WO2012048959A1 - Vorrichtung und verfahren zur abwärmenutzung einer brennkraftmaschine - Google Patents

Vorrichtung und verfahren zur abwärmenutzung einer brennkraftmaschine Download PDF

Info

Publication number
WO2012048959A1
WO2012048959A1 PCT/EP2011/065468 EP2011065468W WO2012048959A1 WO 2012048959 A1 WO2012048959 A1 WO 2012048959A1 EP 2011065468 W EP2011065468 W EP 2011065468W WO 2012048959 A1 WO2012048959 A1 WO 2012048959A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
line
heat exchanger
expansion machine
accumulator
Prior art date
Application number
PCT/EP2011/065468
Other languages
English (en)
French (fr)
Inventor
Nadja Eisenmenger
Achim Brenk
Dieter Seher
Gregory Rewers
Hans-Christoph Magel
Andreas Wengert
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US13/879,305 priority Critical patent/US20130192225A1/en
Priority to CN201180049026.XA priority patent/CN103154442B/zh
Publication of WO2012048959A1 publication Critical patent/WO2012048959A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/08Use of accumulators and the plant being specially adapted for a specific use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Definitions

  • the invention relates to a device and a method for waste heat recovery according to the preamble of claim 1.
  • a charging device which is used for waste heat utilization of an internal combustion engine.
  • At least one heat exchanger of a circuit of a working medium is housed.
  • a turbine part and a delivery unit are arranged in the circuit.
  • a compressor part arranged in the intake tract of the internal combustion engine is driven via the turbine part.
  • the inventive device for waste heat utilization of an internal combustion engine and the associated method according to the invention with the features of the independent claims has the advantage that steam that is not needed at a certain time, is stored and forwarded to the expansion machine only when needed or a load request.
  • the heat emitted via the exhaust system heat can not be fully attributed to the drive train of the motor vehicle, since there is no load request at this moment.
  • the heat energy released via the exhaust system would loren, if no suitable storage system is available. Through the steam storage, the heat energy can be stored and used again at a later date.
  • Another example of a short-term load change of the internal combustion engine is the overtaking of a motor vehicle after previous deceleration.
  • the internal combustion engine requires a very short time, a very high energy that can be removed from the steam storage.
  • the heat energy of the exhaust gases and the exhaust gas recirculation is the expansion machine due to the thermal inertia of the at least one heat exchanger and the thermal inertia of the heat transfer always delayed in time available.
  • Another advantage results from the arrangement of the vapor storage in a line of the line circuit between the heat exchanger and expansion machine, since the steam storage between steam generator and steam consumer is arranged and thus no further losses over long distances arise.
  • a further advantageous arrangement of the steam accumulator is when it is connected via a branch line to a line between the heat exchanger and the expansion machine, since the steam generated by the heat exchanger does not necessarily flow through the steam accumulator on the way to the expansion machine.
  • controllable valve in one of the previously mentioned branch lines, since the absorption and release of steam can be controlled deliberately via the controllable valve and thus can be intervened in the regulation of the thermodynamic cycle through which the working fluid passes.
  • pressure fluctuations in the heat exchanger and the subsequent lines can be reduced.
  • the arrangement of the vapor accumulator in a bypass connection parallel to the expansion machine is advantageous since steam can be conducted past the steam accumulator via the bypass connection on the expansion machine and thus heat energy can also be released via the condenser to a connected cooling circuit.
  • the steam accumulator in a bypass connection when the steam accumulator is connected via a multi-way valve with the bypass connection, since this is a sure way to control the absorption and release of the steam in all possible directions.
  • the steam can be routed directly from the heat exchanger on the steam storage to the condenser through the multi-way valve. This is advantageous if the steam storage can not absorb steam or the steam is not sufficient quality due to low overheating.
  • the reduction of pressure pulsations and pressure oscillations by steam is discharged from the steam accumulator and / or absorbed by the steam accumulator, since no costs are incurred by other components to suppress pressure oscillations.
  • components such as e.g. additional storage volume for the working medium can be saved in the vaporous or liquid state.
  • Figure 1 shows a device for the use of waste heat in a schematic representation according to a first embodiment
  • Figure 2 shows a device for the use of waste heat in a schematic representation according to a second embodiment
  • Figure 3 shows a device for waste heat recovery in a schematic representation according to a third embodiment
  • Figure 4 shows a device for waste heat recovery in a schematic representation according to a fourth embodiment.
  • Figures 1 to 4 show a device for waste heat utilization of an internal combustion engine 2 with a line circuit 4, in which a working medium circulates.
  • a line circuit 4 in which a working medium circulates.
  • the line circuit 4 at least one heat exchanger 8, an expansion machine 10, a condenser 12 and a feed pump 6 are arranged.
  • a vapor accumulator 40 is provided for storing a vaporous working medium in the line circuit 4, as will be explained later in the description of the individual embodiments.
  • the internal combustion engine 2 may in particular be configured as an air-compressing, self-igniting or mixture-compressing, spark-ignited internal combustion engine 2.
  • the device is suitable for waste heat utilization for applications in motor vehicles.
  • the device for waste heat utilization of the invention is also suitable for other applications.
  • the internal combustion engine 2 burns fuel to generate mechanical energy.
  • the resulting exhaust gases are discharged via an exhaust system in which an exhaust gas catalyst can be arranged.
  • a line section 22 of the exhaust system is passed through the heat exchanger 8. Heat from the exhaust gases or the exhaust gas recirculation is discharged via the line section 22 to the provided in the heat exchanger 8 working fluid, so that the working fluid in the heat exchanger 8 can be vaporized and overheated.
  • the heat exchanger 8 of the line circuit 4 is connected via a line 26 to the expansion machine 10.
  • the expansion machine 10 may be configured as a turbine or piston engine. Via the line 26, the vaporized working fluid flows to the expansion machine 10 and drives them.
  • the expansion machine 10 has an output shaft 1 1, via which the expansion machine 10 is connected to a load. As a result, for example, mechanical energy can be transmitted to a drive train or used to drive an electric generator, a pump or the like.
