WO2009080153A1 - Nutzung einer verlustwärme einer verbrennungskraftmaschine - Google Patents

Nutzung einer verlustwärme einer verbrennungskraftmaschine Download PDF

Info

Publication number
WO2009080153A1
WO2009080153A1 PCT/EP2008/009489 EP2008009489W WO2009080153A1 WO 2009080153 A1 WO2009080153 A1 WO 2009080153A1 EP 2008009489 W EP2008009489 W EP 2008009489W WO 2009080153 A1 WO2009080153 A1 WO 2009080153A1
Authority
WO
WIPO (PCT)
Prior art keywords
working medium
heat exchanger
internal combustion
combustion engine
heat
Prior art date
Application number
PCT/EP2008/009489
Other languages
English (en)
French (fr)
Inventor
Jan GÄRTNER
Thomas Koch
Josef Martin Mercz
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2009080153A1 publication Critical patent/WO2009080153A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an internal combustion engine with a heat recovery device.
  • Heat recovery device comprises a delivery unit for compressing an at least largely liquid working fluid from a lower process pressure Pu to an upper process pressure Po.
  • the heat recovery device further comprises a plurality of parallel-connected heat exchanger for heating the working fluid from a temperature T2 to a temperature T3 by utilizing a heat loss of the internal combustion engine, wherein the working fluid of an at least substantially liquid state of aggregation in an at least substantially gaseous state of matter can be transferred.
  • the heat recovery device includes an expansion device for expansion of the working medium to the lower process pressure Pu and a condenser for cooling the working medium from and a temperature T4 to a temperature Tl, wherein the working medium of an at least largely gaseous state of aggregation in an at least substantially liquid state is convertible, includes.
  • the delivery unit, the parallel heat exchanger, the expansion device and the condenser are connected in a circuit.
  • Today's internal combustion engines have an efficiency of up to 40 percent. The losses are mainly released as heat to a coolant and exhaust heat.
  • the steam is supplied at high pressure on the input side of a turbine and expanded, wherein on an output shaft of the turbine mechanical work is removable.
  • the expanded steam is then fed to a condenser, so that the steam is condensed and present as a liquid working medium on the input side for the Clausius-Rankine cycle.
  • US 2006 0201 154 A1 discloses a Clausius-Rankine cyclic process in which water is heated in an evaporator using exhaust gas heat of an engine and thus water vapor is generated.
  • a turbine converts thermal energy of water vapor into mechanical energy.
  • the Rankine cycle contains a distribution arrangement for influencing a quantity of water supplied to the evaporator in order to maintain a temperature of the water. steam, which is provided to the turbine by means of the evaporator, to be controlled so that it corresponds to a temperature setpoint.
  • the distribution arrangement controls a distribution ratio between an amount of water provided at the inlet of the evaporator and an amount of water supplied to the evaporator in a portion between the inlet and the outlet, thereby avoiding exceeding the target temperature of the water vapor due to a sudden increase in the thermal energy of the exhaust gas becomes.
  • the invention has for its object to provide an improved device for using a heat loss of an internal combustion engine.
  • the heat recovery device is based on the Clausius-Rankine process as a thermodynamic process.
  • a plurality of heat exchangers are each assigned a separate pump, with the aid of which the heat exchanger (1, 2) can be supplied with the working medium in at least substantially liquid state of matter (A L2 ).
  • a L2 liquid state of matter
  • a mass flow of the working medium through a heat exchanger by means of the heat exchanger associated pump is adjustable and adaptable to an operating condition of the internal combustion engine. This makes it possible, by means of the pump mass flow of the liquid working medium through the parallel heat exchanger connected to an operating condition of the
  • Adapt internal combustion engine In particular, in this embodiment it is possible to set partial mass flows of the working medium through the individual heat exchangers individually for each heat exchanger.
  • the heat exchanger as exhaust gas heat exchanger, exhaust gas recirculation heat exchanger and / or
  • Coolant heat exchanger performed. These heat exchangers allow a particularly effective use of heat loss of the internal combustion engine.
  • the assignment of separate pumps to each heat exchanger is particularly advantageous because in this way mass flow of the working fluid through the individual heat exchangers are adjustable so that downstream of the heat exchanger largely identical pressures and / or densities. This reduces the risk of circulation of the working medium via the line strands between the heat exchangers.
  • an exhaust gas heat exchanger and an exhaust gas recirculation heat exchanger are connected in parallel.
  • a further process optimization is given, as in the respective Heat exchangers, a temperature difference between the incoming exhaust gas and the working fluid is maximum.
  • the embodiment is not limited to exactly two parallel-connected heat exchanger. Rather, further heat exchangers of any type can be arranged in parallel and / or in series with the already mentioned heat exchangers.
  • the expansion device is designed as a turbine or piston expansion machine.
  • the generated by the heat exchanger vaporous working medium eg. As water vapor is expanded in the expansion device, wherein a thermal and / or kinetic energy of the vaporous working medium in a mechanical energy, for. B. a rotational energy is converted.
  • the expansion device is coupled to an electrical generator / motor unit, by means of which the mechanical energy is convertible into electrical energy.
  • the generator / motor unit may additionally or alternatively also be directly connected by means of a mechanical connection to a drive train of the motor vehicle and thus directly support the internal combustion engine.
  • the expanded vaporous working medium is fed to a condenser, in which the working medium is converted from a vaporous to a liquid Physical state is transferred.
