WO2004047122A1 - プロトン伝導体、シングルイオン伝導体、およびそれらの製造方法、並びに電気化学キャパシタ - Google Patents

プロトン伝導体、シングルイオン伝導体、およびそれらの製造方法、並びに電気化学キャパシタ Download PDF

Info

Publication number
WO2004047122A1
WO2004047122A1 PCT/JP2003/014574 JP0314574W WO2004047122A1 WO 2004047122 A1 WO2004047122 A1 WO 2004047122A1 JP 0314574 W JP0314574 W JP 0314574W WO 2004047122 A1 WO2004047122 A1 WO 2004047122A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
chemical formula
group
structure represented
formula
Prior art date
Application number
PCT/JP2003/014574
Other languages
English (en)
French (fr)
Inventor
Tomitaro Hara
Ryosuke Takagi
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US10/533,604 priority Critical patent/US7670508B2/en
Priority to JP2004553178A priority patent/JP4577014B2/ja
Priority to AU2003280819A priority patent/AU2003280819A1/en
Priority to KR1020057007136A priority patent/KR101061934B1/ko
Priority to CN2003801034645A priority patent/CN1711612B/zh
Publication of WO2004047122A1 publication Critical patent/WO2004047122A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a proton conductor or a Sindal ion conductor used for a device involving movement of protons or protons such as a secondary battery, a fuel cell, a hydrogen sensor or an in-vivo electrode, a method for producing the same, and a method for using the same.
  • a proton conductor or a Sindal ion conductor used for a device involving movement of protons or protons such as a secondary battery, a fuel cell, a hydrogen sensor or an in-vivo electrode, a method for producing the same, and a method for using the same.
  • a proton conductor or a Sindal ion conductor used for a device involving movement of protons or protons such as a secondary battery, a fuel cell, a hydrogen sensor or an in-vivo electrode, a method for producing the same, and a method for using the same.
  • a proton conductor or a Sindal ion conductor used for a device involving movement of protons or pro
  • One type of solid electrolyte having an ion conduction mechanism is a single ion conduction type polymer membrane in which a counter ion species is immobilized in a polymer compound and only one of the cation or anion ion species is moved.
  • This single ion conductive type polymer membrane for example, Na Eion (registered trademark) developed by E.I. Du Pont in 1969 is known.
  • ionic conductions such as polyethylene glycol derivatives having a sulfonic acid group (carboxy group) or a sulfonic acid group (sulfo group) bonded to the side chain were investigated.
  • Body synthesis and its mechanism have been studied. Since then, as the technology related to fuel cells has regained attention due to the close-up of environmental issues, research on electrolyte membranes for solid oxide fuel cells has become active, and in particular, much research has been done in recent years.
  • Proton conductors have a wide range of applications, including not only electrolyte membranes for solid oxide fuel cells, but also membranes for hydrogen sensors, biomimetic hydrogen transfer membranes, materials for electronic displays, proton conductive membranes or chemical reactors for chemical reactors. It is expected to be applied in various fields such as electrolyte membranes for ton-move type secondary batteries, and many studies including basic research have been made.
  • an electrolyte membrane which is capable of exhibiting higher proton conductivity with higher material strength by introducing an inorganic material having an oxygen functional group into the proton conductive compound (for example, See 200 1—1 55744 publication.)
  • an inorganic material having an oxygen functional group for example, See 200 1—1 55744 publication.
  • a polymer compound having a large number of sulfonic acid groups with a click-on / on-transport polymer compound having a low glass transition temperature, high ionic conductivity can be obtained, and the compound can be used in a wide temperature range.
  • Such a composite membrane has also been proposed (for example, see Japanese Patent No. 2962360).
  • this conductor is a liquid two-component system and cannot be used as a molded body unless a gelling agent or the like is added. Therefore, there is a problem that the use of the conductor is limited when it is developed for various applications.
  • the present invention has been made in view of such problems, and has as its object the purpose of being easy to form into a membrane, etc., having a high conductivity and a wide operating temperature range, and in particular, in the case of a proton conductive compound, the water content of the compound is high.
  • An object of the present invention is to provide a proton conductor, a single ion conductor, a method for producing the same, and an electrochemical capacity using the same, which can obtain high proton conductivity in the absence of the proton conductor. Disclosure of the invention
  • the proton conductor according to the present invention includes a compound having a structure represented by Chemical Formula 1 and a compound having a structure represented by Chemical Formula 2.
  • R 1 is a constituent component containing carbon (C), X is a protic dissociative group, and n is n ⁇ l.
  • R 2 and R 3 each represent a carbon-containing component or hydrogen (H).
  • the single ion conductor according to the present invention includes a compound having a structure represented by Chemical Formula 3 and a compound having a structure represented by Chemical Formula 4.
  • a first method for producing a proton conductor according to the present invention comprises: converting a compound having a structural part represented by Chemical Formula 5 into a compound represented by Chemical Formula 5.
  • the method includes a step of impregnating a compound having the structure represented by 6 or a solution obtained by dissolving the compound having the structure represented by the chemical formula 6 in a solvent.
  • R 1 is a constituent component containing carbon
  • X is a protic dissociative group
  • n is n ⁇ 1.
  • a method for producing a second proton conductor according to the present invention comprises a compound having a structural part represented by Chemical Formula 7 or 8 And a compound having a structure represented by Chemical Formula 9 in a solvent, and evaporating the solvent.
  • R 1 is a constituent component containing carbon
  • X is a protic dissociative group
  • n is n ⁇ 1.
  • R 1 represents a component containing an oen carbon
  • X represents a group that can become a protic dissociation group by ion exchange
  • n is n ⁇ l.
  • the first method for producing a single ionic conductor according to the present invention provides a method for producing a compound having a structural portion represented by a chemical formula 10 And a step of impregnating the compound having the structure represented by Chemical Formula 11 or a solution in which the compound having the structure represented by Chemical Formula 11 is dissolved in a solvent.
  • R 1 is a component containing carbon, ⁇ is a cationic dissociative group, and ⁇ is ⁇ 1.
  • a method for producing a second single ion conductor according to the present invention is represented by Chemical Formula 12 or Chemical Formula 13
  • the method includes a step of mixing a compound having a structural part and a compound having a structure represented by Chemical Formula 14 in a solvent, and evaporating the solvent.
  • R 1 is a component containing carbon, ⁇ is a cationic dissociative group, and ⁇ is ⁇ 1.
  • R 1 represents a carbon-containing component
  • z represents a group that can become a cationic dissociation group by ion exchange
  • n is n ⁇ l.
  • R 2 and R 3 each represent a carbon-containing component or hydrogen.
  • the electrochemical capacity according to the present invention provides a capacitance between a pair of electrodes opposed to each other via an electrolyte.
  • the electrolyte comprises a compound having a structural part represented by Chemical Formula 15 and a compound having a structure represented by Chemical Formula 16.
  • R 1 is a component containing carbon (C)
  • X is a protic dissociative group
  • n is n ⁇ l.
  • R 2 and R 3 each represent a carbon-containing component or hydrogen (H). You. )
  • the NC ⁇ H group of the compound having the structure represented by Chemical Formula 2 or Chemical Formula 4 replaces the structural part represented by Chemical Formula 1 or Chemical Formula 3.
  • the compound having the structural unit represented by Chemical Formula 1 is a compound having a structure represented by Chemical Formula 2 or a compound represented by Chemical Formula 2. Or a compound having a structure represented by Chemical Formula 1 and a compound having a structure represented by Chemical Formula 2 are impregnated with a solution in which a compound having the structure is dissolved in a solvent. By mixing in the inside, the proton conductor of the present invention is obtained.
  • the compound having the structural unit represented by Chemical Formula 3 is a compound having the structure represented by Chemical Formula 4 or represented by Chemical Formula 4.
  • a solution in which a compound having a structure is dissolved in a solvent or by mixing a compound having a structure represented by Chemical Formula 3 with a compound having a structure represented by Chemical Formula 4 in a solvent
  • the single ion conductor of the present invention is obtained.
  • the proton conductor of the present invention is used for the electrolyte, high proton conductivity can be obtained in the absence of moisture, and it can be used in a wide range of voltage and temperature. Become. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a characteristic diagram showing the relationship between the molar ratio of the second compound B to the protic dissociative group X and the proton conductivity in the proton conductor according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a method for manufacturing a proton conductor according to the first embodiment of the present invention.
  • FIG. 3 shows another method of manufacturing the proton conductor according to the first embodiment of the present invention. It is a flow chart showing.
  • FIG. 4 is a cross-sectional view illustrating a configuration of an electrochemical capacity using a proton conductor according to the first embodiment of the present invention.
  • FIG. 5 is a characteristic diagram showing a relationship between temperature and proton conductivity in the proton conductors according to Examples 11 to 14 of the present invention.
  • FIG. 6 is a characteristic diagram showing a relationship between temperature and ionic conductivity in the single ion conductor according to Examples 2-1 and 2-2 of the present invention.
  • FIG. 7 is a characteristic diagram showing a charge / discharge curve in an electrochemical capacity according to Example 3-1 of the present invention.
  • FIG. 8 is a characteristic diagram showing a charge / discharge curve in the electrochemical capacitor according to Example 3-1 of the present invention.
  • the proton conductor according to the first embodiment of the present invention is a mixed complex comprising a compound A having a structure represented by Chemical Formula 17 and a compound B having a structure represented by Chemical Formula 18 It is.
  • R 1 represents a carbon-containing constituent
  • X represents a protic dissociative group
  • n is n ⁇ 1.
  • the component R 1 of the compound A has, for example, carbon as a main skeleton, nitrogen (N), and fluorine. It may contain (F), sulfur (S), oxygen ( ⁇ ) or hydrogen. Among them, nitrogen, fluorine, sulfur and oxygen may be contained in a form in which hydrogen bonded to carbon is substituted, or may be contained in a form in which carbon in the main skeleton is substituted.
  • Specific examples of the structure of the component R 1 include a C—C bond as a main skeleton, a C CC bond, a C—N bond, a C , N bond, a C—F bond, a C—S bond, and a C—O bond.
  • the proton dissociation group X for example, single S_ ⁇ 3 H group (sulfonic acid group) include one COOH group (carboxylic acid group) or single OH group (hydroxyl group).
  • the protic dissociating group X is not necessarily required to be one kind, and may include two or more kinds.
  • a typical example of the compound A having such a structure includes a sulfonic acid-based fluororesin or a carboxylic acid-based fluororesin.
  • Specific product names include Nafion (registered trademark) of Du Pont, Aci1ex (registered trademark) of Asahi Chemical Industry Co., Ltd. and f1 emion (registered trademark) of Asahi Glass Co., Ltd.
  • carbon may have a main skeleton and may contain hydrogen or halogen.
  • halogen is included in a form in which hydrogen bonded to carbon is substituted, and the substitution ratio is not particularly limited.
  • the component R2 and the component R3 may be the same or different from each other.
  • Examples of such a compound B include N, N-dimethylformamide, N, N-methylformamide, N, N-dibutylformamide, diisopropylformamide, N-methylformamide, N-ethylformamide, and N-cyclohexane.
  • N, N-dimethylformamide or N-methylformamide is It is preferable because good characteristics can be obtained.
  • the compound B may be one kind, or may be a mixture of two or more kinds. When two or more kinds are included, it is preferable to use those having good affinity with each other, and the mixing ratio is arbitrary.
  • the NC ⁇ ⁇ H group of compound B interacts with the protons present in compound A, so that protons are dissociated from compound A and proton conductivity appears.
  • the quantity ratio between the protic dissociating group X present in the compound A and the compound B is a factor that greatly affects the proton conductivity.
  • Fig. 1 shows the relationship between b / (ax n) and proton conductivity in a proton conductor in which compound A, Nafion 117 (registered trademark) and compound B, N, N-dimethylformamide were mixed. Is represented.
  • the proton conductivity increases as the molar ratio bZ (axn) of the compound B to the protic dissociative group X increases, and reaches a local maximum value near bZ (axn) 20, and then decreases. Can be seen.
  • the proton conductor can be produced, for example, as follows.
  • FIG. 2 shows a method for manufacturing a proton conductor according to the present embodiment.
  • the protic dissociating group X of compound A is prepared by an acid treatment or the like (step S101).
  • the acid treatment for example, a method of immersing in a 5% aqueous hydrogen peroxide solution or a 0.5 mol Zl sulfuric acid aqueous solution and stirring while heating is common. After acid treatment, wash thoroughly with pure water so that no residue from acid treatment remains.
  • compound B when compound B can be dissolved only in a solid or a dilute state with respect to a solvent, for example, it can be produced as follows.
  • FIG. 3 shows another method for producing the proton conductor according to the present embodiment.
  • compound A and compound B are mixed in a solvent and dispersed in the same solvent.
  • a compound A ′ which is a precursor of the compound A and can be a compound A by ion exchange may be used (step S 201).
  • Compound A ′ has a structural portion represented by chemical formula 19.
  • R 1 represents a constituent component containing carbon
  • X represents a group that can become a protic dissociation group by ion exchange
  • n is n ⁇ l.
  • step S202 the solvent is evaporated to dryness (step S202).
  • ion exchange is performed by applying a direct current in a hydrogen atmosphere to prepare a protic dissociation group X, and the compound A ′ is made a compound A (step S203).
  • this ion exchange treatment is not limited to the case where the compound A ′ is used, and may be performed also when the compound A is used.
  • the proton conductor according to the present embodiment is obtained.
  • the protic dissociating group X or the dissociating group X of the compound A can be adjusted.
  • compound A having a structure represented by chemical formula 17 and compound B having a structure represented by chemical formula 18 are included.
  • the molar ratio bZ (axn) of the compound B to the protic dissociating group X should be within the range of 10 ⁇ b / (axn) ⁇ 30, and further within the range of 15 ⁇ bZ (axn) ⁇ 25. By doing so, the proton conductivity can be further improved.
  • compound A is impregnated into compound B or a solution obtained by dissolving compound B in a solvent. Since compound A ′ and compound B are mixed in a solvent and the solvent is evaporated, the proton conductor according to the present embodiment can be easily and uniformly manufactured.
  • the proton conductor according to the present embodiment is preferably used, for example, in the following electrochemical capacity.
  • FIG. 4 shows a configuration of an electrochemical capacity according to an embodiment of the present invention.
  • This electrochemical capacitor has an electrochemical element 10 in which a pair of electrodes 12, 13 are arranged to face each other via an electrolyte 11 made of a proton conductor according to the present embodiment.
  • Electrochemical element 10 has a capacitance C expressed by equation 1 between electrode 12 and electrode 13 and a derivative shown in equation 2 equivalent to the capacitance generated from the thermodynamic relationship. And a pseudo capacitance K represented.
