WO2015152205A1 - 発電システム分析装置および方法 - Google Patents

発電システム分析装置および方法 Download PDF

Info

Publication number
WO2015152205A1
WO2015152205A1 PCT/JP2015/060059 JP2015060059W WO2015152205A1 WO 2015152205 A1 WO2015152205 A1 WO 2015152205A1 JP 2015060059 W JP2015060059 W JP 2015060059W WO 2015152205 A1 WO2015152205 A1 WO 2015152205A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
generation system
state determination
value
power
Prior art date
Application number
PCT/JP2015/060059
Other languages
English (en)
French (fr)
Inventor
浩司 藤本
一友 柴原
塩田 剛史
稲冨 裕司
Original Assignee
テンソル・コンサルティング株式会社
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テンソル・コンサルティング株式会社, 三井化学株式会社 filed Critical テンソル・コンサルティング株式会社
Priority to CN201580017329.1A priority Critical patent/CN106233555B/zh
Priority to KR1020167029761A priority patent/KR101808978B1/ko
Priority to EP15772628.2A priority patent/EP3128635A4/en
Priority to JP2016511910A priority patent/JP6088706B2/ja
Priority to US15/300,861 priority patent/US10418935B2/en
Publication of WO2015152205A1 publication Critical patent/WO2015152205A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the present invention relates to a technology for analyzing the state of a power generation system.
  • Patent Document 1 discloses a technique for facilitating maintenance and inspection of a solar power generation apparatus. According to this, the output level of each of the plurality of units constituting the solar panel is detected by actual measurement, and the unit in a state requiring maintenance inspection is compared with the level value calculated by the calculation formula and the actual measured value. To detect.
  • the level value at each measurement point is calculated by simply combining the level values for each unit calculated in Patent Document 1, and the level value is compared with the actual measurement value at the measurement point.
  • the effect of variations in the performance of individual solar panels on the change due to the problem is large, and it may not be possible to detect a failure.
  • An object of the present invention is to provide a technology that enables detection of a state change due to aging or failure of a power generation system whose power generation output fluctuates even in a normal state.
  • a power generation system analysis device is a power generation system analysis device that analyzes the state of a power generation system, and a plurality of model generation power generations that are power generation outputs for model construction at predetermined measurement points of the power generation system.
  • the plurality of models calculated using the representative value of the power generation output at the measurement point and the power generation output value for model construction which is calculated from a pseudo system model generated by the nonparametric method using the output value
  • Range information management means for managing a state-determining power generation output range corresponding to a range that the power generation output at the measurement point should be included with a probability of a predetermined probability or more, determined based on the standard deviation of the construction power generation output value;
  • 1 is a block diagram of a power generation monitoring system according to a first embodiment. It is a block diagram of analysis server 11 by a 1st embodiment. It is a figure which shows typically the pseudo
  • 5 is a flowchart showing an operation example of the power conditioner 12; It is a flowchart which shows the process example of the range information management part 22 of the analysis server 11 by 1st Embodiment. It is a flowchart which shows the process example of the state determination part 23 of the analysis server 11 by 1st Embodiment.
  • FIG. 1 is a block diagram of a power generation monitoring system according to a first embodiment.
  • the power generation monitoring system is a system that monitors a state such as detection of a failure or deterioration of the power generation system 14, and includes an analysis server 11, a power conditioner 12, and a sensor 13.
  • the power generation system 14 and the sensor 13 are connected to a power conditioner 12.
  • the power conditioner 12 and the analysis server 11 are both connected to the network 15, and can perform data communication with each other.
  • the network 15 is a wide area network such as the Internet.
  • the power generation system 14 is a device that generates power using renewable energy, and is a solar power generation system in which a plurality of solar panels (not shown) are connected as an example in the first embodiment.
  • the analysis server 11 is a device that collects information of the power generation output of the power generation system 14 measured by the power conditioner 12 and information of a sensor value by the sensor 13 and determines the state of the power generation system 14 based on the information.
  • the analysis server 11 may be provided at a distant place away from the power generation system 14, and a plurality of power generation systems 14 may be monitored by one analysis server 11.
  • the power conditioner 12 is a device that converts generated power, which is a generated output of the power generation system 14, from direct current to alternating current.
  • the power conditioner 12 of the first embodiment has a function of measuring the power generation output of the power generation system 14 and notifying the analysis server 11 of the measured power generation output.
  • the sensor 13 is a variety of sensors that measure the power generation system 14 and the surrounding environment. In the first embodiment, this includes a sensor that measures the amount of solar radiation and outputs the measured sensor value, and a sensor that measures the back surface temperature of the solar panel and outputs it as a sensor value.
  • the back surface temperature is a temperature measured by a temperature sensor provided on the back surface of the solar panel near the center among the plurality of solar panels constituting the power generation system 14.
  • the sensor value from the sensor 13 is transmitted by a wireless transmitter (Tx) 16 connected to the sensor 13 and received by the analysis server 11 via the network 15. In the analysis server 11, the time information is linked and recorded.
  • Tx wireless transmitter
  • the back surface temperature measured here is an example of the temperature information which affects the performance of a solar panel, and this invention is not limited to this.
  • the temperature inside the cell constituting the solar panel may be measured.
  • a solar panel may be provided to measure the temperature inside the cell, and the temperature inside the cell may be measured.
  • thermography may be used to measure the temperature of the solar panel.
  • FIG. 2 is a block diagram of the analysis server 11 according to the first embodiment.
  • the analysis server 11 includes a model management unit 21, a range information management unit 22, a state determination unit 23, and a measured value acquisition unit 24.
  • the range information management unit 22 determines the range of the power generation output (the power generation output range for state determination) to be included with a probability that the value of the power generation output at the measurement point of the power generation system 14 is greater than or equal to a predetermined probability. At that time, the range information management unit 22 determines the power generation output range for state determination based on the standard deviation of the plurality of model construction power generation output values.
  • the measurement point at which the power generation output of the power generation system 14 is measured is, for example, a point where a plurality of solar panels are connected in series to form a string, and a plurality of strings are further connected in parallel to measure a combined output.
  • this measurement point is an exemplification, and as another example, there may be a measurement point downstream of the power conditioner 12 to measure AC power.
  • the power generation output of each solar panel can not be measured, and the combined output of the entire power generation system 14 is measured at one measurement point.
  • the generated output of each of the plurality of strings may be measured. In that case, it becomes possible to monitor and analyze the power generation output in units of strings.
  • the power output of individual solar panels may be measured. In that case, it becomes possible to monitor and analyze the power generation output on a solar panel basis.
  • the power generation output value for model construction is, for example, an actual measurement value measured at the measurement point when the power generation system 14 is in the normal state, and a model (pseudo system model) in the normal state of the power generation system 14 can be constructed. It is assumed that a certain amount of data is accumulated. However, this is an example, and it is an unmeasured value such as a power generation output value obtained by artificially setting, a power generation output value obtained by simulation, or a power generation output value obtained by correcting the actual value of the power generation system 14 or another power generation system.
  • the data can be input to the analysis server 11 via the recording medium or the network 15.
  • the plurality of model generation power generation output values may be a mixture of actual measurement values and non-actual measurement values.
  • the standard deviation of the power generation output value for model construction is calculated using the representative value of the power generation output at the measurement point and the plurality of actual values for model construction.
  • the degree of freedom is a value depending on the number of power generation output values for model construction used for calculation, for example, the value of the number
  • the representative value of the power generation output at the measurement point is calculated in advance from a pseudo system model generated by the nonparametric method using the model construction power generation output value.
  • a calculation method may be considered in which input values such as the amount of solar radiation are divided into input value bands with a narrow width, and power generation output in each input value band is represented by a constant value (representative value).
  • the power generation output value for model construction is added and updated as needed, and the representative value, the standard deviation, and the power generation output range for state determination are newly calculated each time the state determination.
  • the power output range for state determination is determined based on the standard deviation of the plurality of power output values for model construction as described above, and includes, as an example, a representative value of the power output at the measurement point,
  • the predetermined width is a value calculated based on the standard deviation of the actual values for model construction. For example, as the predetermined width, a value obtained by multiplying the standard deviation by a predetermined coefficient can be used.
  • the power generation output range for state determination is a range of the power generation output that should be included with a probability that the value of the power generation output at the measurement point is equal to or higher than a predetermined reference probability value, and the probability is determined by the above coefficient. For example, if the actual value has a normal distribution, and the coefficient is 1.96, the reference probability is set to about 95%.
  • the power generation system 14 can be determined to be in a normal state if the measured value is included in the power output range for state determination with a probability higher than the reference probability value, and the probability that the measured value is included in the power output range for state determination However, if it is a state below the reference probability value, it means that the measured value has decreased or the variation of the measured value has increased, so it can be determined that the power generation system 14 is in an abnormal state.
  • the model management unit 21 generates and manages a pseudo system model in advance by the non-parametric method using a plurality of power generation output values for model construction.
  • the pseudo system model is used to calculate the representative value of the power generation output at the measurement point by the range information management unit 22 described above.
  • this pseudo system model may not necessarily be generated in the analysis server 11.
  • the pseudo system model generated in advance may be input to the analysis server 11 from the recording medium or via the network 15, and in that case, the model management unit 21 acquires and manages the information of the input pseudo system model.
  • a method of estimating a pseudo system model using a generalized additive model (GAM) as an example of the nonparametric method can be used.
  • GAM generalized additive model
  • the actual value acquisition unit 24 acquires the actual value of the power generation output measured at the measurement point. It is assumed that the power generation output value for model construction is previously measured and stored. On the other hand, the state monitoring of the power generation system 14 is started, and the actually measured value periodically measured to determine the state will be referred to as a power output value for state determination.
  • the state determination unit 23 compares the plurality of state determination power generation output values with the state determination power generation output range, and determines the state of the power generation system 14 based on the comparison result. As described above, if the power generation output value for state determination is included in the power generation output range for state determination with the probability equal to or higher than the reference probability value, the state determination unit 23 of the first embodiment It is determined that the power generation system 14 is in the normal state, and if the probability that the power output value for state determination is included in the power output range for state determination falls below the reference probability value, the power generation system 14 is determined to be abnormal. .
  • the power generation output range for state determination determined from the representative value calculated from the pseudo system model by the nonparametric method and the standard deviation of the power generation output value for model construction based thereon, and for multiple state determination Since the state of the power generation system 14 is determined by comparing it with the power generation output value, it is difficult to estimate the characteristics of the power generation output in advance even in the normal state, and the actual value of the power generation output shows variations. Also, it becomes possible to detect the state change.
  • the state determination unit 23 calculates the ratio of the number of state determination power generation output values included in the state determination power generation output range to the total number of state determination power generation output values, and uses the calculated ratio as a reference. Compare to a predetermined threshold. For example, the threshold value may be 95%, which is the same value as when the power output range for state determination is calculated. If the ratio is lower than the threshold, the state determination unit 23 determines that the power generation system 14 is in an abnormal state (for example, a deteriorated state). Since the ratio of the measured value with the representative value of the power generation output in the normal state is larger than that in the normal state, it can be determined that the power generation system 14 is in the abnormal state.
