WO2004024535A1 - 車両ステアリング用伸縮軸 - Google Patents

車両ステアリング用伸縮軸 Download PDF

Info

Publication number
WO2004024535A1
WO2004024535A1 PCT/JP2003/011551 JP0311551W WO2004024535A1 WO 2004024535 A1 WO2004024535 A1 WO 2004024535A1 JP 0311551 W JP0311551 W JP 0311551W WO 2004024535 A1 WO2004024535 A1 WO 2004024535A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
vehicle steering
male
female
axial
Prior art date
Application number
PCT/JP2003/011551
Other languages
English (en)
French (fr)
Inventor
Yasuhisa Yamada
Original Assignee
Nsk Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsk Ltd. filed Critical Nsk Ltd.
Priority to AU2003262045A priority Critical patent/AU2003262045A1/en
Priority to EP03795358A priority patent/EP1547903B1/en
Priority to DE60334127T priority patent/DE60334127D1/de
Priority to US10/527,804 priority patent/US20050257639A1/en
Publication of WO2004024535A1 publication Critical patent/WO2004024535A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/185Steering columns yieldable or adjustable, e.g. tiltable adjustable by axial displacement, e.g. telescopically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/007Hybrid linear bearings, i.e. including more than one bearing type, e.g. sliding contact bearings as well as rolling contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/12Arrangements for adjusting play
    • F16C29/123Arrangements for adjusting play using elastic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/03Shafts; Axles telescopic
    • F16C3/035Shafts; Axles telescopic with built-in bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/06Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted to allow axial displacement
    • F16D3/065Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted to allow axial displacement by means of rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/20Land vehicles
    • F16C2326/24Steering systems, e.g. steering rods or columns

