WO2007037277A1 - 耐酸化性に優れたNi基超合金 - Google Patents

耐酸化性に優れたNi基超合金 Download PDF

Info

Publication number
WO2007037277A1
WO2007037277A1 PCT/JP2006/319183 JP2006319183W WO2007037277A1 WO 2007037277 A1 WO2007037277 A1 WO 2007037277A1 JP 2006319183 W JP2006319183 W JP 2006319183W WO 2007037277 A1 WO2007037277 A1 WO 2007037277A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
base superalloy
turbine
alloy
oxidation
Prior art date
Application number
PCT/JP2006/319183
Other languages
English (en)
French (fr)
Inventor
Hiroshi Harada
Kyoko Kawagishi
Toshiharu Kobayashi
Yutaka Koizumi
Atsushi Sato
Original Assignee
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37899701&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007037277(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by National Institute For Materials Science filed Critical National Institute For Materials Science
Priority to US11/992,308 priority Critical patent/US8926897B2/en
Priority to EP06810648.3A priority patent/EP1930455B1/en
Priority to JP2007537644A priority patent/JP5344453B2/ja
Publication of WO2007037277A1 publication Critical patent/WO2007037277A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the present invention relates to a Ni-base superalloy. More specifically, the present invention has excellent oxidation resistance at high temperatures, such as turbine blades such as jet engines and gas turbines, turbine vanes, and turbine bin disks.
  • the present invention relates to a new Ni-base superalloy suitable as a member used under high temperature and high stress.
  • Ni-base superalloy When a Ni-base superalloy is used on a substrate as a turbine blade or turbine vane for a jet engine or the like, there are many examples in which the surface of the substrate is coated for the purpose of high-temperature oxidation or heat insulation. Therefore, as a Ni-base superalloy, even if these coatings are peeled off for some reason, it is an alloy with excellent acid resistance that can be used until periodic inspection without causing equipment damage due to acid. It is expected that
  • ReneN5 alloy (Co: 8wt%, Cr: 7wt%, Mo: 2wt%, W: 5wt%, Al: 6.2wt%, Ta: 7wt%, Hf: 0.2 wt%, Re: 3 wt%, and the balance of Ni) is known as an alloy having excellent oxidation resistance (Patent Document 1).
  • the present invention has been made based on the background as described above, and is useful as a high-temperature member such as a turbine blade or a turbine vane of a jet engine or a gas turbine, and is further excellent in acid resistance. It is an object to provide a base superalloy.
  • Ni-base superalloy of the present invention is characterized by the following as means for solving the above-mentioned problems. ing.
  • the first alloy composition Co: 0.1—15 wt%, Cr: 0.1—10 wt%, Mo: 0.1—4.5 wt%, W: 0.1—15 wt%, Al: 2—8 wt%, Ta + Contains Nb + Ti: 0—16wt%, Hf: 0—5w t%, Re: 0.1—16wt%, Ru: 0.1—16wt%, Si: 0.2—5wt%, the balance being Ni and inevitable impurity power It has the composition which becomes.
  • W 2—10wt%
  • Al 4—7wt%
  • Ta + Nb + Ti 0—10wt% or less
  • Hf 0—2wt%
  • Re 1—1 Owt%
  • Ru 1 — 8wt%
  • Si 0.2–3wt%, with the balance being Ni and inevitable impurities.
  • V 3 wt% or less
  • Zr 3 wt% or less
  • C 0.3 wt% or less
  • B 0.2 wt% or less
  • Y 0.2 wt% % Or less
  • La 0.2 wt% or less
  • Ce 0.2 wt% or less of any one or more elements.
  • Ni-base superalloy having even better oxidation resistance as the combustion gas temperature is raised with the progress of jet engines and gas turbines.
  • the acid resistance becomes a problem.
  • the present invention alloy is a Ni-based superalloy that emphasizes the acid resistance at high temperatures. Such problems will be improved.
  • Turbine blades and turbine vanes such as jet engines and gas turbines are used at high temperatures. For this reason, the surfaces of these members are usually coated for the purpose of heat resistance and acid resistance. However, if this coating layer peels for some reason, It is desirable that the Ni-based superalloys that have been used can be used until the next equipment inspection without damage in a short time due to high-temperature acid. Also, since turbine blades and turbine vanes are generally exposed to high temperatures, there are many small holes for internal cooling and blade surface cooling. If these small holes become clogged due to high temperature acidification, etc., they may be heated locally and will not withstand centrifugal force and may break.
  • Ni-base superalloy member is about 0.5 mm for turbine blades and turbine vanes, and in particular, acid resistance is often a problem.
  • the Ni-base superalloy of the present invention has excellent acid resistance, and when used at high temperatures as turbine blades and turbine vanes of jet engines, gas turbines, etc., it can withstand prolonged use and has a great economic effect. .
  • FIG. 1 is a diagram showing the results of an acidity test (in the atmosphere, 1100 ° C-repeated heating and holding for 1 hour) of Examples 1 to 3.
  • FIG. 2 is a view showing the results of a tensile test in Examples 1 and 2 at a test temperature of 400 ° C.
  • FIG. 3 is a diagram showing the results of an acidity test of Example 4 (in air, repeated at 1100 ° C. for 1 hour).
