WO2004033859A1 - Verfahren und einrichtung zur rückgewinnung von energie - Google Patents
Verfahren und einrichtung zur rückgewinnung von energie Download PDFInfo
- Publication number
- WO2004033859A1 WO2004033859A1 PCT/AT2003/000309 AT0300309W WO2004033859A1 WO 2004033859 A1 WO2004033859 A1 WO 2004033859A1 AT 0300309 W AT0300309 W AT 0300309W WO 2004033859 A1 WO2004033859 A1 WO 2004033859A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- energy
- heat
- medium
- thermal
- steam
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
- F02G5/02—Profiting from waste heat of exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/065—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
- F02M26/24—Layout, e.g. schematics with two or more coolers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
- F02M26/28—Layout, e.g. schematics with liquid-cooled heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/05—High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/52—Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/14—Combined heat and power generation [CHP]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the invention relates to a method according to the preamble of claim 1 and a device for performing the method.
- the invention aims to avoid these disadvantages and difficulties and has as its object to create a particularly effective use of energy, especially for mobile devices.
- the present invention therefore uses the in e.g. Excess energy of waste heat generated by a vehicle powered by an internal combustion engine, by supplying it via a thermal intermediate circuit, preferably with superheated steam, an additional working machine, preferably a steam turbine, and either taking mechanical energy directly from the output of the steam turbine or using mechanical energy known per se converted into electrical current.
- an additional working machine preferably a steam turbine
- the waste heat from the auxiliary energy sources is used for energy purposes.
- temperatures from 300 ° C to 1000 ° C can be used for energy recovery.
- the exhaust gas in particular can be used and is generally available at 300 to 600 ° C.
- fuel cells if they are designed as high-temperature fuel cells, have high exhaust gas and coolant temperatures, which can reach up to 1000 ° C. High-temperature fuel cells are therefore also used because they have a somewhat higher efficiency and are more tolerant with regard to the fuel supplied.
- a guideline one can also assume that approx. 50% of the energy supplied goes into the exhaust gas or is available from the cooling process.
- a medium possibly pressurized, circulates in the thermal intermediate circuit, which absorbs the thermal energy from the exhaust gas and / or the cooling circuit of the thermal or chemical process via heat exchangers and later releases it again in the additional working machine.
- a medium can be any liquid suitable for a cooling or heating circuit, or a steam or a gas. Since a mobile system occasionally has to be operated at temperatures below 0 ° C, the medium is selected so that it does not become solid at the ambient temperatures common to vehicles. A simple and proven example of this is water with antifreeze.
- a particularly favorable embodiment provides that the thermal intermediate circuit is directly connected to the coolant circuit of the internal combustion engine, that the same medium is used and that e.g. a valve can control the flow between the two circuits.
- the medium cooled after the working machine can contribute to cooling the internal combustion engine
- the medium preheated by the internal combustion engine can reach a higher temperature after the heat exchanger from the exhaust gas.
- part of the thermal energy going into the cooling circuit of the internal combustion engine is recovered.
- energy obtained can also be used to preheat the internal combustion engine before starting. This ensures reduced exhaust emissions during cold starts and possibly also preheating of the passenger compartment via the conventional heating of the vehicle.
- the medium of the thermal intermediate circuit is heated in at least two stages.
- the waste heat from a thermal or chemical process e.g. B. the internal combustion engine is used to preheat in a first stage, and the waste heat from a second thermal or chemical process, such as the auxiliary power source, heats the medium in a second stage to the higher final value for the supply to the additional work machine.
- a second thermal or chemical process such as the auxiliary power source
- the medium is normally heated using a heat exchanger in one of the usual designs.
- a particularly advantageous embodiment of a heat exchanger is that the ratio of surface to volume is maximized using the finest metal structures.
- the gas flow is selected so that the occurrence of laminar flows, which reduce the heat transfer, is prevented.
- Heat exchangers ensure that the temperature of the medium in the intermediate circuit is always cooler than the waste heat used for heat transfer. If the internal combustion engine has an exhaust gas temperature of 300 ° C, for example, at the point where the exhaust gas can be fed into the heat exchanger without damaging the combustion process, the medium in the intermediate circuit can only reach approx. 260 - 280 ° C. It is therefore proposed in one embodiment of the invention to use a heat pump as the heat exchanger either instead of or in addition to a heat exchanger. The temperature of the medium and its heat content can thus be raised significantly above that of the exhaust gas of the internal combustion engine. This in turn allows an improved efficiency in the working machine, preferably a steam turbine.
- the exhaust gas recirculation (EGR) is a known method to reduce the undesired NOx emissions in the exhaust gas of (diesel) motor vehicles or other means of transportation, such as ships, etc. Some of the exhaust gases are returned to the combustion air or the fuel / air mixture via the engine's intake system. Lowering the temperature and delaying the combustion and thus reducing the nitrogen oxide emissions by about 40% are possible; EGR is usually also associated with somewhat higher fuel consumption.
- the exhaust gases from the VKM of trucks and cars reach temperatures of 700 and 450 ° C, respectively. These hot exhaust gases have to be cooled to the order of 150 to 200 ° C in order to be returned to the engine mixed with combustion air.
- a temperature reduction of the exhaust gas is possible by installing a heat exchanger and is also built as standard.
- the coolant that cools the VKM itself can be in the heat exchanger.
- the coolant then flows in a machine cooling system loop: First, it absorbs heat from the engine and then heat from the exhaust gas, before finally giving off heat to the environment via a radiator.
- very high demands are placed on both the heat exchanger and the radiator (compact design, material resistance to high temperatures, corrosion and deposits).