Definitions

  • the present invention relates to a telescopic shaft for a vehicle steering.
  • the steering mechanism of a car absorbs the axial displacement that occurs when the car travels and expands and contracts by spline-fitting the male and female shafts to prevent the displacement and vibration from being transmitted to the steering wheel.
  • the shaft is used as part of the steering mechanism.
  • the telescopic shaft is required to reduce the noise of the spline, reduce the noise on the steering wheel, and reduce the sliding resistance when sliding in the axial direction.
  • a nylon film is coated on the spline of the male shaft of the telescopic shaft, and grease is applied to the sliding part to absorb or reduce metal noise, metal tapping, etc. The dynamic resistance and the play in the rotational direction have been reduced.
  • the process of forming the nylon film involves cleaning the shaft, applying primer, heating, nylon powder coating, rough cutting, finishing cutting, and selective fitting with the female shaft.
  • dies are selected and machined according to the precision of the already machined female shaft.
  • a groove provided on the outer peripheral portion of the inner shaft and an inner peripheral portion of the outer shaft has a gap between the groove of the inner shaft and the pole.
  • the ball is placed through the body and the pole is rolled when moving in the axial direction to reduce the sliding load between the male and female shafts, and the ball is restrained when rotating.
  • a telescopic shaft for vehicle steering that transmits torque is disclosed.
  • the above-mentioned publication has a certain play to enable transmission of torque even when the ball is broken. It is disclosed that a male groove and a female groove having a combined cross section are provided on the inner shaft and the outer shaft.
  • An object of the present invention is to provide a telescopic shaft for vehicle steering that can transmit lux.
  • a telescopic shaft for vehicle steering according to the present invention is incorporated in a steering shaft of a vehicle, wherein a male shaft and a female shaft are non-rotatably and slidably fitted together.
  • a torque transmitting portion provided on an outer peripheral portion of the male shaft and an inner peripheral portion of the female shaft, respectively, for contacting each other and transmitting torque when rotating;
  • a roller that is provided between an outer peripheral portion of the male shaft and an inner peripheral portion of the female shaft at a position different from the torque transmitting portion, and that rolls when the male shaft and the female shaft move relative to each other in the axial direction;
  • a rolling element, and a preloading section that is disposed radially adjacent to the rolling element and that is an elastic body that preloads the male shaft and the female shaft through the rolling element. It shall be.
  • the torque transmitting portions always slidably contact each other.
  • the torque transmitting portion may include an axially convex ridge formed on the outer peripheral surface of the male shaft and having a substantially arc-shaped cross section and an inner peripheral surface of the female shaft. It is preferable that the formed cross-sectional shape is constituted by a substantially arcuate axial groove.
  • the torque transmitting portions are in contact with each other continuously in the axial direction.
  • the torque transmitting portion is formed by a spline fitting portion or a selection fitting portion formed on the outer peripheral surface of the male shaft and the inner peripheral surface of the female shaft.
  • a spline fitting portion or a selection fitting portion formed on the outer peripheral surface of the male shaft and the inner peripheral surface of the female shaft.
  • the preload portion includes: a first axial groove provided on an outer peripheral surface of the male shaft; and the female shaft facing the first axial groove.
  • a second axial groove provided on the inner peripheral surface of the
  • the rolling element and the elastic body are disposed between the first and second axial grooves.
  • a plurality of the preload portions are disposed between the male shaft and the female shaft, and a plurality of the torque transmission portions are disposed between the adjacent preload portions. Is preferred.
  • the preload portions are arranged at intervals of 180 degrees in a circumferential direction, and the torque transmission portions are respectively arranged between the preload portions. .
  • the preload sections are arranged at regular intervals of 120 degrees in the circumferential direction, and the torque transmission sections are arranged between the preload sections. Is preferred.
  • the torque transmitting portions are respectively arranged at the circumferential central portions between the preload portions.
  • the rolling element is formed of at least one spherical body.
  • the elastic body is made of a panel.
  • a solid lubricating film is formed on an outer peripheral portion of the male shaft or an inner peripheral portion of the female shaft.
  • FIG. 1 is a side view of a steering mechanism of an automobile to which a telescopic shaft for vehicle steering according to an embodiment of the present invention is applied.
  • FIG. 2 is an axial center cross-sectional view of the telescopic shaft for vehicle steering according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along line XX of FIG.
  • FIG. 4 shows the stroke and sliding of the telescopic shaft for vehicle steering according to the first embodiment. It is a graph which shows the relationship of a load.
  • FIG. 5 is an axial center cross-sectional view of a telescopic shaft for vehicle steering according to a second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view taken along line XX of FIG.
  • FIG. 7 is an axial center sectional view of a vehicle steering telescopic shaft according to a third embodiment of the present invention.
  • FIG. 8 is a cross-sectional view taken along line XX of FIG.
  • FIG. 9 is a transverse sectional view of a telescopic shaft for vehicle steering according to a fourth embodiment of the present invention.
  • FIGS. 10A, 10B, and 10C are cross-sectional views of a vehicle steering telescopic shaft according to a first embodiment, a second embodiment, and a third embodiment, respectively, of the fifth embodiment of the present invention. It is a figure.
  • FIG. 11A, FIG. 11B, and FIG. 11C are cross-sections of a vehicle steering telescopic shaft according to a first embodiment, a second embodiment, and a third embodiment, respectively, of the sixth embodiment of the present invention.
  • FIG. 11A, FIG. 11B, and FIG. 11C are cross-sections of a vehicle steering telescopic shaft according to a first embodiment, a second embodiment, and a third embodiment, respectively, of the sixth embodiment of the present invention.
  • FIG. 11C are cross-sections of a vehicle steering telescopic shaft according to a first embodiment, a second embodiment, and a third embodiment, respectively, of the sixth embodiment of the present invention.
  • FIG. 12A, FIG. 12B, and FIG. 12C are cross-sections of the vehicle steering telescopic shaft according to the first embodiment, the second embodiment, and the third embodiment, respectively, of the seventh embodiment of the present invention.
  • FIG. 1 is a side view of a steering mechanism of a vehicle to which a telescopic shaft for vehicle steering according to an embodiment of the present invention is applied.
  • an upper steering shaft portion 120 (sport) attached to a vehicle body-side member 100 via an upper bracket 101 and a lower bracket 102 is provided.
  • a steering column 104 (including a steering column 104, a steering shaft 104 rotatably held on the steering column 103), a steering wheel 105 mounted on the upper end of the steering shaft 104, and steering.
  • a lower steering shaft portion 107 connected to a lower end of the shaft 104 via a universal joint 106, and a pinion shaft connected to the lower steering shaft portion 107 via a steering shaft coupling 108.
  • a steering mechanism is constituted by 109 and a steering rack 112 connected to a pinion shaft 109 and fixed to another frame 110 of the vehicle body via an elastic body 111.
  • the lower steering shaft portion 107 uses a telescopic shaft for vehicle steering (hereinafter referred to as a telescopic shaft) according to the embodiment of the present invention.
  • the lower steering shaft portion 107 is a combination of a male shaft and a female shaft, but such a lower steering shaft portion 107 absorbs the axial displacement generated when a vehicle travels.
  • a performance that does not transmit the displacement or vibration on the steering wheel 105 is required. This type of performance is achieved when the body has a sub-frame structure, and the member 100 that fixes the upper part of the steering mechanism and the frame 110 to which the steering rack 112 is fixed are separate bodies.
  • an elastic body 1 1 such as rubber.
  • the operator when the steering shaft coupling 108 is fastened to the pinion shaft 109, the operator must first contract the telescopic shaft and then fit it to the pinion shaft 109 for fastening. May be required.
  • the upper steering shaft section 120 at the upper part of the steering mechanism is also one in which a male shaft and a female shaft are fitted, but such an upper steering shaft section 120 has an operation A function is required to move the position of the steering wheel 105 in the axial direction and adjust the position in order to obtain the optimal position for the driver to drive the car. Is done.
  • the telescopic shaft should reduce the rattling noise of the fitting part and reduce the backlash on the steering wheel 105. It is required to reduce the sliding resistance when sliding in the axial direction.
  • FIG. 2 is an axial center cross-sectional view of the vehicle steering telescopic shaft according to the first embodiment of the present invention
  • FIG. 3 is a cross-sectional view taken along line XX of FIG.
  • FIG. 4 is a graph showing a relationship between a stroke and a sliding load of the telescopic shaft for vehicle steering according to the first embodiment.
  • a telescopic shaft for vehicle steering (hereinafter referred to as a telescopic shaft) is composed of a male shaft 1 and a female shaft 2 which are non-rotatably and slidably fitted to each other.
  • three axially extending ridges 4 each having a substantially arc-shaped cross-sectional shape and equally distributed in the circumferential direction at 120 ° intervals are formed.
  • three axial grooves 6 having a substantially arc-shaped cross-section extend on the inner peripheral surface of the female shaft 2 at positions opposed to the three axial ridges 4 of the male shaft 1. The axial ridge 4 and the axial groove 6 are in contact with each other to form a torque transmitting portion.
  • a substantially U-shaped first axial groove 3 (hereinafter referred to as axial groove 3) extends between adjacent ones of the three axial ridges 4 on the outer peripheral portion of the male shaft 1. It is formed.
  • a rolling element 7 is interposed between the axial groove 3 of the male shaft 1 and the axial groove 5 of the female shaft 2 through a corrugated elastic body 8 for preload. The rolling element 7 rolls when the male shaft 1 and the female shaft 2 move relative to each other in the axial direction, and has a structure in which the rolling element 7 is restrained by the elastic body 8 during rotation, so that the rolling element 7 does not feel stiff.
  • the elastic body 8 is pressed against the walls 3a, 3a on both sides of the axial groove 3 by flat portions 8a, 8a on both sides thereof, and restrains the entire elastic body 8 from moving in the circumferential direction. ing.
  • the elastic body 8 functions to apply a preload to the rolling element 7 and also to preload the rolling element 7 and the axial ridge 4 to the female shaft 2 to such an extent that there is no play.
  • the telescopic shaft for vehicle steering is configured.
  • the male shaft 1 and the female shaft 2 are always slidably contacted in the respective torque transmitting portions due to the presence of the preload portion.
  • the male shaft 1 and the female shaft 2 move relative to each other in the axial direction, they move relative to each other, and the rolling elements 7 can roll.
  • FIG. 4 is a graph showing a relationship between a stroke of the telescopic shaft for vehicle steering and a sliding load according to the first embodiment.
  • FIG. 4 compares the relationship between the stroke and the sliding load in the case of only pole rolling, in the case of only sliding, and in the case of the present invention. This indicates that the telescopic shaft for vehicle steering according to the embodiment of the present invention has a low sliding load, can suppress fluctuations in the sliding load, and has smooth sliding characteristics.
  • the curvature of the axial ridge 4 and the curvature of the axial groove 6 are different, and the axial ridge 4 and the axial groove 6 are formed so as to be continuously contacted in the axial direction at the time of contact. May be. Further, even if the axial ridges 4 formed on the male shaft are formed on the female shaft side and the axial grooves 6 formed on the female shaft are formed on the male shaft side, the same as in the first embodiment. Action and effect can be obtained. Further, the curvature of the axial groove 5 and the curvature of the rolling element 7 may be different, and the two may be formed to be in point contact. Further, the rolling elements 7 may be spherical bodies. Further, the elastic body 8 may be a leaf spring. In addition, a lower sliding load can be obtained by applying a ball to the running surface and the rolling surface.
  • the telescopic shaft of the first embodiment configured as described above is superior to the conventional technology in the following points.
  • the sliding load is obtained by multiplying the coefficient of friction by the preload, and if the preload is increased in order to prevent rattling and improve the rigidity of the telescopic shaft, the sliding load increases. This is because a vicious cycle of doing that would fall.
  • the preload section uses the rolling mechanism of the rolling element 7 during relative movement in the axial direction, so that the preload is increased without causing a significant increase in the sliding load. be able to. As a result, it is possible to prevent rattling and improve rigidity, which could not be achieved conventionally, without increasing the sliding load.
  • the axial projections 4 of the torque transmitting section play a role of torque transmission by being in contact with the axial grooves 6, and at the preload section, the plate panel 8 elastically deforms and the spherical body 7 is deformed. It is possible to prevent rattling by restricting the male shaft 1 and the female shaft 2 in the circumferential direction.
  • the axial ridges 4 of the torque transmitting portion and the side surfaces of the axial grooves 6 come into strong contact, and the axial ridges 4 receive a stronger reaction force than the spherical body 7, and the torque is transmitted.
  • the head mainly transmits torque. Therefore, in the first embodiment, it is possible to reliably prevent the rotation of the male shaft 1 and the female shaft 2 in the rotational direction and to transmit the torque in a highly rigid state.
  • the axially convex ridges 4 and the axial grooves 6 each having a substantially arc-shaped cross section mainly contact the axial direction continuously and receive the load. There are various effects, such as the ability to keep low. Therefore, the following items are superior to the conventional example in which all rows are ball-rolled.
  • the damping effect at the sliding part is larger than that of the ball rolling structure. Therefore, the vibration absorption performance is high.
  • the axial ridge 4 can reduce the contact pressure As a result, the axial length of the torque transmitting section can be shortened, and the space can be used effectively.
  • the axial ridges 4 can lower the contact pressure, so that an additional process for hardening the axial groove surface of the female shaft by heat treatment or the like is unnecessary.
  • the preload can be increased, preventing long-term rattling and achieving high rigidity at the same time.
