WO2010119709A1 - Ni基単結晶超合金及びこれを用いたタービン翼 - Google Patents

Ni基単結晶超合金及びこれを用いたタービン翼 Download PDF

Info

Publication number
WO2010119709A1
WO2010119709A1 PCT/JP2010/002795 JP2010002795W WO2010119709A1 WO 2010119709 A1 WO2010119709 A1 WO 2010119709A1 JP 2010002795 W JP2010002795 W JP 2010002795W WO 2010119709 A1 WO2010119709 A1 WO 2010119709A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
single crystal
based single
crystal superalloy
Prior art date
Application number
PCT/JP2010/002795
Other languages
English (en)
French (fr)
Inventor
青木祥宏
関根伸仁
佐藤彰洋
宮田仁一
筑後一義
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2011509229A priority Critical patent/JP5418589B2/ja
Priority to CA2758867A priority patent/CA2758867A1/en
Priority to CN201080026976.6A priority patent/CN102803528B/zh
Priority to US13/264,220 priority patent/US8877122B2/en
Priority to EP10764295.1A priority patent/EP2420584B1/en
Priority to RU2011146064/02A priority patent/RU2482205C1/ru
Publication of WO2010119709A1 publication Critical patent/WO2010119709A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/607Monocrystallinity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a Ni-based single crystal superalloy and a turbine blade using the same.
  • This application claims priority based on Japanese Patent Application No. 2009-100903 filed in Japan on April 17, 2009, the contents of which are incorporated herein by reference.
  • Ni-based single crystal superalloys are used as materials with excellent heat resistance.
  • This Ni-based single crystal superalloy is strengthened by adding Al to the base Ni to precipitate Ni 3 Al type precipitates, and further adding a refractory metal such as Cr, W, or Ta to form an alloy. It is a single crystallized superalloy.
  • the Ni-based single crystal superalloy is subjected to a solution treatment at a predetermined temperature and then an aging treatment to obtain an appropriate metal structure for improving the strength.
  • This superalloy is called a so-called precipitation hardening type alloy and has a crystal structure in which a precipitation phase ( ⁇ ′ phase) is dispersed and precipitated in a matrix phase ( ⁇ phase).
  • the first generation that does not contain Re, the second generation that contains about 3% by mass of Re, and the third generation that contains 5 to 6% by mass of Re have already been developed.
  • the creep strength is improved as the time progresses.
  • CMSX-2 manufactured by Canon Muskegon, see Patent Document 1
  • CMSX-4 Canon As a third generation Ni-based single crystal superalloy, CMSX-10 (manufactured by Canon Muskegon, see Patent Document 3) is known.
  • CMSX-10 which is a third generation Ni-based single crystal superalloy
  • CMSX-10 which is a third generation Ni-based single crystal superalloy
  • this Ni-based single crystal superalloy has a high Re composition ratio of 5% by mass or more, and the amount of solid solution in the parent phase ( ⁇ phase) exceeds the limit.
  • Re is combined with other elements to precipitate a so-called TCP (Topo 1 og Closed Packed) phase.
  • TCP Topo 1 og Closed Packed
  • Ni-based single crystal superalloys have been developed that have an optimal value for the lattice constant of ( ⁇ ′ phase) and that can further improve the strength at high temperatures.
  • a fourth generation Ni-based single crystal superalloy containing up to about 3% by mass of Ru and a fifth generation Ni-based single crystal superalloy containing 4% by mass or more of Ru have been developed.
  • the creep strength is further improved as the time progresses.
  • the fourth generation Ni-based single crystal superalloy is TMS-138 (NIMS-IHI, see Patent Document 4)
  • the fifth generation Ni-based single crystal superalloy is TMS-162 (NIMS- IHI Corporation, see Patent Document 5).
  • the 4th and 5th generation Ni-based single crystal superalloys contain a large amount of heavy metals such as W and Re in order to obtain high creep strength at high temperatures. Specific gravity is greater than that of alloys.
  • the turbine blades using the 4th and 5th generation Ni-based single crystal superalloys have high creep strength at high temperatures, the increase in blade weight causes a decrease in peripheral speed. There is a problem of causing an increase in weight of an industrial gas turbine or the like.
  • Ni-based single crystal superalloys have been developed that have a higher Re composition ratio than the conventional Ni-based single crystal superalloy described above (specifically, the Re composition ratio is greater than 8% by mass).
  • This Ni-based single crystal superalloy is referred to as a high rhenium Ni-based single crystal superalloy in Non-Patent Document 1, and contains 9% by mass of Re as shown in Table 1 of the same document.
  • Ni-based single crystal superalloy In order to develop a Ni-based single crystal superalloy that can obtain higher creep strength than before at high temperatures, it will be necessary in the future to increase the composition ratio of Re as shown in Non-Patent Document 1 above. It is expected to become. Therefore, in order to improve the creep strength of the turbine blade at high temperature, it is desired to develop a Ni-based single crystal superalloy having a Re composition ratio larger than the conventional 8 mass%. In addition, this Ni-based single crystal superalloy has a higher amount of heavy metal Re than before, so the creep strength per specific gravity is high in order to reduce the weight of the turbine blade and improve the service temperature, so-called specific creep strength. Development of a Ni-based single crystal superalloy having a high C is also desired.
  • the present invention has been proposed in view of such conventional circumstances, and provides a Ni-based single crystal superalloy containing a large amount of Re and excellent in specific creep strength and a turbine blade using the same. Objective.
  • the present inventors have suppressed (1) Re from 8% by mass in composition ratio while suppressing the addition amount of W having a large specific gravity, and have improved tissue stability and TCP.
  • Re is determined by improving the composition ratio in consideration of phase suppression, and (2) specifying the optimal composition range so that high creep strength can be maintained at high temperatures, including Ru that suppresses the TCP phase. It has been found that a Ni-based single crystal superalloy having a higher specific gravity than that of the fourth and fifth generation Ni-based single crystal superalloys can be obtained while increasing the creep strength at a high temperature while including a larger amount than before.
  • the present invention has been completed.
  • the present invention provides the following means.
  • Co 0.0 mass% to 15.0 mass%
  • Cr 4.1 mass% to 8.0 mass%
  • Mo 2.1 mass% to 4.5 mass%
  • W 0.0 mass% to 3.9 mass%
  • Ta 4.0 mass% to 10.0 mass%
  • Al 4.5 mass% to 6.5 mass%
  • Ti 0 0.0 mass% to 1.0 mass%
  • Hf 0.00 mass% to 0.5 mass%
  • Nb 0.0 mass% to 3.0 mass%
  • Re 8.1 mass% or more
  • Ru 0.5% by mass or more and 6.5% by mass or less, with the balance being Ni and inevitable impurities.
  • B 0.05 mass% or less
  • C 0.15 mass% or less
  • Si 0.1 mass% or less
  • Y 0.1 mass% or less
  • La Ni-based single crystal superalloy according to item (9), wherein 0.1 mass% or less, Ce: 0.1 mass% or less, V: 1 mass% or less, and Zr: 0.1 mass% or less are satisfied.
  • Ni-based single crystal superalloy containing Re in a composition ratio of more than 8% by mass it is possible to maintain a high creep strength at a high temperature while suppressing an increase in specific gravity. is there. Therefore, in the turbine blade using this Ni-based single crystal superalloy, it is possible to achieve both reduction in weight and improvement in the service temperature.
  • FIG. 1 is a perspective view showing an example of a turbine blade using the Ni-based single crystal superalloy of the present invention.
  • FIG. 2 is a characteristic diagram showing the relationship between the Re content and specific gravity of each Example and Reference Example shown in Table 1.
  • FIG. 3 is a diagram illustrating the creep rupture rupture time of each example shown in Table 1 and a comparative example of Non-Patent Document 1.
  • FIG. 4 is a diagram showing the relationship between the soot Mo content and the creep rate of a Ni-based single crystal superalloy having an average component according to an embodiment of the present invention obtained by simulation.
  • FIG. 5 is a diagram showing the relationship between the Mo content of the Ni-based single crystal superalloy having the average component of the embodiment of the present invention and the TCP phase precipitation start time, obtained by simulation.
  • the Ni-based single crystal superalloy to which the present invention is applied has a mass ratio of Co: 0.0% by mass to 15.0% by mass, Cr: 4.1% by mass to 8.0% by mass, Mo: 2 0.1 mass% or more and 4.5 mass% or less, W: 0.0 mass% or more and 3.9 mass% or less, Ta: 4.0 mass% or more and 10.0 mass% or less, Al: 4.5 mass% or more 6.5 mass% or less, Ti: 0.0 mass% or more and 1.0 mass% or less, Hf: 0.00 mass% or more and 0.5 mass% or less, Nb: 0.0 mass% or more and 3.0 mass% or less
  • Re 8.1 mass% or more and 9.9 mass% or less
  • Ru 0.5 mass% or more and 6.5 mass% or less are contained, and the remainder has a composition which consists of Ni and an unavoidable impurity.
