WO2011118798A1 - Nb及びCを含むNi基2重複相金属間化合物合金及びその製造方法 - Google Patents
Nb及びCを含むNi基2重複相金属間化合物合金及びその製造方法 Download PDFInfo
- Publication number
- WO2011118798A1 WO2011118798A1 PCT/JP2011/057418 JP2011057418W WO2011118798A1 WO 2011118798 A1 WO2011118798 A1 WO 2011118798A1 JP 2011057418 W JP2011057418 W JP 2011057418W WO 2011118798 A1 WO2011118798 A1 WO 2011118798A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- atomic
- phase
- less
- nbc
- intermetallic compound
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
Definitions
- the present invention relates to a Ni-based double-duplex intermetallic compound alloy and a method for producing the same.
- Ni-based double-duplex intermetallic compound alloys are known as alloys that exhibit excellent characteristics at high temperatures (see, for example, Patent Documents 1 to 3).
- This alloy, and eutectoid transformation Al present in the gap between the pro-eutectoid Ni 3 Al (L1 2) ( fcc) ( upper tissue) is at a low temperature, Ni 3 and Al (L1 2) Ni 3 V and (D0 22)
- Ni-based double-duplex intermetallic alloy as described above has properties comparable to or better than existing Ni alloys, but has superior tensile strength and a wide range of temperatures ranging from room temperature to high temperature.
- Ni-based intermetallic alloys having ductility properties are desired.
- the present invention has been made in view of such circumstances, and provides a double-phase intermetallic compound alloy having excellent tensile strength and ductility characteristics in a wide temperature range from room temperature to high temperature.
- Al more than 5 atomic% and not more than 13 atomic%
- V not less than 9.5 atomic% and less than 17.5 atomic%
- Nb more than 0 atomic% and not more than 12.5 atomic%
- C 0 Ni-based double-duplex intermetallic compound alloy comprising more than 12.5% and less than 12.5 atomic%, with the balance being Ni and having a double-phase structure of proeutectoid L1 2 phase and (L1 2 + D0 22 ) eutectoid structure Is provided.
- the inventors of the present invention pay attention to the increase in strength due to solid solution strengthening of C atoms and the suppression of grain boundary fracture due to segregation of grain boundaries of C atoms, and the introduction of C atoms into Ni-based double-duplex intermetallic compound alloys.
- Invented and conducted earnest research As a result, it was found that the tensile strength and ductility characteristics can be improved by containing C in the Ni-based double-duplex intermetallic compound alloy containing Ni, Al, V and Nb, and the present invention has been completed. It was.
- a Ni-based double-duplex intermetallic compound alloy excellent in tensile strength and ductility characteristics in a wide temperature range from room temperature to high temperature is provided.
- the Ni-based dual-duplex intermetallic compound alloy according to the present invention has Al: more than 5 atomic% and 13 atomic% or less, V: 9.5 atomic% or more and less than 17.5 atomic%, Nb: more than 0 atomic%, 12 .5 atomic% or less, C: more than 0 atomic% and 12.5 atomic% or less, the balance is made of Ni, and has a double- phase structure of proeutectoid L1 2 phase and (L1 2 + D0 22 ) eutectoid structure .
- the balance is made of Ni, but this balance may contain inevitable impurities.
- the composition of 100 atomic% is obtained when the atomic% of Al, V, Nb, C and Ni are added unless otherwise specified.
- the proeutectoid L1 2 phase is, for example, an L1 2 phase dispersed and arranged between the A1 phases as shown in FIG. 3, and the (L1 2 + D0 22 ) eutectoid structure is, for example, As shown in the figure, it is a eutectoid structure composed of L1 2 and D0 22 formed by separating the A1 phase.
- the Nb and C contents are preferably such that the Nb content is 2.0 atom% or more and 7.3 atom% or less, and the C content is more than 0 atom% and 4.6 atom% or less. (As shown in Examples 1 to 5, for example, the Nb content may be more than 3.0 atomic%.) More preferably, the Nb content is 3.1 atomic% or more and 5. 3 atomic percent or less, and the C content is 0.2 atomic percent or more and 2.4 atomic percent or less. Within these ranges, the tensile strength and ductility characteristics can be improved.
- the improvement in tensile strength and ductility is due to the development of the solid solution strengthening mechanism by C and the suppression of grain boundary fracture due to the segregation of C grain boundaries, so the content of Nb and the content of C may be the same. In addition, the content may be different. For example, the Nb content may be less than the C content. In addition, since the tensile strength and ductility characteristics are improved even if the Nb and C contents are very small, the Nb and C contents may be the same as the B content described later.
- the Ni-based two-duplex intermetallic compound alloy of the present invention may be formed by adding NbC to the alloy material of Al, V, and Ni. That is, an alloy formed by adding NbC to an alloy material containing Ni as a main component, Al: more than 5 atomic% and 13 atomic% or less, and V: 9.5 atomic% or more and less than 17.5 atomic%. (In other words, it may be an alloy obtained by adding TiC to these alloy materials and melting and solidifying them). According to this embodiment, C is introduced as a carbide into the material of the Ni-based double-duplex intermetallic alloy, but even when the added NbC is present as second-phase particles in the double-duplex structure matrix.
- the amount of NbC added is preferably more than 0 atomic% and not more than 12.5 atomic%.
- the addition of NbC is formed, for example, by producing an ingot from a molten metal obtained by adding NbC to the alloy material.
- the amount of NbC added is preferably more than 0 atom% and not more than 4.6 atom%, and more preferably not less than 0.2 atom% and not more than 2.4 atom%.
- the alloy is formed by adding NbC within these ranges, the tensile strength and ductility characteristics can be further improved.
- the amount of NbC added is a numerical value that is 100 atomic% when NbC is added to the alloy material of Ni, Al, and V.
- the Nb and C may be included as NbC in the configuration of the invention. That is, the Ni-based two-phase intermetallic compound alloy containing Nb and C in which the added NbC is decomposed may be used, but the Ni group 2 containing Nb and C in which the added NbC is decomposed and NbC is included. It may be a dual phase intermetallic alloy.
- the Ni-based double-duplex intermetallic compound alloy of the present invention may have a structure different from the double-duplex phase structure, and this structure may be a structure containing NbC.
- the Ni-based dual-duplex intermetallic compound alloy has a dual-phase structure containing Nb and C as the added NbC is decomposed.
- it may have a structure containing NbC.
- second phase particles (carbide particles) mainly composed of V, Nb, and C are formed.
- the Ni-based two-phase intermetallic compound alloy of the present invention is an alloy formed from an alloy material of Al, V, Nb and C in addition to the alloy formed by adding the NbC ( That is, it may be an alloy obtained by melting and solidifying these materials), or an alloy further containing Ti by adding TiC.
- the Ni-based 2-duplex intermetallic compound alloy of the present invention may further contain B in addition to the above-described configuration. That is, the B content may be 0 ppm by weight, but the B content may be more than 0 ppm by weight and 1000 ppm by weight or less.
- the trace amount of B is preferably contained (for example, contained more than 0 ppm by weight). Amount is good).
- the content of B is preferably 50 ppm to 1000 ppm by weight, and more preferably 100 ppm to 800 ppm.
- the said content of B is a numerical value with respect to the total weight of a composition of a total of 100 atomic% containing Al, V, Nb, C, and Ni.
- the Al and V contents are preferably 6 atomic% or more and 10 atomic% or less, and the V content is 12. It is 0 atomic percent or more and less than 16.5 atomic percent. If the contents of Al and V are within these ranges, a two-layer structure is likely to be formed.
- the Ni-based double-duplex intermetallic compound alloy of the present invention may further contain Ti in addition to Al, V, Nb, C, Ni and unavoidable impurities described above. For example, Ti may further be included, and Ti content may be more than 0.0 and 4.6 or less.
- the first production method of the Ni-based two-duplex intermetallic compound alloy of the present invention is Al: more than 5 atomic% and 13 atomic% or less, V: 9.5 atomic% or more and less than 17.5 atomic%, Nb : 0 atomic% more 12.5 atomic% or less, C: 0 number 12.5 atomic% or less than the atomic%, the remainder, by slowly cooling the melt consisting of Ni, and pro-eutectoid L1 2 phase and A1 phase comprises but forming a tissue coexisting, by the pro-eutectoid L1 2 phase and A1 phase to cool the tissue with a tissue coexisting, a step of decomposing the A1 phase to the L1 2 phase and D0 22 phase .
- the second production method of the Ni-based two-phase intermetallic compound alloy of the present invention is Al: more than 5 atomic% and 13 atomic% or less, V: 9.5 atomic% or more and less than 17.5 atomic%, Nb : More than 0 atomic% and not more than 12.5 atomic%, C: more than 0 atomic% and not more than 12.5 atomic%, with the balance being a step of producing an ingot with a molten metal made of Ni, A step of performing a first heat treatment at a temperature at which the proeutectoid L1 2 phase and an A1 phase coexist, and a step of cooling the A1 phase into an L1 2 phase and a D0 22 phase by cooling after the first heat treatment. .
- the step of producing the ingot with the molten metal is mainly composed of Ni, Al: more than 5 atomic% and not more than 13 atomic%, and V: not less than 9.5 atomic%.
- the third production method of the Ni-based double-duplex intermetallic compound alloy of the present invention is mainly composed of Ni, Al: more than 5 atomic% and not more than 13 atomic%, V: not less than 9.5 atomic% and 17 Step of forming a structure in which the pro-eutectoid L1 2 phase and the A1 phase coexist by slowly cooling a molten metal made of an alloy material of less than 5 atomic% and NbC: more than 0 atomic% and not more than 12.5 atomic% And a step of decomposing the A1 phase into the L1 2 phase and the D0 22 phase by cooling a structure having a structure in which the proeutectoid L1 2 phase and the A1 phase coexist.
- the fourth production method of the Ni-based double-duplex intermetallic compound alloy of the present invention is mainly composed of Ni, Al: more than 5 atomic% and not more than 13 atomic%, V: not less than 9.5 atomic% and 17 less than .5 atomic%, NbC: 0 more than atomic% 12.5 atomic% or less, a process of forming an ingot with molten metal made of an alloy material, with respect to the ingot, the pro-eutectoid L1 2 phase and A1 phase Doo comprises the steps of performing a first heat treatment at a temperature coexist, after the first heat treatment, and a step of the A1 phase by cooling decomposed into L1 2 phase and D0 22 phase.
- slow casting of the molten metal can be performed, for example, by casting using a ceramic mold, or by wrapping the mold with a heat insulating material or the like when casting into a mold.
- NbC is added to an alloy material of Ni, Al and V to produce a molten metal.
- the content (addition amount) of NbC preferably more than 0 atomic% and 4.6 atomic% or less, more preferably 0.2 atomic% or more and 2.4 atomic% or less.
- these production methods may further include a homogenization heat treatment or a solution heat treatment in the embodiment.
- the homogenization heat treatment or solution heat treatment may be performed at a temperature of 1503K to 1603K, for example.
- the first heat treatment may also serve as a homogenization heat treatment or a solution heat treatment.
- the total composition is 100 atomic% from Al, V, Nb, C, and Ni.
- the content (addition amount) of NbC is a numerical value that becomes 100 atomic% by adding NbC to the alloy material of Ni, Al, and V. .
- the molten metal in the step of producing an ingot from the molten metal means a molten alloy material that is made up to 100 atomic% by adding the above content (added amount) of NbC.
- the specific content of Al is 5 at. % More than 13 at. %, For example, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12. 5 or 13 at. %.
- the range of the Al content may be between any two of the numerical values exemplified as the specific content.
- the specific content of V is 9.5 at. % At 17.5 at. %, For example, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16. 5 or 17 at. %.
- the range of the content of V may be between any two of the numerical values exemplified as the specific content.
- the specific content of Nb is 0.0 at. % More than 12.5 at. %, Preferably 2.0 atomic% or more and 7.3 atomic% or less.
- the range of the Nb content may be between any two of the numerical values exemplified as the specific content.
- the specific content of C is 0 at. % More than 12.5 at. %, For example, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.9, 1, 1.5, 2, 2.3, 2.4 2.5, 3, 3.5, 4, 4.5, 4.6, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5 , 10, 10.5, 11, 11.5, 12, 12.5 at. %.
- the content of Nb and C may be a content obtained by adding NbC to the material composed of each of the above elements and dissolving it, but the specific content of NbC in that case is 0 at. % More than 12.5 at. %, For example, 1, 2, 3, 4, 5, 10, 12, 12.5 at. %. Also preferably, 0 at. % More than 4.6 at. % Or less. For example, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.9, 1, 1.5, 2, 2.3, 2.4, 2.5, 3 , 3.5, 4, 4.5, 4.6 at. %.
- the range of the content of Nb, C and NbC may be between any two of the numerical values exemplified as the specific content.
- the amount of NbC added is a numerical value that is 100 atomic% when NbC is added to the alloy material of Ni, Al, and V.
- the specific content (content) of Ni is preferably 73 to 77 at. %, More preferably 74 to 76 at. %. Within such a range, the sum of the Ni content and the (Al, V, Nb) content is close to 3: 1, and the L1 2 phase and D0 22 which are the phases constituting the two -duplex structure. This is because a phase other than the phase is less likely to appear.
- the specific content of Ni is, for example, 73, 73.5, 74, 74.5, 75, 75.5, 76, 76.5 or 77 at. %.
- the range of the Ni content may be between any two of the numerical values exemplified as the specific content.
- the specific content of B is not less than 50 ppm by weight and not more than 1000 ppm by weight, for example, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750. , 800, 850, 900, 950 or 1000 ppm by weight.
- the range of the B content may be between any two of the numerical values exemplified as the specific content.
- the said content of B is a numerical value with respect to the total weight of a composition of a total of 100 atomic% containing Al, V, Nb, C, and Ni.
- the specific composition of the Ni-based double-duplex intermetallic compound alloy according to the embodiment of the present invention is, for example, the composition shown in Tables 1 to 3 with the above-mentioned content of B added.
- L1 2 phase is Ni 3 Al intermetallic phase
- D0 22 phase is Ni 3 V intermetallic compound phase
- L1 2 phase, in addition to the D0 22 phase, by its composition, including D0 a phase is Ni 3 Nb intermetallic phase.
