WO2004012489A1 - 回路基板、多層配線板、回路基板の製造方法および多層配線板の製造方法 - Google Patents

回路基板、多層配線板、回路基板の製造方法および多層配線板の製造方法 Download PDF

Info

Publication number
WO2004012489A1
WO2004012489A1 PCT/JP2003/009611 JP0309611W WO2004012489A1 WO 2004012489 A1 WO2004012489 A1 WO 2004012489A1 JP 0309611 W JP0309611 W JP 0309611W WO 2004012489 A1 WO2004012489 A1 WO 2004012489A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
circuit
layer
conductor
insulating base
Prior art date
Application number
PCT/JP2003/009611
Other languages
English (en)
French (fr)
Inventor
Toshiaki Chuma
Masaaki Kato
Masayoshi Kondo
Satoru Nakao
Kentaro Fujiura
Original Assignee
Sumitomo Bakelite Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Company Limited filed Critical Sumitomo Bakelite Company Limited
Priority to AU2003252302A priority Critical patent/AU2003252302A1/en
Publication of WO2004012489A1 publication Critical patent/WO2004012489A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4635Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating flexible circuit boards using additional insulating adhesive materials between the boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • H05K3/4617Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination characterized by laminating only or mainly similar single-sided circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/0367Metallic bump or raised conductor not used as solder bump
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09536Buried plated through-holes, i.e. plated through-holes formed in a core before lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4688Composite multilayer circuits, i.e. comprising insulating layers having different properties
    • H05K3/4691Rigid-flexible multilayer circuits comprising rigid and flexible layers, e.g. having in the bending regions only flexible layers

Definitions

  • the present invention relates to a circuit board, a multilayer wiring board, a method of manufacturing a circuit board, and a method of manufacturing a multilayer wiring board.
  • the present invention relates to a multilayer flexible printed wiring board used as a component, a circuit board constituting the same, and a method of manufacturing the same.
  • This printed wiring board is a rigid-flex wiring board that is a composite board of a flexible wiring board and a rigid wiring board, and its use is expanding.
  • the conventional method of manufacturing a multilayer flexible wiring board or rigid-flex wiring board is similar to the method of manufacturing a multilayer rigid wiring board. That is, a laminated plate in which a plurality of patterned copper foils and insulating layers are alternately stacked is formed, a through-hole for interlayer connection is formed in the laminated plate, and a plating for interlayer connection is formed in the through-hole.
  • the mainstream method was to process the outer layer circuits.
  • the conventional technology of forming through holes through the connection lands of each layer in the same place throughout all layers has a problem in that the wiring density is insufficient due to design. Problems have arisen in mounting components.
  • the build-up method has recently been adopted for multilayer rigid wiring boards as a new lamination technology.
  • the build-up method is a method in which an insulating layer made of only a resin and a conductor are stacked and an interlayer connection is made between single layers.
  • As a layer connection method instead of conventional drilling, a laser method, a plasma method, a photo method, and other various methods are used to achieve high density by freely arranging small via holes.
  • the build-up method is roughly classified into a method of forming a via in an insulating layer and then connecting layers, and a method of forming a layer connecting portion and then stacking an insulating layer.
  • the interlayer connection is
  • the via hole is formed by plating and is formed by a conductive paste or the like, and is further subdivided depending on an insulating material used and a via forming method.
  • thermosetting adhesive for interlayer bonding.
  • the post part physically removes the adhesive and reaches the connection pad and connects.However, it is still difficult to completely remove the adhesive between the connection post and the pad. It is considered that reliability is low.
  • this boss is added to the thickness of the surface covering material of the flexible wiring board having the pads to be connected to the base material thickness of the single-sided circuit board, and further to the thickness of the adhesive between the layers. The thickness of the post must be increased, and this post forming process is an inefficient process for a long time.
  • interlayer connection when forming the above-described interlayer connection, usually, a through hole or a via hole is plated.
  • the material of the insulating layer, in which the interlayer connection is formed of only resin changes in thickness due to heat and cannot be endured by copper plating, so that the connection may be broken and reliability may be reduced.
  • smear caused by resin exudation generated when forming through holes or via holes becomes an obstacle, resulting in insufficient inter-layer connection and reduced reliability.
  • the biggest difference between a multilayer flexible wiring board or V-rigid wiring board and a multilayer rigid wiring board is the presence or absence of a flexible portion. It is necessary to reduce the number of layers of this flexible part so that it can be freely flexible. In the production of this flexible part, the force to remove the outer layer so that the flexible part is not laminated ⁇ Alternatively, the outer layer must be removed after lamination. In any case, the outer layer of the flexible portion is not required, and the area of the multilayer portion to be removed increases as the ratio of the flexible portion in the multilayer flexible wiring board increases, which leads to an increase in cost, which is uneconomical. Become.
  • the multilayer flexible wiring board can be manufactured at low cost through the same manufacturing method.
  • a method of connecting the respective layers in a form in which a through hole penetrates all the layers is particularly used as a method of connecting the layers generally used.
  • the processing method is simple, but there are many restrictions in circuit design. The worst is that all layers are connected by through-holes, so the outermost layer has many through-holes, and the area occupied by through-hole lands increases. Can not be raised.
  • the present invention has been made to solve the above-described problems, and has as its object the purpose of being simple to manufacture, reliably achieving interlayer connection, high reliability, and laminating an outer circuit board.
  • a circuit board, a multilayer wiring board, a method for manufacturing a circuit board, and a method for manufacturing a multilayer wiring board are provided.
  • At least one conductor post electrically connected to the conductor circuit wherein the conductor post is formed in a hole penetrating the insulating base material, one end is connected to the conductor circuit, and the other end is
  • a circuit board comprising: a protruding terminal protruding from the other surface of the insulating base; and a metal coating layer covering a portion of the protruding terminal protruding from the other surface of the insulating base.
  • the metal coating layer contains at least one metal selected from the group consisting of gold, silver, nickel, tin, lead, zinc, bismuth, vane, and copper, or contains the metal.
  • the circuit board according to the above (1) which is made of an alloy.
  • a circuit comprising: at least one conductor post electrically connected to the conductor circuit; and an adhesive layer having a flux function provided on one or both surfaces of the insulating base material.
  • the conductor post is formed in a hole penetrating the insulating base material, one end is connected to the conductor circuit, and the other end protrudes from the other surface of the insulating base material,
  • the metal coating layer is composed of at least one metal selected from the group consisting of gold, silver, nickel, tin, lead, zinc, bismuth, antimony, and copper, or an alloy containing the metal.
  • a circuit board having a surface coating covering a portion other than the metal layer of the conductor circuit.
