WO2012039189A1 - Reが添加されたNi基2重複相金属間化合物合金及びその製造方法 - Google Patents

Reが添加されたNi基2重複相金属間化合物合金及びその製造方法 Download PDF

Info

Publication number
WO2012039189A1
WO2012039189A1 PCT/JP2011/066466 JP2011066466W WO2012039189A1 WO 2012039189 A1 WO2012039189 A1 WO 2012039189A1 JP 2011066466 W JP2011066466 W JP 2011066466W WO 2012039189 A1 WO2012039189 A1 WO 2012039189A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
heat treatment
atomic
intermetallic compound
double
Prior art date
Application number
PCT/JP2011/066466
Other languages
English (en)
French (fr)
Inventor
隆幸 高杉
泰幸 金野
Original Assignee
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪府立大学 filed Critical 公立大学法人大阪府立大学
Priority to JP2012534955A priority Critical patent/JP5757507B2/ja
Priority to US13/823,849 priority patent/US9169540B2/en
Priority to EP11826635.2A priority patent/EP2620514A4/en
Priority to CN201180045794.8A priority patent/CN103154287B/zh
Publication of WO2012039189A1 publication Critical patent/WO2012039189A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/06Special casting characterised by the nature of the product by its physical properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the present invention relates to a Ni-based two-duplex intermetallic compound alloy to which Re is added and a method for producing the same.
  • Ni-based superalloys and (2) Ni-based double-duplex intermetallic compounds as materials having excellent high-temperature characteristics is underway.
  • the Ni-base superalloy (1) has a ⁇ phase (Ni solid solution phase) as a parent phase and a ⁇ ′ phase dispersed and precipitated in the parent phase, and the ⁇ ′ phase has a basic composition of Ni 3 Al. to an intermetallic compound (L1 2 phase), consisting of about 60 ⁇ 70 vol% in the constituent phase gamma 'phase.
  • This alloy is being developed into a normal casting alloy, a unidirectionally solidified alloy, and a single crystal alloy.
  • the single crystal alloy the first generation alloy, the second generation alloy containing about 3% by weight of Re, and 5 to 5 Re.
  • Development is proceeding into 3rd generation alloys containing 6% by weight, 4th generation alloys containing 2 to 3% by weight of noble metals such as Ru, and 5th generation alloys containing 5 to 6% by weight of noble metals.
  • Ni-based superalloy for unidirectionally solidified material it contains C, B, Hf, Co, Ta, Cr, W, Al, Re, and the remainder is made of Ni and inevitable impurities. Alloys are known (see, for example, Patent Document 1).
  • This alloy contains Ti, Nb, V, Zr, etc. as optional components, and the addition amount of elements constituting the ⁇ phase of the parent phase and the ⁇ ′ phase of the precipitation phase, and the addition amount of elements that strengthen the grain boundaries By adjusting the strength, the strength in the solidification direction and the strength of the grain boundaries are improved.
  • Ni-based single crystal superalloy balanced in both high-temperature strength and high-temperature oxidation resistance in practical use
  • a Ni-based single crystal super-alloy containing Al, Ta, W, Re, Cr and Ru as main additive elements is used. Alloys are known (see, for example, Patent Document 2). This alloy is excellent by controlling the lattice constant of the parent phase ( ⁇ phase) and the lattice constant of the precipitation phase ( ⁇ 'phase) to optimum values by setting the composition ratio of the elements within the optimum range. Realizes high temperature strength (creep strength).
  • Ni-base superalloys are developed from the viewpoints of high-temperature strength and casting in order to mainly use turbine blades such as jet engines, and elements preferable from these viewpoints are added to the composition.
  • the Ni-base superalloy is composed of the ⁇ phase of the parent phase and the ⁇ ′ phase of the precipitation phase as explained above, but it is explained that Re is dissolved in the ⁇ phase (solid solution phase) to improve the creep strength.
  • Re is dissolved in the ⁇ phase (solid solution phase) to improve the creep strength.
  • Patent Documents 1 and 2 Further, it is described that Ta dissolves in the ⁇ phase together with W and the like, and a part thereof dissolves in the ⁇ ′ phase to improve the creep strength (for example, see Patent Document 2). Further, it is described that V is preferably 1% by weight or less because the high-temperature strength decreases (see, for example, Patent Documents 1 and 2).
  • the Ni-base superalloy has limited melting point and high-temperature creep strength because about 30 to 40 vol% or more of the constituent phase is the ⁇ phase of the metal phase. Further, although development from the viewpoint of high-temperature strength is progressing, development from the viewpoint of hardness is not progressing.
  • Ni-based double-duplex intermetallic compound alloy (2) As an alloy for solving such a problem, the development of the Ni-based double-duplex intermetallic compound alloy (2) is expected.
  • This Ni-based two-phase intermetallic compound alloy is a multiphase alloy in which Ni 3 X-type intermetallic compounds belonging to a close-packed (Geometrically Closed Packed) crystal structure are combined in a consistent manner. It is composed of 3 Al intermetallic compound phase and Ni 3 V intermetallic compound phase.
  • FIG. 17 is a view for explaining the structure of this Ni-based two-duplex intermetallic compound alloy.
  • (1) is an example of a SEM photograph (Ni 75 Al 8 V 14.5 Nb 2.5 ) for explaining the structure of the Ni-based double phase intermetallic compound alloy, and (2) is the Ni-based double phase.
  • crystal structure constituting the structure of the intermetallic alloy (Ni 3 Al, Ni 3 V ) is a schematic diagram of a.
  • this Ni-based double-duplex intermetallic compound alloy is composed of a microstructure formed with good consistency and a nanostructure formed therebetween (see FIG. 17 (1)). Is composed of a proeutectoid L1 2 phase (Ni 3 Al shown in FIG. 17 (2)), and the latter nanostructure is an L1 2 phase and a D0 22 phase (Ni 3 Al and Ni shown in FIG. 17 (2)) 3 V).
  • the Ni-based dual-phase intermetallic alloy is a heat treatment at a temperature higher than the eutectoid temperature, A1 phase (Ni solid solution phase) in the pro-eutectoid L1 2 phase upper duplex structure deposited is formed, subsequent co in precipitation temperature following thermal treatment, A1 phase eutectoid transformation to lower duplex structure in two phases L1 2 phase and D0 22 phase is formed is formed.
  • the Ni-based two-duplex intermetallic compound alloy is formed by duplexing the Ni 3 X-type intermetallic compound having excellent characteristics. For this reason, this Ni-based double-duplex intermetallic compound alloy is expected as an alloy that exhibits even better characteristics than an alloy composed of a single intermetallic compound phase and has a wide range of structure control possibilities. (See Patent Document 3). For example, in addition to high-temperature strength, development is being promoted from the viewpoint of hardness.
  • Ni is the main component
  • Al, V, Ta and / or W, Nb, Co. , Cr, and B (Nb, Co, and Cr are optional components) are known (see Patent Document 4).
  • Ni is the main component and includes Al, V, Nb, Ti, Co, Cr, and B (Nb, Ti, Co, Cr Is an Ni-based double-duplex intermetallic compound alloy in which the base material is surface-treated by at least one of nitriding and carburizing (see Patent Document 5).
  • the Ni-based double-duplex intermetallic compound alloy as described in the background art exhibits excellent hardness, but improvement of its properties is desired.
  • the content of Ta or the like is increased, excellent hardness is exhibited, but conversely, when the content of Al is decreased, sufficient hardness may not be obtained at a high temperature.
  • second phase particles (dispersions) which are not preferable in strength characteristics may appear. For this reason, it is considered that there is a limit to the improvement of the hardness characteristics due to the content of Ta and the like.
  • the hardness characteristics of the Ni-based double-duplex intermetallic compound alloy are improved. It is hoped to do.
  • the present invention has been made in view of such circumstances, and provides a Ni-based double-duplex intermetallic compound alloy exhibiting excellent hardness.
  • Ni is the main component and Al: 5 to 12 atomic%, V: 11 to 17 atomic%, Re: 1 to 5 atomic%, and the pro-eutectoid L1 2 phase and (L1 2 + D0 22 )
  • a Ni-based dual-duplex intermetallic compound alloy having a dual-phase structure with a eutectoid structure is provided.
  • a conventional Ni-based double-duplex intermetallic compound alloy contains an element (for example, Ta, Nb, Ti) that substitutes the X element of the Ni 3 X-type intermetallic compound.
  • the Ni-based double-duplex intermetallic compound alloy contains an element that replaces the Ni element instead of the element that replaces the X element.
  • Re for example, 3 atomic%
  • a dual-phase intermetallic alloy can be obtained, and (2) the hardness of this alloy can be improved while heat-treating the Ni-based dual-duplex intermetallic alloy containing Re while maintaining the dual-phase structure.
  • the present invention has been completed.
  • a Ni-based double-duplex intermetallic compound alloy exhibiting excellent hardness is provided.
  • the material is not hard, that is, after being processed in a state where it is easy to process (for example, cutting)
  • the hardness can be improved by heat treatment, so Ni base 2 overlap that is excellent in workability (for example, cutting processability)
  • a phase intermetallic alloy is provided.
  • No. related to the comparative example. 1 and no. It is a SEM photograph of 2 samples. No. related to the comparative example. It is a SEM photograph of 3 samples. No. 1 according to the embodiment of the present invention. 4 and no. It is a SEM photograph of 5 samples.
  • No. 1 was subjected to solution heat treatment and lower multiphase heat treatment.
  • 5 is a diagram showing an X-ray diffraction profile of No. 5.
  • No. 2 subjected to the lower multiphase heat treatment temperature: 1173K).
  • 1-No. It is a graph which shows the relationship between the time of a lower double phase heat processing, and Vickers hardness about the sample of 5.
  • FIG. No. 6-No. It is a graph which shows the relationship between the conditions of a lower double phase heat processing, and Vickers hardness about 12 samples.
  • No. 1 was subjected to solution heat treatment. It is a SEM photograph of 4 samples.
  • No. 1 was subjected to solution heat treatment. It is a SEM photograph of 5 samples.
  • No. subjected to solution heat treatment It is a SEM photograph of 13 samples.
  • No. 1 subjected to solution heat treatment and lower double-phase heat treatment (temperature: 1223K, time: 24 hours). It is a SEM photograph of 5 samples.
  • No. 2 subjected to solution heat treatment and lower double-phase heat treatment (temperature: 1223K, time: 24 hours) according to the comparative example.
  • SEM photograph for explaining the structure of a Ni-based dual multi-phase intermetallic compound alloy and crystal structure constituting the structure of the alloy (Ni 3 Al, Ni 3 V ) is a schematic diagram of a.
  • the Ni-based double-duplex intermetallic alloy according to the present invention contains Ni as a main component and contains Al: 5 to 12 atomic%, V: 11 to 17 atomic%, and Re: 1 to 5 atomic%. It has a two- phase structure of L1 2 phase and (L1 2 + D0 22 ) eutectoid structure.
  • This Ni-based double-duplex intermetallic compound alloy may further contain 10 to 1000 ppm by weight of B with respect to the total weight of the composition of a total of 100 atomic% including the contents of Ni, Al, V and Re.
  • Ni is the main component
  • Al 8 to 12 atomic%
  • V 13 to 17 atomic%
  • Re 1 to 5 atomic%
  • It may be a Ni-based double-duplex intermetallic compound alloy.
  • Even the embodiment containing 1 to 5 atomic% of Re may further include 10 to 1000 ppm by weight of B with respect to the total weight of the total composition of 100 atomic% containing the above contents of Ni, Al, V and Re.
  • a Ni-based double-duplex intermetallic compound alloy capable of remarkably improving the hardness is provided. Further, this Ni-based double-duplex intermetallic compound alloy can remarkably improve the hardness while maintaining a fine double-duplex structure. In addition, since this Ni-based double-duplex intermetallic compound alloy exhibits remarkable hardness at the temperature of the heat treatment, it is also suitable for use at the temperature of the heat treatment, that is, at a high temperature.
  • Heat treatment referred to here is, by transformation of the A1 phase formed in the gap between the pro-eutectoid L1 2 phase, a heat treatment for forming the L1 2 phase and D0 22 phase.
  • This heat treatment includes an aging heat treatment (so-called artificial aging) as a treatment for promoting the formation of such a structure, and as a treatment for forming such a structure, a lower multiphase heat treatment (second process) described later is performed. 2 heat treatment).
  • the heat treatment temperature is preferably 1073 to 1273K, more preferably 1098 to 1198K (1123K ⁇ 25K or 1173K ⁇ 25K).
