WO2004031424A1 - 鋳造鍛造用アルミニウム合金、アルミニウム鋳造鍛造品及び製造方法 - Google Patents

鋳造鍛造用アルミニウム合金、アルミニウム鋳造鍛造品及び製造方法 Download PDF

Info

Publication number
WO2004031424A1
WO2004031424A1 PCT/JP2003/012514 JP0312514W WO2004031424A1 WO 2004031424 A1 WO2004031424 A1 WO 2004031424A1 JP 0312514 W JP0312514 W JP 0312514W WO 2004031424 A1 WO2004031424 A1 WO 2004031424A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
forging
aluminum
forged product
aluminum alloy
Prior art date
Application number
PCT/JP2003/012514
Other languages
English (en)
French (fr)
Inventor
Kohji Kotani
Masatoshi Watanabe
Daisuke Machino
Original Assignee
Asahi Tec Corporation
Hoei Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Tec Corporation, Hoei Industries Co., Ltd. filed Critical Asahi Tec Corporation
Priority to JP2004541254A priority Critical patent/JPWO2004031424A1/ja
Priority to EP03748621A priority patent/EP1566458A4/en
Priority to AU2003268697A priority patent/AU2003268697A1/en
Publication of WO2004031424A1 publication Critical patent/WO2004031424A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/26Making machine elements housings or supporting parts, e.g. axle housings, engine mountings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K3/00Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Definitions