- EP 1 091 113 A possibilities are shown which avoid or at least minimize these problems just described.
- the installation of a second high-temperature exhaust gas cooler leads to the absorption of a large part of the heat, which results in the fact that the actual machine cooling system loop can work as usual and does not have to be imposed with any restrictions due to the high temperatures.
- This second exhaust gas cooler is provided in a cooling loop with a second radiator. Overall, more effective EGR cooling can be achieved, which also does not have to be accompanied by an increase in the radiator area.
- thermal energy must be extracted from the hot exhaust gas in order to be able to use it in an EGR in such a way that nitrogen oxide emissions are reduced.
- the temperature of the exhaust gas can be brought to the required value, but - and this is clearly the great potential of the invention - the energy of the exhaust gas is merely dissipated and no further use is intended.
- the invention therefore has another object, namely firstly to reduce the thermal load for the vehicle cooling system by converting the thermal energy of the exhaust gas into exhaust gas recirculation into mechanically usable energy and secondly to create a use of the system for further reducing the emissions of the internal combustion engine ,
- FIGS. 1, 1A A preferred embodiment of the invention is described below (see also FIGS. 1, 1A):
- the exhaust gas of an internal combustion engine 1 is passed through a first heat exchanger 2 after the possible turbocharger before it flows on for further exhaust gas aftertreatment and to the exhaust. As a result, it heats a medium 3 in the heat exchanger 2, preferably the condensate of a water / antifreeze mixture, which thereby forms superheated steam.
- the medium 3 is passed on to a possible second heat exchanger 4, which is on the primary side, for example of the exhaust gas or of Coolant is fed to a fuel cell 5 and thus the medium 3 additionally overheats.
- the heat from an exhaust gas recirculation 13 of the internal combustion engine 1 can also be fed to a heat exchanger, preferably the second 4 - possibly also another one.
- an energy store 6 ensures that fluctuating output as well as fluctuating demand can be regulated.
- the medium 3 drives a working machine 7, preferably a steam turbine, which emits its energy via the output shaft to an electrical generator 8 and / or to a mechanical consumer 9.
- the medium is returned in liquid form via a condenser 10 and pressurized again by a pump 11 and returned to the circuit.
- the medium 3 is fed directly from the cooling circuit of the internal combustion engine 1 via a switchover unit 12.
- the medium circulates in a closed circuit.
- the two circuits can be connected so that the warmer preheats the other.
- the working machine 7 is a piston machine, either a lifting or a rotary piston machine, or a gas turbine.
- the heat exchanger 2 can be a heat pump in order to raise the temperature level of the medium 3 above that of the waste heat from the thermal process of the internal combustion engine 1.
- the heat of the exhaust gas which has to be cooled to the EGR, is used in such a way that it evaporates that liquid medium which flows through the first heat exchanger (EGR evaporator 1).
- the energy contained in the steam can be used for further energetic use before the liquefied steam passes through the cycle again.
- the mechanically usable energy does not have to be dissipated via the engine heat exchanger (radiator, radiator). This means that this heat exchanger can either be made smaller or provide the required cooling capacity for correspondingly higher exhaust gas recirculation rates - with the corresponding benefits for nitrogen oxide emission reduction. Since machines that work with the expansion of steam have a narrow optimum operating range, the mass flow and the pressure supplied to the machine are limited by a waste gate in a particular embodiment.
- the steam can be mixed with a steam produced in some other way, so as not to increase the temperature but very much the volume (FIGS. 4, 5, 6).
- An increased volume of steam can be used for a work performance analogous to steam compressed by pressure.
- the steam produced in other ways can come from energy sources of a heat engine as well as from a fuel cell.
- the coupling of all heat sources is also provided according to the invention (FIG. 6)
- the energy from the EGR can also be used to overheat a steam that has already formed in another way (FIG. 7), which then e.g. can operate a machine that is connected to a generator and / or mechanical consumers via a drive shaft.