  • the heat treatment time is preferably 5 to 10 hours. Within this time range, for example, a Vickers hardness of about 660 HV can be realized by a heat treatment of 1148 to 1198K.
  • this Ni-based double-duplex intermetallic compound alloy may further contain Ta.
  • the Ni-based double-duplex intermetallic compound alloy contains Ta
  • Ni is the main component
  • Al 5 to 9 atomic%
  • V 11 to 15 atomic%
  • Ta 3 to 7 atomic%
  • Re a Ni-based double-duplex intermetallic alloy containing 1 to 5 atomic%
  • the embodiment containing Ta may further contain 10 to 1000 ppm by weight of B with respect to the total weight of the total composition of 100 atomic% including the contents of Ni, Al, V and Re.
  • the hardness be remarkably improved by performing a heat treatment, but also a Ni-based double-duplex intermetallic compound alloy having excellent hardness even before the heat treatment is provided.
  • the temperature of the heat treatment is preferably 1073 to 1273 K, and the time of the heat treatment is preferably 2 to 24 hours. With such heat treatment, better Vickers hardness (for example, about 780 HV) can be realized.
  • the Ni-based double-duplex intermetallic compound alloy of this embodiment can remarkably improve the hardness while maintaining a fine double-duplex structure by heat treatment, and at a high temperature (for example, a temperature of 1073 to 1273 K). Suitable for use.
  • the heat-resistant component may be formed of the Ni-based double-duplex intermetallic compound alloy of the present invention.
  • the hardness of the Ni-based double-duplex intermetallic alloy of the present invention is improved at the temperature of the heat treatment, for example, 1073 to 1273K, as described above, Suitable for use at temperatures up to 1273K). Therefore, a heat-resistant component (for example, a heat-resistant bolt) formed of this Ni-based double-duplex intermetallic compound alloy has excellent hardness even at high temperatures.
  • the present invention slowly cools a molten metal containing Ni as a main component and containing Al: 5 to 12 atomic%, V: 11 to 17 atomic%, and Re: 1 to 5 atomic%.
  • a method for producing a Ni-based double-duplex intermetallic compound alloy is provided.
  • the molten metal may contain Ni as a main component and Al: 8 to 12 atomic%, V: 13 to 17 atomic%, and Re: 1 to 5 atomic%.
  • the molten metal may contain Ni as a main component and Al: 5 to 9 atomic%, V: 11 to 15 atomic%, Ta: 3 to 7 atomic%, and Re: 1 to 5 atomic%. .
  • the molten metal has a content of Ni, Al, V, and Re, or 10 to 1000 weights with respect to a total weight of a composition of a total of 100 atomic% including the contents of Ni, Al, V, Re, and Ta. It may further contain ppm B.
  • the production method of the present invention it is possible to produce a Ni-based double-duplex intermetallic compound alloy exhibiting excellent hardness.
  • solution heat treatment at 1503 to 1603K may be performed after casting.
  • the V element and the like form a solid solution to form the A1 phase (Ni solid solution phase) and the proeutectoid L1 2 phase is formed.
  • a phase structure (a structure of proeutectoid L1 2 phase and (L1 2 + D0 22 ) eutectoid structure) is formed. For this reason, the manufacturing method of the Ni base 2 double phase intermetallic compound alloy provided with a fine and uniform 2 double phase structure is provided.
  • solution heat treatment also serves as a step of performing heat treatment to an alloy and pro-eutectoid L1 2 phase and A1 phases are cast at a temperature coexist (upper dual-phase heat treatment referred to in this specification (first heat treatment)) It may also serve as a homogenization heat treatment.
  • an aging heat treatment of 1073 to 1273 K may be performed after the solution heat treatment.
  • a method for producing a Ni-based double-duplex intermetallic compound alloy that remarkably improves hardness while maintaining a fine double-duplex structure.
  • the specific content (content) of Ni is preferably 70 to 74 at. %, More preferably 71 to 73 at. %. Within such a range, the sum of the content of (Ni, Re) and the content of (Al, V, Ta) is close to 3: 1, and a two-phase structure is likely to be formed.
  • the specific content of Ni is, for example, 70, 70.5, 71, 71.5, 72, 72.5, 73, 73.5 or 74 at. %.
  • the range of the Ni content may be between any two of the numerical values exemplified as the specific content.
  • the specific content of Al is 5 to 12 at. %.
  • the Ni-based two-duplex intermetallic alloy does not contain Ta, preferably 8-12 at. %, And more preferably 9 to 11 at. %.
  • the Ni-based two-duplex intermetallic alloy contains Ta, preferably 5 to 9 at. %, More preferably 6-8 at. %.
  • the range of the Al content may be between any two of the numerical values exemplified as the specific content.
  • the specific content of V is 11 to 17 at. %.
  • the Ni-based double-duplex intermetallic compound alloy does not contain Ta, preferably 13 to 17 at. %, And more preferably 14 to 16 at. %.
  • the Ni-based two-duplex intermetallic compound alloy contains Ta, preferably 11 to 15 at. %, More preferably 12 to 14 at. %.
  • the range of the content of V may be between any two of the numerical values exemplified as the specific content.
  • the specific content of Re is 1 to 5 at. %, Preferably 2-4 at. %. For example, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 or 5 at. %.
  • the range of the Re content may be between any two of the numerical values exemplified as the specific content.
  • the specific content of Ta is 3 to 7 at. %, Preferably 4 to 6 at. %. For example, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5 or 7 at. %.
  • the range of the content of Ta may be between any two of the numerical values exemplified as the specific content.
  • B is an optional component, but when the Ni-based double-duplex intermetallic compound alloy contains B, the specific content of B is 10 to 1000 ppm by weight. For example, 10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 ppm by weight.
  • the range of the B content may be between any two of the numerical values exemplified as the specific content.
  • the specific content of B is 100 at. In total including Ni, Al, V, Re, Ta (Ta is optional). % Content with respect to the total weight of the composition.
  • Ni-based double-duplex intermetallic compound alloy also has a structure similar to that of the Ni-based double-duplex intermetallic compound alloy shown in FIG.
  • the Ni-based double-duplex intermetallic compound alloy of the present invention has a double-double phase structure of a pro-eutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure.
  • the pro-eutectoid L1 2 phase is a structure formed at a temperature higher than the eutectoid temperature (note that the structure comprising the pro-eutectoid L1 2 phase formed at a temperature higher than the eutectoid temperature and the A1 phase in the gap) Is called "upper multiphase structure").
  • the (L1 2 + D0 22 ) eutectoid structure is composed of the L1 2 phase and the D0 22 phase formed by separating the A1 phase formed in the gap between the proeutectoid L1 2 phases at a temperature equal to or lower than the eutectoid temperature.
  • a lower multiphase structure consisting of
  • the temperature higher than the eutectoid temperature is a temperature at which the pro-eutectoid L1 2 phase and the A1 phase coexist, and the eutectoid temperature is the transformation (decomposition) of the A1 phase into the L1 2 phase and the D0 22 phase. ) Is the upper temperature limit.
  • Ni-based double-duplex intermetallic alloy having such a structure is manufactured by the following manufacturing method.
  • the metal ingot is weighed so that each element has the ratio explained above, and this is heated and dissolved. Next, it casts by cooling this molten metal.
  • the molten metal in this casting is cooled by, for example, slow cooling. Doing slow cooling, molten metal will be the pro-eutectoid L1 2 phase and A1 phases are exposed relatively long time to temperatures coexisting after coagulation, also then, the A1 phase L1 2 phase and D0 22 phase It is also exposed to a temperature below the eutectoid temperature for separation for a long time. Therefore, the upper duplex structure consisting of the pro-eutectoid L1 2 phase and A1 phase is formed, further decomposed A1 phase, the lower duplex structure is formed consisting of the L1 2 phase and D0 22 phase.
  • This slow cooling is performed by furnace cooling, for example. That is, the above material is heated and melted, and after the heating, the molten metal is left as it is in the furnace.
  • Ni-based double-duplex intermetallic compound alloy having the above structure may be manufactured by performing a heat treatment after casting.
  • a solution heat treatment at 1503 to 1603 K may be performed after casting (that is, a solution heat treatment of A1 single phase is performed) and then cooled to manufacture this Ni-based double-duplex intermetallic compound alloy.
  • the pro-eutectoid L1 2 phase precipitates spontaneously, and then the A1 phase is decomposed into the L1 2 phase and the D0 22 phase to produce a Ni-based double-duplex intermetallic compound alloy.
  • the first heat treatment at a temperature as described in Patent Documents 3 and 4 an alloy material obtained by the melting and solidification relative (such as ingot), and the pro-eutectoid L1 2 phase and A1 phases coexist was carried out (the formation of the upper duplex structure), after the first heat treatment, the A1 phase by cooling to decompose into a L1 2 phase and D0 22 phase (formation of the lower duplex structure), the Ni-based dual-phase Intermetallic compound alloys may be produced.
  • an alloy material obtained by the melting and solidification relative (such as ingot), (formation of the upper duplex structure) performing a first heat treatment at a temperature at which coexist with proeutectoid L1 2 phase and A1 phase, then, Cooling to a temperature at which the L1 2 phase and the D0 22 phase coexist (natural cooling such as air cooling or furnace cooling or forced cooling such as water cooling), or by performing a second heat treatment at that temperature, the A1 phase (L1 2 + D0 22 )
  • the Ni-based double-duplex intermetallic compound alloy may be produced by changing the eutectoid structure (formation of the upper double-phase structure).
  • the first heat treatment is performed at a temperature of 1503 to 1603 K, for example, specifically at a temperature of 1503 K for about 5 to 200 hours.
  • Heat treatment is performed.
  • the second heat treatment is performed at a temperature of 1123 to 1273K, for example. Specifically, it is performed at a temperature of 1203 K for about 5 to 200 hours.
  • a solution heat treatment at 1503 to 1603K may be performed after casting or after the first or (and) second heat treatment.
  • the solution heat treatment is performed, for example, at a temperature of 1553 K for about 5 hours.
  • Cooling after the solution heat treatment may be either natural cooling such as air cooling or forced cooling such as water cooling. For example, cooling by furnace cooling may be performed.
  • the solution heat treatment may also serve as the first heat treatment or the homogenization heat treatment. Conversely, the first heat treatment or the homogenization heat treatment may also serve as the solution heat treatment.
  • an aging heat treatment may be performed after casting, after the first or (and) the second heat treatment, or after performing a solution heat treatment in addition to these treatments.
  • This aging heat treatment is performed in order to transform (decompose) the A1 phase formed in the gap between the pro-eutect L1 2 phase of the Ni-based double-duplex intermetallic compound alloy to form the L1 2 phase and the D0 22 phase. Therefore, it can be carried out by heat treatment in the same temperature range as the second heat treatment.
  • the temperature of the aging heat treatment is preferably 1123 ⁇ 1273K.
  • the aging heat treatment is also referred to as lower double-phase heat treatment (heat treatment for forming a lower double-phase structure).
  • the atmosphere of the arc melting furnace was evacuated in the melting chamber and then replaced with an inert gas (argon gas).
  • the electrode used was a non-consumable tungsten electrode, and a water-cooled copper hearth was used as the mold.
  • no. 1-No. Samples 3 are comparative examples, and these are samples to which Re is not added (here, the name of the sample is a sample to which Ta is added in addition to the number such as “No. 1”.
  • the character string combined with the content and the contained element “Ta” is also used as the name of the sample (for example, a sample containing 5 at. Ta is also called “5Ta”).
  • No. 4 and no. Sample No. 5 is an example of the present invention and is a sample to which Re is added (sample names are the same as those in the case of Ta.
  • Ta contains 5 at.%
  • Re contains 3 at.%.
  • the sample to be called is also referred to as “5Ta3Re”).
  • the ratio of B in Table 1 is 100 at. In total including Ni, Al, V, and Nb. It is a numerical value for the composition of%.
