WO2010119709A1 - Ni基単結晶超合金及びこれを用いたタービン翼 - Google Patents
Ni基単結晶超合金及びこれを用いたタービン翼 Download PDFInfo
- Publication number
- WO2010119709A1 WO2010119709A1 PCT/JP2010/002795 JP2010002795W WO2010119709A1 WO 2010119709 A1 WO2010119709 A1 WO 2010119709A1 JP 2010002795 W JP2010002795 W JP 2010002795W WO 2010119709 A1 WO2010119709 A1 WO 2010119709A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- less
- single crystal
- based single
- crystal superalloy
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/52—Alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/607—Monocrystallinity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the present invention relates to a Ni-based single crystal superalloy and a turbine blade using the same.
- This application claims priority based on Japanese Patent Application No. 2009-100903 filed in Japan on April 17, 2009, the contents of which are incorporated herein by reference.
- Ni-based single crystal superalloys are used as materials with excellent heat resistance.
- This Ni-based single crystal superalloy is strengthened by adding Al to the base Ni to precipitate Ni 3 Al type precipitates, and further adding a refractory metal such as Cr, W, or Ta to form an alloy. It is a single crystallized superalloy.
- the Ni-based single crystal superalloy is subjected to a solution treatment at a predetermined temperature and then an aging treatment to obtain an appropriate metal structure for improving the strength.
- This superalloy is called a so-called precipitation hardening type alloy and has a crystal structure in which a precipitation phase ( ⁇ ′ phase) is dispersed and precipitated in a matrix phase ( ⁇ phase).
- the first generation that does not contain Re, the second generation that contains about 3% by mass of Re, and the third generation that contains 5 to 6% by mass of Re have already been developed.
- the creep strength is improved as the time progresses.
- CMSX-2 manufactured by Canon Muskegon, see Patent Document 1
- CMSX-4 Canon As a third generation Ni-based single crystal superalloy, CMSX-10 (manufactured by Canon Muskegon, see Patent Document 3) is known.
- CMSX-10 which is a third generation Ni-based single crystal superalloy
- CMSX-10 which is a third generation Ni-based single crystal superalloy
- this Ni-based single crystal superalloy has a high Re composition ratio of 5% by mass or more, and the amount of solid solution in the parent phase ( ⁇ phase) exceeds the limit.
- Re is combined with other elements to precipitate a so-called TCP (Topo 1 og Closed Packed) phase.
- TCP Topo 1 og Closed Packed
- Ni-based single crystal superalloys have been developed that have an optimal value for the lattice constant of ( ⁇ ′ phase) and that can further improve the strength at high temperatures.
- a fourth generation Ni-based single crystal superalloy containing up to about 3% by mass of Ru and a fifth generation Ni-based single crystal superalloy containing 4% by mass or more of Ru have been developed.
- the creep strength is further improved as the time progresses.
- the fourth generation Ni-based single crystal superalloy is TMS-138 (NIMS-IHI, see Patent Document 4)
- the fifth generation Ni-based single crystal superalloy is TMS-162 (NIMS- IHI Corporation, see Patent Document 5).
- the 4th and 5th generation Ni-based single crystal superalloys contain a large amount of heavy metals such as W and Re in order to obtain high creep strength at high temperatures. Specific gravity is greater than that of alloys.
- the turbine blades using the 4th and 5th generation Ni-based single crystal superalloys have high creep strength at high temperatures, the increase in blade weight causes a decrease in peripheral speed. There is a problem of causing an increase in weight of an industrial gas turbine or the like.
- Ni-based single crystal superalloys have been developed that have a higher Re composition ratio than the conventional Ni-based single crystal superalloy described above (specifically, the Re composition ratio is greater than 8% by mass).
- This Ni-based single crystal superalloy is referred to as a high rhenium Ni-based single crystal superalloy in Non-Patent Document 1, and contains 9% by mass of Re as shown in Table 1 of the same document.
- Ni-based single crystal superalloy In order to develop a Ni-based single crystal superalloy that can obtain higher creep strength than before at high temperatures, it will be necessary in the future to increase the composition ratio of Re as shown in Non-Patent Document 1 above. It is expected to become. Therefore, in order to improve the creep strength of the turbine blade at high temperature, it is desired to develop a Ni-based single crystal superalloy having a Re composition ratio larger than the conventional 8 mass%. In addition, this Ni-based single crystal superalloy has a higher amount of heavy metal Re than before, so the creep strength per specific gravity is high in order to reduce the weight of the turbine blade and improve the service temperature, so-called specific creep strength. Development of a Ni-based single crystal superalloy having a high C is also desired.
- the present invention has been proposed in view of such conventional circumstances, and provides a Ni-based single crystal superalloy containing a large amount of Re and excellent in specific creep strength and a turbine blade using the same. Objective.
- the present inventors have suppressed (1) Re from 8% by mass in composition ratio while suppressing the addition amount of W having a large specific gravity, and have improved tissue stability and TCP.
- Re is determined by improving the composition ratio in consideration of phase suppression, and (2) specifying the optimal composition range so that high creep strength can be maintained at high temperatures, including Ru that suppresses the TCP phase. It has been found that a Ni-based single crystal superalloy having a higher specific gravity than that of the fourth and fifth generation Ni-based single crystal superalloys can be obtained while increasing the creep strength at a high temperature while including a larger amount than before.
- the present invention has been completed.
- the present invention provides the following means.
- Co 0.0 mass% to 15.0 mass%
- Cr 4.1 mass% to 8.0 mass%
- Mo 2.1 mass% to 4.5 mass%
- W 0.0 mass% to 3.9 mass%
- Ta 4.0 mass% to 10.0 mass%
- Al 4.5 mass% to 6.5 mass%
- Ti 0 0.0 mass% to 1.0 mass%
- Hf 0.00 mass% to 0.5 mass%
- Nb 0.0 mass% to 3.0 mass%
- Re 8.1 mass% or more
- Ru 0.5% by mass or more and 6.5% by mass or less, with the balance being Ni and inevitable impurities.