  • an abnormal state for example, a deteriorated state
  • the threshold value for the ratio of the number of power output values for state determination included in the power generation output range for state determination to the total number of power output values for state determination is also (95- ⁇ ( ⁇ is a margin))%. Good.
  • the pseudo system model in the first embodiment outputs generated power by using three parameters of the amount of solar radiation measured by the sensor 13 and the temperature of the solar panel, and the solar height at the point where the solar panel is installed It is a model which makes it possible to calculate the value of power generation output at the measurement point of the solar power generation system.
  • the solar altitude is an angle with respect to the horizon of the sun seen from the installation point of the solar panel, and can be calculated from the latitude, the longitude, and the date and time of the installation point of the solar panel.
  • FIG. 3 is a view schematically showing a pseudo system model according to the first embodiment. Referring to FIG. 3, as described above, the pseudo system model 31 receives the amount of solar radiation measured by the sensor, the temperature of the solar panel (back surface temperature) and the solar altitude, and calculates the power (generated power) at the measurement point. Output.
  • the example of using the power generation output range for state determination determined using all the model construction power generation output values is shown, but the present invention is not limited to this.
  • the model construction power generation output values only the model construction power generation output value measured when a predetermined condition is satisfied may be used.
  • the state determination unit 23 uses only the state determination generation output value measured when the same condition is satisfied among the state determination generation output values acquired by the actual value acquisition unit 24. It is good to determine the state of According to this, by narrowing down the power generation output value used for model construction and state determination under a predetermined condition, the failure of the power generation system 14 is detected using the stable measured value of the power generation output, so the accuracy of failure detection is improved. Do.
  • the state determination unit 23 may determine the state of the power generation system 14 using a power generation output value at a predetermined time before and after the timing at which the input fluctuation exceeds a predetermined threshold. According to this, the response of the output to the fluctuation of the input may change due to the state change of the power generation system 14 such as failure or deterioration. In that case, the state determination is performed using the generated output value before and after the input fluctuation. By doing this, it is possible to improve the accuracy of detecting a state change.
  • the state determination unit 23 represents a plurality of sensor values in time series by the measurement time, and calculates the variation (fluctuation) of the sensor value with respect to time, It is detected when the calculated value of fluctuation exceeds a threshold.
  • FIG. 4 is a flowchart showing an operation example of the power conditioner 12.
  • the power conditioner 12 waits for the predetermined measurement timing (step S11), and when the measurement timing comes, acquires the measured value of the power generation output of the power generation system 14 (step S12). Then, the power conditioner 12 notifies the analysis server 11 of the acquired actual measurement value of the power generation output (step S13).
  • the actual measurement value acquiring unit 24 receives the actual measurement value of the power generation output notified from the power conditioner 12, associates it with the time information, and stores it in the memory.
  • the measurement timing is not particularly limited, but may be, for example, fixed time intervals.
  • the actual measurement value measured when the power generation system 14 is in the normal state can be used as a model construction power generation output value.
  • FIG. 5 is a flowchart showing a process example of the range information management unit 22 of the analysis server 11 according to the first embodiment.
  • range information management unit 22 uses a plurality of model construction power generation output values and a pseudo system model managed by model management unit 21 to generate model construction power generation output values for respective input values.
  • a representative value is calculated (step S11).
  • the range information management unit 22 regards the representative value as an average value, and obtains the standard deviation of the model construction power generation output value (step S12).
  • the range information management unit 22 determines that the actually measured value has a predetermined probability (here, 95% (standard deviation in normal distribution ⁇ 1.96)) based on the standard deviation of the model generation power generation output value.
  • the width of the actual measurement value to be entered is calculated, and here, the width is treated as the power output range for state determination, and is recorded in the memory (step S13).
  • FIG. 6 is a flowchart showing a process example of the state determination unit 23 of the analysis server 11 according to the first embodiment.
  • the state determination unit 23 waits for the predetermined determination timing (step S31), and when the determination timing is reached, the plurality of state generation power generation output values stored in the memory by the measured value acquisition unit 24.
  • the power output value for past state determination measured between the current time and the time when going back a predetermined time from the current time, the sensor value (solar radiation amount and back surface temperature) linked to it, and the time information of acquisition time Is acquired (step S32).
  • the state determination unit 23 inputs the generation output value for state determination, the amount of solar radiation when the power generation output value is measured, the back surface temperature, and the solar altitude calculated from the acquisition time to the pseudo system model The absolute value of the difference between the representative value obtained by Furthermore, the state determination unit 23 sequentially determines whether the absolute value of the difference is larger than the value of the predetermined width held as the state generation power generation output range. At that time, the state determination unit 23 holds information of the installation point of the solar panel of the power generation system 14 in advance, and calculates the solar altitude based on the latitude and longitude of the installation point and the acquisition time.
  • the state judgment unit 23 determines the ratio of the power generation output value for state judgment that is smaller than the value of the width of the power generation output range for state judgment, ie The rate at which the power generation output value for determination falls within the power generation output range for state determination is calculated (step S33).
  • the state determination unit 23 determines whether the calculated ratio is equal to or higher than a reference probability value (here, (95- ⁇ )%) (step S34). If the value of the calculated ratio is equal to or higher than the reference probability value, it is determined that the power generation system 14 is in the normal state. On the other hand, if the calculated ratio value is equal to or less than the reference probability value, it is determined that the power generation system 14 is in an abnormal state.
  • a reference probability value here, (95- ⁇ )%
  • the ratio of the number of state determination power generation output values included in the state determination power generation range to the total number of state determination power generation output values is calculated, and the calculated ratio is used as a reference threshold value.
  • the state determination method of comparing was adopted. However, this is an example, and the present invention is not limited thereto.
  • the state determination unit 23 obtains a representative value of the plurality of acquired state determination power generation output values, and if the representative value is within the state determination power generation output range, the normal state, otherwise the abnormality It may be determined to be a state.
  • FIG. 7A is a scatter showing the relationship between the generated voltage value (horizontal axis) calculated by the pseudo system model having the amount of solar radiation, the back surface temperature and the solar altitude as input and the actual measurement value (vertical axis) measured by the experimental system.
  • FIG. 7B is a scatter diagram showing the relationship between the generated voltage value (horizontal axis) calculated by the pseudo system model having the amount of solar radiation and the back surface temperature as input and the actual measurement value (vertical axis) measured by the experimental system.
  • FIG. 7C is a scatter diagram showing the relationship between the generated voltage value (horizontal axis) calculated by the pseudo system model using the amount of solar radiation as input and the actual measurement value (vertical axis) measured by the experimental system.
  • FIGS. 7A to 7C are obtained by measuring the generated voltage instead of the generated power as an actual measurement value of the generated output by the experimental system in which the current is constant.
  • FIG. 8A is a view schematically showing a pseudo system model which receives the amount of solar radiation and the back surface temperature.
  • FIG. 8B is a view schematically showing a pseudo system model having the amount of solar radiation as an input.
  • FIGS. 7A to 7C shows a linear relationship between the generated voltage value calculated from the model and the actual measurement value. From this, it can be said that each pseudo system model can well simulate the actual power generation system 14 and calculate a representative value that is in good agreement with the actual measurement value. Therefore, any of the pseudo system models of FIGS. 3, 8A and 8B can be applied to the present invention.
  • the variation is suppressed when the amount of solar radiation and the back surface temperature shown in FIG. 7B are input. Further, as compared with the case where the solar radiation amount and the back surface temperature are input as shown in FIG. 7B, the variation is further suppressed when the solar radiation amount, the back surface temperature and the solar altitude shown in FIG. 7A are input. This is because the solar radiation amount and the back surface temperature are more input than the case where only the solar radiation amount is input, and the solar radiation amount and the back surface temperature and the sun height are further compared with the case where the solar radiation amount and the back surface temperature are input.
  • the input means that the power generation system 14 can be simulated with higher accuracy. What pseudo system model should be applied may be determined in consideration of the required accuracy and the complexity of the operation.
  • FIGS. 7A to 7C show the linearity between the generated voltage value (horizontal axis) calculated by the pseudo system model and the measured value (vertical axis) measured by the experimental system, and the relative values of FIGS. It is for showing a relationship, and the data acquired without limiting by the weather by using a solar panel of a crystal system alone, a load resistance of 5 ⁇ , are shown.
  • the range information management unit 22 holds the width of the generated power corresponding to the difference between the actual measurement value and the representative value as the power output range for state determination, and the state determination unit 23 determines the state thereof The power generation output range for use was compared with the absolute value of the difference between the measured value and the representative value.
  • the generated power of the measured value is also shifted to either the high side or the low side.
  • the present invention is not limited to this.
  • the power generation system in the case where the ratio of the power output value for state determination to be ((representative value)-(power output value for state determination)) ⁇ ⁇ (power output range (width) for state determination) is a predetermined value or more 14 may be determined as an abnormal state. This focuses on the fact that when the power generation system 14 is in an abnormal state, the generated power is reduced, and it is determined that the generated power is at the low side as the abnormal state.
  • two power generation output ranges for first judgment for failure judgment and second power judgment output for state judgment for deterioration judgment are defined as the power output area for judgment of condition, and failure and deterioration are determined. Each of them may be detected. In that case, it is preferable to set the first state determination power generation output range (width)> the second state determination power generation output range (width). In that case, the fault judgment uses an absolute value, under the condition of
  • Judgment is performed, and judgment of deterioration is performed under the condition of ((representative value)-(generation output value for state determination)) ((generation output range for second state determination (width)) or not It may be good.
  • This process is performed in consideration of the possibility that the power generation output decreases when the solar panel breaks down and not only the power generation output decreases when the solar panel degrades, but the variation may become large.
  • the range information management unit 22 may be configured to combine the amount of solar radiation and the temperature of the solar panel measured at the same time as the actual value is measured, and the sun height when the actual value is measured.
  • the range of generated power determined for the combination is held in advance as a state determination range, and the amount of solar radiation measured by the sensor 13 when the power generation output value for state determination is measured by the power conditioner 12 and It may be determined whether the power output for state determination is within the power generation output range for state determination based on the temperature of the solar panel and the sun height when the power generation output value for state determination is measured.
  • the range information management unit 22 determines whether the amount of solar radiation and the temperature of the solar panel measured at the same time as when the measured value is measured and the solar height when the measured value is measured.
  • the range of generated power determined for the combination is used as the range for state determination, calculated each time when determining the actual value for state determination, and the amount of solar radiation measured by the sensor 13 and the temperature of the solar panel, for state determination Whether or not the power output value for state determination is within the power output range for state determination may be determined based on the solar height when the power generation output value is measured.
  • the state determination unit 23 determines whether the calculated ratio is equal to or more than a predetermined probability value as a reference, and the calculated ratio If it is determined once that the value of is smaller than the reference probability value, the power generation system 14 is determined to be in an abnormal state.
  • the present invention is not limited to this.
  • it is determined that the power generation system 14 is in the abnormal state when it is determined N times that the value of the calculated ratio is equal to or less than the reference probability value in the determination of step S34. You may