  • Equation 2 The pseudo-capacitance ⁇ shown in Equation 2 appears when an arbitrary parameter y proportional to the amount of applied electricity is related to the potential by Equation 3.
  • the electrode 12 has, for example, a structure in which an electrode layer 12B is provided on a current collector 12A.
  • the electrode 13 has, for example, a structure in which an electrode layer 13B is provided on a current collector 13A.
  • the current collectors 12 A and 13 A contain a conductive material and have an electron conductivity of IX 10 2 SZcm or more.
  • the conductive material constituting the current collectors 12A and 13A include gold (Au), silver (Ag), copper (Cu), iron (F e), aluminum (A 1), and nickel (N Metal materials such as i), platinum (Pt) or manganese (Mn), or organic materials such as carbon or polyacetylene can be used.
  • the current collectors 12A and 13A may be composed of a single material, but may be composed of a plurality of materials. What is the composition if the electron conductivity is within the above-mentioned range? It may be something. Examples of the mixture of the conductive material include a conductive rubber material.
  • the electrode layers 12 B and 13 B include an electrode material that can have a capacitance Q between the electrodes 12 and 13 and the pseudo capacitance K described above.
  • Such electrode materials for example, ruthenium oxide (Ru_ ⁇ 2), oxides such as indium oxide (I R_ ⁇ 2) or oxidation of cobalt (C o 3 ⁇ 4), or Poria diphosphate, there polyindole Or a polymer material such as polyquinone.
  • One type of electrode material may be used alone, or two or more types may be used in combination.
  • the electrode layers 12B and 13B may contain a conductive agent or a binder, if necessary, in addition to the electrode material.
  • the electrochemical element 10 may be provided with a separator between the electrodes 12 and 13 so that the electrolyte 11 is impregnated in the separator.
  • Separators may be of any type as long as they have high electronic insulation, excellent ion permeability, and are electrochemically stable. Examples of the separator include those made of a glass fiber blended paper or a porous plastic thin film such as a porous polypropylene thin film.
  • the electrochemical element 10 is housed, for example, inside the exterior member 20.
  • the exterior member has a conductive member 21 provided to contact the current collector 12A and a conductive member 22 provided to contact the current collector 13A.
  • An insulating member 23 is provided between the members 21 and 22.
  • the proton conductor produced as described above is used as the electrolyte 11, and the electrodes 12 and 13 are connected via the electrolyte 11.
  • the electrolyte 11 may be formed on the electrodes 12 and 13 and then laminated.
  • the electrolyte 11 may be impregnated in a separator (not shown) to form the electrodes 12 and 13. May be laminated.
  • the electrochemical capacitor according to the present embodiment since the above-described proton conductor is used for the electrolyte 11, the operation is performed without water. Therefore, it is possible to operate even in a high temperature region or a high voltage.
  • the proton conductor according to the present embodiment is used for the electrolyte 11, so that it can be used even in a high-temperature region, and at the time of manufacturing. For example, high-temperature treatment can be performed at the time of encapsulation in the exterior member 20, thereby facilitating production. In addition, a high voltage can be applied, and the energy density can be improved.
  • the single-ion conductor according to the second embodiment of the present invention is a mixed complex including the compound C having the structural unit represented by the chemical formula 20 and the compound B described above.
  • Compound C has the same configuration as compound A in the first embodiment, except that compound C has a cationic dissociative group Z instead of protic dissociative group X.
  • R 1 represents a carbon-containing component
  • Z represents a cationic dissociating group
  • n is n ⁇ 1.
  • the cationic dissociative group Z for example, single S_ ⁇ 3 M groups, and one COOM group or single ⁇ _M group.
  • M represents any of lithium (L i), sodium (Na), potassium (K), and rubidium (Rb).
  • the cationic dissociating group Z does not necessarily need to be one kind, and may include two or more kinds.
  • Compound B is the same as in the first embodiment.
  • This single ion conductor can be manufactured in the same manner as in the first embodiment (see FIGS. 2 and 3).
  • a hydroxide containing a target cation such as an aqueous solution of lithium hydroxide or an aqueous solution of sodium hydroxide.
  • a drying treatment is performed once to remove the solvent used in the cation exchange.
  • compound C is impregnated into compound B (see step S102).
  • step S201 compound C or a precursor of compound C
  • the compound C ′ having the structure represented by the chemical formula 21 and the compound B are mixed in a solvent (see step S201).
  • the ion exchange is performed by applying a direct current using, for example, lithium metal as a counter electrode, to prepare a desired cationic dissociation group Z.
  • R 1 represents a carbon-containing component
  • z represents a group that can become a cationic dissociation group by ion exchange
  • n is n ⁇ l.
  • the compound C having the structural unit represented by Chemical Formula 20 and the compound B having the structure represented by Chemical Formula 18 are included.
  • a perfluorosulfonic acid-based polymer ion-exchange membrane having a molecular weight (acid equivalent) of 1,200 g / mo 1 per 1 mol of the protic dissociating group X was prepared. Acid treatment was performed using aqueous hydrogen peroxide and a 0.5 mol 1/1 aqueous sulfuric acid solution to convert the protic dissociation group X into a sulfonic acid group.
  • the perfluorosulfonic acid-based polymer ion-exchange membrane was dried at 120 ° C. and 1333 Pa for 24 hours, and then dried in Compound B, N, N-dimethylformamide (DMF) at room temperature for 100 hours. Dipped and impregnated. Thus, a proton conductor having the composition shown in Table 1 was obtained.
  • the amount of compound B introduced was calculated by the formula shown in Equation 4 by measuring the film mass before and after the impregnation treatment with compound B.
  • Compound B introduction amount (mass after impregnation-mass before impregnation) / (mass after impregnation)
  • the obtained proton conductor was cut so as to have an area of 2 cm 2, and the proton conductivity at 70 to ⁇ 20 ° C. was calculated by AC impedance measurement.
  • the results obtained are shown in Table 1 and FIG. Table 1 and as shown in FIG. 5, 7 0 ° C, 30 respectively proton conductivity in ° C and single 2 0 ° C 9. 0x1 0 one 4 S / cm, 5. 0 X 1 0- 4 S / cm and 2. 0 x 1 0- 4 very high and was the S / cm.
  • a perfluorocarboxylic acid-based polymer ion-exchange membrane having a molecular weight (acid equivalent) of 1200 g / mo 1 per 1 mol of the protic dissociating group X was prepared.
  • the acid treatment was carried out in the same manner as in 1.1 to convert the protic dissociation group X to a sulfonic acid group.
  • this perfluorocarboxylic acid polymer ion exchange membrane was dried under the same conditions as in Example 1-1.
  • compound B a mixture of N, N-dimethylformamide (DMF) and N-methylformamide (MF) in a volume ratio of 1: 1 was prepared.
  • the acid-based polymer ion exchange membrane was immersed at room temperature for 100 hours to be impregnated. Thus, a proton conductor having the composition shown in Table 1 was obtained.
  • the proton conductivity of the proton conductors of Examples 11 and 12 was calculated in the same manner as in Example 11-11. The results obtained are shown in Table 1 and FIG.
  • the gate conductivities at 70 ° C, 30 ° C and ⁇ 20 ° C are respectively 6.
  • O l 0 ”S / cm, 4.0 x 10— 4 S cm and 1.5 ⁇ 1 O ⁇ SZcm were very high as in Example 1-1.
  • the gate conductivity at 70 ° C, 30 ° C and 120 ° C was 4.Oxl O ⁇ S / cm, 1.7 x 1 (T 4 S / cm and 4.0 was very high in the same manner as the OXL 0 one 5 S / cm example 1 one 1.
  • a perfluorocarboxylic acid-based polymer ion-exchange membrane having a molecular weight (acid equivalent) of 1200 g / mo 1 per 1 mol of the protic dissociation group X was prepared as the compound A, and the reaction was carried out. An acid treatment was performed in the same manner as in Example 11 to convert the protic dissociation group X into a sulfonic acid group.
  • the perfluorocarboxylic acid-based polymer ion-exchange membrane was dried under the same conditions as in Example 1-1, and N-methylformamide (MF) as compound B was refluxed at the boiling point. Soaked for hours and impregnated.
  • MF N-methylformamide
  • a perfluorocarboxylic acid-based polymer ion exchange membrane having a molecular weight (acid equivalent) of 1200 gZmo 1 per lmo of protic dissociation group X was prepared.
  • the acid treatment was performed in the same manner as described above, and the protic dissociation group X was converted to a sulfonic acid group.
  • this perfluorocarboxylic acid-based polymer ion exchange membrane was dried under the same conditions as in Example 11-11.
  • the protic dissociating group X may be a single S 0 3 H group or a —C ⁇ H group.
  • an excellent proton conductor can be obtained by either of the two types described in the above embodiment. I understood.
  • Example 11 in which the molar ratio bZ (axn) of the compound B to the protonic dissociating group X was adjusted to about 20 has the highest proton conductivity, and the molar ratio of the compound B to the protic dissociating group X is 1 It has been confirmed that it is more preferable to set the value in the range of 0 ⁇ b / (axn) ⁇ 30, and more preferably in the range of 15 ⁇ bZ (axn) ⁇ 25.
  • Example 11 the same perfluorosulfonic acid-based polymer ion-exchange membrane as in Example 11 was prepared as Compound C, and treated with acid in the same manner as in Example 11 to obtain 2mo 1/1 For 24 hours or more for ion exchange treatment to convert the cationic dissociating group Z to one SO 3 Li group.
  • the membrane after this ion exchange was immersed in an aqueous sodium hydroxide solution and subjected to neutralization titration with hydrochloric acid, and the amount of residual protons was calculated.
  • the ion exchange rate was 90% or more.
  • Example 11-11 the membrane after ion exchange was dried under the same conditions as in Example 11-11, and then immersed in N, N-dimethylformamide (DMF), which is the compound B, as in Example 11-11. And impregnated. As a result, a single ion conductor having the composition shown in Table 2 was obtained. The ionic conductivity of the obtained single ion conductor was calculated in the same manner as in Example 11-11. The results obtained are shown in Table 2 and FIG.
  • DMF N, N-dimethylformamide
  • Example 2-2 A single ion conductor was prepared in the same manner as in Example 2-1 except that N-methylformamide (MF) was used as compound B, and the ionic conductivity was calculated. did.
  • the results obtained are shown in Table 2 and FIG. As shown in Table 2 and FIG. 6, 7 0 ° C, 3 0 each ion conductivity at ° C and single 20 ° C 6. 9 x 1 0- 5 SZcm, 2. 8x1 (T 5 S / It was very high as with the cm and 1. 9 x 1 0- 5 S / cm example 2 1.
  • the results obtained are shown in Table 2 and FIG. As shown in Table 2 and FIG. 6, 70 ° C, 30 ° C and - 20 °, respectively ionic conductivity at C 4. 0 xl 0- 7 SZ cm , 2. 5x1 0- 7 S / cm and 1 ⁇ 8 x 10-? S / cm, which was lower than Examples 2-1 and 2-2.
  • Electrochemical Capacitor I An electrochemical capacitor as shown in FIG. 4 was prepared. How to make an Electrochemical Capacitor I Refer to a book ("Electrochemical Supercapacitors" BEConway published in 1999, Kluwer Academic I Plenum Publishers) Japanese version Electrochemical Capacitor, published in 2001, NTS Corporation I made it.
  • acetylene black 2 g is Porianirin 8 g and conductive aid is an electrode material, and a par full O b sulfonic acid polymer compound is suspended dispersed in an alcohol solvent solution 5 cm 3 dissolved 20% A coating agent was prepared.
  • a carbon sheet was prepared as the current collectors 12 A and 13 A, and the prepared coating agent was applied on the current collectors 12 A and 13 A, and dried in vacuum at 100 ° C. The treatment was performed to form electrode layers 12 B and 13 B. Thus, electrodes 12, 13 were obtained.
  • a perfluorosulfonic acid-based polymer ion-exchange membrane was prepared as Compound A, and subjected to an acid treatment using a 1 mo 1: 1 aqueous solution of sulfuric acid to convert the protic dissociation group X to a sulfonic acid group. Vacuum dried at 100 ° C. Next, the perfluorosulfonic acid-based polymer ion-exchange membrane was immersed in a solution of compound B, N, N-dimethylformamide, for 24 hours, and impregnated to produce a proton conductor.
  • the prepared proton conductor was laminated as an electrolyte 11 by sandwiching it between electrodes 12 and 13 and hot-pressed at 110 ° C for 1 to 2 minutes, and then N, N- It was immersed in a dimethylformamide solution to produce an electrochemical device 10. After that, the electrochemical element 10 was housed inside the exterior member 20 to obtain an electrochemical capacitor.
  • an electrochemical capacitor was manufactured in the same manner as in Example 3-1 except that N, N-dimethylformamide was not used for the electrolyte.
  • the perfluorosulfonic acid-based polymer ion-exchange membrane was subjected to an acid treatment using a 1 mo 1/1 aqueous sulfuric acid solution, and electrodes 12 and 13 produced in the same manner as in Example 3-1. After hot pressing at 110 ° C. for 1 minute to 2 minutes, and further immersing in a 1 mo 1 Z1 sulfuric acid aqueous solution, it was housed inside the exterior member. Table 3 compares the configurations of Example 3-1 and Comparative Example 3-1.
  • Example 3-1 and Comparative example 3-1 were charged and discharged at a constant current of 1 mA.
  • Electrodes 1 2 and 1 3 are laminated via a separator made of 100 m polypropylene non-woven fabric. Was impregnated with electrolyte 11.
  • Example 3-2 As Comparative Example 3-2 with respect to Example 3-2, an electrochemical capacitor was manufactured in the same manner as in Example 3-2, except that a 1 mol / l aqueous sulfuric acid solution was used for the electrolyte.
  • Table 4 shows a comparison between the configuration of Example 3-2 and Comparative Example 3-2.
  • Example 3-2 The prepared electrochemical capacitors of Example 3-2 and Comparative Example 3-2 were charged and discharged at a constant current of 1 mA.
  • Figure 8 shows the results.
  • the present invention has been described with reference to the embodiment and the example.
  • the present invention is not limited to the above-described embodiment and example, and can be variously modified.
  • the compounds A and C have been specifically described with specific examples.
  • Other compounds may be used as long as they have a cationic dissociative group Z.
  • the compound B has been described with specific examples.
  • other compounds may be used as long as they have the structure represented by the chemical formula 18.
  • the method for producing the proton conductor and the Sindal ion conductor of the present invention has been specifically described. However, the production may be performed by another method.
  • the molar ratio of the compound having the structure represented by the chemical formula 2 or 4 to the protonic dissociative group or the cationic dissociative group is 10 or more. If it is within the range of 30 or less, the proton conductivity or the ionic conductivity can be further improved.
  • a compound having a structure represented by Chemical Formula 1 is replaced with a compound having a structure represented by Chemical Formula 2 or a compound having a chemical formula represented by Chemical Formula 2. Since the compound having the structure represented by Formula 2 is impregnated into a solution obtained by dissolving the compound in a solvent, or the compound having the structure represented by Chemical Formula 1 and the compound having the structure represented by Chemical Formula 2 A compound having a structure represented by Chemical Formula 3 or a compound having a structure represented by Chemical Formula 4 or a compound represented by Chemical Formula 4 is prepared by mixing a compound with a compound in a solvent and evaporating the solvent.
  • the compound having the structure is impregnated in a solution obtained by dissolving the compound in a solvent, the compound having the structure represented by the chemical formula 3 and the compound having the structure represented by the formula 4
  • the compound having the structure described above is mixed in a solvent and the solvent is evaporated, so that the proton conductor or the single ion conductor of the present invention can be easily and uniformly produced.
  • the proton conductor of the present invention since the proton conductor of the present invention is used for the electrolyte, it can be used even in a high temperature range, and can be subjected to a high temperature treatment during the production. Manufacturing can be facilitated. In addition, a high voltage can be applied, and the energy density can be improved. (table 1)
  • Example 3-1 Lianiline ⁇ , ⁇ -methyl 'methylformacito', polymer