- B 0.05 mass% or less
- C 0.15 mass% or less
- Si 0.1 mass% or less
- Y 0.1 mass% or less
- La Ni-based single crystal superalloy according to item (9), wherein 0.1 mass% or less, Ce: 0.1 mass% or less, V: 1 mass% or less, and Zr: 0.1 mass% or less are satisfied.
- Ni-based single crystal superalloy containing Re in a composition ratio of more than 8% by mass it is possible to maintain a high creep strength at a high temperature while suppressing an increase in specific gravity. is there. Therefore, in the turbine blade using this Ni-based single crystal superalloy, it is possible to achieve both reduction in weight and improvement in the service temperature.
- FIG. 1 is a perspective view showing an example of a turbine blade using the Ni-based single crystal superalloy of the present invention.
- FIG. 2 is a characteristic diagram showing the relationship between the Re content and specific gravity of each Example and Reference Example shown in Table 1.
- FIG. 3 is a diagram illustrating the creep rupture rupture time of each example shown in Table 1 and a comparative example of Non-Patent Document 1.
- FIG. 4 is a diagram showing the relationship between the soot Mo content and the creep rate of a Ni-based single crystal superalloy having an average component according to an embodiment of the present invention obtained by simulation.
- FIG. 5 is a diagram showing the relationship between the Mo content of the Ni-based single crystal superalloy having the average component of the embodiment of the present invention and the TCP phase precipitation start time, obtained by simulation.
- the Ni-based single crystal superalloy to which the present invention is applied has a mass ratio of Co: 0.0% by mass to 15.0% by mass, Cr: 4.1% by mass to 8.0% by mass, Mo: 2 0.1 mass% or more and 4.5 mass% or less, W: 0.0 mass% or more and 3.9 mass% or less, Ta: 4.0 mass% or more and 10.0 mass% or less, Al: 4.5 mass% or more 6.5 mass% or less, Ti: 0.0 mass% or more and 1.0 mass% or less, Hf: 0.00 mass% or more and 0.5 mass% or less, Nb: 0.0 mass% or more and 3.0 mass% or less
- Re 8.1 mass% or more and 9.9 mass% or less
- Ru 0.5 mass% or more and 6.5 mass% or less are contained, and the remainder has a composition which consists of Ni and an unavoidable impurity.
- Ni-based single crystal composite gold to which the present invention is applied is, in mass ratio, Co: 0.0 mass% or more and 15.0 mass% or less, Cr: 5.1 mass% or more and 8.0 mass% or less, Mo: 2.1% to 4.5% by mass, W: 0.0% to 3.9% by mass, Ta: 4.0% to 10.0% by mass, Al: 4.5 2.
- Mass% or more and 6.5 mass% or less Ti: 0.0 mass% or more and 1.0 mass% or less, Hf: 0.00 mass% or more and 0.5 mass% or less, Nb: 0.0 mass% or more 0% by mass or less, Re: 8.1% by mass or more and 9.9% by mass or less, Ru: 0.5% by mass or more and 6.5% by mass or less, with the balance being composed of Ni and inevitable impurities .
- the Ni-based single crystal composite gold to which the present invention is applied has a mass ratio of Co: 4.0% by mass to 9.5% by mass, Cr: 4.1% by mass to 8.0% by mass, Mo: 2.1% to 4.5% by mass, W: 0.0% to 3.9% by mass, Ta: 4.0% to 10.0% by mass, Al: 4.5 2. Mass% or more and 6.5 mass% or less, Ti: 0.0 mass% or more and 1.0 mass% or less, Hf: 0.00 mass% or more and 0.5 mass% or less, Nb: 0.0 mass% or more 0% by mass or less, Re: 8.1% by mass or more and 9.9% by mass or less, Ru: 0.5% by mass or more and 6.5% by mass or less, with the balance being composed of Ni and inevitable impurities .
- the Ni-based single crystal composite gold to which the present invention is applied has a mass ratio of Co: 4.0% by mass to 9.5% by mass, Cr: 5.1% by mass to 8.0% by mass, Mo: 2.1% to 4.5% by mass, W: 0.0% to 3.9% by mass, Ta: 4.0% to 10.0% by mass, Al: 4.5 2. Mass% or more and 6.5 mass% or less, Ti: 0.0 mass% or more and 1.0 mass% or less, Hf: 0.00 mass% or more and 0.5 mass% or less, Nb: 0.0 mass% or more 0% by mass or less, Re: 8.1% by mass or more and 9.9% by mass or less, Ru: 0.5% by mass or more and 6.5% by mass or less, with the balance being composed of Ni and inevitable impurities .
- the Ni-based single crystal composite gold to which the present invention is applied has a mass ratio of Co: 0.0% by mass or more and 15.0% by mass or less, Cr: 4.1% by mass or more and 8.0% by mass or less, Mo: 2.1% to 4.5% by mass, W: 0.0% to 2.9% by mass, Ta: 4.0% to 10.0% by mass, Al: 4.5 2.
- Mass% or more and 6.5 mass% or less Ti: 0.0 mass% or more and 1.0 mass% or less, Hf: 0.00 mass% or more and 0.5 mass% or less, Nb: 0.0 mass% or more 0% by mass or less, Re: 8.1% by mass or more and 9.9% by mass or less, Ru: 0.5% by mass or more and 6.5% by mass or less, with the balance being composed of Ni and inevitable impurities .
- the Ni-based single crystal composite gold to which the present invention is applied has a mass ratio of Co: 0.0% by mass or more and 15.0% by mass or less, Cr: 4.1% by mass or more and 8.0% by mass or less, Mo: 2.1% to 4.5% by mass, W: 0.0% to 1.9% by mass, Ta: 4.0% to 10.0% by mass, Al: 4.5 2.
