WO2004022618A1 - Polymermassen auf basis alkoxysilanterminierter polymere mit regulierbarer härtungsgeschwindigkeit - Google Patents

Polymermassen auf basis alkoxysilanterminierter polymere mit regulierbarer härtungsgeschwindigkeit Download PDF

Info

Publication number
WO2004022618A1
WO2004022618A1 PCT/EP2003/008782 EP0308782W WO2004022618A1 WO 2004022618 A1 WO2004022618 A1 WO 2004022618A1 EP 0308782 W EP0308782 W EP 0308782W WO 2004022618 A1 WO2004022618 A1 WO 2004022618A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer compositions
polymer
polymers
groups
catalysts
Prior art date
Application number
PCT/EP2003/008782
Other languages
English (en)
French (fr)
Inventor
Wolfram Schindler
Volker Stanjek
Original Assignee
Consortium für elektrochemische Industrie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consortium für elektrochemische Industrie GmbH filed Critical Consortium für elektrochemische Industrie GmbH
Priority to DE50303977T priority Critical patent/DE50303977D1/de
Priority to US10/524,473 priority patent/US7332541B2/en
Priority to AU2003255396A priority patent/AU2003255396A1/en
Priority to JP2004533335A priority patent/JP5090623B2/ja
Priority to EP03793700A priority patent/EP1529071B1/de
Publication of WO2004022618A1 publication Critical patent/WO2004022618A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/288Compounds containing at least one heteroatom other than oxygen or nitrogen
    • C08G18/289Compounds containing at least one heteroatom other than oxygen or nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • C08G18/718Monoisocyanates or monoisothiocyanates containing silicon