  • FIG. 5 is an axial center sectional view of a telescopic shaft for vehicle steering according to a second embodiment of the present invention
  • FIG. 6 is a sectional view taken along line XX of FIG.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the difference of the second embodiment from the first embodiment is that a solid lubricating film 11 is formed on the outer peripheral surface of the male shaft 1.
  • a solid lubricating film 11 is formed on the outer peripheral surface of the male shaft 1.
  • molybdenum dioxide powder is dispersed and mixed in a resin, then sprayed or immersed and baked to form a film, or PTFE (tetrafluoroethylene) dispersed and mixed in the resin Those that have been sprayed or immersed and then baked to form a film are used.
  • the solid lubricating film 11 is formed over the entire outer peripheral surface of the male shaft 1.
  • the solid lubricating film 11 is formed of three axial ridges 4 formed on the male shaft 1. It may be provided only on the outer peripheral surface. This is because the main factor of the sliding load is due to the contact between the axial ridge 4 and the axial groove 6, and by reducing the contact resistance at this contact portion, the sliding resistance in the axial direction is reduced. Is possible.
  • the curvature of the axial ridges 4 and the curvature of the axial grooves 6 are different, and the axial ridges 4 and the axial grooves 6 are formed so that they come into contact with each other continuously in the axial direction at the time of contact. May be.
  • the curvature of the axial groove 5 and the curvature of the rolling element 7 may be different, and both may be formed so as to be in point contact.
  • the rolling elements 7 may be spherical bodies.
  • the elastic body 8 may be a leaf spring.
  • FIG. 7 is an axial center sectional view of a vehicle steering telescopic shaft according to a third embodiment of the present invention
  • FIG. 8 is a sectional view taken along line XX of FIG.
  • the same components as those in the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the male shaft 1 has a hollow structure (space portion 13) to reduce the weight of the entire telescopic shaft for vehicle steering.
  • the shaft 1 has a hollow structure so that the stopper plate 1 2
  • the solid lubricating film 11 is formed over the entire outer peripheral surface of the male shaft 1. It may be provided only on the surface. The same operation and effect can be obtained even if the solid lubricating film 11 is formed on the inner peripheral surface side of the female shaft 2.
  • the curvature of the axial ridge 4 and the curvature of the axial groove 6 are different, and the axial ridge 4 and the axial groove 6 are formed so as to continuously contact in the axial direction at the time of contact. May be. Further, even if the axial ridges 4 formed on the male shaft are formed on the female shaft side and the axial grooves 6 formed on the female shaft are formed on the male shaft side, the same operation as the embodiment of the present application is performed. The effect is obtained. Further, the curvature of the axial groove 5 and the curvature of the rolling element 7 are different, and both may be formed so as to be in point contact. Further, the rolling elements 7 may be spherical bodies. Further, the elastic body 8 may be a leaf spring. Further, a lower sliding load can be obtained by applying a ball to the sliding surface and the rolling surface.
  • FIG. 9 is a cross-sectional view of a vehicle steering telescopic shaft according to a fourth embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the difference between the fourth embodiment and the first embodiment is that a solid lubricating film 11 is formed on the inner peripheral surface of the female shaft 2.
  • the contact resistance between the axial ridge 4 of the torque transmitting portion and the axial groove 6 can be reduced.
  • the sliding load in the structure of the present invention in which both rolling and slipping are acting, refers to the sliding load generated during normal use
  • a powder of molybdenum dioxide is dispersed and mixed in resin, A film formed by spraying or immersing and baking the film, or a film formed by dispersing and mixing PTFE (ethylene tetrafluoride) in a resin and spraying or immersing the film and then baking the film is used.
  • PTFE ethylene tetrafluoride
  • the solid lubricating film 11 is formed over the entire inner peripheral surface of the female shaft 2.
  • the solid lubricating film 11 is formed of three axial grooves 6 formed on the female shaft 2. It may be provided only on the inner peripheral surface. This is because the main factor of the dynamic load is due to the contact between the axial ridge 4 and the axial groove 6, and by reducing the contact resistance at this contact part, the sliding resistance in the axial direction can be reduced. Because you can.
  • the curvature of the axial ridge 4 and the curvature of the axial groove 6 are different, and the axial ridge 4 and the axial groove 6 are formed so as to be in continuous contact with each other in the axial direction at the time of contact. May be.
  • the curvature of the axial groove 5 and the curvature of the rolling element 7 may be different, and the two may be formed so as to be in point contact.
  • the rolling elements 7 may be spherical bodies.
  • the elastic body 8 may be a leaf spring.
  • FIGS. 10A, 10B and 10C are cross-sectional views of the first, second and third examples of the telescopic shaft for vehicle steering according to the fifth embodiment of the present invention, respectively. It is.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • a first actual shaft is provided at one place between the male shaft 1 and the female shaft 2.
  • a preload unit equivalent to that of the embodiment is provided.
  • the telescopic shaft for vehicle steering (hereinafter referred to as the “expansion / retraction shaft”) is connected to the male shaft 1 which is spline-fitted non-rotatably and slidably.
  • Female shaft 2 the male shaft 1 which is spline-fitted non-rotatably and slidably.
  • a plurality of axially extending ridges 14 for spline fitting are formed on the outer peripheral surface of the male shaft 1 so as to extend therefrom.
  • a plurality of the axial grooves 16 are formed to extend, and the axial ridges 14 and the axial grooves 16 are spline-fitted to form a torque transmitting portion.
  • a substantially U-shaped first axial groove 3 (hereinafter referred to as axial groove 3) extends at one location on the outer peripheral surface of the male shaft 1 instead of the axial ridge 14 for spline fitting. It is formed.
  • a substantially arc-shaped second axial groove 5 (hereinafter referred to as axial groove 5) extends on the inner peripheral surface of the female shaft 2 at a position facing the axial groove 3. Is formed.
  • a rolling element 7 is interposed between the axial groove 3 and the axial groove 5 via a corrugated elastic body 8 for preload. The rolling element 7 rolls when the male shaft 1 and the female shaft 2 move relative to each other in the axial direction, and when rotating, the elastic body 8 is constrained to prevent rattling.
  • the elastic body 8 is pressed against the walls 3a, 3a on both sides of the axial groove 3 by flat portions 8a, 8a on both sides thereof, so that the entire elastic body 8 cannot move in the circumferential direction. I have.
  • the elastic body 8 acts to apply a preload to the rolling element 7 and also to preload the rolling element 7 and the axial ridges 14 to the female shaft 2 to such an extent that there is no play.
  • the telescopic shaft according to the first embodiment of the present invention is configured.
  • the male shaft 1 and the female shaft 2 are always movably in contact with the respective torque transmitting portions due to the presence of the preload portion.
  • the male shaft 1 and the female shaft 2 move relative to each other in the axial direction, they slide with each other, and the rolling elements 7 roll.
  • the axial ridge 14 serving as a torque transmitting portion and the axial groove 16 are spline-fitted between the male shaft 1 and the female shaft 2 and the rolling elements 7 Interposed between the axial groove 3 and the axial groove 5 via the elastic body 8, and the elastic body 8 allows the rolling element and the axial ridge 14 to be as small as possible with respect to the female shaft 2. Is preloaded.
  • the spline fitting portion between the axial ridge 14 and the axial groove 16 of the torque transmitting portion plays the main role of torque transmission, and the elastic body 8 is elastically deformed and spherical in the preloading portion. 7 can be restrained in the circumferential direction between the male shaft 1 and the female shaft 2 to prevent rattling.
  • a preloading part equivalent to that of the first embodiment is provided with a male shaft 1 and a female shaft 2.
  • a plurality of torque transmitting sections equivalent to those in the first embodiment are provided between the preload sections.
  • a first embodiment is provided between the male shaft 1 and the female shaft 2.
  • the same preloading parts as those described above are provided at 120 degrees in the circumferential direction. Further, a plurality of torque transmission units equivalent to those in the first embodiment are provided between the preload units.
  • the sliding load can be further reduced and rattling can be prevented as compared with the first and second embodiments.
  • the preload portions are equally distributed at 120 degrees in the circumferential direction, the eccentricity of the shaft can be improved, and the bias of the sliding load can be reduced.
  • Other configurations, operations, and effects are the same as those of the first and second embodiments, and description thereof will be omitted.
  • even lower sliding loads can be obtained by applying grease to the sliding surface and the rolling surface.
  • the axial ridge 14 formed on the male shaft is formed on the female shaft and the axial groove 16 formed on the female shaft is formed on the male shaft, the same as in the present embodiment. Action and effect can be obtained.
  • the curvature of the axial groove 5 and the curvature of the rolling element 7 may be different, and both may be formed so as to be in point contact.
  • the rolling elements 7 may be spherical.
  • the elastic body 8 may be a leaf spring.
  • FIGS. 11A, 11B, and 11C are cross-sectional views of a first example, a second example, and a third example of a telescopic shaft for vehicle steering according to a sixth embodiment of the present invention, respectively. It is.
  • the same components as those in the fifth embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the difference between the sixth embodiment and the fifth embodiment lies in that a solid lubricating film 11 is formed on the outer peripheral surface of the male shaft 1.
  • a solid lubricating film 11 is formed on the outer peripheral surface of the male shaft 1.
  • a molybdenum dioxide powder is dispersed and mixed in a resin, and then sprayed or immersed and baked to form a film. Those that have been baked after spraying or dipping to form a film are used.
  • FIGS. 12A, 12B, and 12C are cross-sectional views of the first, second, and third examples of the telescopic shaft for vehicle steering according to the seventh embodiment of the present invention. It is.
  • the same components as those in the fifth and sixth embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • the difference between the seventh embodiment and the fifth embodiment resides in that a solid lubricating film 11 is formed on the inner peripheral surface of the female shaft 2.
  • a solid lubricating film 11 is formed on the inner peripheral surface of the female shaft 2.
  • the total sliding load in the structure of the present invention in which both rolling and sliding are acting, refers to the sliding load that occurs during normal use
  • the total sliding load can be reduced as compared with the case of the fifth embodiment. I can do it.
  • the same operation and effect as those of the fifth embodiment can be obtained.
  • a molybdenum dioxide powder is dispersed and mixed in a resin, and then sprayed or immersed and baked to form a film. Those that have been baked after spraying or dipping to form a film are used.
  • the axial ridge 14 formed on the male shaft is formed on the female shaft and the axial groove 16 formed on the female shaft is formed on the male shaft, the same as in the embodiment of the present application. Action and effect can be obtained.
  • the curvature of the axial groove 5 and the curvature of the rolling element 7 may be different, and the two may be formed so as to be in point contact.
  • the rolling elements 7 may be spherical bodies.
  • the elastic body 8 may be a leaf spring.
  • the case has been described in which the axial ridges and the axial grooves are for spline fitting.
  • the axial ridges and the axial grooves may be for serration fitting, or simply for convex / concave fitting. Similar actions and effects can be obtained. (Other related matters)
  • a solid male shaft may be replaced with a hollow shaft and a hollow male shaft may be replaced with a solid shaft.
  • the rolling element 7 may be a heat-treated and polished one.
  • the outer surface of the male shaft 1 may be treated with a resin film containing PTFE (tetrafluoroethylene) or molybdenum disulfide.
  • the male shaft 1 may be a solid or hollow steel material manufactured by cold drawing. Aluminum material manufactured by cold extrusion of the male shaft 1 may be used.
  • Male shaft 1 may be made of solid steel or aluminum made by cold forging. A hollow steel material manufactured by cold drawing of the female shaft 2 may be used.
  • the female shaft may be made of a hollow steel material, treated with metal stone (bonding treatment), then drawn or expanded to the required diameter, and the groove may be press-formed.
  • the female shaft 2 may be nitrided.
  • the inner peripheral surface of the female shaft 2 may be treated with a resin film containing PTFE (tetrafluoroethylene) or dihymolybdenum disulfide.
  • the diameter of the pole which is a rolling element, is about ⁇ 3 ⁇ 6 ⁇ for applications used in passenger cars.
  • the P.C.D. ratio of the pole diameter to the pole and the axial ridge is about 1: 3.5 to 5.0.
  • the shaft diameter of the male shaft is 13 mm or more when carbon steel for general mechanical structures is used because the torsional strength generally required for passenger cars is 25 ONm or more.
  • the contact pressure of the pole is 150 OMPa or less without applying torque.
  • the pole contact pressure is 200 OMPa or less with a torque of 10 ONm. ⁇ in a state in which the torque was 10 onm load, the contact pressure of the axial ridges 200 OMP a: c -The ratio of the thickness of the panel panel, which is a natural body, to the pole diameter is about 1:10 to 20.
  • JP-A-2001-520293 and German Patent Publication DE 37 30 393 A1 disclose a plurality of axial grooves formed on a male shaft and a female shaft. A structure in which a pole is interposed and preloaded by an elastic body is disclosed. On the other hand, as described above, the present invention is remarkably superior to “when all rows have a ball rolling structure” or “when a conventional spline fit is used”.
  • Japanese Patent Laid-Open Publication No. 7-0843 A1 discloses a structure in which a needle roller, its retainer, and a regulator for preventing rattling prevent rattling. Preload cannot be increased because of the smooth sliding. Therefore, it is very difficult to prevent dusting and obtain high rigidity over a long period of time.
  • the rolling structure is partially adopted, and the means for preventing backlash is also different.
  • the preload can be increased, preventing long-term rattling and providing high rigidity at the same time. It is extremely excellent.
  • a vehicle steering steering telescopic shaft capable of transmitting torque in a highly rigid state by reliably preventing the rotational direction between the male shaft and the female shaft. Can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Manufacturing & Machinery (AREA)
  • Ocean & Marine Engineering (AREA)
  • Steering Controls (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Support Of The Bearing (AREA)
  • Power Steering Mechanism (AREA)

