WO2004014525A1 - 排ガスの処理方法および処理システム - Google Patents

排ガスの処理方法および処理システム Download PDF

Info

Publication number
WO2004014525A1
WO2004014525A1 PCT/JP2003/009567 JP0309567W WO2004014525A1 WO 2004014525 A1 WO2004014525 A1 WO 2004014525A1 JP 0309567 W JP0309567 W JP 0309567W WO 2004014525 A1 WO2004014525 A1 WO 2004014525A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
combustion
aqueous solution
alkali compound
solid alkali
Prior art date
Application number
PCT/JP2003/009567
Other languages
English (en)
French (fr)
Inventor
Michitaka Hishiike
Yoshinori Takata
Kenji Nagata
Original Assignee
Sumitomo Seika Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co., Ltd. filed Critical Sumitomo Seika Chemicals Co., Ltd.
Publication of WO2004014525A1 publication Critical patent/WO2004014525A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing

Definitions

  • the present invention relates to an exhaust gas treatment method and a treatment system suitable for treating exhaust gas generated in, for example, an etching step in manufacturing a semiconductor.
  • perfluoro compounds such as sulfur hexafluoride (SF 6 ) and halogens such as chlorine (Cl 2 ) are used.
  • the raw material gas is used in combination with the base gas. Fluorine (F 2 ), sulfur tetrafluoride (SF 4 ), SOF 2 , silicon tetrafluoride (SiF 4 ), silicon tetrachloride ( S i C 1 4) or the like is generated. Since the raw material gas and by-product gas are toxic, it is necessary to make the exhaust gas emitted from the manufacturing process harmless by burning and decomposing it.
  • Exhaust gas sulfur oxides of sulfur dioxide (S0 2) or the like as a combustion exhaust gas with a sulfur compound is contained as SF 6 is generated.
  • S0 2, etc. permissible concentrations be toxic gas is set as low as 2 p pm.
  • Sulfur oxides have been conventionally removed using an alkaline aqueous solution such as sodium hydroxide because of their low solubility in neutral water.
  • alkali chemicals such as sodium hydroxide is regulated to prevent contamination of semiconductors by sodium ions and the like. For this reason, it is necessary to discharge the combustion exhaust gas to the outside of the clean room and then treat the exhaust gas using an alkaline agent, which has a problem that the exhaust gas treatment system becomes large.
  • An object of the present invention is to provide an exhaust gas treatment method and a treatment system capable of solving the above problems. Disclosure of the invention
  • a combustion exhaust gas containing a sulfur compound is generated by burning the exhaust gas containing a sulfur compound.
  • the packed wet packed tower is characterized by being brought into contact with an aqueous solution of the solid alkali compound.
  • flue gas containing sulfur oxides such as S 0 2 by the combustion exhaust gas containing sulfur compounds such as SF e is generated.
  • an alkaline aqueous solution is generated, and the combustion exhaust gas comes into contact with the alkaline aqueous solution.
  • the sulfur oxide contained in the combustion exhaust gas is absorbed by the alkaline aqueous solution. Since sulfur oxides have low solubility in water, sulfur oxides can be removed from combustion exhaust gas more efficiently than in a wet packed tower filled with only general fillers such as Raschig rings.
  • the solid alkali compound is hardly soluble in water, it is possible to substantially prevent the generation of substances that contaminate semiconductors.
  • the solid alkaline compound is at least one of a carbonate and a metal hydroxide.
  • the sulfur oxide can be fixed as a sulfite, and the sulfur oxide contained in the combustion exhaust gas can be more efficiently removed.
  • the solubility of the solid alkali compound in water is preferably not more than 0.2% by weight at 25 ° C.
  • Specific examples of the solid alkali compound include calcium carbonate, magnesium carbonate, hydroxylated calcium hydroxide and magnesium hydroxide. At least one of can be used.
  • the solubility is more preferably not more than 0.2% by weight at 25 ° C.
  • at least one of calcium carbonate, magnesium carbonate and magnesium hydroxide can be used. This allows semiconductors Substantial generation of contaminants can be reliably prevented.
  • the exhaust gas treatment system of the present invention includes an exhaust gas combustion device, and a treatment device for combustion exhaust gas discharged from the combustion device.
  • the treatment device includes a filler containing a solid alkali compound that is hardly soluble in water. It has a packed wet packed tower in which the combustion exhaust gas is brought into contact with the aqueous solution of the solid alkali compound.
  • the exhaust gas treatment method of the present invention can be implemented. It is preferable that the exhaust gas treatment system of the present invention includes a pretreatment device, and the exhaust gas before being sent to the combustion device is brought into contact with the absorbent in the pretreatment device.
  • SF 4, SOF 2, S i F 4, S i C 1 4 can absorb and remove corrosive gases such as contained in the exhaust gas, in the combustion apparatus
  • the flow of corrosive substances into the furnace furnace, the cooling unit installed downstream of the furnace, and the wet packed tower can be greatly reduced, and the corrosion resistance of these parts can be greatly improved.
  • the S i F 4 and S i C 1 4 or the like for generating a solid during combustion decomposition by removing prior to combustion, PANA, furnace body, cooling unit, a blockage by solids in the wet packed column can be prevented .
  • the exhaust gas treatment system of the present invention includes the above-described pretreatment device, it is preferable to include a means for supplying the aqueous solution of the solid alkali compound to the pretreatment device as an absorbent.
  • a means for supplying the aqueous solution of the solid alkali compound to the pretreatment device as an absorbent.