  • the circuit board according to any one of (1) to (6) is joined to both sides of the circuit board according to (7) or (8), respectively, via the conductor post.
  • the circuit board according to any one of (3) to (6) is joined to both sides of the circuit board according to (7) or (8), respectively.
  • the circuit board according to (1) or (2) is joined, and a predetermined portion of a conductor circuit of each circuit board is electrically connected through the conductor bost.
  • the multilayer wiring board according to any one of (15).
  • (21) a step of forming a through-hole in the insulating base material in which a metal layer serving as a conductor circuit is formed on one surface side of the insulating base material;
  • At least one circuit board according to any of the above (1) to (6) and at least one circuit board according to the above (7) or (8) are stacked in a predetermined order, and A method for manufacturing multilayer wiring boards that are laminated and integrated by thermocompression bonding.
  • the circuit board according to any one of (1) to (6) is disposed on both sides of the circuit board according to (7) or (8), respectively, and these are laminated by thermocompression bonding.
  • the circuit board according to any one of (3) to (6) is arranged on both sides of the circuit board according to (7) or (8), respectively, and
  • the circuit boards described in (1) or (2) above are arranged, and they are laminated by thermocompression bonding and integrated, and a predetermined portion of the conductor circuit of each circuit board is electrically connected via the conductor posts.
  • At least one circuit board manufactured by the method described in any of (18) to (22) above and at least one circuit board manufactured by the method described in (23) above A method of manufacturing a multilayer wiring board in which the layers are stacked in a predetermined order, and these are laminated by thermocompression bonding.
  • a method for manufacturing a multilayer wiring board comprising: stacking one circuit board and at least one circuit board manufactured by the method according to the above (23) in a predetermined order, and laminating and integrating them by thermocompression bonding.
  • circuit boards manufactured by the method described in any of (18) to (22) are arranged on both sides of the circuit board manufactured by the method described in (23) above. These are laminated by thermocompression bonding and integrated, and the conductor circuit of each circuit board is One
  • a method for manufacturing a multilayer wiring board wherein a predetermined portion is electrically connected to the protruding terminal or the protruding terminal via a metal coating layer.
  • thermocompression bonding is performed at a first temperature at which the brazing material melts, and then performed at a second temperature lower than the first temperature.
  • FIGS. 1a, 1b, 1c, 1d, 1e, 1f, 1g and 1h are cross-sectional views for explaining a circuit board (single-sided circuit board) of the present invention and a method of manufacturing the same.
  • FIGS. 2a, 2b, 2c, 2d and 2e are cross-sectional views for explaining the circuit board (flexible wiring, wire board) of the present invention and a method for manufacturing the same.
  • FIGS. 3a and 3b are cross-sectional views illustrating a multilayer wiring board (multilayer flexible printed wiring board having a four-layer configuration) of the present invention and a method for manufacturing the multilayer wiring board.
  • 4a, 4b, 4c, 4d, 4e, 4f and 4g are cross-sectional views for explaining a circuit board (single-sided circuit board for an inner layer) of the present invention and a method of manufacturing the same. .
  • 5A and 5B are cross-sectional views illustrating a multilayer wiring board (a multilayer flexible printed wiring board having a six-layer structure) of the present invention and a method for manufacturing the multilayer wiring board.
  • 6a, 6b, 6c, 6d, 6e, 6f and 6g are cross-sectional views for explaining a circuit board (single-sided circuit board for the outermost layer) of the present invention and a method of manufacturing the same. It is. 7a, 7b, 7c, 7d, 7e, 7f and 7g are cross-sectional views for explaining a circuit board (single-sided circuit board for an inner layer) of the present invention and a method of manufacturing the same.
  • FIGS. 8A and 8B are cross-sectional views illustrating a multilayer wiring board (multilayer flexible printed wiring board having a six-layer structure) of the present invention and a method for manufacturing the multilayer wiring board.
  • Opening Surface coating opening
  • Double-sided board double-sided copper-clad laminate
  • Multilayer flexible wiring board (6 layers) 4 0 5 1: Insulating resin material ''
  • FIG. 1 to 5 are sectional views showing an embodiment in which the present invention is applied to a multilayer flexible wiring, a wire plate, and a method of manufacturing the same.
  • Figure 3b shows a multi-layer flexible wiring board with four layers (a total of four circuit layers consisting of a double-sided board and two single-sided boards; a total of four layers; the same applies hereinafter) having both a multilayer part 320 and a flexible part 330.
  • Fig. 5b shows a six-layer structure with both a multilayer part 5200 and a flexible part 530 (a total of six circuit layers consisting of a double-sided board and four single-sided boards; the same applies hereinafter).
  • a cross-sectional view showing the multilayer flexible wiring board 510 is shown.
  • step A a single-sided circuit board 120 for an outer layer, which is a circuit board of the present invention, is manufactured.
  • a flexible circuit board 220 for an inner layer which is a circuit board of the present invention, is manufactured.
  • step C the outer single-sided circuit board 120 is laminated on the inner-layer flexible circuit board 220 to produce a multilayer flexible wiring board 310.
  • the order of steps A and B is not particularly limited. For example, steps A and B can be performed in order, and then step C can be performed.
  • the single-sided circuit board 120 produced in Step A is used as the outermost wiring board.
  • the inner layer flexible circuit board 2 prepared in Step B is used. 20 is used as the wiring board of the central layer.
  • step E the inner-layer flexible circuit board 220 is used as the center layer, the inner-layer circuit boards 420 are stacked on both sides thereof, and the outermost single-sided circuit board 120 is further stacked thereon, thereby forming a multilayer flexible wiring board.
  • a board 5110 is manufactured.
  • step A the outer single-sided circuit board 120 is manufactured (see FIG. 1).
  • a single-layer board 110 having a copper foil 101 attached to one side of an insulating base 102 on which a resin such as polyimide or epoxy resin is hardened is prepared (FIG. 1a).
  • the copper foil 101 and the insulating substrate 102 are bonded between the insulating substrate 102 and the copper foil 101 in order to prevent the occurrence of smear that hinders the conductor connection.
  • the adhesive layer does not exist, but the adhesive layer may be used by using an adhesive.
  • a desired conductive circuit 103 is formed by, for example, etching the copper foil 101 bonded to one surface of the insulating base material 102 (FIG. Lb). Further, a surface coating 104 is applied to the conductor circuit 103 (FIG. 1c).
  • the surface coating 104 can be formed by, for example, a method of applying an overlay film in which an adhesive is applied to an insulating resin material, or a method of printing ink directly on the insulating base material 102. In the configuration shown in FIG. 7, the surface coating 104 shows the ink directly printed. It is preferable that the surface coating 104 be covered except for a part of the conductor circuit 103. That is, an opening 105 may be formed on the surface coating 104 for mounting a component or the like.