  • Ni-based single crystal composite gold to which the present invention is applied is, in mass ratio, Co: 0.0 mass% or more and 15.0 mass% or less, Cr: 5.1 mass% or more and 8.0 mass% or less, Mo: 2.1% to 4.5% by mass, W: 0.0% to 3.9% by mass, Ta: 4.0% to 10.0% by mass, Al: 4.5 2.
  • Mass% or more and 6.5 mass% or less Ti: 0.0 mass% or more and 1.0 mass% or less, Hf: 0.00 mass% or more and 0.5 mass% or less, Nb: 0.0 mass% or more 0% by mass or less, Re: 8.1% by mass or more and 9.9% by mass or less, Ru: 0.5% by mass or more and 6.5% by mass or less, with the balance being composed of Ni and inevitable impurities .
  • the Ni-based single crystal composite gold to which the present invention is applied has a mass ratio of Co: 4.0% by mass to 9.5% by mass, Cr: 4.1% by mass to 8.0% by mass, Mo: 2.1% to 4.5% by mass, W: 0.0% to 3.9% by mass, Ta: 4.0% to 10.0% by mass, Al: 4.5 2. Mass% or more and 6.5 mass% or less, Ti: 0.0 mass% or more and 1.0 mass% or less, Hf: 0.00 mass% or more and 0.5 mass% or less, Nb: 0.0 mass% or more 0% by mass or less, Re: 8.1% by mass or more and 9.9% by mass or less, Ru: 0.5% by mass or more and 6.5% by mass or less, with the balance being composed of Ni and inevitable impurities .
  • the Ni-based single crystal composite gold to which the present invention is applied has a mass ratio of Co: 4.0% by mass to 9.5% by mass, Cr: 5.1% by mass to 8.0% by mass, Mo: 2.1% to 4.5% by mass, W: 0.0% to 3.9% by mass, Ta: 4.0% to 10.0% by mass, Al: 4.5 2. Mass% or more and 6.5 mass% or less, Ti: 0.0 mass% or more and 1.0 mass% or less, Hf: 0.00 mass% or more and 0.5 mass% or less, Nb: 0.0 mass% or more 0% by mass or less, Re: 8.1% by mass or more and 9.9% by mass or less, Ru: 0.5% by mass or more and 6.5% by mass or less, with the balance being composed of Ni and inevitable impurities .
  • the Ni-based single crystal composite gold to which the present invention is applied has a mass ratio of Co: 0.0% by mass or more and 15.0% by mass or less, Cr: 4.1% by mass or more and 8.0% by mass or less, Mo: 2.1% to 4.5% by mass, W: 0.0% to 2.9% by mass, Ta: 4.0% to 10.0% by mass, Al: 4.5 2.
  • Mass% or more and 6.5 mass% or less Ti: 0.0 mass% or more and 1.0 mass% or less, Hf: 0.00 mass% or more and 0.5 mass% or less, Nb: 0.0 mass% or more 0% by mass or less, Re: 8.1% by mass or more and 9.9% by mass or less, Ru: 0.5% by mass or more and 6.5% by mass or less, with the balance being composed of Ni and inevitable impurities .
  • the Ni-based single crystal composite gold to which the present invention is applied has a mass ratio of Co: 0.0% by mass or more and 15.0% by mass or less, Cr: 4.1% by mass or more and 8.0% by mass or less, Mo: 2.1% to 4.5% by mass, W: 0.0% to 1.9% by mass, Ta: 4.0% to 10.0% by mass, Al: 4.5 2.
  • Mass% or more and 6.5 mass% or less Ti: 0.0 mass% or more and 1.0 mass% or less, Hf: 0.00 mass% or more and 0.5 mass% or less, Nb: 0.0 mass% or more 0% by mass or less, Re: 8.1% by mass or more and 9.9% by mass or less, Ru: 0.5% by mass or more and 6.5% by mass or less, with the balance being composed of Ni and inevitable impurities .
  • the Ni-based single crystal composite gold to which the present invention is applied has a mass ratio of Co: 4.0% by mass to 9.5% by mass, Cr: 5.1% by mass to 8.0% by mass, Mo: 2.1% to 4.5% by mass, W: 0.0% to 1.9% by mass, Ta: 4.0% to 6.5% by mass, Al: 4.5 1 mass% or more and 6.5 mass% or less, Ti: 0.0 mass% or more and 0.5 mass% or less, Hf: 0.00 mass% or more and 0.5 mass% or less, Nb: 0.0 mass% or more 0% by mass or less, Re: 8.1% by mass or more and 9.9% by mass or less, Ru: 4.0% by mass or more and 6.5% by mass or less, with the balance being composed of Ni and inevitable impurities .
  • the Ni-based single crystal composite gold to which the present invention is applied has a mass ratio of Co: 4.0% by mass to 9.5% by mass, Cr: 5.1% by mass to 6.5% by mass, Mo: 2.1 mass% or more and 4.0 mass% or less, W: 0.0 mass% or more and 1.9 mass% or less, Ta: 4.0 mass% or more and 6.0 mass% or less, Al: 5.0 1 mass% or more and 6.0 mass% or less, Ti: 0.0 mass% or more and 0.5 mass% or less, Hf: 0.00 mass% or more and 0.5 mass% or less, Nb: 0.0 mass% or more. 0% by mass or less, Re: 8.1% by mass or more and 9.0% by mass or less, Ru: 4.0% by mass or more and 6.5% by mass or less, with the balance being composed of Ni and inevitable impurities .
  • W in order to obtain a Ni-based single crystal superalloy having a small specific gravity, among the composition of the Ni-based single crystal superalloy, W can be 0.0 mass% or more and 2.9 mass% or less, Furthermore, W can be 0.0 mass% or more and 1.9 mass% or less.
  • Each of the metal structures of the Ni-based single crystal superalloy has a crystal structure in which a precipitation phase ( ⁇ ′ phase) is dispersed and precipitated in a matrix phase ( ⁇ phase).
  • the ⁇ phase is composed of an austenite phase
  • the ⁇ ′ phase is composed mainly of an intermetallic compound having a regular structure such as Ni 3 Al.
  • excellent strength characteristics can be obtained at high temperatures by optimizing the composition of the ⁇ phase and the ⁇ ′ phase dispersed in the ⁇ phase.
  • Co is an element that increases the solid solution limit at a high temperature with respect to a parent phase containing Al, Ta, etc., disperses and precipitates a fine ⁇ ′ ′ phase by heat treatment, and improves high-temperature strength.
  • Co exceeds 15.0% by mass, the balance with other additive elements such as Al, Ta, Mo, W, Hf, and Cr is lost, and a harmful phase is precipitated to lower the high-temperature strength. Therefore, Co is preferably 0.0% by mass or more and 15.0% by mass or less, and more preferably 4.0% by mass or more and 9.5% by mass or less.
  • Cr is an element excellent in oxidation resistance, and is an element improving the high-temperature corrosion resistance of the Ni-based single crystal superalloy together with Hf and Al.
  • Cr is less than 4.1% by mass, it becomes difficult to ensure desired high temperature corrosion resistance.
  • Cr exceeds 8.0% by mass, precipitation of the ⁇ ′ phase is suppressed, and harmful phases such as ⁇ phase and ⁇ phase are precipitated, and the high temperature strength is lowered.
  • Cr is preferably 4.1% by mass or more and 8.0% by mass or less, more preferably 5.1% by mass or more and 8.0% by mass or less, and still more preferably 5.1% by mass or more. 6.5% by mass or less.
  • Mo is an element that contributes to the high-temperature strength by precipitation hardening, while increasing the high-temperature strength by dissolving in the ⁇ phase as a parent phase in the presence of W or Ta.
  • Mo is less than 2.1% by mass, it is difficult to ensure desired high-temperature strength.
  • Mo exceeds 4.5 mass%, high temperature strength will fall and also high temperature corrosion resistance will fall. Therefore, it is preferable that Mo is 2.1 mass% or more and 4.5 mass% or less, More preferably, it is 2.1 mass% or more and 3.4 mass% or less, More preferably, it is 2.1 mass% or more. 0% by mass or less.
  • W is an element that improves high-temperature strength by the action of solid solution strengthening and precipitation hardening in the presence of Mo or Ta.
  • W is preferably 0.0% by mass or more and 3.9% by mass or less.
  • W is preferably 0.0% by mass or more and 2.9% by mass or less, more preferably 0.0% by mass or more and 1.9% by mass in order to obtain a Ni-based single crystal superalloy having a small specific gravity. % Or less.
  • W is an element that improves high-temperature strength by the action of solid solution strengthening and precipitation hardening in the presence of Mo or Ta.
  • W is preferably 0.0% by mass or more and 3.9% by mass or less.
  • W is preferably 0.0% by mass or more and 2.9% by mass or less, more preferably 0.0% by mass or more and 1.9% by mass in order to obtain a Ni-based single crystal superalloy having a small specific gravity. % Or less.
  • Ta is an element that improves the high temperature strength by the action of solid solution strengthening and precipitation hardening in the presence of Mo or W, and also improves the high temperature strength by partly precipitation hardening to the ⁇ 'phase. .
  • Ta is preferably 4.0% by mass or more and 10.0% by mass or less, more preferably 4.0% by mass or more and 6.5% by mass or less, and still more preferably 4.0% by mass or more. It is 6.0 mass% or less.
  • Al forms an intermetallic compound represented by Ni 3 Al at a ratio of 60 to 70% (volume percentage) as a ⁇ ′ phase that is finely and uniformly dispersed and precipitated in the matrix phase while being combined with Ni. That is, Al is an element that improves high-temperature strength together with Ni. Al is an element excellent in oxidation resistance, and is an element that improves high-temperature corrosion resistance of Ni-based single crystal superalloy together with Cr and Hf. However, if the Al content is less than 4.5% by mass, the amount of precipitation of the ⁇ ′ phase becomes insufficient, and it becomes difficult to ensure desired high temperature strength and high temperature corrosion resistance.
  • Al is preferably 4.5% by mass or more and 6.5% by mass or less, and more preferably 5.0% by mass or more and 6.0% by mass or less.
  • Ti is an element for improving the high temperature strength by the action of solid solution strengthening and precipitation strengthening in the coexistence with Mo or W, and partly precipitation hardening for the ⁇ ′ phase, thereby improving the high temperature strength. is there.