  • Aqueous solution of solid alkali compound comprising sulfite because it exhibits a reducing, wear in use as absorption liquid dressed C 1 2 or hardly oxidizing gas soluble in water of F 2 or the like contained in the exhaust gas.
  • the oxidizing gas contained in the exhaust gas can be absorbed before the combustion of the exhaust gas, so that corrosion of the exhaust gas combustion device can be prevented.
  • FIG. 1 is a diagram showing a configuration of an exhaust gas treatment system according to an embodiment of the present invention.
  • the exhaust gas pretreatment device 2 is provided with a pretreatment tank 12 for storing the absorption liquid 11, and an absorption liquid 11 in the pretreatment tank 12, which is sent from an exhaust gas generation source via a pipe 10.
  • the outlet atomizer 14 turns the exhaust gas introduced into the absorbent 11 into fine bubbles by the rotation of the rotor 14 b driven by the motor 14 a.
  • a commercially available product can be used as the ROYU Atomizer.
  • the exhaust gas combustion device 3 has a refractory furnace 21 and an ignition section 22 provided on the upper part of the furnace 21, and a pilot parner 22 a is provided on the ignition section 22.
  • a pilot parner 22 a is provided on the ignition section 22.
  • Have been Exhaust gas in contact with the absorbent 11 of the pretreatment device 2 is introduced into the furnace body 21 via a pipe 5, and fuel gas and a supporting gas are introduced via a pipe (not shown). You.
  • a mist separator 16 is provided to remove moisture from the exhaust gas introduced into the furnace body 21 from the pretreatment tank 12.
  • the fuel gas for example, liquefied petroleum gas (LPG), liquefied natural gas (LNG), hydrogen gas, or a mixed gas thereof is used.
  • the supporting gas for example, air, oxygen-enriched air obtained by adding oxygen to air as needed, or the like is used.
  • a flame is formed by the pipe mouth 22a, and the exhaust gas and the fuel gas are burned in the furnace body 21 in the presence of the supporting gas.
  • the combustion exhaust gas generated by the combustion of the exhaust gas is discharged from the lower opening of the furnace body 21.
  • the combustion exhaust gas treatment device 4 has a cooling liquid tank 32 and a wet packed tower 33.
  • the lower opening of the furnace body 21 is connected to the combustion exhaust gas inlet 32 a provided at the upper part of the coolant tank 32 via a guide cylinder 31.
  • a wet packed tower 33 is connected to a combustion exhaust gas outlet 32b provided at the upper part of the coolant tank 32.
  • the inner circumference of the guide cylinder 31 is lined with a refractory material such as ceramic, and the outer circumference is covered with a coolant jacket 31a.
  • a coolant 36 in a coolant tank 32 circulated by a pump 35 to the coolant jacket 3 la is supplied via a pipe 37. Note that the coolant in the coolant jacket 31 a overflows from the inner periphery of the guide cylinder 31 to the coolant tank 32 by overflow.
  • the lower end opening of the guide cylinder 31 is arranged above the liquid level of the coolant 36 in the coolant tank 32.
  • the combustion exhaust gas introduced into the coolant tank 32 from the furnace body 21 is cooled by coming into contact with the coolant 36 stored in the coolant tank 32, and one of the components of the combustion exhaust gas is cooled.
  • the part is absorbed by the coolant 36.
  • the coolant 36 in the coolant tank 32 circulated through the pipe 7 by the pump 35 is sprayed into the coolant tank 32 by the spray nozzle 38.
  • the wet packed tower 33 has a tubular body 33a and a filler 33b filled in the tubular body 33a.
  • the cylinder 33 a extends upward from the flue gas outlet 32 of the coolant tank 32.
  • the filler 3 3b is a solid alkali compound that is hardly soluble in water.
  • the solubility of the solid alkali compound in water is not more than 0.2% by weight at 25 ° C, in which case at least one of calcium carbonate, magnesium carbonate, calcium hydroxide and magnesium hydroxide is used. One can be used. The solubility is more preferably not more than 0.2% by weight at 25 ° C. In this case, at least one of calcium carbonate, magnesium carbonate and magnesium hydroxide can be used. Water supplied from a water source 40 via a pipe 8 as an absorbing liquid to the filler 33 b from above the packed tower 33 is sprayed by a spray nozzle 39.
  • an alkaline aqueous solution of the solid alkaline compound is generated in the packed tower 33.
  • the combustion exhaust gas discharged from the combustion device 3 is introduced into the packed tower 33 from below through the cooling liquid tank 32, and contacts the aqueous solution of the solid alkali compound in the packed tower 33.
  • the flue gas that has come into contact with the aqueous solution of the solid alkali compound is discharged from above the packed tower 33 through the packing material 33.
  • the aqueous solution of the solid alkali compound flows down from the packed tower 33 to the coolant tank 32.
  • the aqueous solution of the solid alkali compound is contained in the coolant 36 of the coolant tank 32.
  • the aqueous solution of the solid alkali compound contained in the cooling liquid 36 of the cooling liquid tank 32 is supplied as the absorbing liquid 11 to the pretreatment tank 12 of the pretreatment device 2 via the pipe 9 by the pump 35. .
  • the overflow drainage of the cooling liquid tank 32 and the pretreatment tank 12 is collectively discharged by the pipe 50.
  • a combustion exhaust gas containing sulfur oxides S 0 2, etc. Ri by the combustion of the exhaust gas containing sulfur compounds such as SF 6 is generated.
  • the sulfur oxides contained in the combustion exhaust gas come into contact with an alkaline aqueous solution of the solid alkali compound in a wet packed column 33 filled with a solid alkali compound that is hardly soluble in water.