  • the senor 13 is connected to the wireless transmitter 16 and the sensor value is sent from the wireless transmitter 16 to the analysis server 11 via the network 15.
  • the present invention is not limited to this example.
  • the sensor 13 may be connected to the power conditioner 12, and the sensor value may be sent from the power conditioner 12 to the analysis server 11 via the network 15.
  • a sensor network may be configured by a plurality of sensors, and sensor values may be sent from the gateway of the sensor network to the analysis server 11 via the network 15.
  • the analysis server 11 receives the power generation output by the power generation system 14 and the sensor value by the sensor 13 from the network 15 and performs calculations using them. It is not limited.
  • the power generation system 14 and the sensor 13 may not be connected to the analysis server 11.
  • the power generation output by the power generation system 14 and the data of the sensor value by the sensor 13 are stored in the storage device, and these data are analyzed by any method. It is also possible to input to 11 and perform calculation.
  • the state of the power generation system 14 is determined without considering the weather at the place where the solar panel is installed.
  • the second embodiment is an example in which weather information is used to determine the state of the power generation system 14.
  • only the power generation output value measured during a time that satisfies the condition (stable condition) where it can be determined that the operation of the power generation system 14 is stable is used to determine the state of the power generation system 14.
  • the information is used to determine whether the stability condition is satisfied.
  • the state determination of the power generation system 14 is performed using only the power generation output when the weather is "cloudy" as the stable condition.
  • FIG. 9 is a block diagram of a power generation monitoring system according to the second embodiment.
  • the power generation monitoring system of the second embodiment has a camera 41 in addition to the configuration of FIG. 1.
  • the camera 41 has a communication function in addition to the function of capturing an aerial image.
  • the camera 41 is connected to the network 15, and transmits an image obtained by shooting the upper surface of the power generation system 14 to the analysis server 11 via the network 15 together with the shooting time.
  • FIG. 10 is a block diagram of the analysis server 11 according to the second embodiment.
  • the analysis server 11 according to the second embodiment includes a weather determination unit 25 in addition to the model management unit 21, the range information management unit 22, the state determination unit 23, and the actual value acquisition unit 24.
  • the weather determination unit 25 receives an image of the upper surface of the power generation system 14 and information of shooting time from the camera 41, determines the upper weather of the power generation system 14 based on the image, and records the information together with the information of the shooting time. . This generates weather information for each time.
  • the weather determining unit 25 does not determine various types of weather including sunny and rainy, but determines whether it is cloudy or not.
  • the weather judgment unit 25 indicates the judgment result by a flag indicating that the weather is cloudy, and adds a flag to the photographing time to obtain information (cloudy time information) of the time when the weather is cloudy (cloudy time).
  • the cloud is considered to be cloudy
  • the portion of the cloud in the image can be determined by conditioning by hue, lightness and saturation.
  • it can also be determined under the condition that if the average lightness of the sky image photographed by the camera 41 is less than a predetermined value, it will be cloudy.
  • the determination can also be made on the condition that if the standard deviation of the lightness of a plurality of points of the sky image photographed by the camera 41 is less than a predetermined value, it is considered as cloudy.
  • the model management unit 21 obtains the clouding time according to the clouding time information, and generates a pseudo system model in advance by selecting and using only the power generation output value for model construction measured in the clouding time.
  • the method of generating the pseudo system model is the same as that of the first embodiment using the nonparametric method.
  • the range information management unit 22 obtains the clouding time from the clouding time information, and determines the power output range for state determination using only the model building power generation output value measured during the clouding time.
  • the method of determining the power output range for state determination is the same as that of the first embodiment.
  • the state determination unit 23 obtains the clouding time according to the clouding time information, and determines the state of the power generation system 14 using only the state determination power generation output value measured during the clouding time.
  • the state determination method is the same as that of the first embodiment.
  • the power generation output is stabilized, and the state of the power generation system 14 using the power generation output value at the time of fogging in which the influence of a failure etc. Therefore, the accuracy of the state determination such as the detection of the failure of the solar panel is improved.
  • the weather determination unit 25 of the analysis server 11 is cloudy from the sky image of the place where the power generation system 14 is installed, but the present invention is not limited to this. As another example, it may be determined whether the weather is cloudy based on weather information provided by a government or a local public agency. In that case, the camera 41 is unnecessary. The weather determination unit 25 of the analysis server 11 may determine whether the weather at the location where the solar panel of the power generation system 14 is installed is cloudy based on the weather information.
  • the weather is cloudy
  • it may be used as a stability condition that the light quantity observed at the place where the power generation system 14 is installed is equal to or less than a predetermined value.
  • a luminometer is installed at the place where the power generation system 14 is installed, and the measurement value is notified to the analysis server 11 from there, and the analysis server 11 measures the weather based on the notified measurement value. It may be determined whether or not it is cloudy.
  • the pseudo system model is generated in advance on the assumption that actual measurement values have already been accumulated as power generation output values for model construction sufficient to generate an effective pseudo system model that simulates the power generation system 14.
  • An example has been shown.
  • a pseudo system of another system similar to the power generation system 14 is assumed assuming an initial state in which no actual measurement value sufficient to generate a pseudo system model that simulates the power generation system 14 well is obtained.
  • An example of correcting the model is shown.
  • state monitoring of the power generation system 14 can be started even in an initial state in which a valid pseudo system model can not be constructed.
  • the basic configuration of the power generation monitoring system according to the third embodiment is the same as that shown in FIG.
  • the basic configuration of the analysis server 11 according to the third embodiment is the same as that shown in FIG.
  • the model managing unit 21 of the third embodiment has a function of correcting a pseudo system model. In the initial state where no effective pseudo system model has been created, its function is utilized.
  • the model management unit 21 compares the solar panels of the power generation system 14 to be monitored and the solar panels of the other power generation system with respect to the pseudo system model of another power generation system different from the power generation system 14 to be monitored.
  • a correction pseudo system model is generated and maintained with corrections for differences in the installation points of and / or installation angles.
  • the range information management unit 22 uses the correction pseudo system model to determine the power output range for state determination.
  • the model management unit 21 corrects the sun height calculated from the time by the difference of the installation position of the solar panel.
  • the model management unit 21 corrects the relative solar altitude as viewed from the solar panel according to the installation angle of the solar panel.
  • the installation angle of the solar panel here includes the direction in which the solar panel is inclined and the angle in which the solar panel is inclined.
  • the solar panel may be installed at an angle of 10 degrees in the south direction.
  • model management unit 21 of the third embodiment is a solar panel of the power generation system 14 to be monitored and another power generation system with respect to a pseudo system model of another power generation system 14 different from the power generation system 14 to be monitored.
  • a correction pseudo system model is generated and held by adding a correction regarding the number and / or connection configuration of.
  • the power generation system 14 is a series connection of a plurality of solar panels
  • the representative value of the power generation output of the power generation system 14 changes in proportion to the number.
  • the standard deviation with respect to changes in the number of solar panels connected in series is It calculates how it changes, and performs correction based on the calculation result.
  • the power generation system 14 is a parallel connection of a plurality of strings in which a plurality of solar panels are connected in series
  • data of power generation output of power generation systems of various configurations in the past are linked to the configuration and stored. Note that, based on the data, it is calculated how the standard deviation changes with respect to a change in the number of strings connected in parallel, and correction is performed based on the calculation result.
  • model management unit 21 of the third embodiment uses the power generation system 14 to be monitored and the other power generation system with respect to the pseudo system model of another power generation system 14 different from the power generation system 14 to be monitored.
  • a correction pseudo system model may be generated and held by adding a correction regarding a difference in time period (difference in degree of aging).
  • data of power generation output of various power generation systems in the past are linked and stored in a period when the power generation system is used, and based on the data, how standard deviation changes with age Calculate and correct based on the calculation result.
  • the correction regarding the difference in the installation position of the solar panel and / or the difference in the installation angle the correction regarding the number of solar panels and / or the connection configuration, and the correction regarding the difference in the use period of the power generation system are described above. It may be applied alone, or a plurality or all may be applied together.
  • the power generation output value for model construction and the power generation output value for state determination are separated, but they may not be separated.
  • the power generation output value for model construction an actual measurement value measured in a normal state of the power generation system 14 should be used. This is because a simulated system model that simulates the power generation system 14 in the normal state can be constructed by using the measured values in the normal state.
  • the power generation output value for model construction and the power generation output value for state determination are not clearly separated and given. For example, there may be a case where actual value data of continuous time is accumulated, but there is no information on how long the power generation system 14 has been in a normal state.
  • FIG. 11 is a block diagram of the analysis server 11 according to the fourth embodiment.
  • the analysis server 11 of the fourth embodiment further includes a power generation output value separation unit 26 in addition to the configuration of FIG. 1.
  • a plurality of actual measurement values measured at measurement points of the power generation system 14 are given to the power generation output value separation unit 26.
  • the power generation output value separation unit 26 separates the measured value measured before the predetermined boundary time and the measured value measured after the boundary time.
  • the model management unit 21, the range information management unit 22, and the state determination unit 23 are the same as those of the first embodiment, and use the actual measurement values measured before the boundary time as the power generation output value for model construction. The processing is executed using the actual measurement value measured after the time as the power output value for state determination.
  • the processing of the model management unit 21, the range information management unit 22, and the state determination unit 23 makes it possible to detect an abnormality in the power generation system 14.
  • the boundary time at which the power generation output value separation unit 26 separates the plurality of actual measurement values is not particularly limited, and it is meaningful to divide the plurality of actual measurement values into the early side and the late side of the measurement time. .
  • the boundary time at which the power generation output value separation unit 26 separates the measured values may be set to the time at which the number of given measured values is equally divided.
  • the boundary time may be a time obtained by equally dividing the time between the first actual measurement value and the last actual measurement value.
  • a plurality of boundary times are set, the state determination process is performed for each, and when it is determined that the power generation system 14 is in an abnormal state when any boundary time is taken, the power generation system 14 is in an abnormal state. It may be determined to be present.
  • the boundary time is set at a time close to the time when the abnormality actually occurs in the power generation system 14, since the abnormal state of the power generation system 14 can be detected with high accuracy in the state determination process, the abnormality is abnormal in any abnormal state. Then, it can be determined that an abnormality has occurred in the power generation system 14. In that case, it can also be estimated that an abnormality has occurred in the power generation system 14 at a time close to the boundary time used when it was determined that the power generation system 14 is in an abnormal state.
  • power generation system 14 Although an example which is a solar power generation system which connected a plurality of solar panels was shown power generation system 14, the present invention is not limited to this, other various things, such as wind power generation, are shown. Applicable to various power generation systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Power Engineering (AREA)
  • Human Resources & Organizations (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 発電システム管理装置は、発電システムの所定の測定点におけるモデル構築用の発電出力である複数のモデル構築用発電出力値を用いてノンパラメトリック法で生成される疑似システムモデルから算出される、測定点における発電出力の代表値と、モデル構築用発電出力値と、を用いて算出される複数のモデル構築用発電出力値の標準偏差に基づいて決定される、測定点における発電出力が所定以上の確率で含まれるべき範囲に対応した状態判定用発電出力範囲を管理する範囲情報管理手段と、測定点において測定される発電出力を状態判定用発電出力値として取得する発電出力値取得手段と、複数の状態判定用発電出力値を状態判定用発電出力範囲と比較し、比較結果に基づいて、発電システムの状態を判定する状態判定手段と、を有している。