  • the condensed liquid working medium is in turn fed to the pumps, which act on the respectively associated heat exchanger with the liquid working medium.
  • the invention advantageously makes it possible to influence the densities of the vaporous working medium at the exits of the heat exchangers by means of the adjustment and control of the quantities of liquid working medium supplied.
  • the invention reduces the risk of circulation of the working medium between the outlet sides of the heat exchangers.
  • an efficiency increase of the Rankine cycle cycle is achieved as an advantage of the invention and by the use of heat loss, the efficiency of the internal combustion engine is further increased.
  • FIG. 1 schematically shows a heat recovery device with series-connected heat exchangers according to the prior art
  • FIG. 2 schematically shows a heat recovery device with parallel-connected heat exchangers according to the prior art
  • Fig. 3 shows schematically an inventive
  • Heat recovery device with parallel connected heat exchangers. Corresponding parts are provided in all figures with the same reference numerals.
  • Figure 1 illustrates a heat recovery device of an internal combustion engine, not shown, according to the prior art with a first heat exchanger 1 and a second heat exchanger 2 connected in series.
  • a liquid working fluid A Li by means of a pump 3 under an adiabatic, isentropic pressure increase as a liquid working medium A L2 fed to the first heat exchanger 1.
  • the liquid working medium A L2 is heated under constant pressure so that it evaporates.
  • the vaporous working medium A D i is heated to a temperature which is above an evaporation temperature of the working medium in order to achieve an increase in efficiency of the Clausius-Rankine cycle CR.
  • the high pressure vapor working medium A D i is supplied to an expansion device 4 and expanded in an adiabatic expansion.
  • the vaporous working medium A 02 is fed to a condenser 5, in which the vaporous working medium A 02 is isobaric and isothermally condensed and thus converted into a liquid state of aggregation, so that the pump 3 can again be supplied with the liquid working medium A L i on the input side.
  • connection of the second heat exchanger 2 in series with the first heat exchanger 1 is disadvantageous in the heating of the liquid working medium A Li , since the liquid working medium A L2 is already heated after the first heat exchanger 1. Thus, it is not possible to fully utilize an available heating energy in the second heat exchanger 2.
  • Figure 2 shows a heat recovery device of an internal combustion engine with parallel-connected heat exchangers 1, 2 according to the prior art, by means of which the disadvantage of incomplete use of the heating energy of the second heat exchanger 2 in a series connection of the heat exchanger 1, 2 is overcome.
  • the two heat exchangers 1, 2, the liquid working fluid A L 2 is supplied by means of a pump 3, evaporated in the heat exchangers 1, 2 to the vaporous working fluid A D i and fed to an expansion device 4. Subsequently, the vaporous working medium A D2 is transferred in the condenser 5 in a liquid state of matter.
  • a disadvantage of the arrangement according to the prior art is that due to different tempera ⁇ tures of the vaporous working medium A Di after the heat ⁇ exchangers 1, 2 different densities of the vaporous working medium A D i are present, causing it to a circulation of the vaporous working medium A D i between the output ⁇ sides of the heat exchanger 1, 2 comes.
  • FIG. 3 shows a heat recovery device of an internal combustion engine according to the present invention with heat exchangers 1, 2 connected in parallel.
  • Each heat exchanger 1, 2 is assigned in each case a pump 3 with the aid of which the respective heat exchanger 1, 2 liquid working medium A L2 can be fed individually adjustable.
  • the heat exchangers 1, 2 are preferably an exhaust gas heat exchanger, an exhaust gas recirculation heat exchanger and / or a coolant heat exchanger, with the aid of a waste heat in the form of exhaust heat and / or heat of a coolant of the internal combustion engine is used to the liquid working medium A L2 to warm and evaporate.
  • more than two heat exchangers are connected in parallel and / or in series, wherein in a parallel connection of heat exchangers each heat exchanger at least one pump is assigned, via which a mass flow of the working fluid is adjustable by the respective heat exchanger.
  • devices are one or more
  • the expansion device 4 is preferably executed as a turbine ⁇ leads and coupled to a generator not shown in FIG. 3, by means of which electrical energy can be generated, which in turn can be stored in a battery.
  • the device is particularly suitable for use in a hybrid vehicle, since the gewon ⁇ nene from the heat loss of the internal combustion engine electrical energy for operation of an electric motor of the hybrid vehicle can be used.
  • the expansion device can also be designed as a piston expansion ⁇ device.
  • the expansion device is mechanically connected to a drive train of a motor vehicle. In this way, by means of the mechanical energy generated in the expansion device directly generate a driving force for the vehicle.
  • the connection between the expansion device and the drive train can be designed for example in the form of a shaft and / or a transmission.
  • the advantage of the invention is the fact that each heat exchanger 1, 2 by means of a pump 3 associated with it, an individually adjustable mass flow of the liquid working medium A L2 can be fed.
  • a control unit not shown in FIG. 3 is preferably provided, via which the pumps 3 are preferably individually controllable.
  • the invention enables, due to the parallel arrangement of the heat exchangers a high degree of utilization of the heat energy of the exhaust and / or the coolant of the Verbrennungskraftma ⁇ machine, as in the heat exchangers each have a large temperature ⁇ turdifferenz between the exhaust gas and / or coolant and the working medium is present.
  • the flow conditions ⁇ set by the parallel heat exchanger by individual control of the pumps so ⁇ who, that set in the lines downstream of the individual heat exchanger largely identical flow conditions.