  • the present invention has the characteristics as described above. Embodiments will be described below.
  • Co is more than 15 wt%, which is effective in improving tissue stability and strength, the amount of gamma prime is reduced at high temperatures and the strength is lowered. Therefore, 0.1-15wt%. Preferably it is 3 10 wt%, more preferably 48 wt%.
  • Harmful phase is generated and high temperature strength is reduced.
  • Mo is 0.1-4. 5 wt% Mo Mo dissolves in the substrate to increase the high-temperature strength, and contributes to the high-temperature strength by precipitation hardening. Preferably 0.5-4. Most preferably, it is in the range of 1-4 wt%.
  • W like Mo, has effects of solid solution strengthening and precipitation hardening.
  • W is 0.1 to 15 wt%.
  • A1 combines with Ni to form an intermetallic compound represented by Ni3Al constituting a gamma prime phase that precipitates in the gamma matrix, and improves high-temperature strength.
  • A1 is 2-8wt%. The range of 47 wt% is preferable.
  • Both Ta + Nb + Ti are effective elements that strengthen the gamma prime phase and improve the creep strength. In any case, if the sum exceeds 16 wt%, the formation of harmful phases is promoted, so it must be 0–16 wt%. The range is preferably 0-10 wt%, and most preferably 18 wt%.
  • Hf has the effect of improving the acid resistance, it is effective to add it to the alloy of the present invention. However, if the added amount exceeds 5 wt%, the formation of harmful phases is promoted, so it must be less than this, and it must be 0-5 wt%.
  • the range is preferably 0 to 2 wt%, and most preferably 0.05 to 0.5 wt%.
  • Re dissolves in the gamma phase and improves the high-temperature strength by solid solution strengthening. Re also has the effect of improving corrosion resistance. On the other hand, if a large amount of Re is added, the TCP phase may precipitate at high temperatures, which may reduce the high temperature strength.
  • Re is preferably in the range of 0.1-16 wt%. More preferably, it is in the range of 1-10 wt%, most preferably 3-8 wt%.
  • Ru suppresses the precipitation of the TCP phase, thereby improving the high temperature strength.
  • the composition ratio of Ru is preferably in the range of 0.1 to 16 wt%.
  • the range is preferably l-8 wt%, most preferably 3-7 wt%.
  • Si is an element that improves the acid resistance by forming a protective acid film such as A1203 on the alloy surface. Addition of a large amount of Si decreases the solid solubility limit of other elements, so it is specified as 0.2-5 wt%. The range is preferably 0.2 to 3 wt%, most preferably 0.4 to 2.5 wt%.
  • V is an element that dissolves in the gamma prime phase and strengthens the gamma prime phase. However, excessive addition is specified as 3wt% or less in order to reduce creep strength.
  • Zr like B and C, is an element that strengthens grain boundaries. However, excessive stress It is specified to be 3wt% or less because it reduces the strength of the tape.
  • C contributes to grain boundary strengthening. However, an excessive amount of spoilage is specified as 0.3 wt% or less because it impairs ductility.
  • B contributes to grain boundary strengthening. However, excessive loading is harmful to ductility, so it is specified as 0.2 w t% or less.
  • Y, La, and Ce are elements that improve the adhesion of the protective oxide film that forms alumina, chromia, and the like during use of a Ni-based superalloy at high temperatures.
  • excessive addition will lower the solid solubility limit of other elements, so Y: 0.2 wt% or less, La: 0.2 wt% or less, Ce: 0.2% or less.
  • the Ni-based superalloy excellent in oxidation resistance of this application is considered to be a normal forged alloy, a unidirectionally solidified alloy, a single crystal superalloy, etc. in consideration of the procedure and conditions of a conventionally known manufacturing method. It can be produced by melt forging.
  • Ni-based alloys having the respective compositions shown in Table 1 were melted.
  • a sample having a diameter of 9 ⁇ and a height of 5 mm was prepared and used to evaluate the oxidation resistance.
  • the oxidation resistance test was carried out in the atmosphere at a test temperature of 1100 ° C. Heat was held at this test temperature for 1 hour, and the mosquito was taken out of the furnace. The weight change was measured after cooling the sample. Thereafter, the test was repeated by holding the test temperature again for 1 hour and measuring the weight change.
  • Example 1 In the strength test, a tensile test at 400 ° C. was performed on Example 1 and Comparative Alloy 2. As a result, as shown in FIG. 2, the superalloy of the present invention was superior in strength to Comparative Example 2 in both 0.2% strength and tensile strength.
  • Example 4 Co5.8wt%, Cr3.2wt%, Mo2.8wt%, W5.6wt%, A15.7wt%, Hf0.1wt%, Re5.8wt%, Ru3.6wt%, Ta5.6wt %, SiO.45 wt% Ni-base alloy consisting of Ni and inevitable impurities was melted.
  • comparative alloy 3 Co 5.8wt%, Cr 3.2wt%, Mo2.8wt%, W5.6wt%, A .7wt%, Hf0.1wt%, Re5.8wt%, Ru3.6wt% without Si A Ni-base alloy with Ta5.6 wt% and the balance of Ni and inevitable impurity power was melted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