  • the present invention relates to an aluminum alloy for forging, an aluminum forged product, and a method for producing an aluminum forged product, which is used for a vehicle component or the like, and which is further reduced in cost. More specifically, it is used in the manufacture of undercarriage parts for vehicles that need to be reduced in weight in order to improve the fuel efficiency of automobiles, and can use unnecessary forging materials such as burrs generated in the forging process as raw materials.
  • the present invention relates to an aluminum alloy for forging, an aluminum forged product having excellent mechanical properties and containing a specific amount of silicon, magnesium, copper, and manganese, and a method for producing an aluminum forged product. Background art
  • Measures to improve automobile fuel efficiency include using new power sources such as fuel cells, natural gas, and electricity, or hybrid use of them, or improving the technology of prime movers such as lean fuel engines and direct injection engines. And power transmission loss improvement and Although there is a reduction in running resistance by improving the body shape, etc., the most effective is the lightweight car with a low vehicle mass that can be used in combination with any other technology. If the vehicle itself is light-weighted, the load on the power source will be reduced, and it will be possible to reduce the amount of use of any power source. As a part of reducing the weight of automobiles, it contributes to the improvement of driving operability and ride comfort of automobiles. Attempts have been made to use light metal materials to reduce the weight of frames and some parts of the engine.
  • Lightweight dagger technology is roughly classified into structural design technology and material technology. Compared to the drastic improvement of the vehicle body structure and components, it is easier to change the material used, but it is a lighter means. High cost. Lightening materials include resin materials such as FRP, thinning of iron using high-tensile steel sheets, aluminum alloys, magnesium alloys, titanium alloys, ceramics, and metal composite materials. The weakest is corrosion resistance among others. Among the materials that are less expensive and more expensive than iron, but are lighter than other materials, aluminum alloys are easier to apply as a substitute, at lower cost, and without requiring significant changes in the basic design of automobiles It is.
  • Aluminum alloys have a density of about 1 Z3 of iron, and many easy-to-manufacture products are already used for engine cylinder heads and engine cylinder blocks. These are manufactured by high-speed injection molding, the so-called die-casting method, and can be manufactured at a relatively low cost with good production efficiency, but cannot be made thick and high-strength. With regard to the required suspension parts, there was a problem that it was difficult to apply manufactured parts because damage due to insufficient strength was directly linked to important safety issues. The current state of the technology will be described, taking as an example the undercarriage parts for which weight reduction technology is being studied.
  • the materials used for undercarriage parts need to have low corrosiveness, sufficient strength and elongation characteristics, and few defects.
  • Forged alloy products and AC 4 CH alloy squeeze cycling products (low-speed injection molded products) have already been used, but their problems of high cost have not been solved, and their application is currently extremely limited. It is.
  • the so-called pure aluminum forgings, such as the conventional A6601 alloy forgings are expensive because of the large number of steps, the high cost of the forging raw materials themselves, and This includes waste such as burrs, and the fact that unnecessary materials such as burrs cannot be recycled as raw materials for forged products.
  • squeeze cycling products have a large number of processes and a low injection speed, so productivity has not increased and cost reduction has not been realized.
  • an aluminum alloy for forging has been proposed in which coarsening of crystal grains is suppressed by adjusting the composition and mechanical properties are excellent.
  • an aluminum alloy material for forging having excellent machinability and high strength has been proposed in Japanese Patent Application Laid-Open No. 7-2588784.
  • 0.8-2.0 mass% of silicon, 0.5-1.5 mass% of magnesium, 0.5-1.0 mass% of copper, 0.4-1.5 mass% of manganese Using a molten aluminum alloy material adjusted to be a component containing 0.1 to 0.3 mass% of chromium, etc., the cooling rate in the solidification process is controlled, and the casting is continuously formed.
  • Aluminum alloy forgings obtained by hot forging, then solution treatment, and then aging are used to make conventional A6601 alloy as raw material when forging into a shape close to the final product.
  • the production cost can be reduced by forming into a shape close to the final product at the time of forging, and the extrusion process can be omitted to reduce the manufacturing cost.
  • the strength decreases.
  • Manganese is an element that suppresses the growth of aluminum crystal grains and maintains the structure finely, thereby improving the strength.
  • the amount is large, an intermetallic compound is easily generated, and the strength is rather increased. There is a problem of lowering it.
  • An object of the present invention is to provide an aluminum forged product having tensile strength, heat resistance, and elongation that can meet needs, and a method of manufacturing the same.
  • it is possible to make a structure like a high-concentration product such as AC4CH with a silicon content of 3% by mass or more, and requires a low-speed structure like AC4CH.
  • it is to provide an aluminum alloy material that can be processed into a final shape of a desired part, an aluminum forged product forged by the material, and a method of manufacturing the aluminum forged product.
  • this aluminum forged product and the various lightweight vehicle parts provided by its manufacturing method we will reduce fuel consumption of automobiles and other vehicles, reduce carbon dioxide emissions, and prevent global warming and other environmental measures.
  • the present inventors have conducted various studies on raw materials and manufacturing methods for aluminum thick-walled products. As a result, silicon, magnesium, copper, manganese, and chromium were contained in predetermined amounts, respectively. Completed the present invention by finding that a sufficient amount of aluminum-forged product that can respond to market needs can be obtained while increasing the fluidity and improving the formability by adding a predetermined amount of titanium. It was made.
  • a forged aluminum alloy used for forging after forging and used is 0.6 to 1.8% by mass of silicon, 0.6 to 1.8% by mass of magnesium, and copper 0.8 mass% or less, manganese 0.2-1.0 mass%, chromium 0.225 mass% or less, and titanium 0.0-0.15 mass% and inevitable
  • An aluminum alloy consisting essentially of impurities contained in the aluminum alloy is provided.
  • This aluminum alloy for forging and forging is used for various vehicles including undercarriage parts with mechanical strength of tensile strength of 32 OMPa or more, 28 OMPa or more, and elongation of 10% or more, which are considered to be marketable. It can be used to manufacture parts.
  • a preform molded product having a processing rate of 18 to 60%, when the shape of the final product is 100%, is obtained by using the above aluminum alloy. And then forging the same preform into the shape of the final product, resulting in lower cost and higher productivity than low-speed fabrication using AC4CH. Thus, it becomes possible to manufacture parts for vehicles and the like.
  • silicon 0.6 to 1.8 mass%, magnesium 0.6 to 1.8 mass%, copper 0.8 mass% or less, manganese 0.2 to 1.0 mass% After forming a preform from the above aluminum alloy, which is essentially composed of 0.25% by mass or less of chromium and 0.0 to 0.15% by mass of titanium and unavoidably contained impurities, An aluminum forged product made by forging a reform, comprising 6 to 1.8% by mass of silicon, 0.6 to 1.8% by mass of magnesium, 0.8% by mass or less of copper, and 0.2% of manganese.
  • aluminum forgings consisting essentially of up to 1.0% by mass, 0.25% by mass or less of chromium, and 0.0 to 0.15% by mass of titanium and unavoidably contained impurities. You.
  • the aluminum forged product manufactured in this way has sufficient mechanical strength to be used as vehicle suspension parts, vehicle frames and engine parts.
  • silicon is 6 to 1.8% by mass
  • magnesium is 6 to 1.8% by mass
  • copper is 0.8% by mass or less
  • manganese is 0.2 to 1.0% by mass
  • chromium is 0%. 25% by mass or less
  • titanium 0.0 to 0.15% by mass
  • a melting process of melting a forging material which is an aluminum alloy essentially consisting of 0 to 0.15 mass% and unavoidably contained impurities, at about 680 to 780 ° C.
  • burrs generated during forging may be reused as a raw material while adjusting each component so as to have the composition of the aluminum alloy according to the present invention.
  • the forging material ie, the preform
  • the forging material preferably has a shape processing rate of 18 to 60%.
  • FIG. 1 is a side view showing one embodiment of the aluminum forged product of the present invention.
  • 2 (a), 2 (b) and 2 (c) are views showing one embodiment of a method for manufacturing an aluminum forged product of the present invention
  • FIG. FIG. 2 (b) is an enlarged side view showing an example of a molded body in which an internal defect has occurred during fabrication
  • FIG. 2 (c) is an enlarged side view showing an example of the difference in the shape of the preform.
  • FIG. 3 is an enlarged side view showing an example of a molded body having no internal defect during fabrication.
  • FIGS. 3 (a) and 3 (b) are cross-sectional views of the preform for explaining the working ratio.
  • Embodiments of the aluminum alloy for forging forging, an aluminum forged product, and a method for manufacturing an aluminum forged product of the present invention will be specifically described below.
  • the present invention is not limited to these, and various changes, modifications, and improvements may be made based on the knowledge of those skilled in the art without departing from the scope of the present invention. is there.
  • a preform is prepared using an aluminum alloy consisting essentially of 25% by mass or less, 0.0 to 0.15% by mass of titanium, and unavoidably contained impurities, and then the preform is formed. Forging to produce a forged product having a desired shape.