Definitions

  • the invention relates to polymer compositions containing alkoxysilane-terminated polymers, which have long skin formation times and can be activated by adding a catalyst.
  • alkoxysilane-terminated polymers with an organic backbone, e.g. about polyurethanes,
  • Polyester, polyether etc. described among others in EP-A-269 819, EP-A-931 800, WO 00/37533, US-A-3, 971, 751 and DE-A-198 49 817, as well as copolymers, the backbone of which, in addition to organic constituents, also includes organosiloxanes contains, described among others in WO 96/34030.
  • Solubilities etc. and the properties of the fully crosslinked materials can be set almost as desired.
  • the possible uses of such silane-terminated polymer systems are correspondingly diverse. For example, they can be used to manufacture elastomers, sealants, adhesives, Use elastic adhesive systems, hard and soft foams, a wide variety of coating systems and in the medical field, for example for impression materials in the dental field. These products can be applied in any form, such as painting, spraying, pouring, pressing etc.
  • the low reactivity of the alkoxysilane-terminated polymer systems is particularly problematic when systems are desired which can also cure at room temperature via a high curing rate - e.g. Skin formation times ⁇ 15 min.
  • a high curing rate e.g. Skin formation times ⁇ 15 min.
  • With the common alkoxysilane-terminated polymers such reactive systems can - if at all - only be achieved with very high concentrations of tin catalysts. This usually leads to tin contents of over 1000 ppm.
  • Skin formation time is to be understood as the period of time which elapses after the application of the polymer mixture until the formation of a skin.
  • the skin formation is considered complete as soon as the mixture is touched - e.g. through a laboratory spatula - no longer gets stuck on the spatula and no longer shows any thread tension when the spatula is removed.
  • Another decisive disadvantage of the relatively low reactivity of the conventional alkoxysilane-terminated polymer systems lies in the fact that for most applications only methoxysilyl-terminated but not can use ethoxysilylated polymers.
  • the ethoxysilyl-terminated polymers in particular would be particularly advantageous because, when they cured, only ethanol, rather than ethanol, is released as a cleavage product.
  • the ethoxysilyl-terminated polymers have yet another significantly reduced reactivity, so that they cannot be used to achieve skin formation or curing rates sufficient for most applications at room temperature.
  • A is a double-bond group selected from -O-C0-N (R 3 ) -,
  • R 1 is an optionally halogen-substituted alkyl
  • R 2 is an alkyl radical with 1-6 carbon atoms or an oxaalkyl-alkyl radical with a total of 2-10 carbon atoms,
  • R 3 is hydrogen, an optionally halogen-substituted cyclic, linear or branched C ⁇ _ to Cis lkyl or alkenyl radical or a Cg to Cig aryl radical and a is an integer from 0 to 2.
  • silane-terminated polymers whose silane termination is separated from an adjacent heteroatom only by a methylene unit, are distinguished by an extremely high reactivity to atmospheric moisture. Mixtures can be mixed with such methylene-spaced prepolymers produce, the skin formation times is in the order of just a few minutes even in the absence of any tin catalysts. These can be both methoxysilane-terminated and the particularly advantageous ethoxysilane-terminated polymers.
  • radicals R 3 have either hydrogen or aliphatic and sterically less demanding groups such as cyclohexyl or n-butyl radicals.
  • R ⁇ , R 2 and a have the meanings given above.
  • Chloroformic acid-terminated polymers converted to the corresponding alkoxysilane-terminated prepolymers.
  • a curing catalyst e.g. also a common tin catalyst such as dibutyltin dilaurate
  • a common tin catalyst such as dibutyltin dilaurate
  • DE-A-21 55 258 and DE-A-21 55 259 it is proposed to additionally add alcohols and acid anhydrides to the polymer blend to increase the storage stability. Disadvantage of this
  • the process is a drastic increase in the amounts of volatile organic compounds which have to evaporate when the alkoxysilane-terminated polymers harden.
  • the polymers described in DE-A-21 55 258 and DE-A-21 55 259 have to be mixed with up to 400% by weight of a solution of alcohols and other organic solvents.
  • the addition of acid anhydrides leads to acidic masses that can attack numerous substrates. This permanently damages the surface of the substrate, which leads to a large loss of adhesion of the respective mass on this surface.
  • these measures can only significantly improve the shelf life of the resulting masses.
  • the systems described in DE-A-21 55 258 and DE-A-21 55 259 still have skin formation times of 1-15 minutes at 25 ° C. and about 60% atmospheric humidity. Sluggish reactions and - at least for a short time - masses that are resistant to air and that are only activated by the addition of a suitable catalyst cannot be achieved using this method.
  • the object of the present invention was therefore to develop alkoxysilane-terminated polymer mixtures which are stable in storage at room temperature and can be handled without problems, but which can be activated at any time by adding a suitable catalyst to give highly reactive compositions.
  • the invention relates to polymer compositions (M), the alkoxysilane-terminated polymers (P) with end groups of the general formula (1)
  • the invention is based on the surprising discovery that polymer mixtures which contain alkoxysilane-terminated polymers (P) with end groups of the general formula (1) are only highly reactive if they simultaneously contain sterically unhindered bases or acids or aromatic amine hydrochlorides. However, traces of these bases or acids are already sufficient for activation of the alkoxysilane-terminated polymers (P). Since such base or acid traces are contained in all polymers which have been produced by processes according to the prior art, the inert polymer compositions (M) which contain polymer (P) have so far been completely unknown.
  • Aminosilanes are only silanes of the general formula (2) in which R 3 is an aliphatic and sterically less demanding residue, these silanes automatically act as basic catalysts and thus lead to compositions with a hardening rate which can no longer be controlled.
  • the polymer compositions (M) can optionally contain at most 100 ppm, preferably at most 50 ppm activating compounds (AV), which are selected from sterically unhindered bases, sterically unhindered acids and aromatic
  • the polymer compositions (M) are preferably free from activating compounds (AV).
  • Bases are any compound having a pK be where s and pK b ⁇ 7 meant preferably ⁇ 5, which are able to deliver a hydrogen cation to a reaction partner or to take from it.
  • bases sterically unhindered Bases are all primary and secondary amines.
  • Polymer masses (M) which have skin formation times> 1 h at 23 ° C. and 50% relative atmospheric humidity are preferred.
  • Polymer compositions (M) which have skin formation times> 2 h at 23 ° C. and 50% relative atmospheric humidity are particularly preferred.
  • All acids, bases, organic metal compounds, in particular organic tin compounds can serve as catalysts (K) for activation, ie for reducing the skin formation times of the polymer masses (M).
  • Organic acids or bases are preferably used here, organic amines are particularly preferably used.
  • the concentrations of the catalysts used are preferably ⁇ 2%, particularly preferably ⁇ 1%, in each case based on the polymer compositions (M).
  • radicals R 1 methyl, ethyl or phenyl groups are preferred.
  • the radicals R 2 are preferably
  • the main chains of the alkoxysilane-terminated polymers (P) can be branched or unbranched.
  • the mean chain lengths can be adjusted as desired, depending on the properties desired, both of the uncrosslinked mixture and of the cured mass. They can be made up of different blocks. These are usually polysiloxanes, polysiloxane-urea / urethane copolymers, polyurethanes, polyureas, polyethers, polyesters, polyacrylates and methacrylates, polycarbonates, polystyrenes, polyamides, polyvinyl esters or polyolefins such as e.g.
  • Polyethylene polybutadiene, ethylene-olefin copolymers or styrene-butadiene copolymers.
  • polymers (P) polymers with different main chains.
  • the polymers (P) are preferably produced by a process which reliably excludes the presence of activating compounds (AV) in the finished polymer mass (M).
  • An aminosilane (AI) of the general formula (2) is preferably used for the preparation of the polymer compositions (M), in which R 3 is a Cg to C ⁇ aryl radical.
  • the aminosilane (AI) is particularly preferably a silane of the general formula (3)
  • R1, R 2 and a have the meanings given above.
  • This aminosilane is preferably reacted with an NCO-terminated prepolymer (A2), the molar amount of the silane (AI) largely corresponding to the number of NCO units of the prepolymer (A2), so that NCO-free polymers are obtained.
  • the silanes (AI) generally have pK B values> 9, but in any case pK B values> 7 and are therefore no longer sufficiently basic to catalyze the silane condensation. Unlike the aliphatic aminosilanes, traces of the aromatic silane (AI) remaining in the polymer (P) therefore do not lead to activation of the finished sufficiently inert polymer mixtures (M).
  • the isocyanate-terminated prepolymer (A2) is composed of one or more polyols (A21) and di- and / or polyisocyanates (A22), it is not absolutely necessary that the prepolymer (A2) is first of all made up of these building blocks (A21, A22) is produced, which is then reacted with the silane (AI) to the finished polymer (P).
  • a reversal of the reaction steps is also possible here, in which di- and / or polyisocyanates (A22) are first reacted with the silane (AI), and the compounds obtained in the process are only subsequently converted into the finished polymer (P) with the polyol component (A21) be implemented.
  • R- 1 , R 2 and a have the meanings given above.
  • the anilinium hydrochloride formed as a by-product is difficult to separate from the product by distillation due to its very low boiling point of only 245 ° C and therefore almost always occurs - in the order of magnitude of at least 20-100 ppm - as an impurity of the silanes of the general formula (3) on.
  • Aromatic amine hydrochlorides are very good catalysts for silane condensation due to their high acid strength compared to non-aromatic amines. Even the smallest traces of such hydrochlorides in the polymer masses (M) immediately lead to masses with an extremely high, no longer controllable reactivity.
  • one embodiment of the invention is particularly preferred in which an aromatic amine hydrochloride, in particular a hydrochloride aminoalkylsilanes of the general formula (2) is present in which R 3 is a Cg to C 8 _Ar y radical, and in addition a sterically hindered aliphatic Amine, preferably in concentrations of 0.001-3% by weight, based on the polymer mass (M), is present, which neutralizes the aromatic amine hydrochloride.
  • R 3 is a Cg to C 8 _Ar y radical
  • a sterically hindered aliphatic Amine preferably in concentrations of 0.001-3% by weight, based on the polymer mass (M)
  • Aminosilanes of the general formula (2), in which R 3 is a Cg to C ] _s-aryl radical, are prepared, a sterically hindered aliphatic amine additionally being added during or after the polymer synthesis in concentrations of 0.001-3% by weight becomes.
  • the sterically hindered aliphatic amine is preferably a tertiary aliphatic amine, particularly preferably an N-alkylated morpholine derivative. This amine serves for the neutralization, ie the deactivation, of the catalytically active, acidic aromatic amine hydrochloride with which the aromatic aminosilane used was contaminated.
  • the sterically hindered amine added cannot act as a catalyst itself.
  • the low base strength - compared to conventional aliphatic amines - also prevents the morpholine derivative itself from being used as
  • Catalyst works.
  • a polymer mass (M) containing silane-terminated polymers (P) is obtained, the skin formation time of which is at 23 ° C. and 50% relative atmospheric humidity> 40 min.
  • a particularly preferred example of a suitable sterically hindered amine is 2, 2 "-dimorpholinodiethyl ether.
  • the alkoxysilane-terminated polymers (P) are prepared using aminosilanes of the general formula (2), in which R 3 is a Cg to C 1-6 aryl radical, so that the aminosilanes used have a halogen content , in particular chloride content ⁇ 20 ppm, preferably ⁇ 1 ppm and particularly preferably ⁇ 0.1 ppm.
  • an isocyanatosilane (B1) of the general formula (5) is used to prepare the polymers (P) in the polymer compositions (M)
  • R ⁇ -, R 2 and a have the meanings given above.
  • the isocyanatosilane (Bl) is reacted with an OH- or NH- terminated 'prepolymer (B2) are reacted.
  • ' is the molar amount of the silane (Bl) is smaller or just as large as the molar number of OH / NH groups, so that NCO-free polymers can be obtained.