Abstract

 車両のステアリングシャフトに組込み、雄軸1と雌軸2を回転不能に且つ摺動自在に嵌合した車両ステアリング用伸縮軸は、雄軸1の外周部と雌軸2の内周部にそれぞれ設けられ、互いに接触して回転の際にはトルクを伝達するトルク伝達部と、トルク伝達部とは異なる位置の雄軸1の外周部と雌軸2の内周部の間に設けられ、雄軸と雌軸との軸方向相対移動の際には転動する転動体7と、該転動体7に径方向に隣接して配置され、該転動体7を介して雄軸1と雌軸2とに予圧を与える弾性体8とからなる予圧部とを具備している。

Description

明 車両ステアリング用伸縮軸 技術分野
本発明は、 車両ステアリング用伸縮軸に関する。 背景技術
従来、 自動車の操舵機構部では、 自動車が走行する際に発生する軸方向の変位 を吸収し、 ステアリングホイール上にその変位や振動を伝えないために雄軸と雌 軸とをスプライン嵌合した伸縮軸を操舵機構部の一部に使用している。 伸縮軸に はスプライン部のガ夕音を低減することと、 ステアリングホイール上のガ夕感を 低減することと、 軸方向摺動時における摺動抵抗を低減することが要求される。 このようなことから、 伸縮軸の雄軸のスプライン部に対して、 ナイロン膜をコ 一ティングし、 さらに摺動部にグリースを塗布し、 金属騒音、 金属打音等を吸収 または緩和すると共に摺動抵抗の低減と回転方向ガタの低減を行ってきた。 この 場合、 ナイロン膜を形成する工程としてはシャフトの洗浄劫プライマー塗布刼加 熱刼ナイロン粉末コート刼粗切削刼仕上げ切削刼雌軸との選択嵌合が行われて いる。 最終の切削加工は、 既に加工済みの雌軸の精度に合わせてダイスを選択し て加工を行っている。
また、 特開 2 0 0 1— 5 0 2 9 3号公報では、 内側シャフトの外周部と外側シ ャフトの内周部とに設けられた溝部に、 内側シャフトの溝部とポールとの間に弹 性体を介してボールを配置して、 軸方向の移動の際にはポールを転動させること によって雄軸と雌軸の摺動荷重を減少させると共に、 回転の際にはボールを拘束 してトルクを伝達する車両ステアリング用伸縮軸が開示されている。 さらに、 上 記公報にはボールの破損時でもトルクの伝達を可能とするために、 ある遊びを持 つた組合せ断面を有する雄溝および雌溝が内側シャフトおよび外側シャフトに 設けられていることが開示されている。
しかしながら、 前者では伸縮軸の摺動荷重を最小に抑えつつガタをも最小に抑 えることが必要である為、 最終の切削加工ではオーバーピン径サイズが数ミク口 ンづっ異なるダイスを雌軸にあわせて選び出し加工することを余儀なくされ、 加 ェコストの高騰を招来してしまう。 また、 使用経過によりナイロン膜の摩耗が進 展して回転方向ガ夕が大きくなる。
また、 エンジンルーム内の高温にさらされる条件下では、 ナイロン膜は体積変 化し、 摺動抵抗が著しく高くなつたり、 磨耗が著しく促進されたりするため、 回 転方向ガタが大きくなる。 したがって、 自動車用操舵軸に使用される伸縮軸にお いて、 回転方向ガ夕による異音の発生と操舵感の悪化を長期にわたって抑制でき る構造を簡単且つ安価に提供したいといった要望がある。
また、 後者の特開 2 0 0 1 - 5 0 2 9 3号公報に開示された車両ステアリング 用伸縮軸では、 通常使用時は、 複数のボールが転がりによる伸縮動作とトルク伝 達を行っている。 このため、 構造上入力トルクに耐えるだけのポール数を設けな ければならない、 更にボールと接触するガイドレールやスリーブは、 トルク伝達 に耐えるだけの高い硬度を持たなければならず加工性が非常に悪い為、 コストの 招来を起こす。 又、 車両ステアリング用伸縮軸としての小型化が困難であると共 に、 車両衝突時に十分なコラブスストロークをとることが難しいという構造上の 欠点もある。 さらに、 ボールのみで構成しているため摺動荷重が変動するといつ た車両ステアリング用伸縮軸としては好ましくない特性が現れるといった問題 もある。 発明の開示
本発明は、 上述したような事情に鑑みてなされたものであって、 安定した摺動 荷重を実現すると共に、 回転方向ガ夕付きを確実に防止して、 高剛性の状態でト ルクを伝達できる車両ステアリング用伸縮軸を提供することを目的とする。 上記の目的を達成するため、 本発明に係る車両ステアリング用伸縮軸は、 車両 のステアリングシャフトに組込み、 雄軸と雌軸を回転不能に且つ摺動自在に嵌合 した車両ステアリング用伸縮軸において、
前記雄軸の外周部と前記雌軸の内周部にそれぞれ設けられ、 互いに接触して回 転の際にはトルクを伝達するトルク伝達部と、
前記トルク伝達部とは異なる位置の前記雄軸の外周部と前記雌軸の内周部の 間に設けられ、 前記雄軸と前記雌軸との軸方向相対移動の際には転動する転動体 と、 該転動体に径方向に隣接して配置され、 該転動体を介して前記雄軸と前記雌 軸とに予圧を与える弾性体とからなる予圧部とを具備してなることを特徴とす る。
また、 本発明に係る車両ステアリング用伸縮軸では、 前記トルク伝達部は、 常 時互いに摺動可能に接触していることが好ましい。
また、 本発明に係る車両ステアリング用伸縮軸では、 前記トルク伝達部は、 前 記雄軸の外周面に形成された断面形状が略円弧状の軸方向凸条と前記雌軸の内 周面に形成された断面形状が略円弧状の軸方向溝から構成されていることが好 ましい。
また、 本発明に係る車両ステアリング用伸縮軸では、 前記トルク伝達部は、 互 いに軸方向に連続して接触していることが好ましい。
また、 本発明に係る車両ステアリング用伸縮軸では、 前記トルク伝達部は、 前 記雄軸の外周面と前記雌軸の内周面に形成されたスプライン嵌合部またはセレ —シヨン嵌合部からなることが好ましい。
また、 本発明に係る車両ステアリング用伸縮軸では、 前記予圧部は、 前記雄軸 の外周面に設けられた第 1の軸方向溝と、 該第 1の軸方向溝に対向して前記雌軸 の内周面に設けられた第 2の軸方向溝とを有し、
前記転動体と前記弾性体は、 該第 1および第 2の軸方向溝間に配置されている ことが好ましい
また、 本発明に係る車両ステアリング用伸縮軸では、 前記予圧部は、 前記雄軸 と前記雌軸との間に複数配置され、 前記トルク伝達部は、 隣り合う前記予圧部の 間に複数配置されていることが好ましい。
また、 本発明に係る車両ステアリング用伸縮軸では、 前記予圧部は、 周方向に 1 8 0度間隔で配置され、 前記予圧部の間に、 それぞれ前記トルク伝達部を配置 していることが好ましい。
また、 本発明に係る車両ステアリング用伸縮軸では、 前記予圧部は、 周方向に 1 2 0度間隔で等配して配置され、 前記予圧部の間に、 それぞれ前記トルク伝達 部を配置していることが好ましい。
また、 本発明に係る車両ステアリング用伸縮軸では、 前記トルク伝達部は、 前 記予圧部の間に周方向中央部にそれぞれ配置されていることが好ましい。
また、 本発明に係る車両ステアリング用伸縮軸では、 前記転動体は、 少なくと も 1つの球状体からなることが好ましい。
また、 本発明に係る車両ステアリング用伸縮軸では、 前記弾性体は、 板パネか らなることが好ましい。
また、 本発明に係る車両ステアリング用伸縮軸では、 前記雄軸の外周部または 前記雌軸の内周部に固体潤滑皮膜が形成されていることが好ましい。 図面の簡単な説明
図 1は、 本発明の実施形態に係る車両ステアリング用伸縮軸を適用した自動車 の操舵機構部の側面図である。
図 2は、 本発明の第 1実施の形態に係る車両ステアリング用伸縮軸の軸方向中 央断面図である。
図 3は、 図 1の X— X線に沿った断面図である。
図 4は、 第 1実施の形態に係る車両ステアリング用伸縮軸のストロークと摺動 荷重の関係を示すグラフである。
図 5は、 本発明の第 2実施の形態に係る車両ステアリング用伸縮軸の軸方向中 央断面図である。
図 6は、 図 4の X— X線に沿った断面図である。
図 7は、 本発明の第 3実施の形態に係る車両ステアリング用伸縮軸の軸方向中 央断面図である。
図 8は、 図 6の X— X線に沿った断面図である。
図 9は、 本発明の第 4実施の形態に係る車両ステアリング用伸縮軸の横断面図 である。
図 1 O A、 図 1 0 B、 図 1 0 Cは、 それぞれ本発明の第 5実施の形態の第 1実 施例、 第 2実施例および第 3実施例に係る車両ステアリング用伸縮軸の横断面図 である。
図 1 1 A、 図 1 1 B、 図 1 1 Cは、 それぞれ本発明の第 6実施の形態の第 1実 施例、 第 2実施例および第 3実施例に係る車両ステアリング用伸縮軸の横断面図 である。
図 1 2 A、 図 1 2 B、 図 1 2 Cは、 それぞれ本発明の第 7実施の形態の第 1実 施例、 第 2実施例および第 3実施例に係る車両ステアリング用伸縮軸の横断面図 である。 発明の実施の形態
以下、 本発明の実施の形態に係る車両ステアリング用伸縮軸を図面を参照しつ つ説明する。
図 1は、 本発明の実施の形態に係る車両ステアリング用伸縮軸を適用した自動 車の操舵機構部の側面図である。
図 1において、 車体側のメンバ 1 0 0にアツパブラケット 1 0 1とロアブラケ ット 1 0 2とを介して取り付けられたアツパステアリングシャフト部 1 2 0 (ス テアリングコラム 1 0 3と、 ステアリングコラム 1 0 3に回転自在に保持された スァリングシャフト 1 0 4を含む) と、 ステアリングシャフト 1 0 4の上端に装 着されたステアリングホイール 1 0 5と、 ステアリングシャフト 1 0 4の下端に ユニバーサルジョイント 1 0 6を介して連結されたロアステアリングシャフト 部 1 0 7と、 ロアステアリングシャフト部 1 0 7に操舵軸継手 1 0 8を介して連 結されたピニオンシャフト 1 0 9と、 ピニオンシャフト 1 0 9に連結されて車体 の別のフレーム 1 1 0に弾性体 1 1 1を介して固定されたステアリングラック 1 1 2とから操舵機構部が構成されている。 1 0 7が本発明の実施の形態に係る車両ステアリング用伸縮軸 (以後、 伸縮軸と 記す) を用いている。 ロアステアリングシャフト部 1 0 7は、 雄軸と雌軸とを嵌 合したものであるが、 このようなロアステアリングシャフト部 1 0 7には自動車 が走行する際に発生する軸方向の変位を吸収し、 ステアリングホイール 1 0 5上 にその変位や振動を伝えない性能が要求される。 このような性能は、 車体がサブ フレーム構造となっていて、 操舵機構上部を固定するメンバ 1 0 0とステアリン グラック 1 1 2が固定されているフレーム 1 1 0が別体となっておりその間が ゴムなどの弾性体 1 1 1を介して締結固定されている構造の場合に要求される。 また、 その他のケースとして操舵軸継手 1 0 8をピニオンシャフト 1 0 9に締結 する際に作業者が、 伸縮軸をいつたん縮めてからピニオンシャフト 1 0 9に嵌合 させ締結させるため伸縮機能が必要とされる場合がある。 さらに、 操舵機構の上 部にあるアツパステァリングシャフト部 1 2 0も、 雄軸と雌軸とを嵌合したもの であるが、 このようなアツパステアリングシャフト部 1 2 0には、 運転者が自動 車を運転するのに最適なポジションを得るためにステアリングホイール 1 0 5 の位置を軸方向に移動し、 その位置を調整する機能が要求されるため、 軸方向に 伸縮する機能が要求される。 前述のすべての場合において、 伸縮軸には嵌合部の ガ夕音を低減することと、 ステアリングホイ一ル 1 0 5上のガタ感を低減するこ とと、 軸方向摺動時における摺動抵抗を低減することが要求される。
(第 1実施の形態)
図 2は、 本発明の第 1実施の形態に係る車両ステアリング用伸縮軸の軸方向中 央断面図であり、 図 3は、 図 2の X— X線に沿った断面図である。 図 4は、 第 1 実施の形態に係る車両ステアリング用伸縮軸のストロークと摺動荷重の関係を 示すグラフである。
図 2、 図 3に示すように、 車両ステアリング用伸縮軸 (以後、 伸縮軸と記す) は、 相互に回転不能に且つ摺動自在に嵌合した雄軸 1と雌軸 2とからなる。
本第 1実施の形態では、 雄軸 1の外周面において周方向に 1 2 0度間隔で等配 した 3個のそれぞれ略円弧状の断面形状を有する軸方向凸条 4が延在して形成 され、 これに対応して雌軸 2の内周面に雄軸 1の 3個の軸方向凸条 4に対向する 位置に 3個の略円弧状の断面形状を有する軸方向溝 6が延在して形成され、 軸方 向凸条 4と軸方向溝 6とは接触してトルク伝達部を形成している。