  • the working medium After flowing through the expansion machine 10, the working medium is passed via a line 28 to the condenser 12.
  • the working medium, which has been expanded by way of the expansion machine 10 is cooled in the condenser 12.
  • the condenser 12 can be connected to a cooling circuit 20. be his.
  • This cooling circuit 20 may be a cooling circuit of the internal combustion engine 2.
  • the liquefied in the condenser 12 working fluid is transported via the line 29 from a feed pump 6 in the line 24.
  • a pressure control valve 27 which serves to regulate the pressure in the inlet to the heat exchanger 8. With the help of the predetermined pressure in the inlet to the heat exchanger 8, the evaporation temperature of the working medium can be controlled. Furthermore, a bypass connection 31 can be provided parallel to the feed pump 6, in which a pressure relief valve 30 is located. By the pressure relief valve 30, the maximum allowable pressure of the working medium between the feed pump 6 and heat exchanger 8 can be adjusted.
  • the line 24 leads directly into the heat exchanger 8, in which the working medium is evaporated and overheated. Via the line 26, the evaporated working medium again reaches the expansion machine 10 and the working medium again flows through the line circuit 4. By the feed pump 6 and the expansion machine 10, a passage direction of the working medium is given by the line circuit 4. Thus, the exhaust gases and the exhaust gas recirculation of the internal combustion engine 2 via the heat exchanger 8 continuously heat energy can be withdrawn, which is discharged in the form of mechanical energy to the load 1 1.
  • a working medium water can be used or another liquid that meets the thermodynamic requirements.
  • the working medium undergoes thermodynamic changes of state as it flows through the line circuit 4.
  • the working medium is brought by the feed pump 6 to the pressure level for the evaporation.
  • the heat energy of the exhaust gas is discharged via the heat exchanger 8 to the working medium.
  • the working medium is isobarically evaporated and then overheated.
  • the steam in the expansion machine 10 is adiabatically released. This mechanical energy is obtained and transmitted to the shaft 1 1.
  • the working fluid is then cooled in the condenser 12 and returned to the feed pump 6.
  • the steam reservoir 40 is located in the line 26 of the line circuit 4 between the heat exchanger 8 and expansion machine 10th
  • Steam supplied by the heat exchanger 8 can be taken up by the steam accumulator 40 and released again from the steam accumulator 40 at a load request to the expander 10.
  • FIG. 2 shows a second embodiment in which the steam reservoir 40 is connected via a branch line 44 with the line circuit 4.
  • the branch line 44 opens into the line 26 of the line circuit 4 between the heat exchanger 8 and expansion machine 10.
  • a controllable valve 42 may be arranged by which steam can be selectively delivered or received.
  • branch line 44 can alternatively also be connected directly to the heat exchanger 8 or to the expansion machine 10, so that a spatial proximity to the steam generator or steam consumer is provided.
  • the two alternatives are indicated in Figure 2 by the dashed branch line 44.
  • controllable valves 42 can also be arranged here in the branch line 44.
  • FIG. 3 shows a third exemplary embodiment.
  • the steam accumulator 40 is located in a bypass connection 14, which is connected in parallel to the expansion machine 10.
  • the steam accumulator 40 is connected via a multi-way valve 46 to the bypass connection 14.
  • the multi-way valve 46 has a plurality of circuit options on the steam on or can be discharged or the steam storage 40 can be bypassed.
  • the multi-way valve 46 can establish a connection between a line 13 of the bypass connection 14, which faces the heat exchanger 8, and the steam accumulator 40. In this position of the multi-way valve 46, steam generated in the heat exchanger 8 flows via the line 26 and the line 13 into the steam reservoir 40. If a load request of the expansion machine 10 is present, the multi-way valve 46 can again connect between the line 13 of the bypass connection 14, which faces the heat exchanger 8, and the steam accumulator 40. In this case, steam flows from the steam reservoir 40 via the line 13 and the line 26 to the expansion machine 10th
  • the multi-way valve 46 can establish a connection between steam reservoir 40 and a line 15 of the bypass connection 14, which faces the condenser 12.
  • the steam flows via the line 15 and the line 28 to the condenser 12.
  • the heated steam can be discharged via the condenser 12 heat to the cooling circuit of the internal combustion engine 2 or to another cooling circuit in the vehicle.
  • the multi-way valve 46 can establish a direct connection between the line 13 and the line 15 of the bypass connection 14. If there is no load requirement of the expansion machine 10, but still heated steam is produced in the heat exchanger 8, it can be bypassed via the bypass connection 14 to the expansion machine 10.
  • FIG. 4 shows a fourth exemplary embodiment in which the steam accumulator 40, as in FIG. 3, is arranged in the bypass connection 14.
  • the steam accumulator 40 is connected via a controllable valve 48 to the conduit 13 of the bypass connection.
  • the steam accumulator 40 has an overflow valve 50, via which the steam accumulator 40 is connected to the line 15 of the bypass connection 14.
  • the intake and the delivery of steam via the line 13 can be controlled. If more heat than required by the expansion machine 10 is produced by the heat exchanger 8, then it can be taken up by the steam reservoir 40 via the controllable valve 48. Does the expansion machine 10 need steam at short notice or does it have a particularly high load capacity? Steam can be demanded from the steam accumulator 40 via the controllable valve 48 and the line 13 and the line 26 to the expansion machine 10.
  • All illustrated embodiments of the invention can absorb steam supplied by the heat exchanger 8 in the steam accumulator 40 and deliver it to the expander 10 at a load request.
  • the vapor pickup and removal of steam from the vapor reservoir 40 can be actively controlled through the use of a controllable valve 42, 46, 48 as shown in the embodiments of FIGS. 2-4.
  • a controllable valve 42, 46, 48 By opening the controllable valve 42, 46, 48, steam can be taken up or released from the steam accumulator 40. If the controllable valve 42, 46, 48 is closed, the steam is conducted past the steam accumulator 40.
  • the volume of the working medium in the line circuit 4 can be changed and thus intervened in the regulation of the evaporation pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Es wird eine Vorrichtung und ein Verfahren zur Abwärmenutzung einer Brennkraftmaschine (2) vorgeschlagen, wobei in einem Leitungskreis (4), in dem ein Arbeitsmedium zirkuliert, eine Speisepumpe (6), ein Wärmetauscher (8), eine Expansionsmaschine (10) und ein Kondensator (12) angeordnet sind. Im Leitungskreis (4) ist weiterhin ein Dampfspeicher (40) zur Speicherung des dampfförmigen Arbeitsmediums angeordnet.