  • the OH-terminated prepolymer (B2) is composed of one or more polyols (B21) and di- and / or polyisocyanates (B22), it is not absolutely necessary that these building blocks (B21, B22) initially the prepolymer (B2) is produced, which is then reacted with the silane (B1) to form the finished polymer (P).
  • a reversal of the reaction steps is also possible here, in which the polyols (B21) are first reacted with the isocyanatosilane (B1), and the compounds obtained are only subsequently reacted with the di- or polyisocyanate (B22) to give the finished polymer (P) become .
  • the polymers (P) are made from isocyanatosilanes (B1) and OH prepolymers (B2) in the presence of very small concentrations of a tin catalyst, preferably an organic tin compound manufactured.
  • a tin catalyst preferably an organic tin compound manufactured.
  • tin catalysts are dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin diacetylacetonate, dibutyltin diacetate or dibutyltin dioctanoate.
  • Dibutyltin dilaurate is preferably used.
  • Tin catalysts are preferably selected so that the tin content in the resulting mass is ⁇ 200 ppm, preferably ⁇ 100 ppm and particularly preferably ⁇ 50 ppm.
  • Polymers (P) is based on the surprising discovery that tin catalysts inhibit the curing reaction of the polymers. (P) do not catalyze or only very poorly. This finding is particularly striking because tin compounds in conventional silane-terminated polymers
  • Silane terminations do not correspond to the general formula (1) and represent particularly powerful catalysts.
  • the polymers (P), on the other hand, are sufficiently inert even in the presence of the tin catalyst concentrations indicated and are only activated by the addition of a suitable basic catalyst (K).
  • Preferred building blocks (A21, A22, B21, B22, C21, C22) for the preparation of the polymers (P) are, in addition to the silanes (Al, B1, Cl), OH-terminated polyols, monomeric alcohols / amines with at least 2 OH / NH functions and / or hydroxyalkyl- or aminoalkyl-terminated polydiorganosiloxanes as well as di- or polyisocyanates.
  • Concentrations of all isocyanate groups involved in all reaction steps and all isocyanate-reactive groups and the reaction conditions are preferably chosen such that all isocyanate groups react in the course of the polymer synthesis.
  • the finished polymer (P) is therefore free of isocyanate.
  • Preferred hydroxyalkyl- or aminoalkyl-terminated polysiloxanes are compounds of the general formula (7)
  • R 4 is a monovalent hydrocarbon radical with 1 to 12
  • Carbon atoms preferably methyl radical, ⁇ a divalent branched or unbranched hydrocarbon radical with 1-12 carbon atoms, preferably trimethylene radical, n is a number from 1 to 3000, preferably a number from 10 to
  • Z represents an OH, SH or an NHR 3 group.
  • Examples of common diisocyanates are diisocyanatodiphenylmethane (MDI), both in the form of crude or technical MDI and in the form of pure 4.4 "or 2,4 'isomers or mixtures thereof, tolylene diisocyanate (TDI) in the form of its various such as regioisomers, diisocyanatonaphthalene (NDI), isophorone diisocyanate (IPDI) or also hexamethylene diisocyanate (HDI), examples of polyisocyanates are polymeric MDI (P-MDI), triphenylmethane triisocanate or biuret triisocyanates.
  • MDI diisocyanatodiphenylmethane
  • TDI tolylene diisocyanate
  • NDI diisocyanatonaphthalene
  • IPDI isophorone diisocyanate
  • HDI hexamethylene diisocyanate
  • examples of polyisocyanates are polymeric
  • Preferred catalysts (K) for activating the polymer mixtures according to the invention are organic amino compounds. These can be primary, secondary or also tertiary amines. The catalytic activity of the catalyst (K) can be controlled via the extent of the steric shielding on the nitrogen atom.
  • sterically unhindered amines eg primary ones Amines
  • polymer compositions (M) containing the polymer (P) can be produced which have skin formation times ⁇ 15 min, preferably ⁇ 5 min.
  • the catalyst (K) is preferably added as late as possible. This avoids problems with insufficient shelf life as well as with a significantly more difficult handling of the polymer mass (M).
  • the finished compound can be filled directly into cartridges, cans, tubes, etc. These containers are generally gas-tight, so that a high reactivity to air humidity no longer leads to problems.
  • catalysts can be used as catalysts (K).
  • catalytically active amines are triethylamine, tributylamine, 1,4-diazabicyclo [2,2,2] octane, N, N-bis- (N, N-dimethyl-2-aminoethyl) methylamine, N, N-dimethylcyclohexylamine, N, N-dimethylphenlyamine, 1,5-diazabicyclo [4.3.0] non-5-ene, 1, 8-diazabicyclo [5.4.0] undec-7-ene etc.
  • These catalysts are preferred in concentrations of 0.01- 10 wt .-% used.
  • the various catalysts can be used both in pure form and as mixtures of different catalysts. The curing rate can be adjusted as required by the type and concentration of the catalysts added.
  • R 6 is a divalent, branched or unbranched hydrocarbon radical with 1-10 carbon atoms, optionally interrupted by oxygen or N (R 3 ) groups,
  • R and R 8 are hydrogen or a branched or unbranched
  • alkyl radical with 1-20 carbon atoms where the alkyl radical can also be substituted by halogen atoms, hydroxyl groups, amino groups, monoalkylamino groups, dialkylamino groups or alkoxy groups and
  • R 1 , R 2 , R 3 and a have the meanings given above.
  • the polymer compositions (M) can contain, as further components, auxiliaries which are known per se, such as fillers, water scavengers, reactive thinners, adhesion promoters, plasticizers, 'thixotropic agents, light stabilizers, fungicides, flame retardants, pigments etc., such as those for the ' . ⁇ - Use in all conventional alkoxy-crosslinking one- and two-component compositions are known. Additives of this type are generally indispensable for generating the desired property profiles of both the uncrosslinked polymer compositions (M) and the cured compositions.
  • auxiliaries which are known per se, such as fillers, water scavengers, reactive thinners, adhesion promoters, plasticizers, 'thixotropic agents, light stabilizers, fungicides, flame retardants, pigments etc.
  • the polymer compositions (M) can be used both in pure form and in the form of solutions, emulsions or dispersions. All of the above symbols of the above formulas have their meanings independently of one another. In all formulas, the silicon atom is tetravalent.
  • Methylcarbamatomethyl-trimethoxysilane is pumped into a quartz pyrolysis tube filled with quartz wool in an argon gas stream.
  • the temperature in the pyrolysis tube is between 420 and 470 ° C.
  • the crude product is condensed and collected at the end of the heated section using a cooler.
  • the yellowish-brown liquid is purified by distillation under reduced pressure.
  • the desired product passes over the head in over 99% purity, while the unreacted carbamate can be reisolated in the sump. This is fed back to pyrolysis directly.
  • Isocyanatomethyl-methyldimethoxysilane which is also described, is prepared by the analogous process.
  • aniline hydrochloride 537 g (5.77 mol) of aniline are completely introduced into a laboratory reactor and then rendered inert with nitrogen. The mixture is heated to a temperature of 115 ° C. and 328 g (1.92 mol) of chloromethyltrimethoxysilane are added dropwise over 1.5 hours and the mixture is stirred at 125-130 ° C. for a further 30 minutes. After the addition of approx. 150 g of the silane, aniline hydrochloride increasingly precipitates out as a salt, but the suspension remains readily stirrable until the end of the dosage.
  • the product contains about 3.5% N, N-bis- [trimethoxysilylmethyl] phenylamine as an impurity.
  • the product obtained has a chloride content of about 100 ppm.
  • the paste thus obtained shows a skin formation time • over 1 h (23 ° C, 50% rh).
  • the skin formation time in the air is about 5 minutes (23 ° C., 50% rh).
  • the silane-terminated polymer thus produced is mixed in a laboratory planetary mixer at approx. 25 ° C. with 95 g diisoundecyl phthalate, 20.0 g vinyltrimethoxysilane and 430 g precipitated and dried chalk (previously dried, water content ⁇ 500 ppm) and processed to a stable paste.
  • the paste obtained in this way has a skin formation time of more than 3 h (23 ° C., 50% rh).
  • the skin formation time in the air is about 15 minutes (23 ° C., 50% rh).
  • Example 2 500 g (11.1 mmol) of ⁇ , ⁇ - (3-aminopropyl) polydimethylsiloxane with an average molecular weight of 45,000 g / mol are heated to 80 ° C. in a heatable laboratory planetary mixer equipped with a vacuum pump and 0.5 h in Vacuum heated. Then 3.9 g (22.2 mmol) of isocyanato-methyl-trimethoxysilane are added at 80 ° C. and another one
  • silane-terminated polymer is cooled to 25 ° C. with stirring, and 230.0 g of a trimethylsilyl-terminated polydimethylsiloxane with a viscosity of 100 Pas, 20.0 g of vinyltrimethoxysilane, 85.0 g of a hydrophilic pyrogenic silica are added and 0.5 h processed into a stable paste.
  • the paste obtained in this way has a skin formation time of more than 2 h (23 ° C., 50% rh).
  • the skin formation time in the air is less than 5 minutes (23 ° C., 50% rh).
  • Isocyanatomethyl-trimethoxysilane are added and the mixture is stirred for 60 min until there is no longer any isocyanate band in the IR spectrum.
  • a clear, transparent polymer with a viscosity of 8.5 Pas is obtained.
  • the resulting silane-terminated polymer is mixed in a laboratory planetary mixer at approx. 25 ° C with 13.0 g vinyltrimethoxysilane and 195 g precipitated and dried chalk (previously dried, water content ⁇ 500 ppm) and processed to a stable paste.
  • the paste obtained in this way has a skin formation time of more than 2 h (23 ° C., 50% rh).
  • the skin formation time in the air is less than 5 minutes (23 ° C., 50% rh).
  • a polymer prepared according to Example 3 is mixed with 0.5% of a basic compound (see Table 1) and the skin formation time at 23 ° C., 50% rh is determined.
  • Diaphragm pump vacuum dewatered The mixture is then cooled to about 50 ° C. and 24.6 g (141.2 mmol) of toluene-2,4-diisocyanate (TDI) are added at this temperature under nitrogen so that the temperature does not rise to above 80 ° C. during this , After the addition is complete, the mixture is stirred at 80 ° C. for 15 min.
  • TDI toluene-2,4-diisocyanate
  • the mixture is cooled to about 50 ° C. and 5 ml of vinyltrimethoxysilane are added as a reactive diluent. It will be 0.12 g of 2,2-dimorpholinodiethylether (Jeffcat ® DMDLS Fa. Huntsman) were added as an acid scavenger. This means that the
  • Phenylaminomethyl-trimethoxysilane neutralized acidic aniline hydrochloride derivatives. Then 32.1 g (141.2 mmol) of JV-phenylaminomethyltrimethoxysilane are added dropwise
  • the mixture obtained is relatively inert with skin formation times of> 2 h (23 ° C., 50% rh). It can be handled, filled and / or compounded with other components without any problems. In addition, it is stable in storage in closed containers for at least 6 months.
  • This prepolymer mixture can be activated by adding, for example, 0.5% by weight of aminopropyltrimethoxysilane or 0.5% by weight of 1,8-diazabicyclo [5. .0] undec-7-en possible at any desired time.
  • Catalysts have skin formation times of approx. 1 min (23 ° C, 50% rh). Furthermore, to activate the inert prepolymer mixtures, sterically more hindered amines can also be used to adjust the desired reactivity.
  • secondary amines such as cyclohexylaminomethyltrimethoxysilane (addition of 0.5% by weight) can achieve skin formation times of about 10 min (23 ° C., 50% rh), while tertiary amines such as diethylaminomethyltrimethoxysilane (addition of 1 % By weight) or bis (2-dimethylaminoethyl) ether (addition of 1% by weight) lead to skin formation times of 20-30 minutes (23 ° C., 50% rh).
  • tertiary amines such as diethylaminomethyltrimethoxysilane (addition of 1 % By weight) or bis (2-dimethylaminoethyl) ether (addition of 1% by weight) lead to skin formation times of 20-30 minutes (23 ° C., 50% rh).
  • Prepolymer which has at 50 ° C with a viscosity of about "18 Pas.
  • this prepolymer is a skinning time of ⁇ 1 min (23 ° C, 50% rh) extremely reactive. They can only be still under inert gas handle, fill or compound with other components. It is only stable in gas-tight containers. Opening this container immediately leads to skin formation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Silicon Polymers (AREA)
  • Paints Or Removers (AREA)
  • Sealing Material Composition (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Inorganic Fibers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Gegenstand der Erfindung sind Polymermassen (M), die alkoxysilanterminierte Polymere (P) mit Endgruppen der allgemeinen Formel (1) enthalten, in der A, R1, R2 und a die in Anspruch 1 angegebenen Bedeutungen aufweisen, wobei a) die Polymermassen (M) bei 23 °C und 50 % relativer Luftfeuchtigkeit Hautbildungszeiten > 40 min aufweisen, und b) die Hautbildungszeiten dieser Polymermassen (M) durch den Zusatz eines Katalysators (K) in Konzentrationen bis zu 3 Gew.-% auf < 20 min reduziert werden können.