- Nb and C may have the above ratio by using NbC which is a carbide. This is because NbC can easily produce a Ni-based double-duplex phase intermetallic compound alloy in which a double-duplex structure is easily formed and tensile strength and ductility characteristics are improved.
- An intermetallic compound alloy having a two-duplex structure can be produced by the methods described in Patent Documents 1 to 3.
- an alloy material such as an ingot obtained by melting and solidification
- It can be manufactured by a process of changing the A1 phase to a (L1 2 + D0 22 ) eutectoid structure to form a double-phase structure.
- the upper multiphase structure can also be formed by slowly cooling the molten metal when producing the ingot of the intermetallic alloy. When the molten metal is gradually cooled, it stays at a temperature at which the pro-eutectoid L1 2 phase and the A1 phase coexist after the melt has solidified, so that the pro-eutectoid L1 2 is the same as when the heat treatment is performed. This is because an upper multiphase structure composed of a phase and an A1 phase is formed.
- the first heat treatment and the second heat treatment may be performed by the methods disclosed in Patent Documents 1 to 3, but in the case of the Ni-based two-duplex intermetallic compound alloy of the present invention, for example, the first heat treatment is performed at 1503 to 1603K to obtain a solution. Also serves as heat treatment (homogenization heat treatment).
- Examples 1 to 5 The cast materials of Comparative Example 1 and Examples 1 to 5 are No. 1 in Table 4.
- the arc melting furnace was first evacuated and then replaced with an inert gas (argon gas).
- the electrode was a non-consumable tungsten electrode and the mold was a water-cooled copper hearth.
- the cast material is referred to as “sample”.
- the values of NbC and B are 100 at. In total including Ni, Al, V, and Nb. % Atomic% with respect to% composition.
- No. No NbC was added.
- No. 1 is Comparative Example 1 (hereinafter also referred to as a basic alloy), and NbC is added.
- Samples 2 to 6 are Examples 1 to 5 of the present invention.
- Table 5 shows the content of each element in the sample of Table 4 (Table 5 shows each of the total of Ni, Al, V, Nb, and C (excluding B) as 100%) (The atomic% of the element. The added NbC was calculated assuming that one NbC compound was completely decomposed into one Nb atom and one C atom.)
- FIG. 1 No. 1 2, no. 4 and no. 6 shows a cross-sectional optical micrograph of FIG. 1A, 1B, 1C, and 1D, No. 1, No. 1 2, no. 4, no. It corresponds to each photograph of 6 samples.
- FIG. 2 shows that the crystal grains are refined.
- No. 1-No. 6 shows that the amount of NbC added is 0.2 at. % To 0.5 at. %, It was found that crystal grain refinement progressed.
- FIG. 1 No. 1 2, no. 4 and no. 6 is a metal structure photograph (1000 times) of the sample 6 and FIG. 3 is a metal structure photograph (5000 times) when the matrix of the sample is observed at a high magnification. 2 and 3, the photographs (a), (b), (c), and (d) are No. 1, No. 1 2, no. 4 and no. This corresponds to each of the six samples.
- FIG. 2 the No. of the sample to which NbC was added.
- No. 4 and no. No. 6 is a sample in which second phase particles considered to be carbides are present and NbC is not added.
- the second phase particles are not present in 1 (arrow portion in FIG. 2).
- FIG. 3 it can be seen that a two-phase structure is formed in the parent phase of each sample regardless of whether NbC is added. Further, it is understood that the pro-eutectoid L1 2 phase and eutectoid structure is formed on the matrix of each sample. From these results, it was found that even when C due to the addition of NbC was introduced into the intermetallic compound, a two-duplex structure was maintained.
- composition analysis Further, the composition of the mother phase and carbide (second phase particles) was analyzed by EPMA (Electron Probe Micro Analyzer) for the heat-treated sample. Tables 6 and 7 show the results. Table 6 shows no. 1 is a table showing the composition analysis results of the matrix of the sample No. 1; 6 is a table showing the composition analysis results of matrix and carbide (second phase particles: described as “Dispersion” in the table) in sample No. 6. No. Sample No. 1 was No. 1 in which carbides (second phase particles) were observed. It is shown in order to compare the composition with 6 samples. The numerical values in Tables 6 and 7 are all atomic% (at.%).
- FIGS. 4 to 7 are the same as those shown in FIG. 1 and No. 1 3 sample, no. No. 4 sample, no. 6 is an X-ray diffraction profile of 6 samples.
- Ni 3 Al (L1 2 phase) is a material constituting the dual multi-phase microstructure, shows a Ni 3 V (D0 22 phase) and the peak position of NbC. These peak positions are indicated by circles, triangles, and squares, respectively.
- FIG. 8 shows the result.
- FIG. 8 is a graph showing the relationship between the amount of NbC added and room temperature Vickers hardness. Referring to FIG. 8, it can be seen that the hardness increases as the amount of NbC added increases. The amount of NbC added is 2.5 at. It can be seen that the value is almost constant at% or more. In general, metals increase their hardness when impurities are included, but it was also found in this experiment that the value of Vickers hardness increases by adding NbC.
- FIGS. 15 to 18 show the relationship between the yield strength, tensile strength and elongation and the amount of NbC added.
- 15 to FIG. 1-No. It is the graph which analyzed the result of the said tension test of 6 samples.
- RT room temperature
- all the characteristic values of yield strength, tensile strength, and elongation increase with increasing amount of NbC, and the amount of NbC is maximized in the vicinity of 1 atomic%.
- the tensile strength exceeds 1.3 GPa in the vicinity of 1 atomic%, and excellent strength characteristics are exhibited when the amount of NbC added is 0.2 atomic% or more and less than 2.5 atomic%.
- the yield strength, tensile strength and elongation values tend to decrease with the amount of NbC added, but the values of yield strength and tensile strength are added by NbC. It can be seen that the sample exhibits the same or better characteristics than the untreated sample (No. 1). Referring to FIG. 16, as with room temperature, all the values of yield strength, tensile strength, and elongation increase with increasing amount of NbC at 873 K, and the amount of NbC added reaches a maximum around 1 atomic%. I understand. It can be seen that when the amount of NbC added exceeds 1 atomic%, the value of each characteristic slightly decreases or shows an almost constant value.
- FIG. 19 shows No. 1 after tensile tests at room temperature (RT), 1073K, and 1173K. 1 and no. It is a SEM photograph (low magnification photograph) of the fracture surface of four samples.
- FIG. 20 is an SEM photograph (high-magnification photograph) in which the fracture surface of each sample in FIG. 19 is enlarged and displayed.
- (a), (b) and (c) are No. No. 1 sample, (d), (e), (f) are No.
- the fracture surface of 4 samples is shown.
- FIG. 6 is an enlarged SEM photograph of No. 6 fracture surface.
- (A) is room temperature
- (b) is a fracture surface after a tensile test of 1073K.
- the sample No. 1 exhibits a pseudo-cleavage fracture at room temperature, and the tendency of grain boundary fracture increases as the temperature rises.
- the grain boundary was completely broken (FIGS. 19 and 20 (a), (b), (c)).
- no. In sample 4 ductile intragranular fracture was observed from room temperature to high temperature (1173 K).
- second phase particles a dimple breaking pattern was observed ((d), (e), (f) in FIGS. 19 and 20).
- FIG. 21 in the sample with a large amount of added carbide, the carbide was coarsened, and the carbide was a cause of cracking (range surrounded by a circle in FIG. 21).
- the cast materials of Comparative Example 2 and Examples 6 to 11 are No. except for the structure of the metal ingot. 1-No. It was produced in the same manner as the sample 6. That is, instead of using NbC powder as the material, No. Ni, Al, V, and Nb ingots (purity 99.9% by weight) and C and B powders in the ratios shown in 7 to 13 were used as materials. These materials were melted and solidified in a mold in an arc melting furnace to produce a cast material. The atmosphere of the arc melting furnace is no. 1-No. In the same manner as the preparation of the sample of No. 6, the electrode and the template are also No. 1-No. The same sample as the sample 6 was used.
- Sample No. 7 is Comparative Example 2 (also referred to as a basic alloy).
- Samples 8 to 13 are Examples 6 to 11 of the present invention.
- the numerical values of B and C are 100 at. In total including Ni, Al, V, and Nb. It is the value of atomic% for% composition. In addition to atomic%, C is wt. Values in ppm are listed.
- FIG. 22 and FIG. 23 are low-magnification photographs (1000 times), and FIGS. 24 and 25 are high-magnification photographs (5000 times) of the matrix (matrix) of the samples. 22 to 25, (a) is No. 7, (b) is No. 8, (c) No. 9, (d) is No. 10, (e) is No. 11, (f) is No. 11; 12, (g) is No. 13 respectively.
- Sample No. 13 contains second phase particles that are considered to be carbides. It can be seen that the second phase particles are not present in the sample No. 7. From this fact, when the N addition amount is kept constant and the C addition amount is increased, C is 0.1 at. It was found that second phase particles were formed when the content was greater than or equal to%. Referring to FIGS. 24 and 25, it can be seen that a two-phase structure is formed regardless of whether or not C is added and its addition amount. That is, it can be seen that the pro-eutectoid L1 2 phase and eutectoid structure is formed on the matrix of each sample.
- composition analysis No. 7 and no. About 13 samples, the composition analysis of the mother phase by EPMA was conducted. Table 9 shows the results. Table 9 shows no. 7 and no. It is a table
- RT room temperature
- the tensile strength and elongation characteristic values tend to increase as the amount of C added increases. It can also be seen that the values of tensile strength, yield strength, and elongation all increase when the amount of C added is 0.1 atomic%. In particular, the improvement in elongation characteristics due to the addition of C is remarkable.
- the elongation characteristic value tends to increase as the amount of C added increases. Even if the amount of C added is 0.1 atomic%, the effect is obtained. Particularly when the amount of C added is more than 2.0 atomic%, the characteristics are remarkably improved as compared with the sample to which C is not added. I understand.
- the strength (tensile strength) of the sample is strengthened and the elongation is increased in a wide temperature range from room temperature to high temperature.
- Example 12 to 16 Further, an experiment similar to the experiment in Examples 1 to 5 was performed using Ni: 75 at. %, Al: 9 at. %, V: 13 at. %, Nb: 3 at. %, TiC: 0 to 5.0 at. %, B: 100 wt. The measurement was performed at ppm (the content of TiC is the amount of Ni, Al, V, and Nb with respect to 100 atomic% in total). In this experiment, C was added by TiC, not NbC, and Nb was added separately. The results will be described below as Examples 12 to 16.
- the cast materials of Comparative Example 3 and Examples 12 to 16 are No. 1 in Table 10.
- the arc melting furnace atmosphere, electrodes, and mold were the same as in Examples 1-5.
- the description method of the numerical value of Table 10 is the same as Table 4.
- Table 11 shows the atomic% of each element when the total of Ni, Al, V, Nb, Ti and C (excluding B) is 100 atomic%.
- the fabricated sample was subjected to a vacuum heat treatment of 1553 K ⁇ 3 hours as a solution heat treatment.
- the solution heat treatment also serves as the first heat treatment
- subsequent furnace cooling corresponds to cooling to a temperature which coexist and L1 2 phase and D0 22 phase.
- FIG.31 and FIG.32 The photograph is shown in FIG.31 and FIG.32.
- FIG. 14, no. 15, no. 17 and no. 19 is a SEM photograph (1000 times) of 19 samples
- FIG. 32 is a SEM photograph (5000 times) when the matrix of the sample is observed at high magnification.
- the photographs (a), (b), (c), and (d) are No. 14, no. 15, no. 17 and no. It corresponds to each of 19 samples.
- no. 17 and no. No. 19 contains second-phase particles that are considered to be carbides (indicated by arrows in FIG. 31). 14 and no.
- composition analysis Further, the composition of the parent phase and carbide (second phase particles) by EPMA was analyzed for the heat-treated sample.
- Tables 12 and 13 show the results.
- Table 12 shows no. 14 is a table showing the composition analysis results of the matrix in the 14 samples. It is a table
- carbides (second phase particles) were observed. Shown to compare the composition with 19 samples.
- the numerical values in Tables 12 and 13 are all atomic% (at.%).
- the parent phase of the 19 samples is No. It can be seen that the V and Nb concentrations are lower and the Ti and C concentrations are higher than the parent phase of the 14 samples. No. It can be seen that the carbides (second phase particles) of 19 samples have high concentrations of V and Nb in addition to Ti and C. Furthermore, no. It can be seen that in the 19 samples, the ratio between the concentration of Ti and the concentration of C is not 1: 1 in both the matrix and carbide. From the above, it can be understood that the added TiC is eluted to form a new structure.
- FIGS. 33 to 36 show no. 14 samples and no. 16 samples, no. 17 samples, no. It is an X-ray diffraction profile of 19 samples.
- Ni 3 Al (L1 2 phase) is a material constituting the dual multi-phase microstructure, shows a Ni 3 V (D0 22 phase) and the peak position of the TiC. These peak positions are indicated by circles, triangles, and squares, respectively.
- FIGS. 16 no. 17, no. In 19, a peak due to TiC was observed. No. 14 and no. 16, no. 17, no.
- any of the samples 19 peaks due to Ni 3 Al (L1 2 phase) and Ni 3 V (D0 22 phase) was observed. From the above, with or without the addition of TiC, in all samples, except for the peak of TiC 2 is a configuration phase of the multi-phase structure Ni 3 Al (L1 2 phase) and Ni 3 V (D0 22 phase) other than It was found that this phase was not formed. Moreover, it turned out that the carbide
- FIG. 37 shows the result.
- FIG. 37 is a graph showing the relationship between the amount of TiC added and room temperature Vickers hardness. Referring to FIG. 37, it is found that the hardness is hardest when TiC is not added (about 550 Hv), and the hardness decreases as the amount of TiC added increases. In general, when metals contain impurities, the hardness increases. 15-No. It can be seen that in the 19 samples, the value of Vickers hardness is decreased despite the addition of TiC.
- FIGS. 44 to 47 show the relationship between yield strength, tensile strength and elongation and the amount of TiC added. 44 to 47 show no. 14-No. It is the graph which analyzed the result of the said tension test of 19 samples.
- RT room temperature
- all the characteristic values of yield strength, tensile strength and elongation increase with increasing amount of TiC, and the amount of TiC is maximized in the vicinity of 1 atomic%.