  • an aluminum alloy having the above-described composition the aluminum forged product of the present invention having mechanical strength that meets market needs can be manufactured. These can be suitably used as parts for vehicles that are used in harsh environments, especially as suspension parts for automobiles, frames for vehicles, and parts for engines.
  • the aluminum alloy for forging and forging according to the present invention comprises: 0.6 to 1.8% by mass of silicon; 0.6 to 1.8% by mass of magnesium; 0.8% by mass or less of copper; and 0.2 to 1.0% of manganese. It is an aluminum alloy consisting essentially of 0% by mass, 0.25% by mass or less of chromium, and 0.0 to 0.15% by mass of titanium, and unavoidable impurities.
  • Silicon is included in the aluminum alloy to increase fluidity and help to improve shrinkage cavities.Also, when it is mixed with magnesium, it precipitates as Mg 2 Si, elongation, bow I tensile strength, It is an element that also contributes to the improvement of mechanical strength such as heat resistance. If the silicon content is less than 0.6% by mass, sufficient mechanical strength cannot be secured. On the other hand, if the silicon content exceeds 1.8% by mass, the elongation will be low, and it will not be possible to manufacture products that meet market needs, which is not preferable.
  • the amount of silicon is preferably from 0.8 to 1.3% by mass, more preferably from 0.8 to 1.1% by mass.
  • the present invention is an aluminum forged product which replaces the conventional forged product at a low cost, so that a higher strength is indispensable and a magnesium content is required.
  • the improvement in strength only reaches a plateau, and if too much is added, magnesium is an element that is easily oxidized, so that the oxidation of the molten metal is accelerated, the fluidity is reduced, and structural defects are liable to occur.
  • the corrosion resistance is reduced, and the product cannot withstand poor use environments. Therefore, it is preferable to contain a small amount.
  • Magnesium is preferably contained in the aluminum alloy for forging at 0.6 to 1.8% by mass. If the amount of magnesium is less than 0.6% by mass, the amount of Mg 2 Si precipitated is insufficient, and the strength is insufficient, which is not preferable. If the amount is more than 1.8% by mass, the quenching sensitivity is reduced in addition to the above. As a result, forging defects are more likely to occur, and as a result, the quality of the forged product is reduced, and the mechanical strength is also lowered. Preferably, it is 0.6 to 1.2% by mass, more preferably 0.7 to 1.1% by mass.
  • Copper is an element whose strength can be improved by including it in an aluminum alloy. Forged products containing copper, they are allowed to stand at room temperature after cooling, and precipitate crystals over time, so-called A1-Cu or A1-Cu-Mg precipitation developed by so-called aging treatment. Thus, the strength can be improved by promoting the strength improving action of the precipitated Mg 2 Si as described above.
  • copper which is easily oxidized, is susceptible to corrosion if it is added too much. It is preferable to control only lower.
  • copper is contained in the aluminum alloy for forging at 0.8% by mass or less. If the content of copper is more than 0.8% by mass, the corrosion resistance is lowered, and it is not preferable because the corrosion resistance is increased and the strength cannot be maintained for a long period of time. Preferably, it is at least 0.005% by mass and less than 0.3% by mass, and more preferably more than 0.1% by mass and less than 0.2% by mass.
  • Manganese is contained in the aluminum alloy, It is an element that suppresses the recrystallization of gold and the growth of crystal grains. As a result, the structure in the aluminum alloy is maintained fine, and the strength is maintained. In the present invention, since it is necessary to maintain mechanical strength such as elongation, tensile strength, and heat resistance for a long period of time, it is necessary to contain a small amount of manganese. However, if it is added too much, workability is reduced during forging, and an intermetallic compound is generated, resulting in a decrease in mechanical strength, particularly elongation.
  • Manganese is preferably contained in the aluminum alloy for forging in an amount of 0.2 to 1.0% by mass. If the manganese content is less than 0.2% by mass, the desired strength may not be exhibited. If the manganese content is more than 1.0% by mass, the forgeability is reduced, and defects are liable to occur. More preferably, the content is more than 0.5% by mass and 0.7% by mass or less.
  • Chromium when contained in an aluminum alloy, has the effect of forming dispersed particles and hindering the movement of grain boundaries after recrystallization, so that fine crystal grains and subcrystal grains can be obtained.
  • Chromium is preferably contained in the aluminum alloy for forging at 0.225% by mass or less. Even if chromium is contained in an amount exceeding 0.25% by mass, the desired effect may not be exhibited, which is not preferable. More preferably, the content is 0.04 to 0.25% by mass.
  • Titanium is contained in an aluminum alloy to reduce the size of crystal grains and improve workability during forging. Titanium is preferably contained in the aluminum alloy for forging at 0.0 to 0.15% by mass. Even if it does not contain titanium, it does not cause any great trouble.
  • the trace metal contained in the aluminum alloy for forging and forging of the present invention and the aluminum forged product of the present invention are as described above, and the rest are impurities and aluminum which are inevitably contained. It is preferable that the unavoidably contained impurities be as small as possible, less than 0.1% by mass, and preferably less than 0.05% by mass.
  • burrs which are approximately 30% of generally used raw materials generated in the forging process, are recovered and reused as raw materials for the aluminum alloy according to the present invention. it can. Therefore, according to the present invention, the cost of raw materials can be reduced.
  • burrs generated during forging as a raw material.
  • This raw material is intended to contain 6-1.8% by mass of silicon, 0.6-1.8% by mass of magnesium, 0.8% by mass or less of copper, 2-1.0% by mass of manganese, chromium 0.25% by mass or less, and titanium 0.0-0.15% by mass, and the deficient metals should be pure metals so as to be an aluminum alloy consisting essentially of unavoidable impurities. Or by mixing other aluminum alloys, etc., so as to become the target component. At this time, it is preferable that unavoidable impurities are not contained in the aluminum alloy in a total amount of 0.1% by mass or more.
  • raw materials are put into a melting furnace and heated to about 680 to 780 ° C to dissolve them. Then, they are put into a holding furnace and degassed and deoxidized to obtain a molten metal. Then, a die is formed from the molten metal using a forging apparatus to obtain a forging material.
  • the temperature of the mold is preferably adjusted to about 60 to 150 ° C.
  • this mold has a shape in which the working ratio is approximately 18 to 60% when the shape of the final forged product is 100%, and the strength is improved by subsequent forging. This is preferable because the process can be further simplified.
  • the processing rate is a value representing the degree of processing.
  • the first material A with a thickness D1 is processed by a load F, as shown in Fig. 3 (b).
  • the machining rate R is expressed by the following equation.
  • R [%] (D2-D1) / D1X100 (D2> D1). That is, in the present invention, when the shape of the final forged product is set to 100% by forging, the processing rate is approximately Obtaining a so-called preform having a shape of 18 to 60% means that when forging the forging material to obtain a final product, the thickness of each part of the forging material and the corresponding parts of the final product A preform with a shape such that the processing rate determined using the thickness falls within approximately 18 to 60% in each part That is to gain.
  • a forged product obtained by die molding using a forging device that is, a forging material
  • a forging device that is, a forging material
  • a forging press to obtain Get a forged product.
  • the rough forged product is heated again to a surface temperature of about 380 ° C to the melting point or lower, and is subjected to finish stamping by a forging press to obtain a finished forged product.
  • This finished forged product is trimmed and subjected to a heat treatment such as T6 treatment to obtain a forged product.
  • the load of a forging press is approximately 260 to 280 tons for rough forging and approximately 320 to 380 for finish forging when manufacturing knuckle steering, which is an undercarriage part for automobiles. 100 tons.
  • burrs generated by the forging press and trimming during the manufacturing process of the present invention can also be collected by the deburring machine and reused as a raw material of the aluminum forged product of the present invention. It is. Therefore, all forging materials are recycled, and there is no waste or inexpensive forging materials.
  • the working ratio when the shape of the final forged product is set to 100% is approximately as follows. 18% to 60%, while improving the strength by forging, making it closer to the shape of the product than conventional forging raw materials and making it easier to press, so extruding and cutting as in the conventional forging process
  • the manufacturing process can be simplified without going through the steps of heating, rough forging, rough forging, finish forging, and trimming, thereby reducing manufacturing costs.
  • FIG. 1 is a view showing an embodiment of an aluminum forged product according to the present invention, which is a knuckle steering 40 of an automobile part.
  • Example 2 From the results of Example 1 and Example 2, the mechanical properties of the aluminum forged product of the present invention ensured that the bow I tensile strength, heat resistance, and elongation could satisfy the market requirements in all of the required properties. It had been. Industrial applicability
  • an aluminum-forged product meeting market needs can be manufactured with a simpler manufacturing process, with higher productivity, and , Provided at low cost.
  • the aluminum-forged product provides various vehicle parts such as lightweight and inexpensive undercarriage parts for vehicles, frames for vehicles, and engine packs. Through this, the fuel efficiency of automobiles is reduced, and as a result, the carbon dioxide emissions are reduced, which has the effect of contributing to the prevention of global warming.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

