WO2014102027A2 - System zur energierückgewinnung aus einem abwärmestrom einer brennkraftmaschine - Google Patents

System zur energierückgewinnung aus einem abwärmestrom einer brennkraftmaschine Download PDF

Info

Publication number
WO2014102027A2
WO2014102027A2 PCT/EP2013/073278 EP2013073278W WO2014102027A2 WO 2014102027 A2 WO2014102027 A2 WO 2014102027A2 EP 2013073278 W EP2013073278 W EP 2013073278W WO 2014102027 A2 WO2014102027 A2 WO 2014102027A2
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
working fluid
coolant
mass flow
waste heat
Prior art date
Application number
PCT/EP2013/073278
Other languages
English (en)
French (fr)
Other versions
WO2014102027A3 (de
Inventor
Derya CAKALLIK
Marc Oliver ROEHNER
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2014102027A2 publication Critical patent/WO2014102027A2/de
Publication of WO2014102027A3 publication Critical patent/WO2014102027A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • F01K15/02Adaptations of plants for special use for driving vehicles, e.g. locomotives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a system for energy recovery from a waste heat stream of an internal combustion engine, the system having a working fluid circuit with at least one arranged in the waste heat stream evaporator, an expansion machine, a coolant flowing through a condenser and a pump, and wherein the capacitor with a Coolant supply and a coolant discharge line is connected. Furthermore, the invention relates to a method for operating a system for energy recovery from a waste heat stream of an internal combustion engine.
  • an internal combustion engine has first of all the usual components of such a system, namely a working fluid circuit with at least one disposed in the waste heat stream of the internal combustion engine evaporator, an expansion machine, a condenser and a pump, all of which are interconnected.
  • the peculiarity of this system or the method for operating the system is a turbine which is connected to a compressor in the manner of an exhaust gas turbocharger.
  • an electric machine is attached to the shaft connecting the turbine to the compressor, which can be operated as a generator or as a motor.
  • This makes it possible to use the electric machine as a generator for generating electrical energy during normal operation of the turbine and vice versa to use the electric machine as a motor for driving this pump when operating the compressor as a pump.
  • the system is controlled by the amount of waste heat flux passed through the evaporator.
  • the invention has for its object to provide a system for energy recovery, in which the cooling requirement of the system is minimized. Furthermore, a corresponding method for operating such a system should be specified.
  • the corresponding method for operating a system for recovering energy from a waste heat stream of an internal combustion engine provides that a coolant mass flow, which passes via the coolant supply line into the condenser, can be varied as a function of a required cooling capacity of the condenser.
  • the condenser of the system for energy recovery from a waste heat stream of an internal combustion engine in a high-temperature cooling circuit or a low-temperature cooling circuit of the internal combustion engine can be integrated or integrated into a separate cooling circuit.
  • the condenser of the energy recovery system may be installed from a waste heat flow of an internal combustion engine in parallel to an existing component of the high temperature cooling circuit or low temperature cooling circuit of the internal combustion engine.
  • Waste heat recovery system represents a right-handed heat power process in which at a high temperature level, the working fluid heat is supplied and a part of this heat supplied is converted into work. The remainder of the supplied heat is released in the form of heat at a low temperature level to the environment.
  • the working fluid must be completely condensed to avoid cavitation at the pump inlet.
  • the required cooling capacity in the condenser depends on the prevailing pressure of the working fluid in the condenser and on the working fluid mass flow. The greater the condensation pressure and the smaller the mass flow of the working fluid, the less cooling power is needed to to completely condense the working fluid. If, nevertheless, the same cooling capacity is applied at each condensation pressure and working fluid mass flow, the working fluid is further cooled at higher condensation pressures and lower mass flows after the condensation. However, overcooling should be avoided as much as possible in order not to unnecessarily burden the cooling circuit.
  • bypass line formed again in a further embodiment of the invention, the bypass or the bypass line has a bypass valve.
  • the amount of coolant flowing through the condenser can be adjusted and thus the cooling capacity can be influenced.
  • bypass valve is electrically controlled and can thus be easily adjusted for example by a corresponding control device.
  • the bypass valve is a proportional valve.
  • Corresponding electrically controlled proportional valves are available, so that it is possible to fall back on series parts. As a result, therefore, the mechanical part of the energy recovery system according to the invention, which consists essentially of the bypass line and the bypass valve, can be implemented with little effort.
  • the bypass to the capacitor in a parallel connection of the capacitor with an existing grain component in the high-temperature cooling circuit or low-temperature cooling circuit of the internal combustion engine omitted.
  • the parallel circuit has a valve. In particular via the corresponding setting of the valve, the amount of coolant flowing through the condenser can be adjusted, and thus the cooling capacity can be influenced.
  • bypass to the condenser can also be omitted if the condenser is in a separate cooling circuit for the
  • Waste heat recovery system is integrated.
  • the separate cooling circuit for the waste heat recovery system consists of at least one cooler and one circulating pump.
  • the amount of coolant flowing through the condenser can be adjusted via a mass flow control or mass flow control in the own cooling circuit and thus the cooling capacity can be influenced.
  • a further development of the method for operating the system provides that the required cooling power is calculated from the pressure of the working fluid in the condenser, from the working fluid mass flow in the condenser and from the temperature or specific enthalpy of the working fluid at the inlet to the condenser and is determined from the required target outlet temperature from the capacitor.
  • the condenser produces a small pressure drop, which generally depends on the fluids in the condenser and the condenser type and the condenser material)
  • Substances are determined. Since the temperature remains constant during condensation, to ensure a liquid state, the target outlet temperature of the working fluid from the condenser must be lowered by a minimum temperature difference, starting from the boiling temperature