  • a test piece (about 10 mm ⁇ 5 mm ⁇ 1 mm) was cut out from the produced cast material (No. 1 to No. 5), and a solution was formed on the obtained test pieces (No. 1 to No. 5).
  • a heat treatment a heat treatment of 1553 K ⁇ 5 hours was performed, and then the furnace was cooled.
  • A1 single-phase structure was formed by this solution heat treatment, and a furnace was then cooled to form a two- duplex structure in which the pro-eutectoid L1 2 phase and the interstitial L1 2 phase and the D0 22 phase coexisted.
  • test pieces No. 1 to No. 5
  • test pieces No. 1 to No. 5
  • the test pieces were subjected to 5, 10 and 24 hours at a temperature of 1173K, 2, 5, at a temperature of 1223K.
  • Lower multiphase heat treatment was performed under conditions of 10 and 24 hours, and water quenching was performed.
  • FIGS. 1 and 2 show No. 1 according to the comparative example.
  • 1-No. 3 (5Ta, 6Ta, 6.5Ta) is a SEM photograph of the sample
  • FIG. 4 (3Re) and No. 4 It is a SEM photograph of a sample of 5 (5Ta3Re).
  • Solution material is described in the photograph of the sample subjected to only the solution heat treatment.
  • “-A” and the conditions (conditions in Table 2) are described after the symbol.
  • FIGS. 1-No. 3 the sample subjected only to the solution heat treatment, in addition to the region where the two-duplex phase structure is formed, in FIG. 1-A and (4) No. 2-A and FIG. It can be seen that there are also fine tweed-like regions as shown in 3-A. In particular, no. In the sample (FIG. 2 (1) No. 3-A) subjected to only solution heat treatment of 3 (6.5 Ta), a tweed structure having fourfold symmetry was observed. This is considered due to an increase in the amount of Ta added.
  • samples subjected to lower multiphase heat treatment in addition to solution heat treatment are basically only subjected to solution heat treatment.
  • Sample 2 (5Ta, 6Ta) (FIG. 1 (3) No. 1-C and (6) No. 2-C) shows that the four-fold symmetry of the tweed structure tends to be broken.
  • No. 2 subjected to lower multiphase heat treatment. 3 (6.5 Ta) samples (FIG. 2 (2) No. 3-B and (3) No. 3-C) were also confirmed to have a coarse plate-like second phase that was newly formed. .
  • FIG. 1 When comparing 4-A with FIG. 17 (1), FIG.
  • the 4-A cubic (cube-like) structure has a side length of approximately half or less than the double-phase structure of (Ni 75 Al 8 V 14.5 Nb 2.5 ) in FIG. That is, it can be seen that the tissue size of each sample shown in FIG. 3 is a fraction of that of FIG. (For example, the sample of FIG.
  • FIG. 4 (3Re) and No. 4 5 (5Ta3Re) samples, particularly samples subjected to lower multiphase heat treatment in addition to solution heat treatment (FIG. 3 (2) No. 4-B, (3) No. 4-C, (5) No. 5). It can be seen that 5-B and (6) No. 5-C) are interestingly formed with an ultrafine two-phase structure regardless of the presence or absence of Ta.
  • FIG. 4 shows No. 1 subjected to solution heat treatment and lower double-phase heat treatment. It is a figure which shows the X-ray-diffraction profile of 5 (5Ta3Re).
  • graphs (a) to (e) show X-ray diffraction profiles of the respective heat treatments, and (a) shows a sample (condition A in Table 2) subjected to only the solution heat treatment, (b) Each of (e) corresponds to a sample (condition C in Table 2) that has been subjected to lower multiphase heat treatment in addition to solution heat treatment.
  • the lower multiphase heat treatment times of (b) to (e) are 2 hours for (b), 5 hours for (c), 10 hours for (d), and 24 hours for (e).
  • circle (black ⁇ mark) indicates the position of the X-ray diffraction peaks of the L1 2 phase (Ni 3 Al), triangle (gray ⁇ mark), the D0 22 phase (Ni 3 V) shows the position of the X-ray diffraction peak.
  • Tables 3 and 4 show the measurement results.
  • Table 3 is a table showing the Vickers hardness of the sample subjected to the lower double-phase heat treatment at a temperature of 1173K
  • Table 4 is a table showing the Vickers hardness of the sample subjected to the lower double-phase heat treatment at a temperature of 1223K. is there.
  • FIG. 5 and 6 are graphs of the measurement results of Tables 3 and 4. These figures are No. 1 subjected to lower multiphase heat treatment. 1-No. It is a graph which shows the relationship between the time of a lower double phase heat processing, and Vickers hardness about the sample of 5.
  • FIG. 5 corresponds to the lower double-phase heat treatment (condition B shown in Table 2) at a temperature of 1173 K
  • FIG. 6 corresponds to the lower double-phase heat treatment (condition C shown in Table 2) at a temperature of 1223 K, respectively.
  • the Vickers hardness of the sample subjected only to the solution heat treatment is shown on the left end axis.
  • no. Samples of 4 (3Re) can be obtained in a short time (5 to 10 hours or within 5 hours, that is, 1.8 ⁇ 10 4 to 3.6 ⁇ 10 4 seconds or 1.8) in both lower multiphase heat treatments of 1173K and 1223K.
  • the hardness increases remarkably within 10 4 seconds), and is particularly noticeable in the lower multiphase heat treatment at 1173K.
  • no. 4 (3Re) sample is subjected to lower multiphase heat treatment at a temperature of 1173 K for 5 to 10 hours (1.8 ⁇ 10 4 to 3.6 ⁇ 10 4 seconds), and thereby has a hardness of about 660 HV.
  • This hardness is no. 1-No. It is superior to the sample of 3 (5Ta, 6Ta, 6.5Ta). From this experimental result, it is understood that the lower multiphase heat treatment for the sample to which Re is added is preferably 1173 K rather than 1223 K, and the treatment time is preferably 5 to 10 hours.
  • the sample of 5 shows a high value of 660 HV even when only the solution heat treatment is performed, but the value increases remarkably in a short lower multi-phase heat treatment and shows a value exceeding 800 HV.
  • the time of the lower double-phase heat treatment at which the value of Vickers hardness becomes the maximum value varies depending on the temperature, the lower double-phase heat treatment of 1173K and 1223K reaches a value exceeding 800 HV (the value of Vickers hardness is 140-150HV rises). From this experimental result, it can be seen that the lower multiphase heat treatment for the sample to which Re and Ta are added is preferably performed at any temperature of 1173K and 1223K, and the treatment time may be a short time (from 2 hours).
  • the sample of 5 has a tendency to slightly decrease its hardness when the lower multi-phase heat treatment takes a long time, and slightly lower than 800 HV (780 to 790 HV) after 24 hours of lower multi-phase heat treatment. Although it is slight compared with the highest value of hardness, the value is decreasing (decreasing by about 10 HV at 1173K and decreasing by about 20 HV at 1223K).
  • No. 2 was subjected to the lower multiphase heat treatment.
  • No. 5 (5Ta3Re) sample shows a value close to 800 HV.
  • 1-No. 3 (5Ta, 6Ta, 6.5Ta), it can be seen that the hardness is superior to the samples of any heat treatment conditions. Even if the sample was only subjected to solution heat treatment, its hardness was No. 1-No. 3 (5Ta, 6Ta, 6.5Ta) samples.
  • the hardness of the 5 (5Ta3Re) sample is excellent.
  • the Ni-based double-duplex intermetallic compound alloy described in Patent Document 4 has a value in the vicinity of 500 to 650 HV, no.
  • the Vickers hardness of the sample of 5 (5Ta3Re) exceeds the alloy of this patent document by about 100 HV or more, and it can be understood that the hardness is astonishing.
  • the plasma carburized Ni-based double-duplex intermetallic compound alloy of Patent Document 5 has a hardness of 800 HV level in its surface layer (several tens of microns on the surface).
  • the sample of 5 (5Ta3Re) has a hardness comparable to that of the entire sample. Thus, no.
  • the sample of 5 (5Ta3Re) shows excellent hardness characteristics.
  • No. 6-No. A cast material was prepared by melting and solidifying Ni, Al, V, Ta, and Re ingots (purity 99.9% by weight) and B in the proportions shown in FIG. No. 6-No. Eleven samples were melted and cast by the arc melting method in the same manner as in the demonstration experiment 1 to prepare ingots (small button-like alloys having a diameter of 30 to 50 mm ⁇ ). No. Twelve samples were cast by ceramic molding to produce ingots (diameter: about 16.5 mm ⁇ ⁇ length: about 150 mm).
  • the cast materials (No. 6 to No. 11) produced by the arc melting method were subjected to a solution heat treatment for 1553 K ⁇ 5 hours, and then cooled with water.
  • No. Sample No. 12 is slowly cooled when cast by the ceramic mold method, and has a temperature at which the pro-eutectoid L1 2 phase and the A1 phase coexist and a eutectoid temperature at which the A1 phase separates into the L1 2 phase and the D0 22 phase. Because it has been exposed to temperature for a long time, The solution heat treatment for 12 samples was omitted (hereinafter, the sample without solution heat treatment is referred to as a post-cast sample).
  • the produced cast material was sliced by EDM (electric discharge machining) to produce a test piece (about 10 mm ⁇ 5 mm ⁇ 1 mm). Then, in order to investigate the influence of the lower multi-phase heat treatment, a part of the obtained test pieces (No. 6 to No. 12) was subjected to a lower multi-phase heat treatment at a temperature of 1123 K for 5 hours or a temperature of 1223 K. The lower multiphase heat treatment for 5 hours was performed, followed by water quenching. Thus, a sample subjected only to solution heat treatment (No. 12 sample is a sample after casting), and a sample subjected to solution heat treatment and lower multi-phase heat treatment (No. 12 sample is only lower multi-phase heat treatment). Applied sample).
  • Table 6 shows the measurement results. Table 6 is a table showing the conditions of each heat treatment and the Vickers hardness of the sample subjected to the heat treatment.
  • FIG. 7 shows a graph summarizing the measurement results of the Vickers hardness test.
  • 7 is a graph of the measurement results in Table 6. 6-No. It is a graph which shows the relationship between the conditions of a lower double phase heat processing, and Vickers hardness about 12 samples.
  • “After solution heat treatment / after casting” on the horizontal axis shows the case where only solution heat treatment was performed (No. 6 to No. 12 samples indicate the state after casting).
  • “1123-5h” or “1223-5h” indicates a case where after the solution heat treatment, lower multiphase heat treatment is further performed at a temperature of 1123 K for 5 hours or at a temperature of 1223 K for 5 hours.
  • these Re-added samples are samples in which only Ta is added to Ni, Al, V and B. It can be seen that the Vickers hardness is equal to or higher than (No. 9 and No. 10).
  • samples to which Ta and Re are added No. 11 (5Ta5Re) and No. 12 (5Ta3Re) samples
  • these Re-added samples are only samples (No. 6) to which Re is not added and Ta. It can be seen that the value of the Vickers hardness is increased by performing the lower double-phase heat treatment, unlike the samples to which No is added (No. 9 and No. 10). The value of the Vickers hardness is increased by the lower double-phase heat treatment at any temperature. In particular, in the case of the lower double-phase heat treatment of 1123 K, the Vickers hardness is greatly increased in any sample to which Re is added. It is high. In addition, in the case of samples to which Ta and Re are added (No. 11 and No. 12), it can be seen that the Vickers hardness tends to increase in any lower multiphase heat treatment at any temperature.
  • FIGS. 8 to 16 are the same as those shown in FIG. 4, no. 5 and no. It is a SEM photograph of 13 samples.
  • FIGS. 8 to 10 are samples subjected to solution heat treatment
  • FIGS. 11 to 13 are samples subjected to solution heat treatment and lower multiphase heat treatment (temperature: 1223K, time: 2 hours)
  • FIG. 14 to 16 are photographs of samples subjected to solution heat treatment and lower multiphase heat treatment (temperature: 1223K, time: 24 hours).
  • (1) and (2) are secondary electron images (SEI)
  • (3) and (4) are reflected electron composition images (COMPO: compositional image).
  • (1) and (3) are photographs at a magnification of 5000 times
  • (2) and (4) are photographs at a magnification of 25000 times.
  • FIGS. 14 to 16 it can be seen that the same phenomenon as in FIGS. 11 to 13 is observed. Even if the processing time of the lower multiphase heat treatment (temperature: 1223K) is extended from 2 hours to 24 hours, In the sample No. 13, the structure hardly changed, but the sample to which Re was added, that is, No. 13 sample. 4 and no. Sample 5 shows that the second phase (acicular particles) observed in FIGS. 11 to 13 can be observed more clearly when the processing time of the lower multiphase heat treatment (temperature: 1223 K) is extended (acicular particles). Is coarsened).
  • an Ni-based intermetallic compound alloy exhibiting excellent hardness is provided. Further, this Ni-based intermetallic compound alloy is improved in hardness by aging heat treatment, and exhibits excellent hardness even at high temperatures. For this reason, this Ni-based intermetallic alloy is also useful as a material for high-temperature mechanical structures such as heat-resistant bolts, jet engines, and gas turbines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