 ジェットエンジンやガスタービンのタービンブレード、タービンベーンなどの高温部材として有用な、耐酸化性に優れたNi基超合金を提供する。  Co:0.1-15wt%、Cr:0.1-10wt%、Mo:0.1-4.5wt%、W:0.1-15wt%、Al:2-8wt%、Ta+Nb+Ti:0-16wt%、Hf:0-5wt%、Re:0.1-16wt%、Ru:0.1-16wt%、Si:0.2-5wt%、を含有し、残部がNiと不可避的不純物からなる組成を有するNi基超合金とする。

Description

耐酸化性に優れた Ni基超合金
技術分野
[0001] 本発明は、 Ni基超合金に関するものであり、さら〖こ詳しくは、高温での耐酸化性に 優れ、ジェットエンジンやガスタービンなどのタービンブレードやタービンベーン、タ 一ビンディスク等の高温、高応力下で使用される部材として好適な、新しい Ni基超合 金に関するものである。
背景技術
[0002] Ni基超合金はジェットエンジンなどのタービンブレードやタービンベーンとして基材 に使用される際、高温酸化や遮熱を目的として基材表面にコーティングを施して使 用される例が多い。そこで、 Ni基超合金としては、万一これらコーティングが何らかの 理由で剥がれた場合でも、酸ィ匕による機器破損にすぐには至らず定期点検まで使用 できるような、耐酸ィ匕性に優れた合金であることが期待される。
[0003] 従来の Ni基超合金のうちでは、 ReneN5合金(Co: 8wt%、 Cr: 7wt%、 Mo: 2wt %、 W: 5wt%、 Al: 6. 2wt%、 Ta : 7wt%、 Hf : 0. 2wt%、 Re : 3wt%で残部が Ni からなる合金)が耐酸化性に優れた合金として知られて ヽる (特許文献 1)。
[0004] し力しながら、近年のジェットエンジンやガスタービンの進歩に伴い燃焼ガス温度が 高温化されるなか、さらに優れた耐酸化性を持つ Ni基超合金の実現が望まれていた 特許文献 1:英国特許 GB— 2235697A公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明は以上のとおりの背景を踏まえてなされたものであって、ジェットエンジンや ガスタービンのタービンブレードやタービンベーンなどの高温部材として有用な、耐 酸ィ匕性にさらに優れた Ni基超合金を提供することを課題としている。
課題を解決するための手段
[0006] 本発明の Ni基超合金は、上記の課題を解決する手段として以下のことを特徴とし ている。
[0007] 第 1:合金組成として、 Co:0.1— 15wt%、 Cr:0. 1— 10wt%、 Mo:0.1—4.5 wt%、 W:0.1— 15wt%、 Al:2— 8wt%、 Ta+Nb+Ti:0— 16wt%、 Hf:0— 5w t%、Re:0.1— 16wt%、Ru:0.1— 16wt%、 Si:0.2— 5wt%、を含有し、残部が Niと不可避的不純物力 なる組成を有して 、る。
[0008] 第 2:上記第 1の発明の合金において、 Co:3— 10wt%、 Cr:l— 6wt%、 Mo:0.
5-4.5wt%、 W:2— 10wt%、 Al:4— 7wt%、 Ta+Nb+Ti:0— 10wt%以下、 Hf : 0— 2wt%、 Re : 1— 1 Owt%、 Ru : 1— 8wt%、 Si : 0.2— 3wt%、を含有し、残 部が Niと不可避的不純物力もなる組成を有している。
[0009] 第 3:上記第 1の発明の合金において、 Co:4— 8wt%、 Cr:2— 4wt%、 Mo: 1—4 wt%、 W:4— 8wt%、 Al:4— 7wt%、Ta+Nb+Ti:l— 8wt%、 Hf:0.05— 0.5 wt%、 Re:3— 8wt%、 Ru:3— 7wt%、 Si:0.4— 2.5wt%、を含有し、残部が Niと 不可避的不純物からなる組成を有して 、る。
[0010] 第 4:上記第 1から第 3の発明の合金において、さらに、 V:3wt%以下、 Zr:3wt% 以下、 C:0.3wt%以下、 B:0.2wt%以下、 Y:0.2wt%以下、 La:0.2wt%以下 、 Ce:0.2wt%以下の元素のいずれか 1種または 2種以上を含有する。
[0011] 第 5:上記第 1から第 4の発明の合金を用いて、普通铸造法、一方向凝固法、単結 晶凝固法、粉末冶金法、鍛造法などにより作成した、タービンブレード、タービンベー ンなどのタービン部品。