珪素0.6~1.8質量%、マグネシウム0.6~1.8質量%、銅0.8質量%またはそれ以下、マンガン0.2~1.0質量%、クロム0.25質量%またはそれ以下、およびチタン0.0~0.15質量%並びに不可避的に含まれる不純物より本質的になるアルミニウム合金の鋳造鍛造品は、足廻り部品、フレーム、エンジンのパーツなどのアルミ製自動車用各種部品として使用したとき、引張強度、耐力、伸び等の機械的特性においてより優れており、かつ、低コストで製造可能である。

Description

明 細 書
铸造鍛造用アルミニウム合金、 アルミニウム铸造鍛造品及び製造方法 技術分野
本発明は、 車両用部品等に用いられ、 より低コスト化が図られた、 铸造鍛造用 アルミニウム合金、 アルミニウム錶造鍛造品、 及び、 アルミニウム鐽造鍛造品の 製造方法に関する。 より特定すれば、 自動車の燃費改善のために軽量化が求めら れる車両用足廻り部品の製造に使用され、 鍛造工程で生じたバリ等の不用な鍛造 用材料を原料として用いることが出来る铸造鍛造用アルミニウム合金と、 機械的 性質が優れていて、 珪素、 マグネシウム、 銅、 マンガンを特定量含有するアルミ 二ゥム錶造鍛造品、 及び、 アルミニウム錶造鍛造品の製造方法に関する。 背景技術
地球環境問題の 1つである地球温暖化は、 人間のあらゆる活動における二酸化 炭素の影響が大きいといわれており、 工場や発電所から排出される二酸化炭素の 低減と、 自動車の燃料消費量低減が、 世界的に強く求められている。 1 9 9 7年 に京都で開催された気候変動枠組条約第 3回会議、 所謂地球温暖化防止会議 C O P 3では、 日本は主に二酸化炭素が占める温室効果ガス排出量を、 1 9 9 0年比 で 2 0 0 8〜 2 0 1 2年の平均で 6 %低減することを約束している。
これに基づき自動車の燃費には、 ガソリンエンジンで 2 0 1 0年度、 ディーゼ ルエンジンで 2 0 0 5年度を目標年度として、 車両質量区分別の燃費目標基準値 が定められた。 又、 税制も低公害車を優遇する措置が取られ、 今後更に、 自動車 購入者及び使用者の環境問題への理解度向上とともに、 自動車製造業者において は、 燃費向上のための技術開発を促進し、 燃費の優れた自動車の開発に努めるこ とが強く求められる。 又、 そういった開発が、 業者間の競争に打ち勝つためには 必要となってくる。
自動車の燃費改善対策には、 燃料電池、 天然ガス、 及び、 電気等の新しい動力 源の利用、 若しくは、 それらのハイブリッドな利用、 あるいは、 希薄燃料ェンジ ンゃ直噴エンジン等の原動機系の技術改善、 更には、 動力伝達系の損失改善や車 体外形改善による走行抵抗の低減等があるが、 最も効果があり、 他のどの技術と も併用して適用可能なのが自動車質量の軽量ィヒである。 自動車そのものを軽量ィ匕 すれば動力源への負荷が減り、 何れの動力源であっても使用量を減らすことが可 能となる。 自動車質量の軽量化の一環として、 自動車の運転操作性、 乗り心地感 の向上に寄与することから、 自動車の足廻りの軽量化が、 より優先度の高い対象 として取り上げられているが、 最近は、 フレーム部分やエンジンの一部パーツも 軽量化の対象として、 その軽金属材料の使用が試みられている。
さて、 自動車の軽量化を図るときにはコストアップという改善すべき課題があ る。 軽量ィ匕技術として構造設計技術と材料技術に大別されるが、 車体構造や構成 要素の抜本的改良に比べ、 使用材料の変更がより取り組み易い軽量化手段である が、 それらの材料は総じて高コストである。 軽量化材料としては F R P等樹脂材 料、 高張力鋼板利用による鉄の薄板化、 アルミニウム合金、 マグネシウム合金、 チタン合金、 セラミックス、 金属複合材料等が挙げられるが、 その中で最も耐食 性等の弱点が少なく、 鉄に比べ高コストではあるが軽量化材料の中では、 より低 コストで、 かつ、 自動車の基本設計上の大幅変更を必要とすることなく、 代替品 として適用し易いのがアルミニウム合金である。
アルミニウム合金は、 鉄の約 1 Z 3の密度で、 既にエンジンシリンダヘッド、 エンジンシリンダブロック等に、 製造し易い铸造品が多く用いられている。 これ らは高速射出成形、 所謂ダイキャスト法によって製造され、 生産効率が良く比較 的低コス卜で製造可能であるが、厚肉で高い強度のものは作れず、上記のように、 軽量化が要望される足廻り部品においては、 強度不足による破損が安全に係わる 重要な問題に直結するため、 铸造品の適用が困難であるという問題があった。 軽量化技術の検討がより進んでいる足廻り部品を例に挙げながら、 技術の現状 について、 述べることとする。 足廻り部品、 例えば、 ナックルステアリング、 サ スペンションアーム等に用いる材料には、 腐食性が小さく強度や伸びの特性が充 分で欠陥の少ないことが必要で、 要求に合つた A 6 0 6 1合金鍛造品や A C 4 C H合金スクイズ鐃造品 (低速射出成形品) 等が既に用いられているが、 これらは 高コストという問題が解決されておらず、 適用が極めて限定されているのが現状 である。 従来の A 6 0 6 1合金鍛造品等の、 所謂純粋なアルミニウム鍛造品が高コスト である理由は、 工程数が多いこと、 鍛造用原料そのものが高コストであること、 且つ、 製造工程中でバリ等の無駄が生じること、 更に、 そのバリ等の不用材が鍛 造品としての原料にはリサイクル出来ないこと等が挙げられる。 又、 スクイズ鐃 造品も工程数が多い上に射出スピードが遅いため、 生産性が上がらず低コスト化 が実現できていない。
このように、 特に車両用部品においては軽量化を図るために、 より腐食性、 強 度、伸びに優れ、欠陥がなく、低コストなアルミニウム製品が求められているが、 これに応えて従来から、 このようなアルミニウム製品を作製する材料として、 改 善された種々のアルミニウム合金が提案されている。
特開平 5— 5 9 4 7 7号公報によれば、 成分調整によって結晶粒の粗大化を抑 制し、機械的性質が優れたものとした鍛造用アルミニウム合金が提案されている。 珪素 1 . 0〜1 . 5質量%、 マグネシウム 0 . 8〜1 . 5質量%、 銅 0 . 4〜0 . 9質量%、 マンガン 0 . 2 ~ 0 . 6質量%、 クロム 3〜0 . 9質量%他を含 有する成分となるよう調整し、 マトリックスの強度向上、 結晶粒の粗大化抑制を 図り、 引張り強さ 4 0 k g f Zmm2を実現したとしている。
しかしながら、 強度の向上は図られているものの、 低コストにならない上に、 従来の鍛造用原料 (A 6 0 6 1合金) より銅を多く含んでいるために耐食性が低 下し、 又、 マグネシウムが多く含まれるために流動性が低下し、 铸造性が劣ると いう問題が新たに生じていた。
又、 铸造性に優れ高強度な鍛造用アルミニウム合金材料が特開平 7— 2 5 8 7 8 4号公報には提案されている。 同公報によれば、 珪素 0 . 8〜2 . 0質量%、 マグネシウム 0 · 5〜1 . 5質量%、 銅 0 . 5〜1 . 0質量%、 マンガン 0 . 4 〜1 . 5質量%、 クロム 0 . 1〜0 . 3質量%他を含有する成分となるよう調整 したアルミニウム合金材料の溶湯を用いて、 凝固過程の冷却速度を制御して連続 铸造した後、 均熱処理を施し、 続いて熱間鍛造を行って、 その後に溶体化処理、 更には時効処理を行って得たアルミニウム合金鍛造品は、 最終製品に近い形状に 錶造する場合に、 従来の A 6 0 6 1合金を原料とした際に生じていた铸造割れが 起きないとしている。 この提案においては、 铸造性の改良が成されているものの、 やはり、 従来の鍛 造用原料 (A6061合金) に比べて、 低コストに結びつかない上に、 銅を多く 含んでいるために耐食性が低下し、 足廻り部品への適用には不安が残る。 又、 マ グネシゥムが多く含まれるために流動性が低下し、 铸造工程に上記のような厳密 な制御が必要となり、 むしろ製造コストは上がつてしまうという問題が生じてい た。
更には、 機械的特性に優れた低コストな鍛造用アルミニウム合金が、 特開平 8 —3675号公報には、 提案されている。 珪素 6〜3. 0質量%、 マグネシ ゥム 0. 2〜2. 0質量%、 銅 0. 3〜1. 0質量%、 マンガン 0. 1〜0. 5 質量%、 クロム 0. 1〜0. 5質量%他を含有し、且つ、 Mg2S iが 1. 5質量% 以上になるように成分調整したアルミニウム合金を、 10〜50%の据込率で鍛 造加工することにより、 铸造時に熱間割れが発生せず、 鍛造後に強度を向上させ ることが出来るとしている。
この提案では、 铸造時に最終製品に近い形状に成形出来、 押出工程を省略して 鍛造出来るため製造コスト低減が図られているが、 マンガンが過剰に含まれるた めに、 強度が低下するといつた問題が生じていた。 マンガンは、 アルミニウム結 晶粒の成長を抑制して組織を微細に維持し、 その結果、 強度を向上する元素であ るが、 その量が多いと金属間化合物の生成が起き易く、 かえって強度を低下させ てしまうという問題がある。
我々も、 特開 2002— 302728号公報において、 アルミニウム肉厚加工 製品として、 引張強さ、 耐カ、 伸びが大きく、 従来の铸造鍛造品よりも機械的性 質を向上させていて、 耐食性に優れ、 欠陥がなく高品質であり、 又、 低コストな アルミニウム铸造鍛造品、 及び、 その製造方法を提案している。 その提案におい ては、 鍛造用素材となる鍀造鍛造用アルミニウム合金として、 珪素 0. 2〜2. 0質量%、 マグネシウム 0. 35〜1. 2質量%、 銅 0. 1〜0. 4質量%、 マ ンガン 0. 01〜0. 08質量%を含有することを特徴とするアルミニウム合金 を提案している。
上記の材料を使用することにより、 所望の効果は上げうるものの、 機械的強度 の点で、 使用条件によっては、 市場ニーズに充分に答えうるとは言い難く、 より 一層機械的強度に優れた材料の提供が求められているのが現状である。