- the individual evaporators according to FIGS. 4, 5 and 6 are operated in feedback with the evaporator outlet, so that the same pressure conditions prevail in the evaporator circuits and a mixture of the steam generated in the evaporator connected in parallel is possible. This is achieved by means of pumps Pl, P2 and P3 that are regulated in terms of output.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE50309340T DE50309340D1 (de) | 2002-10-11 | 2003-10-10 | Verfahren und einrichtung zur rückgewinnung von energie |
EP03750144A EP1549827B1 (de) | 2002-10-11 | 2003-10-10 | Verfahren und einrichtung zur rückgewinnung von energie |
AU2003269580A AU2003269580A1 (en) | 2002-10-11 | 2003-10-10 | Method and device for recovering energy |
AT03750144T ATE388305T1 (de) | 2002-10-11 | 2003-10-10 | Verfahren und einrichtung zur rückgewinnung von energie |
US11/101,603 US20050262842A1 (en) | 2002-10-11 | 2005-04-08 | Process and device for the recovery of energy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA1832/2003 | 2002-10-11 | ||
AT0183203A AT414156B (de) | 2002-10-11 | 2002-10-11 | Verfahren und einrichtung zur rückgewinnung von energie |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/101,603 Continuation US20050262842A1 (en) | 2002-10-11 | 2005-04-08 | Process and device for the recovery of energy |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004033859A1 true WO2004033859A1 (de) | 2004-04-22 |
Family
ID=34140242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AT2003/000309 WO2004033859A1 (de) | 2002-10-11 | 2003-10-10 | Verfahren und einrichtung zur rückgewinnung von energie |
Country Status (6)
Country | Link |
---|---|
US (1) | US20050262842A1 (de) |
EP (1) | EP1549827B1 (de) |
AT (2) | AT414156B (de) |
AU (1) | AU2003269580A1 (de) |
DE (1) | DE50309340D1 (de) |
WO (1) | WO2004033859A1 (de) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006014609A3 (en) * | 2004-07-16 | 2006-04-27 | Honeywell Int Inc | Working fluids for thermal energy conversion of waste heat from fuel cells using rankine cycle systems |
EP1700010A2 (de) * | 2003-11-20 | 2006-09-13 | Ormat Technologie, Inc. | Hybridkraftwerk für kontinuierliche zuverlässige energie an orten, einschliesslich abgelegenen orten |
DE102007021526A1 (de) * | 2007-05-04 | 2008-11-06 | Volkswagen Ag | Abgaswärmenutzung zur beschleunigten Warmlaufphase bei Turbomotoren |
WO2009056253A1 (de) * | 2007-10-30 | 2009-05-07 | Voith Patent Gmbh | Antriebsstrang, insbesondere für lkw und schienenfahrzeuge |
WO2009071972A1 (en) * | 2007-12-04 | 2009-06-11 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine |
WO2009080153A1 (de) * | 2007-12-22 | 2009-07-02 | Daimler Ag | Nutzung einer verlustwärme einer verbrennungskraftmaschine |
DE102008032253A1 (de) * | 2008-07-09 | 2010-01-14 | Man Nutzfahrzeuge Ag | Selbstzündende Verbrennungskraftmaschine mit Ether-Fumigation der Verbrennungsluft für Fahrzeuge und Verfahren zur Ether-Fumigation der Verbrennungsluft in einer selbstzündenden Verbrennungsmaschine für Fahrzeuge |
EP2249017A1 (de) * | 2008-02-14 | 2010-11-10 | Sanden Corporation | Abwärme nutzende vorrichtung für einen verbrennungsmotor |
WO2011066872A2 (de) | 2009-12-04 | 2011-06-09 | Voith Patent Gmbh | Antriebsstrang, insbesondere für ein kraftfahrzeug |
WO2012016647A1 (de) | 2010-08-03 | 2012-02-09 | Daimler Ag | Brennkraftmaschine mit einer wärmerückgewinnungsvorrichtung und verfahren zum betrieb einer brennkraftmaschine |
EP2440751A2 (de) * | 2009-06-11 | 2012-04-18 | Ormat Technologies Inc. | Abwärmerückgewinnungssystem |
EP2440752A2 (de) * | 2009-06-11 | 2012-04-18 | Ormat Technologies Inc. | Mehrstufiges organisches rankinzyklus-energiesystem |
WO2013176972A1 (en) * | 2012-05-22 | 2013-11-28 | Harris Corporation | Method and system for producing work from a hybrid thermal cycle with a low pressure boiler |
WO2014004597A1 (en) * | 2012-06-26 | 2014-01-03 | Harris Corporation | Hybrid thermal cycle with independent refrigeration loop |
WO2014021708A1 (en) * | 2012-08-03 | 2014-02-06 | Tri-O-Gen Group B.V. | System for recovering through an organic rankine cycle (orc) energy from a plurality of heat sources |
EP2196661A3 (de) * | 2008-12-10 | 2014-03-12 | MAN Truck & Bus Österreich AG | Antriebseinheit mit Kühlkreislauf und separatem Wärmerückgewinnungskreislauf |
WO2014091094A1 (fr) * | 2012-12-14 | 2014-06-19 | Hynergy Ag | Système de génération d'énergie, véhicule automobile et groupe électrogène comprenant un tel système |
CH707418A1 (fr) * | 2012-12-14 | 2014-06-30 | Hynergy Ag | Système de génération d'énergie, véhicule automobile et groupe électrogène comprenant un tel système. |
