WO2012159829A1 - Verfahren und thermodynamischer arbeitskreis zur nutzung der abwärme einer brennkraftmaschine - Google Patents

Verfahren und thermodynamischer arbeitskreis zur nutzung der abwärme einer brennkraftmaschine Download PDF

Info

Publication number
WO2012159829A1
WO2012159829A1 PCT/EP2012/057252 EP2012057252W WO2012159829A1 WO 2012159829 A1 WO2012159829 A1 WO 2012159829A1 EP 2012057252 W EP2012057252 W EP 2012057252W WO 2012159829 A1 WO2012159829 A1 WO 2012159829A1
Authority
WO
WIPO (PCT)
Prior art keywords
working
internal combustion
combustion engine
thermodynamic
exhaust gas
Prior art date
Application number
PCT/EP2012/057252
Other languages
English (en)
French (fr)
Inventor
Gregory Rewers
Nadja Eisenmenger
Achim Brenk
Dieter Seher
Hans-Christoph Magel
Andreas Wengert
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2012159829A1 publication Critical patent/WO2012159829A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Definitions

  • the invention relates to a method of operating a thermodynamic
  • ORC process vaporized by it.
  • the steam is expanded in an expansion machine, whereby mechanical energy is gained
  • expansion machines preferably piston engines or turbines are used.
  • the mechanical energy generated by the expansion machine can be delivered either directly or via a transmission to the crankshaft of the internal combustion engine.
  • the energy generated from the thermodynamic process can be converted by a generator into electrical energy.
  • the fuel consumption can be reduced and / or the output from the engine power can be increased.
  • a charging device which serves to utilize the waste heat of an internal combustion engine.
  • At the exhaust tract of the internal combustion engine at least one heat exchanger is thermodynamic
  • Circuit attached to a working medium.
  • a turbine part and a delivery unit are arranged.
  • a compressor part arranged in the intake tract of the internal combustion engine is driven.
  • the object of the present invention is to provide a method for improved utilization of the waste heat of an internal combustion engine.
  • thermodynamic working group for utilizing the waste heat of an internal combustion engine
  • the thermodynamic working group comprising a pump, a heat exchanger, an expansion machine, a condenser and a working medium which circulates through the working circuit during operation.
  • a first step of the method at least one exhaust gas mass flow and / or at least one exhaust gas temperature of the exhaust gases of the internal combustion engine is determined.
  • thermodynamic working group based on the exhaust gas mass flow and / or the exhaust gas mass temperature of the internal combustion engine, which have been previously determined, adjusted so that optimal use of the waste heat of the internal combustion engine is ensured.
  • the supply of waste heat from the current driving state such as the traffic situation, the load, the slope, the driving speed, etc. dependent and therefore subject to strong fluctuations.
  • the volumetric flow of the expansion machine must be continuously adjusted to the amount of heat that is emitted by the internal combustion engine.
  • An inventive method allows rapid adaptation of the parameters of the working medium of the thermodynamic process to a modified Abeben on the internal combustion engine and thus ensures optimal use of waste heat of the internal combustion engine.
  • the procedure also assumes functions that ensure the safety of the vehicle, the system and the system components of the thermodynamic process. Safety-relevant events are detected by suitable process control and result in a corresponding reaction of the system.
  • the parameters of the working medium of the thermodynamic process are preferably selected from the group comprising the mass and volume flow, the evaporation pressure and the superheating temperature of the working medium.
  • the exhaust gas mass flows and temperatures of the internal combustion engine optionally include the mass flows and exhaust gas recirculation temperatures.
  • the process control of the thermodynamic process can be adapted as quickly as possible to each new thermal boundary conditions of the internal combustion engine
  • the new boundary conditions such as exhaust gas temperature, mass flow of exhaust gas recirculation and the temperature of the exhaust gas recirculation of the internal combustion engine process control or the process control of the thermodynamic process must be known to achieve the best possible precontrol of the thermodynamic process or the process parameters.
  • the control strategies preferably operate with model-based structures, which enable a knowledge or a precise estimation of the exhaust gas mass flows and temperatures as well as the exhaust gas recirculation mass flows and temperatures.
  • This information may be transmitted via an electrical interface, such as a CAN bus, a k-Line, a Flex-Ray, or any other interface, be transmitted from the engine control unit to the controller of the ORC process to achieve the fastest possible pre-control of the thermodynamic process.
  • an electrical interface such as a CAN bus, a k-Line, a Flex-Ray, or any other interface
  • control or the pilot control of the ORC process can also be taken over by the engine control unit (or) or integrated into the regulation and control of the internal combustion engine.
  • the engine control unit or integrated into the regulation and control of the internal combustion engine.
  • thermodynamic process or the resulting power output to the internal combustion engine are transmitted as parameters to the control functions of the internal combustion engine.
  • both the power and the torque of the expansion machine can be calculated and integrated as an input into the functionality of the engine control (torque path).
  • a working fluid having a "bell-shaped" course of boiling and condensation line such as water
  • the fluid after expansion is at least partially in the liquid state when a turbine is used as an expansion machine, or to reduce the formation of condensate to a predetermined level, in a piston expander, for example, only a certain amount of condensate formation is permitted during expansion, the control or operating strategy ensures a defined overheating temperature the required overheating temperature depends on the evaporation pressure as well as the quality of the expansion (heat losses, quality of the adiabatic expansion, ).
  • a volume flow control of the evaporation pressure and the pressure of the working fluid (feed pressure) and the superheat temperature must be monitored and ensured by the control of the thermodynamic process.
  • the volume flow which can be converted by an expansion engine, which is firmly connected to the crankshaft of the internal combustion engine, is directly proportional to the speed.
  • the vapor volume flow of the working medium is dependent on the transmittable heat quantity from the exhaust gas streams, the evaporation pressure, the superheating temperature and the working fluid used.
  • the steam volume flow of the working medium is adapted to the possibilities of the expansion machine. This results in the required values for the evaporation pressure and the superheat temperature of the working medium, which must be adjusted.
  • the task of the operating strategy is to adjust the volume flow of the steam, ie to ensure the evaporation pressure and the overheating temperature.
  • the mass flow of the still liquid working medium which is compressed by the pump to the evaporation pressure, must be adapted to the boundary conditions described above.
  • the required delivery volume can be determined from the speed. In this case, to be funded by the pump amount of working fluid from the
  • Conditioner be calculated because ideally the superheat temperature and the pressure in the evaporator are detected by sensors.
  • variable ratio expansion machine When the variable ratio expansion machine is coupled to the crankshaft of the engine, the current transmission ratio must be known and taken into account for volume flow calculation and control. If a planetary gear is used for the power split of the power obtained from the thermodynamic process, the current speed of the expansion machine from the load of the ancillaries (or their speed) and the engine speed can be calculated.
  • the heat output of the internal combustion engine is sufficiently large, such as in full load operation, for example, and the evaporation pressure is already on the maximum possible pressure level, which is also limited by the strength of the components, has been increased, it can be controlled with the help of a bypass valve, part of the amount of steam drained or controlled.
  • the specific volume of steam generated can be reduced.
  • the expansion machine can be supplied with a larger vapor mass.
  • the physical effects of heat transfer i. be considered in the evaporation of the working fluid in the heat exchangers.