Landscapes

  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明細書 プロトン伝導体、 シングルイオン伝導体、 およびそれらの製造方法、 並びに電気 化学キャパシタ 技術分野
本発明は、 二次電池, 燃料電池, 水素センサーまたは生体内電極などのカチォ ンまたはプロトンの移動を伴うデバイスに用いられるプロトン伝導体またはシン ダルイオン伝導体、 およびそれらの製造方法、 並びにそれを用いた電気化学キヤ パシタに関する。 背景技術
イオン伝導機構を有する固体電解質の 1種に、 対イオン種を高分子化合物中に 固定し、 カチオンあるいはァニオンの片方のイオン種のみを移動させるシングル イオン伝導型高分子膜がある。 このシングルイオン伝導型高分子膜としては、 例 えば、 1 9 6 9年に E. I . Du Pont 社によって開発された N a ί i o n (登録商 標)が知られている。 機構など実際の研究は 1 9 8 0年代に入って活発化し、 力 ルボン酸基 (カルポキシ基) あるいはスルホン酸基 (スルホ基) を側鎖に結合し たポリエチレングリコール誘導体など、 いくつかのイオン伝導体の合成とその機 構の検討が行われてきた。 その後も、 環境問題のクローズアップによって燃料電 池に関する技術が再び注目されるようになるに従い、 固体電解質型燃料電池用の 電解質膜としての研究が活発化し、 近年特に多くの研究がなされている。
このような経緯の下、 現在もシングルイオン伝導体、 特にプロトン伝導体の検 討が盛んに進められている。 プロトン伝導体の応用は広く、 固体電解質型燃料電 池用の電解質膜だけでなく、 水素センサ一用隔膜, 生体模倣型水素移動膜, エレ クトロミックディスプレイ用材料, 化学リアクター用プロトン伝導膜あるいはプ 口トン移動型二次電池用電解質膜などの様々な分野で応用が期待され、 基礎研究 を含め多くの検討がなされている。
ところが、 シングルイオン伝導体にはィォン伝導度が低いという問題点があつ た。 ポリエチレングリコール系イオン伝導性高分子などは、 イオン伝導度が高分 子のセグメント運動の温度依存性に大きく影響を受けてしまい、 液系のイオン伝 導度を凌駕するには至っていない。 また、 プロトン伝導体に関して言えば、 膜中 に存在する水分 (プロトンキヤリヤー) の影響を大きく受けるので、 水の沸点で ある 1 0 o°cを越えた領域ではプロトンキヤリヤーの数が減少してプロトン伝導 度が著しく減少し、 実質的に使用できる温度範囲が 1 00 以下に限定されてし まうという問題点もあった。
そこで、 例えば、 プロトン伝導性化合物中に酸素官能基を有する無機物を導入 することにより、 より高い材料強度で、 かつ高いプロトン伝導度を発現できるよ うにした電解質膜が提案されている (例えば、 特開 200 1— 1 55744号公 報参照。)。 また、 スルホン酸基を多数有する高分子化合物とガラス転移温度の低 いカチ、オン輸送型高分子化合物とを混合することにより、 高イオン伝導度を得る ことができると共に、 広い温度範囲で使用できるようにした複合膜も提案されて いる (例えば、 特許第 2962360号明細書参照。)。
しかしながら、 特開 200 1— 1 55744号公報に記載されたプロトン伝導 体では、 膜強度を改善することはできるものの、 プロトン伝導度が水分に依存す ることは変わりなく、 使用の際には水分管理が必要となり、 従来の問題点を完全 に解決することはできない。 また、 特許第 2962360号明細書に記載された プロトン伝導体では、 イオンキヤリヤーとして高分子化合物を用いているので、 水分が存在しない状態でもプロトン伝導が発現するが、 プロトン伝導が高分子の セグメント運動に支配されるために無水状態での伝導度が低く、 実用化のために は更なる工夫が必要であるという問題があつた。
なお、 非水系溶媒中でのカチオン輸送機能については、 N, N—ジメチルホル ムアミドとりん酸とを用いた非水系プロトン伝導体の報告がある (例えば、 ダブ リ ュ . ビーチョ レク (W.Wieczorek ) 外、 "エレク トロケミカ ァクタ (Elwctrochiniica Acta ) "、 (イギリス)、 エルゼヴィアサイエンス (Elsevier Science Ltd. 200 1年、 46卷、 p. 1427— 1438参照。)。 しかし、 この伝導体はりん酸ァニオンを含むのでシングルイオン伝導体ではなく、 電気セ ンサーや電池などへ使用することを考えた場合、 ァニオン種の化学的安定性や分 極反応を考慮する必要があるという問題がある。 更に、 この伝導体は液体 2成分 系であり、 ゲル化剤などを投入しないと成型体として用いることができず、 各種 アプリケーションへの展開を考えた場合、 使用用途が限られるという問題もある。 本発明はかかる問題点に鑑みてなされたもので、 その目的は、 膜などへの成形 が容易で、 かつ高い伝導度と広い作動温度領域を有し、 特にプロトン伝導性化合 物においては水分の存在しない状態で高いプロトン伝導度を得ることができるプ 口トン伝導体、 シングルイオン伝導体、 およびそれらの製造方法、 並びにそれを 用いた電気化学キャパシ夕を提供することにある。 発明の開示
本発明によるプロトン伝導体は、 化学式 1で表される構造部を有する化合物と、 化学式 2で表される構造を有する化合物とを含むものである。
(化学式 1 )
X
R1
(式中、 R 1は炭素 (C ) を含む構成成分、 Xはプロトン性解離基をそれぞれ表 し、 nは n≥ lである。)
(化学式 2 )
R3 0
I II
R2— N― C一 H
(式中、 R 2および R 3はそれぞれ炭素を含む構成成分または水素 (H ) を表 す。)
本発明によるシングルイオン伝導体は、 化学式 3で表される構造部を有する化 合物と、 化学式 4で表される構造を有する化合物とを含むものである。
(化学式 3 )
Figure imgf000005_0001
(式中、 R 1は炭素を含む構成成分、 Zはカチオン性解離基をそれぞれ表し、 n は n≥ 1である。)
(化学式 4 )
R3 O
I II
R2— N— C一 H
(式中、 R 2および R 3はそれぞれ炭素を含む構成成分または水素を表す。) 本発明による第 1のプロトン伝導体の製造方法は、 化学式 5で表される構造部 を有する化合物を、 化学式 6で表される構造を有する化合物に対して、 または化 学式 6で表される構造を有する化合物を溶媒に溶解させた溶液に対して含浸させ る工程を含むものである。
(化学式 5 )
Figure imgf000006_0001
(式中、 R 1は炭素を含む構成成分、 Xはプロトン性解離基をそれぞれ表し、 n は n≥ 1である。)
(化学式 6 )
R3 0
I I I
R2— N一 C— H
(式中、 R 2および R 3はそれぞれ炭素を含む構成成分または水素を表す。) 本発明による第 2のプロトン伝導体の製造方法は、 化学式 7または化学式 8で 表される構造部を有する化合物と、 化学式 9で表される構造を有する化合物とを、 溶媒中において混合し、 溶媒を蒸発させる工程を含むものである。
(化学式 7 )
Figure imgf000006_0002
(式中、 R 1は炭素を含む構成成分、 Xはプロトン性解離基をそれぞれ表し、 n は n≥ 1である。) (化学式 8 )
Figure imgf000007_0001
(式中、 R 1は oen炭素を含む構成成分、 Xはイオン交換によりプロトン性解離基と なり得る基をそれぞれ Η表し、 nは n≥ lである。)
(化学式 9 )
R3 0
I I I
R2— N— C— H
(式中、 R 2および R 3はそれぞれ炭素を含む構成成分または水素を表す。) 本発明による第 1のシングルイオン伝導体の製造方法は、 化学式 1 0で表され る構造部を有する化合物を、 化学式 1 1で表される構造を有する化合物に対して、 または化学式 1 1で表される構造を有する化合物を溶媒に溶解させた溶液に対し て含浸させる工程を含むものである。
(化学式 1 0 )
Z
(式中、 R 1は炭素を含む構成成分、 Ζはカチオン性解離基をそれぞれ表し、 η は η≥ 1である。)
(化学式 1 1 )
Figure imgf000007_0002
(式中、 R 2および R 3はそれぞれ炭素を含む構成成分または水素を表す。) 本発明による第 2のシングルイオン伝導体の製造方法は、 化学式 1 2または化 学式 1 3で表される構造部を有する化合物と、 化学式 1 4で表される構造を有す る化合物とを、 溶媒中において混合し、 溶媒を蒸発させる工程を含むものである。
(化学式 1 2 ) Z
Λ
S N—
(式中、 R 1は炭素を含む構成成分、 Ζはカチオン性解離基をそれぞれ表し、 η は η≥ 1である。)
(化学式 1 3) H
Figure imgf000008_0001
(式中、 R 1は炭素を含む構成成分、 zはイオン交換によりカチオン性解離基と なり得る基をそれぞれ表し、 nは n≥ lである。)
(化学式 14)
(式中、 R 2および R 3はそれぞれ炭素を含む構成成分または水素を表す。) 本発明による電気化学キャパシ夕は、 電解質を介して対向配置された一対の電 極の間に静電容量を有するものであって、 電解質は、 化学式 1 5で表される構造 部を有する化合物と、 化学式 1 6で表される構造を有する化合物とを含むことを 特徴とするものである。
(化学式 1 5)
X Rl
(式中、 R 1は炭素 (C) を含む構成成分、 Xはプロトン性解離基をそれぞれ表 し、 nは n≥ lである。)
(化学式 1 6)
R3 0
I II
R2— N— C— H
(式中、 R 2および R 3はそれぞれ炭素を含む構成成分または水素 (H) を表 す。)
本発明によるプロトン伝導体およびシングルイオン伝導体では、 化学式 2ある いは化学式 4で表される構造を有する化合物の = N C〇H基が、 化学式 1あるい は化学式 3で表される構造部を有する化合物に存在するプロトンまたはシングル イオンに対して相互作用することにより、 化合物からプロトンまたはシングルィ オンが解離し、 プロトン伝導性またはシングルイオン伝導性が得られる。
本発明による第 1あるいは第 2のプロトン伝導体の製造方法では、 化学式 1で 表される構造部を有する化合物が、 化学式 2で表される構造を有する化合物ある いは化学式 2で表される構造を有する化合物を溶媒に溶解させた溶液に対して含 浸されることにより、 または、 化学式 1で表される構造部を有する化合物と、 化 学式 2で表される構造を有する化合物とが溶媒中において混合されることにより、 本発明のプロトン伝導体が得られる。
本発明による第 1あるいは第 2のシングルイオン伝導体の製造方法では、 化学 式 3で表される構造部を有する化合物が、 化学式 4で表される構造を有する化合 物あるいは化学式 4で表される構造を有する化合物を溶媒に溶解させた溶液に対 して含浸されることにより、 または、 化学式 3で表される構造部を有する化合物 と、 化学式 4で表される構造を有する化合物とが溶媒中において混合されること により、 本発明のシングルイオン伝導体が得られる。
本発明による電気化学キャパシタでは、 電解質に本発明のプロトン伝導体を用 いているので、 水分の存在しない状態で高ぃプロトン伝導度を得ることができ、 幅広い電圧および温度領域での利用が可能となる。 図面の簡単な説明
第 1図は、 本発明の第 1の実施の形態に係るプロトン伝導体におけるプロトン 性解離基 Xに対する第 2化合物 Bのモル比とプロトン伝導度との関係を表す特性 図である。
第 2図は、 本発明の第 1の実施の形態に係るプロトン伝導体の製造方法を表す 流れ図である。
第 3図は、 本発明の第 1の実施の形態に係るプロトン伝導体の他の製造方法を 表す流れ図である。
第 4図は、 本発明の第 1の実施の形態に係るプロトン伝導体を用いた電気化学 キャパシ夕の構成を表す断面図である。
第 5図は、 本発明の実施例 1 一 1〜1 一 4に係るプロトン伝導体における温度 とプロトン伝導度との関係を表す特性図である。
第 6図は、 本発明の実施例 2— 1, 2— 2に係るシングルイオン伝導体におけ る温度とイオン伝導度との関係を表す特性図である。
第 7図は、 本発明の実施例 3 - 1に係る電気化学キャパシ夕における充放電曲 線を表す特性図である。
