiment of the invention, the scale bar corresponding to a length of 10 miti, [Fig. 10] - Figure 10 illustrates the flow of parts according to different embodiments of the invention.
  • alloy denotes an alloy exhibiting, at high temperature and at high pressure, very good resistance to oxidation, corrosion, creep and cyclic stresses (in particular mechanical or thermal).
  • a superalloy can have a two-phase microstructure comprising a first phase (called “y phase”) forming a matrix, and a second phase (called “y phase”) forming precipitates hardening in the matrix.
  • the coexistence of these two phases is referred to as the y-y ’phase.
  • the "base” of the superalloy refers to the main metal component of the matrix. In most cases, superalloys include a cobalt or nickel base. The base of the superalloy is preferably a nickel base.
  • Nickel-based superalloys have the advantage of offering a good compromise between resistance to oxidation, resistance to breakage at high temperature and weight, which justifies their use in the hottest parts of turbojets.
  • the phase y ' has an ordered L12 structure, derived from the face-centered cubic structure, consistent with the matrix, that is to say having an atomic lattice very close to the latter. Due to its ordered character, the y 'phase has the remarkable property of having a mechanical resistance which increases with temperature up to 800 ° C approximately.
  • the very strong coherence between phases g and g 'confers a very high mechanical resistance to hot nickel-based superalloys, which itself depends on the ratio g / g' and on the size of the hardening precipitates.
  • mass fraction refers to the ratio of the mass of an element or a group of elements to the total mass.
  • the aircraft part includes a single crystal nickel base superalloy substrate.
  • the superalloy chosen can be mainly composed of nickel and preferably have a mass fraction of chromium between 7% and 9%, cobalt between 5.5% and 7.5%, aluminum between 4% and 6%, titanium between 1% and 2%, tantalum between 7% and 9%, molybdenum between 1% and 3%, tungsten between 4.5% and 6.5%, the superalloy also comprising carbon and zirconium.
  • the superalloy called “AM1” registered trademark
  • a method of manufacturing a part comprises a step of molding the part at a temperature above the melting temperature of the superalloy.
  • the method comprises, after the molding step, a solution S1 of the part.
  • the part is dissolved at a temperature T.
  • the temperature 7 ⁇ is between the solvus temperature of phase y 'and the melting temperature of the superalloy.
  • the solution allows the diffusion of the elements of the superalloy in the substrate of the part. The concentration of the various elements in the substrate is thus homogenized.
  • the part is then cooled to room temperature at a controlled rate.
  • the part can then be removed from the mold. For example, it is possible to break the mold using vibrations. Demoulding can lead to a high local concentration of stresses on the part, these stresses leading to plastic deformation D1.
  • the part can undergo plastic deformation D1 by other means, such as joining the part to another part, handling or moving the part.
  • the plastic deformation D1 can be unintentional.
  • a step of homogenization S2 of the crystalline structure of the part is implemented following the plastic deformation (s) undergone by the part.
  • the homogenization S2 can be implemented by a heat treatment of the part at a second temperature T 2 higher than the solvus temperature of phase g ′ and strictly lower than the first temperature Ti.
  • T 2 higher than the solvus temperature of phase g ′ and strictly lower than the first temperature Ti.
  • the temperature corresponding to the solvus of the superalloy decreases after the solution S1.
  • the upper limit of the second temperature T 2 makes it possible to avoid recrystallization of the substrate during homogenization 52.
  • the temperature is high enough to reduce the internal stresses caused by the plastic deformation in an efficient manner.
  • the lower limit of the temperature T 2 makes it possible to avoid recrystallization of the substrate during one or more subsequent tempering and during the homogenization S2.
  • the second temperature T 2 is preferably strictly between 128CT C and 1350 ° C, in particular between 128CT C and 130CT C, and preferably between 1285 ° C and 1295T.