  • the working medium for the ORC process contains combustible materials, such as Ethanol, it can be in an implausible increase in the temperature of the exhaust gas recirculation close to a chemical reaction of the working substance. This in turn means that the working fluid from the heat exchanger has penetrated into the air system of the internal combustion engine and there is a leak on the steam side of the process. This can happen even if there is still no drop in the feed pressure.
  • combustible materials such as Ethanol
  • Switching off the system means that the pump is either switched off or the feed pressure is set to a minimum value.
  • An existing bypass valve (“overflow valve”) is opened (in the most favorable case, the bypass valve is opened without activation) so that the evaporators are no longer supplied with fluid and the fluid still in the evaporators is emptied into the condenser as quickly as possible If necessary, the pump can be switched over to suction mode and thus assist in emptying the system
  • An existing bypass valve (“overflow valve”) is opened (in the most favorable case, the bypass valve is opened without activation) so that the evaporators are no longer supplied with fluid and the fluid still in the evaporators is emptied into the condenser as quickly as possible
  • the pump can be switched over to suction mode and thus assist in emptying the system The method is explained in more detail below with reference to the attached FIGURE.
  • the figure shows a schematic representation of a device for waste heat utilization of an internal combustion engine (internal combustion engine) 2 with a thermodynamic working group 4, in which a working medium circulates.
  • a thermodynamic working group 4 in the flow direction of the working medium, a heat exchanger 8, an expansion machine 10, a condenser 12 and a pump 6 are arranged.
  • the internal combustion engine 2 is connected via a preferably multi-pole control line 35 with an engine control unit 21, which is designed to control the operation of the internal combustion engine 2.
  • the internal combustion engine 2 may in particular be configured as an air-compressing, self-igniting or mixture-compressing, spark-ignited internal combustion engine 2.
  • the device is suitable for waste heat utilization for applications in motor vehicles with a gasoline or diesel engine.
  • a device according to the invention for the use of waste heat is also suitable for other applications.
  • the internal combustion engine 2 burns fuel to generate mechanical energy.
  • the resulting exhaust gases are discharged via an exhaust line 22, in which a not shown in the figure 1 exhaust gas catalyst and / or particulate filter can be arranged.
  • At least one line section of the exhaust line 22 is passed through a heat exchanger 8.
  • Heat energy from the exhaust gases or the exhaust gas recirculation is transmitted via the line section of the exhaust line 22 in the heat exchanger 8 to a working medium of the thermodynamic working circuit 4, so that the working fluid is heated in the heat exchanger 8.
  • the properties of the working medium and the operating parameters of the heat exchanger 8 can be selected so that the working medium evaporates due to the heat energy supplied.
  • an exhaust gas sensor 44 is mounted on the exhaust line 22, which is designed to measure the exhaust gas mass flow and / or the temperature of the exhaust gases flowing through the exhaust line 22 and via an exhaust gas signal line 46 to transfer a work cycle control unit 3.
  • the function of the work circuit controller 3 will be described later.
  • the heat exchanger 8 of the thermodynamic working circuit 4 is connected via a fluid line 26 to the expansion machine 10.
  • the expansion machine 10 may be configured, for example, as a turbine or as a piston engine. Through the fluid line 26, the heated working fluid flows to the expansion machine 10 and drives it.
  • the expansion machine 10 has a drive shaft 1 1, which rotates during operation and thereby outputs the mechanical energy generated by the expansion machine 10. After the working medium has flowed through the expansion machine 10, it is guided via a fluid line 28 to a condenser 12.
  • the relaxed in the expansion machine 10 working fluid is cooled in the condenser 12 and possibly liquefied.
  • the condenser 12 may be connected to a cooling circuit 20 in order to remove the heat from the working medium in a particularly effective manner.
  • This cooling circuit 20 may be, for example, the cooling circuit of the internal combustion engine 2.
  • the cooled in the condenser 12 working fluid is through the line 29 from a fluid pump 6 in the
  • a pressure control valve 27 which serves to regulate the pressure of the working fluid in the inlet to the heat exchanger 8.
  • the evaporation temperature of the working medium can be regulated by means of the pressure set by the pressure regulating valve 27 in the inlet to the heat exchanger 8.
  • a bypass connection 31 is provided, in which a pressure relief valve 30 is arranged.
  • the pressure relief valve 30 the maximum allowable pressure of the working medium in the area between the pump 6 and heat exchanger 8 limit.
  • the fluid line 24 leads directly into the heat exchanger 8, in which the working medium is heated and optionally evaporated or superheated. Via the fluid line 26, the heated working medium returns to the expansion machine 10 and the working medium again flows through the thermodynamic working circuit 4, as has been previously described.
  • the pump 6 and the expansion machine 10 is the direction in which the
  • thermodynamic working circuit 4 Working fluid through the thermodynamic working circuit 4 flows determined.
  • the exhaust gases and the components of the exhaust gas recirculation of the internal combustion engine 2 via the heat exchanger 8 continuously heat energy can be withdrawn, which is delivered after the conversion by the expansion machine 10 in the form of mechanical energy through the shaft 1 1.
  • thermodynamic working group 4 water or another fluid that meets the thermodynamic requirements can be used.
  • the working medium learns when flowing through the thermodynamic working group 4 preferably thermodynamic state changes.
  • the working medium is brought by the pump 6 to the pressure level necessary for the evaporation.
  • the heat energy of the exhaust gases is discharged through the heat exchanger 8 to the working medium.
  • the working medium is isobarically evaporated and then overheated.
  • the steam 10 is adiabatically released. This mechanical energy is obtained and transmitted to the shaft 1 1.
  • the working medium is cooled in the condenser 12 and condensed and then fed back to the pump 6.
  • thermodynamic working group 4 is also a bypass connection 14, which is connected in parallel to the expansion machine 10.
  • the bypass connection 14 establishes a connection between the fluid line 26 between the heat exchanger 8 and the expansion machine 10 and the fluid line 28 between the expansion machine 10 and the condenser 12.
  • another bypass pressure control valve 16 is arranged in the bypass connection 14.
  • the further Bypasstikregel- valve 16 may also be a pressure relief valve 32 in the bypass connection 14.
  • the thermodynamic working group 4 has a working circuit control unit 3, which is connected via electrical control lines 36, 38, 40, 42, which may be formed in one or more poles, with the bypass pressure control valve 16, the pressure relief valve 30, the pressure control valve 27 and the pump 6 in order to suitably control or regulate these on the basis of the mass flow measured by the exhaust gas sensor 44 on the exhaust gas line 22 and / or the temperature of the exhaust gases in the exhaust gas line 22 and thus optimally adjust the parameters of the working medium circulating in the thermodynamic working circuit 4.
  • the working-circuit control device 3 is connected to the engine control unit 21 via a preferably multipolar data connection line 34.
  • This allows a data exchange between the working-circuit control unit 3 and the engine control unit 21 in order to operate the internal combustion engine 2 taking into account the operating parameters of the thermodynamic working group 4 and on the other hand parameters of the engine control 21 in the operation of the thermodynamic working group 4 to take into account.
  • the operation of the internal combustion engine 2 and the operation of the thermodynamic working group 4 can be optimally matched to each other to operate the internal combustion engine 2 with the lowest possible energy consumption particularly efficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Ein Verfahren des Betreibens eines thermodynamischen Arbeitskreises (4) zur Nutzung der Abwärme eines Verbrennungsmotors (2), wobei im thermodynamischen Arbeitskreis (4) ein Arbeitsmedium zirkuliert, schließt ein, wenigstens einen Abgasmassenstrom und/oder wenigstens eine Abgastemperatur des Verbrennungsmotors (2) zu ermitteln; und wenigstens einen Parameter des Arbeitsmediums im thermodynamischen Arbeitskreis (4) auf Basis des zuvor ermittelten Abgasmassenstromes und/oder der zuvor ermittelten Abgasmassentemperatur des Verbrennungsmotors (2) einzustellen.