Description

発電システム分析装置および方法
 本発明は、発電システムの状態を分析する技術に関する。
 特許文献1に太陽光発電装置の保守点検を容易にするための技術が開示されている。これによれば、ソーラーパネルを構成する複数のユニットのそれぞれの出力レベルを実測により検知し、計算式によって算出したレベル値と実測値とを比較することにより、保守点検が必要な状態のユニットを検出する。
特開平9-56181号公報
 しかしながら、メガソーラーと呼ばれるような、多数のソーラーパネルを用いた大規模な太陽光発電システムの一般な構成では、各ソーラーパネルの個々のユニットについて実測値を得ることができない。一般には、複数のソーラーパネルを直列接続したストリングの出力、あるいは、更に複数のストリングを並列接続したパワーコンディショナー入力を測定点とした実測値が得られる程度である。
 特許文献1で算出されるユニット毎のレベル値を単純に合成して上記測定点でのレベル値を算出し、そのレベル値と上記測定点での実測値とを比較しようとすると、劣化や故障による変化に対して個々のソーラーパネルの性能のバラツキ等による影響が大きく、故障を検知することができない場合がある。
 本発明の目的は、正常状態でも発電出力が変動する発電システムの経年劣化や故障による状態変化の検知を可能にする技術を提供することである。
 本発明の一態様による発電システム分析装置は、発電システムの状態を分析する発電システム分析装置であって、前記発電システムの所定の測定点におけるモデル構築用の発電出力である複数のモデル構築用発電出力値を用いてノンパラメトリック法で生成される疑似システムモデルから算出される、前記測定点における発電出力の代表値と、前記モデル構築用発電出力値と、を用いて算出される前記複数のモデル構築用発電出力値の標準偏差に基づいて決定される、前記測定点における発電出力が所定以上の確率で含まれるべき範囲に対応した状態判定用発電出力範囲を管理する範囲情報管理手段と、前記測定点において測定される発電出力を状態判定用発電出力値として取得する発電出力値取得手段と、複数の前記状態判定用発電出力値を前記状態判定用発電出力範囲と比較し、比較結果に基づいて、前記発電システムの状態を判定する状態判定手段と、を有している。
第1実施形態による発電監視システムのブロック図である。 第1実施形態による分析サーバ11のブロック図である。 第1実施形態による疑似システムモデルを模式的に示す図である。 パワーコンディショナー12の動作例を示すフローチャートである。 第1実施形態による分析サーバ11の範囲情報管理部22の処理例を示すフローチャートである。 第1実施形態による分析サーバ11の状態判定部23の処理例を示すフローチャートである。 日射量と裏面温度と太陽高度を入力とする疑似システムモデルにより算出される発電電圧値(横軸)と、実験システムで測定された実測値(縦軸)との関係を示す散布図である。 日射量と裏面温度を入力とする疑似システムモデルにより算出される発電電圧値(横軸)と、実験システムで測定された実測値(縦軸)との関係を示す散布図である。 日射量を入力とする疑似システムモデルにより算出される発電電圧値(横軸)と、実験システムで測定された実測値(縦軸)との関係を示す散布図である。 日射量と裏面温度を入力とする疑似システムモデルを模式的に示す図である。 日射量を入力とする疑似システムモデルを模式的に示す図である。 第2実施形態による発電監視システムのブロック図である。 第2実施形態による分析サーバ11のブロック図である。 第4実施形態による分析サーバ11のブロック図である。
 (第1実施形態)
 図1は、第1実施形態による発電監視システムのブロック図である。
 発電監視システムは、発電システム14の故障や劣化の検知など状態の監視を行うシステムであり、分析サーバ11、パワーコンディショナー12、およびセンサー13を有している。
 発電システム14およびセンサー13はパワーコンディショナー12に接続されている。パワーコンディショナー12と分析サーバ11は共にネットワーク15に接続されており、相互にデータ通信を行うことができる。ネットワーク15はインターネットなどの広域ネットワークである。
 発電システム14は、再生可能エネルギーを利用して発電を行う装置であり、第1実施形態では一例として複数のソーラーパネル(不図示)を接続した太陽光発電システムである。
 分析サーバ11は、パワーコンディショナー12が測定した発電システム14の発電出力の情報およびセンサー13によるセンサー値の情報を収集し、それらの情報に基づき発電システム14の状態を判定する装置である。分析サーバ11は発電システム14と距離を隔てた遠方の場所に設けられてもよく、また複数の発電システム14を1つの分析サーバ11で監視してもよい。
 パワーコンディショナー12は、発電システム14の発電出力である発電電力を直流から交流に変換する装置である。第1実施形態のパワーコンディショナー12は発電システム14の発電出力を測定し、測定した発電出力を分析サーバ11に通知する機能を備えている。
 センサー13は、発電システム14およびその周囲の環境を測定する各種センサーである。第1実施形態では、日射量を測定し、測定したセンサー値を出力するセンサーと、ソーラーパネルの裏面温度を測定してセンサー値として出力するセンサーがこれに含まれている。裏面温度は、発電システム14を構成する複数のソーラーパネルのうち、中央付近のソーラーパネルの裏面に設置された温度センサーで測定される温度である。センサー13からのセンサー値は、センサー13に接続された無線送信器(Tx)16によって送信され、ネットワーク15経由で分析サーバ11に受信される。分析サーバ11では時刻情報に紐付けて記録される。
 なお、ここで測定される裏面温度は、ソーラーパネルの性能に影響する温度情報の一例であり、本発明がこれに限定されることはない。他の例として、ソーラーパネルを構成するセル内部の温度を測定することにしてもよい。その場合、セル内部の温度を測定するためのソーラーパネルを設け、そのセル内部の温度を測定することにしてもよい。また、更に他の例として、サーモグラフィを用いてソーラーパネルの温度を測定することにしてもよい。
 図2は、第1実施形態による分析サーバ11のブロック図である。
 分析サーバ11は、モデル管理部21、範囲情報管理部22、状態判定部23、および実測値取得部24を有している。
 範囲情報管理部22は、発電システム14の測定点における発電出力の値が所定以上の確率で含まれるべき発電出力の範囲(状態判定用発電出力範囲)を決定する。その際、範囲情報管理部22は、複数のモデル構築用発電出力値の標準偏差に基づいて状態判定用発電出力範囲を決定する。
 ここで、発電システム14の発電出力を測定する測定点は、一例として、複数のソーラーパネルが直列接続されストリングを構成し、その複数のストリングが更に並列接続された合成出力が測定できる箇所であり、発電システム14とパワーコンディショナー12の間にある。ただし、この測定点は例示であり、他の例として、パワーコンディショナー12の後段に測定点があり、交流電力を測定する形態でもよい。
 また、第1実施形態では、個々のソーラーパネルの発電出力をそれぞれ測定することはできず、一か所の測定点において発電システム14全体の合成出力が測定されるものとする。ただし、これも一例であり、他の例として、複数のストリングのそれぞれの発電出力が測定されるものであってもよい。その場合、ストリング単位で発電出力を監視、分析することが可能となる。更に他の例として、個々のソーラーパネルの発電出力が測定されるものであってもよい。その場合、ソーラーパネル単位で発電出力を監視、分析することが可能となる。
 また、モデル構築用発電出力値は、一例として、発電システム14が正常状態のときに測定点で測定された実測値であり、発電システム14の正常状態でのモデル(疑似システムモデル)を構築できる程度のデータ量が蓄積されているものとする。ただし、これは一例であり、人為的に設定した発電出力値、シミュレーションで得た発電出力値、発電システム14あるいは他の発電システムの実測値に補正を加えた発電出力値などの非実測値であってもよく、いずれの場合でも記録媒体やネットワーク15を介して分析サーバ11に入力することができる。また、複数のモデル構築用発電出力値は実測値と非実測値が混在するものであってもよい。
 モデル構築用発電出力値の標準偏差は、測定点における発電出力の代表値と、複数のモデル構築用実測値と、を用いて算出される。代表値を平均値と見立て、その値と、モデル構築用発電出力値の各々とを用いて標準偏差を計算することができる。具体的には、標準偏差σ=√(Σ((モデル構築用発電出力値-代表値))/自由度)により求めることができる。ここで、自由度は、演算に用いるモデル構築用発電出力値の個数に依存した値、例えばその個数の値である
 なお、第1実施形態では、測定点における発電出力の代表値は、モデル構築用発電出力値を用いてノンパラメトリック法で生成される疑似システムモデルから予め算出されている。単純な例として、日射量などの入力値を細かい幅の入力値帯に分けて、それぞれの入力値帯における発電出力を一定の値(代表値)によって代表させるという算出方法が考えられる。なお、ここでは、モデル構築用発電出力値は随時追加、更新され、状態判定のたびに新たに代表値、標準偏差、および状態判定用発電出力範囲を計算するものとする。
 状態判定用発電出力範囲は、上述のように複数のモデル構築用発電出力値の標準偏差に基づいて決定するが、一例として、測定点における発電出力の代表値を含み、その代表値の上下それぞれに所定の幅を持った範囲であり、その所定の幅がモデル構築用実測値の標準偏差に基づき算出された値となる。例えば、その所定の幅として、標準偏差に所定の係数を乗算した値を用いることができる。
 状態判定用発電出力範囲は、測定点における発電出力の値が所定の基準となる確率値以上の確率で含まれるべき発電出力の範囲であるが、その確率が上記係数で決まる。例えば、実測値が正規分布であれば係数=1.96とすると、基準となる確率は約95%に設定される。
 基準となる確率値以上の確率で実測値が状態判定用発電出力範囲に含まれる状態であれば発電システム14は正常状態であると判定でき、実測値が状態判定用発電出力範囲に含まれる確率が、基準となる確率値を下回る状態であれば、実測値が低下してきたり、実測値のバラツキが大きくなってきたりしたことを意味するので、発電システム14は異常状態であると判定できる。
 モデル管理部21は、複数のモデル構築用発電出力値を用いてノンパラメトリック法で疑似システムモデルを予め生成し、管理している。この疑似システムモデルは、上述した、範囲情報管理部22による、測定点における発電出力の代表値の算出に用いられる。ただし、この疑似システムモデルは、必ずしも分析サーバ11内で生成したものでなくてもよい。予め生成された疑似システムモデルを分析サーバ11に記録媒体からあるいはネットワーク15経由で入力してもよく、その場合、モデル管理部21は入力された疑似システムモデルの情報を取得し、管理する。ノンパラメトリック法の一例として一般化加法モデル(GAM:Generalized Additive Model)を用いて疑似システムモデルを推定するという方法が利用できる。
 実測値取得部24は、測定点において測定される発電出力の実測値を取得する。上記モデル構築用発電出力値は予め測定され、蓄積されているものとする。それに対して、発電システム14の状態監視が開始され、状態を判定するために定期的に測定される実測値を状態判定用発電出力値と称することにする。
 状態判定部23は、複数の状態判定用発電出力値を状態判定用発電出力範囲と比較し、比較結果に基づいて、発電システム14の状態を判定する。第1実施形態の状態判定部23は、上述のように、基準となる確率値以上の確率で状態判定用発電出力値が状態判定用発電出力範囲に含まれる状態であれば、発電システム14が正常状態であると判定し、状態判定用発電出力値が状態判定用発電出力範囲に含まれる確率が、基準となる確率値を下回る状態であれば、発電システム14が異常状態であると判定する。
 第1実施形態によれば、ノンパラメトリック法による疑似システムモデルから算出される代表値とそれに基づくモデル構築用発電出力値の標準偏差とから決定した状態判定用発電出力範囲と、複数の状態判定用発電出力値とを比較して発電システム14の状態を判定するので、正常状態でも発電出力の特性を予め想定することが困難で発電出力の実測値がバラツキをみせるような発電システム14であっても、その状態変化を検知することが可能となる。
 例えば、状態判定部23は、状態判定用発電出力値の総個数に対する、状態判定用発電出力範囲に含まれる状態判定用発電出力値の個数の割合を算出し、算出した割合を、基準となる所定の閾値と比較する。例えば、状態判定用発電出力範囲を算出するときと同じ値である95%を閾値とすればよい。その割合が閾値を下回っていれば、状態判定部23は発電システム14が異常な状態(例えば劣化した状態)であると判定する。正常状態における発電出力の代表値との差が大きい実測値の割合が正常状態のときより高くなったことで、発電システム14が異常状態であると判定できるので、個々の状態判定用発電出力値のバラツキや個々のモデル構築用発電出力値のバラツキがあっても発電システム14の異常を検知することができる。なお、状態判定用発電出力値の総個数に対する、状態判定用発電出力範囲に含まれる状態判定用発電出力値の個数の割合についての閾値を、(95-α(αはマージン))%としてもよい。