- Mass% or more and 6.5 mass% or less Ti: 0.0 mass% or more and 1.0 mass% or less, Hf: 0.00 mass% or more and 0.5 mass% or less, Nb: 0.0 mass% or more 0% by mass or less, Re: 8.1% by mass or more and 9.9% by mass or less, Ru: 0.5% by mass or more and 6.5% by mass or less, with the balance being composed of Ni and inevitable impurities .
- the Ni-based single crystal composite gold to which the present invention is applied has a mass ratio of Co: 4.0% by mass to 9.5% by mass, Cr: 5.1% by mass to 8.0% by mass, Mo: 2.1% to 4.5% by mass, W: 0.0% to 1.9% by mass, Ta: 4.0% to 6.5% by mass, Al: 4.5 1 mass% or more and 6.5 mass% or less, Ti: 0.0 mass% or more and 0.5 mass% or less, Hf: 0.00 mass% or more and 0.5 mass% or less, Nb: 0.0 mass% or more 0% by mass or less, Re: 8.1% by mass or more and 9.9% by mass or less, Ru: 4.0% by mass or more and 6.5% by mass or less, with the balance being composed of Ni and inevitable impurities .
- the Ni-based single crystal composite gold to which the present invention is applied has a mass ratio of Co: 4.0% by mass to 9.5% by mass, Cr: 5.1% by mass to 6.5% by mass, Mo: 2.1 mass% or more and 4.0 mass% or less, W: 0.0 mass% or more and 1.9 mass% or less, Ta: 4.0 mass% or more and 6.0 mass% or less, Al: 5.0 1 mass% or more and 6.0 mass% or less, Ti: 0.0 mass% or more and 0.5 mass% or less, Hf: 0.00 mass% or more and 0.5 mass% or less, Nb: 0.0 mass% or more. 0% by mass or less, Re: 8.1% by mass or more and 9.0% by mass or less, Ru: 4.0% by mass or more and 6.5% by mass or less, with the balance being composed of Ni and inevitable impurities .
- W in order to obtain a Ni-based single crystal superalloy having a small specific gravity, among the composition of the Ni-based single crystal superalloy, W can be 0.0 mass% or more and 2.9 mass% or less, Furthermore, W can be 0.0 mass% or more and 1.9 mass% or less.
- Each of the metal structures of the Ni-based single crystal superalloy has a crystal structure in which a precipitation phase ( ⁇ ′ phase) is dispersed and precipitated in a matrix phase ( ⁇ phase).
- the ⁇ phase is composed of an austenite phase
- the ⁇ ′ phase is composed mainly of an intermetallic compound having a regular structure such as Ni 3 Al.
- excellent strength characteristics can be obtained at high temperatures by optimizing the composition of the ⁇ phase and the ⁇ ′ phase dispersed in the ⁇ phase.
- Co is an element that increases the solid solution limit at a high temperature with respect to a parent phase containing Al, Ta, etc., disperses and precipitates a fine ⁇ ′ ′ phase by heat treatment, and improves high-temperature strength.
- Co exceeds 15.0% by mass, the balance with other additive elements such as Al, Ta, Mo, W, Hf, and Cr is lost, and a harmful phase is precipitated to lower the high-temperature strength. Therefore, Co is preferably 0.0% by mass or more and 15.0% by mass or less, and more preferably 4.0% by mass or more and 9.5% by mass or less.
- Cr is an element excellent in oxidation resistance, and is an element improving the high-temperature corrosion resistance of the Ni-based single crystal superalloy together with Hf and Al.
- Cr is less than 4.1% by mass, it becomes difficult to ensure desired high temperature corrosion resistance.
- Cr exceeds 8.0% by mass, precipitation of the ⁇ ′ phase is suppressed, and harmful phases such as ⁇ phase and ⁇ phase are precipitated, and the high temperature strength is lowered.
- Cr is preferably 4.1% by mass or more and 8.0% by mass or less, more preferably 5.1% by mass or more and 8.0% by mass or less, and still more preferably 5.1% by mass or more. 6.5% by mass or less.
- Mo is an element that contributes to the high-temperature strength by precipitation hardening, while increasing the high-temperature strength by dissolving in the ⁇ phase as a parent phase in the presence of W or Ta.
- Mo is less than 2.1% by mass, it is difficult to ensure desired high-temperature strength.
- Mo exceeds 4.5 mass%, high temperature strength will fall and also high temperature corrosion resistance will fall. Therefore, it is preferable that Mo is 2.1 mass% or more and 4.5 mass% or less, More preferably, it is 2.1 mass% or more and 3.4 mass% or less, More preferably, it is 2.1 mass% or more. 0% by mass or less.
- W is an element that improves high-temperature strength by the action of solid solution strengthening and precipitation hardening in the presence of Mo or Ta.
- W is preferably 0.0% by mass or more and 3.9% by mass or less.
- W is preferably 0.0% by mass or more and 2.9% by mass or less, more preferably 0.0% by mass or more and 1.9% by mass in order to obtain a Ni-based single crystal superalloy having a small specific gravity. % Or less.
- W is an element that improves high-temperature strength by the action of solid solution strengthening and precipitation hardening in the presence of Mo or Ta.
- W is preferably 0.0% by mass or more and 3.9% by mass or less.
- W is preferably 0.0% by mass or more and 2.9% by mass or less, more preferably 0.0% by mass or more and 1.9% by mass in order to obtain a Ni-based single crystal superalloy having a small specific gravity. % Or less.
- Ta is an element that improves the high temperature strength by the action of solid solution strengthening and precipitation hardening in the presence of Mo or W, and also improves the high temperature strength by partly precipitation hardening to the ⁇ 'phase. .