優れた硬さを示すNi基金属間化合物合金を提供する。本発明によれば、Niを主成分とし、かつAl:5~12原子%、V:11~17原子%、Re:1~5原子%を含み、初析L12相と(L12+D022)共析組織との2重複相組織を有するNi基2重複相金属間化合物合金が提供される。

Description

Reが添加されたNi基2重複相金属間化合物合金及びその製造方法
 本発明は、Reが添加されたNi基2重複相金属間化合物合金及びその製造方法に関する。
 環境破壊が問題となり、省エネルギーやCO2削減に関する技術が、近年注目されている。このため、内燃機関の燃焼効率のさらなる向上が望まれ、より高温特性の優れた材料の開発が求められている。
 このような要望に対し、高温特性の優れた材料として、(1)Ni基超合金と(2)Ni基2重複相金属間化合物合金の開発が進められている。
 上記(1)のNi基超合金は、母相であるγ相(Ni固溶体相)と、この母相中に分散析出したγ’相とを有し、γ’相がNi3Alを基本組成とする金属間化合物(L12相)であり、構成相中の約60~70vol%がγ’相で構成される。
 この合金は、普通鋳造合金、一方向凝固合金、単結晶合金へと開発が進められ、単結晶合金では、第1世代合金、Reを約3重量%含有する第2世代合金、Reを5~6重量%含有する第3世代合金、Ruなどの貴金属を2~3重量%含有する第4世代合金、貴金属を5~6重量%含有する第5世代合金へと開発が進められている。
 例えば、一方向凝固材用Ni基超合金として、C,B,Hf,Co,Ta,Cr,W,Al,Reを含有し、残部がNi及び不可避の不純物からなる一方向凝固用Ni基超合金が知られている(例えば、特許文献1参照)。
 この合金は、Ti,Nb,V,Zr等を任意の成分とし、母相のγ相と析出相のγ’相とを構成する元素の添加量と、結晶粒界を強化する元素の添加量を調整することにより、凝固方向の強度と結晶粒界の強度を改善する。
 また、実用面において高温強度と高温における耐酸化性の両面においてバランスの取れたNi基単結晶超合金として、Al,Ta,W,Re,Cr及びRuを主添加元素とするNi基単結晶超合金が知られている(例えば、特許文献2参照)。
 この合金は、その元素の組成比を最適な範囲に設定することにより、母相(γ相)の格子定数と析出相(γ’相)の格子定数とを最適な値に制御して優れた高温強度(クリープ強度)を実現する。
 これらのNi基超合金は、ジェットエンジン等のタービン翼を主な用途とするため、高温強度や鋳造の観点から開発され、これらの観点から好ましい元素がその組成に添加されている。Ni基超合金は、上記で説明したように母相のγ相と析出相のγ’相からなるが、Reはγ相(固溶体相)に固溶してクリープ強度を向上させると説明されている(例えば、特許文献1及び2参照)。また、Taは、W等とともにγ相に固溶するとともにその一部がγ’相に固溶してクリープ強度を向上させると説明されている(例えば、特許文献2参照)。さらに、Vは、高温強度が低下するので、1重量%以下が好ましいと説明されている(例えば、特許文献1及び2参照)。
 しかし、Ni基超合金は、構成相の約30~40vol%以上が金属相のγ相であるために融点や高温クリープ強度に限界があるといえる。また、高温強度の観点での開発は進んでいるものの、硬さの観点での開発は進んでいない。
 一方、このような課題を解決する合金として、上記(2)のNi基2重複相金属間化合物合金の開発が期待されている。このNi基2重複相金属間化合物合金は、最密充填(Geometrically Closed Packed)結晶構造に属するNi3X型金属間化合物を整合良く組み合わせた複相合金であり、例えば、上記γ’相のNi3Alの金属間化合物相と、Ni3Vの金属間化合物相とで構成される。
 図17に、このNi基2重複相金属間化合物合金の組織を説明するための図を示す。図17において、(1)がNi基2重複相金属間化合物合金の組織を説明するためのSEM写真の一例(Ni75Al814.5Nb2.5)であり、(2)がNi基2重複相金属間化合物合金の組織を構成する結晶構造(Ni3Al,Ni3V)の模式図である。
 図17に示すように、このNi基2重複相金属間化合物合金は、整合性よく形成されたミクロ組織と、その間に形成されたナノ組織とで構成され(図17(1)参照)、前者のミクロ組織が初析L12相(図17(2)で示すNi3Al)で構成され、後者のナノ組織がL12相とD022相(図17(2)で示すNi3Al及びNi3V)とからなる共析組織で構成されている。
 このNi基2重複相金属間化合物合金は、共析温度よりも高い温度の熱処理で、A1相(Ni固溶体相)に初析L12相が析出した上部複相組織が形成され、その後の共析温度以下の熱処理で、A1相がL12相とD022相の2相に共析変態し下部複相組織が形成されて構成されている。
 このように、Ni基2重複相金属間化合物合金は、優れた特性を有するNi3X型金属間化合物が複相化されて形成されている。このため、このNi基2重複相金属間化合物合金は、単一の金属間化合物相で構成された合金よりもさらに優れた特性を示し、かつ幅広い組織制御の可能性がある合金として期待されている(特許文献3参照)。例えば、高温強度のほか、硬さの観点でも開発が進められている。
 具体的な例を挙げると、常温のみならず高温でも優れた硬さを示すNi基2重複相金属間化合物合金として、Niを主成分とし、Al,V,Ta及び/又はW,Nb,Co,Cr,Bを含む(Nb,Co,Crは任意の成分)合金が知られている(特許文献4参照)。
 また、表面の硬さが高められたNi基2重複相金属間化合物合金として、Niを主成分とし、Al,V,Nb,Ti,Co,Cr,Bを含む(Nb,Ti,Co,Crは任意の成分)合金を母材とし、この母材が窒化処理と浸炭処理の少なくとも一方によって表面処理されているNi基2重複相金属間化合物合金が知られている(特許文献5参照)。
特開2006-45654号公報 特開2010-312299号公報 国際公開第2007/086185号パンフレット 特開2009-215649号公報 特開2009-197254号公報
 しかし、上記背景技術のようなNi基2重複相金属間化合物合金は、優れた硬さを示すが、その特性の改善が望まれている。例えば、Ta等の含有量を多くすると、優れた硬さを示すものの、逆にAlの含有量が少なくなると高温において十分な硬さが得られない場合がある。また、Ta等の含有量が多くなると、強度特性上好ましくない第二相粒子(分散物)が出現する場合がある。このため、Ta等の含有量による硬さ特性の改善には限界があると考えられ、たとえばTa等以外の元素を含有させることにより、Ni基2重複相金属間化合物合金の硬さ特性を改善することが望まれている。
 本発明は、このような事情を鑑みてなされたものであり、優れた硬さを示すNi基2重複相金属間化合物合金を提供するものである。
 本発明によれば、Niを主成分とし、かつAl:5~12原子%、V:11~17原子%、Re:1~5原子%を含み、初析L12相と(L12+D022)共析組織との2重複相組織を有するNi基2重複相金属間化合物合金が提供される。
 本発明の発明者らは、従来のNi基2重複相金属間化合物合金が、Ni3X型金属間化合物のX元素に置換する元素(例えば、Ta,Nb,Ti)を含有していたことに着目し、Ni基2重複相金属間化合物合金にX元素に置換する元素ではなくNi元素に置換する元素を含有させることを発案した。
 そして、鋭意研究をした結果、(1)Ni,Al,Vを含むNi基2重複相金属間化合物合金にRe(例えば、3原子%)を含有させることにより、微細な組織を有するNi基2重複相金属間化合物合金が得られること、及び(2)Reを含有するNi基2重複相金属間化合物合金に熱処理を行うことにより2重複相組織を維持したまま、この合金の硬さを向上させることができること、を見出し、本発明の完成に到った。
 本発明によれば、優れた硬さを示すNi基2重複相金属間化合物合金が提供される。
また、素材が硬くない、すなわち加工(例えば、切削加工)しやすい状態で加工した後、熱処理により硬さを向上させることができるので、加工性(例えば、切削加工性)に優れるNi基2重複相金属間化合物合金が提供される。
 以下、本発明の種々の実施形態を例示する。以下の記述中で示す構成は、例示であって、本発明の範囲は、以下の記述中で示すものに限定されない。
比較例に係るNo.1及びNo.2の試料のSEM写真である。 比較例に係るNo.3の試料のSEM写真である。 本発明の実施例に係るNo.4及びNo.5の試料のSEM写真である。 溶体化熱処理及び下部複相熱処理が施されたNo.5のX線回折プロファイルを示す図である。 下部複相熱処理(温度:1173K)が施されたNo.1~No.5の試料について、下部複相熱処理の時間とビッカース硬さの関係を示すグラフである。 下部複相熱処理(温度:1223K)が施されたNo.1~No.5の試料について、下部複相熱処理の時間とビッカース硬さの関係を示すグラフである。 No.6~No.12の試料について、下部複相熱処理の条件とビッカース硬さの関係を示すグラフである。 本発明の実施例に係る、溶体化熱処理が施されたNo.4の試料のSEM写真である。 本発明の実施例に係る、溶体化熱処理が施されたNo.5の試料のSEM写真である。 比較例に係る、溶体化熱処理が施されたNo.13の試料のSEM写真である。 本発明の実施例に係る、溶体化熱処理及び下部複相熱処理(温度:1223K、時間:2時間)が施されたNo.4の試料のSEM写真である。 本発明の実施例に係る、溶体化熱処理及び下部複相熱処理(温度:1223K、時間:2時間)が施されたNo.5の試料のSEM写真である。 比較例に係る溶体化熱処理及び下部複相熱処理(温度:1223K、時間:2時間)が施されたNo.13の試料のSEM写真である。 本発明の実施例に係る、溶体化熱処理及び下部複相熱処理(温度:1223K、時間:24時間)が施されたNo.4の試料のSEM写真である。 本発明の実施例に係る、溶体化熱処理及び下部複相熱処理(温度:1223K、時間:24時間)が施されたNo.5の試料のSEM写真である。 比較例に係る溶体化熱処理及び下部複相熱処理(温度:1223K、時間:24時間)が施されたNo.13の試料のSEM写真である。 Ni基2重複相金属間化合物合金の組織を説明するためのSEM写真及びこの合金の組織を構成する結晶構造(Ni3Al,Ni3V)の模式図である。
 本発明に係るNi基2重複相金属間化合物合金は、Niを主成分とし、かつAl:5~12原子%、V:11~17原子%、Re:1~5原子%を含み、初析L12相と(L12+D022)共析組織との2重複相組織を有する。このNi基2重複相金属間化合物合金は、前記含有量のNi、Al、V及びReを含む合計100原子%の組成の合計重量に対して10~1000重量ppmのBをさらに含んでもよい。
 また、本発明の実施形態において、Reを1~5原子%含む場合、Niを主成分とし、かつAl:8~12原子%、V:13~17原子%、Re:1~5原子%を含むNi基2重複相金属間化合物合金であってもよい。Reを1~5原子%含む実施形態でも、前記含有量のNi、Al、V及びReを含む合計100原子%の組成の合計重量に対して10~1000重量ppmのBをさらに含んでもよい。
 この実施形態によれば、例えば、熱処理(例えば、1073~1273Kの熱処理)を施すことにより、硬さを著しく向上させることができるNi基2重複相金属間化合物合金が提供される。また、このNi基2重複相金属間化合物合金は、微細な2重複相組織を維持したまま、硬さを著しく向上させることができる。
 また、このNi基2重複相金属間化合物合金は、上記熱処理の温度で著しい硬さを示すので、上記熱処理の温度、すなわち、高温での使用にも適する。