  • Ti exceeds 1.0% by mass, a harmful phase precipitates and the high-temperature strength decreases. Therefore, Ti is preferably 0.0% by mass or more and 1.0% by mass or less, and more preferably 0.0% by mass or more and 0.5% by mass or less. In the present invention, even when the addition amount of Ti is suppressed or Ti is not added, high creep strength is maintained at a high temperature by setting the composition ratio of other constituent elements within the optimum range. Is possible.
  • Hf is a grain boundary segregation element, which is unevenly distributed in the grain boundary and strengthens the grain boundary, thereby improving the high temperature strength.
  • Hf is an element excellent in oxidation resistance, and is an element that improves the high-temperature corrosion resistance of the Ni-based single crystal superalloy together with Cr and A1.
  • Hf is preferably 0.00% by mass or more and 0.5% by mass or less.
  • Nb is an element that improves high-temperature strength. However, when Nb exceeds 3.0% by mass, a harmful phase precipitates and the high-temperature strength decreases. Therefore, Nb is preferably 0.0% by mass or more and 3.0% by mass or less, more preferably. It is 0.0 mass% or more and 1.0 mass% or less. In the present invention, even when the amount of Nb added is suppressed or Nb is not added, high creep strength is maintained at a high temperature by setting the composition ratio of other constituent elements within the optimum range. Is possible.
  • Re is an element that dissolves in the ⁇ phase, which is the parent phase, and improves high temperature strength by solid solution strengthening. It also has the effect of improving corrosion resistance.
  • Re is less than 3.0% by mass, the solid solution strengthening of the ⁇ phase is insufficient, and it becomes difficult to ensure a desired high temperature strength.
  • the lower limit of the Re composition ratio is specified as 8.1 mass%.
  • Re is preferably 8.1% by mass or more and 9.9% by mass or less, and more preferably 8.1% by mass or more and 9.0% by mass or less.
  • Ru is an element that suppresses the precipitation of the TCP phase and improves the high-temperature strength.
  • Ru is less than 0.5% by mass, a TCP phase is precipitated at a high temperature, and it becomes difficult to ensure a desired high temperature strength.
  • Ru exceeds 6.5% by mass, a harmful phase is precipitated and the high temperature strength is lowered. Therefore, Ru is preferably 0.5% by mass or more and 6.5% by mass or less, and more preferably 4.0% by mass or more and 6.5% by mass or less.
  • the Ni-based single crystal superalloy to which the present invention is applied further contains at least one element selected from B, C, Si, Y, La, Ce, V, and Zr. Also good. Specifically, when these additive elements are included, B: 0.05 mass% or less, C: 0 for each composition range so that no harmful phase is precipitated and the high temperature strength is not lowered. .15 mass% or less, Si: 0.1 mass% or less, Y: 0.1 mass% or less, La: 0.1 mass% or less, Ce: 0.1 mass% or less, V: 1 mass% or less, Zr : It is preferable to set it as 0.1 mass% or less.
  • Si has an action of lowering the melting point of the alloy, and may have an adverse effect of locally melting the material during heat treatment at a high temperature such as solution treatment. Therefore, it is not preferable to contain an element such as Si in the Ni-based single crystal superalloy to which the present invention is applied, and it is desirable to reduce it as much as possible.
  • the Ni-based single crystal superalloy to which the present invention is applied can suppress an increase in specific gravity and maintain high creep strength at high temperatures while containing a large amount of Re.
  • high creep strength can be maintained at high temperatures.
  • high creep strength can be maintained at a high temperature. Therefore, according to the present invention, it is possible to obtain a Ni-based single crystal superalloy having a high creep strength per specific gravity (high specific creep strength).
  • the Ni-based single crystal superalloy of the present invention can be suitably used for a turbine blade 1 as shown in FIG. That is, the turbine blade 1 using the Ni-based single crystal superalloy of the present invention has high creep strength at high temperatures, can withstand long-time use at high temperatures, and is capable of withstanding fourth and fifth generation Ni. Since the specific gravity is smaller than that of the base single crystal superalloy, it is possible to achieve both reduction in weight and improvement in the service temperature.
  • the Ni-based single crystal superalloy of the present invention can be widely applied to the turbine blades (static and moving blades) used in the above-described aircraft engines and industrial gas turbines. Furthermore, the Ni-based single crystal superalloy of the present invention is not limited to the turbine blades used in the aircraft engines and industrial gas turbines described above, but is widely used for parts or products that are used for a long time at high temperatures. It is possible.
  • the composition of the ⁇ phase and the ⁇ ′ phase dispersed in the ⁇ phase can be optimized, not only the Ni-based single crystal superalloy described above but also the unidirectional solidification.
  • the present invention can be similarly applied to materials, ordinary cast materials, and the like. In that case, it is possible to obtain the same effect as the present invention.
  • Ni-based single crystal superalloy melts were prepared using a vacuum melting furnace, and alloy ingots of Examples 1 to 3 having different compositions were cast using this alloy melt.
  • Table 1 shows the composition ratios of the alloy ingots of Examples 1 to 3.
  • Table 1 shows composition ratios of known Ni-based single crystal superalloys as Reference Examples 1 to 28.
  • each alloy ingot shown in Table 1 was subjected to solution treatment and aging treatment to obtain Ni-based single crystal superalloys of Examples 1 to 3.
  • the temperature was increased from 1503 to 1563 K (1230 to 1290 ° C.) to 1573 to 1613 K (1300 to 1340 ° C.) by a multi-step process and then held for 1 to 10 hours or more.
  • the aging treatment primary aging treatment was carried out at 1273 to 1423K (1000 ° C. to 1150 ° C.) for 3 to 5 hours.
  • the specific gravity is inevitably increased in a Ni-based single crystal superalloy containing a heavy metal, Re, in a composition ratio of more than 8 mass%.
  • the present technology has identified an optimal composition range that can maintain high creep strength at high temperatures including Ru that suppresses the TCP phase while suppressing the addition amount of W having a large specific gravity.
  • the Ni-based single crystal superalloys of Examples 1 to 3 have creep rupture fractures higher than the high rhenium Ni-based single crystal superalloy described in Non-Patent Document 1 shown as Comparative Example 1 in FIG. It can be seen that the time shows a high value. Specifically, when compared under the above creep test conditions, the high rhenium Ni-based single crystal superalloy has a creep rupture rupture time of 593 (Hr), whereas in Examples 1 to 3, the creep rupture rupture time is 2007. 7 (Hr), 888.4 (Hr), and 828.6 (Hr). In particular, in Example 1, the creep rupture rupture time shows a value higher than about three times that of Comparative Example 1, indicating that the creep strength is remarkably excellent. From the above, according to the present invention, it is possible to obtain a Ni-based single crystal superalloy excellent in specific creep strength while containing more than 8% by mass of Re.
  • FIG. 4 is a graph showing the relationship between the Mo content and the steady creep rate in a Ni-based single crystal superalloy obtained by simulation, the horizontal axis is the Mo content (mass%), and the vertical axis is Steady creep rate.
  • the alloy components used in the analysis were the average components of Examples 1 to 3, and only the Mo content was changed from 0.0 to 4.5 mass%.
  • the content of Ni was adjusted for the amount of change in the Mo content.
  • the analysis conditions were set to 950 ° C. and 245 MPa assuming a general turbine blade state during operation. From FIG. 4, it can be seen that the creep rate decreases as the Mo content increases.
  • FIG. 5 shows the relationship between the Mo content and the TCP phase precipitation start time obtained by simulation.
  • the alloy components used in the analysis are the same as those used in the analysis of FIG. 4, and the evaluated temperature is 950 ° C. From FIG. 5, it can be seen that as the Mo content increases, the TCP phase precipitation start time is shortened. However, when the Mo content exceeds 3.0 mass%, it becomes less than 100 hours, and further 3 When exceeding 5 mass%, it will be less than 70 hours. Therefore, in order to reduce the adverse effects due to the precipitation of the TCP phase while having excellent creep strength, the Mo content is 2.1% by mass or more and 3.4% by mass or less (preferably 3.0% by mass or less). ) Is desirable.
  • Ni-based single crystal superalloy containing Re in a composition ratio of more than 8% by mass and excellent in specific creep strength. Therefore, in a turbine blade using such a Ni-based single crystal superalloy containing a large amount of Re and excellent in specific creep strength, it is possible to achieve both reduction in weight and improvement in the service temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