Description

Polymer assen auf Basis alkoxysilanteriαinierter Polymere mit regulierbarer Härtungsgeschwindigkeit
Die Erfindung betrifft alkoxysilanterminierte Polymere enthaltende Polymermassen, die lange HautbildungsZeiten aufweisen und durch Zusatz eines Katalysators aktiviert werden können.
Polymersysteme, die über reaktive Alkoxysilylgruppen verfügen, sind seit langem bekannt. In Gegenwart von Luftfeuchtigkeit sind diese alkoxysilantermierten Polymere .bereits bei Raumtemperatur in der Lage, unter Abspaltung der' Alkoxygrüppen miteinander zu kondensieren. Je nach Gehalt an Alkoxysilangruppen und deren Aufbau bilden sich dabei hauptsächlich langkettige Polymere (Thermoplaste) , relativ weitmaschige dreidimensionale Netzwerke (Elastomere) oder aber hochvernetzte Systeme (Duroplaste) .
Dabei kann es sich sowohl um alkoxysilanterminierte Polymere mit organischem Rückgrat handeln, z.B. um Polyurethane,
Polyester, Polyether etc., beschrieben u.a. in EP-A-269 819, EP-A-931 800, WO 00/37533, US-A-3 , 971 , 751 und DE-A-198 49 817, als auch um Copolymere, deren Rückgrat neben organischen Bestandteilen auch Organosiloxane enthält, beschrieben u.a. in WO 96/34030.
Entsprechend der zahllosen Möglichkeiten zur Gestaltung von derartigen silanterminierten Polymersystemen lassen sich sowohl die Eigenschaften der unvernetzten Polymere bzw. der polymerhaltigen Mischungen (Viskosität, Schmelzpunkt,
Löslichkeiten etc.) als auch die Eigenschaften der fertig vernetzten Massen (Härte, Elastizität, Zugfestigkeit, Reißdehnung, Hitzebeständigkeit etc.) nahezu beliebig einstellen. Entsprechend vielfältig sind daher auch die Einsatzmöglichkeiten von derartigen silanterminierten Polymersystemen. So lassen sie sich beispielsweise zur Herstellung von Elastomeren, Dichtstoffen, Klebstoffen, elastischen Klebesystemen, harten und weichen Schäumen, den unterschiedlichsten Beschichtungssystemen und im medizinischen Bereich, z.B. für Abformmassen im Dentalbereich verwenden. Diese Produkte lassen sich in jeder Form applizieren, wie z.B. streichen, sprühen, gießen, pressen etc..
Nachteilig an den meisten beschriebenen alkoxysilanterminierten Polymersystemen ist allerdings deren nur mäßige Reaktivität gegenüber Feuchtigkeit, sowohl in Form von Luftfeuchtigkeit als auch in Form von - gegebenenfalls zugesetztem - Wasser. Um auch bei Raumtemperatur eine hinreichende Härtungsgeschwindigkeit zu erreichen, ist daher der Zusatz eines Katalysators .unbedingt erforderlich. Das ist vor allem deshalb problematisch, da die in der Regel als Katalysatoren eingesetzten zinnorganischen Verbindungen toxikologisch bedenklich sind. Zudem enthalten die Zinnkatalysatoren oftmals auch noch Spuren hochtoxischer Tributylzinnderivate .
Besonders problematisch ist die geringe Reaktivität der alkoxysilanterminierten Polymersysteme, wenn Systeme erwünscht sind, die auch bei Raumtemperatur über eine hohe Härtungsgeschwindigkeit - z.B. Hautbildungszeiten < 15 min - verfügen. Mit den gängigen alkoxysilanterminierten Polymeren lassen sich derart reaktive Systeme - wenn überhaupt - nur mit sehr hohen Konzentrationen von Zinnkatalysatoren erreichen. Dies führt in der Regel zu Zinngehalten von über 1000 ppm.
Unter Hautbildungszeit ist dabei derjenige Zeitraum zu verstehen, der nach der Applikation der Polymerabmischung bis zur Bildung einer Haut vergeht. Dabei gilt die Hautbildung als abgeschlossen, sobald die Mischung bei einer Berührung - z.B. durch einen Laborspatel - nicht mehr am Spatel hängen bleibt und beim Entfernen des Spatels keinen Fadenzug mehr zeigt.
Ein weiterer entscheidender Nachteil der relativ geringen Reaktivität der herkömmlichen alkoxysilanterminierten Polymersysteme liegt in der Tatsache, daß man für die meisten Anwendungen lediglich methoxysilylterminierte, nicht aber ethoxysilylter inierte Polymere verwenden kann. Dabei wären gerade die ethoxysilylterminierten Polymere besonders vorteilhaft, weil bei ihrer Aushärtung nicht Methanol sondern lediglich Ethanol als Spaltprodukt freigesetzt wird. Jedoch besitzen die ethoxysilylterminierten Polymere eine nochmals deutlich reduzierte Reaktivität, so daß mit ihnen bei Raumtemperatur keine für die meisten Anwendungen hinreichenden Hautbildungs- bzw. Durchhärtungsgeschwindigkeiten mehr erreicht werden können.
Deutlich günstiger sind hier Polymerabmischungen, die alkoxysilanterminierte Polymere mit der Endgruppe (1) der allgemeinen Formel
-A-CH2-SiR1 a(OR2)3_a (1)
enthalten, wobei
A eine zweibindige Bindegruppe ausgewählt aus -O-C0-N(R3) - ,
-N(R3) -CO-O-, -N(R3) -CO-NH-, -NH-CO-N (R3 ) - , -N(R3)-C0- N(R3) ,
R1 einen gegebenenfalls halogensubstuierten Alkyl-,
Cycloalkyl-, Alkenyl- oder Arylrest mit 1-10 Kohlenstoffatomen,
R2 einen Alkylrest mit 1-6 Kohlenstoffatomen oder einen Oxaalkyl-alkylrest mit insgesamt 2-10 Kohlenstoffatomen,
R3 Wasserstoff, einen gegebenenfalls halogensubstuierten cyclischen, linearen oder verzweigten Cτ_- bis Cis- lkyl- oder Alkenylrest oder einen Cg- bis Cig -Arylrest und a eine ganze Zahl von 0 bis 2 bedeuten.
Derartige silanterminierte Polymere, deren Silanterminierung nur durch eine Methyleneinheit von einem benachbarten Heteroatom getrennt sind, zeichnen sich durch eine extrem hohe Reaktivität gegenüber Luftfeuchtigkeit aus. So lassen sich mit derartigen methylengespacerten Präpolymeren Abmischungen herstellen, deren Hautbildungszeiten sogar in Abwesenheit von jeglichen Zinnkatalysatoren in der Größenordnung von nur wenigen Minuten liegt. Dabei kann es sich sowohl um methoxysilanterminierte als auch um die besonders vorteilhaften ethoxysilanterminierte Polymere handeln.
Verbindungen entsprechend der allgemeinen Formel (1) sind dabei zum Teil schon beschrieben, z.B. in DE-A-18 12 562 oder DE-A-18 12 564. Nachteilig bei diesen Polymeren ist allerdings die Tatsache, daß zu ihrer Herstellung ausschließlich
Aminoalkylsilane der allgemeinen Formel (2) eingesetzt wurden,
NH(R )-CH2-SiRla(OR )3_a (2)
die als Reste R3 entweder Wasserstoff oder aber aliphatische und sterisch wenig anspruchsvolle Gruppen wie Cyclohexyl-, oder n-Butylreste besitzen. R^, R2 und a weisen dabei die oben genannten Bedeutungen auf .
Diese Verbindungen werden mit Isocyanat- oder aber mit
Chlorameisensäure-terminierten Polymeren zu den entsprechenden alkoxysilanterminierten Präpolymeren umgesetzt.
Zwar lassen sich auf diese Weise hochreaktive isocyanatfreie Polymermischungen herstellen - und zwar sowohl aus methoxysilylterminierten als auch aus ethoxysilylterminierten Polymeren -, jedoch sind diese hohen Reaktivitäten weder kontrollierbar, noch lassen sie sich für die jeweilige Anwendung bedarfsgerecht einstellen.
So werden bei Herstellungsverfahren entsprechend DE-A-18 12 562 oder DE-A-18 12 564 Polymere erhalten, die mit Hautbildungszeiten von << 5 min über Reaktivitäten verfügen, die für viele Anwendungen deutlich zu hoch sind und auch nicht verringert oder gesteuert werden können. Diese Polymere lassen sich praktisch kaum noch handhaben und besitzen nur eine geringe Lagerstabilität. Zudem können derart reaktive^Polymere in der Regel nicht in gängigen Compoundierungen, vor allem nicht in füllstoffhaltigen Massen eingesetzt werden, da die hochreaktiven Polymere sofort mit der in nahezu jedem Füllstoff enthaltenen Restfeuchtigkeit und/oder mit reaktiven OH-Gruppen auf der Oberfläche des jeweiligen Füllstoffes reagieren. Dies führt in der Regel zu einem Verklumpen der Masse. Auch durch gängige Wasserfänger, wie z.B. Vinyltrimethoxysilan, lassen sich dabei keine Verbesserungen erzielen. So ist das Polymer deutlich reaktiver als der herkömmliche Wasserfänger, so daß letzterer seine Aufgabe, Wasserspuren noch vor einer Reaktion mit dem silanterminierten Polymer abzufangen, nicht erfüllen kann.
Nachteilig ist zudem, daß der Zusatz eines Härtungskatalysators, z.B. auch eines gängigen Zinnkatalysators wie Dibutylzinndilaurat, nicht zur Einstellung der Reaktivität - eingesetzt werden kann, da sich die ohnehin schon extrem hohe Reaktivität der Prepolymere praktisch kaum noch steigern läßt . Dies macht es unmöglich, aus diesen Polymerabmischungen Massen herzustellen, die erst bei Bedarf - durch Zugabe eines Katalysators - aktivierbar sind.
In DE-A-21 55 258 und DE-A-21 55 259 wird vorgeschlagen, den Polymerabmischung zur Steigerung der Lagerstabilität zusätzlich Alkohole und Säureanhydride zuzugeben. Nachteilig an diesem
Verfahren ist zum einen die drastische Steigerung der Mengen an flüchtigen organischen Verbindungen, die bei einer Aushärtung der alkoxysilanterminierten Polymere verdampfen müssen. So müssen die in DE-A-21 55 258 und DE-A-21 55 259 beschriebenen Polymere mit bis zu 400 Gew.-% einer Lösung aus Alkoholen und anderen organischen Lösungsmitteln versetzt werden. Zum anderen führt der Zusatz von Säureanhydriden zu sauren Massen, die zahlreiche Untergründe angreifen können. Dadurch wird die Oberfläche des Untergrundes nachhaltig geschädigt, was zu einem weitgehenden Haftungsverlust der jeweiligen Masse auf dieser Oberfläche führt . Zudem läßt durch diese Maßnahmen lediglich die Lagerbeständigkeit der resultierenden Massen nennenswert verbessern. So besitzen die in DE-A-21 55 258 und DE-A-21 55 259 beschriebenen Systeme bei 25 °C und ca. 60 % Luftfeuchtigkeit nach wie vor Hautbildungszeiten von 1 - 15 min. Reaktionsträge und - zumindest kurzfristig - auch an der Luft beständige Massen, die erst durch die Zugabe eines geeigneten Katalysators aktiviert werden, lassen sich nach diesem Verfahren nicht erreichen.
Aufgabe der vorliegenden Erfindung war daher die Entwicklung alkoxysilanterminierter Polymerabmischungen, die bei Raumtemperatur lagerstabil und problemlos handhabbar sind, aber bei Bedarf jederzeit durch den Zusatz eines geeigneten Katalysators zu hochreaktiven Massen aktiviert werden können.
Gegenstand der Erfindung sind Polymermassen (M) , die alkoxysilanterminierte Polymere (P) mit Endgruppen der allgemeinen Formel (1)
-A-CH2-SiR1 a(OR2)3_a (1) ,
enthalten, in der A, R1, R2 und a die oben angegebenen Bedeutungen aufweisen, wobei a) die Polymermassen (M) bei 23 °C und 50 % relativer Luftfeuchtigkeit Hautbildungszeiten > 40 min aufweisen, und b) die Hautbildungszeiten dieser Polymermassen (M) durch den Zusatz eines Katalysators (K) in Konzentrationen bis zu 3 Gew.-% auf < 20 min reduziert werden können.
Der Erfindung beruht auf der überraschenden Entdeckung, daß Polymerabmischungen, die alkoxysilanterminierte Polymere (P) mit Endgruppen der allgemeinen Formel (1) enthalten, nur dann hochreaktiv sind, wenn sie gleichzeitig sterisch ungehinderte Basen oder Säuren oder aromatische Aminhydrochloride enthalten. Jedoch reichen dabei bereits Spuren dieser Basen oder Säuren für eine Aktivierung der alkoxysilanterminierten Polymere (P) aus. Da derartige Basen- oder Säurespuren in sämtlichen Polymeren enthalten sind, die nach Verfahren entsprechend des Standes der Technik hergestellt worden sind, waren die reaktionsträgen Polymermassen (M) , die Polymer (P) enthalten, bislang völlig unbekannt. So enthalten die Polymerabmischungen, die entsprechend der Verfahren von DE-A-18 12 562, DE-A-18 12 564, DE-A-21 55 258 oder DE-A-21 55 259 hergestellt worden sind, stets noch Spuren von nicht umgesetzten Aminosilanen der allgemeinen Formel (2) . Da es sich bei den eingesetzten
Aminosilanen nur um Silane der allgemeinen Formel (2) handelt, bei denen R3 einen aliphatischen und sterisch wenig« anspruchsvollen Rest darstellt, wirken diese Silane automatisch als basische Katalysatoren und führen somit zu Massen mit nicht mehr kontrollierbarer Härtungsgeschwindigkeit.
Die Polymermassen (M) können gegebenenfalls höchstens 100 ppm, vorzugsweise höchstens 50 ppm aktivierende Verbindungen (AV) , die ausgewählt werden aus sterisch ungehinderten Basen, sterisch ungehinderten Säuren und aromatischen
Aminhydrochloriden, bezogen auf die gesamte Masse der Polymermassen (M) enthalten. Vorzugsweise sind die Polymermassen (M) frei von aktivierenden Verbindungen (AV) .
Unter aktivierenden Säuren und "Basen (AV) werden dabei sämtliche Verbindungen mit einem pKs bzw. pKB < 7 bevorzugt < 5 verstanden, die in der Lage sind, ein Wasserstoffkation an einen Reaktionspartner abzugeben bzw. von ihm aufzunehmen. Beispiele für sterisch ungehinderte Basen sind sämtliche primären und sekundären Amine .