- the tensile strength exceeds 1.3 GPa in the vicinity of 1 atomic%, and excellent strength characteristics are exhibited when the amount of TiC added is 0.2 atomic% or more and less than 2.5 atomic%.
- the yield strength, tensile strength, and elongation values tend to decrease with the addition amount of TiC, but the sample without addition of TiC (No. 14). It can be seen that it exhibits the same or better characteristics. Referring to FIG. 45, the yield strength, tensile strength, and elongation all increase with increasing amount of TiC at 873 K as well as at room temperature, and the amount of TiC added reaches a maximum around 1 atomic%. I understand. It can be seen that when the amount of TiC added exceeds 1 atomic%, the value of each characteristic slightly decreases or shows a substantially constant value.
- FIG. 48 shows the No. after tensile test at room temperature (RT), 1073K, and 1173K. 14 and no. It is a SEM photograph (low-magnification photograph) of the fracture surface of 17 samples.
- FIG. 49 is an SEM photograph (high-magnification photograph) in which the fracture surface of each sample in FIG. 48 is enlarged and displayed.
- (a), (b) and (c) are No. 14 samples, (d), (e), (f) were No. The fracture surface of 17 samples is shown.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本発明によれば、Al:5原子%より多く13原子%以下,V:9.5原子%以上17.5原子%未満,Nb:0原子%より多く12.5原子%以下,C:0原子%より多く12.5原子%以下,残部は、Niからなり、初析L12相と(L12+D022)共析組織との2重複相組織を有するNi基2重複相金属間化合物合金が提供される。
Description
この発明は、Ni基2重複相金属間化合物合金及びその製造方法に関する。
従来、高温で優れた特性を示す合金として、Ni基2重複相金属間化合物合金が知られている(例えば、特許文献1~3参照)。この合金は、初析Ni3Al(L12)の間隙に存在するAl(fcc)(上部組織)が低温で共析変態し、Ni3Al(L12)とNi3V(D022)とからなる下部組織である2重複相組織を形成する。このため、この合金は高温で優れた機械的特性を有している。
上記のようなNi基2重複相金属間化合物合金は、既存のNi合金に匹敵するかそれを上回る特性を有しているが、室温から高温にわたる広範囲な温度領域において、より優れた引張強度及び延性特性を有するNi基金属間化合物合金が望まれている。例えば、この合金が備える2重複相組織の力学特性を十分引き出すため、より結晶粒界破壊が生じにくいNi基2重複相金属間化合物合金の開発が望まれている。
この発明はこのような事情に鑑みてなされたものであり、室温から高温にわたる広範囲な温度領域において、優れた引張強度及び延性特性を有する2重複相金属間化合物合金を提供するものである。
この発明によれば、Al:5原子%より多く13原子%以下,V:9.5原子%以上17.5原子%未満,Nb:0原子%より多く12.5原子%以下,C:0原子%より多く12.5原子%以下,残部は、Niからなり、初析L12相と(L12+D022)共析組織との2重複相組織を有するNi基2重複相金属間化合物合金が提供される。
この発明の発明者らは、C原子の固溶強化による強度上昇とC原子の粒界偏析による粒界破壊抑制に着目し、C原子をNi基2重複相金属間化合物合金に導入することを発案し、鋭意研究を行った。その結果、Ni,Al,V及びNbを含むNi基2重複相金属間化合物合金においてCを含有させることによって、引張強度及び延性特性を向上させることができることを見出し、本発明の完成に到った。
この発明によれば、室温から高温にわたる広範囲な温度領域において、引張強度及び延性特性に優れたNi基2重複相金属間化合物合金が提供される。
以下、この発明の種々の実施形態を例示する。以下の記述中で示す構成は、例示であって、この発明の範囲は、以下の記述中で示すものに限定されない。なお、No.2~No.6,No.8~No.13及びNo.15~No.19は、この発明の実施形態に係る試料である。
この発明によれば、室温から高温にわたる広範囲な温度領域において、引張強度及び延性特性に優れたNi基2重複相金属間化合物合金が提供される。
以下、この発明の種々の実施形態を例示する。以下の記述中で示す構成は、例示であって、この発明の範囲は、以下の記述中で示すものに限定されない。なお、No.2~No.6,No.8~No.13及びNo.15~No.19は、この発明の実施形態に係る試料である。
この発明に係るNi基2重複相金属間化合物合金は、Al:5原子%より多く13原子%以下,V:9.5原子%以上17.5原子%未満,Nb:0原子%より多く12.5原子%以下,C:0原子%より多く12.5原子%以下,残部は、Niからなり、初析L12相と(L12+D022)共析組織との2重複相組織を有する。
ここで、残部はNiからなるが、この残部には、不可避的不純物が含まれてもよい。以下、この発明のNi基2重複相金属間化合物合金において,特に記載しない限り、Al,V,Nb,C及びNiの原子%を合計すると100原子%の組成となる。
また、初析L12相は、例えば、図3に示されるように、A1相の間に分散されて配置されるL12相であり、(L12+D022)共析組織は、例えば、同図に示されるように、A1相が分離して形成された、L12とD022とで構成される共析組織である。
ここで、残部はNiからなるが、この残部には、不可避的不純物が含まれてもよい。以下、この発明のNi基2重複相金属間化合物合金において,特に記載しない限り、Al,V,Nb,C及びNiの原子%を合計すると100原子%の組成となる。
また、初析L12相は、例えば、図3に示されるように、A1相の間に分散されて配置されるL12相であり、(L12+D022)共析組織は、例えば、同図に示されるように、A1相が分離して形成された、L12とD022とで構成される共析組織である。
Nb及びCの含有量は、好ましくは、Nbの含有量が2.0原子%以上7.3原子%以下であり、Cの含有量が0原子%より多く4.6原子%以下である。(実施例1~5で示されるように、例えば、Nbの含有量が3.0原子%より多くてもよい。)また、より好ましくは、Nbの含有量が3.1原子%以上5.3原子%以下であり、Cの含有量が0.2原子%以上2.4原子%以下である。これらの範囲であれば、引張強度及び延性特性を向上させることができる。
引張強度及び延性特性の向上は、Cによる固溶強化機構の発現とCの粒界偏析による粒界破壊抑制によるので、Nbの含有量とCの含有量は、同じ含有量であってもよいし、また、異なる含有量であってよい。例えば、Nbの含有量がCの含有量より少なくてもよい。また、Nb及びCの含有量が微量であっても引張強度及び延性特性が向上するから、Nb及びCの含有量は後述するBの含有量と同程度であってもよい。
引張強度及び延性特性の向上は、Cによる固溶強化機構の発現とCの粒界偏析による粒界破壊抑制によるので、Nbの含有量とCの含有量は、同じ含有量であってもよいし、また、異なる含有量であってよい。例えば、Nbの含有量がCの含有量より少なくてもよい。また、Nb及びCの含有量が微量であっても引張強度及び延性特性が向上するから、Nb及びCの含有量は後述するBの含有量と同程度であってもよい。
また、この発明のNi基2重複相金属間化合物合金は、その実施形態において、前記Al,V及びNiの合金材料に、NbCを添加して形成されてもよい。つまり、Niを主成分とし、かつAl:5原子%より多く13原子%以下,V:9.5原子%以上17.5原子%未満,の合金材料に、NbCを添加して形成される合金であってもよい(言い換えると、これらの合金材料にTiCを添加し溶解、凝固させることにより得られる合金であってもよい)。
この実施形態によれば、Ni基2重複相金属間化合物合金の材料に、Cを炭化物として導入するが、添加されたNbCが2重複相組織マトリックス中で第二相粒子として存在する場合においても、あるいは、NbCがNbとCに分解して2重複相組織マトリックスに固溶する場合のいずれにおいても、2重複相組織の形成の妨げとならない。このため、引張強度及び延性特性を向上させることができる。
また、前記NbCの添加量は、0原子%より多く12.5原子%以下であるとよい。また、NbCの添加は、例えば、前記合金材料にNbCを添加した溶湯から鋳塊を作製して形成される。NbCの添加量は、好ましくは、0原子%より多く4.6原子%以下であり、また、より好ましくは、0.2原子%以上2.4原子%以下である。これらの範囲のNbCを添加して形成される合金であれば、より引張強度及び延性特性を向上させることができる。
なお、前記NbCの添加量は、前記Ni,Al及びVの合金材料に、NbCを添加して100原子%となる数値である。
また、このNi基2重複相金属間化合物合金は、前記発明の構成において、前記Nb及びCがNbCとして含まれてもよい。つまり、添加されたNbCが分解されたNbとCとを含むNi基2重複相金属間化合物合金であってもよいが、添加されたNbCが分解されたNb及びC並びにNbCを含むNi基2重複相金属間化合物合金であってもよい。
また、この発明のNi基2重複相金属間化合物合金は、その実施形態において、前記2重複相組織と異なる組織を有し、この組織が、NbCを含む組織であってもよい。前記Al,V,及びNiの合金材料にNbCが添加されて形成される場合、このNi基2重複相金属間化合物合金は、添加されたNbCが分解されてNbとCを含む2重複相組織を有してもよいが、この2重複相組織のほかNbCを含む組織を有してもよい。例えば、Nb及びCを多く含む場合、2重複相組織と異なる組織が形成され、V,Nb及びCを主成分とする第2相粒子(炭化物粒子)が形成される。
また、この発明のNi基2重複相金属間化合物合金は、その実施形態において、前記NbCが添加されて形成される合金のほか、Al,V,Nb及びCの合金材料から形成される合金(すなわち、これらの材料を溶解、凝固することにより得られる合金)であってもよいし、また、TiCが添加されてTiをさらに含む合金であってもよい。
この実施形態によれば、Ni基2重複相金属間化合物合金の材料に、Cを炭化物として導入するが、添加されたNbCが2重複相組織マトリックス中で第二相粒子として存在する場合においても、あるいは、NbCがNbとCに分解して2重複相組織マトリックスに固溶する場合のいずれにおいても、2重複相組織の形成の妨げとならない。このため、引張強度及び延性特性を向上させることができる。
また、前記NbCの添加量は、0原子%より多く12.5原子%以下であるとよい。また、NbCの添加は、例えば、前記合金材料にNbCを添加した溶湯から鋳塊を作製して形成される。NbCの添加量は、好ましくは、0原子%より多く4.6原子%以下であり、また、より好ましくは、0.2原子%以上2.4原子%以下である。これらの範囲のNbCを添加して形成される合金であれば、より引張強度及び延性特性を向上させることができる。
なお、前記NbCの添加量は、前記Ni,Al及びVの合金材料に、NbCを添加して100原子%となる数値である。
また、このNi基2重複相金属間化合物合金は、前記発明の構成において、前記Nb及びCがNbCとして含まれてもよい。つまり、添加されたNbCが分解されたNbとCとを含むNi基2重複相金属間化合物合金であってもよいが、添加されたNbCが分解されたNb及びC並びにNbCを含むNi基2重複相金属間化合物合金であってもよい。
また、この発明のNi基2重複相金属間化合物合金は、その実施形態において、前記2重複相組織と異なる組織を有し、この組織が、NbCを含む組織であってもよい。前記Al,V,及びNiの合金材料にNbCが添加されて形成される場合、このNi基2重複相金属間化合物合金は、添加されたNbCが分解されてNbとCを含む2重複相組織を有してもよいが、この2重複相組織のほかNbCを含む組織を有してもよい。例えば、Nb及びCを多く含む場合、2重複相組織と異なる組織が形成され、V,Nb及びCを主成分とする第2相粒子(炭化物粒子)が形成される。
また、この発明のNi基2重複相金属間化合物合金は、その実施形態において、前記NbCが添加されて形成される合金のほか、Al,V,Nb及びCの合金材料から形成される合金(すなわち、これらの材料を溶解、凝固することにより得られる合金)であってもよいし、また、TiCが添加されてTiをさらに含む合金であってもよい。
また、この発明のNi基2重複相金属間化合物合金は、その実施形態において、前記構成に加え、さらにBを含んでもよい。つまり、Bの含有量が0重量ppmであってもよいが、Bの含有量が0重量ppmより多く1000重量ppm以下であってもよい。BとCとが同時に含まれると、BとCとが粒界偏析し、これにより粒界破壊が抑制されるので、上記微量のBが含有されるとよい(例えば、0重量ppmより多い含有量であるとよい)。
また、このBの含有量は、好ましくは、50重量ppm以上で1000重量ppm以下であり、より好ましくは、100重量ppm以上で800重量ppm以下である。
なお、Bの上記含有量は、Al,V,Nb,C及びNiを含む合計100原子%の組成の合計重量に対する数値である。
また、このBの含有量は、好ましくは、50重量ppm以上で1000重量ppm以下であり、より好ましくは、100重量ppm以上で800重量ppm以下である。
なお、Bの上記含有量は、Al,V,Nb,C及びNiを含む合計100原子%の組成の合計重量に対する数値である。
また、この発明のNi基2重複相金属間化合物合金は、Al及びVの含有量が、好ましくは、Alの含有量が6原子%以上10原子%以下であり、Vの含有量が12.0原子%以上16.5原子%未満である。Al及びVの含有量がこれらの範囲であれば、2重複相組織が形成されやすい。
また、この発明のNi基2重複相金属間化合物合金は、上記で説明したAl,V,Nb,C,Ni及び不可避的不純物のほか、Tiをさらに含んでもよい。例えば、Tiをさらに含み、Tiの含有量が0.0より多く4.6以下であってもよい。
また、この発明のNi基2重複相金属間化合物合金は、上記で説明したAl,V,Nb,C,Ni及び不可避的不純物のほか、Tiをさらに含んでもよい。例えば、Tiをさらに含み、Tiの含有量が0.0より多く4.6以下であってもよい。