質量比で、Co:0.0質量%以上15.0質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金を採用する。その結果、Reを組成比率で8質量%より多く含み、且つ比クリープ強度に優れたNi基単結晶超合金及びこれを用いたタービン翼を提供することが可能となる。

Description

Ni基単結晶超合金及びこれを用いたタービン翼
 本発明は、Ni基単結晶超合金及びこれを用いたタービン翼に関する。
 本願は、2009年4月17日に日本に出願された特願2009-100903号に基づき優先権を主張し、その内容をここに援用する。
 航空機エンジンや産業用ガスタービンなどに使用されるタービン翼(静・動翼)は、高温下に長時間晒されることから、耐熱性に優れた材料としてNi基単結晶超合金が用いられている。このNi基単結晶超合金は、ベースであるNiにAlを添加してNiAl型の析出物を析出させて強化し、更にCr、W、Taなどの高融点金属を添加して合金化し、単結晶化させた超合金である。また、Ni基単結晶超合金は、所定の温度で溶体化処理を行った後、時効処理を行って強度向上のために適切な金属組織を得ている。この超合金は、いわゆる析出硬化型合金と呼ばれており、母相(γ相)中に析出相(γ´相)が分散析出した結晶構造を有している。
 このようなNi基単結晶超合金には、Reを含まない第1世代、Reを3質量%程度含む第2世代、Reを5~6質量%含む第3世代が既に開発されており、世代が進むに従ってクリープ強度が向上している。例えば、第1世代のNi基単結晶超合金としてはCMSX-2(キャノン・マスケゴン社製、特許文献1を参照。)、第2世代のNi基単結晶超合金としてはCMSX-4(キャノン・マスケゴン社製、特許文献2を参照。)、第3世代のNi基単結晶超合金としてはCMSX-10(キャノン・マスケゴン社製、特許文献3を参照。)などが知られている。
 第3世代のNi基単結晶超合金であるCMSX-10は、第2世代のNi基単結晶超合金よりも高温下でのクリープ強度の向上を目的としている。しかしながら、このNi基単結晶超合金は、Reの組成比が5質量%以上と高く、Reの母相(γ相)への固溶量が限界を越えてしまうために、高温下で余剰となったReが他の元素と化合して、いわゆるTCP(Topo1ogically Close Packed)相を析出させることがある。このため、第3世代のNi基単結晶超合金を用いたタービン翼では、高温下で長時間の使用によりTCP相の量が増加して、クリープ強度が低下するという問題がある。
 このような問題を解決するために、TCP相を抑制するRuを添加し、且つ他の構成元素の組成比を最適な範囲に設定することにより、母相(γ相)の格子定数と析出物(γ´相)の格子定数とを最適な値とし、高温下での更なる強度向上を可能としたNi基単結晶超合金が開発されている。
 具体的には、Ruを3質量%程度まで含む第4世代のNi基単結晶超合金と、Ruを4質量%以上含む第5世代のNi基単結晶超合金とが開発されており、世代が進むに従って更にクリープ強度が向上している。例えば、第4世代のNi基単結晶超合金としてはTMS-138(NIMS-IHI社製、特許文献4を参照。)、第5世代のNi基単結晶超合金としてはTMS-162(NIMS-IHI社製、特許文献5を参照。)等が知られている。
 ところで、第4,5世代のNi基単結晶超合金は、高温下で高いクリープ強度を得るために、WやReなどの重金属を多く添加しており、第2世代以前のNi基単結晶超合金に比べて比重が大きい。その結果、第4,5世代のNi基単結晶超合金を用いたタービン翼は、高温下で高いクリープ強度を有するものの、翼重量の増加により周速の低下を招いたり、上述した航空機エンジンや産業用ガスタービンなどの重量増加を招いたりする問題がある。
 このような問題を解決するために、比重の大きいWの添加量を抑えつつ、高温下で高いクリープ強度を維持することができる最適な組成範囲を特定し、組織安定性を示す最適な組成範囲を特定することによって、高温下でのクリープ強度の向上を図りながら、第4,5世代のNi基単結晶超合金に対して比重の小さいNi基単結晶超合金が開発されている(特許文献6を参照。)。
 また、近年では、上述した従来のNi基単結晶超合金よりもReの組成比の値が大きい(具体的にはReの組成比が8質量%より大きい)Ni基単結晶超合金が開発されている(非特許文献1を参照。)。このNi基単結晶超合金は、非特許文献1において高レニウムNi基単結晶超合金と称されており、同文献の表1に示されるようにReを組成比で9質量%含んでいる。
米国特許第4582548号明細書 米国特許第4643782号明細書 米国特許第5366695号明細書 米国特許第6966956号明細書 米国特許出願公開第2006/0011271号明細書 国際公開第2008/111585号パンフレット
E.N.Kablov, N.V.Petrushin, "DESIGNING OF HIGH-RHENIUM SINGLE CRYSTAL NI-BASE SUPERALLOY FOR GAS TURBINE BLADES", in Superalloys 2008 (Russia), Publ. of TMS(The Minerals, Metals & Materials Society), 2008, pp.901-908
 高温下で従来よりも高いクリープ強度が得られるNi基単結晶超合金を開発するためには、上記非特許文献1に示されるようにReの組成比を大きくしていくことが、今後必要となっていくと予想される。このため、タービン翼の高温下におけるクリープ強度の向上を図るために、Reの組成比が従来の8質量%より大きいNi基単結晶超合金の開発が望まれている。
 加えて、このNi基単結晶超合金は、重金属のReを従来よりも多く添加するため、タービン翼の軽量化と耐用温度の向上を図るべく、比重当たりのクリープ強度が高い、いわゆる比クリープ強度が高いNi基単結晶超合金の開発も併せて望まれている。
 本発明は、このような従来の事情に鑑みて提案されたものであり、Reを多く含み、且つ比クリープ強度に優れたNi基単結晶超合金及びこれを用いたタービン翼を提供することを目的とする。
 本発明者らは、上記の課題を解決すべく研究を重ねた結果、比重の大きいWの添加量を抑えつつ、(1)Reを組成比率で8質量%より増大させるとともに組織安定性やTCP相の抑制を考慮して組成比率の改良し、(2)TCP相を抑制するRuを含め、高温下で高いクリープ強度を維持することができるよう最適な組成範囲を特定することによって、Reを従来よりも多く含みつつも、高温下でのクリープ強度の向上を図り、且つ第4,5世代のNi基単結晶超合金に対して比重が小さいNi基単結晶超合金が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の手段を提供する。
(1) 質量比で、Co:0.0質量%以上15.0質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
(2) 質量比で、Co:0.0質量%以上15.0質量%以下、Cr:5.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
(3) 質量比で、Co:4.0質量%以上9.5質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
(4) 質量比で、Co:4.0質量%以上9.5質量%以下、Cr:5.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
(5) 質量比で、Co:0.0質量%以上15.0質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上2.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
(6) 質量比で、Co:0.0質量%以上15.0質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上1.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
(7) 質量比で、Co:4.0質量%以上9.5質量%以下、Cr:5.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上1.9質量%以下、Ta:4.0質量%以上6.5質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上0.5質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上1.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:4.0質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
(8) 質量比で、Co:4.0質量%以上9.5質量%以下、Cr:5.1質量%以上6.5質量%以下、Mo:2.1質量%以上4.0質量%以下、W:0.0質量%以上1.9質量%以下、Ta:4.0質量%以上6.0質量%以下、Al:5.0質量%以上6.0質量%以下、Ti:0.0質量%以上0.5質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上1.0質量%以下、Re:8.1質量%以上9.0質量%以下、Ru:4.0質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
(9) 更に、B、C、Si、Y、La、Ce、V、Zrの群から選ばれる少なくとも1種又は2種以上の元素を含有する前項(1)~(8)の何れかのNi基単結晶超合金。
(10) 前記群から選ばれた組成のうち、B:0.05質量%以下、C:0.15質量%以下、Si:0.1質量%以下、Y:0.1質量%以下、La:0.1質量%以下、Ce:0.1質量%以下、V:1質量%以下、Zr:0.1質量%以下を各々満足する前項(9)のNi基単結晶超合金。
(11) 前項(1)~(10)の何れかのNi基単結晶超合金を用いたタービン翼。
 以上のように、本発明によれば、Reを組成比率で8質量%より多く含むNi基単結晶超合金として、比重の増加を抑えつつ、高温下で高いクリープ強度を維持することが可能である。したがって、このNi基単結晶超合金を用いたタービン翼では、軽量化と耐用温度の向上との両立を図ることが可能である。
図1は、本発明のNi基単結晶超合金を用いたタービン翼の一例を示す斜視図である。 図2は、表1に示す各実施例及び参考例のRe含有量と比重との関係を示す特性図である。 図3は、表1に示す各実施例及び非特許文献1の比較例のクリープラプチャー破断時間を示す図である。 図4は、シミュレーションによって得られた、本発明の実施形態の平均成分を有するNi基単結晶超合金の Mo含有量とクリープ速度との関係を示す図である。 図5は、シミュレーションによって得られた、本発明の実施形態の平均成分を有するNi基単結晶超合金のMo含有量とTCP相の析出開始時間との関係を示す図である。