Bevorzugt sind Polymermassen (M) , die bei 23 °C und 50 % relativer Luftfeuchtigkeit Hautbildungszeiten > 1 h aufweisen. Besonders bevorzugt werden Polymermassen (M) , die bei 23 °C und 50 % relativer Luftfeuchtigkeit Hautbildungszeiten > 2 h aufweisen . Zur Aktivierung, d.h. zur Reduzierung der Hautbildungszeiten der Polymermassen (M) können als Katalysatoren (K) sämtliche Säuren, Basen, organische Metallverbindungen, insbesondere organische Zinnverbindungen dienen. Bevorzugt werden dabei organische Säuren oder Basen verwendet, besonders bevorzugt werden organische Amine eingesetzt. Die Konzentrationen der eingesetzten Katalysatoren liegt bevorzugt bei < 2 %, besonders bevorzugt bei < 1 %, jeweils bezogen auf die Polymermassen (M) .
Als Reste R1 werden Methyl-, Ethyl- oder Phenylgruppen bevorzugt. Bei den Resten R2 handelt es sich bevorzugt um
Methyl- oder Ethylgruppen und als Reste R3 werden Wasserstoff,
Alkylreste mit 1-4 Kohlenstoffatomen, Cyclohexyl- und Phenylreste bevorzugt .
Die Hauptketten der alkoxysilanterminierten Polymere (P) können verzweigt oder unverzweigt sein. Die mittleren Kettenlängen können beliebig entsprechend der jeweils gewünschten Eigenschaften sowohl der unvernetzten Mischung als auch der ausgehärteten Masse angepaßt werden. Sie können aus unterschiedlichen Bausteinen aufgebaut sein. Üblicherweise sind dies Polysiloxane, Polysiloxan-Urea/Urethan-Copolymere, Polyurethane, Polyharnstoffe, Polyether, Polyester, Polyacrylate und -methacrylate,- Polycarbonate, Polystyrole, Polyamide, Polyvinylester oder Polyolefine wie z.B.
Polyethylen, Polybutadien, Ethylen-Olefincopolymere oder Styrol-Butadiencopolymere . Selbstverständlich können auch beliebige Mischungen oder Kombinationen aus Polymeren (P) mit verschiedenen Hauptketten eingesetzt werden.
Die Herstellung der Polymere (P) erfolgt bevorzugt durch ein Verfahren, das die Anwesenheit von aktivierenden Verbindungen (AV) in der fertigen Polymermasse (M) sicher ausschließt.
Vorzugsweise wird zur Herstellung der Polymermassen (M) ein Aminosilan (AI) der allgemeinen Formel (2) eingesetzt, bei dem es sich bei R3 um einen Cg- bis C^-Arylrest handelt. Besonders bevorzugt handelt es sich bei dem Aminosilan (AI) um ein Silan der allgemeinen Formel (3)
NH(Phenyl) -CH2-SiR1 a(OR2)3_a (3) /
wobei R1, R2 und a dabei die oben angegebenen Bedeutungen besitzen.
Dieses Aminosilan wird bevorzugt mit einem NCO-terminierten Präpolymer (A2) umgesetzt, wobei die molare Menge des eingesetzten Silans (AI) weitgehend der Zahl der NCO-Einheiten des Präpolymers (A2) entspricht, so daß NCO-frei Polymere erhalten werden.
Als aromatische Amine besitzen die Silane (AI) in der Regel pKB- Werte > 9, auf jeden Fall aber pKB-Werte > 7 und sind somit nicht mehr hinreichend basisch, um die Silankondensation zu katalysieren. Anders als die aliphatischen Aminosilane führen im Polymer (P) verbleibende Spuren des aromatischen Silans (AI) daher nicht zu einer Aktivierung der fertigen hinreichend reaktionsträgen Polymerabmischungen (M) .
Ist dabei das isocyanatterminierte Präpolymer (A2) aus einem oder mehreren Polyolen (A21) sowie Di- und/oder Polyisocyanaten (A22) aufgebaut, so ist es nicht unbedingt erforderlich, daß aus diesen Bausteinen (A21, A22) zunächst das Präpolymer (A2) hergestellt wird, welches anschließend mit dem Silan (AI) zum fertigen Polymer (P) umgesetzt wird. So ist hier auch eine Umkehrung der Reaktionsschritte möglich, bei die Di- und/oder Polyisocyanate (A22) zunächst mit dem Silan (AI) umgesetzt werden, und die dabei erhaltenen Verbindungen erst anschließend mit der Polyolkomponente (A21) zum fertigen Polymer (P) umgesetzt werden.
Es wurde weiterhin gefunden, daß beim Einsatz der aromatischen Aminosilane (AI) deren Verunreinigung durch Hydrochloride aromatischer Amine problematisch ist. Dabei kann es sich sowohl um die Hydrochloride der Silane (AI) selbst handeln oder auch um Hydrochloride derjenigen aromatischen Amine, die bei der Synthese der Silane (AI) als Edukte eingesetzt worden sind. Dies gilt insbesondere für Silane (AI) der allgemeinen Formel (3), welche sich beispielsweise aus Anilin und Chlorsilanen der allgemeinen Formel (4)
Cl-CH2-SiRl a(OR )3_a (4)
herstellen lassen, wobei R-1, R2 und a dabei die oben angegebenen Bedeutungen besitzen.
Das dabei als Nebenprodukt entstehende Aniliniumhydrochlorid läßt sich auf Grund seines sehr niedrigen Siedepunkts von lediglich 245 °C destillativ nur schlecht vom Produkt abtrennen und tritt daher nahezu immer - in Größenordnungen von mindestens 20-100 ppm - als Verunreinigung der Silane der allgemeinen Formel (3) auf.
Dabei sind aromatische Aminhydrochloride auf Grund ihrer - verglichen mit nicht aromatischen Aminen - hohen Säurestärke sehr gute Katalysatoren für die Silankondensation. Somit führen bereits kleinste Spuren derartiger Hydrochloride in den Polymermassen (M) sofort zu Massen mit einer extrem hohen, nicht mehr kontrollierbaren Reaktivität.
Daher wird eine Ausführungsform der Erfindung besonders bevorzugt, bei der ein aromatisches Aminhydrochlorid, insbesondere ein Hydrochlorid von Aminoalkylsilanen der allgemeinen Formel (2) anwesend ist, in der R3 einen Cg- bis Ci8 _Ary rest bedeutet, wobei zusätzlich ein sterisch gehindertes aliphatisches Amin, vorzugsweise in Konzentrationen von 0,001 - 3 Gew.-%, bezogen auf die Polymermasse (M) , anwesend ist, welches das aromatische Aminhydrochlorid neutralisiert . Diese Ausführungsform ist bedeutsam, wenn die alkoxysilanterminierten Polymere (P) unter Einsatz von
Aminosilanen der allgemeinen Formel (2) , in der R3 einen Cg- bis C]_s-Arylrest bedeutet, hergestellt werden, wobei während oder nach der Polymersynthese zusätzlich ein sterisch gehindertes aliphatisches Amin, in Konzentrationen von 0,001 - 3 Gew.-% zugesetzt wird. Bei dem sterisch gehinderten aliphatischen Amin handelt es sich bevorzugt ein tertiäres aliphatisches Amin, besonders bevorzugt um ein N-alkyliertes Morpholinderivat . Dieses Amin dient dabei der Neutralisation, d.h. der Deaktivierung, des katalytisch wirksamen, sauren aromatischen Aminhydrochlorides, mit welchem das eingesetzte aromatische Aminosilan verunreinigt war. Auf Grund der sterischen Abschirmung des basischen Stickstoffatoms kann das zugesetzte sterisch gehinderte Amin dabei nicht selbst als Katalysator wirken. Im Falle des Zusatzes eines Morpholinderivates mit tertiärem Stickstoffatom verhindert neben der sterischen Hinderung am Stickstoffatom zudem auch noch die - im Vergleich zu herkömmlichen aliphatischen Aminen - geringe Basenstärke, daß das Morpholinderivat selbst als
Katalysator wirkt. Man erhält eine Polymermasse (M) enthaltend silanterminierte Polymere (P) , deren Hautbildungszeit bei 23 °C und 50 % relativer Luftfeuchtigkeit > 40 min.
Ein besonders bevorzugtes Beispiel für ein geeignetes sterisch gehindertes Amin ist dabei 2 , 2"-Dimorpholinodiethylether .
In einer weiteren besonders bevorzugten Ausführungsform der Erfindung werden die alkoxysilanterminierten Polymere (P) unter Einsatz von Aminosilanen der allgemeinen Formel (2) , in der R3 einen Cg- bis C^g-Arylrest bedeutet, so hergestellt daß die eingesetzten Aminosilane über einen Halogengehalt, insbesondere Chloridgehalt < 20 ppm, bevorzugt < 1 ppm und besonders bevorzugt < 0,1 ppm verfügen . Bei einer anderen bevorzugten Ausführungsform der Erfindung wird zur Herstellung der Polymere (P) in den Polymermassen (M) ein Isocyanatosilan (Bl) der allgemeinen Formel (5)
OCN-CH2-SiR1 a(OR2)3_a (5)
eingesetzt, in der R^- , R2 und a die oben angegebenen Bedeutungen besitzen.
Das Isocyanatosilan (Bl) wird mit einem OH- oder NH- terminierten' Präpolymer (B2) umgesetzt. Dabei' ist die eingesetzte molare Menge des Silans (Bl) kleiner oder aber genauso groß wie die molare Anzahl der OH/NH-Gruppen, so daß NCO-freie Polymere erhalten werden.
Ist dabei das OH-terminierte Präpolymer (B2) aus einem oder - .• mehreren Polyolen (B21) sowie Di- und/oder Polyisocyanaten (B22) aufgebaut, so ist es nicht unbedingt erforderlich, daß aus diesen Bausteinen (B21, B22) zunächst das Präpolymer (B2) hergestellt wird, welches anschließend mit dem Silan (Bl) zum fertigen Polymer (P) umgesetzt wird. So ist hier auch eine Umkehrung der Reaktionsschritte möglich, bei der die Polyole (B21) zunächst mit dem Isocyanatosilan (Bl) umgesetzt werden, und die dabei erhaltenen Verbindungen erst anschließend mit dem Di- oder Polyisocyanat (B22) zum fertigen Polymer (P) umgesetzt werden .
Bei dieser bevorzugten Ausführung der Erfindung werden bei der Herstellung der Polymere (P) keinerlei basische Verbindungen eingesetzt. Die resultierenden Massen sind somit reaktionsträge und werden erst durch die Zugabe eines Katalysators (K) aktiviert .
Bei einem besonders bevorzugten Verfahren werden dabei die Polymere (P) aus Isocyanatosilanen (Bl) und OH-Präpolymeren (B2) in Gegenwart von sehr kleinen Konzentrationen eines Zinnkatalysators, vorzugsweise einer organischen Zinnverbindung hergestellt. Beispiele für Zinnkatalysatoren sind Dibutylzinndilaurat , Dioctylzinndilaurat , Dibutylzinndiacetylacetonat , Dibutylzinndiacetat oder Dibutylzinndioctanoat . Bevorzugt wird dabei Dibutylzinndilaurat eingesetzt. Die Konzentrationen der eingesetzten
Zinnkatalysatoren werden dabei bevorzugt so gewählt, daß der Zinngehalt in der resultierenden Masse < 200 ppm, bevorzugt < 100 ppm und besonders bevorzugt < 50 ppm ist.
Dem Einsatz eines Zinnkatalysators bei der Synthese der
Polymere (P) liegt die überraschende Entdeckung zugrunde, daß Zinnkatalysatoren die Härtungsreaktion der Polymeren. (P) nicht bzw. nur sehr schlecht katalysieren. Dieser Befund ist vor allem deshalb so auffällig, da Zinnverbindungen bei herkömmlichen silanterminierten Polymeren, deren
Silanterminierungen nicht der allgemeinen Formel (1) entsprechen, besonders leistungsfähige Katalysatoren darstellen. Die Polymeren (P) hingegen sind auch noch in der Gegenwart der angegebenen Zinnkatalysatorkonzentrationen hinlänglich reaktionsträge und werden erst durch den Zusatz eines geeigneten basischen Katalysators (K) aktiviert.
Bevorzugte Bausteine (A21, A22, B21, B22, C21, C22) zur Herstellung der Polymere (P) sind neben den Silanen (AI, Bl, Cl) OH-terminierte Polyole, monomere Alkohole/Amine mit mindestens 2 OH/NH-Funktionen und/oder hydroxyalkyl- oder aminoalkylterminierte Polydiorganosiloxane sowie Di- oder Polyisocyanate .
Bei der Herstellung des Polymeren (P) werden die
Konzentrationen aller an sämtlichen Reaktionsschritten beteiligter Isocyanatgruppen und aller isocyanatreaktiver Gruppen sowie die Reaktionsbedingungen bevorzugt so gewählt, daß im Laufe der Polymersynthese sämtliche Isocyanatgruppen abreagieren. Das fertige Polymer (P) ist somit isocyanatfrei .
Als Polyole für die Herstellung der Polymere (P) eignen sich besonders aromatische und aliphatische Polyesterpolyole und Polyetherpolyole, wie sie in der Literatur vielfach beschrieben sind. Prinzipiell können aber sämtliche polymeren, oligomeren oder auch monomeren Alkohole mit zwei oder mehr OH-Funktionen eingesetzt werden.
Als hydroxyalkyl- oder aminoalkylterminierte Polysiloxane werden bevorzugt Verbindungen der allgemeinen Formel (7)
Z-R5- [Si(R )2-0-]n-Si(R4)2-R5-Z (7) ,
eingesetzt, in der
R4 einen -einwertigen Kohlenwasserstoffrest mit 1 bis 12
Kohlenstoffatomen, bevorzugt Methylrest, ^ einen zweiwertigen verzweigten oder unverzweigten Kohlenwasserstoffrest mit 1-12 Kohlenstoffatomen, bevorzugt Trimethylenrest , n eine Zahl von 1 bis 3000, bevorzugt eine Zahl von 10 bis
1000 und
Z eine OH-, SH- oder eine NHR3-Gruppe bedeuten.
Beispiele für gebräuchliche Diisocyanate sind Diisocyanato- diphenylmethan (MDI) , sowohl in Form von rohem oder technischem MDI als auch in Form reiner 4,4" bzw. 2., 4' Isomeren oder deren Mischungen, Tolylendiisocyanat (TDI) in Form seiner verschie- denen Regioisomere, Diisocyanatonaphthalin (NDI) , Isophoron- diisocyanat (IPDI) oder auch von Hexamethylendiisocyanat (HDI) . Beispiele für Polyisocyanate sind polymeres MDI (P-MDI) , Triphenylmethantriisocanat oder Biuret-triisocyanate.
Bevorzugte Katalysatoren (K) zur Aktivierung der erfindungsgemäßen Polymerabmischungen stellen organische Aminoverbindungen dar. Dabei kann es sich um primäre, sekundäre oder auch tertiäre Amine handeln. Über das Ausmaß der sterischen Abschirmung am Stickstoffatom läßt sich dabei die katalytische Wirksamkeit des Katalysators (K) steuern. Beim Einsatz von sterisch ungehinderten Aminen, z.B. von primären Aminen, lassen sich Polymermassen (M) , enthaltend das Polymer (P) herstellen, die über Hautbildungszeiten < 15 min, bevorzugt < 5 min verfügen.
Dabei wird der Katalysator (K) bei Compoundierungen bevorzugt so spät wie möglich zugesetzt . So werden Probleme sowohl mit zu geringen Lagerbeständigkeiten als auch mit einer deutlich erschwerten Handhabbarkeit der Polymermasse (M) vermieden. Nach der Aktivierung durch die Zugabe des Katalysators (K) kann das fertige Compound direkt in Kartuschen, Dosen, Tuben etc. abgefüllt werden. Diese Behältnisse sind in der Regel gasdicht, so daß hier eine hohe Reaktivität gegenüber Luftfeuchtigkeit zu keinen Problemen mehr führt .