- Ta is preferably 4.0% by mass or more and 10.0% by mass or less, more preferably 4.0% by mass or more and 6.5% by mass or less, and still more preferably 4.0% by mass or more. It is 6.0 mass% or less.
- Al forms an intermetallic compound represented by Ni 3 Al at a ratio of 60 to 70% (volume percentage) as a ⁇ ′ phase that is finely and uniformly dispersed and precipitated in the matrix phase while being combined with Ni. That is, Al is an element that improves high-temperature strength together with Ni. Al is an element excellent in oxidation resistance, and is an element that improves high-temperature corrosion resistance of Ni-based single crystal superalloy together with Cr and Hf. However, if the Al content is less than 4.5% by mass, the amount of precipitation of the ⁇ ′ phase becomes insufficient, and it becomes difficult to ensure desired high temperature strength and high temperature corrosion resistance.
- Al is preferably 4.5% by mass or more and 6.5% by mass or less, and more preferably 5.0% by mass or more and 6.0% by mass or less.
- Ti is an element for improving the high temperature strength by the action of solid solution strengthening and precipitation strengthening in the coexistence with Mo or W, and partly precipitation hardening for the ⁇ ′ phase, thereby improving the high temperature strength. is there.
- Ti exceeds 1.0% by mass, a harmful phase precipitates and the high-temperature strength decreases. Therefore, Ti is preferably 0.0% by mass or more and 1.0% by mass or less, and more preferably 0.0% by mass or more and 0.5% by mass or less. In the present invention, even when the addition amount of Ti is suppressed or Ti is not added, high creep strength is maintained at a high temperature by setting the composition ratio of other constituent elements within the optimum range. Is possible.
- Hf is a grain boundary segregation element, which is unevenly distributed in the grain boundary and strengthens the grain boundary, thereby improving the high temperature strength.
- Hf is an element excellent in oxidation resistance, and is an element that improves the high-temperature corrosion resistance of the Ni-based single crystal superalloy together with Cr and A1.
- Hf is preferably 0.00% by mass or more and 0.5% by mass or less.
- Nb is an element that improves high-temperature strength. However, when Nb exceeds 3.0% by mass, a harmful phase precipitates and the high-temperature strength decreases. Therefore, Nb is preferably 0.0% by mass or more and 3.0% by mass or less, more preferably. It is 0.0 mass% or more and 1.0 mass% or less. In the present invention, even when the amount of Nb added is suppressed or Nb is not added, high creep strength is maintained at a high temperature by setting the composition ratio of other constituent elements within the optimum range. Is possible.
- Re is an element that dissolves in the ⁇ phase, which is the parent phase, and improves high temperature strength by solid solution strengthening. It also has the effect of improving corrosion resistance.
- Re is less than 3.0% by mass, the solid solution strengthening of the ⁇ phase is insufficient, and it becomes difficult to ensure a desired high temperature strength.
- the lower limit of the Re composition ratio is specified as 8.1 mass%.
- Re is preferably 8.1% by mass or more and 9.9% by mass or less, and more preferably 8.1% by mass or more and 9.0% by mass or less.
- Ru is an element that suppresses the precipitation of the TCP phase and improves the high-temperature strength.
- Ru is less than 0.5% by mass, a TCP phase is precipitated at a high temperature, and it becomes difficult to ensure a desired high temperature strength.
- Ru exceeds 6.5% by mass, a harmful phase is precipitated and the high temperature strength is lowered. Therefore, Ru is preferably 0.5% by mass or more and 6.5% by mass or less, and more preferably 4.0% by mass or more and 6.5% by mass or less.
- the Ni-based single crystal superalloy to which the present invention is applied further contains at least one element selected from B, C, Si, Y, La, Ce, V, and Zr. Also good. Specifically, when these additive elements are included, B: 0.05 mass% or less, C: 0 for each composition range so that no harmful phase is precipitated and the high temperature strength is not lowered. .15 mass% or less, Si: 0.1 mass% or less, Y: 0.1 mass% or less, La: 0.1 mass% or less, Ce: 0.1 mass% or less, V: 1 mass% or less, Zr : It is preferable to set it as 0.1 mass% or less.
- Si has an action of lowering the melting point of the alloy, and may have an adverse effect of locally melting the material during heat treatment at a high temperature such as solution treatment. Therefore, it is not preferable to contain an element such as Si in the Ni-based single crystal superalloy to which the present invention is applied, and it is desirable to reduce it as much as possible.
- the Ni-based single crystal superalloy to which the present invention is applied can suppress an increase in specific gravity and maintain high creep strength at high temperatures while containing a large amount of Re.
- high creep strength can be maintained at high temperatures.
- high creep strength can be maintained at a high temperature. Therefore, according to the present invention, it is possible to obtain a Ni-based single crystal superalloy having a high creep strength per specific gravity (high specific creep strength).
- the Ni-based single crystal superalloy of the present invention can be suitably used for a turbine blade 1 as shown in FIG. That is, the turbine blade 1 using the Ni-based single crystal superalloy of the present invention has high creep strength at high temperatures, can withstand long-time use at high temperatures, and is capable of withstanding fourth and fifth generation Ni. Since the specific gravity is smaller than that of the base single crystal superalloy, it is possible to achieve both reduction in weight and improvement in the service temperature.
- the Ni-based single crystal superalloy of the present invention can be widely applied to the turbine blades (static and moving blades) used in the above-described aircraft engines and industrial gas turbines. Furthermore, the Ni-based single crystal superalloy of the present invention is not limited to the turbine blades used in the aircraft engines and industrial gas turbines described above, but is widely used for parts or products that are used for a long time at high temperatures. It is possible.
- the composition of the ⁇ phase and the ⁇ ′ phase dispersed in the ⁇ phase can be optimized, not only the Ni-based single crystal superalloy described above but also the unidirectional solidification.
- the present invention can be similarly applied to materials, ordinary cast materials, and the like. In that case, it is possible to obtain the same effect as the present invention.