第 8図は、 本発明の実施例 3— 1に係る電気化学キャパシタにおける充放電曲 線を表す特性図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について詳細に説明する。
[第 1の実施の形態]
本発明の第 1の実施の形態に係るプロトン伝導体は、 化学式 1 7で表される構 造部を有する化合物 Aと、 化学式 1 8で表される構造を有する化合物 Bとを含む 混合複合体である。
(化学式 1 7 )
X
(式中、 R 1は炭素を含む構成成分、 Xはプロトン性解離基をそれぞれ表し、 n は n≥ 1である。)
(化学式 1 8 )
R3 0
I II
R2— N ― C— H
(式中、 R 2および R 3はそれぞれ炭素を含む構成成分または水素を表す。) 化合物 Aの構成成分 R 1は、 例えば炭素を主骨格とし、 窒素 (N ) , フッ素 ( F ) , 硫黄 (S ) , 酸素 (〇) あるいは水素などを含んでいてもよい。 このうち 窒素, フッ素, 硫黄および酸素は炭素に結合している水素が置換された形で含ま れていてもよく、 主骨格の炭素が置換された形で含まれていもよい。 構成成分 R 1の具体的な構造としては、 例えば C— C結合を主骨格とし、 C = C結合, C一 N結合, C≡N結合, C一 F結合, C一 S結合, C一 O結合, C =〇結合, C— H結合, N = N結合, N— S結合, N— O結合, N— H結合, S— S結合, S— O結合, S = 0結合, S—H結合, 0—〇結合あるいは〇— H結合などを有して いてもよい。
プロトン性解離基 Xとしては、 例えば、 一 S〇3 H基 (スルホン酸基), 一 C O O H基 (カルボン酸基) あるいは一 O H基 (水酸基) が挙げられる。 プロトン性 解離基 Xは必ずしも 1種類である必要はなく、 2種以上を含んでいてもよい。 このような構造を有する代表的な化合物 Aとしては、 スルホン酸系フッ素樹脂 あるいはカルボン酸系フッ素樹脂などが挙げられる。 具体的な商品名で挙げれば、 Du Pont 社の N a f i o n (登録商標), 旭化学工業株式会社の A c i 1 e x (登録商標) あるいは旭硝子株式会社の f 1 e m i o n (登録商標) などがある。 化合物 Bは、 化学式 1 8に示したように = N C O H基を有していればよく、 1 級ァミンでも 2級ァミンでも 3級ァミンでもよい。
化合物 Bの構成成分 R 2 , R 3は、 炭素を含む成分よりなる場合、 例えば炭素 を主骨格とし、 水素あるいはハロゲンなどを含んでいてもよい。 このうちハロゲ ンは炭素に結合している水素が置換された形で含まれ、 その置換割合に特に制限 はない。 具体的な構造としては、 例えば C一 C結合を主骨格とし、 C = C結合, C— H結合, C一 F結合, C一 C 1結合, C一 B r結合あるいは C— I結合など を有していてもよい。 なお、 構成成分 R 2と構成成分 R 3とは、 互いに同一でも よく、 異なっていてもよい。
このような化合物 Bとしては、 N, N—ジメチルホルムアミド、 N, N—ジェ チルホルムアミド、 N, N—ジブチルホルムアミド、 ジイソプロピルホルムアミ ド、 N—メチルホルムアミド、 N—ェチルホルムアミド、 N—シクロへキシルホ ルムアミド、 N—ベンジルホルムアミド、 あるいはホルムアミ ドなどが挙げられ る。 中でも、 N , N—ジメチルホルムアミドあるいは N—メチルホルムアミドは、 良好な特性を得ることができるので好ましい。 なお、 化合物 Bは 1種類でもよい が、 2種以上を混合して含んでいてもよい。 2種以上を含む場合には、 互いに親 和性が良好なものを用いることが好ましく、 その混合比率は任意である。
このプロトン伝導体では、 化合物 Bの = NC〇H基が化合物 Aに存在するプロ トンに対して相互作用することにより、 化合物 Aからプロトンが解離し、 プロ卜 ン伝導性が発現するものと考えられる。 よって、 化合物 Aに存在するプロトン性 解離基 Xと、 化合物 Bとの数量比が、 プロトン伝導度に大きく影響を与える要因 となる。
例えば、 化合物 Aと化合物 Bとのモル比を化合物 A:化合物 B = a : bとする と、 プロトン性解離基 Xのモル数 (=axn) に対する化合物 Bのモル数 bの比 は、 1 0≤ b/ ( axn) ≤ 3 0の範囲内であることが好ましく、 1 5≤bZ (axn) ≤ 25の範囲内であればより好ましい。 化合物 Bの比率が小さすぎる と、 プロトンの移動が円滑に進まず、 プロトン伝導度が低下してしまい、 比率が 大きすぎると、 相対的に化合物 Aのプロトン量が減少し、 キヤリャ一数不足によ りプロトン伝導度が低下してしまうからである。
第 1図は、 化合物 Aである N a f i o n 1 1 7 (登録商標) と化合物 Bである N, N—ジメチルホルムアミドとを混合したプロトン伝導体における b/ (ax n) とプロトン伝導度との関係を表したものである。 このように、 プロトン伝導 度は、 プロトン性解離基 Xに対する化合物 Bのモル比 bZ (axn) が大きくな るに従って大きくなり、 bZ (axn) が 20付近において極大値を示したのち、 小さくなる傾向が見られる。
このプロトン伝導体は、 化合物 Bが単独で液状もしくは溶媒に溶解して液状の 形態をとる場合には、 例えば、 次のようにして製造することができる。
第 2図は本実施の形態に係るプロトン伝導体の製造方法を表すものである。 ま ず、 化合物 Aのプロトン性解離基 Xを酸処理などにより整える (ステップ S 1 0 1)。 酸処理としては、 例えば、 5 %の過酸化水素水または 0. 5mo l Z lの 硫酸水溶液に浸漬し、 加温しながら撹拌する方法が一般的である。 酸処理をした のちは、 酸処理による残渣が残らないように純水で十分に洗浄する。
次いで、 化合物 Aを化合物 Bあるいは化合物 Bを溶媒に溶解させた溶液に浸漬 し、 化合物 Aを化合物 Bに対して含浸させる (ステップ S 1 0 2 )。 化合物 Aの プロトン性解離基 Xと化合物 Bの = N C O H基とが相互作用を及ぼすので、 化合 物 Bは化合物 A中に均一に導入される。 その際、 必要であれば、 減圧処理または 加熱処理などを行ってもよい。 これにより、 本実施の形態に係るプロトン伝導体 が得られる。
また、 化合物 Bが固体もしくは溶媒に対して希薄な状態でしか溶解できない場 合には、 例えば、 次のようにして製造することができる。
第 3図は、 本実施の形態に係るプロトン伝導体の他の製造方法を表すものであ る。 まず、 例えば化合物 Aと化合物 Bとを溶媒中において混合し、 同一の溶媒に 分散させる。 また、 化合物 Aに代えて、 化合物 Aの前駆体であり、 イオン交換に より化合物 Aとなり得る化合物 A'を用いてもよい (ステップ S 2 0 1 )。 化合物 A'は化学式 1 9表される構造部を有するものである。
(化学式 1 9 )
Figure imgf000013_0001
(式中、 R 1は炭素を含む構成成分、 Xはイオン交換によりプロトン性解離基と なり得る基をそれぞれ表し、 nは n≥ lである。)
次いで、 溶媒を蒸発乾固させる (ステップ S 2 0 2 )。 続いて、 例えば水素雰 囲気中で直流電流を印加することによりイオン交換を行い、 プロトン性解離基 X を整え、 化合物 A'を化合物 Aとする (ステップ S 2 0 3 )。 なお、 このイオン交 換処理は、 化合物 A'を用いた場合に限らず、 化合物 Aを用いた場合にも行うよ うにしてもよい。 これにより、 本実施の形態に係るプロトン伝導体が得られる。 この製造方法によっても、 分散溶媒と化合物 Aおよび化合物 Bとの親和性、 また は分散溶媒と化合物 A'および化合物 Bとの親和性を調節することにより、 化合 物 Aのプロトン性解離基 Xまたは化合物 A'のプロトン性解離基となり得る基 X と化合物Bの = N C〇H基との相互作用にょり、 均一な複合体が得られる。 なお、 この製造方法は、 化合物 Bが単独で液状もしくは溶媒に溶解して液状の形態をと る場合についても適用することができる。 このプロトン伝導体は次のように作用する。
このプロトン伝導体では、 電場が印加されると、 化合物 Bに含まれる =N CO H基が化合物 Aに含まれるプロトンに対して相互作用を及ぼし、 化合物 Aからプ 口トンが解離し、 移動する。 よって、 プロトンキヤリャ一としての水が存在しな くても高い伝導性が得られ、 広い温度範囲で優れた特性が得られる。
このように本実施の形態に係るプロトン伝導体よれば、 化学式 17で表される 構造部を有する化合物 Aと、 化学式 1 8で表される構造を有する化合物 Bとを含 むようにしたので、 化合物 Bの = NC〇H基の作用により化合物 Aからプロトン を解離させ、 移動させることができる。 よって、 保水が不要となり、 広い温度範 囲で高いプロ卜ン伝導性を得ることができると共に、 プロ卜ンのみを移動させる ことができる。 また、 膜などへの成形も容易にすることができる。
特に、 プロトン性解離基 Xに対する化合物 Bのモル比 bZ (axn) を、 1 0 ≤ b/ (axn) ≤ 30の範囲内、 更には 1 5≤bZ (axn) ≤25の範囲内と するようにすれば、 プロトン伝導度をより向上させることができる。
また、 本実施の形態に係るプロトン伝導体の製造方法によれば、 化合物 Aを化 合物 Bあるいは化合物 Bを溶媒に溶解させた溶液に対して含浸させるようにした ので、 または、 化合物 Aまたは化合物 A'と化合物 Bとを溶媒中において混合し、 溶媒を蒸発させるようにしたので、 本実施の形態に係るプロトン伝導体を簡便か つ均一に製造することができる。
本実施の形態に係るプロトン伝導体は、 例えば、 次のような電気化学キャパシ 夕に好ましく用いられる。
第 4図は、 本発明の一実施の形態に係る電気化学キャパシ夕の構成を表すもの である。 この電気化学キャパシタは、 本実施の形態に係るプロトン伝導体よりな る電解質 1 1を介して一対の電極 1 2, 1 3が対向配置された電気化学素子 1 0 を有している。 電気化学素子 1 0は、 電極 1 2と電極 1 3との間に、 数式 1で表 される静電容量 Cと、 熱力学的関係から発生する容量と等価な数式 2に示した導 関数で表される疑似容量 Kとを有している。
(数式 1)
Q= (1/2) C V2 (式中、 Qは電荷量、 Cは静電容量、 Vは印加電圧である。)
(数式 2)
K=d (Δ q) /d (Δ V)
(式中、 Κは疑似容量、 Δ (ΐは電荷の大きさ、 Δ Vは電位変化の大きさであ る。)
数式 2に示した疑似容量 Κは、 通電電気量に比例する任意のパラメ一夕 yが数 式 3によつて電位と関係づけられるときに発現するものである。
(数式 3)
γ / ( 1 - y) =Kexp (VF/RT)
(式中、 Kは疑似容量、 Vは電極電位、 Fはファラデー定数、 Rは気体定数、 T は温度である。)
電極 1 2は、 例えば集電体 1 2 Aの上に電極層 1 2 Bが設けられた構造を有し ている。 電極 1 3も同様に、 例えば集電体 1 3 Aの上に電極層 1 3 Bが設けられ た構造を有している。 集電体 1 2 A, 1 3 Aは、 導電性材料を含んでおり、 I X 1 02 SZcm以上の電子伝導性を有することが好ましい。 集電体 1 2A, 1 3 Aを構成する導電性材料としては、 例えば、 金 (Au), 銀 (Ag), 銅 (Cu), 鉄 (F e ), アルミニウム (A 1 ), ニッケル (N i ), 白金 (P t ) あるいはマ ンガン (Mn) などの金属材料、 またはカーボンあるいはポリアセチレンなどの 有機材料が挙げられる。 集電体 1 2A, 1 3 Aは、 単一の材料により構成されて もよいが、 複数の材料により構成されていてもよく、 電子伝導性が上述した範囲 内となればその組成はどのようなものであってもよい。 導電性材料を混合したも のとしては、 例えば導電ゴム材料が挙げられる。