 ここでいう熱処理は、初析L12相の間隙に形成されたA1相を変態させて、L12相とD022相とを形成させるための熱処理である。この熱処理には、このような組織の形成を促進するための処理として、時効熱処理(いわゆる人工時効)が含まれ、また、このような組織を形成する処理として、後述する下部複相熱処理(第2熱処理)が含まれる。
 この熱処理の温度は、上記実施形態の場合、好ましくは1073~1273Kであり、より好ましくは1098~1198K(1123K±25K又は1173K±25K)である。これら温度範囲であれば、この合金の硬さを著しく向上させることができ、また、硬さを維持した状態で、このNi基2重複相金属間化合物合金を用いることができる。
 なお、熱処理の時間は、好ましくは5~10時間である。この時間範囲であれば、例えば、1148~1198Kの熱処理で約660HVのビッカース硬さを実現できる。
  また、本発明の実施形態において、このNi基2重複相金属間化合物合金がTaをさらに含んでもよい。具体的には、Ni基2重複相金属間化合物合金がTaを含む場合、Niを主成分とし、かつAl:5~9原子%、V:11~15原子%、Ta:3~7原子%、Re:1~5原子%を含むNi基2重複相金属間化合物合金であってもよい。また、Taを含む実施形態でも、前記含有量のNi、Al、V及びReを含む合計100原子%の組成の合計重量に対して10~1000重量ppmのBをさらに含んでもよい。
 この実施形態によれば、熱処理を施すことにより硬さを著しく向上させることができるのみならず、熱処理前であっても優れた硬さを有するNi基2重複相金属間化合物合金が提供される。
 ここで、この実施形態の場合、前記熱処理の温度は、好ましくは1073~1273Kであり、熱処理の時間は、好ましくは、2~24時間である。このような熱処理であれば、より優れたビッカース硬さ(例えば約780HV)を実現できる。
 また、この実施形態のNi基2重複相金属間化合物合金も熱処理により微細な2重複相組織を維持したままで硬さを著しく向上させることができ、高温(例えば、1073~1273Kの温度)での使用に適する。
 また、本発明の実施形態において、本発明のNi基2重複相金属間化合物合金で耐熱部品を形成してもよい。
 本発明のNi基2重複相金属間化合物合金は、前記熱処理の温度、例えば、1073~1273Kの温度で硬さが向上することから、上記で説明したように、高温(例えば、前記熱処理の1073~1273Kの温度)での使用に適する。従って、このNi基2重複相金属間化合物合金で形成された耐熱部品(例えば、耐熱ボルト)は、高温でも優れた硬さを有する。
 また、他の観点によれば、本発明は、Niを主成分とし、かつAl:5~12原子%、V:11~17原子%、Re:1~5原子%を含む溶湯を徐冷して鋳造するNi基2重複相金属間化合物合金の製造方法を提供する。
 また、本発明の製造方法の実施形態において、前記溶湯が、Niを主成分とし、かつAl:8~12原子%、V:13~17原子%、Re:1~5原子%を含んでもよいし、また、前記溶湯が、Niを主成分とし、かつAl:5~9原子%、V:11~15原子%、Ta:3~7原子%、Re:1~5原子%を含んでもよい。さらに、前記溶湯が、前記含有量のNi、Al、V及びRe又は、前記含有量のNi、Al、V、Re及びTaを含む合計100原子%の組成の合計重量に対して10~1000重量ppmのBをさらに含んでもよい。
 本発明の製造方法によれば、優れた硬さを示すNi基2重複相金属間化合物合金が製造できる。また、本発明の製造方法によれば、素材が硬くない、すなわち加工(例えば、切削加工)しやすい状態で加工し、その後熱処理によって硬さを向上させることができるNi基2重複相金属間化合物合金が製造できるので、加工性(例えば、切削加工性)に優れるNi基2重複相金属間化合物合金の製造方法が提供される。
 また、本発明の製造方法の実施形態において、鋳造後、1503~1603Kの溶体化熱処理を行ってもよい。
 この実施形態によれば、1503~1603Kの温度で、V元素等が固溶してA1相(Ni固溶体相)を形成するとともに初析L12相が形成され、その後の冷却で、再度2重複相組織(初析L12相と(L12+D022)共析組織の組織)が形成される。このため、微細かつ均一な2重複相組織を備えるNi基2重複相金属間化合物合金の製造方法が提供される。
 なお、上記溶体化熱処理は、初析L12相とA1相とが共存する温度で鋳造された合金に熱処理を行う工程(この明細書でいう上部複相熱処理(第1熱処理))を兼ねてもよいし、また、均質化熱処理を兼ねてもよい。
 また、本発明の製造方法の実施形態において、溶体化熱処理後、1073~1273Kの時効熱処理を行ってもよい。
 この実施形態によれば、微細な2重複相組織を維持したままで硬さを著しく向上させるNi基2重複相金属間化合物合金の製造方法が提供される。
 ここで示した実施形態は、互いに組み合わせることができる。本明細書において、「~」は、両端の点を含む。(なお、原子%は、at.%ともいう。)
 以下、これらの実施形態の各元素について詳述する。
 Niの具体的な含有量(含有率)は,好ましくは70~74at.%であり,さらに好ましくは71~73at.%である。このような範囲であれば,(Ni,Re)の含有量と,(Al,V,Ta)の含有量の合計が3:1に近くなり、2重複相組織が形成されやすい。
 Niの具体的な含有量は,例えば70,70.5,71,71.5,72,72.5,73,73.5又は74at.%である。Niの含有量の範囲は,上記具体的な含有量として例示した数値の何れか2つの間であってもよい。
 Alの具体的な含有量は,5~12at.%である。Ni基2重複相金属間化合物合金がTaを含まない場合、好ましくは、8~12at.%であり、さらに好ましくは、9~11at.%である。また、Ni基2重複相金属間化合物合金がTaを含む場合、好ましくは、5~9at.%、さらに好ましくは、6~8at.%である。
 例えば5,5.5,6,6.5,7,7.5,8,8.5,9,9.5,10,10.5,11,11.5又は12at.%である。Alの含有量の範囲は,上記具体的な含有量として例示した数値の何れか2つの間であってもよい。
 Vの具体的な含有量は,11~17at.%である。Ni基2重複相金属間化合物合金がTaを含まない場合、好ましくは、13~17at.%であり、さらに好ましくは、14~16at.%である。また、Ni基2重複相金属間化合物合金がTaを含む場合、好ましくは、11~15at.%、さらに好ましくは、12~14at.%である。
 例えば11,11.5,12,12.5,13,13.5,14,14.5,15,15.5,16,16.5又は17at.%である。Vの含有量の範囲は,上記具体的な含有量として例示した数値の何れか2つの間であってもよい。
 Reの具体的な含有量は、1~5at.%であり、好ましくは、2~4at.%である。例えば1,1.5,2,2.5,3,3.5,4,4.5又は5at.%である。Reの含有量の範囲は,上記具体的な含有量として例示した数値の何れか2つの間であってもよい。
 Taの具体的な含有量は、3~7at.%であり、好ましくは、4~6at.%である。例えば3,3.5,4,4.5,5,5.5,6,6.5又は7at.%である。Taの含有量の範囲は,上記具体的な含有量として例示した数値の何れか2つの間であっても
よい。
 Bは任意の成分であるが、Ni基2重複相金属間化合物合金がBを含む場合、Bの具体的な含有量は、10~1000重量ppmである。例えば10,50,100,150,200,250,300,350,400,450,500,550,600,650,700,750,800,850,900,950又は1000重量ppmである。Bの含有量の範囲は,上記具体的な含有量として例示した数値の何れか2つの間であってもよい。
 なお、Bの具体的な含有量は、Ni,Al,V,Re,Ta(Taは任意)を含む合計100at.%の組成の合計重量に対する含有量である。
 次に、Ni基2重複相金属間化合物合金の組織について説明する。本発明のNi基2重複相金属間化合物合金も図17に示すNi基2重複相金属間化合物合金と同様の組織を有する。
 すなわち、本発明のNi基2重複相金属間化合物合金は、初析L12相と(L12+D022)共析組織との2重複相組織を有する。初析L12相は、共析温度よりも高い温度で形成される組織である(なお、共析温度よりも高い温度で形成される初析L12相とその間隙のA1相とからなる組織を「上部複相組織」という)。一方、(L12+D022)共析組織は、前記初析L12相の間隙に形成されたA1相が、共析温度以下の温度で、分離して形成されるL12相とD022相とからなる下部複相組織である。
 ここで、共析温度よりも高い温度とは、初析L12相とA1相とが共存する温度であり、共析温度とは、A1相がL12相とD022相とに変態(分解)する温度の上限値である。
 このような組織を有するNi基2重複相金属間化合物合金は、以下の製造方法で製造する。
 まず、各元素が上記で説明した割合となるように金属地金を秤量し、これを加熱して溶解させる。次に、この溶湯を冷却することにより鋳造する。
 この鋳造における溶湯の冷却は、例えば、徐冷により行う。徐冷を行うと、溶湯が凝固した後に初析L12相とA1相とが共存する温度に比較的長い時間さらされることになり、また、その後、A1相がL12相とD022相とに分離する共析温度以下の温度にも長い時間さらされることになる。このため、初析L12相とA1相とからなる上部複相組織が形成され、さらにA1相が分解して、L12相とD022相とからなる下部複相組織が形成される。
 この徐冷は、例えば、炉冷によって行う。すなわち、上記材料を加熱して溶解させ、加熱後、その炉に溶湯をそのまま放置する。
 また、上記の組織を有するNi基2重複相金属間化合物合金は、鋳造後、熱処理を行うことにより製造してもよい。
 例えば、鋳造後、1503~1603Kの溶体化熱処理を行い(すなわちA1単相化の溶体化熱処理を行い)、その後冷却してこのNi基2重複相金属間化合物合金を製造してもよい。初析L12相が自然に析出し、その後、A1相がL12相とD022相とに分解されてNi基2重複相金属間化合物合金を製造できる。また、特許文献3、4に記載されているように、溶解・凝固により得られた合金材(鋳塊など)に対して、初析L12相とA1相とが共存する温度で第1熱処理を行い(上部複相組織の形成)、第1熱処理後、冷却することによりA1相をL12相とD022相とに分解させて(下部複相組織の形成)、このNi基2重複相金属間化合物合金を製造してもよい。
 また、溶解・凝固により得られた合金材(鋳塊など)に対して、初析L12相とA1相とが共存する温度で第1熱処理を行い(上部複相組織の形成)、その後、L12相とD022相とが共存する温度に冷却(空冷や炉冷のような自然冷却又は水冷等の強制冷却)するか、その温度で第2熱処理を行うことによってA1相を(L12+D022)共析組織に変化させて(上部複相組織の形成)、このNi基2重複相金属間化合物合金を製造してもよい。
 ここで、本発明に係るNi基2重複相金属間化合物合金の場合、第1熱処理は、例えば、1503~1603Kの温度で行い、具体的には、1503Kの温度で、5~200時間程度の熱処理を行う。
 また、第2熱処理は、例えば、1123~1273Kの温度で行う。具体的には、1203Kの温度で、5~200時間程度行う。
 また、鋳造後又は上記第1若しくは(及び)第2熱処理後、1503~1603Kの溶体化熱処理を行ってもよい。溶体化熱処理は、例えば、1553Kの温度で、5時間程度行う。溶体化熱処理後の冷却は、空冷等の自然冷却、水冷等の強制冷却、いずれでもよいが、例えば、炉冷による冷却で行うとよい。
 なお、溶体化熱処理は、第1熱処理や均質化熱処理を兼ねてもよいし、逆に、第1熱処理や均質化熱処理が溶体化熱処理を兼ねてもよい。