雄軸 1の外周部において 3個の軸方向凸条 4のそれぞれ隣合うものの間には 略 U字形状の第 1の軸方向溝 3 (以後、 軸方向溝 3と記す) が延在して形成して ある。 雌軸 2の内周面には雄軸 1の軸方向溝 3と対向して 3個の略円弧状の断面 形状を有する第 2の軸方向溝 5 (以後、 軸方向溝 5と記す) が延在して形成され ている。 雄軸 1の軸方向溝 3と雌軸 2の軸方向溝 5との間には予圧用の波型形状 の弾性体 8を介して、 転動体 7が介装されている。 転動体 7は雄軸 1と雌軸 2と の軸方向相対移動の際には転動し、 回転の際には弾性体 8に拘束されているため ガ夕を感じさせない構造となっている。
弾性体 8は、 その両側の平坦部 8 a、 8 aで軸方向溝 3の両側の壁部 3 a、 3 aに圧接してあり、 弾性体 8全体が周方向に移動できないように拘束している。 弾性体 8は転動体 7に予圧を与えると共に、 転動体 7と軸方向凸条 4を雌軸 2に 対してガタ付のない程度に予圧する働きをする。
雄軸 1が雌軸 2に挿入される側の端部には、 弾性体 8を係止して軸方向に固定 するストッパープレート 9が加締め部 1 0により雄軸 1に加締められている。 こ のストツバ一プレート 9は転動体 7が雄軸 1の軸方向溝 3から外れないように する働きもしている。 このようにして第 1実施の形態の車両ステアリング用伸縮 軸が構成されている。
本第 1実施の形態の伸縮軸は、 このような構造であるので、 予圧部の存在によ りそれぞれのトルク伝達部において雄軸 1と雌軸 2は常時摺動可能に接触して おり、 雄軸 1と雌軸 2との軸方向の相対移動の際には互いに搐動し、 且つ転動体 7は転動することが出来る。
図 4は、 本第 1実施の形態に係る車両ステアリング用伸縮軸のストロークと摺 動荷重の関係を示すグラフである。 図 4では、 ポール転がりのみの場合、 滑りの みの場合および本発明の場合のストロークと摺動荷重の関係を比較して示して いる。 これにより、 本発明実施の形態に係る車両ステアリング用伸縮軸が、 低い 摺動荷重であり、 摺動荷重の変動を抑制でき、 且つ滑らかな摺動特性を有してい ることが分かる。
なお、 軸方向凸条 4の曲率と軸方向溝 6の曲率は異なっており、 軸方向凸条 4 と軸方向溝 6は接触の際に軸方向に連続して接触するようにそれぞれ形成され ていても良い。 また、 雄軸に形成されている軸方向凸条 4が雌軸側に、 雌軸に形 成されている軸方向溝 6が雄軸側に形成されていても本第 1実施の形態と同様 の作用、 効果が得られる。 また、 軸方向溝 5の曲率と転動体 7の曲率が異なって いて、 両者は点接触するように形成されていても良い。 また、 転動体 7は球状体 であっても良い。 さらに、 弾性体 8は板バネであっても良い。 また、 搢動面およ び転動面にダリ一スを塗布することによりさらに低い摺動荷重を得ることが出 来る。
このように構成された本第 1実施の形態の伸縮軸は、 以下の点が従来技術に比 ベ優れている。
従来技術のように摺動面が純粋な滑りによるものであれば、 ガ夕つき防止のた めの予圧荷重をある程度の荷重で留めておくことしかできなかった。 それは、 摺 動荷重は、 摩擦係数に予圧荷重を乗じたものであり、 ガ夕つき防止や伸縮軸の剛 性を向上させたいと願って予圧荷重を上げてしまうと摺動荷重が増大してしま うという悪循環に陥ってしまうためである。
その点、 本実施の形態では、 予圧部は軸方向の相対移動の際には、 転動体 7の 転動機構を採用しているため、 著しい摺動荷重の増大を招くことなく予圧荷重を 上げることができる。 これにより、 従来なし得なかったガタつきの防止と剛性の 向上を摺動荷重の増大を招くことなく達成することができる。
そして、 トルク伝達時には、 トルク伝達部の軸方向凸条 4が軸方向溝 6に接触 していることによってトルク伝達の役割を果たし、 予圧部では板パネ 8が弾性変 形して球状体 7を雄軸 1と雌軸 2の間で周方向に拘束してガタつきを防止する ことが出来る。
例えば、 雄軸 1からトルクが入力された場合、 初期の段階では、 弾性体 8の予 圧が加わっているため、 ガタ付を防止する。
さらにトルクが増大していくと、 トルク伝達部の軸方向凸条 4と軸方向溝 6の 側面が強く接触し、 軸方向凸条 4の方が球状体 7より反力を強く受け、 トルク伝 達部が主にトルクを伝達する。 そのため、 本第 1実施の形態では、 雄軸 1と雌軸 2の回転方向ガ夕を確実に防止すると共に、 高剛性の状態でトルクを伝達するこ とができる。
断面形状が略円弧状の軸方向凸条 4と軸方向溝 6とは、 主に軸方向に連続して 接触してその荷重を受けるため、 点接触で荷重を受ける転動体 7よりも接触圧を 低く抑えることができるなど、 さまざまな効果がある。 したがって、 全列をボ一 ル転がり構造とした従来例に比べ下記の項目が優れている。
.摺動部での減衰能効果が、 ボール転がり構造に比べて大きい。 よって振動吸収 性能が高い。
-同じトルクを伝達するならば、 軸方向凸条 4の方が接触圧を低く抑えることが できるため、 トルク伝達部の軸方向の長さを短くできスペースを有効に使うこと ができる。
-同じトルクを伝達するならば、 軸方向凸条 4の方が接触圧を低く抑えることが できるため、 熱処理等によって雌軸の軸方向溝表面を硬化させるための追加工程 が不要である。
•部品点数を少なくすることができる。
•組立性をよくすることができる。
•組立コストを抑えることができる。
• トルクの伝達を主にトルク伝達部で担っているため、 転動体 7の数を少なくす ることが出来、 コラップスストロークを大きくとることが出来る。
転動体 7を部分的に採用したという点では、 全列がスプライン嵌合で且つ、 全 列が摺動する構造の従来例と比較して、 下記の項目が優れている。
-摩擦抵抗が低いため、 摺動荷重を低く抑えられる。
-予圧荷重を高くすることができ、 長期にわたるガ夕つきの防止と高剛性が同時 に得られる。
(第 2実施の形態)
図 5は、 本発明の第 2実施の形態に係る車両ステアリング用伸縮軸の軸方向中 央断面図であり、 図 6は、 図 5の X— X線に沿った断面図である。 第 1実施の形 態と同様の構成には同じ符号を付し説明を省略する。
本第 2実施の形態が、 第 1実施の形態と異なるところは、 雄軸 1の外周面に固 体潤滑皮膜 1 1を形成していることにある。 このように、 雄軸 1の外周面に固体 潤滑膜 1 1を形成することによって、 トルク伝達部の軸方向凸条 4と軸方向溝 6 との接触抵抗を低くすることが出来るため、 総摺動荷重 (転がりと滑りが両方作 用している本発明の構造において、 通常使用時に発生する摺動荷重を言う) を第 1実施の形態の場合に比べて低くすることが出来る。
そして、 本第 2実施の形態の場合も、 第 1実施の形態と同様の作用、 効果が得 られる。
固体潤滑皮膜 1 1としては、 二酸化モリブデンの紛体を樹脂中に分散混合し、 それを吹き付けまたは浸漬後に焼き付けて皮膜を形成したものや、 P T F E (四 フッ化工チレン) を樹脂中に分散混合し、 それを吹き付けまたは浸漬後に焼き付 けて皮膜を形成したもの等が用いられる。
なお、 本第 2実施の形態では、 固体潤滑皮膜 1 1は雄軸 1の外周面の全体にわ たって形成されているが、 雄軸 1に形成されている 3箇所の軸方向凸条 4の外周 面のみに設けても良い。 これは、 摺動荷重の主たる要因が、 軸方向凸条 4と軸方 向溝 6との接触よるものであり、 この接触部の接触抵抗を低減することで軸方向 の摺動抵抗を下げることが出来るからである。
また、 摺動面及び転動面にダリースを塗布することによりさらに低い摺動荷重 を得ることが出来る。 また、 軸方向凸条 4の曲率と軸方向溝 6の曲率は異なって おり、 軸方向凸条 4と軸方向溝 6は接触の際に軸方向に連続して接蝕するように それぞれ形成されていても良い。 また、 雄軸に形成されている軸方向凸条 4が雌 軸に側に、 雌軸に形成されている軸方向溝 6が雄軸側に形成されていても本願実 施の形態と同様の作用、 効果が得られる。 また、 軸方向溝 5の曲率と転動体 7の 曲率が異なっていて、 両者は点接触するように形成されていても良い。 また、 転 動体 7は球状体であっても良い。 さらに、 弾性体 8は板バネであっても良い。
(第 3実施の形態)
図 7は、 本発明の第 3実施の形態に係る車両ステアリング用伸縮軸の軸方向中 央断面図であり、 図 8は、 図 7 X— X線に沿った断面図である。 第 2実施の形態 と同様の構成には同じ符号を付し説明を省略する。
本第 3実施の形態が、第 2実施の形態と異なるところは、雄軸 1を中空構造(中 空部 1 3 )として、車両ステアリング用伸縮軸全体の軽量化を図ったこと、また、 雄軸 1を中空構造にしたことによりストッパープレート 1 2を雄軸 1の中空部
1 3に挿入後加締めているところにある。 その他の構成、 作用および効果は第 2 実施の形態と同様であり説明を省略する。
なお、 本第 3実施の形態では、 固体潤滑皮膜 1 1は雄軸 1の外周面の全体にわ たって形成されているが、 雄軸 1に形成された 3箇所の軸方向凸条 4の外周面の みに設けても良い。 なお、 固体潤滑膜 1 1は雌軸 2の内周面側に形成されていて も同様の作用、 効果が得られる。
また、 軸方向凸条 4の曲率と軸方向溝 6の曲率は異なっており、 軸方向凸条 4 と軸方向溝 6は接触の際に軸方向に連続して接触するようにそれぞれ形成され ていても良い。 また、 雄軸に形成されている軸方向凸条 4が雌軸側に、 雌軸に形 成されている軸方向溝 6が雄軸側に形成されていても本願実施の形態と同様の 作用、 効果が得られる。 また、 軸方向溝 5の曲率と転動体 7の曲率は異なってい て、 両者は点接触するように形成されていても良い。 また、 転動体 7は球状体で あっても良い。 さらに、 弾性体 8は板バネであっても良い。 また、 摺動面および 転動面にダリ一スを塗布することによりさらに低い摺動荷重を得ることが出来 る。
(第 4実施の形態)
図 9は、 本発明の第 4実施の形態に係る車両ステァリング用伸縮軸の横断面図 である。 第 1実施の形態と同様の構成には同じ符号を付し説明を省略する。 本第 4実施の形態が、 第 1実施の形態と異なるところは、 雌軸 2の内周面に固 体潤滑皮膜 1 1を形成していることにある。 このように、 雌軸 2の内周面に固体 潤滑膜 1 1を形成することによって、 トルク伝達部の軸方向凸条 4と軸方向溝 6 との接触抵抗を低くすることが出来るため、 総摺動荷重 (転がりと滑りが両方作 用している本発明の構造において、 通常使用時に発生する摺動荷重を言う) を第 1実施の形態の場合に比べて低くすることが出来る。
そして、 本第 4実施の形態の場合も、 第 1実施の形態と同様の作用、 効果が得 られる。
固体潤滑皮膜 1 1としては、 二酸化モリブデンの紛体を樹脂中に分散混合し、 それを吹き付け又は浸漬後に焼き付けて皮膜を形成したものや、 P T F E (四フ ッ化エチレン) を樹脂中に分散混合し、 それを吹き付け又は浸漬後に焼き付けて 皮膜を形成したもの等が用いられる。
なお、 本第 4実施の形態では、 固体潤滑皮膜 1 1は雌軸 2の内周面の全体にわ たって形成されているが、 雌軸 2に形成されている 3箇所の軸方向溝 6の内周面 のみに設けても良い。 これは、 搐動荷重の主たる要因が、 軸方向凸条 4と軸方向 溝 6との接触よるものであり、 この接触部の接触抵抗を低減することで軸方向の 摺動抵抗を下げることが出来るからである。
また、 摺動面及び転動面にダリースを塗布することによりさらに低い搢動荷重 を得ることが出来る。 また、 軸方向凸条 4の曲率と軸方向溝 6の曲率は異なって おり、 軸方向凸条 4と軸方向溝 6は接触の際に軸方向に連続して接触するように それぞれ形成されていても良い。 また、 雄軸に形成されている軸方向凸条 4が雌 軸に側に、 雌軸に形成されている軸方向溝 6が雄軸側に形成されていても本願実 施の形態と同様の作用、 効果が得られる。 また、 軸方向溝 5の曲率と転動体 7の' 曲率が異なっていて、 両者は点接触するように形成されていても良い。 また、 転 動体 7は球状体であっても良い。 さらに、 弾性体 8は板バネであっても良い。
(第 5実施の形態)
図 1 0 A、 図 1 0 B及び図 1 0 Cは、 それぞれ本発明の第 5実施の形態に係る 車両ステアリング用伸縮軸の第 1実施例、 第 2実施例及び第 3実施例の断面図で ある。 第 1実施の形態と同様の構成には同じ符号を付し説明を省略する。
「第 1実施例」
図 1 O Aに示す第 1実施例では、 スプライン嵌合された雄軸 1と雌軸 2からな る車両ステアリング用伸縮軸において、 雄軸 1と雌軸 2の間の 1箇所に、 第 1実 施の形態と同等の予圧部を設けている。