発明の効果
[0012] 本発明によれば、ジェットエンジンやガスタービンの進歩に伴 、燃焼ガス温度が高 温化されるなか、さらに優れた耐酸化性を持つ Ni基超合金が提供される。従来では 、燃焼ガス温度が高温化された場合、特に耐酸ィ匕性が問題となるが、本発明合金で は高温での耐酸ィ匕性を特に重視した Ni基超合金であることから従来のような問題点 は改善される。
[0013] ジェットエンジンやガスタービンなどのタービンブレードやタービンベーンは高温で 使用される。そのため通常はこれら部材表面に耐熱 ·耐酸ィ匕を目的にコーティングが 施されている。しかし、何らかの原因でこのコーティング層が剥離した場合、むき出し になった Ni基超合金が高温酸ィ匕等で短時のうちに損傷することなぐ次回の機器点 検まで使用可能なことが望ましい。また、一般にタービンブレードやタービンベーンは 高温に曝されることから、内部冷却とブレード表面の冷却のため小さな孔が多数ぁ 、 ている。これらの小さな孔は高温酸ィ匕等が原因で目詰まりを起こした場合、局部加熱 されて遠心力に耐えられず破壊することもある。
[0014] さらに、内部冷却を行うようになり、タービンブレードやタービンベーンは Ni基超合 金の部材厚さが 0. 5mm程度という例もあり、特に耐酸ィ匕性が問題となることが多い。 本発明の Ni基超合金は耐酸ィ匕性に優れており、ジェットエンジンやガスタービンなど のタービンブレードやタービンベーンとして高温で使用された場合、長時間の使用に 耐え、その経済的効果は大きい。
図面の簡単な説明
[0015] [図 1]本実施例 1〜3の酸ィ匕試験(大気中 1100°C— 1時間加熱保持の繰り返し)の結 果を示した図である。
[図 2]実施例 1および 2の試験温度 400°Cでの引張試験の結果を示した図である。
[図 3]実施例 4の酸ィ匕試験(大気中 1100°C— 1時間加熱保持の繰り返し)の結果を 示した図である。
発明を実施するための最良の形態
[0016] 本発明は上記のとおりの特徴をもつものである力 以下にその実施の形態につい て説明する。
[0017] 本発明の Ni基超合金の合金元素組成の限定理由は以下のとおりである。
[0018] Coは組織安定ィ匕と強度向上に有効である力 力 15wt%より多いと高温でガンマ プライム量を少なくし、強度を低下させる。よって 0. 1— 15wt%とする。好ましくは 3 10wt%、さらに最も好ましくは 4 8wt%である。
[0019] Crは耐腐食性向上に有効である。 0. 1—
Figure imgf000005_0001
害相を生成し高温強度が低下する。好ましくは 1— 6wt%、さらに最も好ましくは 2—
4wt%の範囲である。
[0020] Moは 0. 1 -4. 5wt%とする力 Moは、素地中に固溶して高温強度を上昇させる とともに、析出硬化によって高温強度に寄与する。好ましくは 0. 5-4. 5wt%、さら に最も好ましくは 1— 4wt%の範囲である。
[0021] Wは、 Moと同様に固溶強化と析出硬化の作用がある。 Wは 0. 1— 15wt%とする。
好ましくは 2— 10wt%、最も好ましくは 4 8wt%の範囲である。
[0022] A1は、 Niと化合し、ガンマ母相中に析出するガンマプライム相を構成する Ni3Alで 表される金属間化合物を形成し、高温強度を向上させる。 A1は 2— 8wt%とする。好 ましくは 4 7wt%の範囲とする。
[0023] Ta + Nb+Tiは、いずれもガンマプライム相を強化してクリープ強度を向上させる有 効な元素である。いずれの場合も総和が 16wt%以上になると有害相の生成が助長 されるので、 0— 16wt%である必要がある。好ましくは 0— 10wt%、最も好ましくは 1 8wt%の範囲とする。
[0024] Hfは耐酸ィ匕性を向上させる効果があるので、本発明合金に添加することが有効で ある。し力し添加量が 5wt%を超えると有害相の生成を助長するのでこれ以下とする 必要があり、 0— 5wt%である必要がある。好ましくは 0— 2wt%、さらに最も好ましく は 0. 05-0. 5wt%の範囲とする。