  • the temperature difference serves as a safety factor and must be determined depending on the selected working fluid. It can be assumed constant for each operating point or determined as a function of condenser pressure or condenser temperature. With the aid of the measured inlet temperature of the working fluid into the condenser, the knowledge of the working fluid mass flow and the calculated desired outlet temperature of the working fluid, the required cooling demand can be determined. Based on the required cooling capacity and the maximum permissible temperature difference of the coolant in the condenser and the specific heat capacity of the cooling water, the required coolant in the control unit according to relationship 1 in a control unit.
  • the required coolant mass flow through the condenser can be adjusted via the bypass valve or valve (in parallel connection) or via the mass flow control (when installing the condenser in a separate cooling circuit), so that the required cooling requirement and thus the desired outlet temperature of the working fluid from the condenser are reached becomes.
  • the coolant mass flow thus serves as a manipulated variable for the temperature control.
  • a temperature control can also be used in order to achieve a demand-oriented cooling capacity.
  • the coolant mass flow which is not conducted through the condenser is led past the condenser via the bypass line and brought together again with the heated coolant mass flow emerging from the condenser.
  • the temperature of the coolant mass flow exiting the condenser can be lowered before the total quantity reaches the radiator. This applies in the case of a bypass line with a bypass valve on the condenser.
  • the coolant mass flow not passed through the condenser is led through the cooling circuit component connected in parallel to the condenser and, after exiting the parallel-connected cooling circuit component, is combined with the coolant mass flow leaving the condenser.
  • the system for energy recovery is designed so that in operation at the inlet of the condenser, the working fluid can be saturated vapor or in the two-phase state.
  • the working fluid temperature and the working fluid pressure must be measured before the expansion machine and component specific characteristics of the expansion machine, such as isentropic efficiency, the specific enthalpy be determined at the inlet of the condenser.
  • the vapor content of the working fluid at the inlet to the condenser can be determined.
  • the condenser inlet pressure, the specific enthalpy at the inlet of the condenser, the calculated target outlet temperature and the mass flow the required cooling capacity can be determined according to the aforementioned relationship 4.
  • the coolant mass flow described above is selected by the capacitor.
  • the coolant inlet temperature can be determined by different ways. A first possibility is the installation of a possibly additional temperature sensor on the coolant side at the inlet to the condenser. A second possibility is the calculation of the coolant inlet temperature with the aid of a coolant temperature stored in the control unit taking into account a transmission behavior. A third possibility is the deposit of a map for the coolant inlet temperature, which was previously created by measurements.
  • Figure 1 is a schematic representation of a circuit diagram of a system for
  • Figure 1 shows a schematic representation of a system for energy recovery from a waste heat stream of an internal combustion engine.
  • this fuel and combustion air are supplied, which burn in combustion chambers of the internal combustion engine during operation of the same under heat generation.
  • the resulting waste heat stream is removed via an attached to the engine 1 exhaust pipe 2 and passed through an evaporator 3.
  • the evaporator 3 is designed, for example, as a tubular heat exchanger and has a number of tubes through which the hot exhaust gas is passed before it reaches the downstream exhaust pipe 2 on the outlet side of the evaporator 3.
  • At least one exhaust muffler and / or a device for aftertreatment of the exhaust gas for example in the form of a catalyst and / or a soot filter may be installed before or after the evaporator 3, before the exhaust gas is discharged from the exhaust pipe 2 into the environment.
  • the evaporator 3 is part of a system for recovering energy from the exhaust gas flow of the internal combustion engine 1 and has a working fluid circuit 4, which is flowed through by a working fluid, which is for example water or an organic medium such as ethanol.
  • a working fluid which is for example water or an organic medium such as ethanol.
  • a pump 5 is switched into the working fluid circuit 4, which promotes the working fluid through the working fluid circuit 4.
  • the pump 5 can be operated mechanically, hydraulically or preferably electrically, wherein the operation can be controlled. That is, the pump 5 can be turned on and off at least in response to operating conditions of the system.
  • the pump 5 can also be operated at an idle speed, in the just as much working fluid is conveyed through the working fluid circuit 4 that an expansion engine 6 is being operated at an idling speed.
  • the expansion machine 6 has, for example, a turbine mounted in a housing, which is set in rotary motion by the flowing working fluid in a flow.
  • the turbine has a bearing mounted in bearings shaft 7, which is connected to a working machine 8.
  • the work machine 8 is, for example, a generator with which power is generated and possibly stored, for example, in a battery.
  • the energy thus generated in the form of electricity can be used in any manner, for example when installing the internal combustion engine in a vehicle, for operating the vehicle.
  • the working machine 8 can also be a hydraulic machine, for example, with which a hydraulic fluid is conveyed, for example, into a reservoir.
  • the working machine 8 may also be a mechanical machine, which is for example connected directly to a drive train of a vehicle in which the internal combustion engine is installed.
  • the working fluid circuit 4 further comprises a condenser 9 through which the working fluid and a cooling fluid pass.
  • the condenser 9 has a coolant supply line 11 and a coolant discharge line 10.
  • the coolant supply line 11 and the coolant discharge line 10 are connected, for example, to the cooling system of the internal combustion engine. But it can also be provided that the coolant supply line 1 1 and the coolant discharge line 10 are provided with its own cooler and its own circulation pump for conveying the coolant.
  • the coolant supply line 1 1 and the coolant discharge line 10 are connected via a bypass line 12 with an inserted bypass valve 13.
  • the condenser 9 can also be arranged parallel to a cooling circuit component or integrated into a separate cooling circuit.
  • the bypass valve 13 is formed, for example, as an electrically controlled proportional valve. By a corresponding adjustment of the bypass valve 13, the cooling capacity of the condenser can be adjusted by adjusting the mass flow of the coolant passed through the condenser.
  • the actual working fluid circuit 4 works as follows
  • the pump 5 conveys the working fluid in the liquid phase into the evaporator 3, in which the working fluid is transferred by the hot exhaust gas into the vapor phase.
  • the expansion machine 6 On the output side of the evaporator 3, the expansion machine 6 is arranged, in which the gaseous working fluid expands under the drive of the expansion machine 6. After flowing through the expansion machine 6, the working fluid is supplied to the condenser 9, in which the working fluid is cooled down so far that it is again transferred to the liquid phase before it in turn is supplied to the pump 5.