 第1実施形態における疑似システムモデルは、一例として、センサー13で測定される日射量およびソーラーパネルの温度と、ソーラーパネルが設置される地点における太陽高度という3つのパラメータを入力とし、発電電力を出力とし、太陽光発電システムの測定点で発電出力の値を算出することを可能にするモデルである。太陽高度はソーラーパネルの設置地点から見た太陽の地平線に対する角度であり、ソーラーパネルの設置地点の緯度、経度、および日時から算出することができる。図3は、第1実施形態による疑似システムモデルを模式的に示す図である。図3を参照すると、上述の通り、疑似システムモデル31は、センサーで測定された日射量およびソーラーパネルの温度(裏面温度)と太陽高度とを入力とし、測定点の電力(発電電力)を算出して出力する。
 なお、第1実施形態では、全てのモデル構築用発電出力値を用いて決定された状態判定用発電出力範囲を用いる例を示したが、本発明はこれに限定されない。他の例として、モデル構築用発電出力値のうち、所定の条件を満たすときに測定されたモデル構築用発電出力値だけを用いることにしてもよい。その場合、状態判定部23は、実測値取得部24で取得された状態判定用発電出力値のうち、その同じ条件を満たすときに測定された状態判定用発電出力値だけを用いて発電システム14の状態を判定するとよい。これによれば、モデル構築および状態判定に用いる発電出力値を所定の条件によって絞り込むことにより、発電出力の安定した実測値を用いて発電システム14の故障を検知するので、故障検知の精度が向上する。
 また、第1実施形態では、どのタイミングで取得した実測値であっても、それを発電システム14の状態の判定に用いる例を示したが、本発明はこれに限定されない。他の例として、状態判定部23は、入力の変動が所定の閾値を超えるタイミングの前および後の所定時間における発電出力値を用いて発電システム14の状態を判定することにしてもよい。これによれば、発電システム14が故障や劣化などの状態変化により入力の変動に対する出力の応答性が変化する場合があり、その場合、入力変動の前後の発電出力値を用いて状態の判定を行うことで、状態変化を検知する精度を向上させることができる。なお、入力の変動が所定の閾値を超えるタイミングの検知においては、状態判定部23は、測定時刻によって複数のセンサー値を時系列に表し、時間に対するセンサー値の変化量(変動)を算出し、算出した変動の値が閾値を超えたことにより検知する。
 以下、更に詳細に説明する。
 図4は、パワーコンディショナー12の動作例を示すフローチャートである。
 パワーコンディショナー12は、所定の測定タイミングになるのを待ち(ステップS11)、測定タイミングになると、発電システム14の発電出力の実測値を取得する(ステップS12)。そして、パワーコンディショナー12は、取得した発電出力の実測値を分析サーバ11に通知する(ステップS13)。分析サーバ11では、パワーコンディショナー12から通知された発電出力の実測値を実測値取得部24が受信し、時刻情報に紐付けてメモリに格納する。なお、測定タイミングは特に限定されないが、例えば一定時間間隔とすればよい。
 発電システム14が正常状態のときに測定された実測値はモデル構築用発電出力値として利用することができる。発電システム14の状態監視を開始した後に取得された実測値が状態判定用発電出力値となる。
 図5は、第1実施形態による分析サーバ11の範囲情報管理部22の処理例を示すフローチャートである。図5を参照すると、範囲情報管理部22は、複数のモデル構築用発電出力値と、モデル管理部21にて管理されている疑似システムモデルを用い、各入力値に対するモデル構築用発電出力値の代表値を算出する(ステップS11)。次に、範囲情報管理部22は、代表値を平均値と見立てて、モデル構築用発電出力値の標準偏差を求める(ステップS12)。次に、範囲情報管理部22は、モデル構築用発電出力値の標準偏差に基づいて、実測値が所定確率(ここでは95%(正規分布において標準偏差×1.96)とする)以上の確率で入る実測値の幅を算出し、ここでは、その幅を状態判定用発電出力範囲として扱うものとし、メモリに記録する(ステップS13)。
 図6は、第1実施形態による分析サーバ11の状態判定部23の処理例を示すフローチャートである。図6を参照すると、状態判定部23は、所定の判定タイミングになるのを待ち(ステップS31)、判定タイミングになると、実測値取得部24によりメモリに格納された複数の状態判定用発電出力値のうち、現在時刻と現在時刻から所定時間遡った時刻との間に測定された過去の状態判定用発電出力値と、それに紐付いたセンサー値(日射量および裏面温度)および取得時刻の時刻情報とを取得する(ステップS32)。
 続いて、状態判定部23は、それぞれの状態判定用発電出力値と、その発電出力値が測定されたときの日射量と裏面温度と取得時刻から算出される太陽高度とを疑似システムモデルに入力して得られる代表値と、の差分の絶対値を算出する。更に、状態判定部23は、その差分の絶対値が、状態判定用発電出力範囲として保持されている所定の幅の値より大きいか否か、順次判定していく。その際、状態判定部23は、発電システム14のソーラーパネルの設置地点の情報を予め保持しておき、設置地点の緯度および経度と取得時刻とに基づいて太陽高度を算出する。
 全ての状態判定用発電出力値について判定を終えると、状態判定部23は、その差分の絶対値が状態判定用発電出力範囲の幅の値より小さい状態判定用発電出力値の割合、すなわち、状態判定用発電出力値が状態判定用発電出力範囲に入っている割合を算出する(ステップS33)。
 更に、状態判定部23は、算出された割合が、基準となる確率値(ここでは(95-α)%)以上であるか否か判定する(ステップS34)。算出した割合の値が、基準となる確率値以上であれば、発電システム14は正常状態であると判定される。一方、算出した割合の値が、基準となる確率値以下であれば、発電システム14は異常状態であると判定される。
 なお、第1実施形態では、状態判定用発電出力値の総個数に対する、状態判定用発電出力範囲に含まれる状態判定用発電出力値の個数の割合を算出し、算出した割合を基準の閾値と比較するという状態判定方法を採用した。しかし、これは一例であり、本発明はこれに限定されない。他の例として、状態判定部23は、複数取得された状態判定用発電出力値の代表値を求め、その代表値が状態判定用発電出力範囲に入っていれば正常状態、入っていなければ異常状態と判定することにしてもよい。
 また、第1実施形態では、疑似システムモデルとして、日射量と、ソーラーパネルの裏面温度と、太陽高度を入力とするものを例示したが、本発明はこれに限定されない。他の例として、日射量とソーラーパネルの裏面温度とを入力とする疑似システムモデル、あるいは日射量のみを入力とする疑似システムモデルも本発明に適用可能である。
 図7Aは、日射量と裏面温度と太陽高度を入力とする疑似システムモデルにより算出される発電電圧値(横軸)と、実験システムで測定された実測値(縦軸)との関係を示す散布図である。図7Bは、日射量と裏面温度を入力とする疑似システムモデルにより算出される発電電圧値(横軸)と、実験システムで測定された実測値(縦軸)との関係を示す散布図である。図7Cは、日射量を入力とする疑似システムモデルにより算出される発電電圧値(横軸)と、実験システムで測定された実測値(縦軸)との関係を示す散布図である。なお、図7A~Cは、電流が一定の実験システムによる発電出力の実測値として発電電力の代わりに発電電圧を測定したものである。
 図8Aは、日射量と裏面温度を入力とする疑似システムモデルを模式的に示す図である。図8Bは、日射量を入力とする疑似システムモデルを模式的に示す図である。
 図7A~Cのいずれもモデルから算出された発電電圧値と実測値が線形の関係を示している。このことから、各疑似システムモデルが実際の発電システム14を良好に疑似し、実測値と良好に一致する代表値を算出することができると言える。よって、図3、図8A、図8Bのいずれの疑似システムモデルも本発明に適用可能である。
 ただし、図7Cに示した日射量のみを入力とする場合と比べ、図7Bに示した日射量と裏面温度を入力とする方が、ばらつきが抑えられている。また、図7Bに示した日射量と裏面温度を入力とする場合と比べ、図7Aに示した日射量と裏面温度と太陽高度を入力とする方が、ばらつきが更に抑えられている。これは、日射量だけを入力とする場合に比べ日射量と裏面温度を入力とする場合の方が、更に、日射量と裏面温度を入力とする場合に比べ日射量と裏面温度と太陽高度を入力とする方が、より高い精度で発電システム14を疑似できることを意味する。必要とされる精度と演算の煩雑さとを考慮して、いずれの疑似システムモデルを適用するかを決めればよい。
 なお、図7A~Cは、疑似システムモデルにより算出される発電電圧値(横軸)と実験システムで測定された実測値(縦軸)との線形性と、ばらつきに関する図7A~Cの相対的関係とを示すためのものであり、結晶系のソーラーパネル単体を用い、負荷抵抗を5Ωとし、天候による限定をせず取得したデータが示されている。
 また、上述した第1実施形態では、範囲情報管理部22が実測値と代表値との差分に相当する発電電力の幅を状態判定用発電出力範囲として保持し、状態判定部23がその状態判定用発電出力範囲と、実測値と代表値の差分の絶対値とを比較した。
 これは、第1の実施形態では、実測値の発電電力が高い側と低い側のどちらにずれることも同様に扱うというものである。しかし、本発明がこれに限定されることはない。他の例として、((代表値)-(状態判定用発電出力値))≧(状態判定用発電出力範囲(幅))となる状態判定用発電出力値の割合が所定以上の場合に発電システム14が異常状態と判定することにしてもよい。これは発電システム14が異常状態になると発電電力が低下するということに着目し、発電電力が低い側にずれたことで異常状態と判定するというものである。
 更には、状態判定用発電出力範囲として、故障判定のための第1の状態判定用発電範囲と、劣化判定のための第2の状態判定用発電出力範囲の2つを定め、故障と劣化をそれぞれに検知することにしてもよい。その場合、第1の状態判定用発電出力範囲(幅)>第2の状態判定用発電出力範囲(幅)とするとよい。またその場合、故障の判定には、絶対値を用い、|(代表値)-(状態判定用発電出力値)|≧(状態判定用発電出力範囲(幅))であるか否かという条件で判定を行い、劣化の判定には、((代表値)-(状態判定用発電出力値))≧(第2状態判定用発電出力範囲(幅))であるか否かという条件で判定を行うことにしてもよい。これは、ソーラーパネルが故障した場合には発電出力が低下し、ソーラーパネルが劣化した場合には発電出力が低下するだけでなく、ばらつきが大きくなる可能性があることを考慮した処理である。
 また、他の例として、範囲情報管理部22は、実測値が測定されたときと同じときに測定された日射量およびソーラーパネルの温度と、実測値が測定されたときの太陽高度との組み合わせ毎に、その組み合わせに対して決まる発電電力の範囲を状態判定用範囲として予め保持しておき、パワーコンディショナー12で状態判定用発電出力値が測定されたときにセンサー13で測定された日射量およびソーラーパネルの温度と、状態判定用発電出力値が測定されたときの太陽高度とに基づき、状態判定用発電出力値が状態判定用発電出力範囲に入っているかどうか判断することにしてもよい。
 また、更に他の例として、範囲情報管理部22は、実測値が測定されたときと同じときに測定された日射量およびソーラーパネルの温度と、実測値が測定されたときの太陽高度との組み合わせに対して決まる発電電力の範囲を状態判定用範囲として、状態判定用実測値の判定を行う際にその都度計算し、センサー13で測定された日射量およびソーラーパネルの温度と、状態判定用発電出力値が測定されたときの太陽高度とに基づき、状態判定用発電出力値が状態判定用発電出力範囲に入っているかどうか判断することにしてもよい。
 また、第1実施形態では、図6のステップS34の判定にて、状態判定部23は、算出された割合が、基準となる所定の確率値以上であるか否か判定し、算出された割合の値が基準となる確率値以下であると1回判定されれば、発電システム14は異常状態であると判定した。しかし、本発明はこれに限定されない。他の例として、ステップS34の判定において、算出された割合の値が基準となる確率値以下であると連続してN回判定されたときに、発電システム14が異常状態であると判定することにしてもよい。
 また、第1実施形態では、図1に示したように、センサー13を無線送信器16に接続し、センサー値を無線送信器16からネットワーク15経由で分析サーバ11に送る例を示した。しかし、本発明はこの例に限定されない。他の例として、センサー13をパワーコンディショナー12に接続し、センサー値をパワーコンディショナー12からネットワーク15経由で分析サーバ11に送ることにしてもよい。また、複数のセンサーによってセンサーネットワークを構成し、センサー値を、そのセンサーネットワークのゲートウェイからネットワーク15経由で分析サーバ11に送ることにしてもよい。
 また、第1実施形態では、分析サーバ11が発電システム14による発電出力とセンサー13によるセンサー値をネットワーク15から受信し、それらを用いて演算を行う例を示したが、本発明はこの例に限定されない。発電システム14およびセンサー13は分析サーバ11と接続されていなくてもよく、発電システム14による発電出力およびセンサー13によるセンサー値のデータを記憶装置に蓄積し、それらのデータを任意の方法で分析サーバ11に入力し、演算を行うことにしてもよい。