  • the second temperature T 2 can be between 1330 ° C and 1335 ° C.
  • the homogenization S2 is carried out by the heat treatment of the part at a second temperature T 2 for at least 10 minutes, in particular for 20 minutes, and preferably for one hour.
  • the homogenization treatment time S2 is adapted to the kinetics of the homogenization reaction S2 in the substrate of the part.
  • the S2 homogenization of the crystalline structure of the part can be implemented by a heat treatment of the part at a third temperature T 3 between 800 ° C and 1000 ° C, a tensile stress being applied to the part during the heat treatment at the third temperature T 3 so as to cause plastic deformation of the part.
  • the plastic deformation is intentional.
  • the combined effect of the heat treatment carried out at the third temperature and of the tensile stress makes it possible to produce homogeneous dislocations at the interfaces of the matrix g and the precipitates g '.
  • the effect of plastic deformation in the microstructure is no longer visible after S2 homogenization.
  • the S2 homogenization eliminates the trace of stresses located in the substrate.
  • the microstructure of the superalloy directly after homogenization 52 shows precipitates of g ’into cuboids.
  • the part is cooled to room temperature.
  • a first tempering R1 at a fourth temperature T 4 of between 1000 ° C and 120CT C for at least 3 hours, and a second tempering R2 at a fifth temperature T 5 of between 80CTC and 90CT C for at least 10 hours are then put into operation.
  • artwork These treatments make it possible to optimize the size, the morphology and the distribution of the precipitates g ', as well as their volume fraction.
  • the tensile stress is preferentially applied to the part so that the strain rate is less than 10 3 s ⁇ 1 at any point of the part.
  • the strain rate is less than 10 3 s ⁇ 1 at any point of the part.
  • the homogenization S2 comprises a heat treatment of the part at a third temperature T 3 of between 800 ° C and 1000 ° C and a tensile stress
  • the form of precipitates g after the income is different from the known cuboid shape of the AM1 superalloy.
  • Figure 10 illustrates a creep test.
  • Curve (a) corresponds to a measurement of the elongation of a known part, which has not undergone plastic deformation.
  • Curve (b) corresponds to a measurement of the elongation of a known part which has undergone plastic deformation.
  • Curve (c) corresponds to a measurement of the elongation of a part manufactured by a method according to one embodiment of the invention, the method comprising a step of homogenization S2 of the crystalline structure of the part used.
  • the curve (d) corresponds to a measurement of the elongation of a part manufactured by a method according to one embodiment of the invention, the method comprising a step of homogenization S2 of the crystalline structure of the part implemented by a heat treatment of the part at a third temperature T of between 800 ° C. and 1000 ° C, a tensile stress being applied to the part during the heat treatment at temperature T 3 so as to cause plastic deformation of the part.
  • the plastic deformation of the part corresponding to curve (b) reduces the life of the part due to recrystallization during creep.
  • the creep time of the part corresponding to the curve (c) is greater than that of the part corresponding to the model (a).
  • the creep time of the part corresponding to curve (d) is 85% of that of the part corresponding to model (a).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Powder Metallurgy (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'une pièce d'aéronef, la pièce comprenant un substrat en superalliage base nickel monocristallin, le procédé mettant successivement en œuvre les étapes de moulage de la pièce à une température de moulage supérieure à la température de fusion du superalliage, et refroidissement de la pièce, de manière à ce que le superalliage monocristallin présente une phase γ et une phase γ', de mise en solution de la pièce à une première température comprise entre la température de solvus de la phase γ' et la température de fusion du superalliage, homogénéisation de la structure cristalline de la pièce, refroidissement de la pièce à température ambiante, de premier revenu et deuxième revenu.