 以下、本発明を適用したNi基単結晶超合金及びこれを用いたタービン翼について、図面を参照して詳細に説明する。
 本発明を適用したNi基単結晶超合金は、質量比で、Co:0.0質量%以上15.0質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有する。
 また、本発明を適用したNi基単結晶合超金は、質量比で、Co:0.0質量%以上15.0質量%以下、Cr:5.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有する。
 また、本発明を適用したNi基単結晶合超金は、質量比で、Co:4.0質量%以上9.5質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有する。
 また、本発明を適用したNi基単結晶合超金は、質量比で、Co:4.0質量%以上9.5質量%以下、Cr:5.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有する。
 また、本発明を適用したNi基単結晶合超金は、質量比で、Co:0.0質量%以上15.0質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上2.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有する。
 また、本発明を適用したNi基単結晶合超金は、質量比で、Co:0.0質量%以上15.0質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上1.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有する。
 また、本発明を適用したNi基単結晶合超金は、質量比で、Co:4.0質量%以上9.5質量%以下、Cr:5.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上1.9質量%以下、Ta:4.0質量%以上6.5質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上0.5質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上1.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:4.0質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有する。
 また、本発明を適用したNi基単結晶合超金は、質量比で、Co:4.0質量%以上9.5質量%以下、Cr:5.1質量%以上6.5質量%以下、Mo:2.1質量%以上4.0質量%以下、W:0.0質量%以上1.9質量%以下、Ta:4.0質量%以上6.0質量%以下、Al:5.0質量%以上6.0質量%以下、Ti:0.0質量%以上0.5質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上1.0質量%以下、Re:8.1質量%以上9.0質量%以下、Ru:4.0質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有する。
 本発明では、比重の小さいNi基単結晶超合金を得るために、上記Ni基単結晶超合金の組成のうち、Wを0.0質量%以上2.9質量%以下とすることができ、更にWを0.0質量%以上1.9質量%以下とすることができる。
 上記Ni基単結晶超合金の金属組織は、何れも母相(γ相)中に析出相(γ´相)が分散析出した結晶構造を有している。このうち、γ相はオーステナイト相からなり、γ´相は主としてNiAlといった規則構造を持つ金属間化合物からなる。本発明のNi基単結晶超合金では、γ相と、このγ相中に分散されたγ´相との組成を最適化することによって、高温下で優れた強度特性を得ることができる。
 以下、上記Ni基単結晶超合金を構成する各成分の組成範囲を限定した理由について説明する。
 Coは、Al、Ta等を含む母相に対する高温下での固溶限度を大きくし、熱処理によって微細なγ´’相を分散析出させ、高温強度を向上させる元素である。しかしながら、Coが15.0質量%を超えると、Al、Ta、Mo、W、Hf、Crなどの他の添加元素とのバランスが崩れ、有害相が析出して高温強度が低下する。したがって、Coは、0.0質量%以上15.0質量%以下であることが好ましく、より好ましくは4.0質量%以上9.5質量%以下である。
 Crは、耐酸化性に優れた元素であり、Hf及びAlと共にNi基単結晶超合金の高温耐食性を向上させる元素である。しかしながら、Crが4.1質量%未満になると、所望の高温耐食性を確保することが困難となる。一方、Crが8.0質量%を超えると、γ´相の析出が抑制されると共に、σ相やμ相などの有害相が析出し、高温強度が低下する。したがって、Crは、4.1質量%以上8.0質量%以下であることが好ましく、より好ましくは5.1質量%以上8.0質量%以下であり、更に好ましくは5.1質量%以上6.5質量%以下である。
 Moは、W又はTaとの共存下において母相となるγ相に固溶して高温強度を増加させると共に、析出硬化により高温強度に寄与する元素である。しかしながら、Moが2.1質量%未満になると、所望の高温強度を確保することが困難となる。一方、Moが4.5質量%を超えると、高温強度が低下し、更には高温耐食性も低下する。したがって、Moは、2.1質量%以上4.5質量%以下であることが好ましく、より好ましくは2.1質量%以上3.4質量%以下、更に好ましくは2.1質量%以上3.0質量%以下である。
 Wは、Mo又はTaとの共存下において固溶強化と析出硬化の作用により高温強度を向上させる元素である。しかしながら、Wが3.9質量%を超えると、高温耐食性が低下する。したがって、Wは、0.0質量%以上3.9質量%以下であることが好ましい。また、Wは、比重の小さいNi基単結晶超合金を得るために、0.0質量%以上2.9質量%以下とすることが好ましく、より好ましくは0.0質量%以上1.9質量%以下である。本発明では、このようにWの添加量を抑制する又はWを添加しない場合であっても、他の構成元素の組成比を最適な範囲に設定することによって、高温下で高いクリープ強度を維持することが可能である。
 Taは、Mo又はWとの共存下において固溶強化と析出硬化の作用により高温強度を向上させ、また一部がγ´相に対して析出硬化することで、高温強度を向上させる元素である。しかしながら、Taが4.0質量%未満になると、所望の高温強度を確保することが困難となる。一方、Taが10.0質量%を超えると、σ相やμ相などの有害相が析出し、高温強度が低下する。したがって、Taは、4.0質量%以上10.0質量%以下であることが好ましく、より好ましくは4.0質量%以上6.5質量%以下であり、更に好ましくは4.0質量%以上6.0質量%以下である。
 Alは、Niと化合しながら、母相中に微細均一に分散析出するγ´相として、NiAlで表される金属間化合物を60~70%(体積百分率)の割合で形成する。すなわち、Alは、Niと共に高温強度を向上させる元素である。また、Alは、耐酸化性に優れた元素であり、Cr及びHfと共にNi基単結晶超合金の高温耐食性を向上させる元素である。しかしながら、Alが4.5質量%未満になると、γ´相の析出量が不充分となり、所望の高温強度及び高温耐食性を確保することが困難となる。一方、Alが6.5質量%を超えると、共晶γ´相と呼ばれる粗大なγ相が多く形成され、溶体化処理が不可能となり、所望の高温強度を確保することが困難となる。したがって、Alは、4.5質量%以上6.5質量%以下であることが好ましく、より好ましくは5.0質量%以上6.0質量%以下である。
 Tiは、Mo又はWとの共存下において固溶強化と析出強化の作用により高温強度を向上させ、また、一部がγ´相に対して析出硬化し、高温強度を向上させるための元素である。しかしながら、Tiが1.0質量%を超えると、有害相が析出して高温強度が低下する。したがって、Tiは、0.0質量%以上1.0質量%以下であることが好ましく、より好ましくは0.0質量%以上0.5質量%以下である。本発明では、このようにTiの添加量を抑制する又はTiを添加しない場合であっても、他の構成元素の組成比を最適な範囲に設定することによって、高温下で高いクリープ強度を維持することが可能である。
 Hfは、粒界偏析元素であり、粒界に偏在して粒界を強化し、これにより高温強度を向上させる元素である。また、Hfは、耐酸化性に優れた元素であり、Cr及びA1と共にNi基単結晶超合金の高温耐食性を向上させる元素である。しかしながら、Hfが0.5質量%を超えると、局部溶融を引き起こして高温強度を低下させることがある。したがって、Hfは、0.00質量%以上0.5質量%以下であることが好ましい。
 Nbは、高温強度を向上させる元素である。しかしながら、Nbが3.0質量%を超えると、有害相が析出して高温強度が低下する。したがって、Nbは、0.0質量%以上3.0質量%以下であることが好ましく、より好ましくは.0.0質量%以上1.0質量%以下である。本発明では、このようにNbの添加量を抑制する又はNbを添加しない場合であっても、他の構成元素の組成比を最適な範囲に設定することによって、高温下で高いクリープ強度を維持することが可能である。
 Reは、母相であるγ相に固溶し、固溶強化により高温強度を向上させる元素である。また、耐蝕性を向上させる効果もある。しかしながら、Reが3.0質量%未満になると、γ相の固溶強化が不充分となって所望の高温強度を確保することが困難となる。ここで、本発明ではReを従来より多く含むNi基単結晶超合金を対象としているため、Reの組成比の下限を8.1質量%と特定する。一方、Reが9.9質量%を超えると、高温時に有害相であるTCP相が析出し、所望の高温強度を確保することが困難となる。したがって、Reは、8.1質量%以上9.9質量%以下であることが好ましく、より好ましくは8.1質量%以上9.0質量%以下である。
 Ruは、TCP相の析出を抑え、高温強度を向上させる元素である。しかしながら、Ruが0.5質量%未満になると、高温時にTCP相が析出し、所望の高温強度を確保することが困難となる。一方、Ruが6.5質量%を超えると、有害相が析出して高温強度が低下する。したがって、Ruは、0.5質量%以上6.5質量%以下であることが好ましく、より好ましくは4.0質量%以上6.5質量%以下である。
 また、本発明を適用したNi基単結晶超合金は、更に、B、C、Si、Y、La、Ce、V、Zrの中から選ばれる少なくとも1種又は2種以上の元素を含有してもよい。具体的に、これらの添加元素を含む場合には、有害相が析出して高温強度が低下することがないように、個々の組成範囲については、B:0.05質量%以下、C:0.15質量%以下、Si:0.1質量%以下、Y:0.1質量%以下、La:0.1質量%以下、Ce:0.1質量%以下、V:1質量%以下、Zr:0.1質量%以下とすることが好ましい。