Dabei können nahezu alle aliphatischen Amine als Katalysatoren (K) eingesetzt werden. Beispiele für katalytisch wirksame Amine sind Triethylamin, Tributylamin, 1, 4 -Diazabicyclo [2 , 2 , 2] octan, N,N-Bis- (N,N-dimethyl-2-aminoethyl) -methylamin, N,N- Dimethylcyclohexylamin, N,N-Dimethylphenlyamin, 1,5- Diazabicyclo [4.3.0] non-5-en, 1, 8-Diazabicyclo [5.4.0] undec-7-en etc. Diese Katalysatoren werden bevorzugt in Konzentrationen von 0,01-10 Gew.-% eingesetzt. Die verschiedenen Katalysatoren können sowohl in reiner Form als auch als Mischungen verschiedener Katalysatoren eingesetzt werden. Durch Typ und Konzentration der zugesetzen Katalysatoren läßt sich die Härtungsgeschwindigkeit bedarfsgereicht einstellen.
In einer weiterhin besonders bevorzugt Ausführungsform werden Verbindungen der allgemeinen Formel (8) als Katalysatoren (K) verwendet ,
R7R8N-R6-SiR1 a(OR2)3_a (8),
wobei R6 einen zweiwertigen, verzweigten oder unverzweigte Kohlenwasserstoffrest mit 1-10 Kohlenstoffatomen, gegebenenfalls unterbrochen von Sauerstoff oder N(R3)- Gruppen bedeutet,
R und R8 Wasserstoff oder einen verzweigten oder unverzweigten
Alkylrest mit 1-20 Kohlenstoffatomen bedeuten, wobei der Alkylrest auch noch durch Halogenatome, Hydroxylgruppen, Aminogruppen, Monoalkylaminogruppen, Dialkylaminogruppen oder Alkoxygruppen substituiert sein kann und
R1, R2 , R3 und a die vorstehend angegebenen Bedeutungen besitzen.
Die Polymermassen (M) können als weitere Komponenten an sich bekannte Hilfsstoffe, wie Füllstoffe, Wasserfänger, Reaktiwerdünner, Haftvermittler, Weichmacher, ' Thixotropiermittel, Lichtschutzmittel, Fungizide, Flammschutzmittel, Pigmente etc. enthalten, wie sie für den ' . - Einsatz in sämtlichen herkömmlichen alkoxyvernetzenden ein- und zweikomponentigen Massen bekannt sind. Zur Erzeugung der jeweils gewünschten Eigenschaftsprofile sowohl der unvernetzten Polymermassen (M) als auch der ausgehärteten Massen sind derartige Zusätze in der Regel unverzichtbar.
Für die Polymermassen (M) existieren zahllose verschiedene Anwendungen im Bereich der Kleb-/ Dicht- und. Fugendichtstoffe, Montageschäume, Oberflächenbeschichtungen sowie auch zur Herstellung von Formteilen.
Dabei sind sie für zahllose unterschiedliche Untergründe wie z.B. mineralische Untergründe, Metalle, Kunststoffe, Glas, Keramik etc . geeignet .
Die Polymermassen (M) können dabei sowohl in reiner Form als auch in Form von Lösungen, Emulsionen oder Dispersionen zum Einsatz kommen. Alle vorstehenden Symbole der vorstehenden Formeln weisen ihre Bedeutungen jeweils unabhängig voneinander auf. In allen Formeln ist das Siliciumatom vierwertig.
Soweit nicht anders angegeben sind alle Mengen- und Prozentangaben auf das Gewicht bezogen, alle Drücke 0,10 MPa (abs.) und alle Temperaturen 20°C.
Bei.spiel e :
Herstellung von Isocyanatomethyl-trimethoxysilan
Methylcarbamatomethyl-trimethoxysilan wird in ein Quarz- Pyrolyserohr, das mit Quarzwolle gefüllt ist, im Argon-Gasström eingepumpt. Die Temperatur im Pyrolyserohr beträgt zwischen 420 und 470 °C. Das Rohprodukt wird am Ende der beheizten Strecke - mit Hilfe eines Kühlers auskondensiert und gesammelt. Die gelblich - braune Flüssigkeit wird durch Destillation unter reduziertem Druck gereinigt. Über Kopf geht bei ca. 88-90 °C (82 mbar) das gewünschte Produkt in über 99 %-iger Reinheit über, während im Sumpf das nicht umgesetzte Carbamat reisoliert werden kann. Dieses wird der Pyrolyse direkt wieder zugeführt.
Nach dem analogen Verfahren wird das weiterhin beschriebene Isocyanatomethyl-methyldimethoxysilan hergestellt .
Herstellung von W-Phenylaminomethyl-trimethoxysilan:
537 g (5,77 mol) Anilin werden in einem Laborreaktor komplett vorgelegt und anschließend mit Stickstoff inertisiert. Man heizt auf eine Temperatur von 115 °C auf und tropft 328 g (1,92 mol) Chlormethyl-trimethoxysilan über 1,5 h zu und rührt für weitere 30 Minuten bei 125 - 130 °C nach. Nach einer Zugabe von ca. 150 g des Silans fällt vermehrt Anilinhydrochlorid als Salz aus, jedoch bleibt die Suspension bis zum Dosierende gut rührbar .
Überschüssig eingesetztes Anilin (ca. 180 g) wird bei gutem Vakuum (62 °C bei 7 mbar) entfernt. Anschließend gibt" man bei ca. 50 °C 350 ml Toluol zu und rührt die Suspension für 30 min bei 10 °C, um Anilinhydrochlorid zu kristallisieren. Dieses wird anschließend abfiltriert. Das Lösungsmittel Toluol wird im Teilvakuum bei 60 - 70 °C entfernt. Der Rückstand wird destillativ gereinigt (89-91°C bei 0,16 mbar)
Es wird eine Ausbeute von 331,2g, d.h. 75,9% der Theorie, erreicht bei einer Produktreinheit von ca. 96,5 %. Das Produkt enthält etwa 3,5 % N,N-bis- [trimethoxysilylmethyl] -phenylamin als Verunreinigung. Das erhaltene Produkt besitzt einen Chloridgehalt von etwa 100 ppm.
Beispiel la
400 g (50,0 mmol) eines Polypropylenglykols mit einem mittleren Molekulargewicht von 8000 g/mol werden vorgelegt, lh bei 100 °C im Vakuum entwässert und mit 5,5 g (25 mmol) Isophoron- diisocyanat bei 100 °C innerhalb von 60 min. polymerisiert . Das erhaltene OH-terminierte Polyurethanpräpolymer wird danach auf 60 °C abgekühlt und mit 9,8 g (110 mmol) Isocyanatomethyl- trimethoxysilan versetzt und 60 min gerührt, bis im IR-Spektrum keine Isocyanatbande mehr vorhanden ist. Man erhält ein klares, durchsichtiges Polymer mit einer Viskosität von 85 Pas bei 20 °C. Das so hergestellte silanterminierte Polymer wird in einem Laborplanetenmischer bei ca. 25 °C mit 95 g
Diisoundecylphthalat , 20,0 g Vinyltrimethoxysilan und 430 g gefällter und getrockneter Kreide (vorher getrocknet, Wassergehalt < 500 ppm) versetzt und zu einer standfesten Paste verarbeitet. Die so erhaltene Paste zeigt eine Hautbildungzeit von über 1 h (23 °C, 50 % rh) . Durch Zusatz von weiteren 20,0 g 3- (2-Aminoethyl) -aminopropyltrimethoxysilan als Katalysator beträgt die Hautbildungszeit an der Luft etwa 5 min (23 °C, 50 % rh) .
Beispiel lb
400 g (50,0 mmol) eines Polypropylenglykols mit einem mittleren Molekulargewicht von 8000 g/mol werden vorgelegt, lh bei 100 °C im Vakuum entwässert und mit 5,5 g (25 mmol) Isophorosi- diisocyanat bei 100 °C innerhalb von 60 min. polymerisiert . Das erhaltene OH-terminierte PolyurethanPräpolymer wird anschließend auf 60 °C abgekühlt und mit 8,9 g (55 mmol) Isocyanatomethyl-methyldimethoxysilan versetzt und 60 min gerührt, bis im IR-Spektrum keine Isocyanatbande mehr zu sehen ist. Man erhält ein klares, durchsichtiges Polymer mit einer Viskosität von 77 Pas bei 20°C.
Das so hergestellte silanterminierte Polymer wird in einem Laborplanetenmischer bei ca. 25 °C mit 95 g Diisoundecylphthalat , 20,0 g Vinyltrimethoxysilan und 430 g gefällter und getrockneter Kreide (vorher getrocknet, Wassergehalt < 500 ppm) versetzt und zu einer standfesten Paste verarbeitet. Die so erhaltene Paste zeigt eine Hautbildungzeit von über 3 h (23 °C, 50 % rh) . Durch Zusatz von weiteren 20,0 g 3- (2-Aminoethyl) -aminopropyltrimethoxysilan als Katalysator beträgt die Hautbildungszeit an der Luft etwa 15 min (23 °C, 50 % rh) .
Beispiel 2 500 g (11,1 mmol) α, ω- (3 -Aminopropyl) -polydimethylsiloxan mit einem mittleren Molekulargewicht von 45 000 g/mol werden in einem beheizbaren mit Vakuumpumpe versehenen Laborplanetenmischer auf 80 °C erwärmt und 0,5 h im Vakuum ausgeheizt. Anschließend werden 3,9 g (22,2 mmol) Isocyanato- methyl-trimethoxysilan bei 80 °C zugegeben und weiter eine
Stunde gerührt. Mittels IR-Spektroskopie wird die vollständige Umsetzung des Silans anhand der NCO-Bande verfolgt . Das erhaltene silanterminierte Polymer wird unter Rührung auf 25 °C abgekühlt und mit 230,0 g eines trimethylsilyl- terminierten Polydimethylsiloxans mit einer Viskosität von 100 Pas, 20,0 g Vinyltrimethoxysilan, 85,0 g einer hydrophilen pyrogenen Kieselsäure versetzt und innerhalb 0,5 h zu einer standfesten Paste verarbeitet. Die so erhaltene Paste zeigt eine Hautbildungzeit von über 2 h (23 °C, 50 % rh) . Durch Zusatz von weiteren 8,0 g 3- (2-Aminoethyl) - aminopropyltrimethoxysilan als Katalysator beträgt die Hautbildungszeit an der Luft unter 5 min (23 °C, 50 % rh) . Beispiel 3
400 g (50,0 mmol) eines Polypropylenglykols mit einem mittleren Molekulargewicht von 8000 g/mol werden vorgelegt, lh bei 100 °C im Vakuum entwässert und mit 19,5 g (110 mmol)
Isocyanatomethyl-trimethoxysilan versetzt und 60 min gerührt, bis im IR-Spektrum keine Isocyanatbande mehr vorhanden ist. Man erhält ein klares, durchsichtiges Polymer mit einer Viskosität von 8 , 5 Pas . Das so hergestellte silanterminierte Polymer wird in einem Laborplanetenmischer bei ca. 25 °C mit 13,0 g Vinyltrimethoxysilan und 195 g gefällter und getrockneter Kreide (vorher getrocknet, Wassergehalt < 500 ppm) versetzt und zu einer standfesten Paste verarbeitet. Die so erhaltene Paste zeigt eine Hautbildungzeit von über 2 h (23 °C, 50 % rh) . Durch Zusatz von weiteren 13,0 g 3- (2-Aminoethyl) - aminopropyltrimethoxysilan als Katalysator beträgt die Hautbildungszeit an der Luft unter 5 min (23 °C, 50 % rh) .
Beispiel 4
Ein nach Beipiel 3 hergestelltes Polymer wird mit jeweils 0,5 % einer basischen Verbindung (siehe Tabelle 1) versetzt und die Hautbildungszeit bei 23 °C, 50 % rh bestimmt.
Tabelle 1
Figure imgf000021_0001
DBU: 1 , 8 -Diazabicyclo [5,4,0] undec-7-en
121 Aminosilan: 3- (2-Aminoethyl) -aminopropyltrimethoxysilan
(3) 4- (N,N-Dimethylamino) -pyridin Beispiel 5
In einem 250 ml Reaktionsgefäß mit Rühr-, Kühl und Heizmöglichkeiten werden 30 g (70,6 mmol) eines Polypropylenglycols mit einer mittleren Molmasse von 425 g/mol vorgelegt und durch 1-stündiges Erwärmen auf 100 C im
Membranpumpenvakuum entwässert. Anschließend wird auf ca. 50 °C abgekühlt und bei dieser Temperatur werden unter Stickstoff 24,6 g (141,2 mmol) Toluen-2 , 4-diisocyanat (TDI) so zugegeben, daß die Temperatur dabei nicht auf über 80 °C steigt. Nach Beendigung der Zugabe wird für 15 min bei 80 °C gerührt.
Man kühlt auf etwa 50 °C ab und gibt 5 ml Vinyltrimethoxysilan als Reaktiwerdünner hinzu. Es werden 0,12 g 2,2- Dimorpholinodiethylether (Jeffcat® DMDLS der Fa. Huntsman) als als Säurefänger zugegeben. Damit werden die im N-
Phenylaminomethyl-trimethoxysilan enthaltenen sauren Anilinhydrochloridderivate neutralisiert. Danach tropft man 32,1 g (141,2 mmol) JV-Phenylaminomethyl-trimethoxysilan
(Chloridgehalt ca. 100 ppm) hinzu und rührt anschließend für 60 min bei 80 °C. In der resultierenden Präpolymermischung lassen sich IR-spektroskopisch keine Isocyanatgruppen mehr nachweisen. Man erhält eine klare, durchsichtige Präpolymermischung, die sich bei 50 °C mit einer Viskosität von ca. 15 Pas problemlos gießen läßt.
Die erhaltene Mischung ist mit Hautbildungszeiten von > 2 h (23 °C, 50 % rh) relativ reaktionsträge. Sie läßt sich problemlos handhaben, abfüllen und/oder mit weiteren Komponenten compoundieren . Zudem ist sie in geschlossenen Gefäßen mindestens 6 Monate lagerstabil .
Die Aktivierung dieser Präpolymermischung ist durch Zugabe beispielsweise von 0,5 Gew.-% Aminopropyl-trimethoxysilan oder 0,5 Gew.-% 1, 8-Diazabicyclo [5. .0] undec-7-en zu jedem gewünschten Zeitpunkt möglich. Mit diesen sehr wirksamen
Katalysatoren werden Hautbildungszeiten von ca. 1 min (23 °C, 50 % rh) erreicht. Des weiteren können zur Aktivierung der reaktionsträgen Präpolymermischungen auch sterisch stärker gehinderte Amine eingesetzt werden, um die jeweils gewünschte Reaktivität einzustellen. So können beispielsweise mit sekundären Aminen wie Cyclohexylaminomethyl-trimethoxysilan (Zusatz von 0,5 Gew.-%) Hautbildungszeiten von ca. 10 min (23 °C, 50 % rh) erreicht werden, während tertiäre Amine wie Diethylaminomethyl-trimethoxysilan (Zusatz von 1 Gew.-%) oder Bis (2-dimethylaminoethyl-) ether (Zusatz von 1 Gew.-%) zu Hautbildungszeiten von 20-30 min (23 °C, 50 % rh) führen.
Vergleichsbeispiel 1
Es wird ebenso vorgegangen wie in Beispiel 5. Allerdings wird dabei auf die Zugabe von 2 , 2-Dimorpholinodiethylether verzichtet . Dabei erhält man ebenfalls eine klare, durchsichtige
Präpolymermischung, die bei 50 °C über eine Viskosität von ca. " 18 Pas verfügt. Allerdings ist diese Präpolymermischung mit einer Hautbildungszeit von < 1 min (23 °C, 50 % rh) extrem reaktiv. Sie läßt sich nur noch unter Schutzgas handhaben, abfüllen oder mit weiteren Komponenten compoundieren. Sie ist nur in gasdichten Behältnissen lagerstabil . Das Öffnen dieses Behältnisses führt sofort zu einer Hautbildung.
Durch Zugabe von Katalysatoren läßt sich die Reaktivität dieser ohnehin hochreaktiven Präpolyme'rmischung nicht mehr erkennbar steigern.