  • the sulfur oxide contained in the combustion exhaust gas is absorbed by the alkaline aqueous solution. Since sulfur oxides have low solubility in water, they burn sulfur oxides such as SO 2 more efficiently than in a wet packed tower filled with only general fillers such as Raschig rings. Can be removed from exhaust gas. Moreover, since the solid alkali compound is hardly soluble in water, it is possible to prevent substantial generation of substances that contaminate the semiconductor. By using the solid alkali compound as a carbonate or a metal hydroxide, a sulfur oxide such as SO 2 can be fixed as a sulphite, and the sulfur oxide contained in the combustion exhaust gas can be more efficiently removed.
  • the C a C0 3 + S 0 2 + 1/2 H 2 0 ⁇ C a S 0 3 ⁇ 1/2 H 2 0 + C0 2 is brought into contact with exhaust gas prior to combustion in the absorbing liquid 1 1 pretreatment apparatus 2 it is, able to absorb SF 4, SOF 2, S i F 4, S i C 1 4 or the like contained in the exhaust gas, the furnace body 2 1, pilot PANA 22 a, significantly corrosive material in the packed column 3 3 etc. Therefore, the corrosion resistance of these parts can be greatly improved.
  • the S i F 4 and S i C 1 4 or the like is a substance that generates solids during combustion decomposition by removing prior to combustion, the solid in the furnace body 2 1, pi Rottopana 2 2 a, packed tower 33, etc. Blockage by objects can be prevented.
  • the packed tower 33 sulfite is generated by contact of the combustion exhaust gas with the aqueous solution of the solid alkali compound, and the aqueous solution of the solid alkali compound containing the sulfite is used as the absorbent 11 of the pretreatment device 2. Can supply.
  • the exhaust gas containing an oxidizing gas such as Cl 2 or F 2 can be brought into contact with an aqueous solution of a solid alkali compound containing a sulfite before the combustion of the exhaust gas.
  • Aqueous solution of solid alkali compound comprising sulfite from exhibit reducibility can be used as absorption liquid dressed C 1 2 and water to less soluble oxidation gas of F 2 or the like contained in the exhaust gas.
  • the oxidizing gas contained in the exhaust gas can be absorbed before the combustion of the exhaust gas, so that the combustion device 3 can be prevented from being corroded. For example, if the sulfite containing calcium sulfite can be absorbed by the reaction below C 1 2 and F 2.
  • the furnace body 21 was formed by constructing a 25-mni-thick alumina-based caster inside stainless steel with an inner diameter of 200 mm.
  • the coolant tank 32 was made of stainless steel with an inner periphery coated with tetrafluoroethylene (PTFE) resin.
  • the packed tower 33 was made of stainless steel with an inner diameter of 30 Omm and a height of 500 mm coated with PTFE resin. Calcium carbonate stone with a particle size of 1 Omm to 20 mm was filled as the filler 33b.
  • the pretreatment tank 12 was made of stainless steel with an inner circumference of 30 Omm and a height of 500 mm coated with PTFE resin.
  • the rotor 14b of the rotary atomizer 14 had a diameter of 100 mm and a height of 10 Omm.
  • Water was supplied to the packed tower 33 from above by means of a spray nozzle 39 at 10 LZmin.
  • the coolant in the coolant tank 32 was supplied to the pretreatment tank 12 at 7 LZmin by the pump 35.
  • a nitrogen-based gas containing 150 L / min was introduced into the pretreatment tank 12 through the introduction pipe 13.
  • the packed tower 33 was filled with only a 12-inch Raschig ring as a filler instead of a solid alkali compound.
  • SF 6 is 5 p pm or less contained in the outlet gas of the packed tower 33
  • S 0 2 is 850 p pm
  • HF is 3 ppm or less
  • C 1 2 is a 1. 5 p pm
  • HC 1 in the following 1 p pm Was .
  • S 0 2 was 78 0 ppm.
  • the supply of the coolant from the coolant tank 32 to the pretreatment tank 12 by the pump 35 is shut off by pulp (not shown), and the water is supplied from the water source 40 to the pretreatment tank 12.
  • Water was directly supplied at 5 L / min through a new pipe (not shown).
  • Other processes the 2% of the SF 6 and 1% C 1 nitrogen base containing 2 of the gas 1 50 L / min under the same conditions as in Example 1, was subjected to the same measurements as in Example 1.
  • SF 6 is 5 p pm or less contained in the outlet gas of the packed tower 33, S 0 2 is 28 p pm, HF is 3 p pm or less, C l 2 is 0. 9 p pm, HC 1 is a below lp pm Was.
  • Cl 2 was found to be 1,500 ppm. From the above Examples and Comparative Examples, water by filling the solid alkali compound slightly soluble in the packed tower 3 3, it can be confirmed that the efficiently remove S0 2, C 1 2. Furthermore, in Rukoto contacting the exhaust gas before combustion in an aqueous solution containing sulfite produced by the packed column 3 3, it can be confirmed that the can more efficiently remove C 1 2.
  • the present invention is not limited to the above embodiments and examples.
  • the filler 33b it is not necessary to make all of the filler 33b a solid alkali compound that is hardly soluble in water, and a part of the filler may be a solid alkali compound that is hardly soluble in water, and the remainder may be a general filler such as Raschig ring.
  • sulfur compounds contained in the exhaust gas is not limited to SF e, the present invention can be applied as long as it produces a flue gas containing sulfur oxides and this for burning gas.
  • the aqueous solution containing sulfite generated in the packed tower may be directly refluxed to the pretreatment device without passing through the cooling liquid tank 32.
  • the microbubble generator in the pretreatment device is not essential, as long as the exhaust gas before combustion can be brought into contact with the absorbent. Further, when the aqueous solution containing sulfite generated in the packed tower is not refluxed to the pretreatment device, the pretreatment device may be constituted by a dry packed column or another absorption device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Abstract