Abstract

Die Erfindung betrifft ein System zur Energierückgewinnung aus einem Abwärmestrom einer Brennkraftmaschine (1), wobei das System einen Arbeitfluidkreislauf (4) mit zumindest einem in dem Abwärmestrom angeordneten Verdampfer (3), einer Expansionsmaschine (6), einem von einem Kühlmittel durchströmten Kondensator (9) und einer Pumpe (5) aufweist, und wobei der Kondensator (9) mit einer Kühlmittelzuführleitung (11) und einer Kühlmittelabführleitung (10) verbunden ist. Erfindungsgemäß werden ein System zur Energierückgewinnung und ein Verfahren zum Betreiben des Systems angegeben, bei dem der Kühlbedarf des Systems minimiert ist. Erreicht wird dies dadurch, dass der Kühlmittelmassenstrom, der über die Kühlmittelzuführleitung (10) in den Kondensator (9) gelangt, variabel ist. Dies kann beispielsweise durch einen Bypass erfolgen, der in Abhängigkeit der erforderlichen Kühlleistung des Kondensators (9) die Kühlmittelzuführleitung (11) mit der Kühlmittelabführleitung (10) verbindet.

Description

Titel
System zur Energierückgewinnung aus einem Abwärmestrom einer Brennkraftmaschine
Die vorliegende Erfindung betrifft ein System zur Energierückgewinnung aus einem Abwärmestrom einer Brennkraftmaschine, wobei das System einen Arbeits- fluidkreislauf mit zumindest einem in dem Abwärmestrom angeordneten Verdampfer, einer Expansionsmaschine, einem von einem Kühlmittel durchströmten Kondensator und einer Pumpe aufweist, und wobei der Kondensator mit einer Kühlmittelzuführleitung und einer Kühlmittelabführleitung verbunden ist. Weiterhin betrifft die Erfindung ein Verfahren zum betreiben eines Systems zur Energierückgewinnung aus einem Abwärmestrom einer Brennkraftmaschine.
Stand der Technik
Eine derartige Vorrichtung und ein derartiges Verfahren sind aus der EP 2 500 530 A1 bekannt. Das System zur Energierückgewinnung aus einem
Abwärmestrom einer Brennkraftmaschine weist zunächst einmal die üblichen Komponenten eines solchen Systems, nämlich einen Arbeitsfluidkreislauf mit zumindest einem in dem Abwärmestrom der Brennkraftmaschine angeordneten Verdampfer, eine Expansionsmaschine, einen Kondensator und eine Pumpe auf, die allesamt miteinander verschaltet sind. Die Besonderheit dieses Systems bzw. des Verfahrens zum Betreiben des Systems ist eine Turbine, die mit einem Kompressor nach Art eines Abgasturboladers verbunden ist. Dabei ist an die die Turbine mit dem Kompresser verbindenden Welle eine elektrische Maschine angebaut, die als Generator oder als Motor betrieben werden kann. Dadurch ist es möglich, beim normalen Betrieb der Turbine die elektrische Maschine als Generator zur Erzeugung von elektrischer Energie zu nutzen und umgekehrt bei Betrieb des Kompressors als Pumpe die elektrische Maschine als Motor zum Antrieb dieser Pumpe zu nutzen. Das System wird durch die durch den Verdampfer geleitete Menge des Abwärmestroms gesteuert. Der Erfindung liegt die Aufgabe zugrunde, ein System zur Energierückgewinnung anzugeben, bei dem der Kühlbedarf des Systems minimiert ist. Weiterhin soll ein entsprechendes Verfahren zum Betreiben eines solchen Systems angegeben werden.
Offenbarung der Erfindung
Vorteile der Erfindung
Diese Aufgabe wird dadurch gelöst, dass der die Kühlmittelzuführleitung über einen Bypass mit der Kühlmittelabführleitung verbunden ist. Das entsprechende Verfahren zum Betreiben eines Systems zur Energierückgewinnung aus einem Abwärmestrom einer Brennkraftmaschine sieht vor, dass ein Kühlmittelmassen- ström, der über die Kühlmittelzuführleitung in den Kondensator gelangt, in Abhängigkeit einer erforderlichen Kühlleistung des Kondensators variiert werden kann. Hierbei kann der Kondensator des Systems zur Energierückgewinnung aus einem Abwärmestrom einer Brennkraftmaschine in einen Hochtemperaturkühl- kreislauf oder einen Niedertemperaturkühlkreislauf der Brennkraftmaschine inte- griert werden oder in einen eigenen Kühlkreislauf integriert werden. Des Weiteren kann der Kondensator des Systems zur Energierückgewinnung aus einem Abwärmestrom einer Brennkraftmaschine parallel zu einer bestehenden Komponente des Hochtemperaturkühlkreislaufs oder Niedertemperaturkühlkreislaufs der Brennkraftmaschine eingebaut werden. Dieser Lösung liegt zunächst einmal die Erkenntnis zugrunde, dass das System zur Energierückgewinnung, das auch als
Abwärmerückgewinnungssystem bezeichnet wird, einen rechtsgängigen Wärme- Kraftprozess darstellt, bei dem auf einem hohen Temperaturniveau dem Arbeits- fluid Wärme zugeführt wird und ein Teil dieser zugeführten Wärme in Arbeit umgewandelt wird. Der restliche Teil der zugeführten Wärme wird in Form von Wärme auf einem niedrigen Temperaturniveau an die Umgebung abgegeben. Im