  • the insulating substrate is placed in a desired place of the insulating base 102 from the lower surface of the insulating base 102 until the conductive circuit 103 is exposed (until the conductive circuit 103 is reached).
  • a material opening (through hole) 106 is formed (FIG. 1D).
  • the opening 106 can be easily formed, and even a small diameter opening can be formed with high accuracy. Furthermore, it is preferable to remove the resin remaining in the insulating substrate opening 106 by a method such as wet desmear using an aqueous solution of permanganate or dry desmear using plasma, thereby improving the reliability of interlayer connection. .
  • the diameter of the opening 106 of the insulating base material is not particularly limited, but since this diameter defines the thickness of the copper bost 108, taking this into account, the diameter is about 20 to 200 / m. It is more preferably about 30 to 100 ⁇ . According to the above method, the insulating substrate opening 106 of such a size can be formed easily and with high dimensional accuracy. 2003/009611
  • a copper post 108 is formed as a protruding terminal in the opening 106 of the insulating base material (FIG. 1e).
  • One end of the copper post 108 is electrically connected (conductive) to the conductor circuit 103, and the other end is formed so as to protrude from the lower surface of the insulating base material 102 by a predetermined length.
  • a metal coating layer 1081 covering the protruding portion is formed on the protruding portion of the copper post 108 (FIG. 1f).
  • the copper boss 108 and the metal coating layer 1081 constitute a conductor boss (two-layer conductor boss) 107.
  • the method for forming the conductor bos 107 is not particularly limited.
  • a metal including an alloy
  • the metal constituting the metal coating layer 1081 include, for example, at least one of gold, silver, nickel, tin, lead, zinc, bismuth, antimony, and copper, or one or more of these. Alloys.
  • the alloy is preferably a brazing material (solder) mainly composed of two or more of the above-mentioned metals, for example, tin-lead, tin-silver, tin-zinc, tin-bismuth.
  • the thickness of the metal coating layer 1081 is not particularly limited, but is preferably at least 0.05 ⁇ , more preferably at least 0.
  • the surface treatment (metal layer) 109 with the same material as the metal coating layer 1081 may be applied inside the surface coating opening 105. This surface treatment (metal layer) 109 can be performed before, after, or simultaneously with the formation of the metal coating layer 1081.
  • an adhesive layer with a flux function having a flux function (hereinafter, also simply referred to as an “adhesive layer”) 1 1 1 1 is formed on the surface of the insulating base material 102 from which the conductor boss 107 protrudes (hereinafter referred to simply as “adhesive layer”).
  • the flux function refers to a metal surface cleaning function represented by an oxide film removing function, a reducing function, and the like.
  • the adhesive layer 111 may be formed on the inner flexible circuit board 220 (FIG. 2e) having pads for connecting to the conductor posts 107. 3 009611
  • the method of forming the adhesive layer 111 is not particularly limited. Examples thereof include a method of applying an adhesive having a flux function to the insulating base material 102 by a printing method, and a transfer method. The method of laminating the above adhesive (adhesive sheet) on the insulating substrate 102 is simple and preferable.
  • FIG. 1g is cut in accordance with the size of the multilayer part 320 to obtain an outer-layer single-sided circuit board 120 (FIG. 1h).
  • an insulating base material opening 106 is first formed in the single-area layer board 110, and then a conductor post 107 is formed.
  • the conductor circuit 103 may be formed by etching or the like, and then the surface coating 104 may be applied to the conductor circuit 103.
  • the adhesive with a flux function used for the adhesive layer (adhesive layer) 111 and the like has a function of cleaning a metal surface, for example, a function of removing an oxide film present on a metal surface, and a function of reducing an oxide film.
  • the first preferred examples of such an adhesive include resins (A) such as a phenol novolak resin having a phenolic hydroxyl group, a cresol nopolak resin, an alkylphenol novolak resin, a resole resin, and a polybutylphenol resin. And a resin curing agent (B).
  • Examples of the curing agent (B) include phenol bases such as bisphenol type, phenol novolak type, alkyl phenol novolak type, biphenol type, naphthol type, resorcinol type, aliphatic, cycloaliphatic and unsaturated
  • phenol bases such as bisphenol type, phenol novolak type, alkyl phenol novolak type, biphenol type, naphthol type, resorcinol type, aliphatic, cycloaliphatic and unsaturated
  • An epoxy resin disocyanate compound that is epoxidized based on a skeleton of an aliphatic or the like can be given.
  • the amount of the phenolic hydroxyl group-containing resin is 20% of the total adhesive. /. To 80% by weight, preferably 35% to 65% by weight. If it is less than 20% by weight, the effect of cleaning the metal surface is reduced, and if it exceeds 80% by weight, a sufficiently cured product cannot be obtained, and as a result, the bonding strength and reliability may be reduced.
  • the amount of the resin or compound acting as a curing agent is preferably from 20% by weight to 80% by weight, more preferably from 35% by weight to 65% by weight in the total adhesive. If necessary, additives such as coloring agents, inorganic fillers, various coupling agents, and solvents may be added to the adhesive.
  • Examples of the second preferred adhesive of the flux-functional adhesive include bispheno. Phenolic phenolic novolaks, alkylphenolic novolaks, biphenols, naphthols, resorcinols, and other phenolic bases, and epoxidized based on aliphatic, cycloaliphatic, and unsaturated aliphatic skeletons.
  • the epoxy resin has an epoxy effect (C), an imidazole ring, and a curing agent (D) for the epoxy resin.
  • Examples of the curing agent (D) having an imidazole ring include, for example, imidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-benzyl-2-methylimidazole, and 2-phenylimidazole Nole, 2-phenyl-2-methinoreimidazonole, bis (2-ethinole-14-methyl-imidazole) and the like.
  • the compounding amount of the epoxy resin is preferably 30% by weight to 99% by weight of the total adhesive. If the content is less than 30% by weight, a sufficient cured product may not be obtained, or there is a possibility that the cured product may not be obtained.
  • thermosetting resin or a thermoplastic resin such as a cyanate resin, an acrylic resin, a methacrylic resin, or a maleimide resin may be blended.
  • a coloring agent, an inorganic filler, various coupling agents, a solvent, and the like may be added as necessary.
  • the amount of the imidazole ring and the curing agent for the epoxy resin is preferably from 0.05% to 10% by weight of the total adhesive. If the content is less than 0.05% by weight, the effect of cleaning the metal surface is reduced, and the epoxy resin may not be sufficiently cured. If the content is more than 10% by weight, the curing reaction proceeds rapidly, and the adhesive layer May have poor fluidity.