Description

Beschreibung
Titel
Vorrichtung und Verfahren zur Abwärmenutzung einer Brennkraftmaschine
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Abwärmenutzung nach dem Oberbegriff des Anspruchs 1.
Stand der Technik
Aus DE 10 2006 057 247 AI ist bereits eine Aufladeeinrichtung bekannt, die zur Abwärmenutzung einer Brennkraftmaschine dient. Im Abgastrakt der Brennkraftmaschine ist mindestens ein Wärmetauscher eines Kreislaufes eines Arbeitsmediums untergebracht. In dem Kreislauf sind außerdem ein Turbinenteil und ein Förderaggregat angeordnet. Über das Turbinenteil wird ein im Ansaugtrakt der Verbrennungskraftmaschine angeordnetes Verdichterteil angetrieben.
Offenbarung der Erfindung
Die erfindungsgemäße Vorrichtung zur Abwärmenutzung einer Brennkraftmaschine und das zugehörige erfindungsgemäße Verfahren mit den Merkmalen der unabhängigen Ansprüche hat den Vorteil, dass Dampf, der zu einem bestimmten Zeitpunkt nicht benötigt wird, gespeichert wird und erst bei Bedarf oder einer Lastanforderung an die Expansionsmaschine weitergeleitet wird.
Bei einer kurzfristigen Laständerungen der Brennkraftmaschine, wie sie beispielsweise beim Abbremsen eines Kraftfahrzeuges auftritt, kann die über das Abgassystem abgegebene Wärme nicht vollständig an den Antriebsstrang des Kraftfahrzeuges zurückgeführt werden, da in diesem Moment keine Lastanforderung vorliegt. Die über das Abgassystem abgegebene Wärmeenergie würde ver- loren gehen, wenn kein geeignetes Speichersystem zur Verfügung steht. Durch den Dampfspeicher kann die Wärmeenergie gespeichert werden und zu einem späteren Zeitpunkt wieder genutzt werden.
Ein anderes Beispiel für eine kurzfristige Laständerung der Brennkraftmaschine ist der Überholvorgang eines Kraftfahrzeuges nach vorhergehendem Abbremsen. Hier benötigt die Brennkraftmaschine kurzfristig eine sehr hohe Energie, die aus dem Dampfspeicher entnommen werden kann.
Die Wärmeenergie der Abgase und der Abgasrückführung steht der Expansionsmaschine aufgrund der thermischen Trägheiten des mindestens einen Wärmetauschers und der thermischen Trägheit des Wärmeüberganges immer zeitlich verzögert zur Verfügung. Ein Vorteil der Erfindung besteht darin, dass Wärmeenergie durch den Dampfspeicher gespeichert werden kann und bei einer kurzfristigen Lastanforderung wieder zur Verfügung steht.
In den abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Vorrichtung angegeben.
Ein weiterer Vorteil ergibt sich durch die Anordnung des Dampfspeichers in einer Leitung des Leitungskreises zwischen Wärmetauscher und Expansionsmaschine, da der Dampfspeicher zwischen Dampferzeuger und Dampfverbraucher angeordnet ist und somit keine weiteren Verluste über lange Wegstrecken entstehen.
Durch eine Anordnung, bei der der Dampfspeicher über eine Abzweigleitung direkt mit dem Wärmetauscher verbunden ist, ergibt sich der Vorteil, dass durch die räumliche Nähe zwischen Wärmetaucher und Dampfspeicher eine gemeinsame Isolierung oder ein gemeinsamer Bauraum genutzt werden kann.
Vorteilhaft ist eine Verbindung von Expansionsmaschine und Dampfspeicher über eine Abzweigleitung, da bei einer kurzfristigen Lastanforderung über die Expansi- onsmaschine sofort Dampf zum Betreiben der Expansionsmaschine zur Verfügung steht und keine Zeitverluste über lange Wegstrecken entstehen.
Eine weitere vorteilhafte Anordnung des Dampfspeicher ist, wenn dieser über eine Abzweigleitung mit einer Leitung zwischen dem Wärmetauscher und der Expansionsmaschine verbunden ist, da der vom Wärmetauscher erzeugte Dampf nicht zwangsläufig durch den Dampfspeicher auf den Weg zur Expansionsmaschine strömt.
Besonders Vorteilhaft zeigt sich ein regelbares Ventil in einer der bisher genannten Abzweigleitungen, da die Aufnahme und Abgabe von Dampf bewusst über das regelbare Ventil gesteuert werden kann und somit in die Regelung des ther- modynamischen Kreislaufes den das Arbeitsmedium durchläuft eingegriffen werden kann. Durch ein gezieltes Öffnen und Schließen des Ventils können Druckschwankungen im Wärmetauscher und den anschließenden Leitungen reduziert werden. Des Weiteren lässt sich durch die Aufnahme und Abgabe von Dampf aus dem Leitungskreis die Verdampfungstemperatur beeinflussen.
Die Anordnung des Dampfspeichers in einer Bypassverbindung parallel zur Expansionsmaschine ist von Vorteil, da Dampf aus dem Dampfspeicher über die Bypassverbindung an der Expansionsmaschine vorbeigeleitet werden kann und somit auch Wärmeenergie über den Kondensator an einen angeschlossenen Kühlkreislauf abgegeben werden kann.
Besonders vorteilhaft ist eine Anordnung des Dampfspeichers in einer Bypassverbindung, wenn der Dampfspeicher über ein Mehrwegventil mit der Bypassverbindung verbunden ist, da dies eine sichere Möglichkeit ist die Aufnahme und Abgabe des Dampfes in alle möglichen Richtungen zu steuern. Des Weiteren kann durch das Mehrwegventil der Dampf direkt vom Wärmetauscher am Dampfspeicher vorbei zum Kondensator geleitet werden. Dies ist von Vorteil, wenn der Dampfspeicher keinen Dampf aufnehmen kann oder der Dampf keine ausreichende Qualität durch eine zu geringe Überhitzung hat.
Als besonders kostengünstige Lösung für einen Dampfspeicher in einer Bypassverbindung parallel zur Expansionsmaschine zeigen sich der Einsatz eines regel- baren Ventils auf der dem Wärmetauscher zugewandten Seite und der Einsatz eines Überströmventils auf der gegenüberliegenden Seite. Durch das regelbare Ventil kann der Dampf gezielt vom Dampfspeicher aufgenommen und abgegeben werden, während das Überströmventil verhindert, dass im Dampfspeicher ein zu hoher Druck entsteht.