一方、Siには、合金の融点を下げる作用があり、溶体化処理のような高温での熱処理時に、材料を局部的に溶融させるような悪影響を及ぼす場合がある。したがって、本発明を適用したNi基単結晶超合金において、Siのような元素を含有することは好ましくなく、極力低減する方が望ましい。
 以上のように、本発明を適用したNi基単結晶超合金では、Reを多く含みつつ、比重の増加を抑え、高温下で高いクリープ強度を維持することが可能である。具体的には、比重の小さいNi基単結晶超合金を得るために、Wの添加量を2.9質量%以下に抑えた場合であっても、高温下で高いクリープ強度を維持することができ、更にWの添加量を1.9質量%以下に抑えた場合であっても、高温下で高いクリープ強度を維持することができる。したがって、本発明によれば、比重当たりのクリープ強度が高い(比クリープ強度が高い)Ni基単結晶超合金を得ることが可能である。
 また、本発明のNi基単結晶超合金は、例えば図1に示すようなタービン翼1に好適に用いることができる。すなわち、本発明のNi基単結晶超合金を用いたタービン翼1では、高温下で高いクリープ強度を有し、高温下での長時間の使用にも耐え得ると共に、第4,5世代のNi基単結晶超合金に対して比重が小さいことから、軽量化と耐用温度の向上との両立を図ることが可能である。
 したがって、本発明のNi基単結晶超合金は、上述した航空機エンジンや産業用ガスタービンなどに使用されるタービン翼(静・動翼)などに幅広く適用することが可能である。さらに、本発明のNi基単結晶超合金は、上述した航空機エンジンや産業用ガスタービンなどに使用されるタービン翼に限らず、高温下で長時間使用される部品又は製品に対して幅広く利用することが可能である。
 なお、本発明によれば、γ相と、このγ相中に分散させたγ´相との組成を最適化することができるため、上述したNi基単結晶超合金のみならず、一方向凝固材や普通鋳造材などにも同様に本発明を適用することができる。その場合、本発明と同様の効果を得ることが可能である。
[実施例]
 以下、実施例により本発明の効果をより明らかにする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
 先ず、真空溶解炉を用いて各種のNi基単結晶超合金の溶湯を調整し、この合金溶湯を用いて組成の異なる実施例1~3の合金インゴットを鋳造した。これら実施例1~3の各合金インゴットの組成比を表1に示す。また、表1には、参考例1~28として、公知のNi基単結晶超合金の組成比を示す。
Figure JPOXMLDOC01-appb-T000001
 次に、表1に示す各合金インゴットに対して溶体化処理及び時効処理を行い、実施例1~3のNi基単結晶超合金を得た。なお、溶体化処理については、1503~1563K(1230~1290℃)から多段のステップにより1573~1613K(1300~1340℃)まで昇温した後、1~10時間以上保持した。また、時効処理については、1273~1423K(1000℃~1150℃)で3~5時間保持する1次時効処理を行った。
 そして、これら実施例1~3のNi基単結晶超合金について、合金組織の状態を走査型電子顕微鏡(SEM)で観察したところ、何れも組織中にTCP相は確認されなかった。
 次に、図2を参照して、Re含有量と比重に対する本技術(実施例1~3)と既存技術(参考例1~28)の特性の違いについて説明する。なお、図2において、正方形のプロットは実施例1~3を示し、菱形のプロットは参考例1~28を示す。
 図2に示すように、本技術と既存技術の特性の違いは、Re含有量と比重との関係により明確に表される。既存技術のNi基単結晶超合金においては、Re含有量が増えるに従い比重が増加する傾向にある。しかしながら、本技術の比重の増加傾向(傾き)は、既存技術の比重の増加傾向(傾き)よりも小さくなる。
 すなわち、重金属であるReを組成比率で8質量%より多く含むNi基単結晶超合金では、比重が必然的に大きくなる。これに対し、図2から本技術では、比重の大きいWの添加量を抑えつつ、TCP相を抑制するRuを含めて高温下で高いクリープ強度を維持することができる最適な組成範囲を特定した結果、Reを組成比率で8質量%より多く含みつつも、既存技術よりも比重の増加傾向が小さいNi基単結晶超合金が得られたことがわかる。
 次に、実施例1~3の各Ni基単結晶超合金に対してクリープ試験を行った。クリープ試験は、温度1000~1050℃及び応力245MPaの条件下で、各試料がクリープ破断するまでの時間を寿命として測定した。
 図3に示すように、実施例1~3のNi基単結晶超合金は、図3で比較例1として示す上記非特許文献1に記載の高レニウムNi基単結晶超合金よりもクリープラプチャー破断時間が高い値を示していることがわかる。具体的に、上記クリープ試験の条件下で比較すると、高レニウムNi基単結晶超合金はクリープラプチャー破断時間が593(Hr)であるのに対し、実施例1~3ではクリープラプチャー破断時間が2007.7(Hr)、888.4(Hr)、828.6(Hr)と高い値を示していることがわかる。特に、実施例1においては、クリープラプチャー破断時間が比較例1に対して約3倍より高い値を示しており、顕著にクリープ強度が優れていることがわかる。
 以上のことから、本発明によれば、Reを組成比率で8質量%より多く含みつつも、比クリープ強度に優れたNi基単結晶超合金を得ることが可能となる。
続いて、図4を参照して、本実施形態のNi基単結晶超合金におけるMo含有量とクリープ寿命とを比較するために行ったシミュレーションの結果について説明する。
 なお、本シミュレーションは、英国 Sente Software 社により開発された「JMatPro V.5.0」を用いて行った。本ソフトは、金属合金の物理的、熱力学的物性値及び機械的物性値をその化学成分より計算するもので、本発明の技術分野であるNi基単結晶超合金のクリープ寿命についても、下記文献のFig.16 に示されるように精度良く予測できることが実証されている。(文献: N. Saunders, Z. Guo, X. Li, A. P. Miodownik and J-Ph. Schille:MODELLING THE MATERIAL PROPERTIES AND BEHAVIOUR OF Ni-BASED SUPERALLOYS, Superalloys2004, (TMS, 2004), pp.849-858.)
図4は、シミュレーションによって得られた、Ni基単結晶超合金におけるMo含有量と定常クリープ速度との関係を示すグラフであり、横軸がMoの含有量(質量%)であり、縦軸が定常クリープ速度である。
解析に使用した合金の成分は、実施例1から3の平均の成分とし、Mo含有量のみ 0.0~4.5質量%まで変化させた。Mo含有量が変化した分は、Niの含有量を調節した。なお、解析条件は、運転中における一般的なタービン翼の状態を想定し、950℃、245MPaに設定した。
図4より、Moの含有量が増加するに従い、クリープ速度が減少することが分かるが、とりわけ、Moの含有量が2.0質量%を超えた辺りから、優れた耐クリープ特性(Moを含有しない場合の1/3以下のクリープ速度)を示すようになる。一方、Moを過剰に添加すると、先述したTCP相の析出が容易化される。図5に、シミュレーションによって得られた、Mo含有量とTCP相の析出開始時間の関係を示す。解析に用いた合金の成分は、図4の解析で使用したものと同一であり、評価した温度は950℃である。
図5より、Moの含有量が増加するに従い、TCP相の析出開始時間が短くなることが分かるが、Moの含有量が3.0質量%を超えると100時間を下回るようになり、更に3.5質量%を越えると70時間を下回るようになる。
従って、優れたクリープ強度を有しながら、TCP相の析出による悪影響を軽減するためには、Moの含有量を 2.1質量%以上3.4質量%以下(望ましくは3.0質量%以下)に抑えることが望ましい。
 以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 本発明によれば、Reを組成比率で8質量%より多く含み、且つ比クリープ強度に優れたNi基単結晶超合金を提供することが可能である。したがって、このようなReを多く含み、且つ比クリープ強度に優れたNi基単結晶超合金を用いたタービン翼では、軽量化と耐用温度の向上との両立を図ることが可能である。
 1…タービン翼