[0025] Reは、ガンマ相に固溶し、固溶強化により高温強度を向上させる。また Reは耐食 性を向上させる効果もある。一方で Reを多量に添加すると、高温時に TCP相が析出 して高温強度を低下させるおそれがある。 Reは、 0. 1— 16wt%の範囲が好ましい。 より好ましくは 1― 10wt%、最も好ましくは 3— 8wt%の範囲とする。
Ruは、 TCP相の析出を抑え、これにより高温強度を向上させる。 Ruの組成比は、 0. l— 16wt%の範囲が好ましい。好ましくは l— 8wt%、最も好ましくは 3— 7wt%の範 囲とする。
[0026] Siは、合金表面に A1203など保護性の酸ィ匕皮膜を生成させて耐酸ィ匕性を向上さ せる元素である。 Siを多量に添加すると他の元素の固溶限を低下させるため 0. 2- 5wt%と規定する。好ましくは 0. 2— 3wt%、最も好ましくは 0. 4- 2. 5wt%の範囲 とする。
[0027] Vはガンマプライム相に固溶し、ガンマプライム相を強化させる元素である。しかし ながら、過度の添カ卩はクリープ強度を低下させるため 3wt%以下と規定する。
[0028] Zrは Bや Cと同様に粒界を強化する元素である。しかしながら過度の添力卩はクリー プ強度を低下させることから 3wt%以下と規定する。
[0029] Cは粒界強化に寄与する。しかし過度の添カ卩は延性を害するため 0. 3wt%以下と 規定する。
[0030] Bは Cと同様に粒界強化に寄与する。しかし過度の添カ卩は延性を害するため 0. 2w t%以下と規定する。
[0031] Y、 La、 Ceは Ni基超合金を高温で使用中にアルミナ、クロミアなどを形成する保護 酸ィ匕皮膜の密着性を向上させる元素である。しかし過度の添カ卩は他の元素の固溶限 を低下させることになるため Y: 0. 2wt%以下、 La: 0. 2wt%以下、 Ce : 0. 2 %以 下と規定する。
[0032] 以上のとおりのこの出願の耐酸化性に優れた Ni基超合金は従来公知の製造方法 の手順や条件を勘案して、普通铸造合金、一方向凝固合金および単結晶超合金な どの溶解铸造により製造することができる。
[0033] そこで以下に実施例を説明する。もちろん以下の例によって発明が限定されること はない。
実施例
[0034] 表 1の各組成を有する Ni基合金を溶製した。
[0035] [表 1] 組 成 (N i : B a に w t %)
Figure imgf000007_0001
得られた各々の合金について、直径 9πιπι φ ,高さ 5mmの試料を調製し、これを用 いて耐酸化性を評価した。 [0037] 耐酸化性試験は大気中にお!ヽて試験温度 1100°Cで実施した。この試験温度で 1 時間加熱保持してカも炉外に取り出した。試料を冷却後に重量変化を測定した。そ の後、再び試験温度に 1時間加熱保持して重量変化を測定することを繰り返した。
[0038] その結果、図 1に示したように、試験回数 50回の範囲で、 Si含有の実施例 1、実施 例 2及び実施例 3にお ヽて、従来から耐酸化性に優れて!/ヽると!/ヽわれる比較合金 2 ( ReneN5)を上回る耐酸ィ匕性を持つ新しい Ni基超合金を見いだした。なお、 Siを含 まな 、比較合金 1では耐酸化性が劣る。
[0039] 強度試験は、実施例 1と比較合金 2について 400°Cの引張試験を実施した。その結 果、図 2に示したように、本発明の超合金は、 0. 2%耐カ及び引張強さ共に比較例 2 より優れた強度であった。
[0040] 実施例 4として Co5.8wt%、 Cr3.2wt%、 Mo2.8wt%、 W5.6wt%、 A15.7wt%、 Hf0.1wt%、 Re5.8wt%、 Ru3.6wt%、 Ta5.6wt%、 SiO.45 wt%を含有し、残部が Niと不可避的不純物 からなる Ni基合金を溶製した。比較合金 3として、 Siを含有していない Co5.8wt%、 Cr 3.2wt%、 Mo2.8wt%、 W5.6wt%、 A .7wt%、 Hf0.1wt%、 Re5.8wt%、 Ru3.6wt%、 Ta5.6wt %と、残部が Niと不可避的不純物力もなる Ni基合金を溶製した。
[0041] 実施例 1—3と同様な耐酸ィ匕性試験を行い、図 3に示したように、 0.45wt%の Siを含 有する Ni基超合金においても、 Siを含まな 、比較合金 3に較べて顕著に耐酸化性 が改善された。