電極層 1 2 B, 1 3 Bは、 電極 1 2と電極 1 3との間に静電容量 Qと、 上述し た疑似容量 Kとを持ち得る電極材料を含んでいる。 このような電極材料としては、 例えば、 酸化ルテニウム (Ru〇2), 酸化インジウム ( I r〇2) あるいは酸化コ バルト (C o34) などの酸化物、 またはポリア二リン, ポリインドールあるい はポリキノンなどの高分子材料が挙げられる。 電極材料は 1種類を単独で用いて もよく、 2種以上を混合して用いてもよい。 電極層 1 2 B, 1 3 Bは、 電極材料 に加えて、 必要に応じて、 導電剤あるいは結着剤などを含んでいてもよい。 また、 電気化学素子 1 0は、 図示しないが、 電極 1 2 , 1 3の間にセパレ一夕 を備え、 電解質 1 1をセパレー夕に含浸させるようにしてもよい。 セパレー夕は、 電子絶縁性が高く、 かつイオン透過性に優れ、 電気化学的に安定なものであれば どのようなものでもよい。 セパレー夕としては、 例えば、 ガラス繊維配合紙や、 または多孔性ポリプロピレン薄膜などの多孔性プラスチック薄膜よりなるものが 挙げられる。
電気化学素子 1 0は、 例えば外装部材 2 0の内部に収納されている。 外装部材 は、 集電体 1 2 Aに接触するよ に設けられた導電部材 2 1と、 集電体 1 3 Aに 接触するように設けられた導電部材 2 2とを有しており、 導電部材 2 1, 2 2の 間に絶縁部材 2 3が配設されている。
この電気化学キャパシ夕は、 例えば、 電極 1 2 , 1 3を形成したのち、 上述し たようにして作製したプロトン伝導体を電解質 1 1とし、 電解質 1 1を介して電 極 1 2 , 1 3を積層し、 外装部材 2 0の内部に封入することにより製造すること ができる。
また、 電極 1 2, 1 3の上に電解質 1 1を作製し、 それを積層するようにして もよく、 また、 電解質 1 1を図示しないセパレ一夕に含浸させて、 電極 1 2 , 1 3と積層するようにしてもよい。
この電気化学キャパシ夕では、 電極 1 2 , 1 3の間に電圧が印加されると、 そ の間に静電容量 Cと、 上述した疑似容量 Kが蓄積される。 本実施の形態では、 電 解質 1 1に上述したプロトン伝導体を用いているので、 水が存在しなくても動作 する。 よって、 高い温度領域または高電圧でも動作させることが可能となる。 このように本実施の形態に係る電気化学キャパシタによれば、 電解質 1 1に本 実施の形態に係るプロトン伝導体を用いるようにしたので、 高温領域でも使用す ることができると共に、 製造時においても例えば外装部材 2 0への封入時に高温 処理を行うことができ、.製造を容易とすることができる。 また、 高電圧を印加す ることも可能となり、 エネルギー密度を向上させることができる。
[第 2の実施の形態]
本発明の第 2の実施の形態に係るシングルイオン伝導体は、 化学式 2 0で表さ れる構造部を有する化合物 Cと、 上述した化合物 Bとを含む混合複合体である。 化合物 Cは、 プロトン性解離基 Xに代えてカチォン性解離基 Zを有することを除 き、 第 1の実施の形態における化合物 Aと同一の構成を有している。
(化学式 20)
Z
I
(式中、 R 1は炭素を含む構成成分、 Zはカチオン性解離基をそれぞれ表し、 n は n≥ 1である。)
カチオン性解離基 Zとしては、 例えば、 一 S〇3 M基, 一 COOM基あるいは 一〇M基などが挙げられる。 但し、 Mはリチウム (L i )、 ナトリウム (Na)、 カリウム (K) またはルビジウム (Rb) のいずれかを表す。 カチオン性解離基 Zは必ずしも 1種類である必要はなく、 2種以上を含んでいてもよい。
化合物 Bは、 第 1の実施の形態と同一である。 本実施の形態では、 化合物 Bの =NCOH基が化合物 Cに存在するカチオンに対して相互作用することにより、 カチオンが解離し、 イオン伝導性が発現するものと考えられる。 よって、 化合物 Cに存在するカチオン性解離基 Zと、 化合物 Bとの数量比も、 第 1の実施の形態 と同様の関係を有することが好ましい。 例えば、 化合物 Cと化合物 Bとのモル比 を化合物 C :化合物 B== c : bとすると、 カチオン性解離基 Zのモル数 (= c X n) に対する化合物 Bのモル数 bの比は、 1 0≤bZ ( c xn) ≤30の範囲内 であることが好ましく、 1 5≤bZ (cxn) ≤ 2 5の範囲内であればより好ま しい。
このシングルイオン伝導体は、 第 1の実施の形態と同様にして製造することが できる (第 2図および第 3図参照)。 但し、 第 2図に示した方法による場合には、 酸処理 (ステップ S 1 0 1参照) を行ったのち、 例えば、 水酸化リチウム水溶液 または水酸化ナトリゥム水溶液などの目的のカチオンを含む水酸化物水溶液に浸 漬してカチオン交換処理を行い、 カチオン性解離基 Zを整える。 次いで、 一旦乾 燥処理を行い、 カチオン交換の際に使用した溶媒を除去する。 そののち、 化合物 Cを化合物 Bに対して含浸させる (ステップ S 102参照)。
また、 第 3図に示した方法による場合には、 化合物 Cまたは化合物 Cの前駆体 である化学式 2 1で表される構造部を有する化合物 C'と、 化合物 Bとを溶媒中 において混合する (ステップ S 20 1参照)。 イオン交換 (ステップ S 20 3参 照) は、 例えばリチウム金属などを対極とした直流電流印加により行い、 目的と するカチオン性解離基 Zに整える。
(化学式 2 1)
Figure imgf000018_0001
(式中、 R 1は炭素を含む構成成分、 zはイオン交換によりカチオン性解離基と なり得る基をそれぞれ表し、 nは n≥ lである。)
このように本実施の形態に係るシングルイオン伝導体よれば、 化学式 20で表 される構造部を有する化合物 Cと、 化学式 1 8で表される構造を有する化合物 B とを含むようにしたので、 化合物 8の=?^〇011基の作用により化合物 Cから力 チオンを解離させ、 移動させることができる。 よって、 カチオンのみを移動させ ることができると共に、 広い温度範囲で高いイオン伝導性を得ることができる。 また、 膜などへの成形も容易にすることができる。
更に、 本発明の具体的な実施例について詳細に説明する。
(実施例 1一 1 )
まず、 化合物 Aとして、 プロトン性解離基 Xの 1 mo 1当たりの分子量 (酸当 量) が 1 200 g/mo 1であるパ一フルォロスルホン酸系高分子イオン交換膜 を用意し、 1 0 %の過酸化水素水および 0. 5mo 1 / 1の硫酸水溶液を用いて 酸処理を行い、 プロトン性解離基 Xをスルホン酸基とした。 次いで、 このパーフ ルォロスルホン酸系高分子イオン交換膜を 1 20°C、 1 333 P aで 24時間乾 燥させたのち、 化合物 Bである N, N—ジメチルホルムアミド (DMF) に室温 で 1 00時間浸漬し、 含浸させた。 これにより表 1に示した組成を有するプロト ン伝導体を得た。 なお、 化合物 Bの導入量は、 化合物 Bへの含浸処理前後の膜質 量を測定し、 数式 4に示した式により算出した。
(数式 4)
化合物 Bの導入量 = (含浸後の質量一含浸前の質量) / (含浸後の質量) 得られたプロトン伝導体を面積が 2 cm2となるように切断し、 交流インピー ダンス測定により、 70 から— 20°Cにおけるプロトン伝導度を算出した。 得 られた結果を表 1および第 5図に示す。 表 1および第 5図に示したように、 7 0°C, 30°Cおよび一 2 0°Cにおけるプロトン伝導度はそれぞれ 9. 0x1 0一4 S / c m, 5. 0 X 1 0— 4S / c mおよび 2. 0 x 1 0— 4S / c mと非常に高かつ た。
(実施例 1一 2)
まず、 化合物 Aとして、 プロトン性解離基 Xの 1 mo 1当たりの分子量 (酸当 量) が 1200 g/mo 1であるパーフルォロカルボン酸系高分子イオン交換膜 を用意し、 実施例 1一 1と同様にして酸処理をし、 プロトン性解離基 Xを力ルポ ン酸基とした。 次いで、 このパーフルォロカルボン酸系高分子イオン交換膜を実 施例 1— 1と同様の条件で乾燥させた。 続いて、 化合物 Bとして、 N, N—ジメ チルホルムアミド (DMF) と N—メチルホルムアミド (MF) とを 1 : 1の体 積比で混合したものを用意し、 この混合物にパーフルォロカルボン酸系高分子ィ オン交換膜を室温で 100時間浸潰し、 含浸させた。 これにより表 1に示した組 成を有するプロトン伝導体を得た。 実施例 1一 2のプロトン伝導体についても、 実施例 1一 1と同様にしてプロトン伝導度を算出した。 得られた結果を表 1およ び第 5図に示す。
表 1および第 5図に示したように、 70°C, 30°Cおよび— 20°Cにおけるプ 口トン伝導度はそれぞれ 6. O l 0" S/cm, 4. 0 x 1 0—4 S c mおよび 1. 5x1 O^SZcmと実施例 1― 1と同様に非常に高かった。
(実施例 1一 3 )
まず、 メタノールとエタノールとプロパノールとを混合した溶媒に、 化合物 A'として、 イオン交換によりプロトン性解離基となり得る基 Xの 1 mo 1当た りの分子量が 1 200 gZmo 1であるパーフルォロスルホン酸系高分子イオン 交換樹脂を 5質量%の濃度で溶解し、 混合溶液を作製した。 次いで、 この混合溶 液 1 00 gに、 化合物 Bである N—べンジルホルムアミド (B F) 6 gを添加 · 混合したのち、 6 0°C、 1 3 3 3 2 P aで 48時間乾燥させ、 化合物 A'と化合 物 Bとを含む白色半透明膜を得た。 続いて、 得られた膜をカーボンシートで挟み 込み、 水素雰囲気中で 1mA/ cm2の直流電流を 1 2時間印加することにより 水素置換を行い、 プロトン性解離基 Xをスルホン酸基とした。 これにより表 1に 示した組成を有するプロトン伝導体を得た。 実施例 1一 3のプロトン伝導体につ いても、 実施例 1一 1と同様にしてプロトン伝導度を算出した。 得られた結果を 表 1および第 5図に示す。
表 1および第 5図に示したように、 70°C, 30°Cおよび一 20°Cにおけるプ 口トン伝導度はそれぞれ 4. Oxl O^S/cm, 1. 7 x 1 (T4 S / c mおよび 4. Oxl 0一5 S/ cmと実施例 1一 1と同様に非常に高かった。
(実施例 1一 4)
まず、 化合物 Aとして、 プロトン性解離基 Xの 1 mo 1当たりの分子量 (酸当 量) が 1 2 00 g/mo 1であるパーフルォロカルボン酸系高分子イオン交換膜 を用意し、 実施例 1一 1と同様にして酸処理をし、 プロトン性解離基 Xを力ルポ ン酸基とした。 次いで、 このパ一フルォロカルボン酸系高分子イオン交換膜を実 施例 1— 1と同様の条件で乾燥させたのち、 化合物 Bとして N—メチルホルムァ ミ ド (MF) を沸点還流させた中に 1 00時間浸漬し、 含浸させた。 これにより 表 1に示した組成を有するプロトン伝導体を得た。 実施例 1一 4のプロトン伝導 体についても、 実施例 1一 1と同様にしてプロトン伝導度を算出した。 得られた 結果を表 1およぴ第 5図に示す。
表 1および第 5図に示したように、 70°C, 30 °Cおよび— 20°Cにおけるプ 口トン伝導度はそれぞれ 1. 5xl O—4S/cm, 4. 0 x 1 0—5 S c mおよび 4. Oxl 0—6S/cmと実施例 1一 1よりは低いものの非常に高かった。
(比較例 1― 1)
まず、 化合物 Aとして、 プロトン性解離基 Xの lmo 1当たりの分子量 (酸当 量) が 1 200 gZmo 1であるパーフルォロカルボン酸系高分子イオン交換膜 を用意し、 実施例 1一 1と同様にして酸処理をし、 プロトン性解離基 Xを力ルポ ン酸基とした。 次いで、 このパーフルォロカルボン酸系高分子イオン交換膜を実 施例 1一 1と同様の条件で乾燥させた。 続いて、 化合物 Bに代えて、 =NC〇H 基を含まない沸点 1 07°Cのギ酸ブチル: H— C ( =〇) 一〇— C3 H7 を用意 し、 このギ酸ブチルにパーフルォロカルボン酸系高分子イオン交換膜を室温で 1 00時間浸漬し、 含浸させた。 これにより表 1に示した組成を有するプロトン伝 導体を得た。 比較例 1一 1のプロトン伝導体についても、 実施例 1— 1と同様に してプロトン伝導度を算出した。 得られた結果を表 1および第 5図に示す。