Vorteilhaft ist die Reduzierung von Druckpulsationen und Druckschwingungen, indem Dampf aus dem Dampfspeicher abgegeben und/oder vom Dampfspeicher aufgenommen wird, da keine Kosten durch weitere Bauteile zur Unterdrückung von Druckschwingungen entstehen.
Durch die Aufnahme und Abgabe von Dampf über den Dampfspeicher durch das regelbare Ventil zur Regelung des Verdampfungsdruckes können weiter Bauteile wie z.B. zusätzliche Speichervolumen für das Arbeitsmedium im dampfförmigen oder flüssigen Zustand eingespart werden.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Figur 1 eine Vorrichtung zur Abwärmenutzung in einer schematischen Darstellung gemäß einem ersten Ausführungsbeispiel, Figur 2 eine Vorrichtung zur Abwärmenutzung in einer schematischen Darstellung gemäß einem zweiten Ausführungsbeispiel,
Figur 3 eine Vorrichtung zur Abwärmenutzung in einer schematischen Darstellung gemäß einem dritten Ausführungsbeispiel und
Figur 4 eine Vorrichtung zur Abwärmenutzung in einer schematischen Darstellung gemäß einem vierten Ausführungsbeispiel.
Beschreibung der Ausführungsbeispiele Die Figuren 1 bis 4 zeigen eine Vorrichtung zur Abwärmenutzung einer Brennkraftmaschine 2 mit einem Leitungskreis 4, in dem ein Arbeitsmedium zirkuliert. Im Leitungskreis 4 sind mindestens ein Wärmetauscher 8, eine Expansionsmaschine 10, ein Kondensator 12 und eine Speisepumpe 6 angeordnet. Weiterhin ist im Leitungskreis 4 ein Dampfspeicher 40 zum Speichern eines dampfförmigen Arbeitsmediums vorgesehen, wie später in der Beschreibung der einzelnen Ausführungsbeispiele näher erläutert wird.
Die Brennkraftmaschine 2 kann insbesondere als luftverdichtende, selbstzündende oder gemischverdichtende, fremdgezündete Brennkraftmaschine 2 ausgestaltet sein. Speziell eignet sich die Vorrichtung zur Abwärmenutzung für Anwendungen bei Kraftfahrzeugen. Die Vorrichtung zur Abwärmenutzung der Erfindung eignet sich allerdings auch für andere Anwendungsfälle.
Die Brennkraftmaschine 2 verbrennt Brennstoff, um mechanische Energie zu erzeugen. Die hierbei entstehenden Abgase werden über eine Abgasanlage, in der ein Abgaskatalysator angeordnet sein kann, ausgestoßen. Ein Leitungsabschnitt 22 der Abgasanlage ist durch den Wärmetauscher 8 geführt. Wärme aus den Abgasen oder der Abgasrückführung wird über den Leitungsabschnitt 22 an das im Wärmetauscher 8 vorgesehene Arbeitsmedium abgegeben, so dass das Arbeitsmedium im Wärmetauscher 8 verdampft und überhitzt werden kann.
Der Wärmetauscher 8 des Leitungskreises 4 ist über eine Leitung 26 mit der Expansionsmaschine 10 verbunden. Die Expansionsmaschine 10 kann als Turbine oder Kolbenmaschine ausgestaltet sein. Über die Leitung 26 strömt das verdampfte Arbeitsmedium zur Expansionsmaschine 10 und treibt diese an. Die Expansionsmaschine 10 weist eine Abtriebswelle 1 1 auf, über die die Expansionsmaschine 10 mit einer Last verbunden ist. Hierdurch kann beispielsweise mechanische Energie an einen Antriebsstrang übertragen werden oder zum Antreiben eines elektrischen Generators, einer Pumpe oder dergleichen dienen. Nach dem Durchströmen der Expansionsmaschine 10 wird das Arbeitsmedium über eine Leitung 28 zu dem Kondensator 12 geführt. Das über die Expansionsmaschine 10 entspannte Arbeitsmedium wird im Kondensator 12 abgekühlt. Der Kondensator 12 kann mit einem Kühlkreislauf 20 verbun- den sein. Bei diesem Kühlkreislauf 20 kann es sich um einen Kühlkreislauf der Brennkraftmaschine 2 handeln. Das im Kondensator 12 verflüssigte Arbeitsmedium wird über die Leitung 29 von einer Speisepumpe 6 in die Leitung 24 transportiert.
In der Leitung 24 befindet sich ein Druckregelventil 27, welches zur Druckregelung im Zulauf zum Wärmetauscher 8 dient. Mit Hilfe des vorgegebenen Druckes im Zulauf zum Wärmetauscher 8 lässt sich die Verdampfungstemperatur des Arbeitsmediums kontrollieren. Des Weiteren kann eine Bypassverbindung 31 parallel zur Speisepumpe 6 vorgesehen werden, in der sich ein Überdruckventil 30 befindet. Durch das Überdruckventil 30 lässt sich der maximal zulässige Druck des Arbeitsmediums zwischen Speisepumpe 6 und Wärmetauscher 8 einstellen.
Die Leitung 24 führt direkt in den Wärmetauscher 8, in dem das Arbeitsmedium verdampft und überhitzt wird. Über die Leitung 26 gelangt das verdampfte Arbeitsmedium erneut zur Expansionsmaschine 10 und das Arbeitsmedium durchströmt erneut den Leitungskreis 4. Durch die Speisepumpe 6 und die Expansionsmaschine 10 ist eine Durchlaufrichtung des Arbeitsmediums durch den Leitungskreis 4 gegeben. Somit kann den Abgasen und der Abgasrückführung der Brennkraftmaschine 2 über den Wärmetauscher 8 fortwährend Wärmeenergie entzogen werden, die in Form von mechanischer Energie an die Last 1 1 abgegeben wird.
Als Arbeitsmedium kann Wasser eingesetzt werden oder eine andere Flüssigkeit, die den thermodynamischen Anforderungen entspricht. Das Arbeitsmedium erfährt beim durchströmen des Leitungskreises 4 thermodynamische Zustandsänderungen. In der flüssigen Phase wird das Arbeitsmedium durch die Speisepumpe 6 auf das Druckniveau für die Verdampfung gebracht. Anschließend wird die Wärmeenergie des Abgases über den Wärmetauscher 8 an das Arbeitsmedium abgegeben. Dabei wird das Arbeitsmedium isobar verdampft und anschließend überhitzt. Danach wird der Dampf in der Expansionsmaschine 10 adiabat entspannt. Dabei wird mechanische Energie gewonnen und auf die Welle 1 1 übertragen. Das Arbeitsmedium wird dann im Kondensator 12 abgekühlt und wieder der Speisepumpe 6 zugeführt. Beim Ausführungsbeispiel in Figur 1 befindet sich der Dampfspeicher 40 in der Leitung 26 des Leitungskreises 4 zwischen Wärmetauscher 8 und Expansionsmaschine 10.