Abstract

Die Erfindung betrifft eine Verbrennungskraftmaschine mit einer Wärmerückgewinnungsvorrichtung, die eine Fördereinheit zur Verdichtung eines zumindest weitgehend flüssigen Arbeitsmediums von einem unteren Prozessdruck Pu auf einen oberen Prozessdruck Po, mehrere parallel verschaltete Wärmetauscher zur Erwärmung des Arbeitsmediums von einer Temperatur T2 auf eine Temperatur T3 unter Ausnutzung einer Verlustwärme der Verbrennungskraftmaschine, wobei das Arbeitsmedium von einem zumindest weitgehend flüssigen Aggregatzustand in einen zumindest weitgehend gasförmigen Aggregatzustand überführbar ist, eine Expansionsvorrichtung zur Expansion des Arbeitsmediums auf den unteren Prozessdruck Pu und ein Kondensator zur Abkühlung des Arbeitsmediums von und einer Temperatur T4 auf eine Temperatur T1, wobei das Arbeitsmedium von einem zumindest weitgehenden gasförmigen Aggregatzustand in einen zumindest weitgehend flüssigen Aggregatzustand überführbar ist, umfasst. Die Fördereinheit, die parallel angeordneten Wärmetauscher, die Expansionsvorrichtung und der Kondensator sind in einem Kreislauf verschaltet. Erfindungsgemäß ist mehreren Wärmetauschern (1, 2) jeweils eine separate Pumpe (3) zugeordnet, mit deren Hilfe dem jeweiligen Wärmetauscher (1, 2) das Arbeitsmedium (AL2) zuführbar ist.