- Ni-based single crystal superalloy melts were prepared using a vacuum melting furnace, and alloy ingots of Examples 1 to 3 having different compositions were cast using this alloy melt.
- Table 1 shows the composition ratios of the alloy ingots of Examples 1 to 3.
- Table 1 shows composition ratios of known Ni-based single crystal superalloys as Reference Examples 1 to 28.
- each alloy ingot shown in Table 1 was subjected to solution treatment and aging treatment to obtain Ni-based single crystal superalloys of Examples 1 to 3.
- the temperature was increased from 1503 to 1563 K (1230 to 1290 ° C.) to 1573 to 1613 K (1300 to 1340 ° C.) by a multi-step process and then held for 1 to 10 hours or more.
- the aging treatment primary aging treatment was carried out at 1273 to 1423K (1000 ° C. to 1150 ° C.) for 3 to 5 hours.
- the specific gravity is inevitably increased in a Ni-based single crystal superalloy containing a heavy metal, Re, in a composition ratio of more than 8 mass%.
- the present technology has identified an optimal composition range that can maintain high creep strength at high temperatures including Ru that suppresses the TCP phase while suppressing the addition amount of W having a large specific gravity.
- the Ni-based single crystal superalloys of Examples 1 to 3 have creep rupture fractures higher than the high rhenium Ni-based single crystal superalloy described in Non-Patent Document 1 shown as Comparative Example 1 in FIG. It can be seen that the time shows a high value. Specifically, when compared under the above creep test conditions, the high rhenium Ni-based single crystal superalloy has a creep rupture rupture time of 593 (Hr), whereas in Examples 1 to 3, the creep rupture rupture time is 2007. 7 (Hr), 888.4 (Hr), and 828.6 (Hr). In particular, in Example 1, the creep rupture rupture time shows a value higher than about three times that of Comparative Example 1, indicating that the creep strength is remarkably excellent. From the above, according to the present invention, it is possible to obtain a Ni-based single crystal superalloy excellent in specific creep strength while containing more than 8% by mass of Re.
- FIG. 4 is a graph showing the relationship between the Mo content and the steady creep rate in a Ni-based single crystal superalloy obtained by simulation, the horizontal axis is the Mo content (mass%), and the vertical axis is Steady creep rate.
- the alloy components used in the analysis were the average components of Examples 1 to 3, and only the Mo content was changed from 0.0 to 4.5 mass%.
- the content of Ni was adjusted for the amount of change in the Mo content.
- the analysis conditions were set to 950 ° C. and 245 MPa assuming a general turbine blade state during operation. From FIG. 4, it can be seen that the creep rate decreases as the Mo content increases.
- FIG. 5 shows the relationship between the Mo content and the TCP phase precipitation start time obtained by simulation.
- the alloy components used in the analysis are the same as those used in the analysis of FIG. 4, and the evaluated temperature is 950 ° C. From FIG. 5, it can be seen that as the Mo content increases, the TCP phase precipitation start time is shortened. However, when the Mo content exceeds 3.0 mass%, it becomes less than 100 hours, and further 3 When exceeding 5 mass%, it will be less than 70 hours. Therefore, in order to reduce the adverse effects due to the precipitation of the TCP phase while having excellent creep strength, the Mo content is 2.1% by mass or more and 3.4% by mass or less (preferably 3.0% by mass or less). ) Is desirable.
- Ni-based single crystal superalloy containing Re in a composition ratio of more than 8% by mass and excellent in specific creep strength. Therefore, in a turbine blade using such a Ni-based single crystal superalloy containing a large amount of Re and excellent in specific creep strength, it is possible to achieve both reduction in weight and improvement in the service temperature.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本願は、2009年4月17日に日本に出願された特願2009-100903号に基づき優先権を主張し、その内容をここに援用する。
加えて、このNi基単結晶超合金は、重金属のReを従来よりも多く添加するため、タービン翼の軽量化と耐用温度の向上を図るべく、比重当たりのクリープ強度が高い、いわゆる比クリープ強度が高いNi基単結晶超合金の開発も併せて望まれている。
(1) 質量比で、Co:0.0質量%以上15.0質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
(2) 質量比で、Co:0.0質量%以上15.0質量%以下、Cr:5.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