排ガスの処理方法においては硫黄化合物を含む排ガスを燃焼させることで硫黄酸化物を含む燃焼排ガスを生成する。その燃焼排ガスを、水に難溶性の固形アルカリ化合物を含む充填材33bを充填した湿式充填塔33において、その固形アルカリ化合物の水溶液に接触させる。

Description

明細書
排ガスの処理方法および処理システム 技術分野
本発明は、 例えば半導体を製造する際のエッチング工程等において発生する排ガ スを処理をするのに適する排ガスの処理方法および処理システムに関する。 背景技術
半導体や液晶表示パネルのような半導体製品の製造工程、 特にエッチング工程に おいては、 六フッ化硫黄 (S F6 ) のようなパーフルォロ化合物 (PFC) と塩 素 (C l 2 ) のようなハロゲン系ガスを組合せた原料ガスが使用され、 さらに、 副生ガスとしてフッ素 (F2 ) 、 四フッ化硫黄 (S F4 ) 、 SOF2 、 四フッ化 珪素 (S i F4 ) 、 四塩化珪素 (S i C 14 ) 等が発生する。 それら原料ガスお よび副生ガスは有毒であることから、 その製造工程から排出される排ガスを燃焼 分解することで無害化する必要がある。 排ガスに S F6 のような硫黄化合物が含有されていると燃焼排ガスとして二酸化 硫黄 (S02 ) 等の硫黄酸化物が発生する。 S02 等は毒性ガスであって許容濃 度が 2 p pmと低く設定される。 硫黄酸化物は中性の水への溶解度が低いことか ら、 従来は水酸化ナトリウムのようなアルカリ性水溶液を用いて除去されている 。 しかし、 半導体製品を製造するクリーンルームにおいては、 ナトリウムイオン 等による半導体の汚染防止のために水酸化ナトリウムのようなアルカリ薬剤の使 用は規制されている。 そのため、 燃焼排ガスをクリーンルームの外部まで排出し た後にアルカリ薬剤を用いて処理する必要があり、 排ガス処理システムが大型化 するという問題があった。 上記塩素等の酸化性ガスや副生ガスは燃焼装置のパーナや炉体を腐食させるおそ れがある。 また、 S i F4 等を燃焼分解するとシリカ (S i 02 ) 等の固形物が 発生し、 パーナゃ炉体におけるガス流動路が閉塞するおそれがある。 本発明は、 上記課題を解決することのできる排ガスの処理方法および処理システ ムを提供することを目的とする。 発明の開示
本発明の排ガスの処理方法は、 硫黄化合物を含む排ガスを燃焼させることで硫黄 酸化物を含む燃焼排ガスを生成し、 その燃焼排ガスを、 水に難溶性の固形アル力 リ化合物を含む充填材を充填した湿式充填塔において、 その固形アルカリ化合物 の水溶液に接触させることを特徴とする。
本発明の方法によれば、 S F e 等の硫黄化合物を含む排ガスの燃焼により S 02 等の硫黄酸化物を含む燃焼排ガスが生成される。 湿式充填塔に充填された固形ァ ルカリ化合物が水に溶解することでアルカリ性水溶液が生成され、 そのアルカリ 性水溶液に燃焼排ガスが接触する。 これにより、 燃焼排ガスに含有される硫黄酸 化物はそのアルカリ性水溶液に吸収される。 硫黄酸化物は水への溶解度が小さい ことから、 ラシヒリング等の一般的な充填材のみが充填された湿式充填塔におけ るよりも効率良く硫黄酸化物を燃焼排ガスから除去できる。 しかも、 その固形ァ ルカリ化合物は水に難溶性であることから、 半導体を汚染する物質の実質的な発 生を阻止できる。 その固形アル力リ化合物を炭酸塩および金属水酸化物の中の少なくとも一方とす るのが好ましい。 その固形アルカリ化合物を炭酸塩または金属水酸化物とするこ とで硫黄酸化物を亜硫酸塩として固定でき、 燃焼排ガスに含有される硫黄酸化物 を一層効率良く除去できる。 その固形アルカリ化合物の水に対する溶解度は 2 5 °Cで 0 . 2重量%以下とする のが好ましく、 具体的な固形アルカリ化合物としては例えば炭酸カルシウム、 炭 酸マグネシウム、 水酸化力ルシゥムおよび水酸化マグネシウムの中の少なくとも 一つを用いることができる。 その溶解度は 2 5 °Cで 0 . 0 2重量%以下とするの がより好ましく、 この場合は炭酸カルシウム、 炭酸マグネシウムおよび水酸化マ グネシゥムの中の少なくとも一つを用いることができる。 これにより、 半導体を 汚染する物質の実質的な発生を確実に阻止できる。 本発明の排ガスの処理システムは、 排ガスの燃焼装置と、 その燃焼装置から排出 される燃焼排ガスの処理装置とを備え、 その処理装置は、 水に難溶性の固形アル カリ化合物を含む充填材を充填した湿式充填塔を有し、 その充填塔において、 そ の固形アルカリ化合物の水溶液に燃焼排ガスが接触させられる。 本発明の排ガス の処理システムによれば本発明の排ガス処理方法を実施することができる。 本発明の排ガス処理システムは前処理装置を備え、 その燃焼装置に送られる前の 排ガスを、 その前処理装置において吸収液に接触させるのが好ましい。