Description

Nutzung einer Verlustwärme einer Verbrennungskraftmaschine
Die Erfindung betrifft eine Verbrennungskraftmaschine mit einer Wärmerückgewinnungsvorrichtung. Die
Wärmerückgewinnungsvorrichtung umfasst eine Fördereinheit zur Verdichtung eines zumindest weitgehend flüssigen Arbeitsmediums von einem unteren Prozessdruck Pu auf einen oberen Prozessdruck Po. Die Wärmerückgewinnungsvorrichtung umfasst weiterhin mehrere parallel verschaltete Wärmetauscher zur Erwärmung des Arbeitsmediums von einer Temperatur T2 auf eine Temperatur T3 unter Ausnutzung einer Verlustwärme der Verbrennungskraftmaschine, wobei das Arbeitsmedium von einem zumindest weitgehend flüssigen Aggregatzustand in einen zumindest weitgehend gasförmigen Aggregatzustand überführbar ist. Außerdem beinhaltet die Wärmerückgewinnungsvorrichtung eine Expansionsvorrichtung zur Expansion des Arbeitsmediums auf den unteren Prozessdruck Pu und einen Kondensator zur Abkühlung des Arbeitsmediums von und einer Temperatur T4 auf eine Temperatur Tl, wobei das Arbeitsmedium von einem zumindest weitgehenden gasförmigen Aggregatzustand in einen zumindest weitgehend flüssigen Aggregatzustand überführbar ist, umfasst. Die Fördereinheit, die parallel angeordneten Wärmetauscher, die Expansionsvorrichtung und der Kondensator sind in einem Kreislauf verschaltet. Heutige Verbrennungskraftmaschinen weisen einen Wirkungsgrad von bis zu 40 Prozent auf. Die Verluste werden überwiegend als Wärme an ein Kühlmittel und als Abgaswärme abgegeben.
Im Stand der Technik existieren Verfahren und Vorrichtungen, mittels derer aus der Abgaswärme und/oder der Kühlmittelwärme elektrische und/oder mechanische Energie gewonnen wird.
Aus "Ho Teng, Gerhard Regner and Chris Cowland (AVL Powertrain Engineering, Inc.) : Waste Heat Recovery of Heavy- Duty Diesel Engines by Organic Rankine Cycle Part 1: Hybrid Energy System of Diesel and Rankine Engines; in SAE TECHNICAL PAPER SERIES 2007-01-0537; 2007 World Congress, Detroit Michigan, April 16-19, 2007" ist eine Vorrichtung bekannt, die aus der Abgasabwärme eines Dieselmotors Energie gewinnt. Dabei wird in einem Clausius-Rankine-Kreisprozess ein flüssiges Arbeitsmedium mittels einer Pumpe einem Ladeluftkühler und einem Abgasrückführungskühler zugeführt, wobei das flüssige Arbeitsmedium derart erwärmt wird, dass es verdampft. Der Dampf wird unter hohem Druck eingangsseitig einer Turbine zugeführt und expandiert, wobei an einer Ausgangswelle der Turbine mechanische Arbeit abnehmbar ist. Der expandierte Dampf wird anschließend einem Kondensator zugeführt, so dass der Dampf kondensiert und als flüssiges Arbeitsmedium eingangsseitig für den Clausius-Rankine-Kreisprozess vorliegt.
Weiterhin ist aus der US 2006 0201 154 Al ein Clausius- Rankine-Kreisprozess bekannt, bei dem in einem Verdampfer Wasser unter Nutzung von Abgaswärme eines Motors erwärmt und somit Wasserdampf erzeugt wird. Eine Turbine wandelt thermische Energie des Wasserdampfes in mechanische Energie. Weiterhin enthält der Clausius-Rankine-Kreisprozess eine Verteilungsanordnung zur Beeinflussung einer dem Verdampfer zugeführten Wassermenge, um eine Temperatur des Wasser- dampfes, der der Turbine anhand des Verdampfers bereitgestellt wird, so zu steuern, dass sie einer Temperatur-Sollvorgabe entspricht. Die Verteilungsanordnung steuert ein Verteilungsverhältnis zwischen einer an dem Eingang des Verdampfers bereitgestellten Wassermenge und einer Wassermenge, die dem Verdampfer in einem Teilstück zwischen dem Eingang und dem Ausgang zugeführt wird, wodurch eine Überschreitung der Solltemperatur des Wasserdampfes infolge eines plötzlichen Anstiegs der thermischen Energie des Abgases vermieden wird.
Der Erfindung liegt die Aufgabe zugrunde, eine verbesserte Vorrichtung zur Nutzung einer Verlustwärme einer Verbrennungskraftmaschine anzugeben.
Die Aufgabe wird erfindungsgemäß durch eine Vorrichtung mit den in Anspruch 1 angegebenen Merkmalen gelöst.
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
Der Wärmerückgewinnungsvorrichtung liegt der Clausius- Rankine-Prozess als thermodynamischer Prozess zugrunde. Bei der erfindungsgemäßen Verbrennungskraftmaschine ist mehreren Wärmetauschern jeweils eine separate Pumpe zugeordnet, mit deren Hilfe dem jeweiligen Wärmetauscher (1, 2) das Arbeitsmedium in zumindest weitgehend flüssigem Aggregatzustand (AL2) zuführbar ist. Dadurch ist es möglich, den parallel verschalteten Wärmetauschern jeweils unterschiedliche Mengen des Arbeitsmediums zuzuführen und insbesondere auch Strömungsverhältnisse in den Wärmetauschern und ihren Zu- und Ableitungen zu beeinflussen. In einer Ausgestaltungsform der Erfindung ist ein Massenstrom des Arbeitsmediums durch einen Wärmetauscher mittels der dem Wärmetauscher zugeordneten Pumpe einstellbar und an einen Betriebszustand der Verbrennungskraftmaschine anpassbar. Dadurch ist es möglich, mittels der Pumpen Massenströme des flüssigen Arbeitsmediums durch die parallel geschalteten Wärmetauscher an einen Betriebszustand der
Verbrennungskraftmaschine anzupassen. Insbesondere ist es bei dieser Ausgestaltungsform möglich, Teilmassenströme des Arbeitsmediums durch die einzelnen Wärmetauscher individuell für jeden Wärmetauscher einzustellen.
In einer weiteren Ausgestaltungsform der Erfindung sind die Wärmetauscher als Abgaswärmetauscher, Abgasrückführungswärmetauscher und/oder