また、この発明のNi基2重複相金属間化合物合金の第1の製造方法は、Al:5原子%より多く13原子%以下,V:9.5原子%以上17.5原子%未満,Nb:0原子%より多く12.5原子%以下,C:0原子%より多く12.5原子%以下,残部は、Niからなる溶湯を徐冷することにより、初析L12相とA1相とが共存する組織を形成する工程と、初析L12相とA1相とが共存する組織を有する組織を冷却することにより、A1相をL12相とD022相とに分解させる工程とを備える。
また、この発明のNi基2重複相金属間化合物合金の第2の製造方法は、Al:5原子%より多く13原子%以下,V:9.5原子%以上17.5原子%未満,Nb:0原子%より多く12.5原子%以下,C:0原子%より多く12.5原子%以下,残部は、Niからなる溶湯で鋳塊を作製する工程と、前記鋳塊に対して、初析L12相とA1相とが共存する温度で第1熱処理を行う工程と、第1熱処理後、冷却することによりA1相をL12相とD022相とに分解させる工程と、を備える。
ここで、第1及び第2の製造方法において、溶湯で鋳塊を作製する前記工程は、Niを主成分とし、Al:5原子%より多く13原子%以下,V:9.5原子%以上17.5原子%未満,Nb:0原子%より多く12.5原子%以下,C:0原子%より多く12.5原子%以下,の合金材料からなる溶湯で鋳塊を作製する工程を含む。
また、この発明のNi基2重複相金属間化合物合金の第3の製造方法は、Niを主成分とし、かつAl:5原子%より多く13原子%以下,V:9.5原子%以上17.5原子%未満,NbC:0原子%より多く12.5原子%以下,の合金材料からなる溶湯を徐冷することにより、初析L12相とA1相とが共存する組織を形成する工程と、初析L12相とA1相とが共存する組織を有する組織を冷却することにより、A1相をL12相とD022相とに分解させる工程とを備える。
また、この発明のNi基2重複相金属間化合物合金の第4の製造方法は、Niを主成分とし、かつAl:5原子%より多く13原子%以下,V:9.5原子%以上17.5原子%未満,NbC:0原子%より多く12.5原子%以下,の合金材料からなる溶湯で鋳塊を作製する工程と、前記鋳塊に対して、初析L12相とA1相とが共存する温度で第1熱処理を行う工程と、第1熱処理後、冷却することによりA1相をL12相とD022相とに分解させる工程とを備える。
ここで、溶湯を徐冷して鋳造するとは、例えば、セラミックス製の鋳型を用いて鋳造を行うほか、金型に鋳造する場合に、金型を断熱材等で包む等によって実施できる。
また、上記NbCを含有する溶湯から鋳塊を作製する工程において、Ni,Al及びVの合金材料にNbCが添加されて溶湯が作製される。NbCの含有量(添加量)、好ましくは0原子%より多く4.6原子%以下であり、より好ましくは、0.2原子%以上2.4原子%以下である。
また、これらの製造方法は、その実施形態において、前記工程に加え、さらに、均質化熱処理又は溶体化熱処理を備えてもよい。均質化熱処理又は溶体化熱処理は、例えば、1503K以上1603K以下の温度で行ってもよい。
また、第1熱処理は、均質化熱処理又は溶体化熱処理を兼ねてもよい。
なお、この発明の第1及び第2の製造方法において、Al,V,Nb,C及びNiから合計100原子%の組成となる。一方、この発明の第3及び第4の製造方法において、上記NbCの含有量(添加量)は、前記Ni,Al及びVの合金材料に、NbCを添加して100原子%となる数値である。上記溶湯から鋳塊を作製する工程における溶湯とは、上記含有量(添加量)のNbCを添加して100原子%とした合金材料の溶湯を意味する。
また、この発明のNi基2重複相金属間化合物合金の第2の製造方法は、Al:5原子%より多く13原子%以下,V:9.5原子%以上17.5原子%未満,Nb:0原子%より多く12.5原子%以下,C:0原子%より多く12.5原子%以下,残部は、Niからなる溶湯で鋳塊を作製する工程と、前記鋳塊に対して、初析L12相とA1相とが共存する温度で第1熱処理を行う工程と、第1熱処理後、冷却することによりA1相をL12相とD022相とに分解させる工程と、を備える。
ここで、第1及び第2の製造方法において、溶湯で鋳塊を作製する前記工程は、Niを主成分とし、Al:5原子%より多く13原子%以下,V:9.5原子%以上17.5原子%未満,Nb:0原子%より多く12.5原子%以下,C:0原子%より多く12.5原子%以下,の合金材料からなる溶湯で鋳塊を作製する工程を含む。
また、この発明のNi基2重複相金属間化合物合金の第3の製造方法は、Niを主成分とし、かつAl:5原子%より多く13原子%以下,V:9.5原子%以上17.5原子%未満,NbC:0原子%より多く12.5原子%以下,の合金材料からなる溶湯を徐冷することにより、初析L12相とA1相とが共存する組織を形成する工程と、初析L12相とA1相とが共存する組織を有する組織を冷却することにより、A1相をL12相とD022相とに分解させる工程とを備える。
また、この発明のNi基2重複相金属間化合物合金の第4の製造方法は、Niを主成分とし、かつAl:5原子%より多く13原子%以下,V:9.5原子%以上17.5原子%未満,NbC:0原子%より多く12.5原子%以下,の合金材料からなる溶湯で鋳塊を作製する工程と、前記鋳塊に対して、初析L12相とA1相とが共存する温度で第1熱処理を行う工程と、第1熱処理後、冷却することによりA1相をL12相とD022相とに分解させる工程とを備える。
ここで、溶湯を徐冷して鋳造するとは、例えば、セラミックス製の鋳型を用いて鋳造を行うほか、金型に鋳造する場合に、金型を断熱材等で包む等によって実施できる。
また、上記NbCを含有する溶湯から鋳塊を作製する工程において、Ni,Al及びVの合金材料にNbCが添加されて溶湯が作製される。NbCの含有量(添加量)、好ましくは0原子%より多く4.6原子%以下であり、より好ましくは、0.2原子%以上2.4原子%以下である。
また、これらの製造方法は、その実施形態において、前記工程に加え、さらに、均質化熱処理又は溶体化熱処理を備えてもよい。均質化熱処理又は溶体化熱処理は、例えば、1503K以上1603K以下の温度で行ってもよい。
また、第1熱処理は、均質化熱処理又は溶体化熱処理を兼ねてもよい。
なお、この発明の第1及び第2の製造方法において、Al,V,Nb,C及びNiから合計100原子%の組成となる。一方、この発明の第3及び第4の製造方法において、上記NbCの含有量(添加量)は、前記Ni,Al及びVの合金材料に、NbCを添加して100原子%となる数値である。上記溶湯から鋳塊を作製する工程における溶湯とは、上記含有量(添加量)のNbCを添加して100原子%とした合金材料の溶湯を意味する。
ここで示した実施形態は、互いに組み合わせることができる。本明細書において、「~」は、両端の点を含む。(なお、原子%は、at.%で表記される。)
以下、これらの実施形態の各元素について詳述する。
以下、これらの実施形態の各元素について詳述する。
Alの具体的な含有量は,5at.%より多く13at.%以下であり、例えば5.5,6,6.5,7,7.5,8,8.5,9,9.5,10,10.5,11,11.5,12,12.5又は13at.%である。Alの含有量の範囲は,上記具体的な含有量として例示した数値の何れか2つの間であってもよい。
Vの具体的な含有量は,9.5at.%以上で17.5at.%未満であり、例えば9.5,10,10.5,11,11.5,12,12.5,13,13.5,14,14.5,15,15.5,16,16.5又は17at.%である。Vの含有量の範囲は,上記具体的な含有量として例示した数値の何れか2つの間であってもよい。
Nbの具体的な含有量は,0.0at.%より多く12.5at.%以下であり、好ましくは、2.0原子%以上7.3原子%以下である。例えば、0.1,0.5,1,1.5,2.0,2.5,2.7,2.8,2.9,3.0,3.1,3.2,3.3,3.4,3.5,3.9,4,4.5,5,5.2,5.3,5.5,6,6.5,7,7.2,7.3,7.5,8,8.5,9,9.5,10,10.5,11,11.5,12,12.5at.%である。Nbの含有量の範囲は,上記具体的な含有量として例示した数値の何れか2つの間であってもよい。
Cの具体的な含有量は、0at.%より多く12.5at.%以下であり、例えば,0.1,0.2,0.3,0.4,0.5,0.6,0.9,1,1.5,2,2.3,2.4,2.5,3,3.5,4,4.5,4.6,5,5.5,6,6.5,7,7.5,8,8.5,9,9.5,10,10.5,11,11.5,12,12.5at.%である。
また、Nb及びCの含有量は、NbCを上記各元素からなる材料に添加して溶解させてなる含有量であってもよいが、その場合のNbCの具体的な含有量は、0at.%より多く12.5at.%以下であり、例えば、1,2,3,4,5,10,12,12.5at.%である。また、好ましくは、0at.%より多く4.6at.%以下である。例えば0.1,0.2,0.3,0.4,0.5,0.6,0.9,1,1.5,2,2.3,2.4,2.5,3,3.5,4,4.5,4.6at.%である。Nb,C及びNbCの含有量の範囲は,上記具体的な含有量として例示した数値の何れか2つの間であってもよい。
なお、これらNbCの添加量は、前記Ni,Al及びVの合金材料に、NbCを添加して100原子%となる数値である。
なお、これらNbCの添加量は、前記Ni,Al及びVの合金材料に、NbCを添加して100原子%となる数値である。
Niの具体的な含有量(含有率)は,好ましくは73~77at.%であり,さらに好ましくは74~76at.%である。このような範囲であれば,Niの含有量と,(Al,V,Nb)の含有量の合計が3:1に近くなり,2重複相組織を構成の相であるL12相及びD022相以外の相が出現しにくくなるからである。Niの具体的な含有量は,例えば73,73.5,74,74.5,75,75.5,76,76.5又は77at.%である。Niの含有量の範囲は,上記具体的な含有量として例示した数値の何れか2つの間であってもよい。
Bの具体的な含有量は、50重量ppm以上1000重量ppm以下であり、例えば50,100,150,200,250,300,350,400,450,500,550,600,650,700,750,800,850,900,950又は1000重量ppmである。Bの含有量の範囲は,上記具体的な含有量として例示した数値の何れか2つの間であってもよい。なお、Bの上記含有量は、Al,V,Nb,C及びNiを含む合計100原子%の組成の合計重量に対する数値である。
この発明の実施形態に係るNi基2重複相金属間化合物合金の具体的な組成は、例えば、表1~3に示す組成に上記含有量のBを添加したものである。
なお、この発明のNi基2重複相金属間化合物合金は、後述するように、初析L12相と(L12+D022)共析組織との2重複相組織が形成される。L12相は、Ni3Al金属間化合物相であり、D022相は、Ni3V金属間化合物相である。また、L12相、D022相のほか、その組成により、Ni3Nb金属間化合物相であるD0a相を含む。
次に、Ni基2重複相金属間化合物合金の製造方法について、説明する。
次に、Ni基2重複相金属間化合物合金の製造方法について、説明する。
まず、各元素が上記で説明した割合となるように地金を秤量し、これを加熱することにより溶解させて、この溶湯を冷却することにより凝固させる。
ここで、Nb及びCは、炭化物であるNbCを用いることにより、上記割合となるようにしてもよい。NbCであれば、2重複相組織が形成されやすく、引張強度及び延性特性が向上したNi基2重複相金属間化合物合金を容易に製造できるからである。
ここで、Nb及びCは、炭化物であるNbCを用いることにより、上記割合となるようにしてもよい。NbCであれば、2重複相組織が形成されやすく、引張強度及び延性特性が向上したNi基2重複相金属間化合物合金を容易に製造できるからである。
次いで、凝固した合金材に対して、初析L12相とA1相とが共存する温度で第1熱処理を行い、第1熱処理後、冷却することによりA1相をL12相とD022相とに分解させる。
これにより、初析L12相と(L12+D022)共析組織とからなる2重複相組織を有するNi基2重複相金属間化合物合金が形成される。
なお、L12相は、Ni3Al金属間化合物相であり、A1相は、fcc固溶体相であり、D022相は、Ni3V金属間化合物相である。
これにより、初析L12相と(L12+D022)共析組織とからなる2重複相組織を有するNi基2重複相金属間化合物合金が形成される。
なお、L12相は、Ni3Al金属間化合物相であり、A1相は、fcc固溶体相であり、D022相は、Ni3V金属間化合物相である。
2重複相組織を有する金属間化合物合金は、特許文献1~3に記載された方法によって作製することができる。例えば、特許文献3に示すように、溶解・凝固により得られた合金材(鋳塊など)に対して,初析L12相とA1相とが共存する温度,又は初析L12相とA1相とD0a相が共存する温度で第1熱処理を行い,その後,L12相とD022相及び又はD0a相とが共存する温度に冷却するか,その温度で第2熱処理を行うことによってA1相を(L12+D022)共析組織に変化させて2重複相組織を形成する工程によって製造することができる。
但し、これらの特許文献では、独立したプロセスとして初析L12相とA1相とが共存する温度での熱処理を行うことによって上部複相組織を形成しているが、この熱処理を行う代わりに金属間化合物合金の鋳塊を作製する際に溶湯を徐冷することによっても上部複相組織を形成することができる。溶湯を徐冷した場合、溶湯が凝固した後に初析L12相とA1相とが共存する温度に比較的長い時間滞在することになるので、上記熱処理を行った場合と同様に初析L12相とA1相とからなる上部複相組織が形成されるからである。
但し、これらの特許文献では、独立したプロセスとして初析L12相とA1相とが共存する温度での熱処理を行うことによって上部複相組織を形成しているが、この熱処理を行う代わりに金属間化合物合金の鋳塊を作製する際に溶湯を徐冷することによっても上部複相組織を形成することができる。溶湯を徐冷した場合、溶湯が凝固した後に初析L12相とA1相とが共存する温度に比較的長い時間滞在することになるので、上記熱処理を行った場合と同様に初析L12相とA1相とからなる上部複相組織が形成されるからである。
第1熱処理及び第2熱処理は、特許文献1~3の方法によってもよいが、この発明のNi基2重複相金属間化合物合金の場合、例えば、第1熱処理は、1503~1603Kで行い、溶体化熱処理(均質化熱処理)を兼ねる。
次に、実施例を挙げてこの発明を具体的に説明する。以下の実施例では、鋳造材を作製し外観観察をした後、鋳造材に対して熱処理を施すことによって2重複相組織を有する金属間化合物を作製して,その機械的特性を調べた。
〔実施例1~5〕
比較例1及び実施例1~5の鋳造材は、表4のNo.1~6に示す割合のNi,Al,V,Nbの地金(それぞれ純度99.9重量%)及びB,NbCの粉体(粒径約1~3μm)をアーク溶解炉内の鋳型中で溶解、凝固することによって作製した。アーク溶解炉の雰囲気は,まず,溶解室内を真空排気し,その後不活性ガス(アルゴンガス)に置換した。電極は,非消耗タングステン電極を用い,鋳型には水冷式銅ハースを使用した。以下の説明では,上記鋳造材を「試料」と呼ぶ。
なお、表4において、NbCとBの数値は、Ni,Al,V,Nbを含む合計100at.%の組成に対する原子%である。
比較例1及び実施例1~5の鋳造材は、表4のNo.1~6に示す割合のNi,Al,V,Nbの地金(それぞれ純度99.9重量%)及びB,NbCの粉体(粒径約1~3μm)をアーク溶解炉内の鋳型中で溶解、凝固することによって作製した。アーク溶解炉の雰囲気は,まず,溶解室内を真空排気し,その後不活性ガス(アルゴンガス)に置換した。電極は,非消耗タングステン電極を用い,鋳型には水冷式銅ハースを使用した。以下の説明では,上記鋳造材を「試料」と呼ぶ。
なお、表4において、NbCとBの数値は、Ni,Al,V,Nbを含む合計100at.%の組成に対する原子%である。