Vom Wärmetauscher 8 gelieferter Dampf kann vom Dampfspeicher 40 aufgenommen werden und bei einer Lastanforderung an die Expansionsmaschine 10 aus dem Dampfspeicher 40 wieder abgegeben werden.
Figur 2 zeigt eine zweites Ausführungsbeispiel bei der der Dampfspeicher 40 über eine Abzweigleitung 44 mit dem Leitungskreis 4 verbunden ist. Die Abzweigleitung 44 mündet in die Leitung 26 des Leitungskreises 4 zwischen Wärmetauscher 8 und Expansionsmaschine 10. In der Abzweigleitung 44 kann ein steuerbares Ventil 42 angeordnet sein durch welches Dampf gezielt abgegeben oder aufgenommen werden kann.
Die Abzweigleitung 44 kann als weitere Ausführungsform alternativ auch direkt mit dem Wärmetauscher 8 oder mit der Expansionsmaschine 10 verbunden sein, so dass eine räumliche Nähe zum Dampferzeuger oder Dampfverbraucher gegeben ist. Die beiden Alternativen sind in Figur 2 durch die gestrichelte Abzweigleitung 44 angedeutet. Dabei können auch hier in der Abzweigleitung 44 steuerbare Ventile 42 angeordnet sein.
In Figur 3 ist ein drittes Ausführungsbeispiel gezeigt. Der Dampfspeicher 40 befindet sich in einer Bypassverbindung 14, welche parallel zur Expansionsmaschine 10 geschaltet ist. Der Dampfspeicher 40 ist über ein Mehrwegventil 46 mit der Bypassverbindung 14 verbunden. Das Mehrwegventil 46 weist mehrere Schaltungsmöglichkeiten auf über die Dampf auf- bzw. abgegeben werden kann oder am Dampfspeicher 40 vorbeigeleitet werden kann.
Um Dampf aufzunehmen kann das Mehrwegventil 46 eine Verbindung zwischen einer Leitung 13 der Bypassverbindung 14, der dem Wärmetauscher 8 zugewandt ist, und dem Dampfspeicher 40 herstellen. In dieser Stellung des Mehrwegventils 46 strömt im Wärmetauscher 8 erzeugter Dampf über die Leitung 26 und die Leitung 13 in den Dampfspeicher 40. Falls eine Lastanforderung der Expansionsmaschine 10 anliegt kann das Mehrwegventil 46 erneut eine Verbindung zwischen der Leitung 13 der Bypassverbindung 14, der dem Wärmetauscher 8 zugewandt ist, und dem Dampfspeicher 40 herstellen. In diesem Fall strömt Dampf aus dem Dampfspeicher 40 über die Leitung 13 und die Leitung 26 zur Expansionsmaschine 10.
Falls keine Lastanforderung der Expansionsmaschine 10 vorliegt kann das Mehrwegventil 46 eine Verbindung zwischen Dampfspeicher 40 und einer Leitung 15 der Bypassverbindung 14, die dem Kondensator 12 zugewandt ist, herstellen. Der Dampf strömt über die Leitung 15 und die Leitung 28 zum Kondensator 12. Der erwärmte Dampf kann über den Kondensator 12 Wärme an den Kühlkreislauf der Brennkraftmaschine 2 oder an ein anderen Kühlkreislauf im Fahrzeug abgegeben.
Soll der erwärmte Dampf an der Expansionsmaschine 10 vorbeigeleitet werden, aber nicht vom Dampfspeicher 40 aufgenommen werden, so kann das Mehrwegventil 46 eine direkte Verbindung zwischen der Leitung 13 und der Leitung 15 der Bypassverbindung 14 herstellen. Liegt keine Lastanforderung der Expansionsmaschine 10 vor, wird aber weiterhin erwärmter Dampf im Wärmetauscher 8 produziert, so kann dieser über die Bypassverbindung 14 an der Expansionsmaschine 10 vorbeigeleitet werden.
Figur 4 zeigt ein viertes Ausführungsbeispiel, bei dem der Dampfspeicher 40, wie bei Figur 3, in der Bypassverbindung 14 angeordnet ist. Der Dampfspeicher 40 ist über ein regelbares Ventil 48 mit der Leitung 13 der Bypassverbindung verbunden. Auf der gegenüberliegenden Seite weist der Dampfspeicher 40 ein Überströmventil 50 auf, über das der Dampfspeicher 40 mit der Leitung 15 der Bypassverbindung 14 verbunden ist.
Über das regelbare Ventil 48 lassen sich die Aufnahme und die Abgabe von Dampf über die Leitung 13 steuern. Wird vom Wärmetauscher 8 mehr Dampf als von der Expansionsmaschine 10 benötigt produziert, so kann dieser über das regelbare Ventil 48 vom Dampfspeicher 40 aufgenommen werden. Benötigt die Expansionsmaschine 10 kurzfristig Dampf oder hat sie eine besonders hohe Lastan- forderung kann Dampf aus dem Dampfspeicher 40 über das regelbare Ventil 48 und die Leitung 13 und die Leitung 26 zur Expansionsmaschine 10 gelangen.
Wird über das regelbare Ventil 48 eine größere Menge an Dampf aufgenommen als der Dampfspeicher 40 aufnehmen kann, so kann dieser Dampf über das Überströmventil 50 bei Überschreitung eines vorgebenden Druckes abgesteuert werden.
Alle dargestellten Ausführungsformen der Erfindung können vom Wärmetauscher 8 gelieferten Dampf im Dampfspeicher 40 aufnehmen und bei einer Lastanforderung an die Expansionsmaschine 10 abgeben.
Die Dampfaufnahme und Dampfentnahme aus dem Dampfspeicher 40 kann durch den Einsatz eines regelbaren Ventils 42, 46, 48 wie es bei den Ausführungsformen in den Figuren 2-4 gezeigt ist, aktiv gesteuert werden. Durch das Öffnen des regelbaren Ventils 42, 46, 48 kann Dampf vom Dampfspeicher 40 aufgenommen oder abgegeben werden. Ist das regelbare Ventil 42, 46, 48 geschlossen, so wird der Dampf am Dampfspeicher 40 vorbeigeleitet.
Durch die aktive Kontrolle der Dampfaufnahme und Dampfabgabe des Dampfspeichers 40 über das regelbare Ventil 42, 46, 48 können Druckschwingungen oder Druckpulsationen im Leitungskreis 4 reduziert werden. Indem Dampf aus dem Dampfspeicher 40 abgegeben und /oder vom Dampfspeicher 40 aufgenommen wird, können Druckschwingungen im Wärmetauscher 8 und in den anschließenden Leitungen 24, 26 reduziert werden.
Durch die aktive Kontrolle der Dampfaufnahme und Dampfabgabe des Dampfspeichers 40 über das regelbare Ventil 42, 46, 48 kann auch das Volumen des Arbeitsmediums im Leitungskreis 4 verändert werden und damit in die Regelung des Verdampfungsdruckes eingegriffen werden.