US8991181B2 (en) | 2011-05-02 | 2015-03-31 | Harris Corporation | Hybrid imbedded combined cycle |
FR3013802A1 (fr) * | 2013-11-26 | 2015-05-29 | Snecma | Generateur de vapeur ameliore par dissipation de chaleur d'une pile a combustible |
US9297387B2 (en) | 2013-04-09 | 2016-03-29 | Harris Corporation | System and method of controlling wrapping flow in a fluid working apparatus |
US9303533B2 (en) | 2013-12-23 | 2016-04-05 | Harris Corporation | Mixing assembly and method for combining at least two working fluids |
US9303514B2 (en) | 2013-04-09 | 2016-04-05 | Harris Corporation | System and method of utilizing a housing to control wrapping flow in a fluid working apparatus |
CN105715428A (zh) * | 2014-12-22 | 2016-06-29 | 三井造船株式会社 | 动力装置 |
US9574563B2 (en) | 2013-04-09 | 2017-02-21 | Harris Corporation | System and method of wrapping flow in a fluid working apparatus |
DE102017218142A1 (de) | 2017-10-11 | 2019-04-11 | Audi Ag | Kühlsystem und Verfahren zur Steigerung einer Kühlleistung für ein Antriebsaggregat |
Families Citing this family (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8463441B2 (en) | 2002-12-09 | 2013-06-11 | Hudson Technologies, Inc. | Method and apparatus for optimizing refrigeration systems |
CN101243243A (zh) * | 2005-06-16 | 2008-08-13 | Utc电力公司 | 机械并热配接到驱动公共负载的发动机上的有机朗肯循环 |
EP1910650A2 (de) * | 2005-08-03 | 2008-04-16 | AMOVIS GmbH | Antriebseinrichtung |
US7454911B2 (en) * | 2005-11-04 | 2008-11-25 | Tafas Triantafyllos P | Energy recovery system in an engine |
DE102006010247B4 (de) | 2006-03-02 | 2019-12-19 | Man Truck & Bus Se | Antriebseinheit mit Wärmerückgewinnung |
US20070220885A1 (en) * | 2006-03-22 | 2007-09-27 | David Turner | EGR energy recovery system |
GB0618867D0 (en) * | 2006-09-25 | 2006-11-01 | Univ Sussex The | Vehicle power supply system |
US8387386B2 (en) * | 2006-11-14 | 2013-03-05 | Ford Global Technologies, Llc | Combination rankine cycle system and hydraulic accumulator system |
DE102007003801A1 (de) * | 2007-01-25 | 2008-07-31 | Compact Dynamics Gmbh | Vorrichtung zur Gewinnung elektrischer Energie aus der Abgaswärme einer Verbrennungsmaschine eines Kraftfahrzeuges, und Verfahren zur Gewinnung elektrischer Energie aus der Abgaswärme einer Verbrennungsmaschine eines Kraftfahrzeuges |
DE102007033611B4 (de) * | 2007-07-17 | 2009-05-07 | Amovis Gmbh | Anordnung zur Abgaswärmenutzung |
US7797938B2 (en) * | 2007-07-31 | 2010-09-21 | Caterpillar Inc | Energy recovery system |
US7866157B2 (en) * | 2008-05-12 | 2011-01-11 | Cummins Inc. | Waste heat recovery system with constant power output |
DE102008027294A1 (de) * | 2008-06-06 | 2009-12-10 | Häußer, Achim | Nutzung der Abwärme und der kinetischen Abgasenergie konventioneller Schiffsantriebe zur Reibungsverminderung des Schiffskörpers |
EP2320058B1 (de) * | 2008-08-26 | 2015-11-25 | Sanden Corporation | Abwärme nutzende vorrichtung für einen verbrennungsmotor |
US8046998B2 (en) * | 2008-10-01 | 2011-11-01 | Toyota Motor Engineering & Manufacturing North America, Inc. | Waste heat auxiliary power unit |
DE102009006959B4 (de) * | 2009-01-31 | 2020-03-12 | Modine Manufacturing Co. | System zur Rückgewinnung von Energie |
US8330285B2 (en) * | 2009-07-08 | 2012-12-11 | Toyota Motor Engineering & Manufacturing North America, Inc. | Method and system for a more efficient and dynamic waste heat recovery system |
US8544274B2 (en) * | 2009-07-23 | 2013-10-01 | Cummins Intellectual Properties, Inc. | Energy recovery system using an organic rankine cycle |
US8479489B2 (en) * | 2009-08-27 | 2013-07-09 | General Electric Company | Turbine exhaust recirculation |
US8627663B2 (en) * | 2009-09-02 | 2014-01-14 | Cummins Intellectual Properties, Inc. | Energy recovery system and method using an organic rankine cycle with condenser pressure regulation |
US20110056198A1 (en) * | 2009-09-08 | 2011-03-10 | Samuel Jackson Flakus | Compressed Air Steam Hybrid |
US8397504B2 (en) * | 2010-02-08 | 2013-03-19 | Global Alternative Fuels, Llc | Method and apparatus to recover and convert waste heat to mechanical energy |
US20110209473A1 (en) * | 2010-02-26 | 2011-09-01 | Jassin Fritz | System and method for waste heat recovery in exhaust gas recirculation |
DE102010027068A1 (de) * | 2010-07-13 | 2012-01-19 | Behr Gmbh & Co. Kg | System zur Nutzung von Abwärme eines Verbrennungsmotors |
CN103109046B (zh) * | 2010-07-14 | 2015-08-19 | 马克卡车公司 | 具有局部回收的废热回收系统 |
CN103237961B (zh) | 2010-08-05 | 2015-11-25 | 康明斯知识产权公司 | 采用有机朗肯循环的排放临界增压冷却 |
CN103180553B (zh) * | 2010-08-09 | 2015-11-25 | 康明斯知识产权公司 | 包括兰金循环rc子系统的废热回收系统和内燃机系统 |
WO2012021757A2 (en) | 2010-08-11 | 2012-02-16 | Cummins Intellectual Property, Inc. | Split radiator design for heat rejection optimization for a waste heat recovery system |