これにより、 燃焼前の排ガスを吸収液に接触させることで、 排ガスに含有される S F 4 、 S O F 2 、 S i F 4 、 S i C 1 4 等の腐食性ガスを吸収除去でき、 燃焼 装置におけるパーナゃ炉体、 その下流に設置する冷却部や湿式充填塔への腐食物 質の流入を大幅に削減でき、 これら部位の耐食性を大幅に向上できる。 また、 燃 焼分解時に固形物を発生する S i F 4 や S i C 1 4 等を燃焼前に除去することで 、 パーナ、 炉体、 冷却部、 湿式充填塔における固形物による閉塞を防止できる。 本発明の排ガス処理システムが上記前処理装置を備える場合、 その固形アルカリ 化合物の水溶液を前記前処理装置に吸収液として供給する手段を備えるのが好ま しい。 これにより、 その充填塔における燃焼排ガスと前記固形アルカリ化合物の 水溶液との接触により亜硫酸塩を生成し、 酸化性ガスを含む排ガスを、 その排ガ スの燃焼前に、 その亜硫酸塩を含む前記固形アルカリ化合物の水溶液に接触させ ることができる。
亜硫酸塩を含む固形アルカリ化合物の水溶液は還元性を示すことから、 排ガスに 含まれる C 1 2 や F 2 等の水に溶け難い酸化性ガスの格好の吸収液として活用で きる。 これにより、 排ガスの燃焼前に、 その排ガスに含まれる酸化性ガスを吸収 できるので、 排ガスの燃焼装置の腐食を防止できる。 本発明によれば、 燃焼排ガスに含まれる硫黄酸化物を簡単な構成で除去すること により排ガス処理システムの小型化を図ることができ、 また、 排ガスの燃焼装置 における腐食性ガスによる腐食や、 シリカ等の固形物による閉塞を効果的に防止 し、 その燃焼装置の運転操業性を向上させることができる。 図面の簡単な説明
図 1は本発明の実施形態の排ガスの処理システムの構成を示す図 発明を実施するための最良の形態
図 1に示す排ガス処理システム 1は、 S F 6 のような P F C、 C l 2 のようなハ ロゲン系ガス、 F 2、 S F 4、 S O F 2、 S i F 4、 S i C 1 4 等の半導体製造 工程における副生ガスを含む排ガスを処理するために用いられるもので、 排ガス の前処理装置 2と、 排ガスの燃焼装置 3と、 この燃焼装置 3から排出される燃焼 排ガスの処理装置 4を備えている。 その排ガスの前処理装置 2は、 吸収液 1 1を収容する前処理タンク 1 2と、 この 前処理タンク 1 2内の吸収液 1 1内に排ガス発生源から配管 1 0を介して送られ てくる排ガスを導入する導入管 1 3と、 その前処理タンク 1 2に設けられる微細 気泡発生装置であるロー夕リーアトマィザー 1 4とを有する。 その口一夕リーア トマィザー 1 4は、 モー夕 1 4 aにより回転駆動される回転子 1 4 bの回転によ り、 吸収液 1 1内に導入された排ガスを微細気泡化する。 ロー夕リーアトマイザ 一 1 4は市販のものを用いることができる。 これにより、 燃焼装置 3に送られる 前の排ガスは吸収液 1 1に効率良く接触させられる。 なお本実施形態では、 前処 理タンク 1 2内で水源 4 0から配管 6を介して供給される水がスプレーノズル 1 5により噴霧される。 その排ガスの燃焼装置 3は、 耐火物製の炉体 2 1と、 この炉体 2 1の上部に設け られる着火部 2 2とを有し、 その着火部 2 2にパイロットパーナ 2 2 aが設けら れている。 その炉体 2 1内へ、 前処理装置 2の吸収液 1 1に接触した排ガスが配 管 5を介して導入され、 また燃料ガスと支燃性ガスが図外配管を介して導入され る。 なお、 前処理タンク 1 2から炉体 2 1に導入される排ガスから水分を除去す るためにミストセパレー夕 1 6が設けられている。 その燃料ガスとしては、 例え ば液化石油ガス (L P G ) 、 液化天然ガス (L N G ) 、 水素ガス或いはこれらの 混合ガス等が用いられる。 その支燃性ガスとしては、 例えば空気や、 空気に必要 に応じて酸素を添加した酸素富化空気等が用いられる。 そのパイ口ットパーナ 2 2 aにより火炎が形成され、 炉体 2 1内で排ガスと燃料ガスが支燃性ガスの存在 下に燃焼される。 その排ガスの燃焼により生成される燃焼排ガスが炉体 2 1の下 部開口から排出される。 その燃焼排ガスの処理装置 4は冷却液タンク 3 2と湿式充填塔 3 3を有する。 そ の冷却液タンク 3 2の上部に設けられた燃焼排ガス導入口 3 2 aに、 炉体 2 1の 下部開口が案内筒 3 1を介して接続される。 その冷却液タンク 3 2の上部に設け られた燃焼排ガス排出口 3 2 bに湿式充填塔 3 3が接続される。 その案内筒 3 1 の内周はセラミック等の耐火材によりライニングされ、 外周は冷却液ジャケット 3 1 aにより覆われる。 その冷却液ジャケット 3 l aにポンプ 3 5により循環さ れる冷却液タンク 3 2内の冷却液 3 6が配管 3 7を介して供給される。 なお、 冷 却液ジャケット 3 1 a内の冷却液は、 オーバーフローすることで案内筒 3 1の内 周から冷却液タンク 3 2に還流する。 冷却液タンク 3 2内の冷却液 3 6の液面の上方に案内筒 3 1の下端開口が配置さ れる。 これにより、 炉体 2 1から冷却液タンク 3 2内に導入される燃焼排ガスは 、 冷却液タンク 3 2に貯留される冷却液 3 6に接触することで冷却され、 燃焼排 ガスの成分の一部が冷却液 3 6に吸収される。 