Description

DESCRIPTION
TITRE : PROCEDE DE FABRICATION D’UNE PIECE EN SUPERALLIAGE
MONOCRISTALLIN
DOMAINE DE L'INVENTION
La présente invention concerne une pièce d’aéronef, telle qu’une aube de turbine ou une ailette de distributeur, ainsi qu’un procédé de fabrication d’une telle pièce.
ETAT DE LA TECHNIQUE
Il est désirable de diminuer la consommation en carburant des turbomachines d’aéronefs. A cet effet, il est connu qu’il faut augmenter la température des gaz de carburant brûlé dans la turbomachine et diminuer la quantité d’air utilisée dans pour le refroidissement d’une turbine de la turbomachine. Cependant, la résistance au fluage des matériaux utilisés pour la fabrication des pièces de turbine diminue au-dessus de températures élevées, par exemple au-dessus de 900 ° C.
Les matériaux fabriqués en superalliage monocristallin base nickel présentent des propriétés mécaniques leur permettant de résister au fluage à haute température, par exemple au-dessus de 900° C, et une résistance à l’oxydation particulièrement élevée au regard d’autres alliages métalliques. Ainsi, le superalliage monocristallin est utilisé pour la fabrication de nombreuses pièces de turbomachine, comme les aubes de turbine.
La fabrication de pièces en superalliage monocristallin comprend, de manière connue, une étape de fonderie de la pièce, lors de laquelle le superalliage sous forme liquide est versé dans un moule en céramique, formé au préalable par cire fondue.
La microstructure de l’alliage brut de coulée présente de nombreuses hétérogénéités chimiques. En effet, la solidification de l’alliage ne se fait pas par croissance plane, mais par croissance dendritique. Ainsi, le cœur, les différentes couches des dendrites et les zones interdendritiques n’ont pas la même composition chimique, car leur solidification a eu lieu de manière successive. De plus, durant la solidification de l’alliage, les éléments Y’-gènes (par exemple Al, Ta et Ti) ségrégent dans le métal liquide, différemment du W ou du Mo qui sont en concentration importante au cœur des dendrites. Ces inhomogénéités diminuent la résistance au fluage du superalliage.
A cet effet, il est connu de traiter thermiquement la pièce de manière à permettre la diffusion des éléments du superalliage et ainsi homogénéiser leur concentration dans la pièce. Ce traitement est communément appelé la mise en solution. La mise en solution peut être soit partielle, c’est-à-dire subsolvus, par exemple en traitant la pièce à une température inférieure à 50 ° C à la température du solvus du superalliage. La mise en solution peut également être complète, supersolvus, par exemple en traitant la pièce à une température proche du solvus de g’, par exemple 50° C supérieure à la température du solvus de Y’.
En référence à la figure 1 et à la figure 2, dans le cas du superalliage AM1 , la température de mise en solution 51 est comprise entre le solvus et le solidus, par exemple à 1300° C. A cette température, des amas d’eutectiques se dissolvent, permettant une meilleure distribution de la phase g’, tout en restant en dessous du seuil de fusion de l’alliage. Cependant, la taille, la distribution, et la morphologie des précipités de phase g’ ne permettent pas d’optimiser la résistance au fluage de la pièce.
A cet effet, il est connu de traiter thermiquement la pièce suite à la mise en solution 51 . Ce ou ces traitements thermiques sont communément appelés traitements thermiques de vieillissement ou revenus. Dans le cas du superalliage AM1 , la pièce est traitée, après la mise en solution, par un premier revenu R1 , à 1 100° C pendant cinq heures. Ce traitement permet d’optimiser la taille, la morphologie et la distribution des précipités g’. La pièce est traitée, après le premier revenu R1 , par un deuxième revenu R2, à 870° C, pendant 16 heures. Le deuxième revenu R2 permet d’accroître la fraction volumique de la phase g’ du superalliage. Après la mise en solution S1 , le premier revenu R1 et le deuxième revenu R2, le superalliage AM1 comprend des précipités cubiques g’ distribués de manière homogène et alignée.
En référence à la figure 2, la pièce en superalliage monocristallin peut, lors de sa fabrication, subir une déformation, et en particulier une déformation plastique D1 , à basse température. Une telle déformation peut être entraînée, par exemple, par l’action du moule de coulée sur la pièce lors du démoulage, par une concentration locale de contraintes mécaniques lors du processus de refroidissement de la pièce en raison d’un gradient de vitesse de refroidissement local, par l’assemblage de la pièce à un autre module, ou par un choc inattendu lors de la manipulation de la pièce. En particulier, si la pièce présente un défaut géométrique entraîné par le retrait de la pièce du moule de coulée, une déformation plastique est appliquée intentionnellement sur la pièce de manière à la redresser.
La déformation plastique D1 appliquée à la pièce entraîne un défaut dans la microstructure de la pièce. Si la pièce est placée, suite à la déformation plastique D1 , dans une atmosphère à haute température, par exemple supérieure à 900’C, le défaut peut entraîner une modification de la structure cristalline de la pièce. Cette recristallisation peut entraîner une diminution de la durée de vie de la pièce en conditions de travail.
La figure 3 et la figure 4 sont des microphotographies illustrant la structure d’un superalliage après avoir subi une déformation plastique D1 . Des bandes révélant l’évolution de la microstructure entraînée par la déformation plastique D1 sont visibles. L’échelle de la figure 3 correspond à une longueur de 100 pm. L’échelle de la figure 4 correspond à une longueur de 10 pm.