(3) 質量比で、Co:4.0質量%以上9.5質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
(4) 質量比で、Co:4.0質量%以上9.5質量%以下、Cr:5.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
(5) 質量比で、Co:0.0質量%以上15.0質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上2.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
(6) 質量比で、Co:0.0質量%以上15.0質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上1.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
(7) 質量比で、Co:4.0質量%以上9.5質量%以下、Cr:5.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上1.9質量%以下、Ta:4.0質量%以上6.5質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上0.5質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上1.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:4.0質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
(8) 質量比で、Co:4.0質量%以上9.5質量%以下、Cr:5.1質量%以上6.5質量%以下、Mo:2.1質量%以上4.0質量%以下、W:0.0質量%以上1.9質量%以下、Ta:4.0質量%以上6.0質量%以下、Al:5.0質量%以上6.0質量%以下、Ti:0.0質量%以上0.5質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上1.0質量%以下、Re:8.1質量%以上9.0質量%以下、Ru:4.0質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
(9) 更に、B、C、Si、Y、La、Ce、V、Zrの群から選ばれる少なくとも1種又は2種以上の元素を含有する前項(1)~(8)の何れかのNi基単結晶超合金。
(10) 前記群から選ばれた組成のうち、B:0.05質量%以下、C:0.15質量%以下、Si:0.1質量%以下、Y:0.1質量%以下、La:0.1質量%以下、Ce:0.1質量%以下、V:1質量%以下、Zr:0.1質量%以下を各々満足する前項(9)のNi基単結晶超合金。
(11) 前項(1)~(10)の何れかのNi基単結晶超合金を用いたタービン翼。
Coは、Al、Ta等を含む母相に対する高温下での固溶限度を大きくし、熱処理によって微細なγ´’相を分散析出させ、高温強度を向上させる元素である。しかしながら、Coが15.0質量%を超えると、Al、Ta、Mo、W、Hf、Crなどの他の添加元素とのバランスが崩れ、有害相が析出して高温強度が低下する。したがって、Coは、0.0質量%以上15.0質量%以下であることが好ましく、より好ましくは4.0質量%以上9.5質量%以下である。
一方、Siには、合金の融点を下げる作用があり、溶体化処理のような高温での熱処理時に、材料を局部的に溶融させるような悪影響を及ぼす場合がある。したがって、本発明を適用したNi基単結晶超合金において、Siのような元素を含有することは好ましくなく、極力低減する方が望ましい。
以下、実施例により本発明の効果をより明らかにする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
図2に示すように、本技術と既存技術の特性の違いは、Re含有量と比重との関係により明確に表される。既存技術のNi基単結晶超合金においては、Re含有量が増えるに従い比重が増加する傾向にある。しかしながら、本技術の比重の増加傾向(傾き)は、既存技術の比重の増加傾向(傾き)よりも小さくなる。
すなわち、重金属であるReを組成比率で8質量%より多く含むNi基単結晶超合金では、比重が必然的に大きくなる。これに対し、図2から本技術では、比重の大きいWの添加量を抑えつつ、TCP相を抑制するRuを含めて高温下で高いクリープ強度を維持することができる最適な組成範囲を特定した結果、Reを組成比率で8質量%より多く含みつつも、既存技術よりも比重の増加傾向が小さいNi基単結晶超合金が得られたことがわかる。
以上のことから、本発明によれば、Reを組成比率で8質量%より多く含みつつも、比クリープ強度に優れたNi基単結晶超合金を得ることが可能となる。
なお、本シミュレーションは、英国 Sente Software 社により開発された「JMatPro V.5.0」を用いて行った。本ソフトは、金属合金の物理的、熱力学的物性値及び機械的物性値をその化学成分より計算するもので、本発明の技術分野であるNi基単結晶超合金のクリープ寿命についても、下記文献のFig.16 に示されるように精度良く予測できることが実証されている。(文献: N. Saunders, Z. Guo, X. Li, A. P. Miodownik and J-Ph. Schille:MODELLING THE MATERIAL PROPERTIES AND BEHAVIOUR OF Ni-BASED SUPERALLOYS, Superalloys2004, (TMS, 2004), pp.849-858.)
解析に使用した合金の成分は、実施例1から3の平均の成分とし、Mo含有量のみ 0.0~4.5質量%まで変化させた。Mo含有量が変化した分は、Niの含有量を調節した。なお、解析条件は、運転中における一般的なタービン翼の状態を想定し、950℃、245MPaに設定した。
図4より、Moの含有量が増加するに従い、クリープ速度が減少することが分かるが、とりわけ、Moの含有量が2.0質量%を超えた辺りから、優れた耐クリープ特性(Moを含有しない場合の1/3以下のクリープ速度)を示すようになる。一方、Moを過剰に添加すると、先述したTCP相の析出が容易化される。図5に、シミュレーションによって得られた、Mo含有量とTCP相の析出開始時間の関係を示す。解析に用いた合金の成分は、図4の解析で使用したものと同一であり、評価した温度は950℃である。
図5より、Moの含有量が増加するに従い、TCP相の析出開始時間が短くなることが分かるが、Moの含有量が3.0質量%を超えると100時間を下回るようになり、更に3.5質量%を越えると70時間を下回るようになる。
従って、優れたクリープ強度を有しながら、TCP相の析出による悪影響を軽減するためには、Moの含有量を 2.1質量%以上3.4質量%以下(望ましくは3.0質量%以下)に抑えることが望ましい。
Claims (13)
- 質量比で、Co:0.0質量%以上15.0質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
- 質量比で、Co:0.0質量%以上15.0質量%以下、Cr:5.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
- 質量比で、Co:4.0質量%以上9.5質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
- 質量比で、Co:4.0質量%以上9.5質量%以下、Cr:5.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
- 質量比で、Co:0.0質量%以上15.0質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上2.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
- 質量比で、Co:0.0質量%以上15.0質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上1.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
- 質量比で、Co:4.0質量%以上9.5質量%以下、Cr:5.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上1.9質量%以下、Ta:4.0質量%以上6.5質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上0.5質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上1.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:4.0質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
- 質量比で、Co:4.0質量%以上9.5質量%以下、Cr:5.1質量%以上6.5質量%以下、Mo:2.1質量%以上4.0質量%以下、W:0.0質量%以上1.9質量%以下、Ta:4.0質量%以上6.0質量%以下、Al:5.0質量%以上6.0質量%以下、Ti:0.0質量%以上0.5質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上1.0質量%以下、Re:8.1質量%以上9.0質量%以下、Ru:4.0質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
- 更に、B、C、Si、Y、La、Ce、V、Zrの群から選ばれる少なくとも1種又は2種以上の元素を含有する請求項1~8の何れか一項に記載のNi基単結晶超合金。