その冷却液タンク 3 2内に、 ボン プ 3 5により配管 7を介して循環される冷却液タンク 3 2内の冷却液 3 6が、 ス プレーノズル 3 8により噴霧される。 その湿式充填塔 3 3は筒体 3 3 aと、 この筒体 3 3 aに充填される充填材 3 3 b を有する。 その筒体 3 3 aは、 冷却液タンク 3 2の燃焼排ガス排出口 3 2 から 上方に延びる。 その充填材 3 3 bは水に難溶性の固形アルカリ化合物とされ、 炭 酸塩および金属水酸化物の中の少なくとも一方とするのが好ましい。 その固形ァ ルカリ化合物の水に対する溶解度を 2 5 °Cで 0 . 2重量%以下にするのが好まし く、 この場合は炭酸カルシウム、 炭酸マグネシウム、 水酸化カルシウムおよび水 酸化マグネシウムの中の少なくとも一つを用いることができる。 その溶解度は 2 5 °Cで 0 . 0 2重量%以下とするのがより好ましく、 この場合は炭酸カルシウム 、 炭酸マグネシウムおよび水酸化マグネシウムの中の少なくとも一つを用いるこ とができる。 その充填材 3 3 bに充填塔 3 3の上方から吸収液として水源 4 0から配管 8を介 して供給される水がスプレーノズル 3 9により噴霧される。 これにより、 充填塔 3 3内で固形アルカリ化合物のアルカリ性水溶液が生成される。 燃焼装置 3から 排出された燃焼排ガスは、 冷却液タンク 3 2を介して充填塔 3 3に下方から導入 され、 充填塔 3 3において固形アルカリ化合物の水溶液に接触する。 その固形ァ ルカリ化合物の水溶液に接触した燃焼排ガスは充填塔 3 3の上方から充填材 3 3 を介して排出される。 その固形アルカリ化合物の水溶液は充填塔 3 3から冷却 液タンク 3 2に流れ落ちる。 これにより、 冷却液タンク 3 2の冷却液 3 6に固形 アルカリ化合物の水溶液が含まれる。 その冷却液タンク 3 2の冷却液 3 6に含ま れる固形アルカリ化合物の水溶液は、 ポンプ 3 5により配管 9を介して前処理装 置 2の前処理タンク 1 2に吸収液 1 1として供給される。 なお、 冷却液タンク 3 2と前処理タンク 1 2のオーバーフロー排水は、 配管 5 0によりまとめられて排 出される。 上記燃焼装置 3においては、 S F 6 のような硫黄化合物を含む排ガスの燃焼によ り S 0 2 等の硫黄酸化物を含む燃焼排ガスが生成される。 その燃焼排ガスに含ま れる硫黄酸化物は、 水に難溶性の固形アルカリ化合物を充填した湿式充填塔 3 3 において、 その固形アルカリ化合物のアルカリ性水溶液に接触する。 これにより 、 燃焼排ガスに含有される硫黄酸化物はそのアルカリ性水溶液に吸収される。 硫 黄酸化物は水への溶解度が小さいことから、 ラシヒリング等の一般的な充填材の みが充填された湿式充填塔におけるよりも効率良く S 0 2 等の硫黄酸化物を燃焼 排ガスから除去できる。 しかも、 その固形アルカリ化合物は水に難溶性であるこ とから、 半導体を汚染する物質の実質的な発生を阻止できる。 その固形アルカリ 化合物を炭酸塩または金属水酸化物とすることで、 S02 等の硫黄酸化物を亜硫 酸塩として固定でき、 燃焼排ガスに含有される硫黄酸化物を一層効率良く除去で きる。 固形アルカリ化合物として例えば炭酸カルシウム (C a C〇3 ) を用いる 場合、 S02 と反応することで亜硫酸カルシウム (C a S03 ) を生成すること で S02 を固定化できる。 その反応式は以下の通りである。
C a C03 + S 02 + 1 / 2 H2 0→C a S 03 · 1 / 2 H2 0 + C02 また、 燃焼前の排ガスを前処理装置 2の吸収液 1 1に接触させることで、 排ガス に含有される S F4 、 SOF2 、 S i F4 、 S i C 14 等を吸収でき、 炉体 2 1 、 パイロットパーナ 22 a、 充填塔 3 3等における腐食物質を大幅に削減でき、 これら部位の耐食性を大幅に向上できる。 また、 燃焼分解時に固形物を発生する 物質である S i F4 や S i C 14 等を燃焼前に除去することで、 炉体 2 1、 パイ ロットパーナ 2 2 a、 充填塔 33等における固形物による閉塞を防止できる。 さ らに、 充填塔 3 3において燃焼排ガスと固形アルカリ化合物の水溶液との接触に より亜硫酸塩を生成し、 その亜硫酸塩を含む固形アルカリ化合物の水溶液を前処 理装置 2の吸収液 1 1として供給できる。 これにより、 C l 2 や F2 等の酸化性 ガスを含む排ガスを、 その排ガスの燃焼前に亜硫酸塩を含む固形アルカリ化合物 の水溶液に接触させることができる。 亜硫酸塩を含む固形アルカリ化合物の水溶 液は還元性を示すことから、 排ガスに含まれる C 12 や F2 等の水に溶け難い酸 化性ガスの格好の吸収液として活用できる。 これにより、 排ガスの燃焼前に、 そ の排ガスに含まれる酸化性ガスを吸収できるので、 燃焼装置 3の腐食を防止でき る。 例えば亜硫酸塩として亜硫酸カルシウムを含む場合は C 12 と F2 を以下の 反応により吸収できる。
C 12 + C a S 03 +H2 0→C a S 04 + 2 HC 1