EXPOSE DE L'INVENTION
Un but de l’invention est de proposer une solution pour empêcher la recristallisation d’une pièce en superalliage base nickel suite à une déformation plastique subie par la pièce.
Ce but est atteint dans le cadre de la présente invention grâce à un procédé de fabrication d’une pièce d’aéronef, la pièce comprenant un substrat en superalliage base nickel monocristallin, le procédé mettant successivement en œuvre les étapes de :
- moulage de la pièce à une température de moulage supérieure à la température de fusion du superalliage, et refroidissement de la pièce, de manière à ce que le superalliage monocristallin présente une phase g et une phase g’,
- mise en solution de la pièce à une première température T ! comprise entre la température de solvus de la phase g’ et la température de fusion du superalliage,
- refroidissement de la pièce, par exemple à température ambiante, homogénéisation de la structure cristalline de la pièce,
- refroidissement de la pièce, par exemple à température ambiante,
- premier revenu et deuxième revenu.
Comme le traitement d’homogénéisation de la structure cristalline est mis en œuvre entre le moment auquel une déformation plastique peut être appliquée à la pièce et entre le premier revenu, la déformation peut être répartie de manière homogène dans l’ensemble de la pièce avant le premier revenu. Ainsi, une recristallisation peut être évitée pendant les revenus.
L'invention est avantageusement complétée par les caractéristiques suivantes, prises individuellement ou en l’une quelconque de leurs
combinaisons techniquement possibles :
- le superalliage est majoritairement composé de nickel et présente une fraction massique en chrome comprise entre 7% et 9%, en cobalt comprise entre 5,5% et 7,5%, en aluminium comprise entre 4% et 6%, en titane comprise entre 1 % et 2%, en tantale comprise entre 7% et 9%, en molybdène comprise entre 1 % et 3%, en tungstène comprise entre 4,5% et 6,5%, le superalliage comprenant également du carbone et du zirconium,
- le superalliage est majoritairement composé de nickel et présente préférentiellement une fraction massique en chrome comprise entre 2,5% et 4,5%, en cobalt comprise entre 9% et 1 1 %, en aluminium comprise entre 4,5% et 6,5%, en titane comprise entre 0,5% et 1 %, en tantale comprise entre 7% et 9%, en molybdène comprise entre 0,3% et 1 %, en tungstène comprise entre 5% et 7%, en rhénium comprise entre 4% et 5,5%.
- l’homogénéisation de la structure cristalline de la pièce est mise en œuvre par un traitement thermique de la pièce à une deuxième température T2 supérieure à la température de solvus de la phase g’ et strictement inférieure à la première température T
- l’homogénéisation est mise en oeuvre par le traitement thermique de la pièce à une deuxième température T2 pendant au moins 10 minutes, notamment pendant 20 minutes, et préférentiellement pendant une heure,
- la deuxième température T2 est strictement comprise entre 1280 C et 1350 ° C, notamment entre 1280° C et 1300° C et préférentiellement entre 1285 ° C et 1295 ° C,
- l’étape de moulage est suivie d’une étape de démoulage, et l’étape d’homogénéisation de la structure cristalline de pièce est mise en œuvre après l’étape de démoulage,
- l’homogénéisation de la structure cristalline de la pièce est mise en œuvre par un traitement thermique de la pièce à une température T comprise entre 800° C et 1000° C, une contrainte en traction étant appliquée sur la pièce pendant le traitement thermique à la température T3 de sorte à entraîner une déformation plastique de la pièce,
- la contrainte en traction est appliquée de sorte que la vitesse de
déformation soit inférieure à 10 3 s 1 en tout point de la pièce,
- l’application de la contrainte en traction est orientée selon une direction de traction, et est supprimée dès que la longueur de la pièce dans la direction de traction est plus élevée que 1 ,008 fois la longueur initiale de la pièce dans la direction de traction,
- le premier revenu est mis en œuvre à une quatrième température T comprise entre 1000° C et 1200 ° C pendant au moins 3 heures, et le deuxième revenu est mis en œuvre à une cinquième température T5 comprise entre 800° C et 900° C au moins pendant 10 heures.
DESCRIPTION DES FIGURES
D’autres caractéristiques, buts et avantages de l’invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels : [Fig. 1 ] - la figure 1 illustre un procédé de fabrication du superalliage base nickel AM1 de l’art antérieur,
[Fig. 2] - la figure 2 illustre un procédé de fabrication du superalliage base nickel AM1 de l’art antérieur,
[Fig. 3] - la figure 3 est une microphotographie d’une coupe de superalliage selon l’art antérieur,
[Fig. 4] - la figure 4 est une microphotographie d’une coupe de superalliage de l’art antérieur, la barre d’échelle correspondant à une longueur de 100 miti,
[Fig. 5] - la figure 5 illustre un procédé de fabrication du superalliage base nickel AM1 selon un mode de réalisation de l’invention dans lequel l’homogénéisation de la structure cristalline de la pièce est mise en œuvre par un traitement thermique de la pièce à une deuxième température T2 supérieure à la température de solvus de la phase y’ et strictement inférieure à la première température T1 f la barre d’échelle correspondant à une longueur de 10 miti,