- 前記群から選ばれた組成のうち、B:0.05質量%以下、C:0.15質量%以下、Si:0.1質量%以下、Y:0.1質量%以下、La:0.1質量%以下、Ce:0.1質量%以下、V:1質量%以下、Zr:0.1質量%以下を各々満足する請求項9に記載のNi基単結晶超合金。
- 請求項1~8の何れか一項に記載のNi基単結晶超合金を用いたタービン翼。
- 請求項9に記載のNi基単結晶超合金を用いたタービン翼。
- 請求項10に記載のNi基単結晶超合金を用いたタービン翼。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011509229A JP5418589B2 (ja) | 2009-04-17 | 2010-04-16 | Ni基単結晶超合金及びこれを用いたタービン翼 |
CA2758867A CA2758867A1 (en) | 2009-04-17 | 2010-04-16 | Ni-based single crystal superalloy and turbine blade incorporating the same |
CN201080026976.6A CN102803528B (zh) | 2009-04-17 | 2010-04-16 | Ni基单晶超合金及使用其的涡轮叶片 |
US13/264,220 US8877122B2 (en) | 2009-04-17 | 2010-04-16 | Ni-based single crystal superalloy and turbine blade incorporating the same |
EP10764295.1A EP2420584B1 (en) | 2009-04-17 | 2010-04-16 | Nickel-based single crystal superalloy and turbine blade incorporating this superalloy |
RU2011146064/02A RU2482205C1 (ru) | 2009-04-17 | 2010-04-16 | МОНОКРИСТАЛЛИЧЕСКИЙ СУПЕРСПЛАВ НА ОСНОВЕ Ni И ВКЛЮЧАЮЩАЯ ЕГО ЛОПАТКА ТУРБИНЫ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009100903 | 2009-04-17 | ||
JP2009-100903 | 2009-04-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010119709A1 true WO2010119709A1 (ja) | 2010-10-21 |
Family
ID=42982380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/002795 WO2010119709A1 (ja) | 2009-04-17 | 2010-04-16 | Ni基単結晶超合金及びこれを用いたタービン翼 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8877122B2 (ja) |
EP (1) | EP2420584B1 (ja) |
JP (1) | JP5418589B2 (ja) |
CN (1) | CN102803528B (ja) |
CA (1) | CA2758867A1 (ja) |
RU (1) | RU2482205C1 (ja) |
WO (1) | WO2010119709A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012107269A (ja) * | 2010-11-15 | 2012-06-07 | National Institute For Materials Science | ニッケル基耐熱超合金と耐熱超合金部材 |
WO2012133412A1 (ja) * | 2011-03-29 | 2012-10-04 | 公立大学法人大阪府立大学 | 摩擦攪拌加工用ツール及びこれを用いた摩擦攪拌加工方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9499886B2 (en) * | 2007-03-12 | 2016-11-22 | Ihi Corporation | Ni-based single crystal superalloy and turbine blade incorporating the same |
WO2015072660A1 (ko) * | 2013-11-13 | 2015-05-21 | 주식회사 엔아이비 | Ni기 초합금 및 이의 제조방법 |
EP3029113B1 (en) * | 2014-12-05 | 2018-03-07 | Ansaldo Energia Switzerland AG | Abrasive coated substrate and method for manufacturing thereof |
EP3072624A1 (de) * | 2015-03-23 | 2016-09-28 | Siemens Aktiengesellschaft | Wellenelement, verfahren zum herstellen eines sich aus zwei unterschiedlichen werkstoffen zusammensetzenden wellenelements sowie entsprechende strömungsmaschine |
CN111168004B (zh) * | 2020-01-20 | 2021-03-23 | 西安交通大学 | 一种基于具有籽晶块内嵌结构螺旋选晶器的凝胶注模一体化铸型成型单晶零件的方法 |
CN112853154B (zh) * | 2021-01-04 | 2022-02-22 | 广东省科学院中乌焊接研究所 | 镍基中间层合金材料及其制备方法、焊件及焊接方法以及应用 |
CN113913942A (zh) * | 2021-01-13 | 2022-01-11 | 中国航发北京航空材料研究院 | 镍基单晶合金、用途和热处理方法 |
CN115255336B (zh) * | 2022-08-30 | 2024-03-26 | 北京航空航天大学 | 一种复合成分单晶薄壁构件及其制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4582548A (en) | 1980-11-24 | 1986-04-15 | Cannon-Muskegon Corporation | Single crystal (single grain) alloy |
US4643782A (en) | 1984-03-19 | 1987-02-17 | Cannon Muskegon Corporation | Single crystal alloy technology |
US5366695A (en) | 1992-06-29 | 1994-11-22 | Cannon-Muskegon Corporation | Single crystal nickel-based superalloy |
JPH10195565A (ja) * | 1996-12-11 | 1998-07-28 | United Technol Corp <Utc> | 高強度、かつ高い耐酸化性を有する低Cr含有単結晶用超合金組成物及び単結晶超合金物体 |
US6966956B2 (en) | 2001-05-30 | 2005-11-22 | National Institute For Materials Science | Ni-based single crystal super alloy |
US20060011271A1 (en) | 2002-12-06 | 2006-01-19 | Toshiharu Kobayashi | Ni-based single crystal superalloy |
WO2008111585A1 (ja) | 2007-03-12 | 2008-09-18 | Ihi Corporation | Ni基単結晶超合金及びこれを用いたタービン翼 |
JP2008266698A (ja) * | 2007-04-18 | 2008-11-06 | Hitachi Ltd | 遮熱被覆を有する耐熱部材 |
JP2009100903A (ja) | 2007-10-23 | 2009-05-14 | Inax Corp | 浴室の洗い場用カウンター |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1212020A (en) * | 1981-09-14 | 1986-09-30 | David N. Duhl | Minor element additions to single crystals for improved oxidation resistance |
US5482789A (en) | 1994-01-03 | 1996-01-09 | General Electric Company | Nickel base superalloy and article |
FR2780982B1 (fr) | 1998-07-07 | 2000-09-08 | Onera (Off Nat Aerospatiale) | Superalliage monocristallin a base de nickel a haut solvus |
RU2153021C1 (ru) | 1999-06-01 | 2000-07-20 | Всероссийский научно-исследовательский институт авиационных материалов | Никелевый жаропрочный сплав для монокристального литья |