 また、鋳造後又は上記第1若しくは(及び)第2熱処理後、あるいは、これらの処理に加えて溶体化熱処理を行った後、さらに時効熱処理を行ってもよい。この時効熱処理は、Ni基2重複相金属間化合物合金の初析L12相の間隙に形成されたA1相を変態(分解)して、L12相とD022相とを形成するために実施するものであるので、第2熱処理と同じ温度範囲で熱処理することにより実施できる。L12相とD022相とが形成されることを促進するため、この時効熱処理の温度は、1123~1273Kであることが好ましい。
 なお、この明細書において、時効熱処理を下部複相熱処理(下部複相組織を形成させる熱処理)ともいう。
(効果実証実験1)
 次に、効果実証実験1について説明する。以下の実験では,鋳造材を作製し、(1)溶体化熱処理、(2)溶体化熱処理及び下部複相熱処理(上記の時効熱処理に相当する)を施して、(1)又は(2)の条件のNi基2重複相金属間化合物合金をそれぞれ作製し、作製された合金について、SEM組織観察、硬さ測定、X線測定を行い、その特性を調べた。
(合金の作製)
 まず、表1のNo.1~No.5に示す割合のNi,Al,V,Ta,Reの地金(それぞれ純度99.9重量%)及びBをアーク溶解炉内の鋳型中で溶解、凝固することによって鋳造材(30~50mmφの小型ボタン状の合金)を作製した。
 上記アーク溶解炉の雰囲気は、溶解室内を真空排気し、その後不活性ガス(アルゴンガス)に置換した。電極は、非消耗タングステン電極を用い、鋳型には水冷式銅ハースを使用した。
Figure JPOXMLDOC01-appb-T000001
 ここで、表1において、No.1~No.3の試料が比較例であり、これらはReが添加されていない試料である(ここで、試料の名称は「No.1」等の番号ほか、Taが添加されている試料であることから、その含有量と含有元素「Ta」とあわせた文字列もその試料の名称とした。例えば、Taを5at.%含有する試料は「5Ta」とも呼ぶ。)。
 また、表1において、No.4及びNo.5の試料が本発明の実施例であり、Reが添加されている試料である(試料の名称は、上記Taの場合と同様である。例えば、Taを5at.%、Reを3at.%含有する試料は、「5Ta3Re」とも呼ぶ。)。
 なお、表1におけるBの割合は、Ni,Al,V,Nbを含む合計100at.%の組成に対する数値である。
 次いで、作製された鋳造材(No.1~No.5)から試験片(約10mm×5mm×1mm)を切り出し、得られた試験片(No.1~No.5)に対して、溶体化熱処理として1553K×5時間の熱処理を施し、その後炉冷した。
 なお、この溶体化熱処理によってA1単相組織化を行い、その後の炉冷で、初析L12相および間隙のL12相とD022相とが共存する2重複相組織を形成させた。
 さらに、溶体化熱処理された試験片のうち、その一部に下部複相熱処理を施した。また下部複相熱処理による組織変化等を観察するため、それぞれの試験片(No.1~No.5)に対し、1173Kの温度で5、10、24時間の、1223Kの温度で2、5、10、24時間の条件で下部複相熱処理を行い、水焼き入れを行った。
 これらの溶体化熱処理及び下部複相熱処理により、表2に示す条件を施した試料を作成した。
Figure JPOXMLDOC01-appb-T000002
(組織観察)
 次に、溶体化熱処理・下部複相熱処理の熱処理された試料について、SEMによる組織観察を行った。図1~図3にその写真を示す。図1及び図2が、比較例に係るNo.1~No.3(5Ta,6Ta,6.5Ta)の試料のSEM写真であり、図3が本発明の実施例に係るNo.4(3Re)及びNo.5(5Ta3Re)の試料のSEM写真である。
 これらの図において、溶体化熱処理のみ施された試料の写真に「溶体化材」と記載し、また試料No.の後ろに「―A」と、その条件(表2の条件)を記載している。また、溶体化熱処理に加えて下部複相熱処理が施された試料の写真に、「1173K-10h」「1223K-10h」と下部複相熱処理の条件を記載している。さらに、試料No.の後ろに「―B」又は「―C」と、その条件(表2の条件)を記載している。
 図1~2を参照すると、No.1~No.3(5Ta,6Ta,6.5Ta)の試料のうち、溶体化熱処理のみ施された試料では2重複相組織が形成されている領域以外に、図1(1)No.1-A及び(4)No.2-A、並びに図2(1)No.3-Aに示されるような微細に入り組んだツイード状組織領域も存在していることがわかる。
 特に、No.3(6.5Ta)の溶体化熱処理のみ施された試料(図2(1)No.3-A)は、4回対称性を持つツイード状組織が観察された。これは、Ta添加量が増加したことによるものと考えられる。
 また、図1~2を参照すると、No.1~No.3(5Ta,6Ta,6.5Ta)の試料のうち、溶体化熱処理に加えて下部複相熱処理が施された試料(図1(2)No.1-B、(3)No.1-C、(5)No.2-B及び(6)No.2-C並びに図2(2)No.3-B及び(3)No.3-C)は、基本的には溶体化熱処理のみ施された試料と同様の特徴を示しているが、1223Kの温度で下部複相熱処理が施されたNo.1及びNo.2の試料(5Ta,6Ta)(図1(3)No.1-C及び(6)No.2-C)は、ツイード状組織の4回対称性が崩れる傾向を示していることがわかる。また、下部複相熱処理が施されたNo.3(6.5Ta)の試料(図2(2)No.3-B及び(3)No.3-C)は、新たに形成されたと考えられる粗大な板状の第2相も確認された。
 一方、図3を参照すると、No.4(3Re)及びNo.5(5Ta3Re)の試料のうち、溶体化熱処理のみ施された試料(図3(1)No.4-A及び(4)No.5-A)は、図1~2のNi基2重複相組織合金や従来の2重複相組織よりも遥かに微細な(「超微細な」と言ってもよい)2重複相組織で形成されていることがわかる。
 例えば、No.1~No.3(5Ta,6Ta,6.5Ta)の試料とNo.4(3Re)及びNo.5(5Ta3Re)の試料を比較すると、いずれの熱処理の場合もNo.4(3Re)及びNo.5(5Ta3Re)の試料のほうが超微細な2重複相組織で形成されていることがわかる。
 また、図3(1)No.4-Aと図17(1)を比較すると、図3(1)No.4-Aの立方体状(キューブ状)の組織は、その辺の長さが図17(1)の(Ni75Al814.5Nb2.5)の2重複相組織のおよそ半分以下である。すなわち、図3に示される各試料の組織の大きさは、図17のそれと比較して数分の1の大きさであることがわかる。(例えば、図17の試料は、辺の長さが1~2μmからなる立方体の組織を有するのに対し、図3(1)No.4-Aの試料は、辺の長さが0.3~0.5μmからなる立方体の組織を有する。)このように、No.4(3Re)及びNo.5(5Ta3Re)の試料は、特許文献3~5に記載された2重複相組織よりも、微細な2重複相組織で形成されていることが理解できる。
 さらに、図3を参照すると、No.4(3Re)及びNo.5(5Ta3Re)の試料、特に、溶体化熱処理に加えて下部複相熱処理が施された試料(図3(2)No.4-B、(3)No.4-C、(5)No.5-B及び(6)No.5-C)は、興味深いことにTaの添加の有無によらず超微細な2重複相組織で形成されていることがわかる。
 これらの結果から、2重複相組織の維持及びその大きさにReが関与し、Reが添加されることにより、2重複相組織が維持されるとともに微細な2重複相組織が形成されることが理解できる。
 なお、溶体化熱処理のみ施されたNo.4(3Re)の試料は、不均質に分布する、立方体状(キューブ状)に析出した組織が観察された。これに対して、溶体化熱処理に加えて下部複相熱処理が施されたNo.4(3Re)の試料は、均質に組織が形成され、このような立方体状の組織は観察されなかった。
(X線測定)
 次に、これらの試料について、X線測定を行った。図4に、No.5(5Ta3Re)の試料の測定結果を示す。図4は、溶体化熱処理及び下部複相熱処理が施されたNo.5(5Ta3Re)のX線回折プロファイルを示す図である。
 図4において、(a)~(e)のグラフは、各熱処理のX線回折プロファイルを示し、(a)は、溶体化熱処理のみ施された試料(表2の条件A)に、(b)~(e)は、溶体化熱処理に加えて下部複相熱処理が施された試料(表2の条件C)に、それぞれ対応している。(b)~(e)の下部複相熱処理の時間は、(b)が2時間、(c)が5時間、(d)が10時間、(e)が24時間である。また、図4において、丸印(黒色の○印)は、L12相(Ni3Al)のX線回折ピークの位置を示し、三角印(グレーの△印)は、D022相(Ni3V)のX線回折ピークの位置を示している。
 図4に示すように、いずれの熱処理の試料もL12相とD022相のピークが観察されたが、これらの相以外の明瞭なピークは観察されず、第2相のピークは認められなかった。
 正確な解析には、TEM(透過電子顕微鏡)による調査が必要であるが、この結果から、No.5は、L12相とD022相とで構成されていることがわかる。
(ビッカース硬さ試験)
 次に、溶体化熱処理・下部複相熱処理の熱処理された試料について、ビッカース硬さ試験を行った。ビッカース硬さは、荷重300g、500gまたは1kg、保持時間20秒で測定し、その測定は、室温の25℃で行った。表3及び表4にその測定結果を示す。
 表3は、1173Kの温度の下部複相熱処理を施した試料のビッカース硬さを示す表であり、表4は、1223Kの温度の下部複相熱処理を施した試料のビッカース硬さを示す表である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 また、図5及び図6に、上記ビッカース硬さ試験の測定結果をまとめたグラフを示す。図5及び図6は、表3及び表4の測定結果をグラフ化したものであり、これらの図は、下部複相熱処理が施されたNo.1~No.5の試料について、下部複相熱処理の時間とビッカース硬さの関係を示すグラフである。図5が1173Kの温度による下部複相熱処理(表2に示す条件B)、図6が1223Kの温度による下部複相熱処理(表2に示す条件C)にそれぞれ対応し、これら図5及び図6において、溶体化熱処理のみ施された試料のビッカース硬さを左端の軸上に示している。
 図5及び図6を参照すると、No.1~No.3(5Ta,6Ta,6.5Ta)の試料は、いずれの下部複相熱処理(温度:1173K、1223K)においても、ほぼ5時間(1.8×104秒間)の下部複相熱処理でビッカース硬さの値が緩やかなピークを示し、その後、下部複相熱処理の時間が長くなるとその値が次第に低下する傾向(硬さが軟化する傾向)にあるものの、そのビッカース硬さの値はあまり変動していないことがわかる(下部複相熱処理により明瞭な硬さの変化が見られない)。
 一方、No.4(3Re)及びNo.5(5Ta3Re)の試料は、数時間の下部複相熱処理でビッカース硬さの値が著しく上昇している(図5及び図6参照)。例えば、5時間(1.8×104秒間)、1173Kの下部複相熱処理により、No.4(3Re)の試料は、約130HVもビッカース硬さの値が上昇し、No.5(5Ta3Re)の試料は約140HVもビッカース硬さの値が上昇している。
 このように、図5及び図6を参照すると、No.4(3Re)及びNo.5(5Ta3Re)の試料は、下部複相熱処理が施されることにより、ビッカース硬さの値が高い値を示すことがわかる。
 例えば、No.4(3Re)の試料は、1173K、1223Kのいずれの下部複相熱処理でも短時間(5~10時間又は5時間以内、すなわち1.8×104~3.6×104秒間又は1.8×104秒間以内)で著しく硬さが上昇し、特に1173Kの下部複相熱処理で顕著である。具体的には、No.4(3Re)の試料は、1173Kの温度で5~10時間(1.8×104~3.6×104秒間)、下部複相熱処理が施されることにより、約660HVの硬さを示すようになっている。この硬さは、No.1~No.3(5Ta,6Ta,6.5Ta)の試料よりも優れている。この実験結果から、Reが添加された試料に対する下部複相熱処理は、1223Kよりも1173Kの温度が好ましく、その処理時間は、5~10時間が好ましいことがわかる。