より詳しくは、 図 1 O Aに示すように、 車両ステアリング用伸縮軸 (以後、 伸 縮軸と記す) は、 相互に回転不能に且つ摺動自在にスプライン嵌合した雄軸 1と 雌軸 2とからなる。
本第 1実施例では、 雄軸 1の外周面にスプライン嵌合用の軸方向凸条 1 4が複 数延在して形成され、 これに対応して雌軸 2の内周面にスプライン嵌合用の軸方 向溝 1 6が複数延在して形成され、 軸方向凸条 1 4と軸方向溝 1 6とがスプライ ン嵌合されてトルク伝達部を形成している。
雄軸 1の外周面の 1個所にスプライン嵌合用の軸方向凸条 1 4に替えて略 U 字形状の第 1の軸方向溝 3 (以後、軸方向溝 3と記す)が延在して形成してある。 これに対応して雌軸 2の内周面には、 軸方向溝 3と対向する位置に略円弧状の第 2の軸方向溝 5 (以後、 軸方向溝 5と記す) が延在して形成されている。 軸方向 溝 3と軸方向溝 5との間に予圧用の波型形状の弾性体 8を介して、 転動体 7が介 装されている。転動体 7は雄軸 1と雌軸 2との軸方向に相対移動の際には転動し、 回転の際には弾性体 8拘束されてガ夕つきを防止する。
弾性体 8は、 その両側の平坦部 8 a、 8 aで軸方向溝 3の両側の壁部 3 a、 3 aに圧接してあり、 弾性体 8全体が周方向に移動できないようになっている。 そ して弾性体 8は転動体 7に予圧を与えると共に、 転動体 7と軸方向凸条 1 4を雌 軸 2に対してガタ付きのない程度に予圧する働きをする。 このようにして本題 1 実施例の伸縮軸が構成されている。
本第 1実施例の伸縮軸は、 このような構造であるので、 予圧部の存在によりそ れぞれのトルク伝達部において雄軸 1と雌軸 2は常時搢動可能に接触しており、 雄軸 1と雌軸 2との軸方向の相対移動の際には互いに摺動し、 且つ転動体 7は転 動する。
以上のように構成した伸縮軸では、 雄軸 1と雌軸 2の間にトルク伝達部である 軸方向凸条 1 4と軸方向溝 1 6とをスプライン嵌合させると共に、 転動体 7を弹 性体 8を介して軸方向溝 3と軸方向溝 5の間に介装し、 弾性体 8により、 転動体 と軸方向凸条 1 4とを雌軸 2に対してガ夕付きのない程度に予圧してある。
トルク非伝達時は、 雄軸 1と雌軸 2の間のガタ付きを確実に防止することがで 1
15 きると共に、 雄軸 1と雌軸 2が軸方向に相対移動する際には、 ガ夕付きのない安 定した摺動荷重で雄軸 1と雌軸 2とを軸方向に摺動することができる。
トルク伝達時には、 トルク伝達部の軸方向凸条 1 4と軸方向溝 1 6とのスプラ イン嵌合部が主なトルク伝達の役割を果たし、 予圧部では弾性体 8が弾性変形し て球状体 7を雄軸 1と雌軸 2の間で周方向に拘束してガ夕つきを防止すること が出来る。
その他の作用、 効果は、 第 1実施の形態と同様であり説明を省略する。
「第 2実施例」
図 1 0 Bに示す第 2実施例では、 スプライン嵌合された雄軸 1と雌軸 2からな る車両ステアリング伸縮軸において、 第 1実施例と同等の予圧部を雄軸 1と雌軸 2との間に周方向に 1 8 0度間隔で配置している。 そして、 予圧部の間それぞれ に、 第 1実施例と同等のトルク伝達部を複数箇所設けている。
このように、 2箇所に予圧部を設けることによって、 第 1実施例に比べ、 さら に摺動荷重を低減することができると共に、 ガ夕つきを防止することが出来る。 その他の構成、 作用、 効果は第 1実施例と同様であり説明を省略する。
「第 3実施例」
図 1 0 Cに示す第 3実施例では、 スプライン嵌合された雄軸 1と雌軸 2からな る車両ステアリング伸縮軸において、 雄軸 1と雌軸 2との間に、 第 1実施の形態 と同様の予圧部を周方向に 1 2 0度で等配して設けている。 そして、 予圧部の間 それぞれに、 第 1実施例と同等のトルク伝達部を複数箇所設けている。
このように、 周方向の 3箇所に予圧部を設けることによって、 第 1および第 2 実施例に比べ、 さらに摺動荷重を低減することができると共に、 がたつきを防止 することが出来る。 また、 予圧部を周方向に 1 2 0度で等配していることによつ て、 軸の偏心も改善することが出来るので摺動荷重の偏りも低減することが出来 る。 その他の構成、 作用、 効果は第 1及び第 2実施例と同様であり説明を省略す る。 なお、 上述の第 1実施例から第 3実施例において、 摺動面および転動面にグリ —スを塗布することによりさらに低い摺動荷重を得ることが出来る。 また、 雄軸 に形成されている軸方向凸条 1 4が雌軸に側に、 雌軸に形成されている軸方向溝 1 6が雄軸側に形成されていても本願実施の形態と同様の作用、 効果が得られる。 また、 軸方向溝 5の曲率と転動体 7の曲率が異なっていて、 両者は点接触するよ うに形成されていても良い。 また、 転動体 7は球状体であっても良い。 さらに、 弾性体 8は板バネであつても良い。
(第 6実施の形態)
図 1 1 A、 図 1 1 B及び図 1 1 Cは、 それぞれ本発明の第 6実施の形態に係る 車両ステアリング用伸縮軸の第 1実施例、 第 2実施例及び第 3実施例の断面図で ある。 第 5実施の形態と同様の構成には同じ符号を付し説明を省略する。
本第 6実施の形態と第 5実施の形態との相違は、 雄軸 1の外周面に固体潤滑膜 1 1を形成したことにある。 このように、 雄軸 1の外周面に固体潤滑膜 1 1を形 成することによって、 トルク伝達部の軸方向凸条 1 4と軸方向溝 1 6との接触抵 抗を低くすることが出来るため、 総摺動荷重 (転がりと滑りが両方作用している 本発明の構造において、 通常使用時に発生する摺動荷重を言う) を第 5実施の形 態の場合に比べて低くすることが出来る。 そして、 本第 6実施の形態の場合も、 第 5実施の形態と同様の作用、 効果が得られる。
固体潤滑皮膜としては、 二酸化モリブデンの紛体を樹脂中に分散混合し、 それ を吹き付けまたは浸漬後に焼き付けて皮膜を形成したものや、 P T F E (四フッ 化工チレン) を樹脂中に分散混合し、 それを吹き付けまたは浸漬後に焼き付けて 皮膜を形成したもの等が用いられる。
なお、 搢動面および転動面にグリースを塗布することによりさらに低い摺動荷 重を得ることが出来る。 また、 雄軸に形成されている軸方向凸条 1 4が雌軸に側 に、 雌軸に形成されている軸方向溝 1 6が雄軸側に形成されていても本願実施の 形態と同様の作用、 効果が得られる。 また、 軸方向溝 5の曲率と転動体 7の曲率 が異なっていて、 両者は点接触するように形成されていても良い。 また、 転動体 7は球状体であっても良い。 さらに、 弾性体 8は板バネであっても良い。
(第 7実施の形態)
図 1 2 A、 図 1 2 B及び図 1 2 Cは、 それぞれ本発明の第 7実施の形態に係る 車両ステアリング用伸縮軸の第 1実施例、 第 2実施例及び第 3実施例の断面図で ある。 第 5、 第 6実施の形態と同様の構成には同じ符号を付し説明を省略する。 本第 7実施の形態と第 5実施の形態との相違は、 雌軸 2の内周面に固体潤滑膜 1 1を形成したことにある。 このように、 雌軸 2の内周面に固体潤滑膜 1 1を形 成することによって、 トルク伝達部の軸方向凸条 1 4と軸方向溝 1 6との接触抵 抗を低くすることが出来るため、 総摺動荷重 (転がりと滑りが両方作用している 本発明の構造において、 通常使用時に発生する摺動荷重を言う) を第 5実施の形 態の場合に比べて低くすることが出来る。 そして、 本第 7実施形態の場合も、 第 5実施の形態と同様の作用、 効果が得られる。
固体潤滑皮膜としては、 二酸化モリブデンの紛体を樹脂中に分散混合し、 それ を吹き付けまたは浸漬後に焼き付けて皮膜を形成したものや、 P T F E (四フッ 化工チレン) を樹脂中に分散混合し、 それを吹き付けまたは浸漬後に焼き付けて 皮膜を形成したもの等が用いられる。
なお、 摺動面および転動面にグリースを塗布することによりさらに低い摺動 荷重を得ることが出来る。 また、 雄軸に形成されている軸方向凸条 1 4が雌軸に 側に、 雌軸に形成されている軸方向溝 1 6が雄軸側に形成されていても本願実施 の形態と同様の作用、 効果が得られる。 また、 軸方向溝 5の曲率と転動体 7の曲 率が異なっていて、 両者は点接触するように形成されていても良い。 また、 転動 体 7は球状体であっても良い。 さらに、 弾性体 8は板バネであっても良い。 なお、 上記第 4から第 6実施の形態では、 軸方向凸条と軸方向溝がスプライン 嵌合用の場合について説明したが、 セレーシヨン嵌合用であっても、 また単に凸 凹嵌合用であっても同様の作用、 効果が得られる。 (その他関連事項)
本発明の全ての実施の形態において、 中実の雄軸を中空に、 中空の雄軸を中実 に置き換えても良い。
また、 本発明の全ての実施の形態において、 下記の事が言える。 雌軸の先端を 内側に加締めることで、 雄軸の引抜を防止し、 分解できない構造にしても良い。 転動体 7は、 熱処理され、 且つ研磨されたものを使用してもよい。 雄軸 1の外周 面に、 PTFE (四フッ化工チレン) または、 二硫化モリブデンを含む樹脂皮膜 処理を施したものを使用してもよい。雄軸 1を冷間引き抜き成型で製造した中実 または中空の鋼材を使用してもよい。 雄軸 1を冷間押し出し成形で製造したアル ミニゥム材を使用してもよい。 雄軸 1を冷間鍛造で製造した中実の鋼材または、 アルミニウム材を使用してもよい。 雌軸 2を冷間引き抜き成型で製造した中空の 鋼材を使用してもよい。雄軸を冷間鍛造成形する際には、素材に金属石鹼処理(ボ ンデ処理) を施すことが望ましい。 雌軸は中空の鋼材を素材として用い、 金属石 鹼処理 (ボンデ処理) した後に、 求める径に絞り又は拡管加工し、 溝部をプレス 成形しても良い。 雌軸 2は窒化処理されていてもよい。 雌軸 2の内周面に PTF E (四フッ化工チレン) または、 二硫ィヒモリブデンを含む榭脂皮膜処理を施した ものを使用してもよい。
また、 本発明の全ての実施の形態において、 下記の数値範囲が用いられること が望ましい。
·転動体であるポール直径は、 乗用車に使われる用途では、 Φ3〜6ηιιη程度。 · ポール径とポール及び軸方向凸条の P. C. D. 比は 1 : 3. 5〜5. 0程度。 -雄軸の軸径は、 一般的に乗用車として必要とされる捩り強度が 25 ONm以上 であることから、 一般的な機械構造用炭素鋼を使用した場合、 13mm以上。 - トルクを負荷しない状態で、 ポールの接触圧が 150 OMP a以下。
. トルクを 10 ONm負荷した状態で、ポールの接触圧が 200 OMP a以下。 ■ トルクを 10 ONm負荷した状態で、 軸方向凸条の接触圧が 200 OMP a以下 c -弹性体である板パネの板厚とポール径の比は、 1 : 1 0〜2 0程度。
本発明では、 以上を総合すると従来の製品と比較して下記のことが言える。 •低コストである。
-安定した低スライド荷重を得ることができる。
·ガ夕がない。
•耐摩耗性に優れている。
-耐熱性に優れている。
•軽量化が可能である。
•機構が小さい。
·設計思想を変えずにあらゆる使用条件に対応することができる。
なお、 特開 2 0 0 1— 5 0 2 9 3号公報、 及びドイツ特許公開 D E 3 7 3 0 3 9 3 A 1号公報には、 雄軸と雌軸に形成した軸方向溝に複数のポールを介装 して弾性体により予圧した構造が開示してある。 これに対して、 本発明は、 上述 したように、 「全列をボール転がり構造とした場合」 又は 「従来のスプライン嵌 合とした場合」 より著しく優れている。
また、 欧州特許公開 E P 1 0 7 8 8 4 3 A 1号公報では、 ニードルローラ、 そ の保持器、 ガタつき防止のためのレギユレ一ターでガタ付きを防止するという構 造であるが、 純粋な滑り摺動であるため、 予圧荷重を大きくできない。 よって、 長期にわたってガ夕つきを防止することや、 高剛性を得ることが非常に困難であ る。
それに対し、 本発明では、 前述したとおり、 転がり構造を部分的に採用してお り、 且つ、 ガタ付きを防止するための手段も違うため、
-摩擦抵抗が低いため、 摺動荷重を低く抑えられる。
•予圧荷重を高くすることができ、 長期にわたるガ夕つきの防止と高剛性が同時 に得られる。 といったことが極めて優れている。
なお、 本発明は、 上述した実施の形態に限定されず、 種々変形可能である。 以上説明したように、 本発明によれば、 雄軸と雌軸の間の回転方向ガ夕付きを 確実に防止して、 高剛性の状態でトルクを伝達することができる車両ステアリン グ用伸縮軸を提供することが出来る。