引張強度、 耐カ、 伸び等の機械的特性においてより優れた、 足廻り部品、 フレ —ム、 エンジンのパーツなどの自動車用各種部品として、 適用可能で、 且つ、 低 コス卜なアルミニウム製品が求められているが、 適切なアルミニウム製品が提案 されていないのが現状である。 発明の開示
本発明は、 上記した従来の課題に鑑みてなされたものであり、 その目的とする ところは、 従来技術の問題を解決することにあり、 より特定すれば、 アルミニゥ ム肉厚加工製品として、 市場ニーズに答えうる、 引張強さ、 耐カ、 伸びを有する アルミニウム錶造鍛造品、 及び、 その製造方法を提供することにある。 即ち、 珪 素の含有量が 3質量%以上という A C 4 C Hの様な高濃度製品のように、 铸造加 ェが可能であり、 かつ、 A C 4 C Hの様に、 低速铸造を必要とすることなく、 所 望とする部品の最終形状に加工可能なアルミニウム合金材料、 同材料により铸造 鍛造されたアルミニウム铸造鍛造品、 同アルミニウム铸造鍛造品の製造方法を提 供することにある。 ひいては、 このアルミニウム铸造鍛造品、 及び、 その製造方 法によってもたらされる軽量の車両用各種部品の提供によって、 自動車等の燃費 低減を図り、 排出二酸化炭素を削減し、 地球温暖化防止等の環境対策に貢献する ことにある。
本発明者等は、 上記の課題を解決するために、 アルミニウム肉厚加工製品の原 料や製法について種々検討した結果、 珪素、 マグネシウム、 銅、 マンガン、 クロ ムをそれぞれ所定量含有させるとともに、 所望により所定量のチタンを含有させ ることにより、 流動性を高めて铸造性を向上させていながら、 市場ニーズに答え うる充分な強度アルミニウム铸造鍛造品が得られることを見出して、 本発明を完 成させたものである。
即ち、 本発明によれば、 錶造後鍛造用素材と使用する鍀造鍛造用アルミニウム 合金であって、 珪素 0 . 6〜 1 . 8質量%、 マグネシウム 0 . 6〜1 . 8質量%、 銅 0 . 8質量%またはそれ以下、 マンガン 0 . 2〜1 . 0質量%、 クロム 0 . 2 5質量%またはそれ以下、 およびチタン 0 . 0〜0 . 1 5質量%並びに不可避的 に含まれる不純物より本質的になるアルミニウム合金が提供される。 この铸造鍛 造用アルミニウム合金は、 市場二一ズとされる引張強度 32 OMP a以上、 耐カ 28 OMP a以上、 伸び率 10 %以上という機械的強度を有する足廻り部品を含 む各種車両用部品の製造に使用することが可能である。 所望とする最終製品の製 造に使用するに際しては、 最終製品の形状を 100%.としたときに、 その加工率 が 18〜60%であるプリフォーム成形品を、 上記アルミニウム合金を用いて铸 造して、 次いで、 同プリフォームを鍛造して、 最終製品の形状とすればよく、 こ れにより、 AC 4 CHを用いて、 低速铸造する場合に比べて、 低コストでかつ高 い生産性で、 車両用部品等を製造することが可能となる。
又、 本発明によれば、 珪素 0. 6〜1. 8質量%、 マグネシウム 0. 6〜1. 8質量%、 銅 0. 8質量%またはそれ以下、 マンガン 0. 2〜1. 0質量%、 ク ロム 0. 25質量%またはそれ以下、 およびチタン 0. 0〜0. 1 5質量%並び に不可避的に含まれる不純物より本質的になる上記アルミニウム合金からプリフ オームを铸造した後、 このプリフォームを鍛造して作製したアルミニウム铸造鍛 造品であって、 珪素 6〜1. 8質量%、 マグネシウム 0. 6〜1. 8質量%、 銅 0. 8質量%またはそれ以下、 マンガン 0. 2〜1. 0質量%、、クロム 0. 2 5質量%またはそれ以下、 およびチタン 0. 0〜0. 1 5質量%並びに不可避的 に含まれる不純物より本質的になるアルミニウム铸造鍛造品も提供される。 かく して製造されるアルミニウム鐯造鍛造品は、 車両用足廻り部品や、 車両用フレー ム、 エンジン用パーツとして使用可能な充分な機械的強度を有する。
更に、 本発明によれば、 珪素 6〜1. 8質量%、 マグネシウム 6〜1. 8質量%、 銅 0. 8質量%またはそれ以下、 マンガン 0. 2〜1. 0質量%、 ク ロム 0. 25質量%またはそれ以下、 およびチタン 0. 0〜0. 1 5質量%並び に不可避的に含まれる不純物より本質的になるアルミニウム铸造鍛造品の製造方 法であって、 珪素 0. 6〜1. 8質量%、 マグネシウム 6〜1. 8質量%、 銅 0. 8質量%またはそれ以下、 マンガン 0· 2〜1. 0質量%、 クロム 0. 2 5質量%またはそれ以下、 およびチタン 0. 0〜0. 1 5質量%並びに不可避的 に含まれる不純物より本質的になるアルミニウム合金である鍛造用材料を、 約 6 80〜780°Cで溶解し溶湯を得る溶解工程と、 得られた溶湯を、 約 60〜15 0°Cの铸型温度で铸造し鍛造用素材を得る鍀造工程と、鍛造用素材を、約 380°C 〜融点温度以下の表面温度に加熱し、 鍛造して荒鍛造口 αρを得る荒打鍛造工程と、 荒鍛造品を、 約 380°C〜融点温度以下の表面温度に加熱し、 鍛造して仕上鍛造 品を得る仕上鍛造工程と、 仕上鍛造品を、 バリ抜きして最終製品とするトリミン グ工程とを含むアルミニウム铸造鍛造品の製造方法が提供される。
鍛造用材料としては、 本発明に係るアルミニウム合金の組成となるように、 各 成分を調整しながら、 鍛造時に生じたバリを原料として、 再利用してもよい。 な お、 最終製品の形状を 100%としたときに、 鍛造用素材、 即ち、 プリフォーム の形状加工率は 18〜 60 %であることが好ましい。 かくして、 本発明に係るァ ルミ二ゥム鍀造鍛造品の製造方法によって好適に車両用足廻り部品や、 車両用フ レーム、 ェンジン用パーツを作製することが可能である。 図面の簡単な説明
図 1は、 本発明のアルミニウム铸造鍛造品の一実施例を示す側面図である。 図 2 (a) 、 (b) 、 および (c) は、 本発明のアルミニウム铸造鍛造品の製 造方法の一実施例を示す図で、 図 2 (a) は、 鍀造時の加工率毎の、 プリフォー ムの形状の違いを示す概略説明図であり、 図 2 (b) は、 铸造時に内部欠陥が生 じた成形体の一例を示す拡大側面図であり、 図 2 (c) は、 铸造時に内部欠陥の ない成形体の一例を示す拡大側面図である。
図 3 (a) および (b) は、 加工率を説明するためのプリフォームの断面図で ある。
なお、 図面中の参照番号は、 それぞれ以下で規定する部材、 装置、 部位等をそ れぞれ示す。
21, 22…円柱試験片、 40…ナックルステアリング、 41, 42, 43, 4 4…試験片採取位置、 50…内部欠陥。 発明を実施するための最良の形態
以下に、 本発明の铸造鍛造用アルミニウム合金、 アルミニウム鎳造鍛造品、 及 び、 アルミニウム鎵造鍛造品の製造方法について、 実施の形態を具体的に説明す るが、 本発明は、 これらに限定されて角釈されるものではなく、 本発明の範囲を 逸脱しない限りにおいて、 当業者の知識に基づいて、 種々の変更、 修正、 改良を 加え得るものである。
本発明においては、 珪素 0. 6〜1. 8質量%、 マグネシウム 0. 6〜1. 8 質量%、 銅 0. 8質量%またはそれ以下、 マンガン 2〜1. 0質量%、 クロ ム 0. 25質量%またはそれ以下、 およびチタン 0. 0〜0. 15質量%並びに 不可避的に含まれる不純物より本質的になるアルミニウム合金を用いて先ず、 プ リフォームを錡造し、 次いで、 このプリフォームを鍛造して所望の形状を有する 铸造鍛造品を製造する。 上記のような配合からなるアルミニウム合金を使用する ことで、 市場ニーズに叶った機械的強度を有する、 本発明のアルミニウム铸造鍛 造品が作製可能となる。 このものは、 使用環境の厳しい車両用部品、 特に、 自動 車の足廻り部品、 車両用のフレーム、 エンジンのパーツとして好適に用いること が可能である。
以下、 本発明の铸造鍛造用アルミニウム合金、 及びアルミニウム铸造鍛造品を 具体的に説明する。
本発明の铸造鍛造用アルミニウム合金は、 珪素 0. 6〜1. 8質量%、 マグネ シゥム 0. 6〜1. 8質量%、 銅 0. 8質量%またはそれ以下、 マンガン 0. 2 〜1. 0質量%、 クロム 0. 25質量%またはそれ以下、 およびチタン 0. 0〜 0. 15質量%並びに不可避的に含まれる不純物より本質的になるアルミニウム 合金である。
珪素は、 アルミニウム合金中に含有させることによって、 流動性を高め、 引け 巣性を改善するのに役立ち、 又、 マグネシウムとの混在で Mg2S iとして析出し、 伸び、 弓 I張り強さ、 耐カ等の機械的強度の改善にも寄与する元素である。 珪素の 含有量が 0. 6質量%未満では、 充分な機械的強度が確保されない。 一方、 珪素 の含有量が 1. 8質量%を超えると伸びが低くなり、 市場ニーズに対応した製品 を製造することが出来なくなるので、 好ましくない。 なお、 珪素の量は、 好まし くは、 0. 8〜1. 3質量%、 更に好ましくは、 0. 8〜1. 1質量%である。 マグネシウムは、 アルミニウム合金中に含有させることによって、 珪素との混 在で Mg2S iとしてマトリックス中に析出し、 伸び、 引張り強さ、 耐カ等の機械 的強度を改善する元素である。 本発明は、 低コストであるが従来の鍛造品に代わ るアルミニウム铸造鍛造品であるので、 従来以上の強度は不可欠であり、 マグネ シゥムの含有が必要となる。 しかし、 多く入れても強度の改善は頭打ちになるば かりか、 入れすぎると、 マグネシウムは酸化し易い元素であるので溶湯の酸化が 促進され、 流動性が低下し铸造欠陥が生じ易くなる。 又、 耐腐食性も低下し、 製 品としたとき劣悪な使用環境に耐えられない。 従って、 少なめに含有することが 好ましい。