Claims

Ansprüche
1. Vorrichtung zur Abwärmenutzung einer Brennkraftmaschine (2) mit einem Leitungskreis (4), in dem eine Speisepumpe (6), mindestens ein Wärmetauscher (8), eine Expansionsmaschine (10) und ein Kondensator (12) angeordnet sind, wobei im Leitungskreis (4) ein Arbeitsmedium zirkuliert, dadurch gekennzeichnet, dass ein Dampfspeicher (40) zur Speicherung des dampfförmigen Arbeitsmediums im Leitungskreis (4) angeordnet ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass sich der Dampfspeicher (40) in einer Leitung (26) des Leitungskreises (4) zwischen Wärmetauscher (8) und Expansionsmaschine (10) befindet.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Dampfspeicher (40) über eine Abzweigleitung (44) direkt mit dem Wärmetauscher (8) verbunden ist.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Dampfspeicher (40) über eine Abzweigleitung (44) direkt mit der Expansionsmaschine (10) verbunden ist.
5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Dampfspeicher (40) über eine Abzweigleitung (44) mit der Leitung (26) zwischen dem Wärmetauscher (8) und der Expansionsmaschine (10) verbunden ist.
6. Vorrichtung nach Anspruch 3, 4 oder 5, dadurch gekennzeichnet, dass ein regelbares Ventil (42) in der Abzweigleitung (44) angeordnet ist.
7. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass sich der Dampfspeicher (40) in einer Bypassverbindung (14) befindet, welche parallel zur Expansionsmaschine (10) geschaltet ist.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Dampfspeicher (40) über ein Mehrwegventil (46) mit der Bypassverbindung (14) verbunden ist, über welches Dampf aufgenommen wird oder Dampf an Leitungen (13,26) zur Expansionsmaschine (10) oder über Leitungen (15,28) an den Kondensator (12) abgegeben wird.
9. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Dampfspeicher (40) auf der dem Wärmetauscher (8) zugewandten Seite ein regelbares Ventil (48) und auf der gegenüberliegenden Seite ein Überströmventil (50) aufweist.
10. Verfahren zur Abwärmenutzung einer Brennkraftmaschine (2) für eine Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass von dem Wärmetauscher (8) gelieferter Dampf im Dampfspeicher (40) aufgenommen wird und bei einer Lastanforderung an die Expansionsmaschine (10) aus dem Dampfspeicher (40) abgegeben wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass Druckpulsationen und Druckschwingungen reduziert werden, indem Dampf aus dem Dampfspeicher (40) abgegeben und/oder vom Dampfspeicher (40) aufgenommen wird.
12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass durch die aktive Aufnahme und Abgabe von Dampf an den Dampfspeicher (40) über ein regelbares Ventil (42, 46, 48) in die Regelung des Verdampfungsdruckes eingegriffen wird.
PCT/EP2011/065468 2010-10-13 2011-09-07 Vorrichtung und verfahren zur abwärmenutzung einer brennkraftmaschine WO2012048959A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/879,305 US20130192225A1 (en) 2010-10-13 2011-09-07 Device and method for the recovery of waste heat of an internal combustion engine
CN201180049026.XA CN103154442B (zh) 2010-10-13 2011-09-07 用于内燃机的废热利用的装置和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010042401A DE102010042401A1 (de) 2010-10-13 2010-10-13 Vorrichtung und Verfahren zur Abwärmenutzung einer Brennkraftmaschine
DE102010042401.3 2010-10-13

Publications (1)

Publication Number Publication Date
WO2012048959A1 true WO2012048959A1 (de) 2012-04-19

Family

ID=44583056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/065468 WO2012048959A1 (de) 2010-10-13 2011-09-07 Vorrichtung und verfahren zur abwärmenutzung einer brennkraftmaschine

Country Status (4)

Country Link
US (1) US20130192225A1 (de)
CN (1) CN103154442B (de)
DE (1) DE102010042401A1 (de)
WO (1) WO2012048959A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103727513A (zh) * 2012-10-12 2014-04-16 童瑞祺 热回收转换装置
WO2014097923A1 (ja) * 2012-12-17 2014-06-26 いすゞ自動車株式会社 内燃機関の排熱回収装置と内燃機関の排熱回収方法
CN105102769A (zh) * 2013-03-25 2015-11-25 德纳有限公司 废热回收系统和控制这种系统中所包括的正排量膨胀机的质量流率的方法
US9719413B2 (en) 2012-10-08 2017-08-01 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Charging device for internal combustion engines