Claims

請求の範囲
[1] Co:0. 1— 15wt%、 Cr:0.1— 10wt%、 Mo:0.1—4.5wt%、W:0. 1— 15wt %、 Al:2— 8wt%、 Ta+Nb+Ti:0— 16wt%、 Hf:0— 5wt%、 Re:0. 1— 16wt %、 Ru:0.1— 16wt%、 Si:0.2— 5wt%、を含有し、残部が Niと不可避的不純物 からなる組成を有することを特徴とする Ni基超合金。
[2] Co:3— 10wt%、 Cr:l— 6wt%、 Mo:0.5—4.5wt%、 W: 2— 10wt%、 Al:4
— 7wt%、 Ta+Nb+Ti:0— 10wt%以下、 Hf:0— 2wt%、 Re:l— 10wt%、 Ru: 1— 8wt%、 Si:0.2— 3wt%、を含有し、残部が Niと不可避的不純物力もなる組成 を有することを特徴とする請求項 1の Ni基超合金。
[3] Co: 4— 8wt%、 Cr: 2— 4wt%、 Mo: 1— 4wt%、 W: 4— 8wt%、 Al: 4— 7wt%、
Ta+Nb+Ti:l— 8wt%、 Hf:0.05— 0.5wt%、 Re: 3— 8wt%、 Ru: 3— 7wt% 、 Si:0.4-2.5wt%、を含有し、残部が Niと不可避的不純物力もなる組成を有する ことを特徴とする請求項 1の Ni基超合金。
[4] 請求項 1から 3のいずれかの合金においてさらに、 V:3wt%以下、 Zr:3wt%以下
、 C:0.3wt%以下、 B:0.2wt%以下、 Y:0.2wt%以下、 La:0.2wt%以下、 Ce : 0.2wt%以下の元素の 、ずれかを単独ある 、は複合的に含有することを特徴とす る Ni基超合金。
[5] 請求項 1から 4のいずれかの合金を用いて、普通铸造法、一方向凝固法、単結晶 凝固法、粉末冶金法、鍛造法などにより作成した、タービンブレード、タービンベーン などタービン部品。
PCT/JP2006/319183 2005-09-27 2006-09-27 耐酸化性に優れたNi基超合金 WO2007037277A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/992,308 US8926897B2 (en) 2005-09-27 2006-09-27 Nickel-base superalloy excellent in the oxidation resistance
EP06810648.3A EP1930455B1 (en) 2005-09-27 2006-09-27 Nickel-base superalloy with excellent unsusceptibility to oxidation
JP2007537644A JP5344453B2 (ja) 2005-09-27 2006-09-27 耐酸化性に優れたNi基超合金

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-280993 2005-09-27
JP2005280993 2005-09-27

Publications (1)

Publication Number Publication Date
WO2007037277A1 true WO2007037277A1 (ja) 2007-04-05

Family

ID=37899701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319183 WO2007037277A1 (ja) 2005-09-27 2006-09-27 耐酸化性に優れたNi基超合金

Country Status (4)

Country Link
US (1) US8926897B2 (ja)
EP (1) EP1930455B1 (ja)
JP (1) JP5344453B2 (ja)
WO (1) WO2007037277A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119345A1 (ja) * 2008-03-28 2009-10-01 三菱重工業株式会社 耐高温腐食合金材、遮熱コーティング材、タービン部材、及びガスタービン
JP2010007184A (ja) * 2008-06-24 2010-01-14 Honeywell Internatl Inc 単結晶ニッケルベースの超合金組成物、部品、およびその製造方法
WO2011019018A1 (ja) * 2009-08-10 2011-02-17 株式会社Ihi Ni基単結晶超合金及びタービン翼
CN102076877A (zh) * 2008-06-26 2011-05-25 独立行政法人物质·材料研究机构 Ni基单晶超合金及以其为基材的合金构件
JP2012193453A (ja) * 2011-03-16 2012-10-11 Korea Inst Of Machinery & Materials クリープ特性が向上された単結晶ニッケル基超耐熱合金
CN103498078A (zh) * 2008-06-26 2014-01-08 独立行政法人物质·材料研究机构 Ni基单晶超合金和由其得到的合金构件