F2 + C a S 03 +H2 0→C a S 04 + 2HF 実施例 1 上記実施形態の排ガス処理システム 1により排ガスの処理を行った。
炉体 2 1は、 内径 200mmのステンレスの内側に厚さ 2 5mniのアルミナ系キ ヤス夕ブルを施工することで形成した。 冷却液タンク 3 2は内周にテトラフルォ 口エチレン (P TFE) 樹脂をコートしたステンレス製とした。 充填塔 3 3は内 径 30 Omm, 高さ 500 mmの内周に P T F E樹脂をコートしたステンレス製 とした。 充填材 3 3 bとして粒径 1 Omm〜 20 mmの炭酸カルシウム石を充填 した。 前処理タンク 12は内径 30 Omm、 高さ 500 mmの内周に P T F E樹 脂をコートしたステンレス製とした。 ロータリーアトマイザ一 14の回転子 14 bは直径 100 mm、 高さ 10 Ommとした。 充填塔 3 3に上方からスプレーノ ズル 39により水を 10 LZm i nで供給した。 ポンプ 3 5により冷却液タンク 3 2内の冷却液を前処理タンク 1 2に 7 LZm i nで供給した。 燃料ガスとして プロパンを導入して炉体 2 1内の温度を 1 100°Cに制御することで排ガス処理 システム 1を稼働させた後に、 排ガスとして 2%の S F6 と 1 %の C l 2 を含む 窒素ベースのガス 1 50 L/m i nを導入管 13から前処理タンク 1 2に導入し た。
充填塔 33の出口ガスに含まれる S F6、 S 02、 HFをフーリエ変換式赤外分 析法 (FT - I R) で測定した。 その結果、 S F6 は 5 p pm以下、 S 02 は 2 O p pm、 HFは 3 p pm以下であった。 また、 充填塔 3 3の出口ガスに含まれ る C 12 と HC 1を検知管で測定した結果、 C 12 が 0. 5 p pm以下、 HC 1 が l p pm以下であった。 さらに、 ミストセパレー夕 1 6の出口の排ガスを分析 した結果、 C l 2 は 1 10 p pm、 S02 は 75 p pmであった。 比較例 1
実施例 1と同一構成の排ガス処理システム 1において、 充填塔 33に充填材とし て固形アルカリ化合物でなく 1 2インチのラシヒリングのみを充填した。 他は 実嗨例 1と同一条件で 2 %の S F6 と 1 %の C 12 を含む窒素ベースのガス 1 5 O LZm i nを処理し、 実施例 1と同様の測定を行った。
充填塔 33の出口ガスに含まれる S F 6 は 5 p pm以下、 S 02 は 850 p pm 、 HFは 3 p p m以下、 C 12 は 1. 5 p pm、 HC 1は 1 p pm以下であった 。 ミストセパレー夕 1 6の出口の排ガスを分析した結果、 C l 2 は 440 p pm 、 S 02 は 78 0 p p mであった。 実施例 2
実施例 1の排ガス処理システム 1において、 冷却液タンク 3 2から前処理タンク 1 2へのポンプ 3 5による冷却液の供給をパルプ (図示省略) により遮断し、 前 処理タンク 1 2に水源 40から水を新たな配管 (図示省略) により直接 5 L/m i n供給した。 他は実施例 1と同一条件で 2 %の S F6 と 1 %の C 12 を含む窒 素ベースのガス 1 50 L/m i nを処理し、 実施例 1と同様の測定を行った。 充填塔 33の出口ガスに含まれる S F6 は 5 p pm以下、 S 02 は 28 p pm、 HFは 3 p pm以下、 C l 2 は 0. 9 p pm、 HC 1は l p pm以下であった。 ミストセパレー夕 1 6の出口の排ガスを分析した結果、 C l 2 は 1 500 p pm であった。 上記実施例および比較例から、 水に難溶性の固形アルカリ化合物を充填塔 3 3に 充填することで、 S02 、 C 12 を効率良く除去できることを確認できる。 さら に、 充填塔 3 3で生成される亜硫酸塩を含む水溶液に燃焼前の排ガスを接触させ ることで、 C 12 をさらに効率良く除去できることを確認できる。 本発明は上記実施形態や実施例に限定されない。 例えば、 充填材 33 bの全てを 水に難溶性の固形アルカリ化合物にする必要はなく、 一部を水に難溶性の固形ァ ルカリ化合物にして残部をラシヒリング等の一般的な充填材としてもよい。 また 、 排ガスに含有される硫黄化合物は S Fe に限定されず、 排ガスを燃焼させるこ とで硫黄酸化物を含む燃焼排ガスを生成するものであれば本発明を適用できる。 充填塔で生成される亜硫酸塩を含む水溶液を、 前処理装置に冷却液タンク 3 2を 介することなく直接に還流させるようにしてもよい。 前処理装置における微細気 泡発生装置は必須ではなく、 燃焼前の排ガスを吸収液に接触させることができれ ばよい。 さらに、 充填塔で生成される亜硫酸塩を含む水溶液を前処理装置に還流 させない場合、 前処理装置を乾式の充填塔や他の吸収装置により構成してもよい
- 0 I - .9S600/C00Zdf/X3d SZS O請 OAV