[Fig. 6] - la figure 6 illustre un procédé de fabrication du superalliage base nickel AM1 selon un mode de réalisation de l’invention dans lequel l’homogénéisation de la structure cristalline de la pièce est mise en œuvre par un traitement thermique de la pièce à une température T3 comprise entre 800° C et 1000° C, une contrainte en traction étant appliquée sur la pièce pendant le traitement thermique à la température T3 de sorte à entraîner une déformation plastique de la pièce,
[Fig. 7] - la figure 7 est une microphotographie d’une coupe de superalliage selon un mode de réalisation de l’invention, la barre d’échelle correspondant à une longueur de 1 pm,
[Fig. 8] - la figure 8 est une microphotographie d’une coupe de superalliage selon un mode de réalisation de l’invention, la barre d’échelle correspondant à une longueur de 100 miti,
[Fig. 9] - la figure 9 est une microphotographie d’une coupe de superalliage selon un mode de réalisation de l’invention, la barre d’échelle correspondant à une longueur de 10 miti, [Fig. 10] - la figure 10 illustre le fluage de pièces selon différents modes de réalisation de l’invention.
Sur l’ensemble des figures, les éléments similaires portent des références identiques.
DEFINITIONS
On désigne par le terme « superalliage » un alliage présentant, à haute température et à haute pression, une très bonne résistance à l'oxydation, à la corrosion, au fluage et à des contraintes cycliques (notamment mécaniques ou thermiques).
Un superalliage peut présenter une microstructure biphasique comprenant une première phase (appelée « phase y » ) formant une matrice, et une deuxième phase (appelée « phase y’ ») formant des précipités durcissant dans la matrice. La coexistence de ces deux phases est désignée par phase y-y’. La « base » du superalliage désigne le composant métallique principal de la matrice. Dans la majorité des cas, les superalliages comprennent une base cobalt, ou nickel. La base du superalliage est préférentiellement une base nickel.
Les « superalliages base nickel » présentent l’avantage d’offrir un bon compromis entre résistance à l’oxydation, résistance à la rupture à haute température et poids, ce qui justifie leur emploi dans les parties les plus chaudes des turboréacteurs.
Les superalliages base nickel sont constitués d’une phase y (ou matrice) de type austénitique cubique à face centrée y-Ni, contenant éventuellement des additifs en solution solide de substitution a (Co, Cr, W, Mo, Re), et d’une phase y’ (ou précipités) de type y’-Ni3X, avec X = Al, Ti ou Ta. La phase y’ possède une structure L12 ordonnée, dérivée de la structure cubique à face centrée, cohérente avec la matrice, c’est-à-dire ayant une maille atomique très proche de celle-ci. De par son caractère ordonné, la phase y’ présente la propriété remarquable d’avoir une résistance mécanique qui augmente avec la température jusqu’à 800° C environ. La cohérence très forte entre les phases g et g’ confère une tenue mécanique à chaud très élevée des superalliages à base nickel, qui dépend elle-même du ratio g/g’ et de la taille des précipités durcissant.
Les termes « fraction massique » désignent le rapport de la masse d’un élément ou d’un groupe d’éléments sur la masse totale.
DESCRIPTION DETAILLEE DE L'INVENTION
La pièce d’aéronef comprend un substrat en superalliage base nickel monocristallin. Le superalliage choisi peut être majoritairement composé de nickel et présenter préférentiellement une fraction massique en chrome comprise entre 7% et 9%, en cobalt comprise entre 5,5% et 7,5%, en aluminium comprise entre 4% et 6%, en titane comprise entre 1 % et 2%, en tantale comprise entre 7% et 9%, en molybdène comprise entre 1 % et 3%, en tungstène comprise entre 4,5% et 6,5%, le superalliage comprenant également du carbone et du zirconium. Notamment, le superalliage appelé « AM1 » (marque déposée) peut être choisi.
D’autres superalliages base nickel peuvent également être utilisés pour la fabrication du substrat, notamment le superalliage appelé « CMSX-4Plus » (marque déposée). Le superalliage peut être majoritairement composé de nickel et présenter préférentiellement une fraction massique en chrome comprise entre 2, 5% et 4,5%, en cobalt comprise entre 9% et 1 1 %, en aluminium comprise entre 4,5% et 6,5%, en titane comprise entre 0,5% et 1 %, en tantale comprise entre 7% et 9%, en molybdène comprise entre 0,3% et 1 %, en tungstène comprise entre 5% et 7%, en rhénium comprise entre 4% et 5, 5%. En référence à la figure 5, un procédé de fabrication d’une pièce selon un mode de réalisation de l’invention comprend une étape de moulage de la pièce à une température supérieure à la température de fusion du superalliage.
Le procédé comprend, après l’étape de moulage, une mise en solution S1 de la pièce. La mise en solution de la pièce est mise en œuvre à une température T . La température 7^ est comprise entre la température de solvus de la phase y’ et la température de fusion du superalliage. La mise en solution permet la diffusion des éléments du superalliage dans le substrat de la pièce. La concentration des différents éléments dans le substrat est ainsi homogénéisée.
La pièce est ensuite refroidie à température ambiante, à vitesse contrôlée.
La pièce peut être ensuite démoulée. Par exemple, il est possible de venir briser le moule en utilisant des vibrations. Le démoulage peut entraîner une forte concentration locale de contraintes sur la pièce, ces contraintes entraînant une déformation plastique D1.
La pièce peut subir une déformation plastique D1 par d’autres moyens, tels que l’assemblage de la pièce à une autre pièce, la manipulation ou le déplacement de la pièce. En particulier, la déformation plastique D1 peut être non intentionnelle.