Kondensator muss das Arbeitsfluid vollständig kondensiert werden, um Kavitation am Pumpeneintritt zu vermeiden. Die benötigte Kühlleistung im Kondensator hängt vom vorliegenden Druck des Arbeitsfluids im Kondensator und vom Ar- beitsfluidmassenstrom ab. Je größer der Kondensationsdruck und je kleiner der Massenstrom des Arbeitsfluids ist, umso weniger Kühlleistung wird benötigt, um das Arbeitsfluid vollständig zu kondensieren. Wird dennoch dieselbe Kühlleistung bei jedem Kondensationsdruck und Arbeitsfluidmassenstrom aufgebracht, so wird das Arbeitsfluid bei höheren Kondensationsdrücken und kleineren Massenströmen nach der Kondensation weiter gekühlt. Eine allzu große Unterkühlung sollte jedoch möglichst vermieden werden, um den Kühlkreislauf nicht unnötig zu belasten. Des Weiteren kann bei einer höheren Kondensatoraustrittstemperatur des Arbeitsfluids unter Zufuhr konstanter Wärmeleistung im Verdampfer eine höhere Überhitzungstemperatur des Arbeitsfluids am Austritt aus dem Verdampfer erreicht werden, die eine Erhöhung des Systemwirkungsgrades bewirkt. Die bedarfsgerechte Belastung des Kühlkreislaufs für das System zur Energierückgewinnung erfolgt nun erfindungsgemäß über eine Temperaturregelung oder Temperatursteuerung des Arbeitsfluids am Austritt aus dem Kondensator. Dadurch kann eine vollständige Kondensation des Arbeitsfluids und gleichzeitig eine minimal notwendige Zusatz-Kühlleistung erreicht bzw. erzielt werden.
In Weiterbildung der Erfindung ist der Bypass zu dem Kondensator als
Bypassleitung ausgebildet, wobei wiederum in weiterer Ausgestaltung der Erfindung der Bypass bzw. die Bypassleitung ein Bypassventil aufweist. Insbesondere über die entsprechende Einstellung des Bypassventils kann die Menge des Kühlmittels, das den Kondensator durchströmt, eingestellt werden und somit die Kühlleistung beeinflusst werden.
In weiterer Ausgestaltung der Erfindung ist das Bypassventil elektrisch angesteuert und kann somit problemlos beispielsweise von einer entsprechenden Steuereinrichtung eingestellt werden.
In weiterer Ausgestaltung der Erfindung ist das Bypassventil ein Proportionalventil. Entsprechende elektrisch angesteuerte Proportionalventile stehen zur Verfügung, so dass eher auf Serienteile zurückgegriffen werden kann. Im Ergebnis ist somit der mechanische Teil des erfindungsgemäßen Systems zur Energierückgewinnung, der im Wesentlichen aus der Bypassleitung und dem Bypassventil besteht, mit geringem Aufwand umsetzbar.
In einer weiteren Ausgestaltung der Erfindung kann der Bypass zu dem Konden- sator bei einer Parallelschaltung des Kondensators mit einer bestehenden Korn- ponente im Hochtemperaturkühlkreislauf oder Niedertemperaturkühlkreislauf der Brennkraftmaschine entfallen. Dabei ist wiederum in vorteilhafter Weiterbildung vorgesehen, dass die Parallelschaltung ein Ventil aufweist. Insbesondere über die entsprechende Einstellung des Ventils kann die Menge des Kühlmittels, das den Kondensator durchströmt, eingestellt werden, und somit die Kühlleistung be- einflusst werden.
In Weiterbildung kann der Bypass zum Kondensator ebenfalls entfallen, wenn der Kondensator in einem eigenen Kühlkreislauf für das
Abwärmerückgewinnungssystem integriert wird. Dabei besteht in einer weiteren Ausgestaltung der eigene Kühlkreislauf für das Abwärmerückgewinnungssystem aus mindestens einem Kühler und einer Umwälzpumpe. In Weiterbildung kann über eine Massenstromregelung oder Massenstromsteuerung im eigenen Kühlkreislauf die Menge des Kühlmittels, die den Kondensator durchströmt, eingestellt werden und somit die Kühlleistung beeinflusst werden.
In Weiterbildung der Erfindung sieht eine Fortbildung des Verfahrens zum Betreiben des Systems vor, dass die erforderliche Kühlleistung aus dem Druck des Ar- beitsfluids in dem Kondensator, aus dem Arbeitsfluidmassenstrom in dem Kondensator und aus der Temperatur beziehungsweise spezifischen Enthalpie des Arbeitsfluids am Eintritt in den Kondensator sowie aus der geforderten Sollaustrittstemperatur aus dem Kondensator ermittelt wird.
In weiterer Ausgestaltung der Erfindung wird im Fall eines dampfförmigen Zu- Stands des Arbeitsfluids am Eintritt in den Kondensator der Kühlmittelmassenstrom nach der Beziehung 1
Figure imgf000006_0001
mit
Figure imgf000007_0001
(Beziehung 2) ermittelt wird. Je nach Wahl des Arbeitsfluids kann, abhängig von den stoffspezifischen Eigenschaften, in jedem Betriebspunkt am Eintritt des Arbeitsfluids in den Kondensator ein dampfförmiger Zustand sichergestellt werden.
Tritt dieser Fall zu, so ist für die Temperaturregelung die Kenntnis des
Arbeitsfluidsmassenstroms, der Eintrittstemperatur und des Eintrittsdrucks des
Arbeitsfluids in den Kondensator erforderlich. Ausgehend vom Eintrittsdruck des Arbeitsfluids, der unter idealen Bedingungen dem Kondensationsdruck entspricht
(unter realen Bedingungen entsteht im Kondensator ein geringer Druckverlust, der im Allgemeinen von den Fluiden im Kondensator und der Kondensatorbauart und dem Kondensatormaterial abhängt) kann die Siedetemperatur anhand von
Stoffwerten ermittelt werden. Da bei der Kondensation die Temperatur konstant bleibt, muss zur Sicherstellung eines flüssigen Zustande die Sollaustrittstemperatur des Arbeitsfluids aus dem Kondensator um eine minimale Temperaturdifferenz ausgehend von der Siedetemperatur gesenkt werden
Figure imgf000007_0002
(Beziehung 3). Die Temperaturdifferenz
Figure imgf000007_0003