Claims

請求の範囲
1 . 硫黄化合物を含む排ガスを燃焼させることで硫黄酸化物を含む燃焼排ガスを 生成し、
その燃焼排ガスを、 水に難溶性の固形アルカリ化合物を含む充填材を充填した湿 式充填塔において、 その固形アルカリ化合物の水溶液に接触させる排ガスの処理 方法。
2 . その固形アルカリ化合物を炭酸塩および金属水酸化物の中の少なくとも一方 とする請求項 1に記載の排ガスの処理方法。
3 . その充填塔における燃焼排ガスと前記固形アル力リ化合物の水溶液との接触 により亜硫酸塩を生成し、
酸化性ガスを含む排ガスを、 その排ガスの燃焼前に、 その亜硫酸塩を含む前記固 形アル力リ化合物の水溶液に接触させる請求項 2に記載の排ガスの処理方法。
4 . その固形アルカリ化合物の水に対する溶解度を 2 5 °Cで 0 . 2重量%以下と する請求項 1〜 3の中の何れかに記載の排ガスの処理方法。
5 . 排ガスの燃焼装置と、
その燃焼装置から排出される燃焼排ガスの処理装置とを備え、
その処理装置は、 水に難溶性の固形アルカリ化合物を含む充填材を充填した湿式 充填塔を有し、
その充填塔において、 その固形アル力リ化合物の水溶液に燃焼排ガスが接触させ られることを特徴とする排ガスの処理システム。
6 . 排ガスの前処理装置を備え、
その燃焼装置に送られる前の排ガスを、 その前処理装置において吸収液に接触さ せる請求項 5に記載の排ガスの処理システム。
7 . その固形アル力リ化合物の水溶液を前記前処理装置に吸収液として供給する 手段を備える請求項 6に記載の排ガスの処理システム。
PCT/JP2003/009567 2002-08-09 2003-07-29 排ガスの処理方法および処理システム WO2004014525A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-233122 2002-08-09
JP2002233122A JP2004066199A (ja) 2002-08-09 2002-08-09 排ガスの処理方法および処理システム

Publications (1)

Publication Number Publication Date
WO2004014525A1 true WO2004014525A1 (ja) 2004-02-19

Family

ID=31711854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009567 WO2004014525A1 (ja) 2002-08-09 2003-07-29 排ガスの処理方法および処理システム

Country Status (5)

Country Link
JP (1) JP2004066199A (ja)
KR (1) KR20050035246A (ja)
CN (1) CN1668365A (ja)
TW (1) TW200415331A (ja)
WO (1) WO2004014525A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5991677B2 (ja) * 2012-09-24 2016-09-14 三菱重工環境・化学エンジニアリング株式会社 排ガス処理装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03278814A (ja) * 1990-03-28 1991-12-10 F K K Giken Kk 酸性ガス処理装置
JP2000176243A (ja) * 1998-12-14 2000-06-27 Sumitomo Seika Chem Co Ltd 酸化性ガス含有排ガスの処理方法
WO2000067879A1 (en) * 1999-05-07 2000-11-16 Advanced Technology Materials, Inc. Effluent gas stream treatment system having utility for oxidation treatment of semiconductor manufacturing effluent gases

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03278814A (ja) * 1990-03-28 1991-12-10 F K K Giken Kk 酸性ガス処理装置
JP2000176243A (ja) * 1998-12-14 2000-06-27 Sumitomo Seika Chem Co Ltd 酸化性ガス含有排ガスの処理方法
WO2000067879A1 (en) * 1999-05-07 2000-11-16 Advanced Technology Materials, Inc. Effluent gas stream treatment system having utility for oxidation treatment of semiconductor manufacturing effluent gases

Also Published As

Publication number Publication date
TW200415331A (en) 2004-08-16
JP2004066199A (ja) 2004-03-04
CN1668365A (zh) 2005-09-14
KR20050035246A (ko) 2005-04-15

Similar Documents

Publication Publication Date Title
JP5307556B2 (ja) ガス処理装置
KR100962695B1 (ko) 배기 가스 처리 방법 및 장치
JP4350081B2 (ja) 排ガスの処理方法および装置
KR102089599B1 (ko) 반도체 폐가스 처리장치
WO2015005066A1 (ja) 排ガス処理方法および排ガス処理装置
CN111578295A (zh) 一种燃烧水洗式半导体废气处理装置
KR101097240B1 (ko) 배기 가스 처리 방법 및 장치
JP5165861B2 (ja) 過弗化物の処理方法及び処理装置
JP6178141B2 (ja) 排ガス処理方法および排ガス処理装置
JPH11319485A (ja) 過弗化物の処理方法及びその処理装置
JP4793407B2 (ja) クロロポリシランを含む廃ガスの処理方法及びその処理装置
JP2007021290A (ja) 排ガスの処理方法および処理装置
WO2004014525A1 (ja) 排ガスの処理方法および処理システム
KR100808618B1 (ko) 플루오르-함유 화합물 및 co를 함유하는 가스의처리방법 및 처리장치
KR101617691B1 (ko) 화학기상증착공정(cvd)으로부터 발생되는 폐가스 정화장치
JP2005125285A (ja) N2o含有排ガスの処理方法およびその装置
JP2003329233A (ja) 排ガス処理装置
JP3109480U (ja) 高効率パーフルオロ化合物廃ガスプラズマ処理装置
JPH0356123A (ja) ガス中の水銀及びNOxの除去方法
JP2006231105A (ja) 酸化性ガスの除去方法
KR102621792B1 (ko) 배가스 처리장치
JP4459648B2 (ja) フッ素含有化合物を含むガスの処理方法及び装置
JP2009028647A (ja) 排ガス処理方法及び装置
JP2001224924A (ja) 過弗化物の分解処理装置
JP2004209442A (ja) 排ガス処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

WWE Wipo information: entry into national phase

Ref document number: 20038163446

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057001084

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057001084

Country of ref document: KR