  • the method of adjusting the adhesive is, for example, a method of dissolving a resin (A) having a solid phenolic hydroxyl group and a resin (B) acting as a solid curing agent in a solvent, and adjusting the adhesive by a method having a solid phenolic hydroxyl group.
  • the solvent has a boiling point of 200 ° C. or lower.
  • step B the inner-layer flexible circuit board 220 is manufactured (see FIG. 2).
  • the double-sided board 210 serves as a material for the flexible portion, and it is preferable that no adhesive layer be present between the copper foil 201 and the insulating base material 202 in order to enhance the flexibility and bendability. However, it may be present.
  • a through-hole (through-hole) 203 is formed on the double-sided board 210, and a metal layer is formed on the inner surface of the through-hole 203 by plating to obtain front-to-back electrical continuity (see FIG. 2b).
  • a through hole (through hole) 203 penetrating the entire double-sided board 210 is formed.
  • the copper foil 201 on one side is left, a through-hole is formed through the insulating base material 202 and the copper foil 201 on the other side, and metal plating is performed in the through-hole. Electrical conduction between the copper foils on the front and back may be obtained.
  • a pad (land) 205 that can receive the conductor circuit 204 and the conductor post 107 is formed by etching (FIG. 2C).
  • a surface covering 206 (FIG. 2d) is applied to the conductor circuit in the portion corresponding to the flexible portion 330 and other desired portions to form an inner-layer flexible wiring board.
  • the surface coating 206 is composed of, for example, a resin such as polyimide, particularly a resin film, or is composed of such a resin film and an adhesive layer located on the inner side (double-sided board 210). Are performed.
  • a surface coating opening 207 is formed on the pad 205 to expose the pad 205.
  • the surface of the pad 205 in the surface covering opening 207 is subjected to a surface treatment using, for example, a solder plating, a solder paste, or a solder ball to form a metal layer 208 (FIG. 2E).
  • the thickness of the metal layer 208 is set to 5 ⁇ or more.
  • the thickness of the surface coating 206 is equal to or less than the thickness (for example, as thin as 2).
  • the thickness of the metal layer 208 is less than 5 ⁇ m, it is not preferable because sufficient soldering cannot be obtained when joining with the conductor boss 107, resulting in insufficient connection. .
  • the metal material constituting the metal layer 208 is not particularly limited, but may be at least one of tin, lead, silver, zinc, bismuth, antimony, and copper, or an alloy containing at least one of these.
  • the alloy is preferably a brazing material (solder) mainly containing two or more of the above metals, for example, tin-lead, tin-silver, tin-zinc, and tin-bismuth. , Tin-antimony-based, tin-silver-bismuth-based, tin-based, and the like.
  • the combination or composition of the metals constituting the solder there is no particular limitation on the combination or composition of the metals constituting the solder, and an optimum one may be selected in consideration of its characteristics and the like.
  • tin or an alloy containing tin as a main component has a low melting point, and thus is preferable for joining at a low temperature.
  • the metal layer 208 By making the metal layer 208 relatively thick, the height of the conductor post 107 to be joined to the metal layer 208 can be reduced, and at the time of connection, the conductor Since 107 can enter sufficiently and be immersed and connected, the process of manufacturing the conductor post 107 can be shortened, and the height of the conductor post 107 varies. Also, the thickness of the metal layer 208 absorbs them (can be buffered), thereby improving the connection part reliability.
  • the inner-layer flexible circuit board 220 is cut into pieces before lamination.
  • the yield of the final product can be improved because only good products can be laminated without using defective products.
  • Step C the multilayer flexible wiring board 310 is manufactured (see FIG. 3).
  • the individual outer-layer single-sided circuit board 120 is laid up on the inner-layer flexible circuit board 220 (FIG. 3A).
  • a positioning mark (not shown) formed in advance on the conductor circuit of each layer is read by an image recognition device, and a method of positioning, and a method of positioning with a positioning pin are used. Can be used.
  • thermocompression bonding that is, crimping under heating.
  • the specific method is as follows.
  • the inner layer flexible circuit board 2 is formed by heating again to harden the adhesive layer 1 1 with a flux function and bond the layers.
  • the outer-layer single-sided circuit boards 120 are respectively laminated and integrated on both sides of the substrate 20 (FIG. 3B).
  • thermocompression bonding step by performing the process by setting a temperature difference (the first half is heated at a high temperature and the second half is heated at a low temperature), the solder (brazing material) is sufficiently melted to prevent the bonding failure and to prevent the bonding.
  • the adhesive layer with the flux function is cured and the joints of each layer, especially the fusion joints, are fixed. It has an excellent effect that a wiring board can be obtained.
  • a method of laminating each layer for example, a method of using vacuum press or a combination of heat lamination and baking can be used.
  • the first temperature is preferably 170 to 270 ° C, more preferably 185 to 260 ° C, and the second temperature is preferably 120 to 2 ° C.
  • the temperature can be set to 0 ° C, more preferably 150 to 190 ° C.
  • the multilayer portion 320 having the outer layer single-sided circuit board 120 laminated on both sides of the inner layer flexible circuit board 220 serving as the center layer (the layer located substantially at the center in the thickness direction), Multilayer flexible having a flexible (flexible) flexible portion (single-layer portion) 330 formed by extending the inner layer flexible circuit board 220 in the portion 320 from the multilayer portion 320
  • the wiring board 310 is obtained.
  • the present invention provides pads on only one side of the inner-layer flexible wiring board, and forms an outer-layer single-sided circuit board on the pads.
  • the single-sided circuit board 120 serving as the outermost layer and the inner-layer flexible circuit board 220 serving as the center layer are used in the above-described embodiment (FIGS. 1 to 3). The same ones can be used. Further, as a layer inserted between the outermost layer and the center layer, an inner circuit board 420 manufactured in Step D (FIG. 4) can be used.
  • Step D the inner circuit board 420 is manufactured (see FIG. 4).
  • a single-layer board 4100 having a copper foil 401 attached to one side of an insulating base 402 made of an insulating material obtained by curing a resin such as polyimide or epoxy resin is prepared (FIG. 4a).
  • the copper foil 401 and the insulating substrate 402 are bonded between the insulating substrate 402 and the copper foil 401 in order to prevent the occurrence of smear that hinders the conductor connection.
  • the adhesive layer does not exist, but the adhesive layer may be used by using an adhesive.
  • a desired conductive circuit 403 is formed by, for example, etching the copper foil 401 bonded to one surface of the insulating base 402 (FIG. 4B).
  • the conductor circuit 403 has a pad 404 that can receive the conductor post 107.