Description

Beschreibung
Titel
VERFAHREN UND THERMODYNAMISCHER ARBEITSKREIS ZUR NUTZUNG DER ABWÄRME EINER BRENNKRAFTMASCHINE
Die Erfindung betrifft ein Verfahren des Betreibens eines thermodynamischen
Arbeitskreises zur Nutzung der Abwärme einer Brennkraftmaschine. Stand der Technik
Systeme zur Nutzung der Abwärme von Brennkraftmaschinen sind bisher nur für stationäre Motoren bzw. Großmotoren im Einsatz. Die Wandlung der thermischen Energie in mechanische Energie geschieht vorzugsweise in einem ORC-Prozess (Organic Rankine Cycle). Ein flüssiges Arbeitsmedium wird bis auf den Arbeitsdruck verdichtet und zu wenigstens einem
Wärmetauscher gefördert. Dabei wird die Abwärme aus dem Abgas bzw. der
Abgasrückführung über den oder die Wärmetauscher an das Arbeitsmedium des
ORC-Prozesses übertragen, das dadurch verdampft wird. Der Dampf wird in einer Expansionsmaschine entspannt, wobei mechanische Energie gewonnen
wird. Als Expansionsmaschinen kommen dabei vorzugsweise Kolbenmaschinen oder Turbinen zum Einsatz. Die von der Expansionsmaschine erzeugte mechanische Energie kann entweder direkt oder über ein Getriebe an die Kurbelwelle des Verbrennungsmotors abgegeben werden. Alternativ kann die aus dem thermodynamischen Prozess erzeugte Energie durch einen Generator in elektrische Energie umgewandelt werden. Durch die Nutzung der von der Expansionsmaschine erzeugten Energie
kann der Kraftstoffverbrauch gesenkt und/oder die vom Verbrennungsmotor abgegebene Leistung gesteigert werden.
Aus DE 10 2006 057 247 A1 ist eine Aufladeeinrichtung bekannt, die zur Nutzung der Abwärme einer Brennkraftmaschine dient. Am Abgastrakt der Brenn- kraftmaschine ist mindestens ein Wärmetauscher eines thermodynamischen
Kreislaufes mit einem Arbeitsmedium angebracht. In dem Kreislauf sind außerdem ein Turbinenteil und ein Förderaggregat angeordnet. Über das Turbinenteil wird ein im Ansaugtrakt der Verbrennungskraftmaschine angeordnetes Verdichterteil angetrieben.
Offenbarung der Erfindung
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur verbesserten Nutzung der Abwärme einer Brennkraftmaschine bereitzustellen.
Die Aufgabe wird durch ein erfindungsgemäßes Verfahren des Betreibens eines thermodynamischen Arbeitskreises zur Nutzung der Abwärme eines Verbrennungsmotors gelöst, wobei der thermodynamische Arbeitskreis eine Pumpe, einen Wärmetauscher, eine Expansionsmaschine, einen Kondensator und ein Arbeitsmedium aufweist, das im Betrieb durch den Arbeitskreis zirkuliert. In einem ersten Schritt des Verfahrens wird wenigstens ein Abgasmassenstrom und/oder wenigstens eine Abgastemperatur der Abgase des Verbrennungsmotors ermittelt.
In einem zweiten Schritt wird wenigstens ein Parameter des Arbeitsmediums im thermodynamischen Arbeitskreis auf Basis des Abgasmassenstromes und/oder der Abgasmassentemperatur des Verbrennungsmotors, die zuvor ermittelt worden sind, so eingestellt, dass eine optimale Nutzung der Abwärme des Verbrennungsmotors gewährleistet ist.
Insbesondere bei mobilen Anwendungen ist das Angebot an Abwärme vom aktuellen Fahrzustand, wie z.B. der Verkehrssituation, der Beladung, der Steigung, der Fahrgeschwindigkeit usw. abhängig und daher starken Schwankungen unterworfen. Um die Abwärme optimal zu nutzen, muss der Volumenstrom der Expansionsmaschine fortlaufend an die jeweils vom Verbrennungsmotor abgegebene Wärmemenge angepasst werden.
Ein erfindungsgemäßes Verfahren ermöglicht eine schnelle Anpassung der Parameter des Arbeitsmediums des thermodynamischen Prozesses an ein verändertes Abwärmeangebot des Verbrennungsmotors und stellt somit eine optimale Nutzung der Abwärme des Verbrennungsmotors sicher. Gleichzeitig übernimmt das Verfahren auch Funktionen, welche die Sicherheit des Fahrzeugs, des Systems sowie der Systemkomponenten des thermodyna- mischen Prozesses gewährleisten. Sicherheitsrelevante Ereignisse werden über eine geeignete Prozessführung erkannt und haben eine entsprechende Reaktion des Systems zur Folge.
Die Parameter des Arbeitsmediums des thermodynamischen Prozesses sind vorzugsweise aus der Gruppe ausgewählt, die den Massen- und Volumenstrom, den Verdampfungsdruck und die Überhitzungstemperatur des Arbeitsmediums umfasst. Die Abgasmassenströme und -temperaturen des Verbrennungsmotors schließen ggf. die Massenströme und Temperaturen der Abgasrückführung mit ein.
Damit die Prozessführung des thermodynamischen Prozesses schnellstmöglich auf jeweils neue thermische Randbedingungen des Verbrennungsmotors ange- passt werden kann, müssen die neuen Randbedingungen wie Abgastemperatur, Massenstrom der Abgasrückführung und die Temperatur der Abgasrückführung des Verbrennungsmotors der Prozessregelung bzw. der Prozesssteuerung des thermodynamischen Prozesses bekannt sein, um eine bestmögliche Vorsteuerung des thermodynamischen Prozesses bzw. der Prozessparameter zu erreichen. Die Regelstrategien arbeiten vorzugsweise mit modellbasierten Strukturen, welche eine Kenntnis bzw. eine präzise Abschätzung der Abgasmassenströme und -temperaturen sowie der Abgasrückführmassenströme und -temperaturen ermöglichen.
Diese Informationen können über eine elektrische Schnittstelle, wie z.B. eine CAN-Bus, eine k-Line, ein Flex-Ray, oder eine andere Schnittstelle, vom Motorsteuergerät an die Steuerung des ORC-Prozesses übermittelt werden, um eine schnellstmögliche Vorsteuerung des thermodynamischen Prozesses zu erreichen.