Kühlmittelwärmetauscher ausgeführt. Diese Wärmetauscher ermöglichen eine besonders effektive Nutzung einer Verlustwärme der Verbrennungskraftmaschine. Bei einer Parallelschaltung unterschiedlicher Wärmetauscher, beispielsweise eines Abgaswärmetauschers und eines Abgasrückführungswärmetauschers, ist die Zuordnung von separaten Pumpen zu jedem Wärmetauscher besonders vorteilhaft, da auf diese Weise Massenströme des Arbeitsmediums durch die einzelnen Wärmetauscher derart einstellbar sind, dass sich stromabwärts der Wärmetauscher weitgehend identische Drücke und/oder Dichten ergeben. Dadurch ist die Gefahr einer Zirkulation des Arbeitsmediums über die Leitungsstränge zwischen den Wärmetauschern verringert .
In einer weiteren Ausgestaltungsform der Erfindung sind ein Abgaswärmetauscher und ein Abgasrückführungswärmetauscher parallel verschaltet. Hierdurch ist eine weitere Prozessoptimierung gegeben, da in den jeweiligen Wärmetauschern eine Temperaturdifferenz zwischen dem einströmenden Abgas und dem Arbeitsmedium maximal ist. Die Ausgestaltungsform ist dabei nicht auf genau zwei parallel verschaltete Wärmetauscher beschränkt. Vielmehr können weitere Wärmetauscher beliebiger Bauart parallel und/oder in Reihe zu den bereits genannten Wärmetauschern angeordnet sein.
In einer weiteren Ausgestaltungsform der Erfindung ist die Expansionsvorrichtung als Turbine oder Kolbenexpansionsmaschine ausgeführt. Das mittels der Wärmetauscher erzeugte dampfförmige Arbeitsmedium, z. B. Wasserdampf, wird in der Expansionsvorrichtung entspannt, wobei eine thermische und/oder eine kinetische Energie des dampfförmigen Arbeitsmediums in eine mechanische Energie, z. B. eine Rotationsenergie, umgewandelt wird.
In einer weiteren Ausgestaltungsform der Erfindung ist die Expansionsvorrichtung mit einer elektrischen Generator- /Motoreinheit gekoppelt, mittels der die mechanische Energie in eine elektrische Energie umwandelbar ist. Die Generator- /Motoreinheit kann zusätzlich oder alternativ auch direkt anhand einer mechanischen Verbindung mit einem Antriebsstrang des Kraftfahrzeugs verbunden sein und somit direkt die Verbrennungskraftmaschine unterstützen. Hierdurch wird die Verlustwärme der Verbrennungskraftmaschine derart genutzt, dass eine Kraftstoffersparnis der Verbrennungskraftmaschine und somit eine Reduzierung der Abgase und der Kosten erreicht werden.
Nach einer Expansion des dampfförmigen Arbeitsmediums in der Expansionsvorrichtung wird das entspannte dampfförmige Arbeitsmedium einem Kondensator zugeführt, in welchem das Arbeitsmedium von einem dampfförmigen in einen flüssigen Aggregatzustand überführt wird. Das kondensierte flüssige Arbeitsmedium wird wiederum den Pumpen zugeführt, welche die jeweils zugeordneten Wärmetauscher mit dem flüssigen Arbeitsmedium beaufschlagen.
Zusammenfassend ermöglicht es die Erfindung in vorteilhafter Weise, Dichten des dampfförmigen Arbeitsmediums an Ausgängen der Wärmetauscher mittels der Einstellung und Steuerung der zugeführten Mengen des flüssigen Arbeitsmediums zu beeinflussen. Insbesondere ist durch die Erfindung eine Gefahr einer Zirkulation des Arbeitsmediums zwischen den Ausgangsseiten der Wärmetauscher vermindert. Dadurch wird als Vorteil der Erfindung eine Wirkungsgradsteigerung des Clausius-Rankine-Kreisprozesses erreicht und durch die Nutzung der Verlustwärme wird im Weiteren der Wirkungsgrad der Verbrennungskraftmaschine erhöht.
Ausführungsbeispiele der Erfindung werden im Folgenden anhand von Zeichnungen näher erläutert.
Dabei zeigen:
Fig. 1 schematisch eine Wärmerückgewinnungsvorrichtung mit in Reihe verschalteten Wärmetauschern nach dem Stand der Technik,
Fig. 2 schematisch eine Wärmerückgewinnungsvorrichtung mit parallel verschalteten Wärmetauschern nach dem Stand der Technik, und
Fig. 3 schematisch eine erfindungsgemäße
Wärmerückgewinnungsvorrichtung mit parallel verschalteten Wärmetauschern. Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
Figur 1 stellt eine Wärmerückgewinnungsvorrichtung einer nicht gezeigten Verbrennungskraftmaschine gemäß dem Stand der Technik mit einem ersten Wärmetauscher 1 und einem in Reihe dazu verschalteten zweiten Wärmetauscher 2 dar. Dabei wird in einem Clausius-Rankine-Kreisprozess CR ein flüssiges Arbeitsmedium ALi mittels einer Pumpe 3 unter einer adiabatischen, isentropen Druckerhöhung als flüssiges Arbeitsmedium AL2 dem ersten Wärmetauscher 1 zugeführt.
In dem ersten Wärmetauscher 1 wird unter konstantem Druck das flüssige Arbeitsmedium AL2 derart erwärmt, so dass es verdampft. In dem zweiten Wärmetauscher 2 wird das dampfförmige Arbeitsmedium ADi auf eine Temperatur erwärmt, die über einer Verdampfungstemperatur des Arbeitsmediums liegt, um eine Wirkungsgradsteigerung des Clausius-Rankine- Kreisprozesses CR zu erreichen.
Das unter hohem Druck stehende dampfförmige Arbeitsmedium ADi wird einer Expansionsvorrichtung 4 zugeführt und in einer adiabatischen Expansion entspannt.
Nach der Expansion wird das dampfförmige Arbeitsmedium A02 einem Kondensator 5 zugeführt, in welchem das dampfförmige Arbeitsmedium A02 isobar und isotherm kondensiert und somit in einen flüssigen Aggregatzustand überführt wird, so dass der Pumpe 3 eingangsseitig wiederum das flüssige Arbeitsmedium ALi zuführbar ist.
Die Verschaltung des zweiten Wärmetauschers 2 in Reihe zu dem ersten Wärmetauscher 1 ist bei der Erwärmung des flüssigen Arbeitsmediums ALi nachteilig, da das flüssige Arbeits- medium AL2 bereits nach dem ersten Wärmetauscher 1 erwärmt ist. Somit ist es nicht möglich, in dem zweiten Wärmetauscher 2 eine zur Verfügung stehende Erwärmungsenergie vollständig zu nutzen.