Claims

Patentansprüche
1. Polymermassen (M) , die alkoxysilanterminierte Polymere (P) mit Endgruppen der allgemeinen Formel (1)
-A-CH2-SiRla(OR )3_a (1),
enthalten, wobei A eine zweibindige Bindegruppe ausgewählt aus -0-CO-N(R3) - , -N(R3) -CO-O-, -N(R3) -CO-NH-, -NH-CO-N (R3 ) - , -N(R3)-CO-
N(R3) , Rl einen gegebenenfalls halogensubstuierten Alkyl-,
Cycloalkyl-, Alkenyl- oder Arylrest mit 1-10
Kohlenstoffatomen, R2 einen Alkylrest mit 1-6 Kohlenstoffatomen oder einen ω-
Oxaalkyl -alkylrest mit insgesamt 2-10 Kohlenstoffatomen, R3 Wasserstoff, einen gegebenenfalls halogensubstuierten cyclischen, linearen oder verzweigten Cτ_- bis C^s-Alkyl- oder Alkenylrest oder einen Cg- bis
Figure imgf000024_0001
und a eine ganze Zahl von 0 bis 2 bedeuten, wobei a) die Polymermassen (M) bei 23 °C und 50 % relativer Luftfeuchtigkeit Hautbildungszeiten > 40 min aufweisen, und b) die Hautbildungszeiten dieser Polymermassen (M) durch den Zusatz eines Katalysators (K) in Konzentrationen bis zu 3 Gew.-% auf < 20 min reduziert werden können.
2. Polymermassen (M) nach Anspruch 1, welche höchstens 100 ppm aktivierende Verbindungen (AV) , die ausgewählt werden aus sterisch ungehinderten Basen, sterisch ungehinderten Säuren und aromatischen Aminhydrochloriden, bezogen auf die gesamte Masse der Polymermassen (M) enthalten.
3. Polymermassen (M) nach Anspruch 1, welche frei sind von aktivierende Verbindungen (AV) , die ausgewählt werden aus sterisch ungehinderten Basen, sterisch ungehinderten Säuren und aromatischen Aminhydrochloriden .
4. Polymermassen (M) nach Anspruch 1 bis 3, bei denen die Polymere (P) durch Einsatz eines Aminosilans (AI) der allgemeinen Formel (2) ' •_
NH(R3)-CH2-SiR1 a(OR2)3_a (2)
erhalten werden, wobei R-1-, R2 und a die in Anspruch 1 angegebenen Bedeutungen aufweisen und
R3 einen Cg- bis Ci8-A ylrest bedeutet.
5. Polymermassen (M) nach Anspruch 4, bei der die eingesetzten Aminosilane (AI) über einen Chloridgehalt <20 ppm verfügen.
6. Polymermasse (M) nach Anspruch 4, bei der die eingesetzten Aminosilane (AI) frei von Anilmhydrochloridderivaten sind.
7. Polymermermassen (M) nach Anspruch 4 bis 6, die zusätzlich noch 0,001 - 3 Gew.-% eines sterisch gehinderten aliphatischen Amins enthalten.
8. Polymermermassen (M) nach Anspruch 7, bei denen das sterisch gehinderte aliphatische Amin ein N-alkyliertes Morpholinderivat ist.
9. Polymermassen (M) nach Anspruch 1 bis 3 , bei denen die Polymere (P) durch Einsatz eines Isocyanatosilans (Bl) der allgemeinen Formel (5)
OCN-CH2-SiR1 a(OR2)3_a (5)
erhalten werden, wobei
R-1, R2 und a die in Anspruch 1 angegebenen Bedeutungen aufweisen.
10. Polymermassen (M) nach Anspruch 1 bis 9, bei denen die Katalysatoren (K) ausgewählt werden aus Säuren, Basen und organischen Metallverbindungen. _ ' '
11. Polymermassen (M) nach Anspruch 1 bis 10, bei denen die
Katalysatoren (K) organische Aminoverbindungen sind.
12. Polymermassen (M) nach Anspruch 1 bis 11, bei denen die
Katalysatoren (K) Verbindungen der allgemeinen Formel (8)
R7R8N-R6 - SiR1 a (OR2 : 3-a (8)
sind, wobei R> einen zweiwertigen, verzweigten oder unverzweigte Kohlenwasserstoffrest mit 1-10 Kohlenstoffatomen, gegebenenfalls unterbrochen von Sauerstoff oder N(R3)- Gruppen bedeutet, R7 und R8 Wasserstoff oder einen verzweigten oder unverzweigten
Alkylrest mit 1-20 Kohlenstoffatomen bedeuten, wobei der Alkylrest auch noch durch Halogenatome, Hydroxylgruppen, Aminogruppen, Monoalkylammogruppen, Dialkylaminogruppen oder Alkoxygruppen substituiert sein kann und
R1-, R2 , R3 und a die vorstehend angegebenen Bedeutungen besitzen.
13.' Verfahren zur Reduzierung der Hautbildungszeiten der
Polymermassen (M) gemäss Anspruch 1 bis 12, bei dem den Polymermassen (M) Katalysatoren (K) zugesetzt werden, die ausgewählt werden aus- Säuren, Basen und organischen Metallverbindungen.
14. Verwendung der Polymermassen (M) gemäß Anspruch 1 bis 12 im Bereich der Kleb-, Dicht- und Fugendichtstoffe, - -. Montageschäume, Oberflächenbeschichtungen sowie zur Herstellung von Formteilen.
PCT/EP2003/008782 2002-08-14 2003-08-07 Polymermassen auf basis alkoxysilanterminierter polymere mit regulierbarer härtungsgeschwindigkeit WO2004022618A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE50303977T DE50303977D1 (de) 2002-08-14 2003-08-07 Polymermassen auf basis alkoxysilanterminierter polymere mit regulierbarer härtungsgeschwindigkeit
US10/524,473 US7332541B2 (en) 2002-08-14 2003-08-07 Polymer compositions based on alkoxysilane-terminated polymers with adjustable cure rate
AU2003255396A AU2003255396A1 (en) 2002-08-14 2003-08-07 Polymer masses based on alkoxysilane-terminated polymers having a regulatable hardening speed
JP2004533335A JP5090623B2 (ja) 2002-08-14 2003-08-07 制御可能な硬化速度を有するアルコキシシラン末端ポリマーをベースとするポリマー材料
EP03793700A EP1529071B1 (de) 2002-08-14 2003-08-07 Polymermassen auf basis alkoxysilanterminierter polymere mit regulierbarer härtungsgeschwindigkeit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10237271.3 2002-08-14
DE10237271A DE10237271A1 (de) 2002-08-14 2002-08-14 Polymermassen auf Basis alkoxysilanterminierter Polymere mit regulierbarer Härtungsgeschwindigkeit

Publications (1)

Publication Number Publication Date
WO2004022618A1 true WO2004022618A1 (de) 2004-03-18

Family

ID=31197015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/008782 WO2004022618A1 (de) 2002-08-14 2003-08-07 Polymermassen auf basis alkoxysilanterminierter polymere mit regulierbarer härtungsgeschwindigkeit

Country Status (9)

Country Link
US (1) US7332541B2 (de)
EP (1) EP1529071B1 (de)
JP (1) JP5090623B2 (de)
CN (1) CN100349944C (de)
AT (1) ATE330979T1 (de)
AU (1) AU2003255396A1 (de)
DE (2) DE10237271A1 (de)
ES (1) ES2268476T3 (de)
WO (1) WO2004022618A1 (de)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1627620A1 (de) * 2004-08-19 2006-02-22 Heraeus Kulzer GmbH Zusammensetzungen auf Basis silanterminierter Polyether und deren Verwendung
WO2006061091A2 (de) * 2004-12-09 2006-06-15 Wacker Chemie Ag Alpha-aminomethyl-alkoxysilane mit hoher reaktivität und verbesserter stabilität
WO2007037485A1 (ja) 2005-09-30 2007-04-05 Kaneka Corporation 硬化性組成物
WO2007037484A1 (ja) 2005-09-30 2007-04-05 Kaneka Corporation 硬化性組成物
WO2007037483A1 (ja) * 2005-09-30 2007-04-05 Kaneka Corporation 硬化性組成物
WO2007061846A2 (en) * 2005-11-22 2007-05-31 Henkel Corporation Moisture-curable silylated polymers for fast moisture curing compositions
WO2008078654A1 (ja) 2006-12-25 2008-07-03 Kaneka Corporation 硬化性組成物
WO2008084651A1 (ja) 2007-01-12 2008-07-17 Kaneka Corporation 硬化性組成物
DE102007006147A1 (de) 2007-02-07 2008-08-14 Wacker Chemie Ag Verfahren zur Herstellung von Isocyanatoorganosilanen
WO2009007038A1 (de) * 2007-07-11 2009-01-15 Bayer Materialscience Ag Verfahren zur herstellung von polyurethan-schäumen auf basis von speziellen alkoxysilanfunktionellen polymeren
EP2031024A1 (de) * 2007-09-03 2009-03-04 Wacker Chemie AG Vernetzbare Massen auf der Basis von Organosiliciumverbindungen
US7807756B2 (en) 2004-11-10 2010-10-05 Kaneka Corporation Curable composition
DE102009016195A1 (de) 2009-04-03 2010-10-07 Basf Coatings Ag Feuchtigkeitshärtende Beschichtungsmittel auf der Basis aprotischer Lösemittel enthaltend Bindemittel mit Alkoxysilangruppen und deren Verwendung
US7977445B2 (en) * 2005-05-13 2011-07-12 Henkel Ag & Co. Kgaa Storage-stable aqueous emulsions of α-silyl terminated polymers
US8076401B2 (en) 2006-05-11 2011-12-13 Wacker Chemie Ag Transparent polymer mixtures which contain alkoxysilane-terminated polymers
CN102558498A (zh) * 2012-01-04 2012-07-11 山西兆信生物科技有限公司 煤矿用聚氨酯加固和充填材料
US8841399B2 (en) 2010-06-30 2014-09-23 3M Innovative Properties Company Curable composition comprising dual reactive silane functionality
US8840993B2 (en) 2010-06-30 2014-09-23 3M Innovative Properties Company Curable polysiloxane coating composition
US8968869B2 (en) 2010-06-30 2015-03-03 3M Innovative Properties Company Curable-on-demand polysiloxane coating composition
WO2015033801A1 (ja) 2013-09-03 2015-03-12 東亞合成株式会社 硬化性樹脂組成物
US9006336B2 (en) 2011-12-29 2015-04-14 3M Innovative Properties Company Curable polysiloxane coating composition
US9006357B2 (en) 2011-12-29 2015-04-14 3M Innovative Properties Company Curable polysiloxane composition
US9035008B2 (en) 2011-12-29 2015-05-19 3M Innovative Properties Company Curable-on-demand polysiloxane coating composition
EP2625226B1 (de) 2010-10-05 2016-02-24 Henkel AG & Co. KGaA Härtbare zusammensetzung mit speziellem katalysator/weichmacher-system

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004059379A1 (de) * 2004-12-09 2006-06-22 Consortium für elektrochemische Industrie GmbH Alkoxysilanterminierte Prepolymere
US7524915B2 (en) * 2005-10-27 2009-04-28 Momentive Performance Materials Inc. Process for making moisture-curable silylated resin composition, the resulting composition and moisture-curable products containing the composition
DE102005051921A1 (de) 2005-10-29 2007-05-03 Henkel Kgaa α-Ethoxysilan modifizierte Polymere, deren Herstellung und Verwendung
JP2007204502A (ja) * 2006-01-05 2007-08-16 Konishi Co Ltd 硬化性シリコーン系樹脂組成物
US20070178321A1 (en) * 2006-02-01 2007-08-02 Illinois Tool Works, Inc. Curable silicone coating
DE102006006974A1 (de) * 2006-02-14 2007-08-30 Bostik Gmbh Einkomponentige, wasserfreie Beschichtungsmasse zur Flachdachabdichtung
DE102006006975A1 (de) * 2006-02-14 2007-08-30 Bostik Gmbh Einkomponentiger, lösemittelfreier Kontaktklebstoff
DE102006059473A1 (de) * 2006-12-14 2008-06-19 Henkel Kgaa Silylgruppen enthaltende Mischung von Prepolymeren und deren Verwendung
DE102007058344A1 (de) * 2007-12-03 2009-06-04 Henkel Ag & Co. Kgaa Härtbare Zusammensetzungen enthaltend silylierte Polyurethane
DE102007058483A1 (de) * 2007-12-04 2009-06-10 Henkel Ag & Co. Kgaa Härtbare Zusammensetzungen enthaltend silylierte Polyurethane
CN102076777B (zh) * 2008-07-18 2013-05-15 小西株式会社 固化性树脂组合物
JP5343570B2 (ja) * 2009-01-13 2013-11-13 信越化学工業株式会社 金属表面処理剤、表面処理鋼材及びその表面処理方法、並びに塗装鋼材及びその製造方法
DE102009001771A1 (de) 2009-03-24 2010-09-30 Henkel Ag & Co. Kgaa Erstarrende Klebstoffe mit Silanvernetzung
JP2010280880A (ja) * 2009-05-08 2010-12-16 Konishi Co Ltd 硬化性樹脂組成物
DE102009026900A1 (de) 2009-06-10 2010-12-16 Henkel Ag & Co. Kgaa Transparenter 1-Komponenten Kaschierklebstoff
DE102009046190A1 (de) 2009-10-30 2011-05-05 Henkel Ag & Co. Kgaa Kaschierklebstoff mit Silanvernetzung
DE102010018434A1 (de) 2010-04-27 2011-10-27 Weiss Chemie + Technik Gmbh & Co. Kg Feuchtigkeitsvernetzender Einkomponenten-Klebstoff
ES2538086T3 (es) 2010-06-30 2015-06-17 Dow Global Technologies Llc Polímeros terminados en sililo libres de estaño
JP5365609B2 (ja) * 2010-11-22 2013-12-11 信越化学工業株式会社 粘着剤組成物、粘着偏光板及び液晶表示装置
JP5936699B2 (ja) * 2011-09-29 2016-06-22 スリーエム イノベイティブ プロパティズ カンパニー アミノ置換オルガノシランエステル触媒プライマー
FR2982157B1 (fr) * 2011-11-09 2016-08-19 Oreal Composition cosmetique ou dermatologique comprenant un alpha-alcoxysilane a base uree ou amide
FR2982149B1 (fr) * 2011-11-09 2016-08-26 Oreal Composition comprenant un alpha-alcoxysilane obtenu a partir d'une polyamine
FR2982156B1 (fr) * 2011-11-09 2014-07-04 Oreal Composition cosmetique ou dermatologique comprenant un alpha-alcoxysilane obtenu a partir d'un acrylate
US10016454B2 (en) 2012-12-04 2018-07-10 Cohera Medical, Inc. Silane-containing moisture-curable tissue sealant
US10030122B2 (en) 2015-02-09 2018-07-24 Wacker Chemical Corporation Curable compositions
US9856173B2 (en) 2015-02-09 2018-01-02 Wacker Chemical Corporation One component ready-to-use tile grout
US9328259B1 (en) 2015-02-09 2016-05-03 Wacker Chemical Corporation Elastomeric silicone emulsion for coating applications
DE102015202278A1 (de) 2015-02-09 2016-08-11 Wacker Chemie Ag Wässrige Dispersionen von Organosiliciumverbindungen
US11360064B2 (en) * 2016-03-30 2022-06-14 3M Innovative Properties Company Oxy-pyrohydrolysis system and method for total halogen analysis
EP3475365B1 (de) * 2016-06-28 2019-08-14 Wacker Chemie AG Vernetzbare massen auf basis von organyloxysilanterminierten polymeren
JP7249998B2 (ja) 2018-03-30 2023-03-31 株式会社カネカ 反応性ケイ素基含有重合体、および硬化性組成物
US11326017B2 (en) * 2018-09-10 2022-05-10 Evonik Operations Gmbh Tin-free catalysis of silane-functional polyurethane crosslinkers
US11359100B2 (en) * 2018-09-10 2022-06-14 Evonik Operations Gmbh Tin-free catalysis of silane-functional polyurethane crosslinkers
CN111875801B (zh) * 2020-07-14 2022-11-08 四川硅宇新材料科技有限公司 一种室温固化弹塑性硅树脂组成物
US11293159B1 (en) 2021-01-13 2022-04-05 CB Geotex LLC Method of maintaining soil strength and stability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676478A (en) * 1968-12-04 1972-07-11 Bayer Ag Silyl-substituted urea derivatives
DE2155258A1 (de) * 1971-11-06 1973-05-10 Bayer Ag Silylsubstituierte harnstoffderivate und ein verfahren zu ihrer herstellung
US5118290A (en) * 1986-10-30 1992-06-02 Bayer Aktiengesellschaft Process for preparation of dental impressions
US5554709A (en) * 1990-09-18 1996-09-10 Henkel Kommanditgesellschaft Auf Aktien Moisture-curing alkoxysilane-terminated polyurethanes