dient als Sicherheitsfaktor und muss abhängig vom gewählten Arbeitsfluid bestimmt werden. Sie kann für jeden Betriebspunkt konstant angenommen werden oder als Funktion von Kondensatordruck bzw. Kondensatortemperatur bestimmt werden. Mit Hilfe der gemessenen Eintrittstempera- tur des Arbeitsfluid in den Kondensator, der Kenntnis über den Arbeitsfluidmassen- strom und der berechneten Soll-Austrittstemperatur des Arbeitsfluids kann der erforderliche Kühlbedarf ermittelt werden. Ausgehend von der erforderlichen Kühlleistung und der maximal zulässigen Temperaturdifferenz des Kühlmittels im Kondensator sowie der spezifischen Wärmekapazität des Kühlwassers kann der erforderliche Kühlmittelmas- senstrom im Steuergerät nach der Beziehung 1 in einem Steuergerät berechnet werden. Über das Bypassventil beziehungsweise Ventil (bei Parallelschaltung) oder über die Massenstromregelung (bei Einbau des Kondensators in einen eigenen Kühlkreislauf) kann der erforderliche Kühlmittelmassenstrom durch den Kondensator eingestellt werden, so dass der erforderliche Kühlbedarf und damit die Soll-Austrittstemperatur des Arbeitsfluids aus dem Kondensator erreicht wird. Der Kühlmittelmassenstrom dient damit als Stellgröße für die Temperaturregelung. Alternativ zu der Temperaturregelung kann auch eine Temperatursteuerung zum Einsatz kommen, um eine bedarfsgerechte Kühlleistung zu erreichen. Der nicht durch den Kondensator geführte Kühlmittelmassenstrom wird über die Bypassleitung am Kondensator vorbeigeführt und mit dem erwärmten, aus dem Kondensator austretenden Kühlmittelmassenstrom wieder zusammengeführt. Durch die Zusammenführung des wärmeren und des kälteren Kühlmittelmassenstroms kann die Temperatur des aus dem Kondensator austretenden Kühlmittelmassenstroms gesenkt werden, bevor die Gesamtmenge in den Kühler gelangt. Dies gilt im Falle einer Bypassleitung mit einem Bypassventil am Kondensator. Im Falle einer Parallelschaltung wird der nicht durch den Kondensator geführte Kühlmittelmassenstrom durch die zum Kondensator parallel verschaltete Kühlkreislaufkomponente geführt und nach dem Austritt aus der parallel geschalteten Kühlkreislaufkomponente mit dem aus dem Kondensator austretenden Kühlmittelmassenstrom zusammengeführt.
In Weiterbildung der Erfindung wird für den Fall eines gesättigten, dampfförmigen Zustand des Arbeitsfluids (Dampfgehalt x=1 ) oder zweiphasigen Zustand des Arbeitsfluids (Dampfgehalt 0<x<1 ) am Eintritt des Arbeitsfluids in den Kondensator der Kühl- mittelmassenstrom ebenfalls nach der Beziehung 1
Figure imgf000008_0001
mit
Figure imgf000009_0001
(Beziehung 4) bestimmt. Hier ist das System zur Energierückgewinnung also ausgelegt, das im Betrieb am Eintritt des Kondensators das Arbeitsfluid gesättigt dampfförmig oder im zweiphasigen Zustand vorliegen kann. Für diesen Fall ist es nicht möglich, anhand der Arbeitsfluidtemperatur und des Drucks am Eintritt des Kondensators die spezifische Enthalpie des Arbeitsfluids am Eintritt zu ermitteln. In diesem Fall müssen die Arbeitsfluidtemperatur und der Arbeitsfluiddruck vor der Expansionsmaschine gemessen werden und über komponentenspezifische Eigenschaften der Expansionsmaschine, wie zum Beispiel isentroper Wirkungsgrad, die spezifische Enthalpie am Eintritt des Kondensators bestimmt werden. Über den Kondensatoreintrittsdruck und die spezifische Enthalpie am Eintritt des Kondensators kann der Dampfgehalt des Arbeitsfluids am Eintritt in den Kondensator bestimmt werden. Über den Kondensatoreintrittsdruck, der spezifischen Enthalpie am Eintritt des Kondensators, der berechneten Sollaustrittstemperatur und des Massenstroms kann die erforderliche Kühlleistung nach der zuvor genannten Beziehung 4 ermittelt werden. Als Stellgröße für die Regelung oder die auch hier alternativ vorgesehene Steuerung wird der zuvor beschriebene Kühlmittelmassenstrom durch den Kondensator gewählt. Bei allen Ausführungen kann die Kühlmitteleintrittstemperatur über verschiedene Wege ermittelt werden. Eine erste Möglichkeit ist der Einbau eines ggf. zusätzlichen Temperatursensors auf der Kühlmittelseite am Eintritt in den Kondensator. Eine zweite Möglichkeit ist die Berechnung der Kühlmitteleintrittstemperatur mit Hilfe einer im Steuergerät hinterlegten Kühlmitteltemperatur unter Berücksichtigung eines Übertragungsverhaltens. Eine dritte Möglichkeit ist die Hinterlegung eines Kennfeldes für die Kühlmitteleintrittstemperatur, das zuvor durch Messungen erstellt wurde.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind der Zeichnungsbeschreibung zu entnehmen, in der ein in der einzigen Figur dargestellte Ausführungsbeispiel näher beschrieben ist. Kurze Beschreibung der Zeichnung Es zeigt:
Figur 1 in schematischer Darstellung ein Schaltbild eines Systems zur
Energierückgewinnung aus dem Abwärmestrom einer Brennkraftmaschine.
Ausführungsform der Erfindung
Figur 1 zeigt in schematischer Darstellung ein System zur Energierückgewinnung aus einem Abwärmestrom einer Brennkraftmaschine. Beim Betrieb einer Brennkraftmaschine werden dieser Brennstoff und Brennluft zugeführt, die in Brennräumen der Brennkraftmaschine beim Betrieb derselben unter Wärmeentwicklung verbrennen. Der entstandene Abwärmestrom wird über eine an der Brennkraftmaschine 1 angebrachte Abgasleitung 2 abgeführt und durch einen Verdampfer 3 geführt. Der Verdampfer 3 ist beispielsweise als Röhrenwärmetauscher ausgebildet und weist eine Anzahl von Röhren auf, durch die das heiße Abgas geleitet wird, bevor es auf der Ausgangsseite des Verdampfers 3 in die weiterführende Abgasleitung 2 gelangt. In die Abgasleitung 2 können vor oder hinter dem Verdampfer 3 zumindest ein Abgasschalldämpfer und/oder eine Einrichtung zur Nachbehandlung des Abgases beispielsweise in Form eines Katalysators und/oder eines Rußfilters eingebaut sein, bevor das Abgas aus der Abgasleitung 2 in die Umgebung abgeleitet wird.