 また、No.5(5Ta3Re)の試料は、溶体化熱処理のみ施した場合でも660HVという高い値を示すが、短時間の下部複相熱処理でその値は顕著に上昇し、800HVを超える値を示している。ビッカース硬さの値が最高値となる下部複相熱処理の時間は、温度によって相違するものの、1173K、1223Kのいずれの下部複相熱処理でも800HVを超える値に達している(ビッカース硬さの値が140~150HV上昇している。)。この実験結果から、Re及びTaが添加された試料に対する下部複相熱処理は、1173K、1223Kのいずれの温度も好ましく、その処理時間は、短時間(2時間~)でもよいことがわかる。
 ところで、No.5(5Ta3Re)の試料は、下部複相熱処理が長時間に及ぶと、その硬さが微減する傾向にあり、24時間の下部複相熱処理で、800HVをわずかに下回り(780~790HV)、ビッカース硬さの最高値と比較してわずかであるが、その値は減少している(1173Kで約10HV減少し、1223Kで約20HV減少している)。
 しかしながら、24時間(8.64×104秒間)の下部複相熱処理が施されたNo.5(5Ta3Re)の試料は、800HV近い値を示し、No.1~No.3(5Ta,6Ta,6.5Ta)のいずれの熱処理条件の試料よりもその硬さが優れていることがわかる。溶体化熱処理のみ施した試料であっても、その硬さはNo.1~No.3(5Ta,6Ta,6.5Ta)の試料を上回っている。
 これらの結果から、No.5(5Ta3Re)の試料は、熱処理が施されることにより、ビッカース硬さの値が高い値を示すことがわかる。すなわち、No.5(5Ta3Re)の試料は、その熱処理が溶体化熱処理のみでも優れた硬さを示し、溶体化熱処理に加えて時効熱処理を施すと、より優れた硬さを示すことがわかる。
 また、特許文献と比較しても、No.5(5Ta3Re)の試料の硬さが優れていることが理解できる。例えば、特許文献4に記載されたNi基2重複相金属間化合物合金が500~650HV付近の値であるので、No.5(5Ta3Re)の試料のビッカース硬さは、この特許文献の合金を約100HV以上も上回るものであり、驚異的な硬さであることが理解できる。
 また、特許文献5のプラズマ浸炭したNi基2重複相金属間化合物合金はその表面層(表面の数十ミクロン)で800HVレベルの硬さであるが、No.5(5Ta3Re)の試料は、試料全体がこれに匹敵する硬さである。このように、No.5(5Ta3Re)の試料が優れた硬さ特性を示している。
(効果実証実験2)
 次に、効果実証実験2を行った。効果実証実験2では,鋳造材を作製し、鋳造材に溶体化熱処理及び下部複相熱処理(上記の時効熱処理に相当する)を施してNi基2重複相金属間化合物合金を作製し、作製された合金について、硬さ測定を行って、その特性を調べた。
 まず、表5のNo.6~No.12に示す割合のNi,Al,V,Ta,Reの地金(それぞれ純度99.9重量%)及びBを溶解、凝固することによって鋳造材を作製した。
No.6~No.11の試料は、効果実証実験1と同様にアーク溶解法により溶解、鋳造してインゴット(直径30~50mmφの小型ボタン状の合金)を作製した。また、No.12の試料は、セラミックモールド法により、鋳造してインゴット(直径約16.5mmφ×長さ約150mm)を作製した。
Figure JPOXMLDOC01-appb-T000005
 なお、表5において、No.6,No.9及びNo.10の試料が比較例であり、これらはReが添加されていない試料である。また、表5において、No.7及びNo.8並びにNo.11及びNo.12の試料が本発明の実施例であり、Reが添加されている試料である。(試料の名称は、上記効果実証実験1と同様であるが、Taが5at.%添加された試料は、上記効果実証実験1の「5Ta」とそのAl及びVの含有量が異なるので、「5Ta*」と記載している。また、Ta及びReが添加されていない試料は「無添加」と記載している。)
 また、表5におけるBの割合は、表1の効果実証実験1と同様にNi,Al,V,Nbを含む合計100at.%の組成に対する数値である。
 次に、アーク溶解法により作製された鋳造材(No.6~No.11)に対して1553K×5時間の溶体化熱処理を施し、その後水冷した。
 なお、No.12の試料は、セラミックモールド法で鋳造するときに徐冷され、初析L12相とA1相とが共存する温度及びA1相がL12相とD022相とに分離する共析温度以下の温度に長い時間さらされているので、No.12の試料に対する上記溶体化熱処理は省略した(以下、溶体化熱処理を省略した試料を鋳造後試料という)。
 次に、作製された鋳造材をEDM(放電加工:electrical discharge machining)でスライスして試験片(約10mm×5mm×1mm)を作製した。そして、下部複相熱処理の影響を調べるため、得られた試験片(No.6~No.12)の一部に対して、1123Kの温度で5時間の下部複相熱処理、又は1223Kの温度で5時間の下部複相熱処理を施し、その後水焼き入れを行った。これにより、溶体化熱処理のみが施された試料(No.12の試料は鋳造後試料)と、溶体化熱処理及び下部複相熱処理が施された試料(No.12の試料は下部複相熱処理のみ施された試料)を作製した。
 次に、上記の溶体化熱処理・下部複相熱処理が施された試料について、ビッカース硬さ試験を行った。ビッカース硬さは、荷重1kg、保持時間10秒で測定し、その測定は、室温の25℃で行った。表6にその測定結果を示す。表6は、各熱処理の条件と、その熱処理が施された試料のビッカース硬さを示す表である。
Figure JPOXMLDOC01-appb-T000006
 また、図7に、上記ビッカース硬さ試験の測定結果をまとめたグラフを示す。図7は、表6の測定結果をグラフ化したものであり、No.6~No.12の試料について、下部複相熱処理の条件とビッカース硬さの関係を示すグラフである。横軸の「溶体化熱処理後/鋳造後」は、溶体化熱処理のみを行った場合を示し(No.6~No.12の試料のうちNo.12の試料は鋳造後の状態を示し)、「1123-5h」又は「1223-5h」は、溶体化熱処理後、さらに1123Kの温度で5時間、又は1223Kの温度で5時間の下部複相熱処理を行った場合を示している。
 図7を参照すると、No.7(2Re)及びNo.8(5Re)、並びにNo.11(5Ta5Re)及びNo.12(5Ta3Re)の試料は、いずれの処理であってもTa及びReが添加されていないNo.6(無添加)の試料よりもビッカース硬さの値が高いことがわかる。例えば、No.7(2Re)及びNo.8(5Re)の試料は、No.6の試料よりもビッカース硬さの値が約70~80Hv高く、この結果から、Ni,Al,V及びBの組成にReを添加することによりビッカース硬さが改善されることがわかる。
 また、図7を参照すると、これらのReが添加された試料(No.7,No.8,No.11及びNo.12)は、Ni,Al,V及びBにTaのみが添加された試料(No.9及びNo.10)と同等かそれ以上のビッカース硬さを示すことがわかる。特に、Ta及びReが添加されている試料(No.11(5Ta5Re)及びNo.12(5Ta3Re)の試料)は、Taのみが添加された試料よりも、そのビッカース硬さの値が大幅に高い値を示している。この結果から、Ni,Al,V及びBの組成にReを添加すると、Taを添加する場合と同様にビッカース硬さが改善され、さらにReに加えてTaを添加すると、ビッカース硬さが顕著に上昇することがわかる。
 さらに、図7を参照すると、これらのReが添加された試料(No.7,No.8,No.11及びNo.12)は、Reが添加されていない試料(No.6)やTaのみが添加された試料(No.9及びNo.10)と異なり、下部複相熱処理を施すことにより、そのビッカース硬さの値が上昇することがわかる。いずれの温度の下部複相熱処理でもそのビッカース硬さの値が上昇しているが、特に、1123Kの下部複相熱処理の場合、いずれのReが添加された試料でも、そのビッカース硬さが大幅に高くなっている。また、Ta及びReが添加されている試料(No.11及びNo.12)の場合、いずれの温度の下部複相熱処理でも、そのビッカース硬さが高くなる傾向にあることがわかる。
(効果実証実験3)
 次に、効果実証実験1の溶体化熱処理及び下部複相熱処理について、試料の組織への影響を詳細に観察するため、効果実証実験1と同様の方法で作製したNo.4及びNo.5について、その組織観察を行った。
 また、表7に示す割合のNi,Al,V,Ta,Reの地金(それぞれ純度99.9重量%)及びBを溶解、凝固することによってNo.13の試料を作製し、この試料を比較例として、その組織観察も行った。
Figure JPOXMLDOC01-appb-T000007
 なお、No.13の試料は、効果実証実験1及び2と同様にして鋳造し、このNo.13の試料を含む各試料(No.4,No.5及びNo.13)の溶体化熱処理及び下部複相熱処理は、効果実証実験1の条件A及びC(下部複相熱処理は1223K、2時間)で行った。
 その結果を図8~図16に示す。図8~図16は、No.4,No.5及びNo.13の試料のSEM写真である。図8~図10は、溶体化熱処理が施された各試料、図11~図13は、溶体化熱処理及び下部複相熱処理(温度:1223K、時間:2時間)が施された各試料、図14~図16は、溶体化熱処理及び下部複相熱処理(温度:1223K、時間:24時間)が施された各試料の写真である。図8~図16の各図において、(1)及び(2)が2次電子像(SEI:secondary electron image)であり、(3)及び(4)が反射電子組成像(COMPO:compositional image)であり、(1)及び(3)が倍率5000倍、(2)及び(4)が倍率25000倍の写真である。
 図8~図10を参照すると、溶体化処理のみを施された試料はいずれも2重複相組織が形成されていることがわかる。すなわち、図17(1)に示す2重複相組織と同様に、サブミクロンサイズの初析L12相と、この初析L12相間に形成されたナノレベルの組織(共析組織)とで構成されていることがわかる。
 また、図11~図13を参照すると、溶体化処理に加えて2時間の下部複相熱処理(温度:1223K)が施されても、No.13の試料は、その組織はほとんど変化せず、2重複相組織を維持していることがわかる。一方、Reが添加された試料、すなわちNo.4及びNo.5の試料は、溶体化処理に加えて2時間の下部複相熱処理(温度:1223K)が施されると、針状の第2相粒子が主として初析L12相間の共析組織中に形成されていることがわかる(図11(4)及び図12(4)の白い針状の組織)。
 さらに、図14~図16を参照すると、図11~図13と同様の現象が観察されることがわかる。下部複相熱処理(温度:1223K)の処理時間が2時間から24時間に延びても、No.13の試料は、その組織がほとんど変化しないが、Reが添加された試料、すなわちNo.4及びNo.5の試料は、下部複相熱処理(温度:1223K)の処理時間が延びると、図11~図13で観察された第2相(針状粒子)がより明瞭に観察できることがわかる(針状粒子が粗大化している)。
 これらの結果から、Reが添加された試料(No.4及びNo.5)は、下部複相熱処理により初析L12相の間に形成された共析組織中に、針状の第2相粒子が形成されていることがわかる。このような組織の変化がビッカース硬さの変化に関与していると推定される。
 本発明によれば、優れた硬さを示すNi基金属間化合物合金が提供される。また、このNi基金属間化合物合金は、時効熱処理によりその硬さが向上し、高温でも優れた硬さを示す。このため、このNi基金属間化合物合金は、耐熱ボルト、ジェットエンジンやガスタービンのような高温機械構造物の材料としても有用である。