表 1および第 5図に示したように、 7 0°C, 30°Cおよび一 20°Cにおけるプ 口トン伝導度はそれぞれ 1. 2x1 0— 5SZcm, 8. 0 x 1 0 -6 S / c mおよび 3. 0x1 0— esZcmと実施例 1一 1~1—4に比べて低かった。
(実施例 1— 1 ~ 1一 4の結論)
すなわち、 =NC〇H基を有する化合物 Bを含むようにすれば、 優れたプロト ン伝導性を得られることが分かった。 また、 プロトン性解離基 Xは一 S 03 H基 でも— C〇〇H基でもよく、 製造方法についても、 上記実施の形態で説明した 2 種類のどちらでも優れたプロトン伝導体を得られることが分かった。 更に、 プロ トン性解離基 Xに対する化合物 Bのモル比 bZ (axn) を 20程度に調整した 実施例 1一 1のプロトン伝導度が最も高く、 プロトン性解離基 Xに対する化合物 Bのモル比を 1 0≤b/ (axn) ≤ 30の範囲内、 更には 1 5≤bZ (axn) ≤ 2 5の範囲内とすればより好ましいことが確認された。
(実施例 2— 1 )
まず、 化合物 Cとして、 実施例 1一 1と同一のパーフルォロスルホン酸系高分 子イオン交換膜を用意し、 実施例 1一 1と同様にして酸処理をしたのち、 2mo 1 / 1の水酸化リチウム水溶液中に 24時間以上含浸させてイオン交換処理をし、 カチオン性解離基 Zを一 S03 L i基とした。 このイオン交換後の膜を水酸化ナ トリゥム水溶液中に浸潰して塩酸による中和滴定を行い、 残存プロトン量を算出 したところ、 イオン交換率は 90 %以上であった。 次いで、 このイオン交換後の 膜を実施例 1一 1と同様の条件で乾燥させたのち、 実施例 1一 1と同様にして化 合物 Bである N, N—ジメチルホルムアミド (DMF) に浸漬し、 含浸させた。 これにより表 2に示した組成を有するシングルイオン伝導体を得た。 得られたシ ングルイオン伝導体についても、 実施例 1一 1と同様にしてイオン伝導度を算出 した。 得られた結果を表 2および第 6図に示す。
表 2および第 6図に示したように、 70°C, 30°Cおよび— 20°Cにおけるィ オン伝導度はそれぞれ 7. 5x1 0"5S/cm, 3. 0 x 1 0—5 S Z c mおよび 1. 7x1 CT5S/cmと非常に高かった。
(実施例 2— 2 ) - 化合物 Bとして N—メチルホルムアミド (MF) を用いたことを除き、 他は実 施例 2— 1と同様にしてシングルイオン伝導体を作製し、 イオン伝導度を算出し た。 得られた結果を表 2および第 6図に示す。 表 2および第 6図に示したように、 7 0 °C, 3 0°Cおよび一 20°Cにおけるイオン伝導度はそれぞれ 6. 9 x 1 0— 5 SZcm, 2. 8x1 (T5S/cmおよび 1. 9 x 1 0— 5 S / c mと実施例 2— 1 と同様に非常に高かった。
(比較例 2— 1 )
化合物 Bに代えて、 =NCOH基を含まないギ酸プチルを用いたことを除き、 他は実施例 2— 1と同様にしてシングルイオン伝導体を作製し、 イオン伝導度を 算出した。 得られた結果を表 2および第 6図に示す。 表 2および第 6図に示した ように、 70°C, 30°Cおよび— 20°Cにおけるイオン伝導度はそれぞれ 4. 0 xl 0— 7SZ c m, 2. 5x1 0- 7S/cmおよび 1 · 8 x 1 0 -? S / c mと実施例 2— 1, 2— 2に比べて低かった。
(実施例 2— 1, 2— 2の結論)
すなわち、 =NCOH基を有する化合物 Bを含むようにすれば、 シングルィォ ン伝導体についても、 優れたイオン伝導性を得られることが分かった。
(実施例 3— 1 )
第 4図に示したような電気化学キヤパシタを作製した。 電気化学キャパシ夕の 作 方法 Iっレ てま、 成書 ("Electrochemical Supercapaci tors" B.E.Conway 1999 年発行 Kluwer Academic I Plenum Publishers) 日本語版 電気化学キャパ シタ、 2001年発行、 株式会社 NTS) を参考にした。
まず、 電極材料であるポリァニリン 8 gと導電助剤であるアセチレンブラック 2 gとを、 パーフルォロスルホン酸系高分子化合物を 20 %溶解させたアルコール溶 液 5 c m3 に懸濁分散させて塗布剤を作製した。 次いで、 集電体 1 2 A, 1 3 Aと してカーボンシートを用意し、 作製した塗布剤を集電体 1 2 A, 1 3Aの上に塗布 し、 1 0 0°Cにて真空乾燥処理を行って電極層 1 2 B, 1 3 Bを形成した。 これに より電極 1 2, 1 3を得た。 また、 化合物 Aとしてパーフルォロスルホン酸系高分子イオン交換膜を用意し、 1 m o 1ノ 1の硫酸水溶液を用いて酸処理を行い、 プロトン性解離基 Xをスルホン 酸基としたのち、 1 0 0 °Cで真空乾燥させた。 次いで、 このパーフルォロスルホン 酸系高分子イオン交換膜を化合物 Bである N , N—ジメチルホルムアミド溶液中に 2 4時間浸漬し、 含浸させ、 プロトン伝導体を作製した。
続いて、 作製したプロトン伝導体を電解質 1 1として電極 1 2 , 1 3の間に挟ん で積層し、 1 1 0 °Cにおいて 1分〜 2分間ホットプレスを行ったのち、 更に N , N ージメチルホルムアミド溶液中に浸漬させ電気化学素子 1 0を作製した。 そののち、 電気化学素子 1 0を外装部材 2 0の内部に収納し、 電気化学キャパシタを得た。 実施例 3 — 1に対する比較例として、 電解質に N, N—ジメチルホルムアミドを 用いなかったことを除き、 他は実施例 3— 1と同様にして電気化学キャパシタを作 製した。 具体的には、 パーフルォロスルホン酸系高分子イオン交換膜を 1 m o 1 / 1の硫酸水溶液を用いて酸処理し、 実施例 3— 1と同様にして作製した電極 1 2 , 1 3の間に挟んで 1 1 0 °Cにおいて 1分〜 2分間ホットプレスを行い、 更に 1 m o 1 Z 1の硫酸水溶液に浸漬させて行ったのち、 外装部材の内部に収納した。 表 3に 実施例 3— 1と比較例 3— 1との構成を比較して示す。
作製した実施例 3— 1および比較例 3— 1の電気化学キャパシタについて、 1 m Aの定電流充放電を行った。 その結果を第 7図に示す。 第 7図からわかるように、 実施例 3— 1によれば、 化合物 Bを含まない比較例 3— 1に比べて、 高い電圧を印 加することができ、 高いエネルギー密度を得られることが確認された。 すなわち、 = N C O H基を有する化合物 Bを含む電解質 1 1を用いるようにすれば、 エネルギ —密度を向上させることができることが分かった。
(実施例 3 — 2 )
実施例 3— 1と同様にして第 4図に示したような電気化学キャパシタを作製した。 その際、 電極 1 2 , 1 3は、 電極材料としてポリア二リンに変えて酸化ルテニウム を用いたことを除き、 実施例 3— 1と同様にして作製した。 また、 電解質 1 1には、 実施例 3— 1と異なり、 2 m o 1 / 1のトリフルォロメタンスルホン酸を N, N - ジメチルホルムアミド溶液に溶解させたプロトン伝導体を用いた。 電極 1 2 , 1 3 は、 1 0 0 mのポリプロピレン不織布よりなるセパレ一夕を介して積層し、 それ に電解質 1 1を含浸させた。
実施例 3— 2に対する比較例 3— 2として、 電解質に 1 m o 1 / 1の硫酸水溶液 を用いたことを除き、 実施例 3— 2と同様にして電気化学キャパシタを作製した。 表 4に実施例 3— 2と比較例 3― 2との構成を比較して示す。
作製した実施例 3— 2および比較例 3— 2の電気化学キャパシタについて、 1 m Aの定電流充放電を行った。 その結果を第 8図に示す。 第 8図からわかるように、 実施例 3— 2によれば、 実施例 3— 1と同様に、 化合物 Bを含まない比較例 3— 2 に比べて高い電圧を印加することができ、 高いエネルギー密度を得られることが確 認された。 すなわち、 = N C〇H基を有する化合物 Bを含む電解質 1 1を用いるよ うにすれば、 n = 1の化合物 Aを用いても、 また他の電極材料を用いても、 ェネル ギー密度を向上させることができることが分かった。
以上、 実施の形態および実施例を挙げて本発明を説明したが、 本発明は上記実 施の形態および実施例に限定されるものではなく、 種々変形可能である。 例えば、 上記実施の形態および実施例では、 化合物 A, Cについて具体的に例を挙げて説 · 明したが、 構成成分 R 1と、 この構成成分 R 1に結合したプロトン性解離基 Xま たはカチオン性解離基 Zとを有するものであれば、 他の化合物を用いてもよい。 また、 上記実施の形態および実施例では、 化合物 Bについて具体的に例を挙げ て説明したが、 化学式 1 8で表される構造を有するものであれば、 他の化合物を 用いてもよい。
更に、 上記実施の形態および実施例では、 本発明のプロトン伝導体およびシン ダルイオン伝導体の製造方法について具体的に説明したが、 他の方法により製造 するようにしてもよい。
以上説明したように本発明のプロトン伝導体、 またはシングルイオン伝導体に よれば、 化学式 1または化学式 3で表される構造部を有する化合物と、 化学式 2 または化学式 4で表される構造を有する化合物とを含むようにしたので、 化学式 2または化学式 4で表される構造を有する化合物の = N C O H基の作用によりプ 口トンまたはカチオンを解離させ、 移動させることができる。 よって、 広い温度 範囲で高いプロトン伝導性またはィオン伝導性を得ることができると共に、 プロ トンまたはカチオンのみを移動させることができる。 また、 膜などへの成形も容 易にすることができる。 更に、 プロトン伝導体については、 保水も不要とするこ とができる。
特に、 本発明のプロトン伝導体、 またはシングルイオン伝導体によれば、 プロ トン性解離基またはカチオン性解離基に対する化学式 2または化学式 4で表され る構造を有する化合物のモル比を、 1 0以上 3 0以下の範囲内とするようにすれ ば、 プロトン伝導度またはイオン伝導度をより向上させることができる。
また、 本発明のプロトン伝導体の製造方法、 またはシングルイオン伝導体の製 造方法によれば、 化学式 1で表される構造部を有する化合物を、 化学式 2で表さ れる構造を有する化合物あるいは化学式 2で表される構造を有する化合物を溶媒 に溶解させた溶液に対して含浸させるようにしたので、 または、 化学式 1で表さ れる構造部を有する化合物と、 化学式 2で表される構造を有する化合物とを溶媒 中において混合し、 溶媒を蒸発させるようにしたので、 または、 化学式 3で表さ れる構造部を有する化合物を、 化学式 4で表される構造を有する化合物あるいは 化学式 4で表される構造を有する化合物を溶媒に溶解させた溶液に対して含浸さ せるようにしたので、 または、 化学式 3で表される構造部を有する化合物と、 ィ匕 学式 4で表される構造を有する化合物とを溶媒中において混合し、 溶媒を蒸発さ せるようにしたので、 本発明のプロトン伝導体またはシングルイオン伝導体を簡 便かつ均一に製造することができる。
更に、 本発明の電気化学キャパシ夕によれば、 電解質に本発明のプロトン伝導 体を用いるようにしたので、 高温領域でも使用することができると共に、 製造時 においても高温処理を行うことができ、 製造を容易とすることができる。 また、 高電圧を印加することも可能となり、 エネルギー密度を向上させることができる。 (表 1)
Figure imgf000026_0001
※ ギ酸プチルの導入量おょぴそのモル比を参考として示す。 (表 3 ) 電解質
電極材料
化合物 A 化合物 B ハ。一フルォ Pスルホン酸
実施例 3-1 ホ。リア二リン Ν,Ν—シ'メチルホルムァシ卜'、 系高分子
ハ。一フルォロスルホン酸
比較例 3-1 ホ。リア二リン 一
系高分子
(表 4 ) 電解質
電極材料
化合物 A 化合物 Β 実施例 3-2 酸化ルテニウム トリフルォロメタンスルホン酸 Ν,Ν—シ'メチルホルムァシド 比較例 3 - 2 ィ匕ルテニウム 硫酸 一