Alternativ kann die Regelung bzw. die Vorsteuerung des ORC-Prozesses auch vom Motorsteuergerät (mit)übernommen werden bzw. in die Regelung und Steuerung des Verbrennungsmotors integriert werden. Auch hierbei ist es erforder- lieh, die entsprechenden Informationen über den Abgasmassenstrom und/oder die Abgastemperatur und die Informationen über die Abgasrückführung des Verbrennungsmotors an die Funktionen, welche für die Regelung und Steuerung des thermodynamischen Prozesses zuständig sind, zu übermitteln.
Für eine bestmögliche Performance des Verbrennungsmotors ist es erforderlich, dass die Prozessparameter des thermodynamischen Prozesses bzw. die daraus resultierende Leistungsabgabe an den Verbrennungsmotor als Parameter an die Regelfunktionen des Verbrennungsmotors übermittelt werden. Damit können sowohl die Leistung als auch das Drehmoment der Expansionsmaschine berechnet und als Eingangsgröße in die Funktionalität der Motorsteuerung (Momentenpfad) integriert werden.
Wird ein sogenanntes„trockenexpandierendes" Arbeitsmedium verwendet (wie z.B. fast alle gängigen Kältemittel oder Silikonöle), so ist nach dem Vorwärmen und Verdampfen des Arbeitsfluids keine zusätzliche Überhitzung erforderlich, da das Arbeitsfluid nach der Expansion vollständig dampfförmig bleibt und keine Beschädigung der Expansionsmaschine durch„Wasserschlag" oder durch Tropfenabrassion erfolgen kann.
Wird ein Arbeitsfluid mit einem„glockenförmigen" Verlauf der Siede- und Kondensationslinie, wie z.B. Wasser, verwendet, so ist es möglich, dass das Fluid nach der Expansion wenigstens teilweise im flüssigen Zustand vorliegt. Um eine Kondensatbildung gänzlich zu vermeiden, wie es insbesondere erforderlich ist, wenn eine Turbine als Expansionsmaschine verwendet wird, oder die Kondensatbildung auf ein vorgegebenes Maß zu reduzieren, bei einem Kolbenexpander darf beispielsweise während der Expansion nur ein bestimmter Anteil an Kondensatbildung zugelassen werden, stellt die Regelung bzw. die Betriebsstrategie eine definierte Überhitzungstemperatur sicher. Die erforderliche Überhitzungs- temperatur ist abhängig vom Verdampfungsdruck sowie von der Güte der Expansion (Wärmeverluste, Güte der adiabatischen Expansion, ...).
Weiterhin müssen für eine Volumenstromregelung der Verdampfungsdruck bzw. der Druck des Arbeitsfluids (Speisedruck) und die Überhitzungstemperatur von der Regelung des thermodynamischen Prozesses überwacht und sichergestellt werden. Der Volumenstrom, der von einer Expansionsmaschine, die fest mit der Kurbelwelle des Verbrennungsmotors verbunden ist, umgesetzt werden kann, ist direkt proportional zur Drehzahl. Der Dampfvolumenstrom des Arbeitsmediums ist ab- hängig von der übertragbaren Wärmemenge aus den Abgasströmen, dem Verdampfungsdruck, der Überhitzungstemperatur und dem verwendeten Arbeitsflu- id. Um die größtmögliche Energieausbeute zu erreichen, ist es erforderlich, dass der Dampfvolumenstrom des Arbeitsmediums an die Möglichkeiten der Expansionsmaschine angepasst wird. Daraus ergeben sich die erforderlichen Werte für den Verdampfungsdruck und die Überhitzungstemperatur des Arbeitsmediums, welche eingestellt werden müssen. Die Aufgabe der Betriebsstrategie ist es, den Volumenstrom des Dampfes einzuregeln, d.h. den Verdampfungsdruck und die Überhitzungstemperatur sicherzustellen. Parallel dazu muss der Massenstrom des noch flüssigen Arbeitsmediums, welches von der Pumpe auf den Verdampfungsdruck verdichtet wird, an die zuvor beschriebenen Randbedingungen angepasst werden. Bei einer direkten Kopplung der Expansionsmaschine mit der Kurbelwelle des Verbrennungsmotors kann das erforderliche Fördervolumen aus der Drehzahl bestimmt werden. Dabei kann die von der Pumpe zu fördernde Menge des Arbeitsmediums aus dessen
Zustandsgieichung berechnet werden, da idealerweise die Überhitzungstemperatur und der Druck im Verdampfer mittels Sensoren erfasst werden.
Wird die Expansionsmaschine mit veränderlichem Übersetzungsverhältnis an die Kurbelwelle des Motors gekoppelt, so muss für eine Volumenstromberechnung und -regelung das aktuelle Übersetzungsverhältnis bekannt sein und berücksichtigt werden. Wird ein Planetengetriebe für die Leistungsverzweigung der aus dem thermodynamischen Prozess gewonnenen Leistung eingesetzt, so kann die aktuelle Drehzahl der Expansionsmaschine aus der Last der Nebenaggregate (oder deren Drehzahl) sowie der Motordrehzahl berechnet werden.
Maximierung der Leistungsabgabe:
Ist das Abwärmeangebot des Verbrennungsmotors ausreichend groß, wie bei- spielsweise im Volllastbetrieb, und der Verdampfungsdruck ist bereits auf das maximal mögliche Druckniveau, das auch durch die Festigkeit der Komponenten begrenzt wird, gesteigert worden, so kann mit Hilfe eines Bypassventils ein Teil der Dampfmenge kontrolliert abgelassen bzw. abgesteuert werden. Dies führt bei konstant gehaltenem Verdampfungsdruck zu einer Zunahme des Fluidmas- senstroms und damit zu einer Verringerung der Überhitzungstemperatur. Mit sinkender Überhitzungstemperatur kann das spezifische Volumen des erzeugten Dampfs reduziert werden. So kann der Expansionsmaschine eine größere Dampfmasse zugeführt werden. Obwohl die spezifische Enthalpie des Dampfes durch die Reduktion der Überhitzung ebenfalls reduziert wird, nimmt aufgrund der abgesenkten Temperatur auch das spezifische Volumen ab, so dass in Summe der Expansionsmaschine ein größerer Massestrom an Arbeitsfluid zugeführt werden kann. Dies führt, abhängig von dem verwendeten Arbeitsfluid, zu einer Zunahme der absoluten Enthalpie, welche pro Zeiteinheit von der Expansionsmaschine umgesetzt werden kann und hat somit auch eine Steigerung der Energieausbeute der Expansionsmaschine zur Folge.