Une étape d’homogénéisation S2 de la structure cristalline de la pièce est mise en œuvre suite à la ou aux déformations plastiques subies par la pièce. En référence à la figure 5, l’homogénéisation S2 peut être mise en œuvre par un traitement thermique de la pièce à une deuxième température T2 supérieure à la température de solvus de la phase g’ et strictement inférieure à la première température Ti. Ainsi, la phase y’, pendant l’homogénéisation S2, peut être dissoute dans la matrice en phase y, entraînant l’annihilation des dislocations entraînée par la déformation plastique. Ainsi, les contraintes locales internes au substrat peuvent être diminuées.
En effet, la température correspondant au solvus du superalliage diminue après la mise en solution S1 . Ainsi, la borne supérieure de la deuxième température T2 permet d’éviter la recristallisation du substrat pendant l’homogénéisation 52. De plus, la température est suffisamment élevée pour diminuer les contraintes internes entraînées par la déformation plastique de manière efficace. Ainsi, la borne inférieure de la température T2 permet d’éviter la recristallisation du substrat pendant un ou plusieurs revenus ultérieurs et pendant l’homogénéisation S2.
La deuxième température T2 est préférentiellement strictement comprise entre 128CT C et 1350° C, notamment entre 128CT C et 130CT C, et préférentiellement entre 1285 ° C et 1295T. Notamment, lorsque le superalliage base nickel utilisé pour la fabrication du substrat est le CMSX- 4Plus », la deuxième température T2 peut être comprise entre 1330° C et 1335 ° C.
L’homogénéisation S2 est mise en oeuvre par le traitement thermique de la pièce à une deuxième température T2 pendant au moins 10 minutes, notamment pendant 20 minutes, et préférentiellement pendant une heure. Ainsi, le temps de traitement d’homogénéisation S2 est adapté à la cinétique de réaction d’homogénéisation S2 dans le substrat de la pièce.
En référence à la figure 6, l’homogénéisation S2 de la structure cristalline de la pièce peut être mise en œuvre par un traitement thermique de la pièce à une troisième température T3 comprise entre 800° C et 1000° C, une contrainte en traction étant appliquée sur la pièce pendant le traitement thermique à la troisième température T3 de sorte à entraîner une déformation plastique de la pièce. Dans ce cas, la déformation plastique est intentionnelle. L’effet combiné du traitement thermique mis en œuvre à la troisième température et de la contrainte en traction permet de produire des dislocations homogènes aux interfaces de la matrice g et des précipité g’. Ainsi, l’effet de la déformation plastique dans la microstructure n’est plus visible après l’homogénéisation S2.
En référence à la figure 7, l’homogénéisation S2 permet d’éliminer la trace de contraintes localisées dans le substrat. La microstructure du superalliage directement après l’homogénéisation 52 présente des précipités de g’ en cuboïdes.
Suite à l’homogénéisation 52, la pièce est refroidie à température ambiante.
Un premier revenu R1 à une quatrième température T4 comprise entre 1000° C et 120CT C pendant au moins 3 heures, et un deuxième revenu R2 à une cinquième température T5 comprise entre 80CTC et 90CT C au moins pendant 10 heures sont ensuite mis en œuvre. Ces traitements permettent d’optimiser la taille, la morphologie et la distribution des précipités g’, ainsi que leur fraction volumique.
La contrainte en traction est préférentiellement appliquée à la pièce de sorte que la vitesse de déformation soit inférieure à 10 31 en tout point de la pièce. Ainsi, il est possible d’éviter l’apparition de bandes glissement dans la microstructure du substrat.
En référence à la figure 8 et à la figure 9, quand l’homogénéisation S2 comprend un traitement thermique de la pièce à une troisième température T3 comprise entre 800° C et 1000° C et une contrainte en traction, la forme de précipités g’ après les revenus est différente de la forme connue en cuboïde du superalliage AM1.
La figure 10 illustre un test de fluage. La courbe (a) correspond à une mesure de l’allongement d’une pièce connue, n’ayant pas subi de déformation plastique. La courbe (b) correspond à une mesure de l’allongement d’une pièce connue, ayant subi de déformation plastique. La courbe (c) correspond à une mesure de l’allongement d’une pièce fabriquée par un procédé selon un mode de réalisation de l’invention, le procédé comprenant une étape d’homogénéisation S2 de la structure cristalline de la pièce mise en œuvre par un traitement thermique de la pièce à une deuxième température T2 supérieure à la température de solvus de la phase y’ et strictement inférieure à la première température T1 La courbe (d) correspond à une mesure de l’allongement d’une pièce fabriquée par un procédé selon un mode de réalisation de l’invention, le procédé comprenant une étape d’homogénéisation S2 de la structure cristalline de la pièce mise en œuvre par un traitement thermique de la pièce à une troisième température T comprise entre 800° C et 1000° C, une contrainte en traction étant appliquée sur la pièce pendant le traitement thermique à la température T3 de sorte à entraîner une déformation plastique de la pièce. La déformation plastique de la pièce correspondant à la courbe (b) réduit la durée de vie de la pièce en raison de la recristallisation pendant le fluage. La durée de fluage de la pièce correspondant à la courbe (c) est supérieure à celle de la pièce correspondant au modèle (a). La durée de fluage de la pièce correspondant à la courbe (d) est de 85 % de celle de la pièce correspondant au modèle (a).