Figur 2 zeigt eine Wärmerückgewinnungsvorrichtung einer Verbrennungskraftmaschine mit parallel verschalteten Wärmetauschern 1, 2 gemäß dem Stand der Technik, mittels dem der Nachteil einer unvollständigen Nutzung der Erwärmungsenergie des zweiten Wärmetauschers 2 bei einer Reihenschaltung der Wärmetauscher 1, 2 überwunden wird.
Dabei wird beiden Wärmetauschern 1, 2 das flüssige Arbeitsmedium AL2 mittels einer Pumpe 3 zugeführt, in den Wärmetauschern 1, 2 zu dem dampfförmigen Arbeitsmedium ADi verdampft und einer Expansionsvorrichtung 4 zugeführt. Anschließend wird das dampfförmige Arbeitsmedium AD2 in dem Kondensator 5 in einen flüssigen Aggregatzustand überführt.
Nachteilig an der gezeigten Anordnung nach dem Stand der Technik ist jedoch, dass aufgrund unterschiedlicher Tempera¬ turen des dampfförmigen Arbeitsmediums ADi nach den Wärme¬ tauschern 1, 2 unterschiedliche Dichten des dampfförmigen Arbeitsmediums ADi vorliegen, wodurch es zu einer Zirkulation des dampfförmigen Arbeitsmediums ADi zwischen den Ausgangs¬ seiten der Wärmetauscher 1, 2 kommt. Somit stellen sich Unde¬ finierte und wirkungsgradnachteilige Zustände in dem Clausius-Rankine-Kreisprozess CR ein.
Figur 3 stellt eine Wärmerückgewinnungsvorrichtung einer Verbrennungskraftmaschine gemäß der vorliegenden Erfindung mit parallel verschalteten Wärmetauschern 1, 2 dar. Jedem Wärmetauscher 1, 2 ist dabei jeweils eine Pumpe 3 zugeordnet, mit deren Hilfe dem jeweiligen Wärmetauscher 1, 2 das flüssige Arbeitsmedium AL2 individuell einstellbar zuführbar ist. Bei den Wärmetauschern 1, 2 handelt es sich dabei bevorzugt um einen Abgaswärmetauscher, einen Abgasrückführungswärmetauscher und/oder einen Kühlmittelwärmetauscher, mit deren Hilfe eine Verlustwärme in Form einer Abgaswärme und/oder einer Wärme eines Kühlmittels der Verbrennungskraftmaschine nutzbar ist, um das flüssige Arbeitsmedium AL2 zu erwärmen und zu verdampfen.
In einer weiteren, nicht dargestellten Ausführungsform sind mehr als zwei Wärmetauscher parallel und/oder in Reihe verschaltet, wobei bei einer Parallelschaltung von Wärmetauschern mehreren Wärmetauschern jeweils mindestens eine Pumpe zugeordnet ist, über die ein Massenstrom des Arbeitsmediums durch den jeweiligen Wärmetauscher einstellbar ist. In einer weiteren, nicht dargestellten Ausführungsform sind Vorrichtungen zu einer oder mehreren
Zwischenüberhitzungen des dampfförmigen Arbeitsmediums ADi vorgesehen, mit deren Hilfe ein Wirkungsgrad des Clausius- Rankine-Kreisprozesses sich weiter verbessern lässt. Die Expansionsvorrichtung 4 ist bevorzugt als Turbine ausge¬ führt und mit einem in Fig. 3 nicht näher dargestellten Generator gekoppelt, mit dessen Hilfe elektrische Energie erzeugbar ist, die wiederum in einer Batterie gespeichert werden kann. In dieser Ausführungsform ist die Vorrichtung besonders zum Einsatz in einem Hybrid-Fahrzeug geeignet, da die aus der Verlustwärme der Verbrennungskraftmaschine gewon¬ nene elektrische Energie zum Betrieb eines Elektromotors des Hybrid-Fahrzeugs einsetzbar ist.
In einer weiteren, nicht dargestellten Ausführungsform kann die Expansionsvorrichtung jedoch auch als Kolbenexpansions¬ vorrichtung ausgeführt sein. In wiederum einer weiteren, nicht dargestellten Ausführungsform ist die Expansionsvorrichtung mechanisch mit einem Antriebsstrang eines Kraftfahrzeugs verbunden. Auf diese Weise lässt sich mittels der in der Expansionsvorrichtung erzeugten mechanischen Energie direkt eine Vortriebskraft für das Fahrzeug erzeugen. Die Verbindung zwischen der Expansionsvorrichtung und dem Antriebsstrang kann beispielsweise in Form einer Welle und/oder eines Getriebes ausgeführt sein.
Der Vorteil der Erfindung ist darin zu sehen, dass jedem Wärmetauscher 1, 2 mittels jeweils einer ihm zugeordneten Pumpe 3 ein individuell einstellbarer Massenstrom des flüssigen Arbeitsmediums AL2 zuführbar ist. Insbesondere ist es möglich, die Teilmassenströme des Arbeitsmediums durch die einzelnen Wärmetauscher an Betriebszustände der Verbrennungskraftmaschine anzupassen. Zur Erfassung der Betriebszustände ist bevorzugt eine in Fig. 3 nicht dargestellte Steuereinheit vorgesehen, über die auch die Pumpen 3 bevorzugt individuell ansteuerbar sind.
Die Erfindung ermöglicht aufgrund der parallelen Anordnung der Wärmetauscher eine weitgehende Nutzung der Wärmeenergie des Abgases und/oder des Kühlmittels der Verbrennungskraftma¬ schine, da in den Wärmetauschern jeweils eine große Tempera¬ turdifferenz zwischen dem Abgas und/oder Kühlmittel und dem Arbeitsmedium anliegt. Darüber hinaus können die Strömungs¬ verhältnisse durch die parallel angeordneten Wärmetauscher durch individuelle Ansteuerung der Pumpen so eingestellt wer¬ den, dass sich in den Leitungen stromabwärts der einzelnen Wärmetauscher weitgehend identische Strömungsverhältnisse einstellen. Insbesondere lässt sich durch eine entsprechende Ansteuerung der Pumpen erreichen, dass das Arbeitsmedium in den Leitungen ausgangsseitig der einzelnen Wärmetauscher einen weitgehend identischen Druck und/oder eine weitgehend identische Dichte aufweist. Auf diese Weise lassen sich definierte Strömungsverhältnisse in dem Leitungssystem stromabwärts der Wärmetauscher erzielen. Insbesondere ist die Gefahr eine Zirkulation des dampfförmigen Arbeitsmediums ADi zwischen den Wärmetauschern 1, 2 verringert, was in einem verbesserten Wirkungsgrad resultiert. Die Zuordnung separater Pumpen zu den Wärmetauschern ist besonders vorteilhaft bei einer Parallelschaltung von Wärmetauschern unterschiedlichen Typs, beispielsweise eines Abgaswärmetauschers und eines Abgasrückführungswärmetauschers .