また、表4において、NbCが添加されていない、No.1の試料が比較例1であり(以下、基本合金ともいう)、NbCが添加されている、No.2~6の試料が本発明の実施例1~5である。なお、参考として、表5に、表4の試料における各元素の含有量を示す(表5は、Ni,Al,V,Nb及びCの合計(Bを除く)を100%としたときの各元素の原子%である。添加されたNbCは、1個のNbC化合物がNb原子1個とC原子1個に完全に分解するものとして換算した。)
(鋳造材の外観観察)
作製された試料について、その断面の観察を行った。図1にNo.1,No.2,No.4及びNo.6の断面光学顕微鏡写真を示す。図1において(a),(b),(c),(d)の各写真は、No.1,No.2,No.4,No.6の試料の各写真にそれぞれ対応している。
図1を参照すると、No.2から結晶粒が微細化していることがわかる。
また、No.1~No.6の断面観察から、NbCの添加量が0.2at.%から0.5at.%の間で、結晶粒の微細化が進むことが判明した。
作製された試料について、その断面の観察を行った。図1にNo.1,No.2,No.4及びNo.6の断面光学顕微鏡写真を示す。図1において(a),(b),(c),(d)の各写真は、No.1,No.2,No.4,No.6の試料の各写真にそれぞれ対応している。
図1を参照すると、No.2から結晶粒が微細化していることがわかる。
また、No.1~No.6の断面観察から、NbCの添加量が0.2at.%から0.5at.%の間で、結晶粒の微細化が進むことが判明した。
次に、作製された試料に対して、溶体化熱処理として1553K×5時間の真空熱処理を施した。
なお、この実験において、上記溶体化熱処理が第1熱処理を兼ねており、その後の炉冷が、L12相とD022相とが共存する温度への冷却に相当する。
なお、この実験において、上記溶体化熱処理が第1熱処理を兼ねており、その後の炉冷が、L12相とD022相とが共存する温度への冷却に相当する。
(組織観察)
次に、熱処理された試料について、SEMによる組織観察を行った。図2及び図3にその写真を示す。図2は、No.1,No.2,No.4及びNo.6の試料の金属組織写真(1000倍)であり、図3は同試料の母相(matrix)を高倍率で観察したときの金属組織写真(5000倍)である。また、図2及び図3において、(a),(b),(c),(d)の各写真は、No.1,No.2,No.4及びNo.6の各試料にそれぞれ対応している。
図2を参照すると、NbCが添加された試料のNo.3,No.4及びNo.6には、炭化物と考えられる第2相粒子が存在し、NbCが添加されていない試料であるNo.1にはこの第2相粒子が存在しないことがわかる(図2における矢印の部分)。
図3を参照すると、NbCの添加の有無にかかわらず、各試料の母相に2重複相組織が形成されていることがわかる。また、各試料の母相に初析L12相と共析組織が形成されていることがわかる。これらのことから、NbCの添加によるCが金属間化合物に導入されても、2重複相組織が維持されることがわかった。
次に、熱処理された試料について、SEMによる組織観察を行った。図2及び図3にその写真を示す。図2は、No.1,No.2,No.4及びNo.6の試料の金属組織写真(1000倍)であり、図3は同試料の母相(matrix)を高倍率で観察したときの金属組織写真(5000倍)である。また、図2及び図3において、(a),(b),(c),(d)の各写真は、No.1,No.2,No.4及びNo.6の各試料にそれぞれ対応している。
図2を参照すると、NbCが添加された試料のNo.3,No.4及びNo.6には、炭化物と考えられる第2相粒子が存在し、NbCが添加されていない試料であるNo.1にはこの第2相粒子が存在しないことがわかる(図2における矢印の部分)。
図3を参照すると、NbCの添加の有無にかかわらず、各試料の母相に2重複相組織が形成されていることがわかる。また、各試料の母相に初析L12相と共析組織が形成されていることがわかる。これらのことから、NbCの添加によるCが金属間化合物に導入されても、2重複相組織が維持されることがわかった。
(組成分析)
また、熱処理が施された試料について、EPMA(Electron Probe Micro Analyzer)による母相と炭化物(第2相粒子)の組成分析を行った。表6及び表7にその結果を示す。表6は、No.1の試料における母相(matrix)の組成分析結果を示す表であり、表7は、No.6の試料における母相(matrix)及び炭化物(第2相粒子:表では「Dispersion」と記載)の組成分析結果を示す表である。No.1の試料は、炭化物(第2相粒子)が観察されたNo.6の試料と組成を比較するために示す。なお,表6と表7中の数値はすべて原子%(at.%)である。
また、熱処理が施された試料について、EPMA(Electron Probe Micro Analyzer)による母相と炭化物(第2相粒子)の組成分析を行った。表6及び表7にその結果を示す。表6は、No.1の試料における母相(matrix)の組成分析結果を示す表であり、表7は、No.6の試料における母相(matrix)及び炭化物(第2相粒子:表では「Dispersion」と記載)の組成分析結果を示す表である。No.1の試料は、炭化物(第2相粒子)が観察されたNo.6の試料と組成を比較するために示す。なお,表6と表7中の数値はすべて原子%(at.%)である。
表6及び表7を参照すると、No.6の試料の母相は、No.1の試料の母相よりもVの濃度が低く、Cの濃度が高いことがわかる。また、No.6の試料の炭化物(第2相粒子)は、Nb及びCのほか、V,の濃度が高いことがわかる。さらに、No.6の試料は、母相及び炭化物ともに、Nbの濃度とCの濃度との比が1対1ではないことがわかる。
以上から、添加されたNbCは、溶出して新たな組織を形成していることが理解できる。また、NbCを添加することにより、Cが母相に、Vが炭化物(第2相粒子)にそれぞれ分配されて固溶したことが理解できる。表6及び表7から、NbC以外に、Nb及びCを別々に試料に導入しても2重複相組織を形成できることが推察できる。
以上から、添加されたNbCは、溶出して新たな組織を形成していることが理解できる。また、NbCを添加することにより、Cが母相に、Vが炭化物(第2相粒子)にそれぞれ分配されて固溶したことが理解できる。表6及び表7から、NbC以外に、Nb及びCを別々に試料に導入しても2重複相組織を形成できることが推察できる。
(相同定)
次に、熱処理された試料について、金属組織の相を同定するためX線測定(XRD,Xray diffraction)を行った。図4~図7にその結果を示す。図4~図7は、No.1の試料及びNo.3の試料,No.4の試料,No.6の試料のX線回折プロファイルである。図の中の印は、2重複相組織を構成する材料であるNi3Al(L12相),Ni3V(D022相)及びNbCのピーク位置を示している。これらのピーク位置は、おのおの、丸印、三角印、四角印で示している。
図4~図7に示されるように、No.3,No.4,No.6において、NbCによるピークが観察された。No.1及びNo.3,No.4,No.6のいずれの試料においても、Ni3Al(L12相)及びNi3V(D022相)によるピークが観察された。以上から、NbCの添加の有無によらず、すべての試料で、NbCのピークを除いて、2重複相組織の構成相であるNi3Al(L12相)及びNi3V(D022相)以外の相は形成されていないことがわかった。また、上記組織観察で観察された炭化物(第2相粒子)がNbCであることがわかった。
次に、熱処理された試料について、金属組織の相を同定するためX線測定(XRD,Xray diffraction)を行った。図4~図7にその結果を示す。図4~図7は、No.1の試料及びNo.3の試料,No.4の試料,No.6の試料のX線回折プロファイルである。図の中の印は、2重複相組織を構成する材料であるNi3Al(L12相),Ni3V(D022相)及びNbCのピーク位置を示している。これらのピーク位置は、おのおの、丸印、三角印、四角印で示している。
図4~図7に示されるように、No.3,No.4,No.6において、NbCによるピークが観察された。No.1及びNo.3,No.4,No.6のいずれの試料においても、Ni3Al(L12相)及びNi3V(D022相)によるピークが観察された。以上から、NbCの添加の有無によらず、すべての試料で、NbCのピークを除いて、2重複相組織の構成相であるNi3Al(L12相)及びNi3V(D022相)以外の相は形成されていないことがわかった。また、上記組織観察で観察された炭化物(第2相粒子)がNbCであることがわかった。
(ビッカース硬さ試験)
次に、No.1~No.6の試料について、ビッカース硬さ試験を行った。ビッカース硬さ試験は、室温において各試料に正4角錐のダイヤモンド製圧子を押し込むことによって行った。その際の荷重は300gを主として用い、保持時間は20秒とした。
図8にその結果を示す。図8は、NbCの添加量と室温ビッカース硬さとの関係を示すグラフである。
図8を参照すると、NbCの添加量が増加するに従いその硬さも増加していることがわかる。NbCの添加量が2.5at.%以上でほぼ一定の値となっていることがわかる。
一般に金属は不純物が含まれるとその硬さを増すが、この実験でもNbCを添加することにより、ビッカース硬さの値が増すことがわかった。
次に、No.1~No.6の試料について、ビッカース硬さ試験を行った。ビッカース硬さ試験は、室温において各試料に正4角錐のダイヤモンド製圧子を押し込むことによって行った。その際の荷重は300gを主として用い、保持時間は20秒とした。
図8にその結果を示す。図8は、NbCの添加量と室温ビッカース硬さとの関係を示すグラフである。
図8を参照すると、NbCの添加量が増加するに従いその硬さも増加していることがわかる。NbCの添加量が2.5at.%以上でほぼ一定の値となっていることがわかる。
一般に金属は不純物が含まれるとその硬さを増すが、この実験でもNbCを添加することにより、ビッカース硬さの値が増すことがわかった。
(引張試験)
次に、No.1~No.6の試料について、引張試験を行った。引張試験は、室温~1173Kの範囲で、ゲージ部が10×2×1mm3の試験片を用いて、真空中、ひずみ速度1.67×10-4s-1の条件で行った。その結果を図9~図14に示す。図9~図14は、No.1~No.6の試料の降伏強度(yield strength),引張強度(UTS,ultimate tensile strength)及び伸び(elongation)と温度との関係を示したグラフである。
図9~図14を参照すると、NbCが添加されていない試料(No.1)が、約1073Kまで強度の逆温度依存性を示すことがわかる(図9)。つまり、温度の上昇とともに引張強度の値が上昇していることがわかる。また、これと同様にNbCが添加されている試料(No.2~No.6)も873Kまで強度の逆温度依存性を示すことがわかる(図10~図14)。さらに、NbCの添加の有無にかかわらず、室温から高温において測定したすべての温度領域で0.3%~4.7%の伸びを示すことがわかる。
次に、No.1~No.6の試料について、引張試験を行った。引張試験は、室温~1173Kの範囲で、ゲージ部が10×2×1mm3の試験片を用いて、真空中、ひずみ速度1.67×10-4s-1の条件で行った。その結果を図9~図14に示す。図9~図14は、No.1~No.6の試料の降伏強度(yield strength),引張強度(UTS,ultimate tensile strength)及び伸び(elongation)と温度との関係を示したグラフである。
図9~図14を参照すると、NbCが添加されていない試料(No.1)が、約1073Kまで強度の逆温度依存性を示すことがわかる(図9)。つまり、温度の上昇とともに引張強度の値が上昇していることがわかる。また、これと同様にNbCが添加されている試料(No.2~No.6)も873Kまで強度の逆温度依存性を示すことがわかる(図10~図14)。さらに、NbCの添加の有無にかかわらず、室温から高温において測定したすべての温度領域で0.3%~4.7%の伸びを示すことがわかる。
次に、図15~図18に、降伏強度,引張強度及び伸びとNbCの添加量との関係を示す。図15~図18は、No.1~No.6の試料の上記引張試験の結果を解析したグラフである。
図15を参照すると、室温(RT)では、NbCの添加量の増加とともに降伏強度,引張強度,伸びのすべての特性値が上昇しNbCの添加量が1原子%付近で最大となることがわかる。特に、引張強度は1原子%付近で1.3GPaを超えており、NbCの添加量が0.2原子%以上2.5原子%未満で優れた強度特性を示している。また、NbCの添加量が1原子%を超えると、NbCの添加量とともに降伏強度,引張強度及び伸びの値が減少していく傾向があるものの、降伏強度及び引張強度の値は、NbCが添加されていない試料(No.1)と同程度かそれ以上の特性を示すことがわかる。
また、図16を参照すると、室温と同様に873KにおいてもNbCの添加量の増加とともに降伏強度,引張強度,伸びのすべての値が上昇しNbCの添加量が1原子%付近で最大となることがわかる。NbCの添加量が1原子%を超えると、各特性の値はやや減少するか、又はほとんど一定の値を示すことがわかる。特に、NbCの添加量が0.2原子%以上2.5原子%未満で優れた強度特性を示している。降伏強度及び引張強度は、NbCの添加量が1原子%を超えてもNbCが添加されていない試料と比較して優れた特性を示している。
さらに、図17を参照すると、NbCの添加量の増加とともに伸びの値が上昇している。また、図17及び図18を参照すると、降伏強度,引張強度はほとんど一定の値を示している。
以上のように、NbCを添加することにより、室温で、試料の強度(降伏強度,引張強度)が強化されていることがわかる。特に、NbCの添加量が2.5原子%未満のときに顕著であることがわかる。また、NbCの添加量が1.0原子%のときに、延性(伸び)が最も向上していることがわかる(室温~1073K)。
図15を参照すると、室温(RT)では、NbCの添加量の増加とともに降伏強度,引張強度,伸びのすべての特性値が上昇しNbCの添加量が1原子%付近で最大となることがわかる。特に、引張強度は1原子%付近で1.3GPaを超えており、NbCの添加量が0.2原子%以上2.5原子%未満で優れた強度特性を示している。また、NbCの添加量が1原子%を超えると、NbCの添加量とともに降伏強度,引張強度及び伸びの値が減少していく傾向があるものの、降伏強度及び引張強度の値は、NbCが添加されていない試料(No.1)と同程度かそれ以上の特性を示すことがわかる。
また、図16を参照すると、室温と同様に873KにおいてもNbCの添加量の増加とともに降伏強度,引張強度,伸びのすべての値が上昇しNbCの添加量が1原子%付近で最大となることがわかる。NbCの添加量が1原子%を超えると、各特性の値はやや減少するか、又はほとんど一定の値を示すことがわかる。特に、NbCの添加量が0.2原子%以上2.5原子%未満で優れた強度特性を示している。降伏強度及び引張強度は、NbCの添加量が1原子%を超えてもNbCが添加されていない試料と比較して優れた特性を示している。
さらに、図17を参照すると、NbCの添加量の増加とともに伸びの値が上昇している。また、図17及び図18を参照すると、降伏強度,引張強度はほとんど一定の値を示している。
以上のように、NbCを添加することにより、室温で、試料の強度(降伏強度,引張強度)が強化されていることがわかる。特に、NbCの添加量が2.5原子%未満のときに顕著であることがわかる。また、NbCの添加量が1.0原子%のときに、延性(伸び)が最も向上していることがわかる(室温~1073K)。
これは、NbCから分解したCが母相に固溶し、このため、固溶強化が生じたものと考えられる。また、この固溶強化は、低温領域で効果的に発現したものと考えられる。従って、NbCの添加による強度の向上は室温~873Kで著しい。