Claims

REVENDICATIONS
1. Procédé de fabrication d’une pièce d’aéronef, la pièce comprenant un substrat en superalliage base nickel monocristallin, le procédé mettant successivement en oeuvre les étapes de :
- moulage de la pièce à une température de moulage supérieure à la température de fusion du superalliage, et refroidissement de la pièce, de manière à ce que le superalliage monocristallin présente une phase g et une phase g’,
- mise en solution (S 1 ) de la pièce à une première température T ! comprise entre la température de solvus de la phase g’ et la température de fusion du superalliage,
- refroidissement de la pièce,
- homogénéisation (S2) de la structure cristalline de la pièce,
- refroidissement de la pièce,
- premier revenu (R1 ) et de deuxième revenu (R2).
2. Procédé selon la revendication 1 , dans lequel le superalliage est majoritairement composé de nickel et présente une fraction massique en chrome comprise entre 7% et 9%, en cobalt comprise entre 5,5% et 7,5%, en aluminium comprise entre 4% et 6%, en titane comprise entre 1 % et 2%, en tantale comprise entre 7% et 9%, en molybdène comprise entre 1 % et 3%, en tungstène comprise entre 4,5% et 6,5%, le superalliage comprenant également du carbone et du zirconium.
3. Procédé selon la revendication 1 ou 2, dans lequel le superalliage est majoritairement composé de nickel et présente préférentiellement une fraction massique en chrome comprise entre 2,5% et 4,5%, en cobalt comprise entre 9% et 1 1 %, en aluminium comprise entre 4,5% et 6,5%, en titane comprise entre 0,5% et 1 %, en tantale comprise entre 7% et 9%, en molybdène comprise entre 0,3% et 1 %, en tungstène comprise entre 5% et 7%, en rhénium comprise entre 4% et 5,5%.
4. Procédé selon l’une des revendications 1 à 3, dans lequel l’étape de moulage est suivie d’une étape de démoulage, et dans lequel l’étape d’homogénéisation (S2) de la structure cristalline de la pièce est mise en œuvre après l’étape de démoulage.
5. Procédé selon l’une des revendications 1 à 4, dans lequel l’homogénéisation de la structure cristalline de la pièce est mise en œuvre par un traitement thermique de la pièce à une deuxième température T2 supérieure à la température de solvus de la phase g’ et strictement inférieure à la première température T .
6. Procédé selon la revendication 5, dans lequel l’homogénéisation (S2) est mise en œuvre par le traitement thermique de la pièce à la deuxième température T2 pendant au moins 10 minutes, notamment pendant 20 minutes, et préférentiellement pendant une heure.
7. Procédé selon la revendication 5 ou 6, dans lequel la deuxième température T2 est strictement comprise entre 1280° C et 1350°C.
8. Procédé selon l’une des revendications 1 à 4, dans lequel l’homogénéisation (52) de la structure cristalline de la pièce est mise en œuvre par un traitement thermique de la pièce à une troisième température T3 comprise entre 800° C et 1000 , une contrainte en traction étant appliquée sur la pièce pendant le traitement thermique à la température T3 de sorte à entraîner une déformation plastique de la pièce.
9. Procédé selon la revendication 8, dans lequel la contrainte en traction est appliquée de sorte que la vitesse de déformation soit inférieure à 10 31 en tout point de la pièce.
10. Procédé selon la revendication 8 ou 9, dans lequel l’application de la contrainte en traction est orientée selon une direction de traction, et est supprimée dès que la longueur de la pièce dans la direction de traction est plus élevée que 1 ,008 fois la longueur initiale de la pièce dans la direction de traction.
1 1. Procédé selon l’une des revendications 1 à 10, dans lequel le premier revenu (R1 ) est mis en œuvre à une quatrième température T comprise entre 1000° C et 1200° C pendant au moins 3 heures, et le deuxième revenu (R2) est mis en œuvre à une cinquième température T5 comprise entre 800° C et 900° C pendant au moins 10 heures.
EP20734082.9A 2019-06-28 2020-06-26 Procédé de fabrication d'une pièce en superalliage monocristallin Pending EP3990672A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1907174A FR3097879B1 (fr) 2019-06-28 2019-06-28 Procede de fabrication d’une piece en superalliage monocristallin
PCT/EP2020/068115 WO2020260645A1 (fr) 2019-06-28 2020-06-26 Procédé de fabrication d'une pièce en superalliage monocristallin