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012222035B4 (de) * 2012-12-03 2019-10-31 Robert Bosch Gmbh Verfahren zum Betreiben eines Systems zur Energierückgewinnung aus einem Abwärmestrom einer Brennkraftmaschine
WO2014096895A1 (en) * 2012-12-19 2014-06-26 Renault Tracks Engine arrangement comprising a waste heat recovery system with a downstream heat storage device
WO2014096892A1 (en) * 2012-12-19 2014-06-26 Renault Trucks Engine arrangement comprising a separate heat storage device
DE102013211410B4 (de) * 2013-06-18 2017-05-18 Robert Bosch Gmbh Abwärmerückgewinnungssystem
DE102013011521A1 (de) * 2013-07-09 2015-01-15 Volkswagen Aktiengesellschaft Antriebseinheit für ein Kraftfahrzeug
DE102013011477A1 (de) * 2013-07-09 2015-01-15 Volkswagen Aktiengesellschaft Antriebseinheit für ein Kraftfahrzeug
DE102013213581A1 (de) * 2013-07-11 2015-01-15 Mahle International Gmbh Wärmerückgewinnungssystem für einen Verbrennungsmotor
DE102013222511A1 (de) * 2013-11-06 2015-05-07 Robert Bosch Gmbh Verfahren zum Betreiben eines Systems zur Energierückgewinnung aus einem Abwärmestrom einer Brennkraftmaschine
DE102014206038A1 (de) * 2014-03-31 2015-10-01 Mtu Friedrichshafen Gmbh System für einen thermodynamischen Kreisprozess, Steuereinrichtung für ein System für einen thermodynamischen Kreisprozess, Verfahren zum Betreiben eines Systems, und Anordnung mit einer Brennkraftmaschine und einem System
DE102014007214A1 (de) * 2014-05-19 2015-11-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Rückgewinnung von Wärme aus Verbrennungsmotoren sowie zur Umwandlung der rückgewonnenen Wärme in mechanische Energie
BE1022434B1 (nl) 2014-08-29 2016-03-30 Atlas Copco Airpower Naamloze Vennootschap Compressorinstallatie
US9784141B2 (en) * 2015-01-14 2017-10-10 Ford Global Technologies, Llc Method and system of controlling a thermodynamic system in a vehicle
GB2598073B (en) * 2016-04-05 2022-05-11 Cooper Robert Power generation system
DE102016215836A1 (de) 2016-04-12 2017-10-12 Mahle International Gmbh Vorrichtung und Verfahren zur Energierückgewinnung
SE540362C2 (en) 2016-07-07 2018-08-07 Scania Cv Ab An arrangement for recovering heat energy in exhaust gases from a combustion engine
DE102016218462B4 (de) 2016-09-26 2022-07-14 Rolls-Royce Solutions GmbH Anordnung mit einem System zur Durchführung eines thermodynamischen Kreisprozesses und einer Brennkraftmaschine, sowie Verfahren zum Betreiben einer solchen Anordnung
CN110159453B (zh) * 2019-04-28 2021-11-30 中国石油天然气股份有限公司 用于发动机的余热回收装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1539166A (en) * 1976-07-01 1979-01-31 Sulzer Ag Internal combustion engine
JPS5820911A (ja) * 1981-07-31 1983-02-07 Nissan Motor Co Ltd 複合エンジンシステム
DE3245351A1 (de) * 1982-12-08 1984-06-14 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Antriebsvorrichtung fuer ein hilfsenergieerzeugungssystem eines schiffes
JPS60224906A (ja) * 1984-04-21 1985-11-09 Mitsubishi Heavy Ind Ltd 廃熱回収装置
EP0439754A1 (de) * 1990-01-31 1991-08-07 Asea Brown Boveri Ag Verfahren zum Anfahren einer Kombianlage
WO1995035433A1 (en) * 1994-06-20 1995-12-28 Ranotor Utvecklings Ab Engine assembly comprising an internal combustion engine and a steam engine
DE102006057247A1 (de) 2006-12-05 2008-06-12 Robert Bosch Gmbh Aufladeeinrichtung
WO2011042297A1 (de) * 2009-10-06 2011-04-14 Robert Bosch Gmbh Antriebseinrichtung

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU40536A1 (de) * 1960-09-01 1961-10-23
US3220193A (en) * 1961-01-06 1965-11-30 Gilbert Associates Devices for improving operating flexibility of steam-electric generating plants
US4031705A (en) * 1974-11-15 1977-06-28 Berg John W Auxiliary power system and apparatus
US3977197A (en) * 1975-08-07 1976-08-31 The United States Of America As Represented By The United States National Aeronautics And Space Administration Thermal energy storage system
JPS6048604B2 (ja) * 1976-11-09 1985-10-28 工業技術院長 太陽熱発電システム
US4164848A (en) * 1976-12-21 1979-08-21 Paul Viktor Gilli Method and apparatus for peak-load coverage and stop-gap reserve in steam power plants
JPS5481441A (en) * 1977-12-12 1979-06-28 Mitsubishi Heavy Ind Ltd Power plant
JPH0669220A (ja) * 1991-10-09 1994-03-11 Furukawa Electric Co Ltd:The ヘテロ接合GaAs系バイポーラトランジスタ
SE504686C2 (sv) * 1994-06-20 1997-04-07 Ranotor Utvecklings Ab Ångbuffert för användning vid en ångmotoranläggning med slutet kretslopp
WO1996031694A1 (de) * 1995-04-05 1996-10-10 Schatz Thermo System Gmbh Verfahren und schaltungsanordnung zum betrieb von wärmespeichern insbesondere für fühlbare wärme
JPH08319805A (ja) * 1995-05-24 1996-12-03 Toshiba Corp 火力発電プラントおよびその運転方法
JP2000303803A (ja) * 1999-04-21 2000-10-31 Nippon Steel Corp 発電システム
US7163048B2 (en) * 2004-04-21 2007-01-16 Colasso Francisco J Automatic monitoring system for thermal energy storage plants
JP4497015B2 (ja) * 2005-04-01 2010-07-07 トヨタ自動車株式会社 熱エネルギ回収装置
DE102006043835A1 (de) * 2006-09-19 2008-03-27 Bayerische Motoren Werke Ag Wärmetauscheranordnung
GB0618867D0 (en) * 2006-09-25 2006-11-01 Univ Sussex The Vehicle power supply system
WO2010070786A1 (ja) * 2008-12-18 2010-06-24 三菱電機株式会社 排熱回生システム
FR2968714B1 (fr) * 2010-12-08 2015-04-10 IFP Energies Nouvelles Procede et dispositif de controle de la temperature des gaz d'echappement d'un moteur a combustion interne traversant un moyen de traitement des polluants contenus dans ces gaz
DE102010054733A1 (de) * 2010-12-16 2012-06-21 Daimler Ag Abwärmenutzungsvorrichtung, Betriebsverfahren
US8826662B2 (en) * 2010-12-23 2014-09-09 Cummins Intellectual Property, Inc. Rankine cycle system and method
DE102011076054B4 (de) * 2011-05-18 2013-12-05 Eberspächer Exhaust Technology GmbH & Co. KG Abwärmenutzungsvorrichtung
DE102011076405A1 (de) * 2011-05-24 2012-11-29 Robert Bosch Gmbh Verfahren zur Nutzung der Abwärme einer Brennkraftmaschine
DE102011084352B4 (de) * 2011-10-12 2022-12-29 Robert Bosch Gmbh Verfahren und Steuergerät zum Betreiben eines Leitungskreises zur Abwärmenutzung einer Brennkraftmaschine
DE102012003267A1 (de) * 2012-02-16 2013-08-22 Fritz Richarts Vorrichtung und Verfahren zur Speicherung von elektrischer Überschussenergie