さらに、Cが固溶する量には限度(固溶限)があるため、その限度まではNbCの添加とともに強度が向上し、その限度を超えると強度の向上が止まるものと考えられる。このため、NbCの添加量が1%付近で強度は最大となると考えられる。
さらに、Cが固溶する量には限度(固溶限)があるため、その限度まではNbCの添加とともに強度が向上し、その限度を超えると強度の向上が止まるものと考えられる。このため、NbCの添加量が1%付近で強度は最大となると考えられる。
次に、引張試験後の各試料について破面観察を行った。図19,図20及び図21に各試料の破面を示す。図19は、室温(RT)、1073K,1173Kの各温度における引張試験後のNo.1及びNo.4試料の破面のSEM写真(低倍率写真)である。また、図20は、図19における各試料の破面を拡大して表示したSEM写真(高倍率写真)である。これらの図面において、(a),(b),(c)がNo.1の試料、(d),(e),(f)がNo.4の試料、の破面を示している。図21は、No.6の破面を拡大したSEM写真である。(a)は、室温、(b)は、1073K、の引張試験後の破面である。
図19及び図20に示されるように、No.1の試料では、室温で擬へき開状破壊の様相を呈し、温度上昇とともに粒界破壊の傾向が大きくなっている。1173Kでは完全に粒界破壊をしていた(図19及び図20の(a),(b),(c))。
一方、No.4の試料では、室温から高温(1173K)において延性的な粒内破壊が見られた。また炭化物(第2相粒子)周辺では、ディンプル破壊の様式が見られた(図19及び図20の(d),(e),(f))。
図21に示されるように、炭化物の添加量が多い試料では、炭化物が粗大化しているため、炭化物が亀裂の発生原因になっていた(図21の丸で囲まれた範囲)。
図19及び図20に示されるように、No.1の試料では、室温で擬へき開状破壊の様相を呈し、温度上昇とともに粒界破壊の傾向が大きくなっている。1173Kでは完全に粒界破壊をしていた(図19及び図20の(a),(b),(c))。
一方、No.4の試料では、室温から高温(1173K)において延性的な粒内破壊が見られた。また炭化物(第2相粒子)周辺では、ディンプル破壊の様式が見られた(図19及び図20の(d),(e),(f))。
図21に示されるように、炭化物の添加量が多い試料では、炭化物が粗大化しているため、炭化物が亀裂の発生原因になっていた(図21の丸で囲まれた範囲)。
以上から、NbCを添加することにより、粒界破壊が抑制されて粒内破壊が起こるようになると考えられる。このため、延性が向上すると考えられる。また、炭化物の観察から、炭素の添加量が適切であれば、炭素が延性に寄与することが理解できる。
〔実施例6~11〕
次に、別の試料である比較例2及び実施例6~11を作製して、その機械的特性を調べた。
次に、別の試料である比較例2及び実施例6~11を作製して、その機械的特性を調べた。
比較例2及び実施例6~11の鋳造材は、材料の地金の構成を除いてNo.1~No.6の試料と同様にして作製した。すなわち、NbCの粉体を材料とするのではなく、表8のNo.7~13に示す割合のNi,Al,V,Nbの地金(それぞれ純度99.9重量%)及びC,Bの粉体を材料とした。そして、これらの材料をアーク溶解炉内の鋳型中で溶解、凝固することによって鋳造材を作製した。アーク溶解炉の雰囲気は、No.1~No.6の試料の作製と同様にし、電極及び鋳型もNo.1~No.6の試料の作製と同様のものを用いた。
ここで、表8において、Cが添加されていないNo.7の試料が比較例2であり(基本合金ともいう)、Cが添加されているNo.8~13の試料が本発明の実施例6~11である。
なお、表8において、B及びCの数値は、Ni,Al,V,Nbを含む合計100at.%の組成に対する原子%の値である。Cは原子%のほか、参考としてwt.ppmの値を記載している。
なお、表8において、B及びCの数値は、Ni,Al,V,Nbを含む合計100at.%の組成に対する原子%の値である。Cは原子%のほか、参考としてwt.ppmの値を記載している。
次に、No.1~No.6の試料と同様に、作製された鋳造材に対して、溶体化熱処理として1553K×3時間の真空熱処理を施して、No.7~No.13の試料を作製した。(この溶体化熱処理が第1熱処理を兼ね、その後の炉冷が、L12相とD022相とが共存する温度への冷却に相当することも実施例1~5と同じである。)
(組織観察)
次に、作製されたNo.7~No.13の試料について、SEMによる組織観察を行った。図22~図25にその写真を示す。図22~図25は、No.7~No.13の試料のSEM写真であり、図22及び図23が低倍率写真(1000倍)であり、図24及び図25が同試料の母相(matrix)の高倍率写真(5000倍)である。図22~図25において、(a)がNo.7、(b)がNo.8、(c)がNo.9、(d)がNo.10、(e)がNo.11、(f)がNo.12、(g)がNo.13にそれぞれ対応している。
次に、作製されたNo.7~No.13の試料について、SEMによる組織観察を行った。図22~図25にその写真を示す。図22~図25は、No.7~No.13の試料のSEM写真であり、図22及び図23が低倍率写真(1000倍)であり、図24及び図25が同試料の母相(matrix)の高倍率写真(5000倍)である。図22~図25において、(a)がNo.7、(b)がNo.8、(c)がNo.9、(d)がNo.10、(e)がNo.11、(f)がNo.12、(g)がNo.13にそれぞれ対応している。
図22及び図23を参照すると、Cが0.1at.%以上添加されているNo.8~No.13の試料には、炭化物と考えられる第2相粒子が存在し、No.7の試料には、この第2相粒子が存在しないことがわかる。このことから、Nb添加量を一定にしてC添加量を増加させると、Cが0.1at.%以上のときに第2相粒子が形成されることがわかった。
また、図24及び図25を参照すると、Cの添加の有無及びその添加量によらず、2重複相組織が形成されていることがわかる。すなわち、各試料の母相に初析L12相と共析組織が形成されていることがわかる。この組織観察から、NbCの添加の場合(No.1~No.6の試料の場合)と同様に、NbとCが別々に金属間化合物に導入されても(Nb添加量を一定にしたままでC添加量を増加させたとしても)、2重複相組織が維持されることがわかった。
また、図24及び図25を参照すると、Cの添加の有無及びその添加量によらず、2重複相組織が形成されていることがわかる。すなわち、各試料の母相に初析L12相と共析組織が形成されていることがわかる。この組織観察から、NbCの添加の場合(No.1~No.6の試料の場合)と同様に、NbとCが別々に金属間化合物に導入されても(Nb添加量を一定にしたままでC添加量を増加させたとしても)、2重複相組織が維持されることがわかった。
(組成分析)
また、No.7及びNo.13の試料について、EPMAによる母相の組成分析を行った。表9にその結果を示す。表9は、No.7及びNo.13の試料の組成分析結果を示す表である。表8の数値はすべて原子%(at.%)である。
また、No.7及びNo.13の試料について、EPMAによる母相の組成分析を行った。表9にその結果を示す。表9は、No.7及びNo.13の試料の組成分析結果を示す表である。表8の数値はすべて原子%(at.%)である。
表9を参照すると、No.13の試料の母相は、No.7の試料の母相よりもVの濃度が低いものの、他の組成はほぼ同じであることがわかる。この結果から、ほぼ同じ濃度からなる母相が形成されていることはわかる。
なお、No.13の炭化物(第2相粒子)について、EPMAによる分析を行った結果、V及びNbが炭化物を形成している(V,Nb及びCが主成分の組織)ことがわかった(炭化物が細かく正確な分析ができなかったため、表に掲載せず)。
なお、No.13の炭化物(第2相粒子)について、EPMAによる分析を行った結果、V及びNbが炭化物を形成している(V,Nb及びCが主成分の組織)ことがわかった(炭化物が細かく正確な分析ができなかったため、表に掲載せず)。
(引張試験)
次に、No.7~No.13の試料について引張試験を行った。引張試験は、室温~1173Kの範囲で、ゲージ部が10×2×1mm3の試験片を用いて、真空中、ひずみ速度1.67×10-4s-1の条件で行った。その結果を図26~図29に示す。図26~図29は、No.7~No.13の試料の降伏強度(yield strength),引張強度(UTS,ultimate tensile strength)及び伸び(elongation)とC濃度との関係を示したグラフである。試験温度は、図26が室温(RT)、図27が873K、図28が1073K、図29が1173Kである。
次に、No.7~No.13の試料について引張試験を行った。引張試験は、室温~1173Kの範囲で、ゲージ部が10×2×1mm3の試験片を用いて、真空中、ひずみ速度1.67×10-4s-1の条件で行った。その結果を図26~図29に示す。図26~図29は、No.7~No.13の試料の降伏強度(yield strength),引張強度(UTS,ultimate tensile strength)及び伸び(elongation)とC濃度との関係を示したグラフである。試験温度は、図26が室温(RT)、図27が873K、図28が1073K、図29が1173Kである。
図26を参照すると、室温(RT)では、Cの添加量の増加とともに引張強度,伸びの特性値が上昇する傾向にあることがわかる。また、引張強度、降伏強度、伸びのいずれもCの添加量が0.1原子%でその値が上昇していることがわかる。特にCの添加による伸び特性の改善が顕著である。
また、図27を参照すると、873Kにおいても、Cの添加量の増加とともに伸びの特性値が上昇する傾向にあることがわかる。Cの添加量が0.1原子%でも効果があり、特に、Cの添加量が2.0原子%より多いときに、Cが添加されていない試料よりも顕著に特性が改善していることがわかる。
また、図28及び図29を参照すると、1073K及び1173Kにおいても同様の傾向があることがわかる。すなわち、1073K及び1173KにおいてもCの添加量の増加とともに伸びの特性値が上昇する傾向にあることがわかる。
以上のように、基本組成に対してCを添加することにより、室温から高温の広範な温度域で、試料の強度(引張強度)が強化され,かつ伸びも増大していることがわかる。
〔実施例12~16〕
さらに、実施例1~5の実験と同様の実験を、Ni:75at.%,Al:9at.%,V:13at.%,Nb:3at.%,TiC:0~5.0at.%,B:100wt.ppm(TiCの含有量は、Ni,Al,V,Nbの合計100原子%に対する量)で実施した。この実験はNbCではなく、TiCによりCを添加し、Nbは別々に添加した。その結果を以下に実施例12~16として説明する。
さらに、実施例1~5の実験と同様の実験を、Ni:75at.%,Al:9at.%,V:13at.%,Nb:3at.%,TiC:0~5.0at.%,B:100wt.ppm(TiCの含有量は、Ni,Al,V,Nbの合計100原子%に対する量)で実施した。この実験はNbCではなく、TiCによりCを添加し、Nbは別々に添加した。その結果を以下に実施例12~16として説明する。
比較例3及び実施例12~16の鋳造材は、表10のNo.14~19に示す割合のNi,Al,V,Nbの地金(それぞれ純度99.9重量%)及びB,TiCの粉体(粒径約1~3μm)をアーク溶解炉内の鋳型中で溶解、凝固することによって作製した。アーク溶解炉の雰囲気、電極及び鋳型は、実施例1~5と同様にした。なお、表10の数値の記載方法は表4と同じである。表4に対する表5の場合と同様に、Ni,Al,V,Nb,Ti及びCの合計(Bを除く)を100原子%としたときの各元素の原子%を表11に示す。
ここで、表10及び表11において、TiCが添加されていない、No.14の試料が比較例3であり(基本合金ともいう)、TiCが添加されている、No.15~19の試料が本発明の実施例12~16である。
(鋳造材の外観観察)
作製された試料について、その断面の光学顕微鏡観察を行った。図30にNo.14,No.15,No.17及びNo.19の断面写真を示す。図30において(a),(b),(c),(d)の各写真は、No.14,No.15,No.17,No.19の試料の各写真にそれぞれ対応している。
図30を参照すると、No.15から結晶粒が微細化していることがわかる。
また、No.14~No.19の外観観察から、TiCの添加量が0.2at.%から0.5at.%の間で、結晶粒の微細化が進むことが判明した。これは、NbCの添加の実験(No.1~No.6)と同様の結果であった。
作製された試料について、その断面の光学顕微鏡観察を行った。図30にNo.14,No.15,No.17及びNo.19の断面写真を示す。図30において(a),(b),(c),(d)の各写真は、No.14,No.15,No.17,No.19の試料の各写真にそれぞれ対応している。
図30を参照すると、No.15から結晶粒が微細化していることがわかる。
また、No.14~No.19の外観観察から、TiCの添加量が0.2at.%から0.5at.%の間で、結晶粒の微細化が進むことが判明した。これは、NbCの添加の実験(No.1~No.6)と同様の結果であった。
次に、作製された試料に対して、溶体化熱処理として1553K×3時間の真空熱処理を施した。
なお、この実験において、上記溶体化熱処理が第1熱処理を兼ねており、その後の炉冷が、L12相とD022相とが共存する温度への冷却に相当する。
なお、この実験において、上記溶体化熱処理が第1熱処理を兼ねており、その後の炉冷が、L12相とD022相とが共存する温度への冷却に相当する。
(組織観察)
次に、熱処理された試料について、SEMによる組織観察を行った。図31及び図32にその写真を示す。図31は、No.14,No.15,No.17及びNo.19の試料のSEM写真(1000倍)であり、図32は同試料の母相(matrix)を高倍率で観察したときのSEM写真(5000倍)である。また、図31及び図32において、(a),(b),(c),(d)の各写真は、No.14,No.15,No.17及びNo.19の各試料にそれぞれ対応している。
図31を参照すると、TiCが添加された試料のうちNo.17及びNo.19には、炭化物と考えられる第2相粒子が存在し(図31における矢印の部分)、No.14及びNo.15にはこの第2相粒子が存在しないことがわかる。
図32を参照すると、TiCの添加の有無にかかわらず、各試料の母相に2重複相組織が形成されていることがわかる。また、各試料の母相に初析L12相と共析組織が形成されていることがわかる。これらのことから、TiCの添加によるCが金属間化合物に導入されても、2重複相組織が維持されることがわかった。これはNbCの添加におけるCの場合と同様であった。
次に、熱処理された試料について、SEMによる組織観察を行った。図31及び図32にその写真を示す。図31は、No.14,No.15,No.17及びNo.19の試料のSEM写真(1000倍)であり、図32は同試料の母相(matrix)を高倍率で観察したときのSEM写真(5000倍)である。また、図31及び図32において、(a),(b),(c),(d)の各写真は、No.14,No.15,No.17及びNo.19の各試料にそれぞれ対応している。
図31を参照すると、TiCが添加された試料のうちNo.17及びNo.19には、炭化物と考えられる第2相粒子が存在し(図31における矢印の部分)、No.14及びNo.15にはこの第2相粒子が存在しないことがわかる。
図32を参照すると、TiCの添加の有無にかかわらず、各試料の母相に2重複相組織が形成されていることがわかる。また、各試料の母相に初析L12相と共析組織が形成されていることがわかる。これらのことから、TiCの添加によるCが金属間化合物に導入されても、2重複相組織が維持されることがわかった。これはNbCの添加におけるCの場合と同様であった。