 (第2実施形態)
 第1実施形態では、ソーラーパネルが設置された場所の天候を考慮せずに発電システム14の状態を判定した。これに対して、第2実施形態は、天候の情報を発電システム14の状態の判定に利用する例である。第2実施形態は、発電システム14の動作が安定していると判断できる条件(安定条件)を満たす時間に計測された発電出力値のみを発電システム14の状態判定に用いるものであり、天候の情報は、その安定条件を満たすか否かの判断に用いる。具体的には、安定条件として天候が“曇り”であるときの発電出力のみを用いて発電システム14の状態判定を行う。
 図9は、第2実施形態による発電監視システムのブロック図である。第2実施形態の発電監視システムは、図1の構成に加え、カメラ41を有している。カメラ41は、上空画像を撮影する機能に加えて通信機能を備えている。カメラ41はネットワーク15に接続されており、発電システム14の上空を撮影した画像を、撮影時刻と共に、ネットワーク15経由で分析サーバ11に送信する。
 また、第2実施形態では、分析サーバ11の構成および動作が一部、第1実施形態のものと異なっている。図10は、第2実施形態による分析サーバ11のブロック図である。図10を参照すると、第2実施形態の分析サーバ11は、モデル管理部21、範囲情報管理部22、状態判定部23、実測値取得部24に加え、天候判定部25を有している。
 天候判定部25は、カメラ41から発電システム14の上空を撮影した画像と撮影時刻の情報を受信し、その画像に基づいて発電システム14の上空の天候を判定し、撮影時刻の情報とともに記録する。これにより時刻毎の天候の情報が生成される。
 天候判定部25は、一例として、晴れと雨を含めて各種天候を判別するのではなく、曇りか否かだけを判別するものとする。天候判定部25は、判定結果を天候が曇りであることを示すフラグによって示し、撮影時刻にフラグを付加することで、天候が曇りであった時間(曇り時間)の情報(曇り時間情報)を生成する。
 天候が曇りであるか否かの判定方法の例として、カメラ41で撮影された上空画像の全体に対する雲の占める領域の面積の割合が所定のパーセンテージ(例えば70%)以上であったら曇りとするという条件で判定することができる。画像中の雲の部分は、色相、明度、彩度による条件付けで判別することができる。また、他の例として、カメラ41で撮影された上空画像の平均明度が所定値以下であったら曇りとするという条件で判定することもできる。更に他の例として、カメラ41で撮影された上空画像の複数点の明度の標準偏差が所定値以下であったら曇りとするという条件で判定することもできる。
 モデル管理部21は、曇り時間情報によって曇り時間を知得し、その曇り時間に測定されたモデル構築用発電出力値のみを選択して用い、疑似システムモデルを予め生成する。疑似システムモデルの生成方法は、ノンパラメトリック法を用いた第1実施形態のものと同様である。
 範囲情報管理部22は、曇り時間情報によって曇り時間を知得し、その曇り時間に測定されたモデル構築用発電出力値のみを用いて状態判定用発電出力範囲を決定する。状態判定用発電出力範囲の決定方法は第1実施形態のものと同様である。
 状態判定部23は、曇り時間情報によって曇り時間を知得し、その曇り時間に測定された状態判定用発電出力値のみを用いて、発電システム14の状態を判定する。状態判定方法は第1実施形態のものと同様である。
 以上のように、第2実施形態による発電監視システムによれば、発電出力が安定し、故障等による影響が発電出力に顕著に表れやすい曇りのときの発電出力値を用いて発電システム14の状態を判定するので、ソーラーパネルの故障検知など状態判定の精度が向上する。
 なお、第2実施形態では、発電システム14が設置されている場所の上空画像から,分析サーバ11の天候判定部25が曇りか否か判定したが、本発明はこれに限定されない。他の例として、政府や地方公共機関などから提供される気象情報に基づいて天候が曇りか否かを決定することにしてもよい。その場合、カメラ41は不要である。分析サーバ11の天候判定部25は、気象情報に基づいて、発電システム14のソーラーパネルが設置されている場所の天候が曇りか否か判定すればよい。
 また、第2実施形態では、天候が曇りであるということを安定条件として用いる例を示したが、本発明はこれに限定されない。他の例として、発電システム14が設置された場所で観測される光量が所定値以下であるということを安定条件として用いることにしてもよい。その場合、発電システム14が設置された場所に、カメラ41の代わりに、光量計を設置し、そこから測定値を分析サーバ11に通知し、分析サーバ11が通知された測定値に基づいて天候が曇りか否か判定することにしてもよい。
 (第3実施形態)
 第1実施形態では、発電システム14を疑似する有効な疑似システムモデルを生成するのに十分なモデル構築用発電出力値として実測値が既に蓄積されていることを前提とし、疑似システムモデルを予め生成しておく例を示した。それに対し、第3実施形態では、発電システム14を良好に疑似する疑似システムモデルを生成できる程度の実測値が得られていない初期状態を想定し、発電システム14に類似する他のシステムの疑似システムモデルを補正して用いる例を示す。この第3の実施形態によれば、有効な疑似システムモデルが構築できない初期状態においても発電システム14の状態監視を開始することが可能となる。
 第3実施形態による発電監視システムの基本的構成は図1に示したものと同様である。また、第3実施形態による分析サーバ11の基本的構成は図2に示したものと同様である。ただし、第3実施形態のモデル管理部21は、第1実施形態のモデル管理部21が有する機能に加え、疑似システムモデルを補正する機能を有している。有効な疑似システムモデルができていない初期状態においては、その機能が活用される。
 第3実施形態のモデル管理部21は、監視対象の発電システム14とは異なる他の発電システムの疑似システムモデルに対して、監視対象の発電システム14のソーラーパネルと他の発電システムのソーラーパネルとの設置地点の相違および/または設置角度の相違に関する補正を加えて補正疑似システムモデルを生成し、保持する。その場合、範囲情報管理部22は、補正疑似システムモデルを、状態判定用発電出力範囲の決定に利用する。
 例えば、位置の相違により測定時刻に対応する太陽高度が異なってくる。モデル管理部21は、時刻から太陽高度を算出して用いている場合、ソーラーパネルの設置位置の相違の分だけ、時刻から算出される太陽高度を補正する。
 また例えば、ソーラーパネルの設置角度の相違により、ソーラーパネルへの太陽光の入射角が異なってくる。その場合、モデル管理部21は、ソーラーパネルから見た相対的な太陽高度を、ソーラーパネルの設置角度に応じて補正する。ここでいうソーラーパネルの設置角度には、ソーラーパネルを傾ける方向と傾ける角度が含まれる。例えば、ソーラーパネルを南向き方向に10度傾けて設置するといった場合がある。
 また、第3実施形態のモデル管理部21は、監視対象の発電システム14とは異なる他の発電システム14の疑似システムモデルに対して、監視対象の発電システム14と他の発電システムとのソーラーパネルの個数および/または接続構成に関する補正を加えて補正疑似システムモデルを生成し、保持する。
 例えば、発電システム14が複数のソーラーパネルを直列接続したものである場合、直列に接続されるソーラーパネルの個数が異なれば、発電システム14の発電出力の代表値は個数に比例して変化するので、その分を補正すればよい。標準偏差については、過去の様々な構成の発電システムの発電出力のデータを構成に紐付けて蓄積しておき、そのデータに基づいて、直列接続するソーラーパネルの個数の変化に対して標準偏差がどのように変化するかを算出し、算出結果に基づいて補正を行う。
 また例えば、発電システム14が、複数のソーラーパネルを直列接続したストリングが複数本並列接続されたものであれば、過去の様々な構成の発電システムの発電出力のデータを構成に紐付けて蓄積しておき、そのデータに基づいて、並列接続するストリングの個数の変化に対して標準偏差がどのように変化するかを算出し、算出結果に基づいて補正を行う。
 また、第3実施形態のモデル管理部21は、監視対象の発電システム14とは異なる他の発電システム14の疑似システムモデルに対して、監視対象の発電システム14と他の発電システムとの使用された期間の相違(経年劣化の度合いの違い)に関する補正を加えて補正疑似システムモデルを生成し、保持することにしてもよい。
 例えば、過去の様々な発電システムの発電出力のデータを、その発電システムが使用された期間に紐付けて蓄積しておき、そのデータに基づいて、経年により標準偏差がどのように変化するかを算出し、算出結果に基づいて補正を行う。
 なお、上述した、ソーラーパネルの設置地点の相違および/または設置角度の相違に関する補正と、ソーラーパネルの個数および/または接続構成に関する補正と、発電システムの使用された期間の相違に関する補正は、それぞれ単独で適用してもよく、複数あるいは全てをいっしょに適用してもよい。
 (第4実施形態)
 第1実施形態では、モデル構築用発電出力値と状態判定用発電出力値とが分離されていたが、それらが分離されていない場合がある。モデル構築用発電出力値としては、発電システム14が正常状態で測定された実測値を用いるべきである。正常状態での実測値を用いることで、正常状態での発電システム14を疑似する疑似システムモデルが構築できるからである。しかし、モデル構築用発電出力値と状態判定用発電出力値とが明確に分離して与えられない場合がある。例えば、連続時間の実測値データが蓄積されているが、どの時刻まで発電システム14が正常状態であったかの情報が無いといった場合がある。第4実施形態は、そのようにモデル構築用発電出力値と状態判定用発電出力値とが分離されていない場合を想定し、その場合にも発電システム14の状態監視を可能にする。
 図11は、第4実施形態による分析サーバ11のブロック図である。第4実施形態の分析サーバ11は、図1の構成に加え、更に発電出力値分離部26を有している。
 発電出力値分離部26には、発電システム14の測定点で測定された複数の実測値が与えられる。発電出力値分離部26は、所定の境界時刻より前に測定された実測値と、その境界時刻よりも後に測定された実測値とに分離する。
 モデル管理部21、範囲情報管理部22、および状態判定部23は、第1実施形態のものと同様であり、境界時刻より前に測定された実測値をモデル構築用発電出力値として用い、境界時刻より後に測定された実測値を状態判定用発電出力値として用いて処理を実行する。
 途中のいずれかのタイミングで発電システム14が異常状態になっていれば、異常状態での実測値は状態判定用発電実測値に比較的多く、モデル構築用発電出力値に比較的少なく含まれる傾向となる。そのため、第4実施形態によれば、モデル管理部21、範囲情報管理部22、および状態判定部23の処理によって発電システム14の異常が検知できるようになる。
 なお、発電出力値分離部26が複数の実測値を分離する境界時刻は、特に限定されることはなく、複数の実測値を測定時刻の早い側と遅い側とに二分することに意味がある。一例として、発電出力値分離部26が実測値を分離する境界時刻を、与えられた実測値の個数を2等分する時刻にしてもよい。あるいは、最初の実測値と最後の実測値の間を時間に2等分する時刻を境界時刻としてもよい。また、実測値の個数あるいは時間的に2等分することに限定されることもなく、1:2、1:3、2:1など任意の割合で分離することができる。
 また、複数の境界時刻を設定し、それぞれについて状態判定の処理を行い、いずれかの境界時刻を取ったときに発電システム14が異常状態であると判定されれば、発電システム14が異常状態であると判定することにしてもよい。実際に発電システム14にて異常が発生した時刻に近い時刻に境界時刻を設定した場合に、状態判定処理で発電システム14の異常状態を高い精度で検知できるので、いずれかで異常状態で異常がされれば発電システム14に異常が発生したと判定できる。また、その場合、発電システム14が異常状態であると判定されたときに用いていた境界時刻に近い時刻に発電システム14で異常が発生したと推定することもできる。
 その場合、まず複数の実測値全体を2等分する境界時刻を設定し、実測値全体をモデル構築用発電出力値あるいは状態判定用発電出力値として用いて発電システム14の状態判定を行い、それで発電システム14の異常が検知されなければ、前半の実測値を2等分する境界時刻を設定し、実測値全体をモデル構築用発電出力値あるいは状態判定用発電出力値として用いて発電システム14の状態判定を行い、それでも発電システム14の異常が検知されなければ、後半の実測値を2等分する境界時刻を設定し、実測値全体をモデル構築用発電出力値あるいは状態判定用発電出力値として用いて発電システム14の状態判定を行うというように境界時刻の設定を徐々に細かくしていくことにしてもよい。これによれば、異常状態が早期に検知されれば、それ以降の処理を省略することができる。
 なお、上述した各実施形態では、発電システム14が複数のソーラーパネルを接続した太陽光発電システムである例を示したが、本発明がこれに限定されることはなく、風力発電など他の様々な発電システムに広く適用可能である。
 また、上述した各実施形態は、本発明の説明のための例示であり、本発明の範囲をそれらの実施形態にのみ限定する趣旨ではないことは言うまでもない。当業者は、本発明の要旨を逸脱することなしに、他の様々な態様で本発明を実施することができる。