Claims

請 求 の 範 囲
1 . 車両のステアリングシャフトに組込み、 雄軸と雌軸を回転不能に且つ摺動 自在に嵌合した車両ステアリング用伸縮軸において、
前記雄軸の外周部と前記雌軸の内周部にそれぞれ設けられ、 互いに接触して回 転の際にはトルクを伝達するトルク伝達部と、
前記トルク伝達部とは異なる位置の前記雄軸の外周部と前記雌軸の内周部の 間に設けられ、 前記雄軸と前記雌軸との軸方向相対移動の際には転動する転動体 と、 該転動体に径方向に隣接して配置され、 該転動体を介して前記雄軸と前記雌 軸とに予圧を与える弾性体とからなる予圧部と、
を具備してなることを特徴とする車両ステアリング用伸縮軸。
2 . 前記トルク伝達部は、 常時互いに接触していることを特徴とする請求項 1 に記載の車両ステアリング用伸縮軸。
3 . 前記トルク伝達部は、 前記雄軸の外周面に形成された断面形状が略円弧状 の軸方向凸条と前記雌軸の内周面に形成された断面形状が略円弧状の軸方向溝 から構成されていることを特徴とする請求項 1に記載の車両ステアリング用伸 縮軸。
4. 前記トルク伝達部は、 互いに軸方向に連続して接触していることを特徴と する請求項 3に記載の車両ステァリング用伸縮軸。
5 . 前記トルク伝達部は、 前記雄軸の外周面と前記雌軸の内周面に形成された スプライン嵌合部またはセレーション嵌合部からなることを特徴とする請求項 1に記載の車両ステアリング用伸縮軸。
6 . 前記予圧部は、 前記雄軸の外周面に設けられた第 1の軸方向溝と、 該第 1 の軸方向溝に対向して前記雌軸の内周面に設けられた第 2の軸方向溝とを有し、 前記転動体と前記弾性体は、 該第 1および第 2の軸方向溝間に配置されている ことを特徴とする請求項 1に記載の車両ステアリング用伸縮軸。
7 . 前記予圧部は、 前記雄軸と前記雌軸との間に複数配置され、
前記トルク伝達部は、 隣り合う前記予圧部の間に複数配置されていることを特 徴とする請求項 1に記載の車両ステアリング用伸縮軸。
8 . 前記予圧部は、 周方向に 1 8 0度間隔で配置され、 前記予圧部の間に、 そ れぞれ前記トルク伝達部を配置していることを特徴とする請求項 7に記載の車 両ステアリング用伸縮軸。
9 . 前記予圧部は、 周方向に 1 2 0度間隔で等配して配置され、 前記予圧部の 間に、 それぞれ前記トルク伝達部を配置していることを特徴とする請求項 7に記 載の車両ステアリング用伸縮軸。
1 0 . 前記トルク伝達部は、 前記予圧部の間に周方向中央部にそれぞれ配置さ れていることを特徴とする請求項 9に記載の車両ステアリング用伸縮軸。
1 1 . 前記転動体は、 少なくとも 1つの球状体からなることを特徴とする請求 項 1に記載の車両ステアリング用伸縮軸。
1 2 . 前記弾性体は、 板パネからなることを特徴とする請求項 1に記載の車両 。 ステアリング用伸縮軸。 .
1 3 . 前記雄軸の外周部または前記雌軸の内周部に固体潤滑皮膜が形成されて いることを特徴とする請求項 1に記載の車両ステアリング用伸縮軸。
PCT/JP2003/011551 2002-09-13 2003-09-10 車両ステアリング用伸縮軸 WO2004024535A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003262045A AU2003262045A1 (en) 2002-09-13 2003-09-10 Vehicle steering telescopic shaft
EP03795358A EP1547903B1 (en) 2002-09-13 2003-09-10 Vehicle steering telescopic shaft
DE60334127T DE60334127D1 (de) 2002-09-13 2003-09-10 Teleskopische fahrzeuglenksäule
US10/527,804 US20050257639A1 (en) 2002-09-13 2003-09-10 Vehicle steering telescopic shaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002268867A JP3797304B2 (ja) 2002-09-13 2002-09-13 車両ステアリング用伸縮軸
JP2002-268867 2002-09-13

Publications (1)

Publication Number Publication Date
WO2004024535A1 true WO2004024535A1 (ja) 2004-03-25

Family

ID=31986793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011551 WO2004024535A1 (ja) 2002-09-13 2003-09-10 車両ステアリング用伸縮軸

Country Status (7)

Country Link
US (1) US20050257639A1 (ja)
EP (1) EP1547903B1 (ja)
JP (1) JP3797304B2 (ja)
CN (1) CN100387474C (ja)
AU (1) AU2003262045A1 (ja)
DE (1) DE60334127D1 (ja)
WO (1) WO2004024535A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10359962A1 (de) * 2003-12-18 2005-07-21 Nacam Deutschland Gmbh Lagervorrichtung für Kraftfahrzeuglenkwellen
EP1693579A2 (en) * 2005-02-16 2006-08-23 NSK Ltd., Telescopic shaft