Claims

請求の範囲
1. 化学式 1で表される構造部を有する化合物と、
化学式 2で表される構造を有する化合物と
を含むことを特徴とするプロトン伝導体。
(化学式 1 )
X
(式中、 R 1は炭素 (C) を含む構成成分、 Xはプロトン性解離基をそれぞれ表 し、 nは n≥ 1である。)
(化学式 2)
R3 0
I II
R2— N — C— H
(式中、 R 2および R 3はそれぞれ炭素を含む構成成分または水素 (H) を表 す。)
2. 前記化学式 2で表される構造を有する化合物は、 N, N—ジメチルホルムァ ミドおよび N—メチルホルムアミドのうちの少なくとも一方を含むことを特徴と する請求の範囲第 1項記載のプロ卜ン伝導体。
3. 前記化学式 1で表される構造部を有する化合物のモル数を a、 前記化学式 2 で表される構造を有する化合物のモル数を bとすると、 前記プロトン性解離基の モル数 (axn) に対する前記化学式 2で表される構造を有する化合物のモル数 bの比は、 1 0≤bZ ( axn) ≤ 30の範囲内であることを特徴とする請求の 範囲第 1項記載のプロトン伝導体。
4. 前記プロトン性解離基は、 — S〇3 H基、 — COOH基および一〇H基のう ちの少なくとも 1種であることを特徴とする請求の範囲第 1項記載のプロトン伝 導体。
5. 化学式 3で表される構造部を有する化合物と、 化学式 4で表される構造を有する化合物と
を含むことを特徴とするシングルイオン伝導体。
(化学式 3)
Figure imgf000029_0001
(式中、 R 1は炭素 (C) を含む構成成分、 Zはカチオン性解離基をそれぞれ表 し、 nは n≥lである。)
(化学式 4)
3 0
I II
R2— N― C— H
(式中、 R 2および R 3はそれぞれ炭素を含む構成成分または水素 (H) を表 す。)
6. 前記化学式 4で表される構造を有する化合物は、 N, N—ジメチルホルムァ ミドおよび N—メチルホルムアミ ドのうちの少なくとも一方を含むことを特徴と する請求の範囲第 5項記載のシングルイオン伝導体。
7. 前記化学式 3で表される構造部を有する化合物のモル数を c、 前記化学式 4 で表される構造を有する化合物のモル数を bとすると、 前記カチオン性解離基の モル数 (cxn) に対する前記化学式 4で表される構造を有する化合物のモル数 bの比は、 10≤bZ (cxn) ≤ 30の範囲内であることを特徴とする請求の 範囲第 5項記載のシングルイオン伝導体。
8. 前記カチオン性解離基は、 一 S〇3 M基、 一 COOM基および一 OM基 (但 し、 Mはリチウム (L i)、 ナトリウム (Na)、 カリウム (K) またはルビジゥ ム (Rb) を表す) のうちの少なくとも 1種であることを特徴とする請求の範囲 第 5項記載のシングルイォン伝導体。
9. 化学式 5で表される構造部を有する化合物を、 化学式 6で表される構造を有 する化合物に対して、 または化学式 6で表される構造を有する化合物を溶媒に溶 解させた溶液に対して含浸させる工程を含むことを特徴とするプロトン伝導体の 製造方法。 (化学式 5) X
(式中、 R 1は OCH炭素 (C) を含む構成成分、 Xはプロトン性解離基をそれぞれ表 し、 ηは η≥ 1である。)
(化学式 6)
R3 0
I II
R2— Ν― C一 Η
(式中、 R 2および R 3はそれぞれ炭素を含む構成成分または水素 (Η) を表 す。)
1 0. 化学式 7または化学式 8で表される構造部を有する化合物と、 化学式 9で 表される構造を有する化合物とを、 溶媒中において混合し、 溶媒を蒸発させるェ 程を含むことを特徴とするプロトン伝導体の製造方法。
(化学式 7)
X
(式中、 R 1は炭素 (C) を含む構成成分、 Xはプロトン性解離基をそれぞれ表 し、 nは n≥ lである。)
(化学式 8)
Figure imgf000030_0001
(式中、 R 1は炭素を含む構成成分、 Xはイオン交換によりプロトン性解離基と なり得る基をそれぞれ表し、 nは n≥ lである。)
(化学式 9) (式中、 R 2および R 3はそれぞれ炭素を含む構成成分または水素 (H) を表 す。)
1 1. 化学式 10で表される構造部を有する化合物を、 化学式 1 1で表される構 造を有する化合物に対して、 または化学式 1 1で表される構造を有する化合物を 溶媒に溶解させた溶液に対して含浸させる工程を含むことを特徴とするシングル イオン伝導体の製造方法。
(化学式 1 0)
Figure imgf000031_0001
(式中、 R 1は炭素 (C) を含む構成成分、 Zはカチオン性解離基をそれぞれ表 し、 nは n≥lである。)
(化学式 1 1)
Figure imgf000031_0002
(式中、 R 2および R 3はそれぞれ炭素を含む構成成分または水素 (H) を表 す。)
1 2. 化学式 1 2または化学式 1 3で表される構造部を有する化合物と、 化学式 14で表される構造を有する化合物とを、 溶媒中において混合し、 溶媒を蒸発さ せる工程を含むことを特徴とするシングルイオン伝導体の製造方法。
(化学式 12)
Z
- Rl^-
(式中、 R 1は炭素 (C) を含む構成成分、 Zはカチオン性解離基をそれぞれ表 し、 nは n≥ lである。)
(化学式 1 3) z
" l
(式中、 R 1は炭素を含む構成成分、 zはイオン交換によりカチオン性解離基と なり得る基をそれぞれ表し、 nは n≥ lである。)
(化学式 14)
3 0
I II
R2— N― C— H
(式中、 R 2および R 3はそれぞれ炭素を含む構成成分または水素 (H) を表 す。)
1 3. 電解質を介して対向配置された一対の電極の間に静電容量を有する電気化 学キャパシ夕であって、
前記電解質は、 化学式 1 5で表される構造部を有する化合物と、 化学式 1 6で 表される構造を有する化合物とを含むことを特徴とする電気化学キャパシ夕。
(化学式 1 5)
X
Rl
(式中、 R 1は炭素 (C) を含む構成成分、 Xはプロトン性解離基をそれぞれ表 し、 nは n≥lである。)
(化学式 1 6)
R3 0
I II
R2— N— C— H
(式中、 R 2および R 3はそれぞれ炭素を含む構成成分または水素 (H) を表 す。)
14. 前記化学式 1 6で表される構造を有する化合物は、 N, N—ジメチルホル ムアミ ドおよび N—メチルホルムアミドのうちの少なくとも一方を含むことを特 徴とする請求の範囲第 1 3項記載の電気化学キャパシ夕。
1 5. 前記化学式 1 5で表される構造部を有する化合物のモル数を a、 前記化学 式 16で表される構造を有する化合物のモル数を bとすると、 前記プロトン性解 離基のモル数 (axn) に対する前記化学式 1 6で表される構造を有する化合物 のモル数 bの比は、 1 0≤b/ (axn) ≤ 3 0の範囲内であることを特徴とす る請求の範囲第 1 3項記載の電気化学キャパシタ。
1 6. 前記プロトン性解離基は、 一 S03 H基、 一 C OOH基および— OH基の うちの少なくとも 1種であることを特徴とする請求の範囲第 1 3項記載の電気化 学キャパシタ。
1 7. 前記一対の電極の間に、 静電容量に加えて、 電荷の大きさ (A q) と電位 変化の大きさ (ΔΥ) との導関数 d (Δ q) / ά (Δ V) で表される疑似容量を 有することを特徴とする請求の範囲第 1 3項記載の電気化学キャパシ夕。
PCT/JP2003/014574 2002-11-18 2003-11-17 プロトン伝導体、シングルイオン伝導体、およびそれらの製造方法、並びに電気化学キャパシタ WO2004047122A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/533,604 US7670508B2 (en) 2002-11-18 2003-11-17 Proton conductor, single ion conductor, manufacturing methods thereof, and electrochemical capacitor
JP2004553178A JP4577014B2 (ja) 2002-11-18 2003-11-17 電気化学キャパシタ
AU2003280819A AU2003280819A1 (en) 2002-11-18 2003-11-17 Proton conductor, single ion conductor, process for the production of them, and electrochemical capacitors
KR1020057007136A KR101061934B1 (ko) 2002-11-18 2003-11-17 프로톤 전도체, 싱글 이온 전도체 및 그들의 제조 방법과 전기 화학 캐패시터
CN2003801034645A CN1711612B (zh) 2002-11-18 2003-11-17 质子导体、单离子导体、其制造方法、及电解质电容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002334245 2002-11-18
JP2002-334245 2002-11-18