Claims (13)

  1.  発電システムの状態を分析する発電システム分析装置であって、
     前記発電システムの所定の測定点におけるモデル構築用の発電出力である複数のモデル構築用発電出力値を用いてノンパラメトリック法で生成される疑似システムモデルから算出される、前記測定点における発電出力の代表値と、前記モデル構築用発電出力値と、を用いて算出される前記複数のモデル構築用発電出力値の標準偏差に基づいて決定される、前記測定点における発電出力が所定以上の確率で含まれるべき範囲に対応した状態判定用発電出力範囲を管理する範囲情報管理手段と、
     前記測定点において測定される発電出力を状態判定用発電出力値として取得する発電出力値取得手段と、
     複数の前記状態判定用発電出力値を前記状態判定用発電出力範囲と比較し、比較結果に基づいて、前記発電システムの状態を判定する状態判定手段と、
    を有する発電システム分析装置。
  2.  前記状態判定手段は、前記状態判定用発電出力値の総個数に対する、前記状態判定用発電出力範囲に含まれている状態判定発電出力値の個数の割合が、所定の閾値を下回ると、前記発電システムが異常な状態であると判定する、
    請求項1に記載の発電システム分析装置。
  3.  前記発電システムは、複数のソーラーパネルが接続された太陽光発電システムである、請求項1に記載の発電システム分析装置。
  4.  前記疑似システムモデルは、日射量を入力とし、発電電力を出力とし、前記太陽光発電システムの前記測定点で発電出力の値を算出する、請求項3に記載の発電システム分析装置。
  5.  前記疑似システムモデルは、更に、前記ソーラーパネルの温度を入力とする、請求項4に記載の発電システム分析装置。
  6.  前記疑似システムモデルは、更に、前記ソーラーパネルが設置される地点における太陽高度を入力とする、請求項5に記載の発電システム分析装置。
  7.  前記状態判定用発電出力範囲の決定に、前記複数のモデル構築用発電出力値のうち、所定の条件を満たすときに測定されたモデル構築用発電出力値だけが用いられており、
     前記状態判定手段は、前記複数の状態判定用発電出力値のうち、前記条件を満たすときに測定された状態判定用発電出力値だけを用いて、前記発電システムの状態を判定する、請求項3に記載の発電システム分析装置。
  8.  前記状態判定用発電出力範囲の決定に、前記複数のモデル構築用発電出力値のうち、特定の天候であるときに測定されたモデル構築用発電出力値だけが用いられており、
     前記状態判定手段は、前記天候判定手段による判定において前記特定の天候であるときに測定された状態判定用発電出力値のみを用いて、前記発電システムの状態を判定する、
    請求項7に記載の発電システム分析装置。
  9.  前記状態判定手段は、前記入力の変動が所定の閾値を超えるタイミングの前および後の所定時間における発電出力値を用いて前記発電システムの状態を判定する、請求項4に記載の発電システム分析装置。
  10.  対象の太陽光発電システムとは異なる他の太陽光発電システムの疑似システムモデルに対して、前記対象の太陽光発電システムのソーラーパネルと前記他の太陽光発電システムのソーラーパネルとの設置地点の相違および/または設置角度の相違に関する補正を加えて生成した補正疑似システムモデルを保持するモデル管理手段を更に有する、請求項3に記載の発電システム分析装置。
  11.  対象の太陽光発電システムとは異なる他の太陽光発電システムの疑似システムモデルに対して、前記対象の太陽光発電システムと前記他の太陽光発電システムとのソーラーパネルの個数の相違および/または接続構成の相違に関する補正を加えて生成した補正疑似システムモデルを保持するモデル管理手段を更に有する、請求項3に記載の発電システム分析装置。
  12.  対象の太陽光発電システムとは異なる他の太陽光発電システムの疑似システムモデルに対して、前記対象の太陽光発電システムと前記他の太陽光発電システムとの使用された期間の相違に関する補正を加えて生成した補正疑似システムモデルを保持するモデル管理手段を更に有する、請求項3に記載の発電システム分析装置。
  13.  発電システムの状態を分析するための発電システム分析方法であって、
     範囲情報管理手段が、前記発電システムの所定の測定点におけるモデル構築用の発電出力である複数のモデル構築用発電出力値を用いてノンパラメトリック法で生成される疑似システムモデルから算出される、前記測定点における発電出力の代表値と、前記モデル構築用発電出力値と、を用いて算出される前記複数のモデル構築用発電出力値の標準偏差に基づいて決定される、前記測定点における発電出力が所定以上の確率で含まれるべき範囲に対応した状態判定用発電出力範囲を管理し、
     発電出力値取得手段が、前記測定点において測定される発電出力を状態判定用発電出力値として取得し、
     状態判定手段が、複数の前記状態判定用発電出力値を前記状態判定用発電出力範囲と比較し、比較結果に基づいて、前記発電システムの状態を判定する、
    発電システム分析方法。
     