Claims

Patentansprüche
1. Verbrennungskraftmaschine mit einer
WärmerückgewinnungsVorrichtung, umfassend
- eine Fördereinheit zur Verdichtung eines zumindest weitgehend flüssigen Arbeitsmediums von einem unteren Prozessdruck Pu auf einen oberen Prozessdruck Po,
- mehrere parallel verschaltete Wärmetauscher zur Erwärmung des Arbeitsmediums von einer Temperatur T2 auf eine Temperatur T3 unter Ausnutzung einer Verlustwärme der Verbrennungskraftmaschine, wobei das Arbeitsmedium von einem zumindest weitgehend flüssigen Aggregatzustand in einen zumindest weitgehend gasförmigen Aggregatzustand überführbar ist,
- eine Expansionsvorrichtung zur Expansion des Arbeitsmediums auf den unteren Prozessdruck Pu und
- ein Kondensator zur Abkühlung des Arbeitsmediums von und einer Temperatur T4 auf eine Temperatur Tl, wobei das Arbeitsmedium von einem zumindest weitgehenden gasförmigen Aggregatzustand in einen zumindest weitgehend flüssigen Aggregatzustand überführbar ist, wobei die Fördereinheit, die parallel angeordneten Wärmetauscher, die Expansionsvorrichtung und der Kondensator in einem Kreislauf verschaltet sind, dadurch gekennzeichnet, dass mehreren Wärmetauschern (1, 2) jeweils eine separate Pumpe (3) zugeordnet ist, mit deren Hilfe dem jeweiligen Wärmetauscher (1, 2) das Arbeitsmedium in zumindest weitgehend flüssigem Aggregatzustand (AL2) zuführbar ist.
2. Verbrennungskraftmaschine nach Anspruch 1, dadurch gekennzeichnet, dass ein Massenstrom des Arbeitsmediums (AL2) durch einen Wärmetauscher (1, 2) mittels der dem Wärmetauscher (1, 2) zugeordneten Pumpe einstellbar und an einen Betriebszustand der Verbrennungskraftmaschine anpassbar ist.
3. Verbrennungskraftmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Wärmetauscher (1, 2) als Abgaswärmetauscher, Abgasrückführungswärmetauscher und/oder Kühlmittelwärmetauscher ausgeführt sind.
4. Verbrennungskraftmaschine nach Anspruch 3, dadurch gekennzeichnet, dass ein Abgaswärmetauscher und ein Abgasrückführungswärmetauscher parallel verschaltet sind.
5. Verbrennungskraftmaschine nach einem der Ansprüche 1 bis
4, dadurch gekennzeichnet, dass die Expansionsvorrichtung (4) als Turbine oder als
Kolbenexpansionsmaschine ausgeführt ist.
6. Verbrennungskraftmaschine nach einem der Ansprüche 1 bis
5, dadurch gekennzeichnet, dass die Expansionsvorrichtung (4) mit einer elektrischen
Generator/Motoreinheit gekoppelt ist, mittels der die mechanische Energie in eine elektrische Energie umwandelbar ist.
PCT/EP2008/009489 2007-12-22 2008-11-11 Nutzung einer verlustwärme einer verbrennungskraftmaschine WO2009080153A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007062598.9 2007-12-22
DE102007062598A DE102007062598A1 (de) 2007-12-22 2007-12-22 Nutzung einer Verlustwärme einer Verbrennungskraftmaschine

Publications (1)

Publication Number Publication Date
WO2009080153A1 true WO2009080153A1 (de) 2009-07-02

Family

ID=40673551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/009489 WO2009080153A1 (de) 2007-12-22 2008-11-11 Nutzung einer verlustwärme einer verbrennungskraftmaschine

Country Status (2)