Der Verdampfer 3 ist Teil eines Systems zur Energierückgewinnung aus dem Abgasstrom der Brennkraftmaschine 1 und weist einen Arbeitsfluidkreislauf 4 auf, der von einem Arbeitsfluid, das beispielsweise Wasser oder ein organisches Medium wie Ethanol ist, durchströmt wird. Dazu ist eine Pumpe 5 in den Arbeitsfluidkreislauf 4 eingeschaltet, die das Arbeitsfluid durch den Arbeitsfluidkreislauf 4 fördert. Die Pumpe 5 kann mechanisch, hydraulisch oder vorzugsweise elektrisch betrieben werden, wobei der Betrieb gesteuert werden kann. Das heißt, dass die Pumpe 5 zumindest in Abhängigkeit von Betriebszuständen des Systems eingeschaltet und ausgeschaltet werden kann. Gegebenenfalls kann die Pumpe 5 darüber hinaus mit einer Leerlaufdrehzahl betrieben werden, bei der gerade so viel Arbeitsfluid durch den Arbeitsfluidkreislauf 4 befördert wird, dass eine Expansionsmaschine 6 gerade mit einer Leerlaufdrehzahl betrieben wird. Die Expansionsmaschine 6 weist beispielsweise eine in einem Gehäuse gelagerte Turbine auf, die von dem strömenden Arbeitsfluid bei einer Durchströmung in Drehbewegung versetzt wird. Die Turbine weist eine in Lagern gelagerte Welle 7 auf, die mit einer Arbeitsmaschine 8 verbunden ist. Die Arbeitsmaschine 8 ist beispielsweise ein Generator, mit dem Strom erzeugt wird und ggf. beispielsweise in einer Batterie gespeichert wird. Die so in Form von Strom erzeugte Energie kann in beliebiger Art und Weise, beispielsweise beim Einbau der Brennkraftmaschine in ein Fahrzeug, zum Betrieb des Fahrzeugs genutzt werden. Die Arbeitsmaschine 8 kann aber auch beispielsweise eine hydraulische Maschine sein, mit der ein Hydraulikfluid beispielsweise in einen Speicher gefördert wird. Schließlich kann die Arbeitsmaschine 8 auch eine mechanische Maschine sein, die beispielsweise direkt mit einem Antriebsstrang eines Fahrzeugs, in das die Brennkraftmaschine eingebaut ist, verbunden ist.
Der Arbeitsfluidkreislauf 4 weist weiterhin einen Kondensator 9 auf, der von dem Arbeitsfluid und einem Kühlfluid durchströmt wird. Dazu weist der Kondensator 9 eine Kühlmittelzuführleitung 1 1 und eine Kühlmittelabführleitung 10 auf. Die Kühlmittelzuführleitung 1 1 und die Kühlmittelabführleitung 10 sind beispielsweise mit dem Kühlsystem der Brennkraftmaschine verbunden. Es kann aber auch vorgesehen sein, dass die Kühlmittelzuführleitung 1 1 und die Kühlmittelabführleitung 10 mit einem eigenen Kühler und einer eigenen Umwälzpumpe zur Förderung des Kühlmittels versehen sind. Die Kühlmittelzuführleitung 1 1 und die Kühlmittelabführleitung 10 sind über eine Bypassleitung 12 mit einem eingesetzten Bypassventil 13 verbunden. Wie zuvor beschrieben, kann der Kondensator 9 auch parallel zu einer Kühlkreislaufkomponente angeordnet sein oder in einen separaten Kühlkreislauf integriert werden. Das Bypassventil 13 ist beispielsweise als elektrisch angesteuertes Proportionalventil ausgebildet. Durch eine entsprechende Einstellung des Bypassventils 13 kann die Kühlleistung des Kondensators eingestellt werden, indem der Massenstrom des durch den Kondensator geleiteten Kühlmittels eingestellt wird.
Der eigentliche Arbeitsfluidkreislauf 4 funktioniert folgendermaßen Die Pumpe 5 fördert das in der flüssigen Phase befindliche Arbeitsfluid in den Verdampfer 3, in dem das Arbeitsfluid durch das heiße Abgas in die dampfförmige Phase überführt wird. Ausgangsseitig des Verdampfers 3 ist die Expansionsmaschine 6 angeordnet, in der das gasförmige Arbeitfluid unter Antrieb der Expansionsmaschine 6 expandiert. Nach dem Durchströmen der Expansionsmaschine 6 wird das Arbeitsfluid dem Kondensator 9 zugeführt, in dem das Arbeitsfluid soweit herunter gekühlt wird, dass es wieder in die flüssige Phase überführt wird, bevor es wiederum der Pumpe 5 zugeführt wird.
Symbolverzeichnis erforderliche Kühlleistung im Kondensator
Kühlmittelmassenstrom im Kondensator spezifische (isobare) Wärmekapazität des Kühlmittels
Temperaturdifferenz zwischen
Kühlmittelein- und Austrittstemperatur am Kondensator
Arbeitsfluidmassenstrom im Kondensator spezifische (isobare) Wärmekapazität des Arbeitsfluids
Arbeitsfluidtemperatur am Eintritt des Kondensators
Sollarbeitsfluidtemperatur am Austritt des Kondensators
Druck des Arbeitsfluids
Dampfgehalt des Arbeitsfluids
Siedetemperatur des Arbeitsfluids (in Abhängigkeit des Drucks)
spezifische Verdampfungsenthalpie des Arbeitsfluids (in Abhängigkeit des Drucks) spezifische Enthalpie des Arbeitsfluids am Eintritt des Kondensators (in Abhängigkeit von Druck und Dampfgehalt)
spezifische Enthalpie des Arbeitsfluids (in Abhängigkeit von Druck und Dampfgehalt) Temperaturdifferenz zur Absenkung der
Figure imgf000013_0001
Temperatur ausgehend von der
Siedetemperatur