  • a surface coating 405 is applied to the conductor circuit 403 (FIG. 4C).
  • the surface coating 405 can be formed by, for example, a method in which a film-like material (overlay film) obtained by applying an adhesive 452 to an insulating resin material 405 is attached.
  • This surface coating 405 is not limited to the case where the entirety of the conductor circuit 403 is coated, but it is preferable that the surface coating 405 be coated while leaving a part thereof. That is, in such a surface coating 405, a surface coating opening 406 is formed on the pad 404 by, for example, a laser method (FIG. 4C).
  • the insulating substrate is placed in a desired place of the insulating base material 402 from the lower surface of the insulating base material 402 in the drawing until the conductive circuit 403 is exposed (until the conductive circuit 403 is reached).
  • a material opening (through hole) 407 is formed (FIG. 4D).
  • the opening 407 can be easily formed, and even a small diameter opening can be formed with high accuracy.
  • the diameter of the insulating base material opening 407 is not particularly limited, and the preferable diameter and the effect of the diameter are the same as those described in the insulating base material opening 106 of Step A.
  • copper bumps 409 are formed as projecting terminals in the opening 407 of the insulating base material (FIG. 4E).
  • One end of the copper boss 409 is electrically connected (conductive) to the conductor circuit 403, and the other end is formed so as to protrude from the lower surface of the insulating base material 402 by a predetermined length.
  • a metal coating layer 408 covering the protruding portion is formed on the protruding portion of the copper bost 409 (FIG. 4F).
  • the copper boss 409 and the metal coating layer 408 1 constitute a conductor boss (a conductor two-layer boss) 408.
  • the method of forming the conductor boss 408, the metal material forming the metal coating layer 4081, the preferable thickness of the metal coating layer 4081, and the like are the same as those described in Step A above.
  • a metal layer 411 made of a brazing material such as a solder plating, a solder paste, or a solder ball is applied in the surface covering opening portion 406.
  • the metal layer 411 can be formed before, after, or simultaneously with the formation of the metal coating layer 40081.
  • the thickness of the metal layer 411 is preferably 5 ⁇ or more. More preferably, the thickness is equal to or smaller than the thickness of the surface coating 405 (for example, as thin as 2 ⁇ ⁇ ). The reason is the same as the thickness of the metal layer 208.
  • the height of the conductor post 107 to be joined can be reduced, and the conductor post 1010 is melted in the material of the metal layer 411 at the time of connection. 7 can penetrate sufficiently and can be connected by being immersed, so that the process of manufacturing the conductor boss 107 can be shortened, and even if the height of the conductor boss 107 varies.
  • the metal material constituting the metal layer 411 is not particularly limited, but includes tin, lead, silver, Examples include zinc, bismuth, antimony, and copper, or alloys containing at least one of these.
  • the alloy is preferably a brazing material (solder) mainly composed of two or more of the above metals, for example, tin-lead, tin-silver, tin-zinc, tin-bismuth , Tin-antimony, tin-silver-bismuth, tin-copper, and the like.
  • tin or an alloy containing tin as a main component has a low melting point, and thus is preferable for joining at a low temperature.
  • an adhesive layer with a flux function having a flux function (also simply referred to as an “adhesive layer”) 412 is formed on the surface of the insulating base material 402 from which the conductor boss 408 protrudes (referred to simply as “adhesive layer”).
  • the details of the method for forming the adhesive with a flux function and the adhesive layer used here are as described above.
  • the adhesive layer (adhesive layer) 412 may be formed on the side having a pad for connection with the conductor post 408, if necessary. That is, it is sufficient that one adhesive layer 412 is interposed between the layers to be laminated.
  • an insulating base material opening 407 is first formed on the one-area layer board 410, and further, a conductor post 408 is formed.
  • the conductor circuit 403 may be formed by etching or the like, and then the surface coating 405 may be applied to the conductor circuit 403.
  • step E the multilayer flexible printed circuit board 5 10 is manufactured (see FIG. 5).
  • the inner-layer circuit board 420 is laid up (laminated) on the inner-layer flexible circuit board 220 of the center layer, and a single-sided circuit board 120 to be the outermost layer is laid out on the outer side (FIG. 5a). ). The positioning at that time can be performed in the same manner as in Step C described above. When seven or more layers are laminated, a desired number of inner layer circuit boards 420 may be laminated. T / JP2003 / 009611
  • thermocompression bonding method is not particularly limited, and may be heat-bonded every time the individual pieces of the inner-layer flexible circuit board 220 serving as the core layer are laid up, or all the outer-layer single-sided circuit boards may be used. After laying up the individual pieces of 120, they may be thermocompression bonded together.
  • the solder at the pad connected to the conductor post is melted and joined, and then heated to a temperature below the melting point.
  • the adhesive in the adhesive layer between the layers can be hardened, laminated, and integrated.
  • the conductor bosses 107 and 408 are turned into an adhesive layer with a flux function 111 1, 4 12 through the conductor boast 107, 408 metal coating layer 108, 408 1 and inner layer flexible circuit board 220, inner layer circuit board 420 metal layer ( (Honda) Thermo-compression bonding is performed until 208 and 411 are fused. Then, after the thermocompression bonding is performed, the adhesive layer with the flux function is reheated at a lower temperature (a temperature at which the solder does not melt and a second temperature suitable for the adhesive to be cured). 1, 4 1 and 2 are bonded together to bond the layers.
  • a multilayer flexible wiring board 5 10 in which an inner layer circuit board 420 is laminated on both sides of the inner layer flexible circuit board 220, and an outer layer single-sided circuit board 120 is laminated on both sides thereof, is further laminated. It is obtained by being integrated (Fig. 5b).
  • thermocompression bonding process the effect of providing a temperature difference (the first half is heated at a high temperature and the second half is heated at a low temperature), and the suitable range of the first temperature and the second temperature are described in step C above. Same as described.
  • the inner layer circuit board 420 on both sides of the inner layer flexible circuit board 220 which is the center layer (the layer located substantially at the center in the thickness direction), and the outer layer single-sided circuit board 120 on both sides thereof.
  • the multilayer flexible wiring board 510 having a single-layer portion 530 is obtained. T ⁇ 03/009611
  • FIG. 6 to 8 are cross-sectional views showing another embodiment in which the present invention is applied to a multilayer flexible wiring board and a method of manufacturing the same.
  • FIG. 8b is a cross-sectional view showing a six-layer multilayer flexible wiring board 610 having both a multilayer portion 620 and a flexible portion (single-layer portion) 630.
  • step F an outer single-sided circuit board 130, which is a circuit board of the present invention, is manufactured.
  • step B an inner-layer flexible circuit board 220 as the circuit board of the present invention is manufactured.