US8683801B2 (en) | 2010-08-13 | 2014-04-01 | Cummins Intellectual Properties, Inc. | Rankine cycle condenser pressure control using an energy conversion device bypass valve |
JP5481737B2 (ja) * | 2010-09-30 | 2014-04-23 | サンデン株式会社 | 内燃機関の廃熱利用装置 |
DE112011104516B4 (de) * | 2010-12-23 | 2017-01-19 | Cummins Intellectual Property, Inc. | System und Verfahren zur Regulierung einer EGR-Kühlung unter Verwendung eines Rankine-Kreisprozesses |
US8826662B2 (en) | 2010-12-23 | 2014-09-09 | Cummins Intellectual Property, Inc. | Rankine cycle system and method |
DE102012000100A1 (de) | 2011-01-06 | 2012-07-12 | Cummins Intellectual Property, Inc. | Rankine-kreisprozess-abwärmenutzungssystem |
US9021808B2 (en) | 2011-01-10 | 2015-05-05 | Cummins Intellectual Property, Inc. | Rankine cycle waste heat recovery system |
EP3396143B1 (de) | 2011-01-20 | 2020-06-17 | Cummins Intellectual Properties, Inc. | Verbrennungsmotor mit rankine-kreislauf-wärmerückgewinnungssystem |
WO2012102700A1 (en) * | 2011-01-25 | 2012-08-02 | International Engine Intellectual Property Company, Llc | Rankine cycle expander bypass and orifice and method controlling same |
US8714288B2 (en) | 2011-02-17 | 2014-05-06 | Toyota Motor Engineering & Manufacturing North America, Inc. | Hybrid variant automobile drive |
US8707914B2 (en) | 2011-02-28 | 2014-04-29 | Cummins Intellectual Property, Inc. | Engine having integrated waste heat recovery |
DE102011005072A1 (de) * | 2011-03-03 | 2012-09-06 | Behr Gmbh & Co. Kg | Verbrennungsmotor |
US9175643B2 (en) * | 2011-08-22 | 2015-11-03 | International Engine Intellectual Property Company, Llc. | Waste heat recovery system for controlling EGR outlet temperature |
US9175600B2 (en) * | 2011-08-23 | 2015-11-03 | International Engine Intellectual Property Company, Llc | System and method for protecting an engine from condensation at intake |
US9896985B2 (en) * | 2011-10-10 | 2018-02-20 | Faurecia Emissions Control Technologies | Method and apparatus for recovering energy from coolant in a vehicle exhaust system |
DE102012204126A1 (de) * | 2012-03-15 | 2013-09-19 | Eberspächer Exhaust Technology GmbH & Co. KG | Dampferzeuger für einen Rankine-Prozess |
ITPR20120006A1 (it) * | 2012-02-17 | 2013-08-18 | Giovanni Sicurello | Dispositivo di generazione di potenza motrice |
DE102012005121A1 (de) * | 2012-03-14 | 2013-09-19 | Vaillant Gmbh | Kühlsystem für eine Brennstoffzelle |
US8893495B2 (en) | 2012-07-16 | 2014-11-25 | Cummins Intellectual Property, Inc. | Reversible waste heat recovery system and method |
DE102013012456A1 (de) * | 2012-07-31 | 2014-02-06 | Bomag Gmbh | Baumaschine mit Abwärmerückgewinnung |
DE102012216452A1 (de) | 2012-09-14 | 2014-03-20 | Eberspächer Exhaust Technology GmbH & Co. KG | Wärmeübertrager |
FI20126065A (fi) * | 2012-10-11 | 2013-12-02 | Waertsilae Finland Oy | Jäähdytysjärjestely kombimäntämoottorivoimalaitosta varten |
US9228511B2 (en) | 2012-10-19 | 2016-01-05 | Cummins Inc. | Engine feedback control system and method |
JP5896885B2 (ja) * | 2012-11-13 | 2016-03-30 | 三菱日立パワーシステムズ株式会社 | 発電システム及び発電システムの運転方法 |
US9140209B2 (en) | 2012-11-16 | 2015-09-22 | Cummins Inc. | Rankine cycle waste heat recovery system |
US9845711B2 (en) | 2013-05-24 | 2017-12-19 | Cummins Inc. | Waste heat recovery system |
KR20150073705A (ko) * | 2013-12-23 | 2015-07-01 | 현대자동차주식회사 | 내연기관의 배기열 재활용 시스템 |
US20170074121A1 (en) * | 2014-03-03 | 2017-03-16 | Eaton Corporation | Coolant energy and exhaust energy recovery system |
US10378390B2 (en) * | 2014-06-26 | 2019-08-13 | Volvo Truck Corporation | Internal combustion engine system with heat recovery |
CN106795833A (zh) * | 2014-06-30 | 2017-05-31 | 先端混合动力私人有限公司 | 内燃发动机热能回收系统 |
JP6495608B2 (ja) * | 2014-10-09 | 2019-04-03 | サンデンホールディングス株式会社 | 廃熱回収装置 |
DE102015205544B4 (de) * | 2015-03-26 | 2023-03-09 | Ford Global Technologies, Llc | Motorbaugruppe für ein Kraftfahrzeug |
JP6314999B2 (ja) * | 2016-01-25 | 2018-04-25 | トヨタ自動車株式会社 | 廃熱回収装置の制御装置 |
US9816467B2 (en) | 2016-02-16 | 2017-11-14 | Saudi Arabian Oil Company | Adjusting a fuel on-board a vehicle |
US9957903B2 (en) * | 2016-02-16 | 2018-05-01 | Saudi Arabian Oil Company | Adjusting a fuel on-board a vehicle |
US9742196B1 (en) * | 2016-02-24 | 2017-08-22 | Doosan Fuel Cell America, Inc. | Fuel cell power plant cooling network integrated with a thermal hydraulic engine |
US20170314422A1 (en) * | 2016-04-27 | 2017-11-02 | Tao Song | Engine Exhaust and Cooling System for Power Production |
US9745867B1 (en) * | 2016-07-25 | 2017-08-29 | Loren R. Eastland | Compound energy co-generation system |
US10405440B2 (en) | 2017-04-10 | 2019-09-03 | Romello Burdoucci | System and method for interactive protection of a mobile electronic device |