Claims (13)

  1.  質量比で、Co:0.0質量%以上15.0質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
  2.  質量比で、Co:0.0質量%以上15.0質量%以下、Cr:5.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
  3.  質量比で、Co:4.0質量%以上9.5質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
  4.  質量比で、Co:4.0質量%以上9.5質量%以下、Cr:5.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上3.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
  5.  質量比で、Co:0.0質量%以上15.0質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上2.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
  6.  質量比で、Co:0.0質量%以上15.0質量%以下、Cr:4.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上1.9質量%以下、Ta:4.0質量%以上10.0質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上1.0質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上3.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:0.5質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
  7.  質量比で、Co:4.0質量%以上9.5質量%以下、Cr:5.1質量%以上8.0質量%以下、Mo:2.1質量%以上4.5質量%以下、W:0.0質量%以上1.9質量%以下、Ta:4.0質量%以上6.5質量%以下、Al:4.5質量%以上6.5質量%以下、Ti:0.0質量%以上0.5質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上1.0質量%以下、Re:8.1質量%以上9.9質量%以下、Ru:4.0質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
  8.  質量比で、Co:4.0質量%以上9.5質量%以下、Cr:5.1質量%以上6.5質量%以下、Mo:2.1質量%以上4.0質量%以下、W:0.0質量%以上1.9質量%以下、Ta:4.0質量%以上6.0質量%以下、Al:5.0質量%以上6.0質量%以下、Ti:0.0質量%以上0.5質量%以下、Hf:0.00質量%以上0.5質量%以下、Nb:0.0質量%以上1.0質量%以下、Re:8.1質量%以上9.0質量%以下、Ru:4.0質量%以上6.5質量%以下を含有し、残部がNi及び不可避的不純物からなる組成を有するNi基単結晶超合金。
  9.  更に、B、C、Si、Y、La、Ce、V、Zrの群から選ばれる少なくとも1種又は2種以上の元素を含有する請求項1~8の何れか一項に記載のNi基単結晶超合金。
  10.  前記群から選ばれた組成のうち、B:0.05質量%以下、C:0.15質量%以下、Si:0.1質量%以下、Y:0.1質量%以下、La:0.1質量%以下、Ce:0.1質量%以下、V:1質量%以下、Zr:0.1質量%以下を各々満足する請求項9に記載のNi基単結晶超合金。
  11.  請求項1~8の何れか一項に記載のNi基単結晶超合金を用いたタービン翼。
  12.  請求項9に記載のNi基単結晶超合金を用いたタービン翼。
  13.  請求項10に記載のNi基単結晶超合金を用いたタービン翼。
PCT/JP2010/002795 2009-04-17 2010-04-16 Ni基単結晶超合金及びこれを用いたタービン翼 WO2010119709A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011509229A JP5418589B2 (ja) 2009-04-17 2010-04-16 Ni基単結晶超合金及びこれを用いたタービン翼
CA2758867A CA2758867A1 (en) 2009-04-17 2010-04-16 Ni-based single crystal superalloy and turbine blade incorporating the same
CN201080026976.6A CN102803528B (zh) 2009-04-17 2010-04-16 Ni基单晶超合金及使用其的涡轮叶片
US13/264,220 US8877122B2 (en) 2009-04-17 2010-04-16 Ni-based single crystal superalloy and turbine blade incorporating the same
EP10764295.1A EP2420584B1 (en) 2009-04-17 2010-04-16 Nickel-based single crystal superalloy and turbine blade incorporating this superalloy
RU2011146064/02A RU2482205C1 (ru) 2009-04-17 2010-04-16 МОНОКРИСТАЛЛИЧЕСКИЙ СУПЕРСПЛАВ НА ОСНОВЕ Ni И ВКЛЮЧАЮЩАЯ ЕГО ЛОПАТКА ТУРБИНЫ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009100903 2009-04-17
JP2009-100903 2009-04-17

Publications (1)

Publication Number Publication Date
WO2010119709A1 true WO2010119709A1 (ja) 2010-10-21

Family

ID=42982380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002795 WO2010119709A1 (ja) 2009-04-17 2010-04-16 Ni基単結晶超合金及びこれを用いたタービン翼

Country Status (7)