Je nach Arbeitsmedium müssen auch die physikalischen Effekte bei der Wärmeübertragung d.h. bei der Verdampfung des Arbeitsmediums in den Wärmetauschern berücksichtigt werden.
Aufgrund des Phasenübergangs des Arbeitsmediums des thermodynamischen Prozesses von der flüssigen in die dampfförmige Phase kann es in Abhängigkeit von der spezifischen Verdampfungsenthalpie des eingesetzten Arbeitsfluids zu einer Beschränkung der Wärmeübertragung kommen. Dieser Effekt wird in der Literatur als„Pinch-Point-Effekt" beschrieben. Der„Pinch-Point" ist die minimale, bei der Wärmeübertragung von einem Medium auf das andere auftretende Temperaturdifferenz. Dieser Punkt kann auch im Inneren eines Wärmetauschers liegen. Um den optimalen Verdampfungsdruck des zu verdampfenden Arbeitsmediums zu bestimmen, ist es erforderlich, dass dieser Effekt von der Betriebsstrategie bei der Berechnung der maximal übertragbaren Wärmemenge und somit bei der Berechnung des Volumenstroms des Arbeitsfluids berücksichtigt wird.
Auch sind Druckverluste, die beim Durchströmen der Wärmetauscher unvermeidlich sind, zu korrigieren bzw. von der Pumpe bzw. der Druckregelung vorzuhalten. Falls eine Druckmessung auf der heißen Seite, d.h. nach dem Verdampfer, vorgenommen wird, kann die Regelung direkt auf diese Messgröße erfolgen. Allerdings ist eine Druckmessung bei hohen Temperaturen mit großen Kosten und kurzen Lebensdauern des Sensors verbunden. Sicherheitsüberwachung, Fehlererkennung und Notabschaltung sind ebenfalls wichtige Aufgaben und Funktionen der Betriebsstrategie.
Enthält das Arbeitmedium für den ORC-Prozess brennbare Stoffe, wie z.B. Ethanol, so kann man bei einer unplausiblen Erhöhung der Temperatur der Abgas- rückführung auf eine chemische Umsetzung des Arbeitsstoffes schließen. Das wiederum bedeutet, dass das Arbeitsfluid aus dem Wärmetauscher in das Luftsystem des Verbrennungsmotors eingedrungen ist und eine Leckage auf der Dampfseite des Prozesses vorliegt. Dies kann selbst dann geschehen, wenn noch kein Abfall des Speisedrucks erkennbar ist.
Kommt es zu einem unplausiblen Abfall des Speisedrucks, so kann dies ebenfalls auf eine undichte Stelle im System bzw. eine Leckage hindeuten. Werden brennbare Arbeitsfluide verwendet, ist eine Abschaltung des Systems erforderlich, um die Gefahr einer Entzündung zu reduzieren.
Abschaltung des Systems bedeutet, dass die Pumpe entweder abgeschaltet oder der Speisedruck auf einen minimalen Wert eingestellt wird. Ein vorhandenes By- passventil („overflow valve") wird geöffnet (im günstigsten Fall ist das Bypassven- til ohne Ansteuerung geöffnet), so dass die Verdampfer nicht weiter mit Fluid versorgt werden und das noch in den Verdampfern befindliche Fluid schnellstmöglich in den Kondensator entleert und dort gekühlt wird. Eventuell kann die Pumpe auf Saugbetrieb umgeschaltet werden und so bei der Entleerung des Systems mithelfen. Das Verfahren wird im Folgenden anhand der beigefügten Figur näher erläutert.
Die Figur zeigt eine schematische Darstellung einer Vorrichtung zur Abwärmenutzung einer Brennkraftmaschine (Verbrennungsmotor) 2 mit einem thermody- namischen Arbeitskreis 4, in dem ein Arbeitsmedium zirkuliert. Im thermodyna- mischen Arbeitskreis 4 sind in Strömungsrichtung des Arbeitsmediums ein Wär- metauscher 8, eine Expansionsmaschine 10, ein Kondensator 12 und eine Pumpe 6 angeordnet.
Die Brennkraftmaschine 2 ist über eine vorzugsweise mehrpolig ausgebildete Steuerleitung 35 mit einem Motorsteuergerät 21 verbunden, das ausgebildet ist, um den Betrieb der Brennkraftmaschine 2 zu steuern. Die Brennkraftmaschine 2 kann insbesondere als luftverdichtende, selbstzündende oder gemischverdichtende, fremdgezündete Brennkraftmaschine 2 ausgestaltet sein. Speziell eignet sich die Vorrichtung zur Abwärmenutzung für Anwendungen bei Kraftfahrzeugen mit einem Otto- oder Dieselmotor. Eine erfindungsgemäße Vorrichtung zur Abwärmenutzung ist aber auch für andere Anwendungen geeignet.
Die Brennkraftmaschine 2 verbrennt Brennstoff, um mechanische Energie zu erzeugen. Die hierbei entstehenden Abgase werden über einen Abgasstrang 22, in der ein in der Figur 1 nicht gezeigter Abgaskatalysator und/oder Partikelfilter angeordnet sein kann, ausgestoßen. Wenigstens ein Leitungsabschnitt des Abgasstrangs 22 ist durch einen Wärmetauscher 8 geführt. Wärmeenergie aus den Abgasen oder der Abgasrückführung wird über den Leitungsabschnitt des Abgasstrangs 22 im Wärmetauscher 8 an ein Arbeitsmedium des thermodynamischen Arbeitskreises 4 übertragen, so dass das Arbeitsmedium im Wärmetauscher 8 erwärmt wird. Insbesondere können die Eigenschaften des Arbeitsmediums und die Betriebsparameter des Wärmetauschers 8 so gewählt werden, dass das Arbeitsmedium aufgrund der zugeführten Wärmeenergie verdampft.
Zwischen der Brennkraftmaschine 2 und dem Wärmetauscher 8 ist an dem Abgasstrang 22 ein Abgassensor 44 angebracht, der ausgebildet ist, um den Abgasmassenstrom und/oder die Temperatur der Abgase, die durch den Abgasstrang 22 strömen, zu messen und über eine Abgas-Signalleitung 46 an ein Arbeitskreissteuergerät 3 zu übertragen. Die Funktion des Arbeitskreissteuergeräts 3 wird später beschrieben.