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104138A1 (ja) * 2005-03-28 2006-10-05 National Institute For Materials Science 耐熱部材
US7704332B2 (en) * 2006-12-13 2010-04-27 United Technologies Corporation Moderate density, low density, and extremely low density single crystal alloys for high AN2 applications
US20100135846A1 (en) * 2008-12-01 2010-06-03 United Technologies Corporation Lower cost high strength single crystal superalloys with reduced re and ru content
US20110076179A1 (en) * 2009-03-24 2011-03-31 O'hara Kevin Swayne Super oxidation and cyclic damage resistant nickel-base superalloy and articles formed therefrom
CA2758867A1 (en) * 2009-04-17 2010-10-21 Ihi Corporation Ni-based single crystal superalloy and turbine blade incorporating the same
US20100266772A1 (en) * 2009-04-20 2010-10-21 Honeywell International Inc. Methods of forming coating systems on superalloy turbine airfoils
US20160214350A1 (en) 2012-08-20 2016-07-28 Pratt & Whitney Canada Corp. Oxidation-Resistant Coated Superalloy
US8858873B2 (en) 2012-11-13 2014-10-14 Honeywell International Inc. Nickel-based superalloys for use on turbine blades
SG11201503276PA (en) 2012-12-14 2015-06-29 United Technologies Corp Hybrid turbine blade for improved engine performance or architecture
WO2015095949A1 (en) 2013-12-24 2015-07-02 Liburdi Engineering Limited Precipitation strengthened nickel based welding material for fusion welding of superalloys
GB201407151D0 (en) 2014-04-23 2014-06-04 Rolls Royce Plc A method of testing the oxidation resistance of an alloy
JP6460336B2 (ja) * 2015-07-09 2019-01-30 三菱日立パワーシステムズ株式会社 Ni基高強度耐熱合金部材、その製造方法、及びガスタービン翼
GB2540964A (en) * 2015-07-31 2017-02-08 Univ Oxford Innovation Ltd A nickel-based alloy
DE102015223198A1 (de) * 2015-11-24 2017-05-24 Siemens Aktiengesellschaft Nickelbasislegierung mit verbesserten Eigenschaften für additive Fertigungsverfahren und Bauteil
TWI595098B (zh) * 2016-06-22 2017-08-11 國立清華大學 高熵超合金
FR3073527B1 (fr) * 2017-11-14 2019-11-29 Safran Superalliage a base de nickel, aube monocristalline et turbomachine
US11326231B2 (en) 2017-11-29 2022-05-10 Hitachi Metals, Ltd. Ni-based alloy for hot-working die, and hot-forging die using same
US10933469B2 (en) 2018-09-10 2021-03-02 Honeywell International Inc. Method of forming an abrasive nickel-based alloy on a turbine blade tip
RU2748445C1 (ru) * 2020-06-09 2021-05-25 Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") Жаропрочный сплав на никелевой основе и изделие, выполненное из него
EP4281239A1 (en) * 2021-01-19 2023-11-29 Siemens Energy, Inc. Superalloy powder mixture for liquid assisted additive manufacturing of a superalloy component
CN114032420B (zh) * 2021-11-10 2023-03-14 中国航发北京航空材料研究院 一种高性能铸造高温合金
US11525172B1 (en) * 2021-12-01 2022-12-13 L.E. Jones Company Nickel-niobium intermetallic alloy useful for valve seat inserts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146460A (ja) * 2000-08-30 2002-05-22 National Institute For Materials Science ニッケル基単結晶超合金、その製造方法およびガスタービン高温部品
WO2003080882A1 (fr) * 2002-03-27 2003-10-02 National Institute For Materials Science Superalliage a base de ni solidifie de maniere directionnelle et superalliage a cristal unique a base de ni
JP2005097649A (ja) * 2003-09-22 2005-04-14 National Institute For Materials Science Ni基超合金

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4261742A (en) * 1978-09-25 1981-04-14 Johnson, Matthey & Co., Limited Platinum group metal-containing alloys
CA1212020A (en) * 1981-09-14 1986-09-30 David N. Duhl Minor element additions to single crystals for improved oxidation resistance
DE3571149D1 (en) * 1985-03-13 1989-07-27 Gen Electric Yttrium and yttrium-silicon bearing nickel-base superalloys especially useful as compatible coatings for advanced superalloys
CA1315572C (en) * 1986-05-13 1993-04-06 Xuan Nguyen-Dinh Phase stable single crystal materials
US5240491A (en) * 1991-07-08 1993-08-31 General Electric Company Alloy powder mixture for brazing of superalloy articles
JPH11310839A (ja) * 1998-04-28 1999-11-09 Hitachi Ltd 高強度Ni基超合金方向性凝固鋳物
FR2780983B1 (fr) * 1998-07-09 2000-08-04 Snecma Superalliage monocristallin a base de nickel a resistance accrue a haute temperature
JP4028122B2 (ja) 1999-02-25 2007-12-26 独立行政法人物質・材料研究機構 Ni基超合金、その製造方法およびガスタービン部品
EP1184473B1 (en) * 2000-08-30 2005-01-05 Kabushiki Kaisha Toshiba Nickel-base single-crystal superalloys, method of manufacturing same and gas turbine high temperature parts made thereof
JP3840555B2 (ja) * 2001-05-30 2006-11-01 独立行政法人物質・材料研究機構 Ni基単結晶超合金
US6921586B2 (en) * 2002-02-05 2005-07-26 General Electric Company Ni-Base superalloy having a coating system containing a diffusion barrier layer
US20040042927A1 (en) * 2002-08-27 2004-03-04 O'hara Kevin Swayne Reduced-tantalum superalloy composition of matter and article made therefrom, and method for selecting a reduced-tantalum superalloy
CN100357467C (zh) * 2002-12-06 2007-12-26 独立行政法人物质·材料研究机构 Ni基单晶超级合金
JP4115369B2 (ja) * 2003-09-22 2008-07-09 独立行政法人物質・材料研究機構 Ni基超合金
US6989174B2 (en) * 2004-03-16 2006-01-24 General Electric Company Method for aluminide coating a hollow article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146460A (ja) * 2000-08-30 2002-05-22 National Institute For Materials Science ニッケル基単結晶超合金、その製造方法およびガスタービン高温部品
WO2003080882A1 (fr) * 2002-03-27 2003-10-02 National Institute For Materials Science Superalliage a base de ni solidifie de maniere directionnelle et superalliage a cristal unique a base de ni
JP2005097649A (ja) * 2003-09-22 2005-04-14 National Institute For Materials Science Ni基超合金