US20180328234A1 (en) * | 2017-05-10 | 2018-11-15 | Connected Mobil Group, LLC | Power cogeneration system |
KR20220067291A (ko) * | 2020-11-17 | 2022-05-24 | 엘지전자 주식회사 | 엔진시스템 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4470476A (en) * | 1981-11-16 | 1984-09-11 | Hunt Hugh S | Hybrid vehicles |
US5327987A (en) * | 1992-04-02 | 1994-07-12 | Abdelmalek Fawzy T | High efficiency hybrid car with gasoline engine, and electric battery powered motor |
WO1994028298A1 (en) * | 1993-05-31 | 1994-12-08 | Kurki Suonio Eero Juho Ilmari | Arrangement in combined-cycle power plant |
US5609029A (en) * | 1993-07-08 | 1997-03-11 | Wartsila Diesel International Ltd Oy | Thermal power engine and its operating method |
US6155212A (en) * | 1989-06-12 | 2000-12-05 | Mcalister; Roy E. | Method and apparatus for operation of combustion engines |
JP2001132538A (ja) * | 1999-11-04 | 2001-05-15 | Hideo Kawamura | エネルギ回収装置を備えたエンジン |
WO2002031319A1 (fr) * | 2000-10-10 | 2002-04-18 | Honda Giken Kogyo Kabushiki Kaisha | Dispositif a cycle de rankine de moteur a combustion interne |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3979913A (en) * | 1975-01-20 | 1976-09-14 | Yates Harold P | Method and system for utilizing waste energy from internal combustion engines as ancillary power |
NL7600308A (nl) * | 1975-02-07 | 1976-08-10 | Sulzer Ag | Werkwijze en inrichting voor het verdampen en verwarmen van vloeibaar natuurlijk gas. |
US4300353A (en) * | 1975-07-24 | 1981-11-17 | Ridgway Stuart L | Vehicle propulsion system |
CH612471A5 (en) * | 1976-07-01 | 1979-07-31 | Sulzer Ag | Internal combustion engine system |
US4901531A (en) * | 1988-01-29 | 1990-02-20 | Cummins Engine Company, Inc. | Rankine-diesel integrated system |
US5191766A (en) * | 1991-06-10 | 1993-03-09 | Vines Frank L | Hybrid internal combustion/steam engine |
ATE165424T1 (de) * | 1993-08-09 | 1998-05-15 | Livien Domien Ven | Dampfkraftmaschine |
JP2002115801A (ja) * | 2000-10-05 | 2002-04-19 | Honda Motor Co Ltd | 蒸発器の蒸気温度制御装置 |
US6450283B1 (en) * | 2000-11-27 | 2002-09-17 | Michael Blake Taggett | Waste heat conversion system |
US6408834B1 (en) * | 2001-01-31 | 2002-06-25 | Cummins, Inc. | System for decoupling EGR flow and turbocharger swallowing capacity/efficiency control mechanisms |
FI114562B (fi) * | 2001-10-09 | 2004-11-15 | Waertsilae Finland Oy | Järjestely ja menetelmä dieselmoottorin yhteydessä |
WO2003048651A1 (fr) * | 2001-12-03 | 2003-06-12 | The Tokyo Electric Power Company, Incorporated | Systeme de recuperation de la chaleur d'echappement |
-
2002
- 2002-10-11 AT AT0183203A patent/AT414156B/de not_active IP Right Cessation
-
2003
- 2003-10-10 AU AU2003269580A patent/AU2003269580A1/en not_active Abandoned
- 2003-10-10 DE DE50309340T patent/DE50309340D1/de not_active Expired - Lifetime
- 2003-10-10 AT AT03750144T patent/ATE388305T1/de not_active IP Right Cessation
- 2003-10-10 WO PCT/AT2003/000309 patent/WO2004033859A1/de active IP Right Grant
- 2003-10-10 EP EP03750144A patent/EP1549827B1/de not_active Expired - Lifetime
-
2005
- 2005-04-08 US US11/101,603 patent/US20050262842A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4470476A (en) * | 1981-11-16 | 1984-09-11 | Hunt Hugh S | Hybrid vehicles |
US6155212A (en) * | 1989-06-12 | 2000-12-05 | Mcalister; Roy E. | Method and apparatus for operation of combustion engines |
US5327987A (en) * | 1992-04-02 | 1994-07-12 | Abdelmalek Fawzy T | High efficiency hybrid car with gasoline engine, and electric battery powered motor |
WO1994028298A1 (en) * | 1993-05-31 | 1994-12-08 | Kurki Suonio Eero Juho Ilmari | Arrangement in combined-cycle power plant |
US5609029A (en) * | 1993-07-08 | 1997-03-11 | Wartsila Diesel International Ltd Oy | Thermal power engine and its operating method |
JP2001132538A (ja) * | 1999-11-04 | 2001-05-15 | Hideo Kawamura | エネルギ回収装置を備えたエンジン |
WO2002031319A1 (fr) * | 2000-10-10 | 2002-04-18 | Honda Giken Kogyo Kabushiki Kaisha | Dispositif a cycle de rankine de moteur a combustion interne |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 22 9 March 2001 (2001-03-09) * |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1700010A4 (de) * | 2003-11-20 | 2009-12-09 | Ormat Technologies Inc | Hybridkraftwerk für kontinuierliche zuverlässige energie an orten, einschliesslich abgelegenen orten |
EP1700010A2 (de) * | 2003-11-20 | 2006-09-13 | Ormat Technologie, Inc. | Hybridkraftwerk für kontinuierliche zuverlässige energie an orten, einschliesslich abgelegenen orten |
US7428816B2 (en) | 2004-07-16 | 2008-09-30 | Honeywell International Inc. | Working fluids for thermal energy conversion of waste heat from fuel cells using Rankine cycle systems |