  • Step G an inner-layer flexible wiring board 470 as a circuit board of the present invention is manufactured.
  • step H an inner-layer flexible wiring board 470 as a circuit board of the present invention is manufactured.
  • steps F, B, and G are not particularly limited. For example, step F, B, and G can be performed in order, and then step H can be performed.
  • the single-sided circuit board 130 produced in the step F is used as the outermost wiring board.
  • the inner layer flexible circuit board 220 which is the center layer.
  • the adhesive layer 457 or 458 may be omitted if desired.
  • step F the outer layer single-sided circuit board 130 is manufactured (see FIG. 6).
  • a single-layer board 110 having a copper foil 101 attached to one side of an insulating base material 102 made of an insulating material obtained by curing a resin such as polyimide or epoxy resin is prepared (FIG. 6a).
  • the copper foil 101 and the insulating base 102 are bonded between the insulating base 102 and the copper foil 101 in order to prevent the occurrence of smear that hinders the conductor connection. It is preferable that no adhesive layer is present, but it is also possible to use an adhesive layer for bonding.
  • an insulating substrate opening (through hole) 106 is formed (FIG. 6B).
  • the opening 106 can be easily formed, and even a small diameter opening can be formed with high accuracy. Furthermore, it is preferable to remove the resin remaining in the insulating substrate opening 106 by a method such as wet desmear using an aqueous solution of permanganate or dry desmear using plasma, thereby improving the reliability of interlayer connection. .
  • the diameter of the insulating base material opening 106 is not particularly limited, and the preferable diameter and the effect thereof are the same as those described in the insulating base material opening 106 of Step A.
  • a copper post 108 is formed as a protruding terminal in the insulating base material opening 106 (FIG. 6C).
  • One end of the copper bost 108 is electrically connected (conductive) to a portion of the copper foil 101 that is to become the conductive circuit 103, and the other end is the lower part of the insulating base material 102 in the figure. It is formed so as to project a predetermined length from the surface.
  • a metal coating layer 108 covering the protruding portion is formed on the protruding portion of the copper post 108 (FIG. 6D).
  • the copper post 108 and the metal coating layer 108 are used to form a conductor post (a conductor two-layer bost).
  • the method for forming the conductor bost 107, the metal material constituting the metal coating layer 1081, the thickness of the metal coating layer 1081, and the like are the same as those described in the above step A or D.
  • a desired conductive circuit 103 is formed by, for example, etching the copper foil 101 bonded to one surface of the insulating base material 102 (FIG. 6E). Further, a surface coating 104 is applied to the conductor circuit 103 (FIG. 6 (2)).
  • the surface coating 104 may be formed by, for example, a method of applying an overlay film obtained by applying an adhesive to an insulating resin material, or a method of printing ink directly on the insulating substrate 102. In the configuration shown in FIG. 6, the surface coating 104 shows the ink directly printed.
  • the surface coating 104 is not limited to the case where the entire surface of the conductor circuit 103 is coated, but it is preferable that the surface coating 104 be coated while leaving a part thereof.
  • an opening 105 similar to the opening 105 may be formed on the surface coating 104 in order to mount a component or the like. At that time, if necessary, a surface treatment such as plating may be applied. Next, a metal layer 109 may be applied in the opening 105 of the surface coating 104 (FIG. 6F). The metal layer 109 can be formed before, after, or simultaneously with the formation of the metal coating layer 1081.
  • FIG. 6f is cut in accordance with the size of the multilayer part 62 to obtain an outer-layer single-sided circuit board 130 (FIG. 6g).
  • Step G the inner circuit board 470 is manufactured (see FIG. 7).
  • a single-area layer board 4600 having a copper foil 451 on one side of an insulating base 452 composed of an insulating base such as polyimide, epoxy resin or the like usually used for flexible wiring boards is prepared.
  • Figure 7a the adhesive layer does not exist, but the adhesive layer may be used.
  • the opening 453 can be easily formed by using a laser method, and a small-diameter hole can be formed with high accuracy. Further, it is preferable to remove the resin remaining in the insulating base material opening 453 by a method such as wet desmear using an aqueous solution of potassium permanganate or dry desmear using plasma, because the reliability of interlayer connection is improved.
  • the diameter of the insulating base material opening 453 is not particularly limited, and the preferable diameter and the effect thereof are the same as those described in the insulating base material opening 106 of Step A.
  • a copper post 454 is formed as a protruding terminal in the insulating base opening 453 (FIG. 7C).
  • One end of the copper post 45 4 is electrically connected (conductive) to a portion of the copper foil 45 1 that is to be the conductor circuit 45 6, and the other end is the lower part of the insulating base 45 2 in the figure. It is formed so as to protrude from the surface by a predetermined length.
  • a metal coating layer 451 covering the protruding portion is formed on the protruding portion of the copper post 454 (FIG. 7D).
  • the method of forming the conductor boasts 455, the metal material constituting the metal coating layer 4541, the thickness of the metal coating layer 4541, and the like are the same as those described in step A or D above.
  • a desired conductive circuit 456 is formed by applying, for example, etching to the copper foil 451 bonded to one surface of the insulating base material 452 (FIG. 7E).
  • an adhesive layer with a flux function having a flux function (also simply referred to as “adhesive layer”) 457, 4 Form 5 (Fig. 7f).
  • adhesive layer also simply referred to as “adhesive layer” 457, 4 Form 5 (Fig. 7f).
  • FIG. 7f is cut in accordance with the size of the multilayer part 62 to obtain an inner-layer flexible arrangement and a wire plate (inner-layer single-sided circuit board) 470 (FIG. 7g).
  • a conductor circuit 456 is first formed on the single area layer board 460 by etching or the like, and then the insulating substrate opening 4 is formed. 5 3 may be formed, and furthermore, conductor boasts 4 5 4 may be formed.
  • the inner flexible circuit board 220 is manufactured in the same manner as in the step B.
  • the inner-layer flexible circuit board 220 serves as a central layer in the multilayer flexible wiring board 610.
  • Step H the multilayer flexible wiring board 610 is manufactured (see FIG. 8).
  • the inner-layer single-sided circuit board 470 is laid up (laminated) on the inner-layer double-sided flexible circuit board 220 of the center layer, and the outermost single-sided circuit board 130 is laid up outside (see FIG. 8). a).
  • the positioning at that time can be performed in the same manner as in the steps C and E.
  • the desired number of the inner-layer flexible wiring boards 470 one without either the adhesive layer with a flux function 457 or 458) may be laminated.
  • the laminated inner-layer double-sided flexible circuit board 220, inner-layer single-sided circuit board 470, and single-sided circuit board 130 are stacked and integrated.