Claims

Patentansprüche
1 . System zur Energierückgewinnung aus einem Abwärmestrom einer Brennkraftmaschine (1 ), wobei das System einen Arbeitfluidkreislauf (4) mit zumindest einem in dem Abwärmestrom angeordneten Verdampfer (3), einer Expansionsmaschine (6), einem von einem Kühlmittel durchströmten Kondensator (9) und einer Pumpe (5) aufweist, und wobei der Kondensator (9) mit einer Kühlmittelzuführleitung (1 1 ) und einer Kühlmittelabführleitung (10) verbunden ist,
dadurch gekennzeichnet, dass ein Kühlmittelmassenstrom, der über die Kühlmittelzuführleitung (1 1 ) in den Kondensator (9) gelangt, variabel ist.
2. System nach Anspruch 1 ,
dadurch gekennzeichnet, dass die Kühlmittelzuführleitung (1 1 ) über einen Bypass mit der Kühlmittelabführleitung (10) verbunden ist.
3. System nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass der Bypass als Bypassleitung (12) ausgebildet ist.
4. System nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet, dass der Bypass ein Bypassventil (13) aufweist.
5. System nach Anspruch 4,
dadurch gekennzeichnet, dass das Bypassventil (13) elektrisch angesteuert ist.
6. System nach Anspruch 4 oder 5,
dadurch gekennzeichnet, dass das Bypassventil (13) ein Proportionalventil ist.
7. System nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet, dass der Kondensator (9) mit einer bestehenden Komponente in einem Hochtemperaturkühlkreislauf oder Nieder- temperaturkühlkreislauf der Brennkraftmaschine parallel geschaltet ist.
8. System nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet, dass der Kondensator (9) in einem eigenen
Kühlkreislauf für das Abwärmerückgewinnungssystem integriert ist.
9. System nach Anspruch 8,
dadurch gekennzeichnet, dass über eine Massenstromregelung oder Massenstromsteuerung im eigenen Kühlkreislauf die Menge des Kühlmittels, die den Kondensator (9) durchströmt, einstellbar ist.
10. Verfahren zum Betreiben eines Systems zur Energierückgewinnung aus einem Abwärmestrom einer Brennkraftmaschine (1 ), wobei das System einen Arbeitfluidkreislauf (4) mit zumindest einem in dem Abwärmestrom angeordneten Verdampfer (3), einer Expansionsmaschine (6), einem von einem Kühlmittel durchströmten Kondensator (9) und einer Pumpe (5) aufweist, und wobei der Kondensator (9) mit einer Kühlmittelzuführleitung (1 1 ) und einer Kühlmittelabführleitung (10) verbunden ist, dadurch gekennzeichnet, dass ein Kühlmittelmassenstrom, der über die Kühlmittelzuführleitung (1 1 ) in den Kondensator (9) gelangt, entsprechend einer erforderlichen Kühlleistung variiert werden kann.
1 1. Verfahren nach Anspruch 10,
dadurch gekennzeichnet, dass die erforderliche Kühlleistung aus dem Druck des Arbeitsfluids in dem Kondensator (9), aus dem Massenstrom des Arbeitsfluids in dem Kondensator (9) und aus der Temperatur beziehungsweise der spezifischen Enthalpie des Arbeitsfluids am Eintritt in den Kondensator (9) sowie aus einer geforderten Sollaustrittstemperatur aus dem Kondensator (9) ermittelt wird.
12. Verfahren nach Anspruch 10 oder 1 1 ,
dadurch gekennzeichnet, dass im Fall eines überhitzten Eintritts des Arbeitsfluids in den Kondensator (9) der Kühlmittelmassenstrom nach der Beziehung
Figure imgf000016_0002
mit
Figure imgf000016_0001
ermittelt wird.
13. Verfahren nach Anspruch 10 oder 1 1 ,
dadurch gekennzeichnet, dass im Fall eines gesättigten dampfförmigen Zustands des Arbeitsfluids oder eines zweiphasigen Zustands des Arbeitsfluids am Eintritts des Arbeitsfluids in den Kondensator der Kühl mittelmassenstrom nach der Beziehung
Figure imgf000017_0001
mit
Figure imgf000017_0002
bestimmt wird.
PCT/EP2013/073278 2012-12-27 2013-11-07 System zur energierückgewinnung aus einem abwärmestrom einer brennkraftmaschine WO2014102027A2 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102012224409.3 2012-12-27
DE102012224409 2012-12-27
DE102013205648.6A DE102013205648A1 (de) 2012-12-27 2013-03-28 System zur Energierückgewinnung aus einem Abwärmestrom einer Brennkraftmaschine
DE102013205648.6 2013-03-28

Publications (2)

Publication Number Publication Date
WO2014102027A2 true WO2014102027A2 (de) 2014-07-03
WO2014102027A3 WO2014102027A3 (de) 2014-12-31

Family

ID=50928629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/073278 WO2014102027A2 (de) 2012-12-27 2013-11-07 System zur energierückgewinnung aus einem abwärmestrom einer brennkraftmaschine

Country Status (2)

Country Link
DE (1) DE102013205648A1 (de)
WO (1) WO2014102027A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056611A1 (ja) * 2014-10-09 2016-04-14 サンデンホールディングス株式会社 廃熱回収装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015220321A1 (de) * 2015-10-19 2017-04-20 Robert Bosch Gmbh Pumpengehäuse mit Bewehrung
DE102015221338A1 (de) 2015-10-30 2017-05-04 Robert Bosch Gmbh Außenzahnradpumpe für ein Abwärmerückgewinnungssystem
DE102015224128A1 (de) 2015-12-03 2017-06-08 Robert Bosch Gmbh Abwärmerückgewinnungssystem einer Brennkraftmaschine und Verfahren zum Betreiben eines Abwärmerückgewinnungssystems einer Brennkraftmaschine
DE102015224659A1 (de) 2015-12-09 2017-06-14 Robert Bosch Gmbh Zahnradpumpe für ein Abwärmerückgewinnungssystem
DE102016204199A1 (de) * 2016-03-15 2017-09-21 Robert Bosch Gmbh Zahnradpumpe für ein Abwärmerückgewinnungssystem
JP6665003B2 (ja) * 2016-03-18 2020-03-13 パナソニック株式会社 コージェネレーション装置
DE102016213636A1 (de) 2016-07-26 2018-02-01 Robert Bosch Gmbh Außenzahnradpumpe für ein Abwärmerückgewinnungssystem
DE102016216159A1 (de) 2016-08-29 2018-03-01 Robert Bosch Gmbh Außenzahnradpumpe für ein Abwärmerückgewinnungssystem
DE102016217731A1 (de) 2016-09-16 2018-03-22 Robert Bosch Gmbh Abwärmerückgewinnungssystem
DE102016217764A1 (de) 2016-09-16 2018-03-22 Robert Bosch Gmbh Abwärmerückgewinnungssystem
DE102016221593A1 (de) * 2016-11-03 2018-05-03 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben eines Systems zur Durchführung eines thermodynamischen Kreisprozesses, Kühlmittel-Kreislauf für ein solches System, und System zur Durchführung eines thermodynamischen Kreisprozesses mit einem solchen Kühlmittel-Kreislauf
DE102016225869A1 (de) 2016-12-21 2018-06-21 Robert Bosch Gmbh Außenzahnradpumpe für ein Abwärmerückgewinnungssystem
DE102016225878A1 (de) 2016-12-21 2018-06-21 Robert Bosch Gmbh Außenzahnradpumpe für ein Abwärmerückgewinnungssystem
DE102016225851A1 (de) 2016-12-21 2018-06-21 Robert Bosch Gmbh Außenzahnradpumpe für ein Abwärmerückgewinnungssystem
DE102016225847A1 (de) 2016-12-21 2018-06-21 Robert Bosch Gmbh Fluidpumpe für ein Abwärmerückgewinnungssystem
DE102016225859A1 (de) 2016-12-21 2018-06-21 Robert Bosch Gmbh Außenzahnradpumpe für ein Abwärmerückgewinnungssystem
DE102017200708A1 (de) 2017-01-18 2018-07-19 Robert Bosch Gmbh Motor-Pumpen-Einheit für ein Abwärmerückgewinnungssystem
DE102017201056A1 (de) * 2017-01-24 2018-07-26 Robert Bosch Gmbh Gasventil für einen Wärmekreislauf eines Fahrzeugs und Herstellungsverfahren für ein Gasventil
DE102017203004A1 (de) 2017-02-24 2018-08-30 Robert Bosch Gmbh Zahnradpumpe für ein Abwärmerückgewinnungssystem
DE102017203003A1 (de) 2017-02-24 2018-08-30 Robert Bosch Gmbh Außenzahnradpumpe für ein Abwärmerückgewinnungssystem
DE102017208434A1 (de) 2017-05-18 2018-11-22 Robert Bosch Gmbh Abwärmerückgewinnungssystem
DE102017218315A1 (de) 2017-10-13 2019-04-18 Robert Bosch Gmbh Außenzahnradpumpe für ein Abwärmerückgewinnungssystem