Country Link
US (1) US8877122B2 (ja)
EP (1) EP2420584B1 (ja)
JP (1) JP5418589B2 (ja)
CN (1) CN102803528B (ja)
CA (1) CA2758867A1 (ja)
RU (1) RU2482205C1 (ja)
WO (1) WO2010119709A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107269A (ja) * 2010-11-15 2012-06-07 National Institute For Materials Science ニッケル基耐熱超合金と耐熱超合金部材
WO2012133412A1 (ja) * 2011-03-29 2012-10-04 公立大学法人大阪府立大学 摩擦攪拌加工用ツール及びこれを用いた摩擦攪拌加工方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9499886B2 (en) * 2007-03-12 2016-11-22 Ihi Corporation Ni-based single crystal superalloy and turbine blade incorporating the same
WO2015072660A1 (ko) * 2013-11-13 2015-05-21 주식회사 엔아이비 Ni기 초합금 및 이의 제조방법
EP3029113B1 (en) * 2014-12-05 2018-03-07 Ansaldo Energia Switzerland AG Abrasive coated substrate and method for manufacturing thereof
EP3072624A1 (de) * 2015-03-23 2016-09-28 Siemens Aktiengesellschaft Wellenelement, verfahren zum herstellen eines sich aus zwei unterschiedlichen werkstoffen zusammensetzenden wellenelements sowie entsprechende strömungsmaschine
CN111168004B (zh) * 2020-01-20 2021-03-23 西安交通大学 一种基于具有籽晶块内嵌结构螺旋选晶器的凝胶注模一体化铸型成型单晶零件的方法
CN112853154B (zh) * 2021-01-04 2022-02-22 广东省科学院中乌焊接研究所 镍基中间层合金材料及其制备方法、焊件及焊接方法以及应用
CN113913942A (zh) * 2021-01-13 2022-01-11 中国航发北京航空材料研究院 镍基单晶合金、用途和热处理方法
CN115255336B (zh) * 2022-08-30 2024-03-26 北京航空航天大学 一种复合成分单晶薄壁构件及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582548A (en) 1980-11-24 1986-04-15 Cannon-Muskegon Corporation Single crystal (single grain) alloy
US4643782A (en) 1984-03-19 1987-02-17 Cannon Muskegon Corporation Single crystal alloy technology
US5366695A (en) 1992-06-29 1994-11-22 Cannon-Muskegon Corporation Single crystal nickel-based superalloy
JPH10195565A (ja) * 1996-12-11 1998-07-28 United Technol Corp <Utc> 高強度、かつ高い耐酸化性を有する低Cr含有単結晶用超合金組成物及び単結晶超合金物体
US6966956B2 (en) 2001-05-30 2005-11-22 National Institute For Materials Science Ni-based single crystal super alloy
US20060011271A1 (en) 2002-12-06 2006-01-19 Toshiharu Kobayashi Ni-based single crystal superalloy
WO2008111585A1 (ja) 2007-03-12 2008-09-18 Ihi Corporation Ni基単結晶超合金及びこれを用いたタービン翼
JP2008266698A (ja) * 2007-04-18 2008-11-06 Hitachi Ltd 遮熱被覆を有する耐熱部材
JP2009100903A (ja) 2007-10-23 2009-05-14 Inax Corp 浴室の洗い場用カウンター

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1212020A (en) * 1981-09-14 1986-09-30 David N. Duhl Minor element additions to single crystals for improved oxidation resistance
US5482789A (en) 1994-01-03 1996-01-09 General Electric Company Nickel base superalloy and article
FR2780982B1 (fr) 1998-07-07 2000-09-08 Onera (Off Nat Aerospatiale) Superalliage monocristallin a base de nickel a haut solvus
RU2153021C1 (ru) 1999-06-01 2000-07-20 Всероссийский научно-исследовательский институт авиационных материалов Никелевый жаропрочный сплав для монокристального литья
JP3944582B2 (ja) 2003-09-22 2007-07-11 独立行政法人物質・材料研究機構 Ni基超合金
GB0412584D0 (en) * 2004-06-05 2004-07-07 Rolls Royce Plc Composition of matter
RU2297466C2 (ru) 2004-11-01 2007-04-20 Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Монокристальный никелевый жаропрочный сплав
WO2007037277A1 (ja) * 2005-09-27 2007-04-05 National Institute For Materials Science 耐酸化性に優れたNi基超合金

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582548A (en) 1980-11-24 1986-04-15 Cannon-Muskegon Corporation Single crystal (single grain) alloy
US4643782A (en) 1984-03-19 1987-02-17 Cannon Muskegon Corporation Single crystal alloy technology
US5366695A (en) 1992-06-29 1994-11-22 Cannon-Muskegon Corporation Single crystal nickel-based superalloy
JPH10195565A (ja) * 1996-12-11 1998-07-28 United Technol Corp <Utc> 高強度、かつ高い耐酸化性を有する低Cr含有単結晶用超合金組成物及び単結晶超合金物体
US6966956B2 (en) 2001-05-30 2005-11-22 National Institute For Materials Science Ni-based single crystal super alloy
US20060011271A1 (en) 2002-12-06 2006-01-19 Toshiharu Kobayashi Ni-based single crystal superalloy
WO2008111585A1 (ja) 2007-03-12 2008-09-18 Ihi Corporation Ni基単結晶超合金及びこれを用いたタービン翼
JP2008266698A (ja) * 2007-04-18 2008-11-06 Hitachi Ltd 遮熱被覆を有する耐熱部材
JP2009100903A (ja) 2007-10-23 2009-05-14 Inax Corp 浴室の洗い場用カウンター

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
E,N.KABLOV, N.VPETRUSHIN: "DESIGNING OF HIGH-RHENIUM SINGLE CRYSTAL NI-BASE SUPERALLOY FOR GAS TURBINE BLADES", 2008, THE MINERALS, METALS & MATERIALS SOCIETY, pages: 901 - 908
N. SAUNDERS, Z. GUO, X. LI, A. P. MIODOWNIK, J-PH. SCHILLE: "MODELLING THE MATERIAL PROPERTIES AND BEHAVIOUR OF Ni-BASED SUPERALLOYS", 2004, TMS, pages: 849 - 858
See also references of EP2420584A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107269A (ja) * 2010-11-15 2012-06-07 National Institute For Materials Science ニッケル基耐熱超合金と耐熱超合金部材
WO2012133412A1 (ja) * 2011-03-29 2012-10-04 公立大学法人大阪府立大学 摩擦攪拌加工用ツール及びこれを用いた摩擦攪拌加工方法
JP2014014822A (ja) * 2011-03-29 2014-01-30 Osaka Prefecture Univ 摩擦攪拌加工用ツール及びこれを用いた摩擦攪拌加工方法

Also Published As

Publication number Publication date
US8877122B2 (en) 2014-11-04
EP2420584B1 (en) 2013-06-19
EP2420584A1 (en) 2012-02-22
EP2420584A4 (en) 2012-08-22
RU2482205C1 (ru) 2013-05-20
JP5418589B2 (ja) 2014-02-19
US20120034098A1 (en) 2012-02-09
CN102803528B (zh) 2015-04-22
CA2758867A1 (en) 2010-10-21
CN102803528A (zh) 2012-11-28
JPWO2010119709A1 (ja) 2012-10-22

Similar Documents

Publication Publication Date Title
JP4557079B2 (ja) Ni基単結晶超合金及びこれを用いたタービン翼
JP5418589B2 (ja) Ni基単結晶超合金及びこれを用いたタービン翼
JP5177559B2 (ja) Ni基単結晶超合金
US20160201166A1 (en) Heat-resistant superalloy
JP4885530B2 (ja) 高強度高延性Ni基超合金と、それを用いた部材及び製造方法
JP3814662B2 (ja) Ni基単結晶超合金
JP5299899B2 (ja) Ni基超合金及びその製造方法
JP3892831B2 (ja) 単結晶タービンベーン用の超合金
JP5133453B2 (ja) Ni基単結晶超合金及びタービン翼
KR20140126677A (ko) 철을 포함하는 주조 니켈-기제 초합금
CA2864507C (en) High strength single crystal superalloy
CA2612815A1 (en) Low-density directionally solidified single-crystal superalloys
JP4911753B2 (ja) Ni基超耐熱合金及びそれを用いたガスタービン部品
EP3366794B1 (en) Ni-based superalloy
CA2766552A1 (en) Nickel base superalloy compositions and superalloy articles
JP2014047371A (ja) Ni基合金と、それを用いたガスタービン動翼兼ガスタービン

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026976.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764295

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011509229

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13264220

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2758867

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010764295

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011146064

Country of ref document: RU

Kind code of ref document: A