  • Such multi-layering can PT / JP2003 / 009611
  • thermocompression method is not particularly limited, and may be thermocompression-bonded each time the inner flexible circuit board 220 serving as the central layer is laid up on a piece, or the outer layer single-sided circuit board 130 After the individual pieces are laid up, they may be thermocompression-bonded together. Also, at the time of temporary bonding of the lay-up, by applying heat at a temperature exceeding the melting point of the solder, the solder at the pad (land) connected to the conductor posts is melted and joined, and then the temperature below the melting point is applied. Then, the adhesive in the adhesive layer between the layers can be hardened, laminated, and integrated.
  • the conductor bosses 107 and 455 are turned into an adhesive layer with a flux function 45
  • the metal cover layer 455 of the conductor post 455 and the metal layer (solder) 209 of the inner flexible circuit board 220 are melt-bonded via 7, 458, and the conductor post 1
  • the thermocompression bonding is performed until the metal cover layer 107 of the 07 is melt-bonded to a predetermined portion (such as a pad portion or a land portion) of the conductor circuit 450 of the inner layer flexible circuit board 470.
  • thermocompression bonding is performed, reheating is performed at a lower temperature (a temperature at which the solder does not melt and a second temperature suitable for curing the adhesive), and the adhesive layer with a flux function 45 7, 458 are hardened to bond the layers.
  • a lower temperature a temperature at which the solder does not melt and a second temperature suitable for curing the adhesive
  • the adhesive layer with a flux function 45 7, 458 are hardened to bond the layers.
  • the inner-layer flexible printed circuit board 470 is superimposed on both sides of the inner-layer flexible circuit board 220, and the outer-layer single-sided circuit board 130 is further superposed on both sides thereof.
  • a multilayer flexible wiring board 610 is obtained (FIG. 8B).
  • thermocompression bonding step the effect of providing a temperature difference (the first half is heated at a high temperature and the second half is heated at a low temperature), and the preferred range of the first temperature and the second temperature are as described in step C above. Same as described.
  • a method of integrating the respective layers a method of using vacuum press or a combination of heat lamination and baking can be used.
  • the inner layer flexible wiring board 470 has adhesive layers 457 and 458 with a flux function on both surfaces thereof, respectively, so that the embodiment shown in FIGS. Compared with the embodiment and the embodiments shown in FIGS. 4 and 5, there is an advantage that a step of applying a surface coating layer is not required and the step can be omitted.
  • the single-sided circuit board 120 obtained in step A, the inner-layer flexible wiring board 470 without the adhesive layer with flux function 457 obtained in step G, and the circuit board obtained in step B were obtained.
  • the same process can be omitted by combining the inner layer double-sided flexible circuit board 220 of the central layer.
  • a land portion (pat portion) is provided only on one surface of the inner-layer flexible circuit board.
  • a three-layer structure in which the inner-layer flexible circuit board is a single-sided single-sided flexible circuit board with an outer layer single-sided flexible circuit board and an inner-layer single-sided flexible circuit board. It also includes a multi-layer flexible printed wiring board having three or more layers in which individual pieces of a single-sided circuit board are sequentially laminated.
  • the single-layer portion is not limited to the one in which the central layer of the multilayer portion is formed by extension, but may be any layer that constitutes the multilayer portion.
  • the outermost layer of the portion may extend to form a single layer portion.
  • thermosetting curable adhesive sheet with a flux function (interlayer adhesive sheet made by Sumitomo Bakelite Co., Ltd.)
  • RCF was laminated to form an adhesive layer with a flux function. Finally, the outer shape was processed to the size of the laminated portion (multilayer portion) to obtain an outer layer single-sided circuit board 120 (FIG. 1h).
  • a copper foil 210 with a thickness of 18 ⁇ m is attached to both sides of an insulating substrate 202 with a polyimide film (insulating base) with a thickness of 25 ⁇ m.
  • a polyimide film (insulating base) with a thickness of 25 ⁇ m.
  • (Espanex SB—18—25—18—FR) manufactured by Nippon Steel and Dangaku and after drilling the holes, perform direct plating and form through holes 203 by electrolytic plating. And electrical continuity between the front and back sides was obtained.
  • a pad 205 capable of receiving the conductor circuit 204 and the conductor post 107 was formed by etching. After that, the surface of the conductor circuit 204 was coated with a 25- ⁇ m-thick polyimide (Pical NPI manufactured by Kaneka Chemical Industry) and a 25-jam thermosetting adhesive (Sumitomo Bakelite). Was formed.
  • solder paste having a thickness of 45 m was formed as a metal layer 208 in the opening portion 207 to obtain an inner-layer flexible circuit board 220 imposed on the sheet (FIG. 2E).
  • the outer layer single-sided circuit board 120 was laid up (laminated) on both sides of the inner layer flexible circuit board 220 using a jig with a pin guide for alignment (Fig. 3a). Then, after temporary bonding at 130 ° C, 0.6 MPa, 30 seconds with a vacuum pressure laminator, press at 250 ° C, 1.OMPa for 3 minutes with a hydraulic press, and flux through the function adhesive layer 1 1 1, the conductor Bost 1 0 7, solder metal layer 2 0 8 and melt bonding to form a metal bonding overlying pads 20 5 of the inner flexible circuit board 2 2 0 Then, heat at 150 ° C, 2MPa, 60 minutes to cure the adhesive and stack each layer.
  • the multi-layer flexible wiring board 310 was obtained (Fig. 3b).
  • the multilayer flexible wiring board was manufactured in the same manner as in Example 1 except that the diameter of the opening 106 of the insulating base material was changed to a minimum of 50 ⁇ to form the conductor post 107. 310 was obtained ( Figure 3b).
  • a multilayer flex circuit board 310 was obtained in the same manner as in Example 1 except that the above conditions were satisfied (FIG. 3B).
  • a multilayer flexible wiring board 310 was obtained in the same manner as in Example 1 except that the substrate was formed (FIG. 3B).
  • the multilayer flexible wiring board 310 was obtained in the same manner as in Example 1 except that the temporary bonding was performed at 0.3 MPa when the respective layers were laminated to produce the multilayer flexible wiring board 310 (FIG. 3B).
  • a 5 / m-thick solder plating was applied to form a conductor post (a conductor two-layer post) 107.
  • the copper foil 101 of the single-sided copper-clad laminate 110 is etched to form a conductor circuit.
  • a road 103 was formed, a liquid resist (SR 9000W manufactured by Hitachi Chemical) was printed, and a surface coating 104 was applied.
  • a copper post 454 with a height of 55 im is formed in the insulating base material opening 453 to form a copper post 454 having a height of 55 im, and then soldered with a thickness of 5 / zm. Was formed.