Der Wärmetauscher 8 des thermodynamischen Arbeitskreises 4 ist über eine Fluidleitung 26 mit der Expansionsmaschine 10 verbunden. Die Expansionsmaschine 10 kann beispielsweise als Turbine oder als Kolbenmaschine ausgestaltet sein. Durch die Fluidleitung 26 strömt das erwärmte Arbeitsmedium zur Expansionsmaschine 10 und treibt diese an. Die Expansionsmaschine 10 weist eine Antriebswelle 1 1 auf, die im Betrieb rotiert und dabei die von der Expansionsmaschine 10 erzeugte mechanische Energie ausgibt. Nachdem das Arbeitsmedium durch die Expansionsmaschine 10 geströmt ist, wird es über eine Fluidleitung 28 zu einem Kondensator 12 geführt. Das in der Expansionsmaschine 10 entspannte Arbeitsmedium wird im Kondensator 12 abgekühlt und ggf. verflüssigt. Der Kondensator 12 kann mit einem Kühlkreislauf 20 verbunden sein, um die Wärme aus dem Arbeitsmedium besonders effektiv abzuführen. Bei diesem Kühlkreislauf 20 kann es sich z.B. um den Kühlkreislauf der Brennkraftmaschine 2 handeln. Das im Kondensator 12 abge- kühlte Arbeitsmedium wird durch die Leitung 29 von einer Fluidpumpe 6 in die
Fluidleitung 24 gefördert.
In der Fluidleitung 24 befindet sich stromaufwärts der Fluidpumpe 6 ein Druckregelventil 27, das zur Regelung des Drucks des Arbeitsmediums im Zulauf zum Wärmetauscher 8 dient. Die Verdampfungstemperatur des Arbeitsmediums lässt sich mit Hilfe des durch das Druckregelventil 27 eingestellten Druckes im Zulauf zum Wärmetauscher 8 regulieren.
Zusätzlich ist parallel zur Pumpe 6 eine Bypassverbindung 31 vorgesehen, in der ein Überdruckventil 30 angeordnet ist. Durch das Überdruckventil 30 lässt sich der maximal zulässige Druck des Arbeitsmediums im Bereich zwischen Pumpe 6 und Wärmetauscher 8 begrenzen.
Die Fluidleitung 24 führt direkt in den Wärmetauscher 8, in dem das Arbeitsmedium erwärmt und gegebenenfalls verdampft bzw. überhitzt wird. Über die Fluidleitung 26 gelangt das erwärmte Arbeitsmedium wieder zur Expansionsmaschine 10 und das Arbeitsmedium durchströmt erneut den thermodynamischen Arbeitskreis 4, wie es zuvor beschrieben worden ist. Durch die Pumpe 6 und die Expansionsmaschine 10 ist die Richtung, in der das
Arbeitsmedium durch den thermodynamischen Arbeitskreis 4 strömt, festgelegt. Somit kann den Abgasen und den Bestandteilen der Abgasrückführung der Brennkraftmaschine 2 über den Wärmetauscher 8 fortwährend Wärmeenergie entzogen werden, die nach der Umwandlung durch die Expansionsmaschine 10 in Form von mechanischer Energie über die Welle 1 1 abgegeben wird.
Als Arbeitsmedium kann Wasser oder ein anderes Fluid, das den thermodynamischen Anforderungen entspricht, eingesetzt werden. Das Arbeitsmedium erfährt beim Durchströmen des thermodynamischen Arbeitskreises 4 vorzugsweise thermodynamische Zustandsänderungen. In der flüssigen Phase wird das Arbeitsmedium durch die Pumpe 6 auf das für die Verdampfung notwendige Druckniveau gebracht. Anschließend wird die Wärmeenergie der Abgase über den Wärmetauscher 8 an das Arbeitsmedium abgegeben. Dabei wird das Arbeitsmedium isobar verdampft und anschließend überhitzt. In der Expansionsmaschine wird der Dampf 10 adiabatisch entspannt. Dabei wird mechanische Energie gewonnen und auf die Welle 1 1 übertragen. Das Arbeitsmedium wird im Kondensator 12 abgekühlt und kondensiert und dann wieder der Pumpe 6 zuge- führt.
Im thermodynamischen Arbeitskreis 4 befindet sich auch eine Bypassverbindung 14, die parallel zur Expansionsmaschine 10 geschaltet ist. Die Bypassverbindung 14 stellt eine Verbindung zwischen der Fluidleitung 26 zwischen Wärmetauscher 8 und Expansionsmaschine 10 und der Fluidleitung 28 zwischen Expansionsmaschine 10 und Kondensator 12 her. In der Bypassverbindung 14 ist ein weiteres Bypassdruckregelventil 16 angeordnet. Anstelle des weiteren Bypassdruckregel- ventils 16 kann sich auch ein Druckbegrenzungsventil 32 in der Bypassverbindung 14 befinden. Durch Öffnen des Bypassdruckregelventils 16 kann das Ar- beitsmedium an der Expansionsmaschine 10 vorbei direkt vom Wärmetauscher 8 zum Kondensator 12 geleitet werden, um bei hohem Druck im Arbeitskreis 4 Schäden an Bauteilen der Leitung 26 und/oder der Expansionsmaschine 10 zu verhindern. Der thermodynamische Arbeitskreis 4 weist ein Arbeitskreissteuergerät 3 auf, das über elektrische Steuerleitungen 36, 38, 40, 42, die jeweils ein- oder mehrpolig ausgebildet sein können, mit dem Bypassdruckregelventil 16, dem Überdruckventil 30, dem Druckregelventil 27 und der Pumpe 6 verbunden ist, um diese auf der Basis des von dem Abgassensor 44 am Abgasstrang 22 gemessenen Mas- senstromes und/oder der Temperatur der Abgase im Abgasstrang 22 geeignet anzusteuern bzw. zu regeln und so die Parameter des im thermodynamischen Arbeitskreis 4 zirkulierenden Arbeitsmediums optimal einzustellen.
Das Arbeitskreissteuergerät 3 ist über eine vorzugsweise mehrpolig ausgebildete Datenverbindungsleitung 34 mit dem Motorsteuergerät 21 verbunden. Dies ermöglicht einen Datenaustausch zwischen dem Arbeitskreissteuergerät 3 und dem Motorsteuergerät 21 , um die Brennkraftmaschine 2 unter Berücksichtigung der Betriebsparameter des thermodynamischen Arbeitskreises 4 zu betreiben und andererseits Parameter der Motorsteuerung 21 beim Betreiben des thermo- dynamischen Arbeitskreises 4 zu berücksichtigen. Dadurch können der Betrieb der Brennkraftmaschine 2 und der Betrieb des thermodynamischen Arbeitskreises 4 optimal aufeinander abgestimmt werden, um die Brennkraftmaschine 2 mit einem möglichst niedrigen Energieverbrauch besonders effizient zu betreiben.