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1539166A (en) * 1976-07-01 1979-01-31 Sulzer Ag Internal combustion engine
JPS5820911A (ja) * 1981-07-31 1983-02-07 Nissan Motor Co Ltd 複合エンジンシステム
DE3245351A1 (de) * 1982-12-08 1984-06-14 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Antriebsvorrichtung fuer ein hilfsenergieerzeugungssystem eines schiffes
JPS60224906A (ja) * 1984-04-21 1985-11-09 Mitsubishi Heavy Ind Ltd 廃熱回収装置
EP0439754A1 (de) * 1990-01-31 1991-08-07 Asea Brown Boveri Ag Verfahren zum Anfahren einer Kombianlage
WO1995035433A1 (en) * 1994-06-20 1995-12-28 Ranotor Utvecklings Ab Engine assembly comprising an internal combustion engine and a steam engine
DE102006057247A1 (de) 2006-12-05 2008-06-12 Robert Bosch Gmbh Aufladeeinrichtung
WO2011042297A1 (de) * 2009-10-06 2011-04-14 Robert Bosch Gmbh Antriebseinrichtung

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9719413B2 (en) 2012-10-08 2017-08-01 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Charging device for internal combustion engines
CN103727513A (zh) * 2012-10-12 2014-04-16 童瑞祺 热回收转换装置
WO2014097923A1 (ja) * 2012-12-17 2014-06-26 いすゞ自動車株式会社 内燃機関の排熱回収装置と内燃機関の排熱回収方法
CN104919146A (zh) * 2012-12-17 2015-09-16 五十铃自动车株式会社 内燃机的排热回收装置和内燃机的排热回收方法
CN105102769A (zh) * 2013-03-25 2015-11-25 德纳有限公司 废热回收系统和控制这种系统中所包括的正排量膨胀机的质量流率的方法

Also Published As

Publication number Publication date
DE102010042401A1 (de) 2012-04-19
US20130192225A1 (en) 2013-08-01
CN103154442A (zh) 2013-06-12
CN103154442B (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2012048959A1 (de) Vorrichtung und verfahren zur abwärmenutzung einer brennkraftmaschine
EP2686526B1 (de) Verfahren zum betreiben eines dampfkreisprozesses
DE102010042405B4 (de) Vorrichtung und Verfahren zur Abwärmenutzung einer Brennkraftmaschine
WO2009080153A1 (de) Nutzung einer verlustwärme einer verbrennungskraftmaschine
DE102005049831A1 (de) Dampfkompressionskühlvorrichtung
DE102007057164A1 (de) System mit einem Organic-Rankine-Kreislauf zum Antrieb zumindest einer Expansionsmaschine, Wärmetauscher zum Antrieb einer Expansionsmaschine, Verfahren zum Betreiben zumindest einer Expansionsmaschine
DE102016100916A1 (de) Thermodynamisches System in einem Fahrzeug
DE102015007104A1 (de) Abwärmenutzungsvorrichtung und Verfahren zu deren Betrieb
WO2011128360A1 (de) Verbrennungsmotor
DE102011117058A1 (de) Abwärmenutzungsvorrichtung
WO2012159829A1 (de) Verfahren und thermodynamischer arbeitskreis zur nutzung der abwärme einer brennkraftmaschine
EP3118424B1 (de) Regelung von orc-prozessen durch einspritzung unverdampften fluids
WO2012156175A2 (de) Vorrichtung und verfahren zur nutzung der abwärme einer brennkraftmaschine
DE102010010298A1 (de) Wärmekraftmaschine
EP2425101A2 (de) Wärmenutzungsvorrichtung und betriebsverfahren
DE102012222082B4 (de) Vorrichtung und Verfahren zur Abwärmenutzung einer Brennkraftmaschine
DE102010047520A1 (de) Verfahren und Vorrichtung zur Energierückgewinnung aus einem Abgasstrom einer Verbrennungskraftmaschine
DE102011003607A1 (de) Verfahren und System zum Betreiben einer Expansionsmaschine mittels dem Abgas eines Verbrennungsmotors entzogener Wärmeleistung
DE2752283B1 (de) Brennkraftmaschinen Anlage
WO2012152602A1 (de) Leitungskreis und verfahren zum betreiben eines leitungskreises zur abwärmenutzung einer brennkraftmaschine
DE102018218065A1 (de) Abwärmenutzungseinrichtung, insbesondere für eine Brennkraftmaschine eines Kraftfahrzeugs
EP3751107B1 (de) Verbrennungsmotor mit abgaswärmerückgewinnungssystem sowie verfahren zur abgaswärmerückgewinnung
DE102008053066A1 (de) System mit einem Rankine-Kreislauf
DE102010024186A1 (de) Regelungsverfahren für eine Abwärmenutzungsvorrichtung
DE112019004542T5 (de) Wärmerückgewinnungssystem mit einem durch ein Kühlmittelfluid beheizten Sammelbehälter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180049026.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11754402

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13879305

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11754402

Country of ref document: EP

Kind code of ref document: A1