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1745526B2 (de) * 1967-03-16 1980-04-10 Union Carbide Corp., New York, N.Y. (V.St.A.) Verfahren zur Herstellung vulkanisierbarer, unter wasserfreien Bedingungen beständiger Polymerisate
BE790977A (fr) * 1971-11-06 1973-05-07 Bayer Ag Procede de preparation de produits de poly-addition silicies
DE2238741A1 (de) * 1972-08-05 1974-02-07 Bayer Ag Verfahren zur linearisierung vernetzter isocyanat-polyadditionsprodukte mit polyisocyanaten
DE2243628A1 (de) * 1972-09-06 1974-03-14 Bayer Ag Polymere mit alkoxysilyl-substituierten biuretgruppen und verfahren zu ihrer herstellung
US3971751A (en) * 1975-06-09 1976-07-27 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Vulcanizable silylether terminated polymer
SU615083A1 (ru) * 1976-04-12 1978-07-15 Предприятие П/Я Г-4236 Способ получени приозводных 4,9-диаза-2,7-диокса-1,6-дисила-циклодекан-3,8-диона
US4515932A (en) * 1982-09-29 1985-05-07 General Electric Company End-capping catalysts for forming alkoxy-functional one component RTV compositions
US4489199A (en) * 1983-08-08 1984-12-18 General Electric Company Room temperature vulcanizable organopolysiloxane compositions
JP3884116B2 (ja) * 1996-12-19 2007-02-21 旭化成ケミカルズ株式会社 室温硬化性樹脂組成物及びシーリング材
JP3343604B2 (ja) * 1997-03-03 2002-11-11 コニシ株式会社 シリコーン系樹脂組成物
JP3703261B2 (ja) * 1997-08-19 2005-10-05 三井化学株式会社 ケイ素基含有ポリアルキレンオキサイド重合体の製造方法及び湿気硬化性組成物
JP4326181B2 (ja) * 2000-01-19 2009-09-02 サンスター技研株式会社 湿気硬化性一液型ウレタン系接着剤組成物
DE10201703A1 (de) * 2002-01-17 2003-08-07 Consortium Elektrochem Ind Alkoxysilanterminierte Polymere enthaltende vernetzbare Polymerabmischungen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676478A (en) * 1968-12-04 1972-07-11 Bayer Ag Silyl-substituted urea derivatives
DE2155258A1 (de) * 1971-11-06 1973-05-10 Bayer Ag Silylsubstituierte harnstoffderivate und ein verfahren zu ihrer herstellung
US5118290A (en) * 1986-10-30 1992-06-02 Bayer Aktiengesellschaft Process for preparation of dental impressions
US5554709A (en) * 1990-09-18 1996-09-10 Henkel Kommanditgesellschaft Auf Aktien Moisture-curing alkoxysilane-terminated polyurethanes

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1627620A1 (de) * 2004-08-19 2006-02-22 Heraeus Kulzer GmbH Zusammensetzungen auf Basis silanterminierter Polyether und deren Verwendung
US8410192B2 (en) 2004-08-19 2013-04-02 Heraeus Kulzer Gmbh Compositions based on silane-terminated polyethers and their use
EP2546307A2 (de) 2004-11-10 2013-01-16 Kaneka Corporation Härtbare Zusammensetzung
EP2546308A2 (de) 2004-11-10 2013-01-16 Kaneka Corporation Härtbare Zusammensetzung
US7807756B2 (en) 2004-11-10 2010-10-05 Kaneka Corporation Curable composition
WO2006061091A2 (de) * 2004-12-09 2006-06-15 Wacker Chemie Ag Alpha-aminomethyl-alkoxysilane mit hoher reaktivität und verbesserter stabilität
WO2006061091A3 (de) * 2004-12-09 2006-10-12 Consortium Elektrochem Ind Alpha-aminomethyl-alkoxysilane mit hoher reaktivität und verbesserter stabilität
US7977445B2 (en) * 2005-05-13 2011-07-12 Henkel Ag & Co. Kgaa Storage-stable aqueous emulsions of α-silyl terminated polymers
US8013080B2 (en) 2005-09-30 2011-09-06 Kaneka Corporation Curable composition
WO2007037484A1 (ja) 2005-09-30 2007-04-05 Kaneka Corporation 硬化性組成物
WO2007037485A1 (ja) 2005-09-30 2007-04-05 Kaneka Corporation 硬化性組成物
US8076439B2 (en) 2005-09-30 2011-12-13 Kaneka Corporation Curable composition
WO2007037483A1 (ja) * 2005-09-30 2007-04-05 Kaneka Corporation 硬化性組成物
US8013079B2 (en) 2005-09-30 2011-09-06 Kaneka Corporation Curable composition
WO2007061846A3 (en) * 2005-11-22 2007-11-08 Henkel Corp Moisture-curable silylated polymers for fast moisture curing compositions
WO2007061846A2 (en) * 2005-11-22 2007-05-31 Henkel Corporation Moisture-curable silylated polymers for fast moisture curing compositions
EP2016134B2 (de) 2006-05-11 2015-06-24 Wacker Chemie AG Alkoxysilanterminierte polymere enthaltende transparente polymerabmischungen
US8076401B2 (en) 2006-05-11 2011-12-13 Wacker Chemie Ag Transparent polymer mixtures which contain alkoxysilane-terminated polymers
US8008386B2 (en) 2006-12-25 2011-08-30 Kaneka Corporation Curable composition
WO2008078654A1 (ja) 2006-12-25 2008-07-03 Kaneka Corporation 硬化性組成物
WO2008084651A1 (ja) 2007-01-12 2008-07-17 Kaneka Corporation 硬化性組成物
US8415444B2 (en) 2007-01-12 2013-04-09 Kaneka Corporation Curable composition
DE102007006147A1 (de) 2007-02-07 2008-08-14 Wacker Chemie Ag Verfahren zur Herstellung von Isocyanatoorganosilanen
US8288578B2 (en) 2007-02-07 2012-10-16 Wacker Chemie Ag Process for preparing isocyanatoorganosilanes
US8846775B2 (en) 2007-07-11 2014-09-30 Bayer Materialscience Ag Processes for producing polyurethane foams containing alkoxysilane functional polymers and uses therefor
WO2009007038A1 (de) * 2007-07-11 2009-01-15 Bayer Materialscience Ag Verfahren zur herstellung von polyurethan-schäumen auf basis von speziellen alkoxysilanfunktionellen polymeren
US8399575B2 (en) 2007-09-03 2013-03-19 Wacker Chemie Ag Crosslinkable materials based on organosilicon compounds
EP2031024A1 (de) * 2007-09-03 2009-03-04 Wacker Chemie AG Vernetzbare Massen auf der Basis von Organosiliciumverbindungen
US8865851B2 (en) 2009-04-03 2014-10-21 Basf Coatings Gmbh Moisture-curing coating compositions comprising aprotic solvents and binders having alkoxysilane groups and method of forming a multicoat finish therewith
DE102009016195A1 (de) 2009-04-03 2010-10-07 Basf Coatings Ag Feuchtigkeitshärtende Beschichtungsmittel auf der Basis aprotischer Lösemittel enthaltend Bindemittel mit Alkoxysilangruppen und deren Verwendung
US8840993B2 (en) 2010-06-30 2014-09-23 3M Innovative Properties Company Curable polysiloxane coating composition
US8841399B2 (en) 2010-06-30 2014-09-23 3M Innovative Properties Company Curable composition comprising dual reactive silane functionality
US8968869B2 (en) 2010-06-30 2015-03-03 3M Innovative Properties Company Curable-on-demand polysiloxane coating composition
US8968868B2 (en) 2010-06-30 2015-03-03 3M Innovative Properties Company Curable-on-demand composition comprising dual reactive silane functionality
EP2625226B1 (de) 2010-10-05 2016-02-24 Henkel AG & Co. KGaA Härtbare zusammensetzung mit speziellem katalysator/weichmacher-system
US9006336B2 (en) 2011-12-29 2015-04-14 3M Innovative Properties Company Curable polysiloxane coating composition
US9006357B2 (en) 2011-12-29 2015-04-14 3M Innovative Properties Company Curable polysiloxane composition
US9035008B2 (en) 2011-12-29 2015-05-19 3M Innovative Properties Company Curable-on-demand polysiloxane coating composition
CN102558498A (zh) * 2012-01-04 2012-07-11 山西兆信生物科技有限公司 煤矿用聚氨酯加固和充填材料
WO2015033801A1 (ja) 2013-09-03 2015-03-12 東亞合成株式会社 硬化性樹脂組成物
KR20160051778A (ko) 2013-09-03 2016-05-11 도아고세이가부시키가이샤 경화성 수지 조성물
US9932447B2 (en) 2013-09-03 2018-04-03 Toagosei Co., Ltd. Curable resin composition

Also Published As

Publication number Publication date
EP1529071B1 (de) 2006-06-21
ATE330979T1 (de) 2006-07-15
US7332541B2 (en) 2008-02-19
CN1675275A (zh) 2005-09-28
ES2268476T3 (es) 2007-03-16
US20060111505A1 (en) 2006-05-25
JP2005535779A (ja) 2005-11-24
AU2003255396A1 (en) 2004-03-29
EP1529071A1 (de) 2005-05-11
DE50303977D1 (de) 2006-08-03
CN100349944C (zh) 2007-11-21
DE10237271A1 (de) 2004-03-04
JP5090623B2 (ja) 2012-12-05

Similar Documents

Publication Publication Date Title
EP1529071B1 (de) Polymermassen auf basis alkoxysilanterminierter polymere mit regulierbarer härtungsgeschwindigkeit
EP1421129B1 (de) Einkomponentige alkoxysilanterminierte polymere enthaltende schnell härtende abmischungen
EP1465936B1 (de) Aloxysilanterminierte polymere enthaltende vernetzbare polymerabmischungen
EP1641854B1 (de) Alkoxysilanterminierte prepolymere
EP1824904B1 (de) Alkoxysilanterminierte prepolymere
EP2582738B1 (de) Silanvernetzende zusammensetzungen
EP1196469B1 (de) Spezielle aminosilane enthaltende, kondensationsvernetzende polyurethanmassen, ein verfahren zu ihrer herstellung sowie ihre verwendung
EP1636283A1 (de) Alkoxysilanterminierte prepolymere
DE10139132A1 (de) Alkoxyvernetzende einkomponentige feuchtigkeitshärtende Massen
EP2076568B1 (de) Zusammensetzungen aus teilweise silylterminierten polymeren
EP2473545B1 (de) Isocyanatfreie silanvernetzende zusammensetzungen
EP1456274B1 (de) Verwendung eines Isocyanatofunktionellen Silans als haftvermittelnden Zusatz in Polyurethan-Schmelzklebstoffen
WO2006053724A1 (de) Feuchtigkeitshärtendes bindemittel
EP1185572B1 (de) Phosphatstabilisierte, kondensationsvernetzende polyurethanmassen, ein verfahren zu ihrer herstellung sowie ihre verwendung
DE19929011A1 (de) Spezielle Aminosilane enthaltende, kondensationsvernetzende Polyurethanmassen, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung
EP2588246A1 (de) Verfahren zur herstellung eines thixotropiermittels und dessen verwendung
WO2005047356A1 (de) α-ALKOXYSILANE SOWIE IHRE ANWENDUNG IN ALKOXYSILANTERMINIERTEN PREPOLYMEREN
DE10108038C1 (de) Isocyanatfreie schäumbare Mischungen
DE19929029A1 (de) Alkoxysilangruppen aufweisende Piperazinonderivate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003793700

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004533335

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038195038

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003793700

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006111505

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10524473

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10524473

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003793700

Country of ref document: EP