(組成分析)
また、熱処理が施された試料について、EPMAによる母相と炭化物(第2相粒子)の組成分析を行った。表12及び表13にその結果を示す。表12は、No.14の試料における母相(matrix)の組成分析結果を示す表であり、表13は、No.19の試料における母相(matrix)及び炭化物(第2相粒子:表では「Dispersion」と記載)の組成分析結果を示す表である。No.14の試料は、炭化物(第2相粒子)が観察されたNo.19の試料と組成を比較するために示す。なお,表12と表13中の数値はすべて原子%(at.%)である。
また、熱処理が施された試料について、EPMAによる母相と炭化物(第2相粒子)の組成分析を行った。表12及び表13にその結果を示す。表12は、No.14の試料における母相(matrix)の組成分析結果を示す表であり、表13は、No.19の試料における母相(matrix)及び炭化物(第2相粒子:表では「Dispersion」と記載)の組成分析結果を示す表である。No.14の試料は、炭化物(第2相粒子)が観察されたNo.19の試料と組成を比較するために示す。なお,表12と表13中の数値はすべて原子%(at.%)である。
表12及び表13を参照すると、No.19の試料の母相は、No.14の試料の母相よりもV,Nbの濃度が低く、Ti及びCの濃度が高いことがわかる。また、No.19の試料の炭化物(第2相粒子)は、Ti及びCのほか、V,Nbの濃度が高いことがわかる。さらに、No.19の試料は、母相及び炭化物ともに、Tiの濃度とCの濃度との比が1対1ではないことがわかる。以上から、添加されたTiCは、溶出して新たな組織を形成していることが理解できる。また、TiCを添加することにより、Ti及びCが母相に、V及びNbが炭化物(第2相粒子)にそれぞれ分配され、固溶したことが理解できる。Ti及びCの母相への固溶は、その量が異なるので、TiC以外に、Ti及びCを別々に試料に導入しても2重複相組織を形成できることが推察できる。これはNbとCを別々に試料に導入しても2重複相組織を形成できることを示すものであり、NbCの添加の実験(No.1~No.6)と同様の結果であった。
(相同定)
次に、熱処理された試料について、金属組織の相を同定するためX線測定を行った。図33~図36にその結果を示す。図33~図36は、No.14の試料及びNo.16の試料,No.17の試料,No.19の試料のX線回折プロファイルである。図の中の印は、2重複相組織を構成する材料であるNi3Al(L12相),Ni3V(D022相)及びTiCのピーク位置を示している。これらのピーク位置は、おのおの、丸印、三角印、四角印で示している。
図33~図36に示されるように、No.16,No.17,No.19において、TiCによるピークが観察された。No.14及びNo.16,No.17,No.19のいずれの試料においても、Ni3Al(L12相)及びNi3V(D022相)によるピークが観察された。以上から、TiCの添加の有無によらず、すべての試料で、TiCのピークを除いて2重複相組織の構成相であるNi3Al(L12相)及びNi3V(D022相)以外の相は形成されていないことがわかった。また、上記組織で観察された炭化物(第2相粒子)がTiCであることがわかった。
次に、熱処理された試料について、金属組織の相を同定するためX線測定を行った。図33~図36にその結果を示す。図33~図36は、No.14の試料及びNo.16の試料,No.17の試料,No.19の試料のX線回折プロファイルである。図の中の印は、2重複相組織を構成する材料であるNi3Al(L12相),Ni3V(D022相)及びTiCのピーク位置を示している。これらのピーク位置は、おのおの、丸印、三角印、四角印で示している。
図33~図36に示されるように、No.16,No.17,No.19において、TiCによるピークが観察された。No.14及びNo.16,No.17,No.19のいずれの試料においても、Ni3Al(L12相)及びNi3V(D022相)によるピークが観察された。以上から、TiCの添加の有無によらず、すべての試料で、TiCのピークを除いて2重複相組織の構成相であるNi3Al(L12相)及びNi3V(D022相)以外の相は形成されていないことがわかった。また、上記組織で観察された炭化物(第2相粒子)がTiCであることがわかった。
(ビッカース硬さ試験)
次に、No.14~No.19の試料について、ビッカース硬さ試験を行った。ビッカース硬さ試験は、室温において各試料に正4角錐のダイヤモンド製圧子を押し込むことによって行った。その際の荷重は300gを主として用い、保持時間は20秒とした。
図37にその結果を示す。図37は、TiCの添加量と室温ビッカース硬さとの関係を示すグラフである。
図37を参照すると、TiCが添加されていないときが最も硬く(約550Hv)、TiCの添加量が増加するに従いその硬さも減少することがわかる。一般に金属は不純物が含まれるとその硬さを増すが、No.15~No.19の試料では、TiCが添加されているにもかかわらず、ビッカース硬さの値が減少していることがわかる。
次に、No.14~No.19の試料について、ビッカース硬さ試験を行った。ビッカース硬さ試験は、室温において各試料に正4角錐のダイヤモンド製圧子を押し込むことによって行った。その際の荷重は300gを主として用い、保持時間は20秒とした。
図37にその結果を示す。図37は、TiCの添加量と室温ビッカース硬さとの関係を示すグラフである。
図37を参照すると、TiCが添加されていないときが最も硬く(約550Hv)、TiCの添加量が増加するに従いその硬さも減少することがわかる。一般に金属は不純物が含まれるとその硬さを増すが、No.15~No.19の試料では、TiCが添加されているにもかかわらず、ビッカース硬さの値が減少していることがわかる。
(引張試験)
次に、No.14~No.19の試料について、引張試験を行った。引張試験は、室温~1173Kの範囲で、ゲージ部が10×2×1mm3の試験片を用いて、真空中、ひずみ速度1.67×10-4s-1の条件で行った。その結果を図38~図43に示す。図38~図43は、No.14~No.19の試料の降伏強度,引張強度及び伸びと温度との関係を示したグラフである。
図38~図43を参照すると、TiCが添加されていない試料(No.14)が、約1073Kまで強度の逆温度依存性を示すことがわかる(図38)。つまり、温度の上昇とともに引張強度の値が上昇していることがわかる。また、これと同様にTiCが添加されている試料(No.15~No.19)も873K又は1173Kまで強度の逆温度依存性を示すことがわかる(図39~図43)。さらに、TiCの添加の有無にかかわらず、室温から高温において測定したすべての温度領域で0.65%~5.3%の伸びを示すことがわかる。NbCの添加の実験(No.1~No.6)では、0.3~4.7%の伸びであったので、同様の傾向を示すことがわかる。
次に、No.14~No.19の試料について、引張試験を行った。引張試験は、室温~1173Kの範囲で、ゲージ部が10×2×1mm3の試験片を用いて、真空中、ひずみ速度1.67×10-4s-1の条件で行った。その結果を図38~図43に示す。図38~図43は、No.14~No.19の試料の降伏強度,引張強度及び伸びと温度との関係を示したグラフである。
図38~図43を参照すると、TiCが添加されていない試料(No.14)が、約1073Kまで強度の逆温度依存性を示すことがわかる(図38)。つまり、温度の上昇とともに引張強度の値が上昇していることがわかる。また、これと同様にTiCが添加されている試料(No.15~No.19)も873K又は1173Kまで強度の逆温度依存性を示すことがわかる(図39~図43)。さらに、TiCの添加の有無にかかわらず、室温から高温において測定したすべての温度領域で0.65%~5.3%の伸びを示すことがわかる。NbCの添加の実験(No.1~No.6)では、0.3~4.7%の伸びであったので、同様の傾向を示すことがわかる。
次に、図44~図47に、降伏強度,引張強度及び伸びとTiCの添加量との関係を示す。図44~図47は、No.14~No.19の試料の上記引張試験の結果を解析したグラフである。
図44を参照すると、室温(RT)では、TiCの添加量の増加とともに降伏強度,引張強度,伸びのすべての特性値が上昇しTiCの添加量が1原子%付近で最大となることがわかる。特に、引張強度は1原子%付近で1.3GPaを超えており、TiCの添加量が0.2原子%以上2.5原子%未満で優れた強度特性を示している。また、TiCの添加量が1原子%を超えると、TiCの添加量とともに降伏強度,引張強度及び伸びの値が減少していく傾向があるものの、TiCが添加されていない試料(No.14)と同程度かそれ以上の特性を示すことがわかる。
また、図45を参照すると、室温と同様に873KにおいてもTiCの添加量の増加とともに降伏強度,引張強度,伸びのすべての値が上昇しTiCの添加量が1原子%付近で最大となることがわかる。TiCの添加量が1原子%を超えると、各特性の値はやや減少するか、又はほとんど一定の値を示すことがわかる。特に、TiCの添加量が0.2%原子以上2.5原子%未満で優れた強度特性を示している。
さらに、図46及び図47を参照すると、TiCの添加量の増加とともに伸びの値が上昇しTiCの添加量が1原子%付近で最大となるか又はほとんど一定の値をとることがわかる。
以上のように、TiCを添加することにより、室温で、試料の強度(降伏強度,引張強度)が強化されていることがわかる。特に、TiCの添加量が2.5原子%未満のときに顕著であることがわかる。また、TiCを添加することにより、室温のみならず高温においても延性(伸び)が向上していることがわかる。特に、TiCの添加量が1原子%となるまで、その添加に応じて延性が向上している。
図44を参照すると、室温(RT)では、TiCの添加量の増加とともに降伏強度,引張強度,伸びのすべての特性値が上昇しTiCの添加量が1原子%付近で最大となることがわかる。特に、引張強度は1原子%付近で1.3GPaを超えており、TiCの添加量が0.2原子%以上2.5原子%未満で優れた強度特性を示している。また、TiCの添加量が1原子%を超えると、TiCの添加量とともに降伏強度,引張強度及び伸びの値が減少していく傾向があるものの、TiCが添加されていない試料(No.14)と同程度かそれ以上の特性を示すことがわかる。
また、図45を参照すると、室温と同様に873KにおいてもTiCの添加量の増加とともに降伏強度,引張強度,伸びのすべての値が上昇しTiCの添加量が1原子%付近で最大となることがわかる。TiCの添加量が1原子%を超えると、各特性の値はやや減少するか、又はほとんど一定の値を示すことがわかる。特に、TiCの添加量が0.2%原子以上2.5原子%未満で優れた強度特性を示している。
さらに、図46及び図47を参照すると、TiCの添加量の増加とともに伸びの値が上昇しTiCの添加量が1原子%付近で最大となるか又はほとんど一定の値をとることがわかる。
以上のように、TiCを添加することにより、室温で、試料の強度(降伏強度,引張強度)が強化されていることがわかる。特に、TiCの添加量が2.5原子%未満のときに顕著であることがわかる。また、TiCを添加することにより、室温のみならず高温においても延性(伸び)が向上していることがわかる。特に、TiCの添加量が1原子%となるまで、その添加に応じて延性が向上している。
これは、TiCから分解したCが母相に固溶し、このため、固溶強化が生じたものと考えられる。また、この固溶強化は、低温領域で効果的に発現したものと考えられる。従って、TiCの添加による強度の向上は室温~873Kで著しい。
さらに、Cが固溶する量には限度(固溶限)があるため、その限度まではTiCの添加とともに強度が向上し、その限度を超えると強度の向上が止まるものと考えられる。このため、TiCの添加量が1%付近で強度は最大となると考えられる。
さらに、Cが固溶する量には限度(固溶限)があるため、その限度まではTiCの添加とともに強度が向上し、その限度を超えると強度の向上が止まるものと考えられる。このため、TiCの添加量が1%付近で強度は最大となると考えられる。
次に、引張試験後の各試料について破面観察を行った。図48及び図49に各試料の破面を示す。図48は、室温(RT)、1073K,1173Kの各温度における引張試験後のNo.14及びNo.17試料の破面のSEM写真(低倍率写真)である。また、図49は、図48における各試料の破面を拡大して表示したSEM写真(高倍率写真)である。これらの図面において、(a),(b),(c)がNo.14の試料、(d),(e),(f)がNo.17の試料、の破面を示している。
図48及び図49に示されるように、No.14の試料では、室温で擬へき開状破壊の様相を呈し、温度上昇とともに粒界破壊の傾向が大きくなっている。1173Kでは完全に粒界破壊をしていた(図48及び図49の(a),(b),(c))。
一方、No.17の試料では、室温から高温(1173K)において延性的な粒内破壊が見られた。また炭化物(第2相粒子)周辺では、ディンプル破壊の様式が見られた(図48及び図49の(d),(e),(f))。なお、炭化物の添加量が多くなると炭化物が粗大化し、炭化物が亀裂の発生原因になっている様子も観察された。
図48及び図49に示されるように、No.14の試料では、室温で擬へき開状破壊の様相を呈し、温度上昇とともに粒界破壊の傾向が大きくなっている。1173Kでは完全に粒界破壊をしていた(図48及び図49の(a),(b),(c))。
一方、No.17の試料では、室温から高温(1173K)において延性的な粒内破壊が見られた。また炭化物(第2相粒子)周辺では、ディンプル破壊の様式が見られた(図48及び図49の(d),(e),(f))。なお、炭化物の添加量が多くなると炭化物が粗大化し、炭化物が亀裂の発生原因になっている様子も観察された。
以上から、TiCを添加することにより、粒界破壊が抑制されて粒内破壊が起こるようになると考えられる。このため、延性が向上すると考えられる。また、炭化物の観察から、炭素の添加量が適切であれば、炭素が延性に寄与することが理解できる。
このように、CをTiCという形で、Nbと別に添加する実験を実施したところ、No.2~No.6(実施例1~5)の場合と同様に、引張強度及び延性特性の向上が確認できた(NbCの添加と同様に、特にTiCの添加量が2.5原子%未満のときに顕著であった)。このことからも、引張強度及び延性特性の向上にCが寄与していることが確認できた。
Claims (18)
- Al:5原子%より多く13原子%以下,
V:9.5原子%以上17.5原子%未満,
Nb:0原子%より多く12.5原子%以下,
C:0原子%より多く12.5原子%以下,
残部は、Niからなり、
初析L12相と(L12+D022)共析組織との2重複相組織を有するNi基2重複相金属間化合物合金。 - Nbの含有量が2.0原子%以上7.3原子%以下である請求項1に記載のNi基2重複相金属間化合物合金。
- Nbの含有量が3.0原子%より多く7.3原子%以下であり、Cの含有量が0原子%より多く4.6原子%以下である請求項1又は2に記載のNi基2重複相金属間化合物合金。
- Nbの含有量が3.1原子%以上5.3原子%以下であり、Cの含有量が0.2原子%以上2.4原子%以下である請求項1~3のいずれか1つに記載のNi基2重複相金属間化合物合金。
- 前記Al,V及びNiの合金材料に、NbCを添加して形成される請求項1~4のいずれか1つに記載のNi基2重複相金属間化合物合金。
- 前記Nb及びCがNbCとして含まれる請求項1~5のいずれか1つに記載のNi基2重複相金属間化合物合金。
- 前記2重複相組織と異なる組織を有し、この組織がNbCを含む組織である請求項5に記載のNi基2重複相金属間化合物合金。