Claims

Patentansprüche
1 . Verfahren des Betreibens eines thermodynamischen Arbeitskreises (4) zur Nutzung der Abwärme eines Verbrennungsmotors (2), wobei im thermodynamischen Arbeitskreis (4) ein Arbeitsmedium zirkuliert, dadurch gekennzeichnet, dass das Verfahren einschließt,
- wenigstens einen Abgasmassenstrom und/oder wenigstens eine Temperatur der Abgase des Verbrennungsmotors (2) zu ermitteln; und
- wenigstens einen Parameter des Arbeitsmediums im thermodynamischen Arbeitskreis (4) in Abhängigkeit von dem zuvor ermittelten Abgasmassenstrom und/oder der zuvor ermittelten Temperatur der Abgase des Verbrennungsmotors
(2) einzustellen.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Parameter des Arbeitsmediums aus der Gruppe ausgewählt ist, die den Massen- und Volumenstrom, den Verdampfungsdruck und die Überhitzungstemperatur des Arbeitsmediums umfasst.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Abgasmassenströme und -temperaturen des Verbrennungsmotors (2) Abgasrück- führungsmassenströme und -temperaturen einschließen.
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Parameter mit Hilfe eines mathematischen Modells berechnet werden, wobei Modell vorzugsweise physikalische Effekte, wie beispielsweise Phasenübergänge des Arbeitsmediums, berücksichtigt.
5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren einschließt,
den Verbrennungsmotor (2) durch ein Motorsteuergerät (21 ) zu steuern, den thermodynamischen Arbeitskreis (4) durch ein Arbeitskreissteuergerät (3) zu steuern, und
den Abgasmassenstromes bzw. die Abgasmassentemperatur des Verbrennungsmotors (2) von dem Motorsteuergerät (21 ) an das Arbeitskreissteuergerät
(3) zu übertragen.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Einstellen des Massen- und Volumenstromes, des Verdampfungsdrucks und der Überhitzungstemperatur des Arbeitsfluids im thermodynamischen Arbeits- kreis durch ein Motorsteuergerät (21 ) vorgenommen werden.
7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren einschließt, Betriebsparameter des thermodynamischen Arbeitskreises (4) an ein Motorsteuergerät (21 ) zu übertragen und zur Mo- torsteuerung (21 ) zu verwenden.
8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der thermodynamische Arbeitskreis (4) eine Expansionsmaschine (10) aufweist und das Verfahren einschließt, einen Teil des Arbeitsmediums im ther- modynamischen Arbeitskreis durch ein Bypass-Ventil (16) an der Expansionsmaschine (10) vorbei zu leiten.
9. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren einschließt, die Temperatur und/oder den Druck des Ar- beitsmediums im thermodynamischen Arbeitskreis (4) zu überwachen, wobei das Verfahren vorzugsweise einschließt, eine Pumpe (6) abzuschalten und/oder ein Bypass-Ventil (16) zu öffnen, wenn die Temperatur und/oder der Druck des Arbeitsmediums im thermodynamischen Arbeitskreis (4) einen jeweils vorgegebenen Wert überschreitet.
10. Thermodynamischer Arbeitskreis (4) zur Nutzung der Abwärme eines Verbrennungsmotors (2), wobei im Betrieb ein Arbeitsmedium durch den thermodynamischen Arbeitskreis (4) zirkuliert, dadurch gekennzeichnet, dass der thermodynamische Arbeitskreis (4) aufweist:
- wenigstens einen Sensor (4), der ausgebildet ist, einen Abgasmassenstrom und/oder wenigstens eine Abgastemperatur des Verbrennungsmotors (2) zu ermitteln; und
- ein Arbeitskreissteuergerät (3), das ausgebildet ist, wenigstens eine Komponente (6, 16, 30, 27) des thermodynamischen Arbeitskreises (4) anzusteuern, um wenigstens einen Parameter des im thermodynamischen Arbeitskreis (4) zirkulie- renden Arbeitsmediums auf Basis des zuvor ermittelten Abgasmassenstromes und/oder der zuvor ermittelten Abgasmassentemperatur des Verbrennungsmotors (2) einzustellen.
PCT/EP2012/057252 2011-05-24 2012-04-20 Verfahren und thermodynamischer arbeitskreis zur nutzung der abwärme einer brennkraftmaschine WO2012159829A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011076405.4 2011-05-24
DE102011076405A DE102011076405A1 (de) 2011-05-24 2011-05-24 Verfahren zur Nutzung der Abwärme einer Brennkraftmaschine

Publications (1)

Publication Number Publication Date
WO2012159829A1 true WO2012159829A1 (de) 2012-11-29

Family

ID=45998357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/057252 WO2012159829A1 (de) 2011-05-24 2012-04-20 Verfahren und thermodynamischer arbeitskreis zur nutzung der abwärme einer brennkraftmaschine

Country Status (2)