JP3944582B2 (ja) | 2003-09-22 | 2007-07-11 | 独立行政法人物質・材料研究機構 | Ni基超合金 |
GB0412584D0 (en) * | 2004-06-05 | 2004-07-07 | Rolls Royce Plc | Composition of matter |
RU2297466C2 (ru) | 2004-11-01 | 2007-04-20 | Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" | Монокристальный никелевый жаропрочный сплав |
WO2007037277A1 (ja) * | 2005-09-27 | 2007-04-05 | National Institute For Materials Science | 耐酸化性に優れたNi基超合金 |
-
2010
- 2010-04-16 JP JP2011509229A patent/JP5418589B2/ja active Active
- 2010-04-16 CN CN201080026976.6A patent/CN102803528B/zh not_active Expired - Fee Related
- 2010-04-16 RU RU2011146064/02A patent/RU2482205C1/ru active
- 2010-04-16 WO PCT/JP2010/002795 patent/WO2010119709A1/ja active Application Filing
- 2010-04-16 EP EP10764295.1A patent/EP2420584B1/en active Active
- 2010-04-16 CA CA2758867A patent/CA2758867A1/en not_active Abandoned
- 2010-04-16 US US13/264,220 patent/US8877122B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4582548A (en) | 1980-11-24 | 1986-04-15 | Cannon-Muskegon Corporation | Single crystal (single grain) alloy |
US4643782A (en) | 1984-03-19 | 1987-02-17 | Cannon Muskegon Corporation | Single crystal alloy technology |
US5366695A (en) | 1992-06-29 | 1994-11-22 | Cannon-Muskegon Corporation | Single crystal nickel-based superalloy |
JPH10195565A (ja) * | 1996-12-11 | 1998-07-28 | United Technol Corp <Utc> | 高強度、かつ高い耐酸化性を有する低Cr含有単結晶用超合金組成物及び単結晶超合金物体 |
US6966956B2 (en) | 2001-05-30 | 2005-11-22 | National Institute For Materials Science | Ni-based single crystal super alloy |
US20060011271A1 (en) | 2002-12-06 | 2006-01-19 | Toshiharu Kobayashi | Ni-based single crystal superalloy |
WO2008111585A1 (ja) | 2007-03-12 | 2008-09-18 | Ihi Corporation | Ni基単結晶超合金及びこれを用いたタービン翼 |
JP2008266698A (ja) * | 2007-04-18 | 2008-11-06 | Hitachi Ltd | 遮熱被覆を有する耐熱部材 |
JP2009100903A (ja) | 2007-10-23 | 2009-05-14 | Inax Corp | 浴室の洗い場用カウンター |
Non-Patent Citations (3)
Title |
---|
E,N.KABLOV, N.VPETRUSHIN: "DESIGNING OF HIGH-RHENIUM SINGLE CRYSTAL NI-BASE SUPERALLOY FOR GAS TURBINE BLADES", 2008, THE MINERALS, METALS & MATERIALS SOCIETY, pages: 901 - 908 |
N. SAUNDERS, Z. GUO, X. LI, A. P. MIODOWNIK, J-PH. SCHILLE: "MODELLING THE MATERIAL PROPERTIES AND BEHAVIOUR OF Ni-BASED SUPERALLOYS", 2004, TMS, pages: 849 - 858 |
See also references of EP2420584A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012107269A (ja) * | 2010-11-15 | 2012-06-07 | National Institute For Materials Science | ニッケル基耐熱超合金と耐熱超合金部材 |
WO2012133412A1 (ja) * | 2011-03-29 | 2012-10-04 | 公立大学法人大阪府立大学 | 摩擦攪拌加工用ツール及びこれを用いた摩擦攪拌加工方法 |
JP2014014822A (ja) * | 2011-03-29 | 2014-01-30 | Osaka Prefecture Univ | 摩擦攪拌加工用ツール及びこれを用いた摩擦攪拌加工方法 |
Also Published As
Publication number | Publication date |
---|---|
US8877122B2 (en) | 2014-11-04 |
EP2420584B1 (en) | 2013-06-19 |
EP2420584A1 (en) | 2012-02-22 |
EP2420584A4 (en) | 2012-08-22 |
RU2482205C1 (ru) | 2013-05-20 |
JP5418589B2 (ja) | 2014-02-19 |
US20120034098A1 (en) | 2012-02-09 |
CN102803528B (zh) | 2015-04-22 |
CA2758867A1 (en) | 2010-10-21 |
CN102803528A (zh) | 2012-11-28 |
JPWO2010119709A1 (ja) | 2012-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4557079B2 (ja) | Ni基単結晶超合金及びこれを用いたタービン翼 | |
JP5418589B2 (ja) | Ni基単結晶超合金及びこれを用いたタービン翼 | |
JP5177559B2 (ja) | Ni基単結晶超合金 | |
US20160201166A1 (en) | Heat-resistant superalloy | |
JP4885530B2 (ja) | 高強度高延性Ni基超合金と、それを用いた部材及び製造方法 | |
JP3814662B2 (ja) | Ni基単結晶超合金 | |
JP5299899B2 (ja) | Ni基超合金及びその製造方法 | |
JP3892831B2 (ja) | 単結晶タービンベーン用の超合金 | |
JP5133453B2 (ja) | Ni基単結晶超合金及びタービン翼 | |
KR20140126677A (ko) | 철을 포함하는 주조 니켈-기제 초합금 | |
CA2864507C (en) | High strength single crystal superalloy | |
CA2612815A1 (en) | Low-density directionally solidified single-crystal superalloys | |
JP4911753B2 (ja) | Ni基超耐熱合金及びそれを用いたガスタービン部品 | |
EP3366794B1 (en) | Ni-based superalloy | |
CA2766552A1 (en) | Nickel base superalloy compositions and superalloy articles | |
JP2014047371A (ja) | Ni基合金と、それを用いたガスタービン動翼兼ガスタービン |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080026976.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10764295 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011509229 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13264220 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2758867 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010764295 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2011146064 Country of ref document: RU Kind code of ref document: A |