マグネシウムは、 錶造鍛造用アルミニウム合金中に 0 . 6〜1 . 8質量%含む ことが好ましい。 マグネシウムが 0 . 6質量%未満では、 M g 2 S iの析出量が不 足し、 強度不足となるので好ましくなく、 1 . 8質量%より多い場合には、 上記 に加えて、 焼入れ感受性が低下し鍛造欠陥も起き易くなる結果、 鍛造品としての 品質が低下し、 やはり機械的強度の低下を招くことになるので好ましくない。 好 ましくは、 0 . 6〜1 . 2質量%、 更に好ましくは、 0 . 7〜1 . 1質量%であ る。
銅は、 これをアルミニウム合金中に含有させることによって、 強度改善を図る ことが出来る元素である。 銅を含有させた鍛造品では、 冷却後に常温放置し、 時 間をかけて結晶を析出させる、 所謂時効処理で発現する A 1—C u、 又は、 A 1 一 C u— M g系の析出物を得ることが出来、 これらによって、 上記のような析出 した M g 2 S iによる強度改善作用を促進させることで強度が向上する。本発明で は、 鍛造品として従来以上の強度が不可欠なので、 銅を含有させることが好まし い。 しかし、 例えば、 自動車の足廻り部品等の耐腐食性が最重要視される製品へ の適用を考慮した場合に、 酸化し易い銅は、 入れすぎると腐食し易くなるので、 添加する量を出来るだけ低めに制御することが好ましい。
銅は、 铸造鍛造用アルミニウム合金中に 0 . 8質量%'またはそれ以下が含まれ ることが好ましい。 銅が 0 . 8質量%よりも多くなると、 耐腐食性が低下し、 鲭 び易くなり長期にわたり強度を維持出来なくなるので好ましくない。好ましくは、 0 . 0 0 5質量%以上、 0 . 3質量%未満、 更に好ましくは、 0 . 1質量%より も多く、 0 . 2質量%未満である。
マンガンは、 アルミニウム合金中に含有させることによって、 アルミニウム合 金が再結晶し、 結晶粒が成長するのを抑制する元素である。 その結果、 アルミ二 ゥム合金中の組織が微細に維持され、 強度が保たれる。 本発明では、 長期にわた つて伸び、 引張り強さ、 耐カ等の機械的強度が保持されることが必要なので、 マ ンガンを微量含有させることが必要となる。 しかし、 入れすぎると鍛造時に加工 性が低下し、 又、 金属間化合物が生成され、 機械的強度、 特に伸びの低下がみら れるようになる。
マンガンは、 錶造鍛造用アルミニウム合金中に 0 . 2〜1 . 0質量%含むこと が好ましい。 マンガンが 0 . 2質量%未満では、 所望とする強度が発揮されない ことがあり、 1 . 0質量%より多い場合には、 鍛造加工性が低下し、 欠陥が生じ 易くなるので好ましくない。 より好ましくは、 0 . 5質量%より多く、 0 . 7質 量%以下である。
クロムは、アルミニウム合金中に含有させることによって、分散粒子を形成し、 再結晶後の粒界移動を妨げる効果があるので、 微細な結晶粒や亜結晶粒を得るこ とができる。 クロムは、 铸造鍛造用アルミニウム合金中に 0 . 2 5質量%または それ以下含むことが好ましい。クロムが 0 . 2 5質量%を超えて含まれていても、 所望とする効果が発揮されないことがあり、好ましくない。 より好ましくは、 0 . 0 4〜0 . 2 5質量%である。
チタンは、 アルミニウム合金中に含有させることによって、 錶塊の結晶粒を微 細化し、 鍛造時の加工性を向上させる。 チタンは、 铸造鍛造用アルミニウム合金 中に 0 . 0〜0 . 1 5質量%含むことが好ましい。 なお、 チタンが含まれていな くとも、 格別大きな支障を生ずることはない。
本発明の錶造鍛造用アルミニウム合金、 及び、 アルミニウム铸造鍛造品におけ る含有微量金属は、 上記の通りであり、 残りは不可避的に含まれる不純物とアル ミニゥムである。 なお、 不可避的に含まれる不純物はできるだけ、 少量であるこ とが好ましく、 0 . 1質量%未満、 好ましくは、 0 . 0 5質量%以下でぁる。 なお、 本発明に係る錡造鍛造方法においては、 鍛造工程で発生する一般に使用 する原料の概ね 3 0 %にもなるバリを回収して、 これを本発明に係るアルミニゥ ム合金の原料として再利用できる。 従って、 本発明では、 原料費の削減を図るこ とが出来る。 次いで、 本発明のアルミニウム铸造鍛造品の製造方法について説明する。
上記の通り、 鍛造時に生じるバリを原料として用いることが好ましい。 この原 料は、 目的とする、 珪素 6〜1. 8質量%、 マグネシウム 0. 6〜1. 8質 量%、 銅 0. 8質量%またはそれ以下、 マンガン 2〜1. 0質量%、 クロム 0. 25質量%またはそれ以下、 およびチタン 0. 0〜0. 15質量%並びに不 可避的に含まれる不純物より本質的になるアルミニウム合金となるように、 不足 となる金属を純粋な該当金属として用意するか、 若しくは、 その他のアルミニゥ ム合金を混合する等の手段によって、 上記目的成分となるように調整する。 この 際、 不可避な不純物は、 アルミニウム合金中には、 合計で 0. 1質量%以上は含 まれないようにすることが好ましい。
これらの原料を、溶解炉に入れて約 680〜780°Cに熱して溶解し、次いで、 保持炉に入れて脱ガス処理及び脱酸処理を施し溶湯を得る。 そして、 この溶湯か ら、 铸造装置を用いて金型成形し、 鍛造用素材を得る。 この際、 金型の温度は、 約 60〜150°Cに調整しておくことが好ましい。 又、 この金型は、 最終の鍛造 製品の形状を 100%としたときに、 加工率を概ね 18〜60%とする形状であ ることが、 その後の鍛造によって強度が向上し、 又、 鍛造工程もより簡略化出来 るので好ましい。 即ち、 この加工率を概ね 18〜 60 %とすることで、 鍛造によ る強度向上効果と鍛造工程の簡略化によるコストダウンとのバランスが取れる。 ここで加工率とは加工の程度を表す値で、 例えば、 図 3 (a) に示すような初 めの厚さ D 1の材料 Aが荷重 Fによって加工され、 図 3 (b) に示すように加工 後に厚さ D 2となったときに、 その加工率 Rは次式で表される。
R [ ] = (D 1 -D 2) /D 1 X 100 (D 1>D 2)
但し、 加工後の厚さ D 2の方が厚い場合には、 次式で表す。
R [%] = (D 2 - D 1) /D 1 X 100 (D 2>D 1) . 即ち、 本発明において、 铸造によって最終の鍛造製品の形状を 100%とした ときに加工率が概ね 18〜60%である形状のいわゆるプレフォームを得ること とは、 その鍛造用素材を鍛造して最終製品を得る場合に、 鍛造用素材の各部分の 厚さと、 最終製品において相当する各部分の厚さとを用いて求めた加工率が、 各 部分において概ね 18〜60 %におさまるような形状のプレフォームを铸造によ つて得るということである。
次いで、 錶造装置を用いて金型成形し得られた铸造品、 即ち、 鍛造用素材を、 約 3 8 0 °C〜融点温度以下の表面温度に加熱し、 鍛造プレスによって型打ちし、 荒鍛造品を得る。 荒鍛造品は、 冷却後、 再度、 約 3 8 0 °C〜融点温度以下の表面 温度に加熱して、鍛造プレスによって仕上げの型打ちを行い、仕上鍛造品を得る。 この仕上鍛造品に、 トリミングを行って、 T 6処理等の熱処理を施し、 鍛造製品 とする。 鍛造プレスの荷重は、 例えば、 自動車用足廻り部品であるナックルステ ァリングを製造する場合に、 荒鍛造では概ね 2 6 0 0〜 2 8 0 0トン、 仕上鍛造 では概ね 3 2 0 0 ~ 3 8 0 0トンである。 このような製造工程によって本発明の アルミニウム铸造鍛造品が得られる。
本発明においては、 本発明の製造工程中の、 鍛造プレス、 及びトリミングによ つて生じるバリも、 バリ抜き機によって集められて、 再び本発明のアルミニウム 铸造鍛造品の原料として再利用することが可能である。 従って、 鍛造用原料が全 てリサイクルされ、 廃棄物や安価な铸造用原料となることがない。
本発明の、 アルミニウム铸造鍛造品の製造方法では、 原料を溶かして溶湯を得 た後に、 铸造用の金型を、 最終の鍛造製品の形状を 1 0 0 %としたときの加工率 が、 概ね 1 8〜6 0 %程度として、 鍛造による強度向上の効果を得ながら、 従来 の鍛造用原料より製品の形状に近づけ、 プレスし易くしているため、 従来の鍛造 工程のように、 押出、 切断、 加熱、 粗鍛造、 荒鍛造、 仕上鍛造、 トリミングとい つた工程を経ずに製造工程が簡略化出来ていて、 製造コストの低減が図られてい る。
(実施例)
以下、 本発明を実施例により説明するが、 本発明はこれらの実施例に限定され るものではない。
(実施例 1および 2 )
図 1は、本発明のアルミニウム铸造鍛造品の一実施例を示す図で、 自動車用部品 のナックルステアリング 4 0である。
A 6 0 8 2合金の端材に、 銅を少量加えて、 珪素 0 . 6〜1 . 8質量%、 マグネ シゥム 0 . 6〜1 . 8質量%、 銅 0 . 8質量%またはそれ以下、 マンガン 0 . 2〜 (表 3 )
Figure imgf000015_0001
実施例 1、 及び実施例 2の結果より、 本発明のアルミニウム铸造鍛造品の機械 的性質は、 弓 I張り強さ、 耐カ、 伸びの全てにおいて、 市場要求水準を満足させ得 る性能が確保されていた。 産業上の利用可能性
以上説明したように、 本発明によれば、 引張強度、 耐カ、 伸び等の機械的特性 において、 より市場ニーズに叶ったアルミニウム铸造鍛造品がより簡単な製造ェ 程により、 生産性良く、 かつ、 低コストで提供される。 そして、 このアルミニゥ ム铸造鍛造品により、 例えば、 軽量で安価な、 車両用足廻り部品、 車両用のフレ ーム、 エンジンのパ一ッなどの各種車両部品が提供されるので、 車両の軽量化を 通して自動車等の燃費が低減され、 その結果、 排出二酸化炭素が削減され、 地球 温暖ィヒ防止に貢献するといつた効果を奏する。