Country Link
DE (1) DE102007062598A1 (de)
WO (1) WO2009080153A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101203966B1 (ko) * 2010-08-03 2012-11-22 한국남부발전 주식회사 발전소용 폐열 재활용장치
JP2013068138A (ja) * 2011-09-21 2013-04-18 Toyota Industries Corp 廃熱利用装置
US9169751B2 (en) 2013-10-02 2015-10-27 Ford Global Technologies, Llc Methods and systems for utilizing waste heat for a hybrid vehicle
US9587546B2 (en) 2013-10-02 2017-03-07 Ford Global Technologies, Llc Methods and systems for hybrid vehicle waste heat recovery
CN114718654A (zh) * 2021-01-04 2022-07-08 沃尔沃汽车公司 膨胀器系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053066A1 (de) * 2008-10-24 2010-04-29 Behr Gmbh & Co. Kg System mit einem Rankine-Kreislauf
ITMI20100048A1 (it) * 2010-01-19 2011-07-20 Alstom Technology Ltd Centrale elettrica geotermica binaria
BR112013000862B1 (pt) * 2010-07-14 2021-07-13 Mack Trucks, Inc. Sistema de recuperação de calor desperdiçado com recuperação parcial
DE102010033124A1 (de) 2010-08-03 2012-02-09 Daimler Ag Brennkraftmaschine mit einer Wärmerückgewinnungsvorrichtung und Verfahren zum Betrieb einer Brennkraftmaschine
US8302399B1 (en) * 2011-05-13 2012-11-06 General Electric Company Organic rankine cycle systems using waste heat from charge air cooling
ITPR20120006A1 (it) * 2012-02-17 2013-08-18 Giovanni Sicurello Dispositivo di generazione di potenza motrice
DE102014006909B3 (de) * 2014-05-09 2015-07-09 Maschinenwerk Misselhorn Mwm Gmbh Anordnung mit mehreren Wärmeübertragern und Verfahren zum Verdampfen eines Arbeitsmediums
DE102015224416A1 (de) * 2015-12-07 2017-06-08 Robert Bosch Gmbh Abwärmerückgewinnungssystem einer Brennkraftmaschine
CN114370354A (zh) * 2021-12-31 2022-04-19 中国重汽集团济南动力有限公司 一种适用于发动机变工况的余热回收系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333157A1 (de) * 2000-10-11 2003-08-06 Honda Giken Kogyo Kabushiki Kaisha Rankine-prozess-vorrichtung für einen verbrennungsmotor
WO2004033859A1 (de) * 2002-10-11 2004-04-22 Alpps Fuel Cell Systems Gmbh Verfahren und einrichtung zur rückgewinnung von energie
FR2868809A1 (fr) * 2004-04-09 2005-10-14 Armines Ass Pour La Rech Et Le Systeme permettant de recuperer l'energie thermique d'un vehicule a moteur thermique en mettant en oeuvre un cycle de rankine produisant de l'energie mecanique et/ou electrique au moyen d'une turbine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250074A (ja) 2005-03-11 2006-09-21 Honda Motor Co Ltd ランキンサイクル装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333157A1 (de) * 2000-10-11 2003-08-06 Honda Giken Kogyo Kabushiki Kaisha Rankine-prozess-vorrichtung für einen verbrennungsmotor
WO2004033859A1 (de) * 2002-10-11 2004-04-22 Alpps Fuel Cell Systems Gmbh Verfahren und einrichtung zur rückgewinnung von energie
FR2868809A1 (fr) * 2004-04-09 2005-10-14 Armines Ass Pour La Rech Et Le Systeme permettant de recuperer l'energie thermique d'un vehicule a moteur thermique en mettant en oeuvre un cycle de rankine produisant de l'energie mecanique et/ou electrique au moyen d'une turbine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101203966B1 (ko) * 2010-08-03 2012-11-22 한국남부발전 주식회사 발전소용 폐열 재활용장치
JP2013068138A (ja) * 2011-09-21 2013-04-18 Toyota Industries Corp 廃熱利用装置
US9169751B2 (en) 2013-10-02 2015-10-27 Ford Global Technologies, Llc Methods and systems for utilizing waste heat for a hybrid vehicle
US9587546B2 (en) 2013-10-02 2017-03-07 Ford Global Technologies, Llc Methods and systems for hybrid vehicle waste heat recovery
US10145279B2 (en) 2013-10-02 2018-12-04 Ford Global Technologies, Llc Methods and systems for utilizing waste heat for a hybrid vehicle
CN114718654A (zh) * 2021-01-04 2022-07-08 沃尔沃汽车公司 膨胀器系统
CN114718654B (zh) * 2021-01-04 2024-04-02 沃尔沃汽车公司 膨胀器系统

Also Published As

Publication number Publication date
DE102007062598A1 (de) 2009-06-25

Similar Documents

Publication Publication Date Title
WO2009080153A1 (de) Nutzung einer verlustwärme einer verbrennungskraftmaschine
EP1925806B1 (de) System mit einem Organic-Rankine-Kreislauf zum Antrieb zumindest einer Expansionsmaschine, Wärmetauscher zum Antrieb einer Expansionsmaschine, Verfahren zum Betreiben zumindest einer Expansionsmaschine
WO2012048959A1 (de) Vorrichtung und verfahren zur abwärmenutzung einer brennkraftmaschine
WO2004033859A1 (de) Verfahren und einrichtung zur rückgewinnung von energie
DE102013205648A1 (de) System zur Energierückgewinnung aus einem Abwärmestrom einer Brennkraftmaschine
DE102010007911A1 (de) Kombination von Wärmerückgewinnungssystem und APU-Anlage
EP2180171B1 (de) System mit einem Rankine-Kreislauf
DE102011005072A1 (de) Verbrennungsmotor
DE102010003906A1 (de) Verbrennungsmotor
WO2012016647A1 (de) Brennkraftmaschine mit einer wärmerückgewinnungsvorrichtung und verfahren zum betrieb einer brennkraftmaschine
DE102011076405A1 (de) Verfahren zur Nutzung der Abwärme einer Brennkraftmaschine
EP2710236A2 (de) Vorrichtung und verfahren zur nutzung der abwärme einer brennkraftmaschine
WO2012107177A1 (de) Stationäres kraftwerk, insbesondere gaskraftwerk, zur stromerzeugung
DE102015016783A1 (de) Vorrichtung zur Gewinnung von Energie aus Abwärme einer Verbrennungskraftmaschine eines Kraftfahrzeugs
DE102010004079A1 (de) Brennkraftmaschine, kombiniert mit Rankineprozess zur effizienten Nutzung der Kühlmittel- und Abgaswärme
DE102010025186A1 (de) Abwärmenutzungsvorrichtung, Brennkraftmaschine und Kraftfahrzeug
EP2425101A2 (de) Wärmenutzungsvorrichtung und betriebsverfahren
DE102006043518A1 (de) Autarke Energieerzeugungseinheit für ein von einer Verbrennungskraftmaschine angetriebenes Fahrzeug
EP4077889B1 (de) Vorrichtung zur energierückgewinnung
WO2019121542A1 (de) Anordnung zur umwandlung thermischer energie aus verlustwärme einer verbrennungskraftmaschine
EP3751107B1 (de) Verbrennungsmotor mit abgaswärmerückgewinnungssystem sowie verfahren zur abgaswärmerückgewinnung
DE102008053066A1 (de) System mit einem Rankine-Kreislauf
DE102012220893A1 (de) Fahrzeugantrieb mit einem Verbrennungsmotor und einer Abwärmenutzungseinheit
WO2008151929A1 (de) Hybridantrieb mit abgasenergienutzung und verfahren hierzu
EP2733339B1 (de) Vorrichtung zur Nutzung der Abwärme einer Brennkraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08863832

Country of ref document: EP

Kind code of ref document: A1