Claims (10)

  1. Niを主成分とし、かつ
    Al:5~12原子%、V:11~17原子%、Re:1~5原子%を含み、
    初析L12相と(L12+D022)共析組織との2重複相組織を有するNi基2重複相金属間化合物合金。
  2. Niを主成分とし、かつ
    Al:8~12原子%、V:13~17原子%、Re:1~5原子%を含む請求項1に記載のNi基2重複相金属間化合物合金。
  3. Niを主成分とし、かつ
    Al:5~9原子%、V:11~15原子%、Ta:3~7原子%、Re:1~5原子%を含む請求項1に記載のNi基2重複相金属間化合物合金。
  4. 前記含有量のNi、Al、V及びRe又は、前記含有量のNi、Al、V、Re及びTaを含む合計100原子%の組成の合計重量に対して10~1000重量ppmのBをさらに含む請求項1~3のいずれか1つに記載のNi基2重複相金属間化合物合金。
  5. Niを主成分とし、かつ
    Al:5~12原子%、V:11~17原子%、Re:1~5原子%を含む溶湯を徐冷して鋳造するNi基2重複相金属間化合物合金の製造方法。
  6. 鋳造後、1503~1603Kの溶体化熱処理を行う請求項5に記載のNi基2重複相金属間化合物合金の製造方法。
  7. 溶体化熱処理後、1073~1273Kの時効熱処理を行う請求項6に記載のNi基2重複相金属間化合物合金の製造方法。
  8. 前記溶湯が、Niを主成分とし、かつ
    Al:8~12原子%、V:13~17原子%、Re:1~5原子%を含む請求項5~7のいずれか1つに記載のNi基2重複相金属間化合物合金の製造方法。
  9. 前記溶湯が、Niを主成分とし、かつ
    Al:5~9原子%、V:11~15原子%、Ta:3~7原子%、Re:1~5原子%を含む請求項5~7のいずれか1つに記載のNi基2重複相金属間化合物合金の製造方法。
  10. 前記溶湯が、前記含有量のNi、Al、V及びRe又は、前記含有量のNi、Al、V、Re及びTa、を含む合計100原子%の組成の合計重量に対して10~1000重量ppmのBをさらに含む請求項5~9のいずれか1つに記載のNi基2重複相金属間化合物合金の製造方法。
PCT/JP2011/066466 2010-09-24 2011-07-20 Reが添加されたNi基2重複相金属間化合物合金及びその製造方法 WO2012039189A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012534955A JP5757507B2 (ja) 2010-09-24 2011-07-20 Reが添加されたNi基2重複相金属間化合物合金及びその製造方法
US13/823,849 US9169540B2 (en) 2010-09-24 2011-07-20 Re-added Ni-based dual multi-phase intermetallic compound alloy and method for producing the same
EP11826635.2A EP2620514A4 (en) 2010-09-24 2011-07-20 TWO-PHASE INTERMETALLIC NICKEL-BASED ALLOY ALLOY WITH RHENIUM ADDITION AND MANUFACTURING METHOD THEREFOR
CN201180045794.8A CN103154287B (zh) 2010-09-24 2011-07-20 添加铼的镍基二元多相金属间化合物合金及其生产方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010213768 2010-09-24
JP2010-213768 2010-09-24

Publications (1)

Publication Number Publication Date
WO2012039189A1 true WO2012039189A1 (ja) 2012-03-29

Family

ID=45873684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066466 WO2012039189A1 (ja) 2010-09-24 2011-07-20 Reが添加されたNi基2重複相金属間化合物合金及びその製造方法

Country Status (5)

Country Link
US (1) US9169540B2 (ja)
EP (1) EP2620514A4 (ja)
JP (1) JP5757507B2 (ja)
CN (1) CN103154287B (ja)
WO (1) WO2012039189A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133412A1 (ja) * 2011-03-29 2012-10-04 公立大学法人大阪府立大学 摩擦攪拌加工用ツール及びこれを用いた摩擦攪拌加工方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112609119B (zh) * 2020-12-17 2021-08-10 湘潭大学 一种同时含高熔点低沸点元素的Al-Re-Nb三元合金及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045654A (ja) 2004-08-09 2006-02-16 Hitachi Ltd 凝固方向強度と結晶粒界強度の優れた一方向凝固用Ni基超合金、鋳造物およびガスタービン用高温部品
JP2006299403A (ja) * 2005-03-25 2006-11-02 Osaka Prefecture Univ 2重複相組織からなるVおよびTiを含有するNi3Al基金属間化合物及びその製造方法,耐熱構造材
WO2007086185A1 (ja) 2006-01-30 2007-08-02 Osaka Prefecture University Public Corporation 2重複相組織を有するNi3Al基金属間化合物及びその製造方法,耐熱構造材
JP2009197254A (ja) 2008-02-19 2009-09-03 Osaka Industrial Promotion Organization Ni基2重複相金属間化合物合金の表面処理方法,および,表面処理したNi基2重複相金属間化合物合金
JP2009215649A (ja) 2008-02-15 2009-09-24 Osaka Industrial Promotion Organization 高い硬度を有するNi基金属間化合物合金
JP2009255170A (ja) * 2008-03-27 2009-11-05 Osaka Industrial Promotion Organization Ni基2重複相金属間化合物合金からなる摩擦攪拌加工用ツール及び摩擦攪拌加工方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055447A (en) * 1976-05-07 1977-10-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Directionally solidified eutectic γ-γ' nickel-base superalloys
US5366695A (en) * 1992-06-29 1994-11-22 Cannon-Muskegon Corporation Single crystal nickel-based superalloy
US6007645A (en) * 1996-12-11 1999-12-28 United Technologies Corporation Advanced high strength, highly oxidation resistant single crystal superalloy compositions having low chromium content
CN100357467C (zh) * 2002-12-06 2007-12-26 独立行政法人物质·材料研究机构 Ni基单晶超级合金
JP5467307B2 (ja) 2008-06-26 2014-04-09 独立行政法人物質・材料研究機構 Ni基単結晶超合金とそれよりえられた合金部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045654A (ja) 2004-08-09 2006-02-16 Hitachi Ltd 凝固方向強度と結晶粒界強度の優れた一方向凝固用Ni基超合金、鋳造物およびガスタービン用高温部品
JP2006299403A (ja) * 2005-03-25 2006-11-02 Osaka Prefecture Univ 2重複相組織からなるVおよびTiを含有するNi3Al基金属間化合物及びその製造方法,耐熱構造材
WO2007086185A1 (ja) 2006-01-30 2007-08-02 Osaka Prefecture University Public Corporation 2重複相組織を有するNi3Al基金属間化合物及びその製造方法,耐熱構造材
JP2009215649A (ja) 2008-02-15 2009-09-24 Osaka Industrial Promotion Organization 高い硬度を有するNi基金属間化合物合金
JP2009197254A (ja) 2008-02-19 2009-09-03 Osaka Industrial Promotion Organization Ni基2重複相金属間化合物合金の表面処理方法,および,表面処理したNi基2重複相金属間化合物合金
JP2009255170A (ja) * 2008-03-27 2009-11-05 Osaka Industrial Promotion Organization Ni基2重複相金属間化合物合金からなる摩擦攪拌加工用ツール及び摩擦攪拌加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2620514A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133412A1 (ja) * 2011-03-29 2012-10-04 公立大学法人大阪府立大学 摩擦攪拌加工用ツール及びこれを用いた摩擦攪拌加工方法
JP2014014822A (ja) * 2011-03-29 2014-01-30 Osaka Prefecture Univ 摩擦攪拌加工用ツール及びこれを用いた摩擦攪拌加工方法

Also Published As

Publication number Publication date
CN103154287A (zh) 2013-06-12
JPWO2012039189A1 (ja) 2014-02-03
EP2620514A4 (en) 2016-08-17
US20130189149A1 (en) 2013-07-25
EP2620514A1 (en) 2013-07-31
JP5757507B2 (ja) 2015-07-29
CN103154287B (zh) 2015-07-22
US9169540B2 (en) 2015-10-27

Similar Documents

Publication Publication Date Title
ES2813964T3 (es) Artículo fabricado aditivo de aleación a base de cobalto y método para fabricar el mismo
Ding et al. Electron microscopy study of direct laser deposited IN718
JP7511546B2 (ja) ニッケル基超合金
Xu et al. Progress in application of rare metals in superalloys
JP6965364B2 (ja) 析出硬化型コバルト−ニッケル基超合金およびそれから製造された物品
JP2017075403A (ja) ニッケル基耐熱超合金
JP5467307B2 (ja) Ni基単結晶超合金とそれよりえられた合金部材
KR102443966B1 (ko) Ni기 합금 연화 분말 및 해당 연화 분말의 제조 방법
WO2009157555A1 (ja) Ni基単結晶超合金とこれを基材とする合金部材
EP2420584B1 (en) Nickel-based single crystal superalloy and turbine blade incorporating this superalloy
JPH08505432A (ja) 単結晶ニッケル・ベース超合金
JPWO2008032751A1 (ja) Ni基単結晶超合金
JP5224246B2 (ja) 耐酸化性の優れたNi基化合物超合金及びその製造方法と耐熱構造材
Cui et al. Phase stability and yield stress of Ni-base superalloys containing high Co and Ti
WO2006101212A1 (ja) 2重複相組織を有するNi3Al基金属間化合物及びその製造方法,耐熱構造材
JP5010841B2 (ja) Ni3Si−Ni3Ti−Ni3Nb系複相金属間化合物,その製造方法,高温構造材料
JP5757507B2 (ja) Reが添加されたNi基2重複相金属間化合物合金及びその製造方法
WO2011118798A1 (ja) Nb及びCを含むNi基2重複相金属間化合物合金及びその製造方法
WO2015182454A1 (ja) TiAl基鋳造合金及びその製造方法
Han et al. Effect of Ruthenium on microstructure and stress rupture properties of a single crystal Nickel-base superalloy
BR112020005771B1 (pt) Componente de turbina, pá de turbina, estator de turbina, turbina e método para fabricar um componente de turbina
JP5733728B2 (ja) Ti及びCを含むNi基2重複相金属間化合物合金及びその製造方法
JP2019178414A (ja) 合金構造体およびその製造方法、これを用いた耐熱性構造体
WO2022071378A1 (ja) 合金材料、該合金材料を用いた合金製造物、および該合金製造物を有する機械装置
JP6861363B2 (ja) Ni基金属間化合物合金及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045794.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826635

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012534955

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13823849

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011826635

Country of ref document: EP