Claims

sis B冃 求 の 範 囲
1. 珪素 0. 6〜1. 8質量%、 マグネシウム 6〜: L. 8質量%、 銅 0. 8質量%またはそれ以下、マンガン 0. 2〜1. 0質量%、 クロム 0. 25質量% またはそれ以下、 およびチタン 0. 0〜0. 15質量%並びに不可避的に含まれ る不純物より本質的になるアルミニウム合金。
2. 請求項 1に記載のアルミニウム合金からプリフォームを铸造し、 そのプリ フォームから鍛造によりアルミニウム铸造鍛造品を製造するアルミニウム铸造鍛 造品の製造での前記アルミニウム合金の使用。
3. 該プリフォームが最終製品の形状を 100 %としたときに、 その加工率が 18〜60%に相当する形状を有するものである請求項 2に記載のアルミニウム 铸造鍛造品の製造での使用。
4. アルミニウム铸造鍛造品が車両用足廻り部品、 車両用フレーム、 またはェ ンジンのパーツである請求項 2または 3に記載のアルミニウム铸造鍛造品の製造 での使用。
5. 珪素 6〜: L. 8質量%、 マグネシウム 6〜1. 8質量%、 銅 0. 8質量%またはそれ以下、マンガン 0. 2〜1. 0質量%、 クロム 0. 25質量% またはそれ以下、 およびチタン 0. 0〜0. 15質量%並びに不可避的に含まれ る不純物より本質的になるアルミニウム合金を、 略 680〜780°Cで溶解し溶 湯を得る溶解工程と、
前記溶湯を、 略 60〜150°Cの铸型温度で铸造し鍛造用素材としてのプリフ オームを得る铸造工程と、
前記鍛造用素材を、 略 380°C〜融点温度以下の表面温度に加熱し、 鍛造して 荒鍛造品を得る荒打鍛造工程と、
前記荒鍛造品を、 略 380 〜融点温度以下の表面温度に加熱し、 鍛造して仕 上鍛造品を得る仕上鍛造工程と、
前記仕上鍛造品を、 バリ抜きして最終製品とするトリミング工程とを含む、 珪 素 0. 6〜1. 8質量%、 マグネシウム 0. 6〜1. 8質量%、 銅 0. 8質量% またはそれ以下、 マンガン 0. 2〜1. 0質量%、 クロム 0. 25質量%または それ以下、 およびチタン 0. 0〜0. 15質量%並びに不可避的に含まれる不純 物より本質的になるアルミニウム铸造鍛造品の製造方法。
6. 前記アルミニウム合金が、 鍛造時に生じるバリを原料の一部とし含む請求 項 5に記載のアルミニウム铸造鍛造品の製造方法。
7. 前記最終製品の形状を 100%としたときに、 前記プリフォームの形状の 加工率が 18〜60%である請求項 6に記載のアルミニウム铸造鍛造品の製造方 法。
8. 請求項 5〜 7のいずれか一項に記載のアルミ二ゥム铸造鍛造品の製造方法 によって作製された車両用足廻り部品、 車両用フレーム、 またはエンジンのパー ッ。
9. 引張強度 320 MP a以上、 耐カ 280MPa以上、 伸び率 10%以上と いう機械的強度を有する請求項 8に記載の車両用足廻り部品、 車両用フレーム、 またはェンジンのパーツ。
PCT/JP2003/012514 2002-10-01 2003-09-30 鋳造鍛造用アルミニウム合金、アルミニウム鋳造鍛造品及び製造方法 WO2004031424A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004541254A JPWO2004031424A1 (ja) 2002-10-01 2003-09-30 鋳造鍛造用アルミニウム合金、アルミニウム鋳造鍛造品及び製造方法
EP03748621A EP1566458A4 (en) 2002-10-01 2003-09-30 ALUMINUM ALLOY ALLOY FOR FORGING AND ALUMINUM MOLD FORGING PRODUCT AND MANUFACTURING METHOD THEREFOR
AU2003268697A AU2003268697A1 (en) 2002-10-01 2003-09-30 Aluminum alloy for casting-forging, aluminum cast/forged article, and method for manufacture thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-288455 2002-10-01
JP2002288455 2002-10-01

Publications (1)

Publication Number Publication Date
WO2004031424A1 true WO2004031424A1 (ja) 2004-04-15

Family

ID=32063674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012514 WO2004031424A1 (ja) 2002-10-01 2003-09-30 鋳造鍛造用アルミニウム合金、アルミニウム鋳造鍛造品及び製造方法

Country Status (7)

Country Link
US (2) US20040151615A1 (ja)
EP (1) EP1566458A4 (ja)
JP (1) JPWO2004031424A1 (ja)
CN (1) CN1497052A (ja)
AU (1) AU2003268697A1 (ja)
PL (1) PL374938A1 (ja)
WO (1) WO2004031424A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101211988B1 (ko) 2012-05-25 2012-12-13 이상순 가스버너헤드의 알루미늄 열간단조 방법
CN115229162A (zh) * 2022-07-20 2022-10-25 山东昊方联合铸造有限公司 一种铝合金制动盘帽的液态挤锻压铸造工艺