Publications (1)

Publication Number Publication Date
EP3990672A1 true EP3990672A1 (fr) 2022-05-04

Family

ID=68733174

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20734082.9A Pending EP3990672A1 (fr) 2019-06-28 2020-06-26 Procédé de fabrication d'une pièce en superalliage monocristallin

Country Status (5)

Country Link
US (1) US20220243312A1 (fr)
EP (1) EP3990672A1 (fr)
CN (1) CN114080467B (fr)
FR (1) FR3097879B1 (fr)
WO (1) WO2020260645A1 (fr)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH616960A5 (en) * 1976-02-25 1980-04-30 Sulzer Ag Components resistant to high-temperature corrosion.
FR2503188A1 (fr) * 1981-04-03 1982-10-08 Onera (Off Nat Aerospatiale) Superalliage monocristallin a matrice a matuice a base de nickel, procede d'amelioration de pieces en ce superalliage et pieces obtenues par ce procede
CA1253363A (fr) * 1986-02-21 1989-05-02 Keh-Minn Chang Super-alliages a base de nickel resistants a la fatigue
CA1315572C (fr) * 1986-05-13 1993-04-06 Xuan Nguyen-Dinh Materiaux monocristallins a phase stable
FR2780982B1 (fr) * 1998-07-07 2000-09-08 Onera (Off Nat Aerospatiale) Superalliage monocristallin a base de nickel a haut solvus
DE60035052T2 (de) * 2000-11-30 2008-01-24 ONERA (Office National d'Etudes et de Recherches Aérospatiales) Superlegierung auf Nickelbasis für Einkristallturbinenschaufeln von industriellen Turbinen mit hoher Beständigkeit gegen Heisskorrosion
EP1398393A1 (fr) * 2002-09-16 2004-03-17 ALSTOM (Switzerland) Ltd Méthode de régenération des propriétés
JP5024797B2 (ja) * 2005-03-28 2012-09-12 独立行政法人物質・材料研究機構 コバルトフリーのNi基超合金
US20130142637A1 (en) * 2011-12-06 2013-06-06 Kenneth Harris Low rhenium single crystal superalloy for turbine blades and vane applications
FR3073527B1 (fr) * 2017-11-14 2019-11-29 Safran Superalliage a base de nickel, aube monocristalline et turbomachine

Also Published As

Publication number Publication date
CN114080467B (zh) 2022-12-16
WO2020260645A1 (fr) 2020-12-30
CN114080467A (zh) 2022-02-22
US20220243312A1 (en) 2022-08-04
FR3097879A1 (fr) 2021-01-01
FR3097879B1 (fr) 2021-05-28

Similar Documents

Publication Publication Date Title
CA2583140C (fr) Alliage a base de nickel
EP0971041B1 (fr) Superalliage monocristallin à base de nickel à haut solvus phase gamma prime
EP3710610B1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
FR2461016A1 (fr) Article de superalliage de nickel a structure monocristalline et procede de fabrication
FR2712307A1 (fr) Articles en super-alliage à haute résistance mécanique et à la fissuration et leur procédé de fabrication.
EP0063511A1 (fr) Superalliage monocristallin à matrice à base de nickel, procédé d'amélioration de pièces en ce superalliage et pièces obtenues par ce procédé
FR2731714A1 (fr) Superalliages a base de nickel pour la production d'articles monocristallins ayant une tolerance amelioree aux joints de grains a faible desorientation
CA3041411A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
EP3710611B1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
EP3802895B1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
EP3990672A1 (fr) Procédé de fabrication d'une pièce en superalliage monocristallin
FR3117507A1 (fr) Procede de fabrication d'une piece en superalliage monocristallin
FR3117506A1 (fr) Procede de fabrication d'une piece en superalliage monocristallin
FR2860804A1 (fr) Superalliage a base de nickel et pieces coulees en monocristal
EP1211336B1 (fr) Superalliage à base de nickel pour aubes monocristallines de turbines industrielles ayant une résistance élevée à la corrosion à chaud
EP3918101B1 (fr) Superalliage a base de nickel a tenue mecanique et environnementale elevee a haute temperature et a faible densite
FR3013060A1 (fr) Superalliage a base de nickel pour une piece de turbomachine
EP3911773B1 (fr) Superalliage a base de nickel a faible densite et avec une tenue mecanique et environnementale elevee a haute temperature
FR2686902A1 (fr) Superalliage monocristallin a base de nickel a tenue a l'oxydation amelioree et procede de preparation.
WO2024047315A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
EP4359580A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
WO2022269158A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
FR3121453A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
FR3127144A1 (fr) Procédé de fabrication d’une pièce aéronautique bi-matériaux
FR3091709A1 (fr) Superalliage à base de nickel à tenue mécanique élevée à haute température

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240502