PCT/JP2015/060059 2014-03-31 2015-03-31 発電システム分析装置および方法 WO2015152205A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580017329.1A CN106233555B (zh) 2014-03-31 2015-03-31 发电系统分析装置以及方法
KR1020167029761A KR101808978B1 (ko) 2014-03-31 2015-03-31 발전 시스템 분석 장치 및 방법
EP15772628.2A EP3128635A4 (en) 2014-03-31 2015-03-31 Power generation system analysis device and method
JP2016511910A JP6088706B2 (ja) 2014-03-31 2015-03-31 発電システム分析装置および方法
US15/300,861 US10418935B2 (en) 2014-03-31 2015-03-31 Apparatus and method for analyzing power generation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-072020 2014-03-31
JP2014072020 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015152205A1 true WO2015152205A1 (ja) 2015-10-08

Family

ID=54240526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060059 WO2015152205A1 (ja) 2014-03-31 2015-03-31 発電システム分析装置および方法

Country Status (6)

Country Link
US (1) US10418935B2 (ja)
EP (1) EP3128635A4 (ja)
JP (1) JP6088706B2 (ja)
KR (1) KR101808978B1 (ja)
CN (1) CN106233555B (ja)
WO (1) WO2015152205A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016039708A (ja) * 2014-08-07 2016-03-22 三井化学株式会社 発電出力値推定方法、装置、及びプログラム
JP2022084398A (ja) * 2020-11-26 2022-06-07 三菱電機株式会社 太陽光発電出力推定装置、太陽光発電出力推定方法および太陽光発電出力推定プログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189756A1 (ja) * 2015-05-27 2016-12-01 日本電気株式会社 発電制御装置、制御装置、制御方法および記録媒体
US10922634B2 (en) * 2017-05-26 2021-02-16 General Electric Company Determining compliance of a target asset to at least one defined parameter based on a simulated transient response capability of the target asset and as a function of physical operation data measured during an actual defined event
FR3090829B1 (fr) * 2018-12-21 2022-07-22 Commissariat Energie Atomique Procédé de détermination d’une consigne minimale préférentielle de puissance, Procédé de pilotage d’une pluralité de chauffe-eaux et dispositif associé
KR102076978B1 (ko) * 2019-04-09 2020-04-07 한국건설기술연구원 고장 검출부를 구비한 태양광 발전 시스템
IT202100001346A1 (it) * 2021-01-25 2022-07-25 Avatr S R L Startup Costituita Ai Sensi Dellart 4 Comma 10 Bis D L 3/2015 Conv Con Legge 33/2015 Metodo di previsione in tempo reale della potenza elettrica di un impianto fotovoltaico
CN114285091B (zh) * 2021-12-24 2024-01-26 国网江苏省电力有限公司盐城供电分公司 一种包含多个光伏发电的区域电网数据采集异常检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233639A (ja) * 2006-02-28 2007-09-13 Tohoku Electric Power Co Inc 風力発電出力予測方法、風力発電出力予測装置およびプログラム
JP2009002651A (ja) * 2008-10-06 2009-01-08 Daikin Ind Ltd 異常診断システム
JP2013073537A (ja) * 2011-09-29 2013-04-22 Omron Corp 情報処理装置、発電量算出方法、および、プログラム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864653A (ja) * 1994-08-26 1996-03-08 Omron Corp 太陽電池診断システム
JPH0956181A (ja) 1995-08-15 1997-02-25 Funai Electric Co Ltd 太陽光発電装置
JP2002289883A (ja) * 2001-03-23 2002-10-04 Sharp Corp 太陽電池パネル診断システム
JP2009043987A (ja) * 2007-08-09 2009-02-26 Toyota Motor Corp 太陽電池モジュールの故障診断装置
JP4935614B2 (ja) * 2007-10-12 2012-05-23 トヨタ自動車株式会社 太陽電池モジュールの故障診断装置
US8294451B2 (en) * 2007-12-03 2012-10-23 Texas Instruments Incorporated Smart sensors for solar panels
WO2011031889A1 (en) * 2009-09-11 2011-03-17 Wattminder, Inc System for and method of monitoring and diagnosing the performance of photovoltaic or other renewable power plants
AU2010346725B2 (en) * 2010-02-26 2013-11-28 Kabushiki Kaisha Toshiba Fault diagnosis device and fault diagnosis method
JP5472913B2 (ja) * 2010-04-23 2014-04-16 株式会社東芝 太陽光発電システムの異常診断装置
US9249488B2 (en) * 2010-03-26 2016-02-02 Osaka Prefecture University Public Corporation Ni-base dual multi-phase intermetallic compound alloy containing Nb and C, and manufacturing method for same
JP2011216811A (ja) * 2010-04-02 2011-10-27 Sharp Corp 太陽電池異常診断システム、太陽電池異常診断装置および太陽電池異常診断方法
JP2012119632A (ja) * 2010-12-03 2012-06-21 National Institute Of Advanced Industrial & Technology 太陽電池モジュール
US8155899B2 (en) * 2010-12-16 2012-04-10 Gregory Smith Efficiency meter for photovoltaic power generation systems
JP5330438B2 (ja) * 2011-03-17 2013-10-30 株式会社東芝 異常診断装置およびその方法、コンピュータプログラム
US20120242320A1 (en) * 2011-03-22 2012-09-27 Fischer Kevin C Automatic Generation And Analysis Of Solar Cell IV Curves
JP2013093430A (ja) * 2011-10-25 2013-05-16 Gaia Power Co Ltd 太陽光発電システム及びその管理方法
JP2013191672A (ja) * 2012-03-13 2013-09-26 Omron Corp 情報処理装置、異常検出方法、プログラム、および、太陽光発電システム
CN103390902B (zh) * 2013-06-04 2015-04-29 国家电网公司 一种基于最小二乘法的光伏电站超短期功率预测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233639A (ja) * 2006-02-28 2007-09-13 Tohoku Electric Power Co Inc 風力発電出力予測方法、風力発電出力予測装置およびプログラム
JP2009002651A (ja) * 2008-10-06 2009-01-08 Daikin Ind Ltd 異常診断システム
JP2013073537A (ja) * 2011-09-29 2013-04-22 Omron Corp 情報処理装置、発電量算出方法、および、プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3128635A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016039708A (ja) * 2014-08-07 2016-03-22 三井化学株式会社 発電出力値推定方法、装置、及びプログラム
JP2022084398A (ja) * 2020-11-26 2022-06-07 三菱電機株式会社 太陽光発電出力推定装置、太陽光発電出力推定方法および太陽光発電出力推定プログラム
JP7450522B2 (ja) 2020-11-26 2024-03-15 三菱電機株式会社 太陽光発電出力推定装置、太陽光発電出力推定方法および太陽光発電出力推定プログラム

Also Published As

Publication number Publication date
CN106233555A (zh) 2016-12-14
EP3128635A4 (en) 2017-08-30
CN106233555B (zh) 2018-11-09
EP3128635A1 (en) 2017-02-08
KR20160138209A (ko) 2016-12-02
US10418935B2 (en) 2019-09-17
US20170025997A1 (en) 2017-01-26
JP6088706B2 (ja) 2017-03-01
KR101808978B1 (ko) 2017-12-13
JPWO2015152205A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
WO2015152205A1 (ja) 発電システム分析装置および方法
Ventura et al. Utility scale photovoltaic plant indices and models for on-line monitoring and fault detection purposes
US9568519B2 (en) Building energy consumption forecasting procedure using ambient temperature, enthalpy, bias corrected weather forecast and outlier corrected sensor data
WO2011104931A1 (ja) 異常診断装置および異常診断方法
JP5736530B1 (ja) 太陽光発電システムの未来の電流値または発電量の低下の時期を予測する方法
US20210313928A1 (en) Method and apparatus for determining key performance photovoltaic characteristics using sensors from module-level power electronics
JP5462821B2 (ja) 太陽電池異常判定装置および太陽電池異常判定方法
CN111082749B (zh) 光伏组串运行状态的识别方法、装置及存储介质
US20180073980A1 (en) System and method for remote calibration of irradiance sensors of a solar photovoltaic system
US20160356859A1 (en) Fault detection in energy generation arrangements
KR101532163B1 (ko) 태양광발전 상태진단 평가시스템
Ventura et al. Development of models for on-line diagnostic and energy assessment analysis of PV power plants: The study case of 1 MW Sicilian PV plant
US10770898B2 (en) Methods and systems for energy use normalization and forecasting
JP2013191672A (ja) 情報処理装置、異常検出方法、プログラム、および、太陽光発電システム
JP2018019555A (ja) 影の影響を考慮した太陽光発電出力推定方法
US20120068687A1 (en) Method for Determining a Spatial Arrangement of Photovoltaic Module Groups in a Photovoltaic Installation
CN112780486A (zh) 用于控制风力转换器的系统和方法
Killinger et al. A tuning routine to correct systematic influences in reference PV systems’ power outputs
Hsu et al. An IoT-based sag monitoring system for overhead transmission lines
JP2018026909A (ja) 発電状態判定装置、監視装置、発電状態判定方法および判定プログラム
JP6295724B2 (ja) 太陽電池の評価装置、評価方法及び、太陽光発電システム
JP6512745B2 (ja) 太陽光発電システム、端末、解析処理方法、及び、プログラム
JP2016201921A (ja) 太陽光発電設備の発電量の低下を検出する方法、装置、およびプログラム
Rahimpour et al. Non-intrusive load monitoring of hvac components using signal unmixing
Herteleer et al. Investigating methods to improve photovoltaic thermal models at second-to-minute timescales

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511910

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15300861

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015772628

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015772628

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167029761

Country of ref document: KR

Kind code of ref document: A