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060000094A1 (en) * 2004-07-01 2006-01-05 Garesche Carl E Forged aluminum vehicle wheel and associated method of manufacture and alloy
CN100355527C (zh) * 2005-05-20 2007-12-19 东北轻合金有限责任公司 铝合金螺旋桨叶的制造方法
ATE376075T1 (de) * 2005-08-22 2007-11-15 Rheinfelden Aluminium Gmbh Warmfeste aluminiumlegierung
WO2009006939A1 (de) 2007-07-09 2009-01-15 Bharat Forge Aluminiumtechnik Gmbh & Co. Kg Giessen-schmieden von knetlegierungen
JP2009149931A (ja) 2007-12-19 2009-07-09 Honda Motor Co Ltd アルミニウム系部品及びそれの製造方法
DE102008008326A1 (de) * 2008-02-07 2011-03-03 Audi Ag Aluminiumlegierung
JP5416624B2 (ja) * 2010-03-15 2014-02-12 株式会社神戸製鋼所 自動車足回り部品およびその製造方法
CN103834836B (zh) * 2012-11-23 2016-03-02 深圳市欣茂鑫精密五金制品有限公司 一种压铸锻造铝合金及其生产方法
CN103031470B (zh) * 2012-12-13 2014-01-15 湖南晟通科技集团有限公司 一种铝合金铸造铸锭的方法及用该铸锭挤压型材的方法
CN103484734A (zh) * 2013-08-12 2014-01-01 安徽环宇铝业有限公司 一种高延伸率铝合金型材及其制造方法
CN103898374B (zh) * 2014-03-26 2016-08-24 安徽家园铝业有限公司 一种建筑用铝合金型材及其制备方法
CN103898383B (zh) * 2014-03-26 2016-05-18 安徽家园铝业有限公司 一种高热导率铝合金型材及其制备方法
FR3032204B1 (fr) * 2015-01-29 2019-08-09 Saint Jean Industries Piece en alliage d'aluminium bas silicium
CN105436369B (zh) * 2015-11-13 2020-05-12 新荣株式会社 借助于铸造锻造工艺的汽车离合器用缸制造方法及装置
CN105483470A (zh) * 2015-12-15 2016-04-13 天津立中车轮有限公司 高强度铝合金车轮
CN105734366A (zh) * 2016-04-27 2016-07-06 谭钰良 一种汽车散热器铝箔材料
CN106435299B (zh) * 2016-09-30 2018-04-13 华南理工大学 一种SiC颗粒增强铝基复合材料及其制备方法
CN107541623A (zh) * 2017-08-30 2018-01-05 宁波华源精特金属制品有限公司 一种防倾杆
CN107598065A (zh) * 2017-10-23 2018-01-19 徐州市博威机械制造有限公司 一种发动机壳体的锻造工艺
CN107955893B (zh) * 2017-12-01 2020-08-21 宁波拓普汽车电子有限公司 一种铝合金转向节的锻造成型方法
US11021187B2 (en) * 2017-12-08 2021-06-01 ILJIN USA Corporation Steering knuckle and method of making the same
EP3737565A4 (en) * 2018-01-12 2021-10-20 Accuride Corporation ALUMINUM WHEELS AND METHOD OF MANUFACTURING
JP6887460B2 (ja) * 2019-04-10 2021-06-16 株式会社リケン 車両用ナックル
JP2022137762A (ja) * 2021-03-09 2022-09-22 トヨタ自動車株式会社 アルミニウム合金鍛造材の製造方法
CN114033591A (zh) * 2021-11-16 2022-02-11 苏州星波动力科技有限公司 铝合金油轨及其成型方法和制造方法、发动机、汽车
CN115194083A (zh) * 2022-06-29 2022-10-18 中国第一汽车股份有限公司 一种铸锻联合乘用车铝合金后转向节的生产方法
CN115283593B (zh) * 2022-08-18 2024-06-25 重庆新钰立金属科技有限公司 一种发电机油箱框铝锻件的成型方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082578A (en) * 1976-08-05 1978-04-04 Aluminum Company Of America Aluminum structural members for vehicles
JPS63230844A (ja) * 1987-03-20 1988-09-27 Showa Alum Corp オ−トバイ等のリム用アルミニウム合金
JPH01225756A (ja) * 1988-03-07 1989-09-08 Nippon Light Metal Co Ltd 高強度A1‐Mg‐Si系合金部材の製造法
JPH07258784A (ja) * 1994-03-23 1995-10-09 Kobe Steel Ltd 鋳造性に優れた鍛造用Al合金材料および高強度Al合金鍛造品の製法
JPH083675A (ja) * 1994-04-25 1996-01-09 Nippon Light Metal Co Ltd 鍛造用アルミニウム合金
JPH0978210A (ja) * 1995-09-07 1997-03-25 Mitsubishi Materials Corp アルミ合金製車両ホイールの製造方法および車両ホイール
JP2002302728A (ja) * 2001-04-09 2002-10-18 Hoei Kogyo Kk 鋳造鍛造用アルミニウム合金、アルミニウム鋳造鍛造品及び製造方法
JP2002348630A (ja) * 2001-05-18 2002-12-04 Nissan Motor Co Ltd アルミニウム鍛造部品およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3243371A1 (de) * 1982-09-13 1984-03-15 Schweizerische Aluminium AG, 3965 Chippis Aluminiumlegierung
JP2697400B2 (ja) * 1991-08-28 1998-01-14 日本軽金属株式会社 鍛造用アルミニウム合金
JPH1112675A (ja) * 1997-06-28 1999-01-19 Kobe Steel Ltd 熱間鍛造用アルミニウム合金及び熱間鍛造品の製造方法
DE69921925T2 (de) * 1998-08-25 2005-11-10 Kabushiki Kaisha Kobe Seiko Sho, Kobe Hochfeste Aluminiumlegierungsschmiedestücke
JP3695699B2 (ja) * 2000-10-11 2005-09-14 株式会社神戸製鋼所 アルミニウム合金製サスペンション部品のロール成形用素材の寸法決定方法およびアルミニウム合金製サスペンション部品の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082578A (en) * 1976-08-05 1978-04-04 Aluminum Company Of America Aluminum structural members for vehicles
JPS63230844A (ja) * 1987-03-20 1988-09-27 Showa Alum Corp オ−トバイ等のリム用アルミニウム合金
JPH01225756A (ja) * 1988-03-07 1989-09-08 Nippon Light Metal Co Ltd 高強度A1‐Mg‐Si系合金部材の製造法
JPH07258784A (ja) * 1994-03-23 1995-10-09 Kobe Steel Ltd 鋳造性に優れた鍛造用Al合金材料および高強度Al合金鍛造品の製法
JPH083675A (ja) * 1994-04-25 1996-01-09 Nippon Light Metal Co Ltd 鍛造用アルミニウム合金
JPH0978210A (ja) * 1995-09-07 1997-03-25 Mitsubishi Materials Corp アルミ合金製車両ホイールの製造方法および車両ホイール
JP2002302728A (ja) * 2001-04-09 2002-10-18 Hoei Kogyo Kk 鋳造鍛造用アルミニウム合金、アルミニウム鋳造鍛造品及び製造方法
JP2002348630A (ja) * 2001-05-18 2002-12-04 Nissan Motor Co Ltd アルミニウム鍛造部品およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1566458A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101211988B1 (ko) 2012-05-25 2012-12-13 이상순 가스버너헤드의 알루미늄 열간단조 방법
CN115229162A (zh) * 2022-07-20 2022-10-25 山东昊方联合铸造有限公司 一种铝合金制动盘帽的液态挤锻压铸造工艺

Also Published As

Publication number Publication date
EP1566458A1 (en) 2005-08-24
PL374938A1 (en) 2005-11-14
AU2003268697A8 (en) 2004-04-23
AU2003268697A1 (en) 2004-04-23
EP1566458A4 (en) 2006-04-26
JPWO2004031424A1 (ja) 2006-02-02
US20050279429A1 (en) 2005-12-22
US20040151615A1 (en) 2004-08-05
CN1497052A (zh) 2004-05-19

Similar Documents

Publication Publication Date Title
WO2004031424A1 (ja) 鋳造鍛造用アルミニウム合金、アルミニウム鋳造鍛造品及び製造方法
EP1380662A1 (en) Aluminaum alloy for casting/forging, aluminum cast/forged product and production methods
CN105861887B (zh) 一种重载轮毂用抗疲劳原位铝基复合材料及其制备方法
CN108796317B (zh) 适用于新能源汽车的可半固态挤压铸造铝合金及制备方法
CN112176231A (zh) 一种汽车结构件用高强度、高韧性压铸铝合金及其制备方法以及应用
CN110079712B (zh) 铸态高韧压铸铝硅合金及其制备方法和应用
CN104471090A (zh) 铝合金
CN103290278B (zh) 一种汽车车身用高吸能性铝合金
CN102796925A (zh) 一种压力铸造用的高强韧压铸铝合金
US20140261909A1 (en) High-strength aluminum-magnesium silicon alloy and manufacturing process thereof
JPH06172949A (ja) マグネシウム合金製部材およびその製造方法
CN101781723A (zh) 高强度汽车铝合金轮辋材料的制造方法
US10260136B2 (en) Aluminum alloy for die casting and method of heat treating the same
CN106319305A (zh) 6061材料商用车铝合金轴头液态模锻工艺法
GB2570026A (en) Aluminium alloy for casting
CN114540670A (zh) 一种锻造用铝合金及其制备方法
CN114032429A (zh) 一种高延伸率、高模量TiB2颗粒增强铝基复合材料及其制备方法
CN112522555A (zh) 一种高强韧挤压铸造铝硅合金及其制备方法
Yong Research on Properties and Applications of New Lightweight Aluminum Alloy Materials
KR100703130B1 (ko) 비열처리형 고연성 알루미늄 주조합금 및 그 제조방법
JPH07150312A (ja) アルミニウム合金鍛造素材の製造方法
CN106345984A (zh) 应用于商用车轮毂的a357铝合金的液态模锻工艺法
JP3747232B2 (ja) アルミニウム鋳造鍛造品の製造方法
CN106399770B (zh) 应用于商用车轴头的a357铝合金的液态模锻工艺法
CN110527874A (zh) 一种高强度耐磨铝合金材料及制作工艺

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004541254

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 374938

Country of ref document: PL

WWE Wipo information: entry into national phase

Ref document number: 2003748621

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003748621

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003748621

Country of ref document: EP