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273968B2 (ja) * 2001-10-01 2009-06-03 日本精工株式会社 車両ステアリング用伸縮軸
AU2003242153A1 (en) * 2002-06-11 2003-12-22 Nsk Ltd. Telescopic shaft for steering vehicle and telescopic shaft for steering vehicle with cardan shaft coupling
JP4196630B2 (ja) * 2002-10-02 2008-12-17 日本精工株式会社 車両ステアリング用伸縮軸
EP1566324A4 (en) 2002-11-29 2007-08-01 Nsk Ltd TELESCOPIC SHAFT FOR VEHICLE STEERING
JP4190905B2 (ja) 2003-02-06 2008-12-03 日本精工株式会社 車両用ステアリング装置
CN100436226C (zh) 2003-07-02 2008-11-26 日本精工株式会社 车辆转向用伸缩轴
US20070157754A1 (en) * 2004-01-27 2007-07-12 Nsk Ltd. Telescopic shaft for vehicle steering
JP4569824B2 (ja) * 2004-09-16 2010-10-27 株式会社ジェイテクト 伸縮自在シャフト
DE602005022459D1 (de) 2004-09-16 2010-09-02 Jtekt Corp Teleskopische welle
JP4586983B2 (ja) * 2005-06-29 2010-11-24 日本精工株式会社 車両ステアリング用伸縮軸
JP4271176B2 (ja) * 2005-09-15 2009-06-03 本田技研工業株式会社 車両用ステアリング装置
JP4921762B2 (ja) * 2005-09-30 2012-04-25 株式会社ジェイテクト 伸縮自在シャフトおよび車両操舵用伸縮自在シャフト
JP5119707B2 (ja) * 2006-06-29 2013-01-16 日本精工株式会社 伸縮軸
JP2009001251A (ja) 2007-06-25 2009-01-08 Jtekt Corp 車両操舵用伸縮軸およびこれを備える車両用操舵装置
JP2009029301A (ja) 2007-07-27 2009-02-12 Jtekt Corp 車両操舵用伸縮軸およびこれを備える車両用操舵装置
EP2197728A4 (en) * 2007-10-15 2012-12-05 Deok Chang Machinery Co Ltd TELESCOPIC SHAFT FOR VEHICLE
US8398496B2 (en) * 2008-06-20 2013-03-19 Zf Systemes De Direction Nacam, S.A.S. Ball coupling device with hinged connection for two sliding shafts
JP2011038560A (ja) * 2009-08-07 2011-02-24 Jtekt Corp スプライン伸縮軸及びその製造方法並びに車両用操舵装置
CN102297201A (zh) * 2011-07-29 2011-12-28 威海利奥泰儆自动化设备有限公司 一种滚轮花键副
WO2013080715A1 (ja) 2011-11-30 2013-06-06 日本精工株式会社 伸縮軸
WO2013178340A2 (de) 2012-06-01 2013-12-05 Audi Ag Drehmoment?bertragungsvorrichtung
IN2015MN00046A (ja) 2012-06-19 2015-10-16 Nitta Corp
US8931805B2 (en) * 2012-11-30 2015-01-13 Steering Solutions Ip Holding Corporation Telescoping shaft roller assembly in steering column
EP2806176B1 (en) 2013-05-21 2018-10-31 Steering Solutions IP Holding Corporation Rolling element intermediate shaft assembly
CN103600767A (zh) * 2013-10-22 2014-02-26 芜湖市顺昌汽车配件有限公司 一种机动车转向柱结构
JP6146539B2 (ja) * 2014-07-03 2017-06-14 日本精工株式会社 伸縮式回転伝達軸
CA2966394A1 (en) * 2014-10-29 2016-05-12 Creative Motion Control, Inc. Low clearance high capacity roller bearing
DE102015102183B4 (de) 2015-02-16 2018-03-01 Robert Bosch Automotive Steering Gmbh Lenkzwischenwelle für ein Kraftfahrzeug und Verfahren zum Betreiben einer Lenkzwischenwelle für ein Kraftfahrzeug
CN105151111A (zh) * 2015-10-15 2015-12-16 安徽江淮汽车股份有限公司 转向轴及汽车转向机构
US10272506B2 (en) * 2015-12-04 2019-04-30 Nanjing Chervon Industry Co., Ltd. Reciprocating tool with linear guides
DE102016218830A1 (de) * 2016-09-29 2018-03-29 Aktiebolaget Skf Baueinheit
DE102017221075B4 (de) * 2017-11-24 2019-06-27 Thyssenkrupp Ag Lenkwelle für ein Kraftfahrzeug
CN108561432B (zh) * 2018-06-01 2021-05-25 宁波美亚特精密传动部件有限公司 一种耐高温直线轴承及其加工方法
DE102018120628A1 (de) * 2018-08-23 2020-02-27 Trw Automotive Gmbh Lagervorrichtung für Kraftfahrzeugwellen sowie Kraftfahrzeugwellenbaugruppe für ein Kraftfahrzeug
KR102242401B1 (ko) * 2019-06-14 2021-04-20 주식회사 드림텍 자동차용 유니버설 조인트

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3730393A1 (de) * 1987-09-10 1989-03-23 Lemfoerder Metallwaren Ag Drehmomentuebertragende verbindung fuer axial ineinander verschiebliche wellenteile, insbesondere der lenkwelle von kraftfahrzeugen
JPH04123775U (ja) * 1991-04-22 1992-11-10 富士機工株式会社 伸縮自在シヤフト
JPH11311256A (ja) * 1998-04-24 1999-11-09 Nippon Seiko Kk 衝撃吸収式ステアリングシャフト
JP2000038142A (ja) * 1998-05-30 2000-02-08 Daimlerchrysler Ag 自動車用の伸縮可能なかじ取り軸
EP1070865A2 (de) 1999-07-22 2001-01-24 INA Wälzlager Schaeffler oHG Linearwälzlager zum Übertragen von Drehmomenten
JP2001050293A (ja) * 1999-06-30 2001-02-23 Nacam France Sa 2つの滑動シャフトのボール結合装置
JP2001239944A (ja) * 2000-03-01 2001-09-04 Nsk Ltd 伸縮自在シャフトの結合構造
EP1512607A1 (en) 2002-06-11 2005-03-09 NSK Ltd. Telescopic shaft for steering vehicle and telescopic shaft for steering vehicle with cardan shaft coupling

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962931A (en) * 1975-03-21 1976-06-15 International Harvester Company Telescopic steering column
US4357137A (en) * 1980-08-18 1982-11-02 Arinc Research Corporation Shaft coupling
SE461605B (sv) * 1987-03-12 1990-03-05 Ffv Autotech Ab Vridmomentoeverfoerande teleskopaxel med oeverbelastningsskydd
JPH0362230U (ja) * 1989-10-23 1991-06-18
FR2674646B1 (fr) * 1991-03-28 1993-12-24 Ecia Dispositif de rattrapage des jeux d'assemblage entre deux organes tubulaires deplacables a coulissement l'un dans l'autre, et arbre de direction de vehicule automobile en comportant application.
CN2231998Y (zh) * 1995-05-24 1996-07-31 常熟市特种电器厂 钢球式转向伸缩轴
DE19750005C1 (de) * 1997-11-12 1999-04-22 Supervis Ets Längenveränderbare Lenkspindel für Lenkvorrichtungen bei Kraftfahrzeugen
JPH11303881A (ja) * 1998-04-17 1999-11-02 Toyota Motor Corp 回転シャフトの結合構造
DE19855538A1 (de) * 1998-12-02 2000-06-08 Schaeffler Waelzlager Ohg Toleranzring eines längsbeweglichen Wellensitzes
US6241616B1 (en) * 1999-05-20 2001-06-05 Neapco Inc. Variable length double telescoping drive shaft assembly
JP4196642B2 (ja) * 2002-10-24 2008-12-17 日本精工株式会社 車両ステアリング用伸縮軸

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3730393A1 (de) * 1987-09-10 1989-03-23 Lemfoerder Metallwaren Ag Drehmomentuebertragende verbindung fuer axial ineinander verschiebliche wellenteile, insbesondere der lenkwelle von kraftfahrzeugen
JPH04123775U (ja) * 1991-04-22 1992-11-10 富士機工株式会社 伸縮自在シヤフト
JPH11311256A (ja) * 1998-04-24 1999-11-09 Nippon Seiko Kk 衝撃吸収式ステアリングシャフト
JP2000038142A (ja) * 1998-05-30 2000-02-08 Daimlerchrysler Ag 自動車用の伸縮可能なかじ取り軸
JP2001050293A (ja) * 1999-06-30 2001-02-23 Nacam France Sa 2つの滑動シャフトのボール結合装置
EP1070865A2 (de) 1999-07-22 2001-01-24 INA Wälzlager Schaeffler oHG Linearwälzlager zum Übertragen von Drehmomenten
JP2001239944A (ja) * 2000-03-01 2001-09-04 Nsk Ltd 伸縮自在シャフトの結合構造
EP1512607A1 (en) 2002-06-11 2005-03-09 NSK Ltd. Telescopic shaft for steering vehicle and telescopic shaft for steering vehicle with cardan shaft coupling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1547903A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10359962A1 (de) * 2003-12-18 2005-07-21 Nacam Deutschland Gmbh Lagervorrichtung für Kraftfahrzeuglenkwellen
DE10359962B4 (de) * 2003-12-18 2005-12-29 Nacam Deutschland Gmbh Lagervorrichtung für Kraftfahrzeuglenkwellen
EP1693579A2 (en) * 2005-02-16 2006-08-23 NSK Ltd., Telescopic shaft
EP1693579A3 (en) * 2005-02-16 2009-04-08 NSK Ltd., Telescopic shaft

Also Published As

Publication number Publication date
CN1681697A (zh) 2005-10-12
US20050257639A1 (en) 2005-11-24
JP2004106599A (ja) 2004-04-08
EP1547903A1 (en) 2005-06-29
JP3797304B2 (ja) 2006-07-19
AU2003262045A1 (en) 2004-04-30
EP1547903A4 (en) 2006-11-29
DE60334127D1 (de) 2010-10-21
EP1547903B1 (en) 2010-09-08
CN100387474C (zh) 2008-05-14

Similar Documents

Publication Publication Date Title
WO2004024535A1 (ja) 車両ステアリング用伸縮軸
JP4696916B2 (ja) 車両ステアリング用伸縮軸
JP4770193B2 (ja) 車両ステアリング用伸縮軸
JP4419841B2 (ja) 車両ステアリング用伸縮軸
JP4273968B2 (ja) 車両ステアリング用伸縮軸
JP4254194B2 (ja) 車両ステアリング用伸縮軸
US7559267B2 (en) Extendable shaft for vehicle steering
US20060156855A1 (en) Telescopic shaft for motor vehicle steering
WO2004056638A1 (ja) 車両ステアリング用伸縮軸
WO2004037627A1 (ja) 車両ステアリング用伸縮軸
JP2005231625A (ja) 車両ステアリング用伸縮軸
JP4428117B2 (ja) 車両ステアリング用伸縮軸
JP2005306216A (ja) 車両用ステアリングシステム
JP2005324599A (ja) 車両ステアリング用伸縮軸
WO2005102820A1 (ja) 車両ステアリング用伸縮軸
JP2003118594A (ja) 車両ステアリング用伸縮軸
JP2003063414A (ja) 車両ステアリング用伸縮軸
JP2006205833A (ja) 車両ステアリング用伸縮軸及び軸端部固定方法
JP2003118593A (ja) 車両ステアリング用伸縮軸
JP2003118592A (ja) 車両ステアリング用伸縮軸
JP2005225444A (ja) 車両ステアリング用伸縮軸
JP2005313693A (ja) 車両ステアリング用伸縮軸

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003795358

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10527804

Country of ref document: US

Ref document number: 20038217651

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003795358

Country of ref document: EP