Publications (1)

Publication Number Publication Date
WO2004047122A1 true WO2004047122A1 (ja) 2004-06-03

Family

ID=32321720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014574 WO2004047122A1 (ja) 2002-11-18 2003-11-17 プロトン伝導体、シングルイオン伝導体、およびそれらの製造方法、並びに電気化学キャパシタ

Country Status (7)

Country Link
US (1) US7670508B2 (ja)
JP (1) JP4577014B2 (ja)
KR (1) KR101061934B1 (ja)
CN (1) CN1711612B (ja)
AU (1) AU2003280819A1 (ja)
TW (1) TW200423153A (ja)
WO (1) WO2004047122A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049866A (ja) * 2004-06-30 2006-02-16 Jsr Corp 電気化学キャパシタ
JP2007180413A (ja) * 2005-12-28 2007-07-12 Jsr Corp 電気化学キャパシタ
WO2011040349A1 (en) * 2009-09-30 2011-04-07 Semiconductor Energy Laboratory Co., Ltd. Redox capacitor and manufacturing method thereof
WO2011040345A1 (en) * 2009-09-30 2011-04-07 Semiconductor Energy Laboratory Co., Ltd. Electrochemical capacitor
KR20180036389A (ko) * 2016-09-30 2018-04-09 롯데케미칼 주식회사 바나듐 레독스 흐름 전지용 바이폴라 플레이트의 제조 방법

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070271751A1 (en) * 2005-01-27 2007-11-29 Weidman Timothy W Method of forming a reliable electrochemical capacitor
US11527774B2 (en) 2011-06-29 2022-12-13 Space Charge, LLC Electrochemical energy storage devices
US11996517B2 (en) 2011-06-29 2024-05-28 Space Charge, LLC Electrochemical energy storage devices
US20130170097A1 (en) * 2011-06-29 2013-07-04 Space Charge, LLC Yttria-stabilized zirconia based capacitor
US10601074B2 (en) 2011-06-29 2020-03-24 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US9853325B2 (en) 2011-06-29 2017-12-26 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
WO2014148872A1 (ko) * 2013-03-21 2014-09-25 한양대학교 산학협력단 양방향 스위칭 특성을 갖는 2-단자 스위칭 소자 및 이를 포함하는 저항성 메모리 소자 크로스-포인트 어레이, 및 이들의 제조방법
KR102051424B1 (ko) * 2013-03-21 2019-12-03 한양대학교 산학협력단 양방향 스위칭 특성을 갖는 2-단자 스위칭 소자 제조방법 및 이를 포함하는 저항성 메모리 소자 크로스-포인트 어레이 제조방법
EP3762989A4 (en) 2018-03-07 2021-12-15 Space Charge, LLC THIN FILM SOLID STATE ENERGY STORAGE DEVICES

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167629A (ja) * 1998-10-19 2001-06-22 Canon Inc ゲル電解質、電池およびエレクトロクロミック素子
JP2001192531A (ja) * 2000-01-06 2001-07-17 Jsr Corp 膜形成材料
WO2001063683A2 (en) * 2000-02-23 2001-08-30 Toyota Jidosha Kabushiki Kaisha Polymer electrolyte membrane and method of production thereof
EP1138712A2 (en) * 2000-03-29 2001-10-04 JSR Corporation Polyarylene copolymers and proton-conductive membrane
JP2001294706A (ja) * 2000-04-12 2001-10-23 Nitto Denko Corp プロトン伝導性多孔性膜とそれより得られるプロトン伝導性フィルム
EP1245554A1 (en) * 2001-03-30 2002-10-02 JSR Corporation Monomer containing electron-withdrawing group and electron-donative group, and copolymer and proton-conductive membrane comprising same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151241A (ja) * 1984-12-25 1986-07-09 Asahi Glass Co Ltd イオン交換膜の前処理方法
AU5957094A (en) * 1993-01-15 1994-08-15 Allied-Signal Inc. Process for producing ion exchange membranes, and the ion exchange membranes produced thereby
US5512263A (en) * 1994-05-06 1996-04-30 The Dow Chemical Company Method for chemical synthesis employing a composite membrane
US5705534A (en) * 1995-09-22 1998-01-06 National Power Plc Method for the preparation of cation exchange membranes doped with insoluble metal salts
JP4160155B2 (ja) * 1998-05-01 2008-10-01 バスフ・ヒュエル・セル・ゲーエムベーハー ポリサイラミンと強酸との複合体
JP2962360B1 (ja) 1998-09-03 1999-10-12 日本電気株式会社 シングルイオンおよびプロトン伝導性高分子体
CA2256829A1 (en) * 1998-12-18 2000-06-18 Universite Laval Composite electrolyte membranes for fuel cells
US7153608B2 (en) * 1999-07-19 2006-12-26 Sony Corporation Ionic conductor, process for production thereof, and electrochemical device
JP2001155744A (ja) 1999-11-29 2001-06-08 Toyota Central Res & Dev Lab Inc プロトン伝導体
JP3656244B2 (ja) * 1999-11-29 2005-06-08 株式会社豊田中央研究所 高耐久性固体高分子電解質及びその高耐久性固体高分子電解質を用いた電極−電解質接合体並びにその電極−電解質接合体を用いた電気化学デバイス
JP2001236873A (ja) 2000-02-24 2001-08-31 Matsushita Electric Works Ltd 回路遮断器の引き外し装置
JP3777950B2 (ja) 2000-05-24 2006-05-24 Jsr株式会社 ポリアリーレン系共重合体およびプロトン伝導膜
KR20030096244A (ko) * 2001-01-19 2003-12-24 소니 가부시키가이샤 프로톤 전도체막 및 그 제조 방법 및 프로톤 전도체막을구비한 연료 전지 및 그 제조 방법
EP1380619A4 (en) * 2001-02-05 2005-11-16 Kaneka Corp PROTONIC CONDUCTIVE POLYMER FILM AND PROCESS FOR PRODUCING THE SAME
US20020160272A1 (en) * 2001-02-23 2002-10-31 Kabushiki Kaisha Toyota Chuo Process for producing a modified electrolyte and the modified electrolyte
JP2003086022A (ja) * 2001-06-29 2003-03-20 Sony Corp プロトン伝導体及びこれを用いた電気化学デバイス
US7108934B2 (en) * 2002-01-18 2006-09-19 California Instituite Of Technology Proton conducting membranes for high temperature fuel cells with solid state “water free” membranes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167629A (ja) * 1998-10-19 2001-06-22 Canon Inc ゲル電解質、電池およびエレクトロクロミック素子
JP2001192531A (ja) * 2000-01-06 2001-07-17 Jsr Corp 膜形成材料
WO2001063683A2 (en) * 2000-02-23 2001-08-30 Toyota Jidosha Kabushiki Kaisha Polymer electrolyte membrane and method of production thereof
EP1138712A2 (en) * 2000-03-29 2001-10-04 JSR Corporation Polyarylene copolymers and proton-conductive membrane
JP2001294706A (ja) * 2000-04-12 2001-10-23 Nitto Denko Corp プロトン伝導性多孔性膜とそれより得られるプロトン伝導性フィルム
EP1245554A1 (en) * 2001-03-30 2002-10-02 JSR Corporation Monomer containing electron-withdrawing group and electron-donative group, and copolymer and proton-conductive membrane comprising same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049866A (ja) * 2004-06-30 2006-02-16 Jsr Corp 電気化学キャパシタ
JP2007180413A (ja) * 2005-12-28 2007-07-12 Jsr Corp 電気化学キャパシタ
WO2011040349A1 (en) * 2009-09-30 2011-04-07 Semiconductor Energy Laboratory Co., Ltd. Redox capacitor and manufacturing method thereof
WO2011040345A1 (en) * 2009-09-30 2011-04-07 Semiconductor Energy Laboratory Co., Ltd. Electrochemical capacitor
JP2011097030A (ja) * 2009-09-30 2011-05-12 Semiconductor Energy Lab Co Ltd レドックスキャパシタ及びその作製方法
JP2011097031A (ja) * 2009-09-30 2011-05-12 Semiconductor Energy Lab Co Ltd 電気化学キャパシタ
US8755169B2 (en) 2009-09-30 2014-06-17 Semiconductor Energy Laboratory Co., Ltd. Electrochemical capacitor
JP2015019098A (ja) * 2009-09-30 2015-01-29 株式会社半導体エネルギー研究所 レドックスキャパシタ
US8952490B2 (en) 2009-09-30 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Redox capacitor and manufacturing method thereof
CN105719841A (zh) * 2009-09-30 2016-06-29 株式会社半导体能源研究所 电化学电容器
KR20180036389A (ko) * 2016-09-30 2018-04-09 롯데케미칼 주식회사 바나듐 레독스 흐름 전지용 바이폴라 플레이트의 제조 방법

Also Published As

Publication number Publication date
CN1711612B (zh) 2010-05-26
TWI292160B (ja) 2008-01-01
AU2003280819A1 (en) 2004-06-15
JPWO2004047122A1 (ja) 2006-04-13
CN1711612A (zh) 2005-12-21
KR101061934B1 (ko) 2011-09-02
JP4577014B2 (ja) 2010-11-10
US20060099474A1 (en) 2006-05-11
TW200423153A (en) 2004-11-01
KR20050084872A (ko) 2005-08-29
US7670508B2 (en) 2010-03-02

Similar Documents

Publication Publication Date Title
Gao et al. Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review
Yuan et al. Mechanism of polysulfone-based anion exchange membranes degradation in vanadium flow battery
Zhang et al. Quaternized poly (phthalazinone ether ketone ketone) anion exchange membrane with low permeability of vanadium ions for vanadium redox flow battery application
Ogata et al. All-graphene oxide device with tunable supercapacitor and battery behaviour by the working voltage
Zhao et al. Highly selective charged porous membranes with improved ion conductivity
JP4577014B2 (ja) 電気化学キャパシタ
CA2880997A1 (en) Redox flow cell comprising high molecular weight compounds as redox pair and semipermeable membrane for storage of electrical energy
JP5039329B2 (ja) 燃料電池用高分子電解質膜、その製造方法及びこれを含む燃料電池システム
Huo et al. Quaternary ammonium functionalized poly (arylene ether sulfone)/poly (vinylpyrrolidone) composite membranes for electrical double-layer capacitors with activated carbon electrodes
WO2005078838A1 (ja) プロトン伝導体及び電気化学デバイス
Yoshimura et al. Imidazolium cation based anion-conducting electrolyte membranes prepared by radiation induced grafting for direct hydrazine hydrate fuel cells
Javaid Activated carbon fiber for energy storage
KR101851849B1 (ko) 고분자 전해질막, 상기 고분자 전해질막을 포함하는 전기화학 전지, 상기 전기화학 전지를 포함하는 전기화학 전지모듈, 상기 고분자 전해질막을 포함하는 흐름전지, 고분자 전해질막의 제조방법 및 흐름 전지용 전해액
Ma et al. The research status of Nafion ternary composite membrane
Nagao Proton‐Conducting Polymers: Key to Next‐Generation Fuel Cells, Electrolyzers, Batteries, Actuators, and Sensors
Mustafa et al. Insights on the electrochemical activity of porous carbonaceous electrodes in non-aqueous vanadium redox flow batteries
Ramya et al. Methanol permeability studies on sulphonated polyphenylene oxide membrane for direct methanol fuel cell
Shudo et al. Development of an all solid state battery incorporating graphene oxide as proton conductor
Bhattacharyya et al. Study of ABPBI membrane as an alternative separator for vanadium redox flow batteries
Kim et al. Development of a Zn-Mn aqueous redox-flow battery operable at 2.4 V of discharging potential in a hybrid cell with an Ag-decorated carbon-felt electrode
US20110183237A1 (en) Anion conducting electrolyte resin and a method for producing the same
Williams et al. Leveraging sulfonated poly (ether ether ketone) for superior performance in zinc iodine redox flow batteries
JP2007180444A (ja) 電気化学キャパシタ
Punnakkal et al. Redox Active electrolytes in supercapacitors
KR20230086523A (ko) 폴리카바졸계 양이온교환형 이온전도체 및 이의 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004553178

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057007136

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006099474

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10533604

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A34645

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057007136

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10533604

Country of ref document: US