WO2006014609A3 (en) * | 2004-07-16 | 2006-04-27 | Honeywell Int Inc | Working fluids for thermal energy conversion of waste heat from fuel cells using rankine cycle systems |
EP2282018A1 (de) * | 2004-07-16 | 2011-02-09 | Honeywell International Inc. | Arbeitsmittel zur thermalen Energieumwandlung von Abwärme aus Brennstoffzellen unter Verwendung von Rankine-Zyklussystemen |
DE102007021526A1 (de) * | 2007-05-04 | 2008-11-06 | Volkswagen Ag | Abgaswärmenutzung zur beschleunigten Warmlaufphase bei Turbomotoren |
WO2009056253A1 (de) * | 2007-10-30 | 2009-05-07 | Voith Patent Gmbh | Antriebsstrang, insbesondere für lkw und schienenfahrzeuge |
US8429895B2 (en) | 2007-12-04 | 2013-04-30 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine |
WO2009071972A1 (en) * | 2007-12-04 | 2009-06-11 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine |
WO2009080153A1 (de) * | 2007-12-22 | 2009-07-02 | Daimler Ag | Nutzung einer verlustwärme einer verbrennungskraftmaschine |
EP2249017A1 (de) * | 2008-02-14 | 2010-11-10 | Sanden Corporation | Abwärme nutzende vorrichtung für einen verbrennungsmotor |
EP2249017A4 (de) * | 2008-02-14 | 2011-03-23 | Sanden Corp | Abwärme nutzende vorrichtung für einen verbrennungsmotor |
US9441576B2 (en) | 2008-02-14 | 2016-09-13 | Sanden Holdings Corporation | Waste heat utilization device for internal combustion engine |
DE102008032253A1 (de) * | 2008-07-09 | 2010-01-14 | Man Nutzfahrzeuge Ag | Selbstzündende Verbrennungskraftmaschine mit Ether-Fumigation der Verbrennungsluft für Fahrzeuge und Verfahren zur Ether-Fumigation der Verbrennungsluft in einer selbstzündenden Verbrennungsmaschine für Fahrzeuge |
US9261053B2 (en) | 2008-07-09 | 2016-02-16 | Man Truck & Bus Ag | Self-igniting internal combustion engine with ether fumigation of the combustion air for vehicles and a method for ether fumigation of the combustion air in a self-igniting internal combustion engine for vehicles |
DE102008032253B4 (de) * | 2008-07-09 | 2013-05-29 | Man Truck & Bus Ag | Selbstzündende Verbrennungskraftmaschine mit Ether-Fumigation der Verbrennungsluft für Fahrzeuge und Verfahren zur Ether-Fumigation der Verbrennungsluft in einer selbstzündenden Verbrennungsmaschine für Fahrzeuge |
EP2196661A3 (de) * | 2008-12-10 | 2014-03-12 | MAN Truck & Bus Österreich AG | Antriebseinheit mit Kühlkreislauf und separatem Wärmerückgewinnungskreislauf |
EP2440751A4 (de) * | 2009-06-11 | 2013-01-23 | Ormat Technologies Inc | Abwärmerückgewinnungssystem |
EP2440752A4 (de) * | 2009-06-11 | 2013-01-23 | Ormat Technologies Inc | Mehrstufiges organisches rankinzyklus-energiesystem |
EP2440752A2 (de) * | 2009-06-11 | 2012-04-18 | Ormat Technologies Inc. | Mehrstufiges organisches rankinzyklus-energiesystem |
EP2440751A2 (de) * | 2009-06-11 | 2012-04-18 | Ormat Technologies Inc. | Abwärmerückgewinnungssystem |
US8869503B2 (en) | 2009-12-04 | 2014-10-28 | Steamdrive Gmbh | Drive train, in particular for a motor vehicle |
WO2011066872A3 (de) * | 2009-12-04 | 2013-02-28 | Voith Patent Gmbh | Antriebsstrang, insbesondere für ein kraftfahrzeug |
WO2011066872A2 (de) | 2009-12-04 | 2011-06-09 | Voith Patent Gmbh | Antriebsstrang, insbesondere für ein kraftfahrzeug |
DE102010033124A1 (de) | 2010-08-03 | 2012-02-09 | Daimler Ag | Brennkraftmaschine mit einer Wärmerückgewinnungsvorrichtung und Verfahren zum Betrieb einer Brennkraftmaschine |
WO2012016647A1 (de) | 2010-08-03 | 2012-02-09 | Daimler Ag | Brennkraftmaschine mit einer wärmerückgewinnungsvorrichtung und verfahren zum betrieb einer brennkraftmaschine |
US8991181B2 (en) | 2011-05-02 | 2015-03-31 | Harris Corporation | Hybrid imbedded combined cycle |
WO2013176972A1 (en) * | 2012-05-22 | 2013-11-28 | Harris Corporation | Method and system for producing work from a hybrid thermal cycle with a low pressure boiler |
US9038389B2 (en) | 2012-06-26 | 2015-05-26 | Harris Corporation | Hybrid thermal cycle with independent refrigeration loop |
WO2014004597A1 (en) * | 2012-06-26 | 2014-01-03 | Harris Corporation | Hybrid thermal cycle with independent refrigeration loop |
WO2014021708A1 (en) * | 2012-08-03 | 2014-02-06 | Tri-O-Gen Group B.V. | System for recovering through an organic rankine cycle (orc) energy from a plurality of heat sources |
WO2014091094A1 (fr) * | 2012-12-14 | 2014-06-19 | Hynergy Ag | Système de génération d'énergie, véhicule automobile et groupe électrogène comprenant un tel système |
WO2014108732A1 (fr) * | 2012-12-14 | 2014-07-17 | Hynergy Ag | Système de génération d'énergie, véhicule automobile et groupe électrogène comprenant un tel système |
CH707416A1 (de) * | 2012-12-14 | 2014-06-30 | Hynergy Ag | Système de génération d'énergie, véhicule automobile et groupe électrogène comprenant un tel système. |