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOIZUMI Y. ET AL.: "Dai 2 Sedai Ni-ki Tankessho Chogokin TSM-82+ no Chojikan Creep Tokusei", NIPPON KONZOKU GAKKAISHI, vol. 69, no. 8, 20 August 2005 (2005-08-20), pages 743 - 746, XP003001791 *
See also references of EP1930455A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119345A1 (ja) * 2008-03-28 2009-10-01 三菱重工業株式会社 耐高温腐食合金材、遮熱コーティング材、タービン部材、及びガスタービン
US8409722B2 (en) 2008-03-28 2013-04-02 Mitsubishi Heavy Industries, Ltd. Alloy material having high-temperature corrosion resistance, thermal barrier coating, turbine member, and gas turbine
JP2010007184A (ja) * 2008-06-24 2010-01-14 Honeywell Internatl Inc 単結晶ニッケルベースの超合金組成物、部品、およびその製造方法
CN102076877A (zh) * 2008-06-26 2011-05-25 独立行政法人物质·材料研究机构 Ni基单晶超合金及以其为基材的合金构件
CN103498078A (zh) * 2008-06-26 2014-01-08 独立行政法人物质·材料研究机构 Ni基单晶超合金和由其得到的合金构件
WO2011019018A1 (ja) * 2009-08-10 2011-02-17 株式会社Ihi Ni基単結晶超合金及びタービン翼
US9932657B2 (en) 2009-08-10 2018-04-03 Ihi Corporation Method of making a Ni—based single crystal superalloy and turbine blade incorporating same
JP2012193453A (ja) * 2011-03-16 2012-10-11 Korea Inst Of Machinery & Materials クリープ特性が向上された単結晶ニッケル基超耐熱合金

Also Published As

Publication number Publication date
EP1930455A4 (en) 2010-01-13
EP1930455B1 (en) 2013-07-03
JPWO2007037277A1 (ja) 2009-04-09
US20090196760A1 (en) 2009-08-06
US8926897B2 (en) 2015-01-06
JP5344453B2 (ja) 2013-11-20
EP1930455A1 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
WO2007037277A1 (ja) 耐酸化性に優れたNi基超合金
JP5299899B2 (ja) Ni基超合金及びその製造方法
JP5296046B2 (ja) Ni基合金、及びそれを用いたガスタービンのタービン動・静翼
JP4036091B2 (ja) ニッケル基耐熱合金及びガスタービン翼
JP5186215B2 (ja) ニッケルベース超合金
WO2003080882A1 (fr) Superalliage a base de ni solidifie de maniere directionnelle et superalliage a cristal unique a base de ni
KR20140126677A (ko) 철을 포함하는 주조 니켈-기제 초합금
US20070235110A1 (en) Nickel based superalloys with excellent mechanical strength, corrosion resistance and oxidation resistance
JP5252348B2 (ja) Ni基超合金とその製造方法およびタービンブレードまたはタービンベーン部品
JP6016016B2 (ja) Ni基単結晶超合金
JP5418589B2 (ja) Ni基単結晶超合金及びこれを用いたタービン翼
JP3944582B2 (ja) Ni基超合金
WO2006104059A1 (ja) コバルトフリーのNi基超合金
JP2005097650A (ja) Ni基超合金
JP5626920B2 (ja) ニッケル基合金の鋳造品、ガスタービン翼及びガスタービン
JP5597598B2 (ja) Ni基超合金と、それを用いたガスタービンのタービン動・静翼
JP5063550B2 (ja) ニッケル基合金及びそれを用いたガスタービン翼
JP4911753B2 (ja) Ni基超耐熱合金及びそれを用いたガスタービン部品
JPH1121645A (ja) Ni基耐熱超合金、Ni基耐熱超合金の製造方法及びNi基耐熱超合金部品
JP5427642B2 (ja) ニッケル基合金及びそれを用いたランド用ガスタービン部品
JP4230970B2 (ja) 凝固方向強度と結晶粒界強度の優れた一方向凝固用Ni基超合金、鋳造物およびガスタービン用高温部品
JP4184648B2 (ja) 強度及び耐食性に優れたNi基単結晶合金とその製造法
JPH10317080A (ja) Ni基耐熱超合金、Ni基耐熱超合金の製造方法及びNi基耐熱超合金部品
JP2013053327A (ja) Ni基超合金
JP5636639B2 (ja) Ni基超合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2007537644

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006810648

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11992308

Country of ref document: US