- Bをさらに含み、Bの含有量が0重量ppmより多く1000重量ppm以下である請求項1~7のいずれか1つに記載のNi基2重複相金属間化合物合金。
- Bの含有量が50重量ppm以上1000重量ppm以下である請求項8に記載のNi基2重複相金属間化合物合金。
- Alの含有量が6原子%以上10原子%以下であり、
Vの含有量が12.0原子%以上16.5原子%未満,
である請求項1~9のいずれか1つに記載のNi基2重複相金属間化合物合金。 - Al:5原子%より多く13原子%以下,V:9.5原子%以上17.5原子%未満,Nb:0原子%より多く12.5原子%以下,C:0原子%より多く12.5原子%以下,残部は、Niからなる溶湯を徐冷することにより、初析L12相とA1相とが共存する組織を形成する工程と、
初析L12相とA1相とが共存する組織を有する組織を冷却することにより、A1相をL12相とD022相とに分解させる工程と、
を備えるNi基2重複相金属間化合物合金の製造方法。 - Al:5原子%より多く13原子%以下,V:9.5原子%以上17.5原子%未満,Nb:0原子%より多く12.5原子%以下,C:0原子%より多く12.5原子%以下,残部は、Niからなる溶湯で鋳塊を作製する工程と、
前記鋳塊に対して、初析L12相とA1相とが共存する温度で第1熱処理を行う工程と、
第1熱処理後、冷却することによりA1相をL12相とD022相とに分解させる工程と、
を備えるNi基2重複相金属間化合物合金の製造方法。 - Niを主成分とし、かつAl:5原子%より多く13原子%以下,V:9.5原子%以上17.5原子%未満,NbC:0原子%より多く12.5原子%以下,の合金材料からなる溶湯を徐冷することにより、初析L12相とA1相とが共存する組織を形成する工程と、
初析L12相とA1相とが共存する組織を有する組織を冷却することにより、A1相をL12相とD022相とに分解させる工程と、
を備えるNi基2重複相金属間化合物合金の製造方法。 - Niを主成分とし、かつAl:5原子%より多く13原子%以下,V:9.5原子%以上17.5原子%未満,NbC:0原子%より多く12.5原子%以下,の合金材料からなる溶湯で鋳塊を作製する工程と、
前記鋳塊に対して、初析L12相とA1相とが共存する温度で第1熱処理を行う工程と、
第1熱処理後、冷却することによりA1相をL12相とD022相とに分解させる工程と、
を備えるNi基2重複相金属間化合物合金の製造方法。 - NbCの含有量は、0原子%より多く4.6原子%以下である請求項13又は14に記載のNi基2重複相金属間化合物合金の製造方法。
- さらに、均質化熱処理又は溶体化熱処理を備える請求項11~15のいずれか1つに記載のNi基2重複相金属間化合物合金の製造方法。
- 前記均質化熱処理又は溶体化熱処理は、1503K以上1603K以下の温度の熱処理である請求項16に記載のNi基2重複相金属間化合物合金の製造方法。
- 請求項13又は14に記載の製造方法によって得られる、2重複相組織とNbCを含む組織とで構成されるNi基2重複相金属間化合物合金。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11759602.3A EP2554696A4 (en) | 2010-03-26 | 2011-03-25 | Ni-BASE DUAL TWO-PHASE INTERMETALLIC COMPOUND ALLOY CONTAINING Nb AND C, AND MANUFACTURING METHOD FOR SAME |
US13/636,579 US9249488B2 (en) | 2010-03-26 | 2011-03-25 | Ni-base dual multi-phase intermetallic compound alloy containing Nb and C, and manufacturing method for same |
JP2012507107A JP5733729B2 (ja) | 2010-03-26 | 2011-03-25 | Nb及びCを含むNi基2重複相金属間化合物合金及びその製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010073764 | 2010-03-26 | ||
JP2010-073764 | 2010-03-26 | ||
JP2010-073766 | 2010-03-26 | ||
JP2010073766 | 2010-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011118798A1 true WO2011118798A1 (ja) | 2011-09-29 |
Family
ID=44673338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/057418 WO2011118798A1 (ja) | 2010-03-26 | 2011-03-25 | Nb及びCを含むNi基2重複相金属間化合物合金及びその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9249488B2 (ja) |
EP (1) | EP2554696A4 (ja) |
JP (1) | JP5733729B2 (ja) |
WO (1) | WO2011118798A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110117738A (zh) * | 2019-05-09 | 2019-08-13 | 西北工业大学 | 能够析出DO22型超点阵相的Ni-Cr-W-Nb高温合金 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015152205A1 (ja) * | 2014-03-31 | 2015-10-08 | テンソル・コンサルティング株式会社 | 発電システム分析装置および方法 |
CN111850372B (zh) * | 2020-06-23 | 2021-12-07 | 湘潭大学 | 一系列FeCoCrNiW(VC)X高熵合金的制备及其沉淀强化工艺 |
GB202011863D0 (en) | 2020-07-30 | 2020-09-16 | Univ Brunel | Method for carbide dispersion strengthened high performance metallic materials |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006101212A1 (ja) | 2005-03-25 | 2006-09-28 | Osaka Prefecture University Public Corporation | 2重複相組織を有するNi3Al基金属間化合物及びその製造方法,耐熱構造材 |
WO2007086185A1 (ja) | 2006-01-30 | 2007-08-02 | Osaka Prefecture University Public Corporation | 2重複相組織を有するNi3Al基金属間化合物及びその製造方法,耐熱構造材 |
WO2008041592A1 (en) | 2006-09-26 | 2008-04-10 | Ihi Corporation | Ni-based compound superalloy having excellent oxidation resistance, process for production thereof, and heat-resistant structural material |
-
2011
- 2011-03-25 WO PCT/JP2011/057418 patent/WO2011118798A1/ja active Application Filing
- 2011-03-25 JP JP2012507107A patent/JP5733729B2/ja not_active Expired - Fee Related
- 2011-03-25 US US13/636,579 patent/US9249488B2/en not_active Expired - Fee Related
- 2011-03-25 EP EP11759602.3A patent/EP2554696A4/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006101212A1 (ja) | 2005-03-25 | 2006-09-28 | Osaka Prefecture University Public Corporation | 2重複相組織を有するNi3Al基金属間化合物及びその製造方法,耐熱構造材 |
WO2007086185A1 (ja) | 2006-01-30 | 2007-08-02 | Osaka Prefecture University Public Corporation | 2重複相組織を有するNi3Al基金属間化合物及びその製造方法,耐熱構造材 |
WO2008041592A1 (en) | 2006-09-26 | 2008-04-10 | Ihi Corporation | Ni-based compound superalloy having excellent oxidation resistance, process for production thereof, and heat-resistant structural material |
Non-Patent Citations (1)
Title |
---|
See also references of EP2554696A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110117738A (zh) * | 2019-05-09 | 2019-08-13 | 西北工业大学 | 能够析出DO22型超点阵相的Ni-Cr-W-Nb高温合金 |
Also Published As
Publication number | Publication date |
---|---|
EP2554696A4 (en) | 2017-03-29 |
US20130008572A1 (en) | 2013-01-10 |
JPWO2011118798A1 (ja) | 2013-07-04 |
EP2554696A1 (en) | 2013-02-06 |
US9249488B2 (en) | 2016-02-02 |
JP5733729B2 (ja) | 2015-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200149144A1 (en) | High Entropy Alloy Having Composite Microstructure and Method of Manufacturing the Same | |
US11168385B2 (en) | High-entropy AlCrTiV alloys | |
Guo et al. | Effect of composing element on microstructure and mechanical properties in Mo–Nb–Hf–Zr–Ti multi-principle component alloys | |
JP7511546B2 (ja) | ニッケル基超合金 | |
JP5146935B2 (ja) | VおよびNbを含有し,かつ,二重複相組織を有するNi3Al基金属間化合物,およびその製造方法,耐熱構造材 | |
US11986904B2 (en) | Aluminum-cerium-nickel alloys for additive manufacturing | |
JP5127144B2 (ja) | 2重複相組織からなるVおよびTiを含有するNi3Al基金属間化合物及びその製造方法,耐熱構造材 | |
JP2009520109A (ja) | 改善された高温特性を有するドープされたイリジウム | |
JP5733729B2 (ja) | Nb及びCを含むNi基2重複相金属間化合物合金及びその製造方法 | |
JP5010841B2 (ja) | Ni3Si−Ni3Ti−Ni3Nb系複相金属間化合物,その製造方法,高温構造材料 | |
Peng et al. | Effect of Mo on the high temperature oxidation behavior of Al19Fe20-xCo20-xNi41Mo2x high entropy alloys | |
WO2008041592A1 (en) | Ni-based compound superalloy having excellent oxidation resistance, process for production thereof, and heat-resistant structural material | |
JP5733728B2 (ja) | Ti及びCを含むNi基2重複相金属間化合物合金及びその製造方法 | |
Kaserer et al. | Molybdenum alloy Mo-Ti-Zr-C adapted for laser powder bed fusion with refined isotropic microstructure and excellent high temperature strength | |
JP5162492B2 (ja) | 高い硬度を有するNi基金属間化合物合金 | |
JP5757507B2 (ja) | Reが添加されたNi基2重複相金属間化合物合金及びその製造方法 | |
EP2487272A1 (en) | Ni3(si, ti) intermetallic compound to which ta is added | |
JP6861363B2 (ja) | Ni基金属間化合物合金及びその製造方法 | |
WO2022071378A1 (ja) | 合金材料、該合金材料を用いた合金製造物、および該合金製造物を有する機械装置 | |
JP5565776B2 (ja) | Wが添加されたNi3(Si,Ti)系金属間化合物及びその製造方法 | |
Hamada et al. | Microstructure and mechanical properties of dual two-phase Ni3Al–Ni3V intermetallic alloys charged with carbon | |
JP6533051B2 (ja) | Ni基金属間化合物合金及びその製造方法 | |
JP2024534049A (ja) | 溶体化焼鈍調質における改善された成形性を有する非常に高強度の銅-チタン合金 | |
Gu et al. | Microstructures and fracture behaviors of B-free and B-doped Ir3Nb (L12) intermetallic compounds | |
Eckert et al. | Titanium-Based Alloys: Nanostructured Composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11759602 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012507107 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13636579 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011759602 Country of ref document: EP |