CH707418A1 (fr) * | 2012-12-14 | 2014-06-30 | Hynergy Ag | Système de génération d'énergie, véhicule automobile et groupe électrogène comprenant un tel système. |
US9297387B2 (en) | 2013-04-09 | 2016-03-29 | Harris Corporation | System and method of controlling wrapping flow in a fluid working apparatus |
US9303514B2 (en) | 2013-04-09 | 2016-04-05 | Harris Corporation | System and method of utilizing a housing to control wrapping flow in a fluid working apparatus |
US9574563B2 (en) | 2013-04-09 | 2017-02-21 | Harris Corporation | System and method of wrapping flow in a fluid working apparatus |
FR3013802A1 (fr) * | 2013-11-26 | 2015-05-29 | Snecma | Generateur de vapeur ameliore par dissipation de chaleur d'une pile a combustible |
WO2015079139A1 (fr) * | 2013-11-26 | 2015-06-04 | Snecma | Systeme d'humidification de l'air dans un volume donne |
US9303533B2 (en) | 2013-12-23 | 2016-04-05 | Harris Corporation | Mixing assembly and method for combining at least two working fluids |
CN105715428A (zh) * | 2014-12-22 | 2016-06-29 | 三井造船株式会社 | 动力装置 |
DE102017218142A1 (de) | 2017-10-11 | 2019-04-11 | Audi Ag | Kühlsystem und Verfahren zur Steigerung einer Kühlleistung für ein Antriebsaggregat |
Also Published As
Publication number | Publication date |
---|---|
DE50309340D1 (de) | 2008-04-17 |
EP1549827A1 (de) | 2005-07-06 |
EP1549827B1 (de) | 2008-03-05 |
AU2003269580A1 (en) | 2004-05-04 |
US20050262842A1 (en) | 2005-12-01 |
AT414156B (de) | 2006-09-15 |
ATA18322003A (de) | 2005-12-15 |
ATE388305T1 (de) | 2008-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1549827B1 (de) | Verfahren und einrichtung zur rückgewinnung von energie | |
DE69512662T2 (de) | Maschinensatz bestehend aus brennkraftmaschine und dampfmotor | |
DE69927925T2 (de) | Abhitzewiedergewinnung in einem organischen Energiewandler mittels einem Zwischenflüssigkeitskreislauf | |
EP1925806B1 (de) | System mit einem Organic-Rankine-Kreislauf zum Antrieb zumindest einer Expansionsmaschine, Wärmetauscher zum Antrieb einer Expansionsmaschine, Verfahren zum Betreiben zumindest einer Expansionsmaschine | |
DE69429769T2 (de) | Mehrwellen, zwischenheizungsgasturbine mit zwischenkühlung und wärmerückgewinnung | |
EP2360366B1 (de) | Kombination von Wärmerückgewinnungssystem und APU-Anlage | |
EP2686526B1 (de) | Verfahren zum betreiben eines dampfkreisprozesses | |
EP1649146B1 (de) | Verfahren zur erhöhung des wirkungsgrades einer gasturbinenanlage sowie dafür geeignete gasturbinenanlage | |
EP2823156B1 (de) | Anlage zur speicherung und abgabe von thermischer energie | |
WO2009080153A1 (de) | Nutzung einer verlustwärme einer verbrennungskraftmaschine | |
DE102006043835A1 (de) | Wärmetauscheranordnung | |
WO2008067855A2 (de) | Verfahren und vorrichtung zur erhöhung von leistung und wirkungsgrad eines orc-kraftwerkprozesses | |
EP0008680A2 (de) | Verfahren zur Erzeugung von Wärmeenergie durch Kombination der Kraft-Wärme-Kopplung mit der Wärmepumpe | |
EP1038094B1 (de) | Mehrstufiger dampfkraft-/arbeitsprozess für die elektroenergiegewinnung im kreisprozess sowie anordnung zu seiner durchführung | |
DE102010004079A1 (de) | Brennkraftmaschine, kombiniert mit Rankineprozess zur effizienten Nutzung der Kühlmittel- und Abgaswärme | |
DE10055202A1 (de) | Dampfkraft-/Arbeitsprozeß mit erhöhtem mechanischen Wirkungsgrad für die Elektroenergiegewinnung im Kreisprozeß sowie Anordnung zu seiner Durchführung | |
EP1861587A2 (de) | Verfahren und vorrichtungen zur verbesserung des wirkungsgrades von energieumwandlungseinrichtungen | |
EP3751107B1 (de) | Verbrennungsmotor mit abgaswärmerückgewinnungssystem sowie verfahren zur abgaswärmerückgewinnung | |
DE10203311B4 (de) | Brennstoffzellensystem und Verfahren zum Betreiben desselben | |
EP0010254B1 (de) | Verfahren zur Gewinnung von elektrischer Energie in einem Gegendruckdampfsystem | |
WO2019121542A1 (de) | Anordnung zur umwandlung thermischer energie aus verlustwärme einer verbrennungskraftmaschine | |
DE4243401A1 (de) | Verfahren zur Umwandlung thermischer Energie in Elektroenergie | |
EP4077889B1 (de) | Vorrichtung zur energierückgewinnung | |
WO2008122429A1 (de) | Nutzung von abwärme aus verbrennungsmotoren zur stromerzeugung | |
DE2506333C2 (de) | Anlage zur Verdampfung und Erwärmung von flüssigem Naturgas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 11101603 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 92662003 Country of ref document: AT Ref document number: 2003750144 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2003750144 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: JP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2003750144 Country of ref document: EP |