Country Link
DE (1) DE102011076405A1 (de)
WO (1) WO2012159829A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130192225A1 (en) * 2010-10-13 2013-08-01 Robert Bosch Gmbh Device and method for the recovery of waste heat of an internal combustion engine
CN113260775A (zh) * 2019-03-20 2021-08-13 斯堪尼亚商用车有限公司 控制单元、废热回收系统、包括这样的系统的运载工具以及用于启动废热回收系统的膨胀装置的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013222511A1 (de) * 2013-11-06 2015-05-07 Robert Bosch Gmbh Verfahren zum Betreiben eines Systems zur Energierückgewinnung aus einem Abwärmestrom einer Brennkraftmaschine
DE102014206033A1 (de) * 2014-03-31 2015-10-01 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben eines Systems für einen thermodynamischen Kreisprozess, Steuereinrichtung für ein System für einen thermodynamischen Kreisprozess, System, und Anordnung aus einer Brennkraftmaschine und einem System
FR3022580A1 (fr) * 2014-06-19 2015-12-25 Peugeot Citroen Automobiles Sa Dispositif de recuperation d'energie a boucle de rankine
DE102014225059B4 (de) 2014-12-05 2022-01-27 Robert Bosch Gmbh Verfahren zum Betrieb einer Abwärmenutzungsanordnung
FR3062715A1 (fr) * 2017-02-09 2018-08-10 Valeo Systemes Thermiques Procede de controle d'un echange thermique
CN114962055A (zh) * 2022-05-26 2022-08-30 一汽解放汽车有限公司 Orc余热回收系统、控制方法、装置、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1443183A1 (de) * 2001-10-09 2004-08-04 Honda Giken Kogyo Kabushiki Kaisha Rankinezyklusvorrichtung
US20060254276A1 (en) * 2005-03-11 2006-11-16 Honda Motor Co., Ltd. Rankine cycle system
DE102006057247A1 (de) 2006-12-05 2008-06-12 Robert Bosch Gmbh Aufladeeinrichtung
DE102008012907A1 (de) * 2008-03-06 2009-09-10 Daimler Ag Verfahren zum Gewinnen von Energie aus einem Abgasstrom sowie Kraftfahrzeug
DE102008019159A1 (de) * 2008-04-17 2009-10-22 Daimler Ag Kraftfahrzeug
CA2676502A1 (en) * 2009-08-24 2011-02-24 Victor Juchymenko Supplementary thermal energy transfer in thermal energy recovery systems
WO2012084922A1 (de) * 2010-12-21 2012-06-28 Robert Bosch Gmbh Verfahren und vorrichtung zur nutzung von abwärme einer wärmekraftmaschine
WO2012110893A1 (en) * 2011-02-17 2012-08-23 Toyota Jidosha Kabushiki Kaisha Abnormality detection apparatus and abnormality detection method for rankine cycle system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1443183A1 (de) * 2001-10-09 2004-08-04 Honda Giken Kogyo Kabushiki Kaisha Rankinezyklusvorrichtung
US20060254276A1 (en) * 2005-03-11 2006-11-16 Honda Motor Co., Ltd. Rankine cycle system
DE102006057247A1 (de) 2006-12-05 2008-06-12 Robert Bosch Gmbh Aufladeeinrichtung
DE102008012907A1 (de) * 2008-03-06 2009-09-10 Daimler Ag Verfahren zum Gewinnen von Energie aus einem Abgasstrom sowie Kraftfahrzeug
DE102008019159A1 (de) * 2008-04-17 2009-10-22 Daimler Ag Kraftfahrzeug
CA2676502A1 (en) * 2009-08-24 2011-02-24 Victor Juchymenko Supplementary thermal energy transfer in thermal energy recovery systems
WO2012084922A1 (de) * 2010-12-21 2012-06-28 Robert Bosch Gmbh Verfahren und vorrichtung zur nutzung von abwärme einer wärmekraftmaschine
WO2012110893A1 (en) * 2011-02-17 2012-08-23 Toyota Jidosha Kabushiki Kaisha Abnormality detection apparatus and abnormality detection method for rankine cycle system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130192225A1 (en) * 2010-10-13 2013-08-01 Robert Bosch Gmbh Device and method for the recovery of waste heat of an internal combustion engine
CN113260775A (zh) * 2019-03-20 2021-08-13 斯堪尼亚商用车有限公司 控制单元、废热回收系统、包括这样的系统的运载工具以及用于启动废热回收系统的膨胀装置的方法

Also Published As

Publication number Publication date
DE102011076405A1 (de) 2012-11-29

Similar Documents

Publication Publication Date Title
WO2012159829A1 (de) Verfahren und thermodynamischer arbeitskreis zur nutzung der abwärme einer brennkraftmaschine
DE112012004058B4 (de) Vorrichtung zur Nutzung von Abwärme
WO2014102027A2 (de) System zur energierückgewinnung aus einem abwärmestrom einer brennkraftmaschine
EP2229524B1 (de) Verfahren zur rückgewinnung einer verlustwärme einer verbrennungskraftmaschine
EP2686526B1 (de) Verfahren zum betreiben eines dampfkreisprozesses
WO2012048959A1 (de) Vorrichtung und verfahren zur abwärmenutzung einer brennkraftmaschine
DE112011102629T5 (de) Emissionskritische Ladekühlung unter Verwendung eines organischen Rankine-Kreislaufes
DE112014001713B4 (de) Abwärmerückgewinnungsvorrichtung
EP2732140B1 (de) Verfahren zur regelung einer wärmenutzungsvorrichtung bei einer brennkraftmaschine
WO2009080153A1 (de) Nutzung einer verlustwärme einer verbrennungskraftmaschine
DE102015007104A1 (de) Abwärmenutzungsvorrichtung und Verfahren zu deren Betrieb
DE102010003906A1 (de) Verbrennungsmotor
DE112013003440T5 (de) Vorrichtung zum Nutzen von Abwärme von einer Kraftmaschine
WO2012156175A2 (de) Vorrichtung und verfahren zur nutzung der abwärme einer brennkraftmaschine
EP2527635A2 (de) Energierückgewinnungssystem
DE102017102925A1 (de) Wärmetauscher für einen Rankine-Kreisprozess in einem Kraftfahrzeugschalldämpfer
WO2010124765A2 (de) Wärmenutzungsvorrichtung und betriebsverfahren
DE112015002268T5 (de) Einrichtung zum Verwenden von Wärme, die durch einen Verbrennungsmotor vergeudet wird
WO2015149916A1 (de) Verfahren zum betreiben eines systems für einen thermodynamischen kreisprozess, steuereinrichtung für ein system für einen thermodynamischen kreisprozess, system, und anordnung aus einer brennkraftmaschine und einem system
EP3118424B1 (de) Regelung von orc-prozessen durch einspritzung unverdampften fluids
DE112015002285T5 (de) Einrichtung zum Verwenden von Wärme, die von einem Verbrennungsmotor vergeudet wird
DE102012222082B4 (de) Vorrichtung und Verfahren zur Abwärmenutzung einer Brennkraftmaschine
EP3320190B1 (de) Verfahren zur steuerung eines abwärmenutzungssystems für eine brennkraftmaschine
DE102010047520A1 (de) Verfahren und Vorrichtung zur Energierückgewinnung aus einem Abgasstrom einer Verbrennungskraftmaschine
EP4077889B1 (de) Vorrichtung zur energierückgewinnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12715997

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12715997

Country of ref document: EP

Kind code of ref document: A1