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500530A1 (de) 2009-11-13 2012-09-19 Mitsubishi Heavy Industries, Ltd. Turbosystem zur stromerzeugung durch wärmegewinnung aus motorenabfällen und hubkolbenmotorsystem damit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167994A (ja) * 2008-01-21 2009-07-30 Sanden Corp 内燃機関の廃熱利用装置
DE102008057202A1 (de) * 2008-11-13 2010-05-20 Daimler Ag Clausius-Rankine-Kreis
AT507096B1 (de) * 2008-12-10 2010-02-15 Man Nutzfahrzeuge Oesterreich Antriebseinheit mit kühlkreislauf und separatem wärmerückgewinnungskreislauf
US8627663B2 (en) * 2009-09-02 2014-01-14 Cummins Intellectual Properties, Inc. Energy recovery system and method using an organic rankine cycle with condenser pressure regulation
SE535877C2 (sv) * 2010-05-25 2013-01-29 Scania Cv Ab Kylarrangemang hos ett fordon som drivs av en överladdad förbränningsmotor
DE102011005072A1 (de) * 2011-03-03 2012-09-06 Behr Gmbh & Co. Kg Verbrennungsmotor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500530A1 (de) 2009-11-13 2012-09-19 Mitsubishi Heavy Industries, Ltd. Turbosystem zur stromerzeugung durch wärmegewinnung aus motorenabfällen und hubkolbenmotorsystem damit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056611A1 (ja) * 2014-10-09 2016-04-14 サンデンホールディングス株式会社 廃熱回収装置
JP2016075263A (ja) * 2014-10-09 2016-05-12 サンデンホールディングス株式会社 廃熱回収装置
CN107110066A (zh) * 2014-10-09 2017-08-29 三电控股株式会社 废热回收装置
US10378391B2 (en) 2014-10-09 2019-08-13 Sanden Holdings Corporation Waste heat recovery device

Also Published As

Publication number Publication date
DE102013205648A1 (de) 2014-07-03
WO2014102027A3 (de) 2014-12-31

Similar Documents

Publication Publication Date Title
WO2014102027A2 (de) System zur energierückgewinnung aus einem abwärmestrom einer brennkraftmaschine
EP2865854B1 (de) Vorrichtung und Verfahren zum zuverlässigen Starten von ORC Systemen
DE102007033611B4 (de) Anordnung zur Abgaswärmenutzung
DE112011102675B4 (de) Geteilter Radiatoraufbau zur Wärmeabfuhroptimierung für ein Abwärmeverwertungssystem
DE102009035522B4 (de) Verfahren und Vorrichtung zur verbesserten Energieausnutzung der Wärmeenergie von Brennkraftmaschinen
EP2846017B1 (de) Wärmetauschvorrichtung und Antriebseinheit für ein Kraftfahrzeug
DE102006043835A1 (de) Wärmetauscheranordnung
DE102014019684A1 (de) Anordnung zur Umwandlung thermischer Energie aus Verlustwärme einer Verbrennungskraftmaschine
DE102010003906A1 (de) Verbrennungsmotor
WO2009080153A1 (de) Nutzung einer verlustwärme einer verbrennungskraftmaschine
WO2012159829A1 (de) Verfahren und thermodynamischer arbeitskreis zur nutzung der abwärme einer brennkraftmaschine
DE102011085961A1 (de) Kühlkreislauf
DE102012209811A1 (de) Antriebssystem für ein Fahrzeug mit einer Brennkraftmaschine
DE102006043491B4 (de) Dampfkreisprozess mit verbesserter Energieausnutzung
EP2425101A2 (de) Wärmenutzungsvorrichtung und betriebsverfahren
WO2015067434A1 (de) Verfahren zum betreiben eines systems zur energierückgewinnung aus einem abwärmestrom einer brennkraftmaschine
DE102007061032B4 (de) Baugruppe zur Energierückgewinnung bei einer Verbrennungskraftmaschine
DE102012222082B4 (de) Vorrichtung und Verfahren zur Abwärmenutzung einer Brennkraftmaschine
WO2011045047A2 (de) (o) rc-verfahren für die abwärmenachverstromung bei biomasseverbrennung, sowie entsprechende einrichtung
DE102010054667B3 (de) Frostsichere Dampfkreisprozessvorrichtung und Verfahren für deren Betrieb
WO2019121542A1 (de) Anordnung zur umwandlung thermischer energie aus verlustwärme einer verbrennungskraftmaschine
WO2012152602A1 (de) Leitungskreis und verfahren zum betreiben eines leitungskreises zur abwärmenutzung einer brennkraftmaschine
DE102012222035B4 (de) Verfahren zum Betreiben eines Systems zur Energierückgewinnung aus einem Abwärmestrom einer Brennkraftmaschine
DE102012209813A1 (de) Antriebssystem für ein Fahrzeug mit einer Brennkraftmaschine
WO2014023295A2 (de) Vorrichtung zum betreiben eines clausius-rankine-prozess

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 13786676

Country of ref document: EP

Kind code of ref document: A2