  • the copper foil 451 of the single-sided copper-clad laminate 460 was etched to form a conductor circuit 456.
  • thermosetting adhesive sheet with a flux function (Sumitomo Bakelite interlayer)
  • the adhesive sheet RCF was laminated to form adhesive layers 457 and 458 with a flux function.
  • a land (pad) 205 capable of receiving the conductor circuit 204 and the conductor post 455 was formed by etching.
  • a solder plating having a thickness of 45 ⁇ was formed as a metal layer 208 in the opening 207 to obtain an inner-layer flexible circuit board 220 attached to the sheet (FIG. 2E). .
  • the outer layer single-sided circuit board 130 and the inner layer single-sided circuit board 470 were laid (laminated) on both sides of the inner layer flexible circuit board 220 using jigs with pin guides for alignment ( Figure) 8a). Then, after temporary bonding at 130 ° C and 0.2 MPa for 60 seconds with a vacuum pressurized laminator, press at 260 ° C and 0.2 MPa for 30 seconds with a hydraulic press.
  • the conductor boss 455 is melt-bonded to the solder of the metal layer 208 on the land (pad) 205 of the inner layer flexible circuit board 220 to form a metal bond.
  • the adhesive was cured by heating at a temperature of 150 ° C. and 2 MPa for 60 minutes to obtain a multilayer flexible printed wiring board 610 in which the respective layers were laminated and integrated (FIG. 8B).
  • both sides are formed with a power burley that has been punched and punched with a die in advance so that the surface coating opening 207 fits over the pad 205.
  • a multilayer flexible wiring board 610 was obtained in the same manner as in Example 6 except that a surface coating 206 was formed on the entire surface of the substrate (FIG. 8B).
  • thermosetting adhesive 32 cal NPI
  • a 25 ⁇ m thick thermosetting adhesive (Sumitomo Betalight), except that a surface coating 405 was formed.
  • a circuit board 420 manufactured by Step D Fig. 4g
  • a conductor board 107 a copper post with a height of 70 ⁇
  • a 10-meter-thick solder plate 20 / im thermosetting adhesive sheet with flux function (Sumitomo Bakelite interlayer adhesive sheet)
  • Example 9 The same method as in Example 9 except that the diameter of the opening 106 of the insulating base material was changed to a minimum of 50 ⁇ m when the outer layer single-sided circuit board 120 was manufactured to form the conductor bore 107. ⁇ With, a multilayer flexible wiring board 5 10 was obtained (Fig. 5b).
  • the punching process was performed by punching in advance with a die so that the surface coating opening 207 would fit on the pad 205. Then, a multilayer flexible wiring board 510 was obtained in the same manner as in Example 9 except that a surface coating 206 was formed on each of them (FIG. 5B).
  • Example 1 the insulating base material (supporting base material) 102 was changed to a material obtained by curing an epoxy resin having a thickness of 55 ⁇ m (Sumilite CLBu—1001 manufactured by Sumitomo Bakelite).
  • the liquid resist used for the coating 104 was changed to Hitachi Chemical 7101G.
  • An electrolytic single-layer circuit board 120 was obtained in the same manner as in Example 1 except that an electrolytic copper bost was formed in the opening 106 and the height was set to 70 ⁇ . 2003/009611
  • the double-sided copper-clad laminate 210 was changed to Nippon Steel Corporation's Espanex SB-12-12-25-12CE, and the opening 207 on the inner-layer flexible wiring board was subjected to surface treatment (metal layer).
  • An inner flexible wiring board 220 was obtained in the same manner as in Example 1 except that a solder paste having a thickness of 23 inches was formed as 208.
  • a multilayer flex wiring board 310 was obtained in the same manner as in Example 1.
  • Adhesive sheet with flux function 1 20 1 Changed to a general adhesive sheet without flux function (Pilalux LF 100 made by DuPont), conductor with only copper posts 108 without metal coating layer 1081
  • a multi-layer flexible wiring board was obtained in the same manner as in Example 1, except that posts were formed, and the thickness of the solder plating (metal layer) 208 on the pads 205 of the inner layer double-sided board 220 was changed to 3 ⁇ m. Comparative Example 2
  • a multilayer flexibly printed wiring board was obtained in the same manner as in Comparative Example 1 except that D341, manufactured by Sony Chemical Co., Ltd., was used as a general adhesive sheet having no flux function.
  • a multilayer flexible printed wiring board was obtained in the same manner as in Comparative Example 1 except that TSA-2103 manufactured by Toray was used as a general adhesive sheet having no flux function.
  • the metal-to-metal connection at the interlayer connection portion is surely metal-bonded.
  • high temperature 260 ° C. after 5 seconds of treatment
  • Low temperature alternately repeat the treatment at 23 ° C for 20 seconds.
  • the use of an interlayer adhesive having a metal surface cleaning function makes it possible to connect metal joints in a wiring board (circuit board) stack with high reliability.
  • connection hole such as a through hole on the surface of the outer single-sided circuit board, high-density circuit wiring and components can be mounted at high density.
  • a highly accurate (high-density) and highly reliable multilayer wiring board in particular, a multilayer flexible wiring board can be easily and inexpensively provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

 本発明の目的は、確実に層間接続を達成でき、信頼性が高く、外層回路基板を積層することができる多層配線板を提供することにある。本発明においては、内層フレキシブル回路基板220の両面側にそれぞれフラックス機能を有する接着層412を備える内層回路基板420が接合され、それら内層回路基板420にそれぞれ銅ポスト108と金属被覆層1081とで構成される導体ポスト107を備えた外層片面回路基板120が接合されており、導体ポスト107、408を介して各配線板220、420、120の導体回路103、204、403の所定部位が電気的に接続されている。

Description

回路基板、 多層配線板、 回路基板の製造方法および多層配線板の製造方法 本発明は、 回路基板、 多層配線板、 回路基板の製造方法および多層配線板の製 造方法に関し、 特に、 電子機器の部品として用いられる多層フレキシブルプリン ト配線板およびそれらを構成する回路基板ならびにそれらの製造方法に関するも のである。 明
近年の電子機器の高密度化に伴い、 これに用いられるプリント配線板の多層化 が進んでおり、 フレキシブル配線板も多層構造書のものが多用されている。 このプ リント配線板はフレキシブル配線板とリジッド配線板との複合基板であるリジッ ドフレックス配線板であり、 用途が拡大している。
従来の多層フレキシブル配線板やリジッドフレックス配線板の製造方法は、 多 層リジッド配線板の製造方法と類似している。 すなわち、 パターニングされた銅 箔と絶縁層とを交互に複数積み重ねた積層板を形成し、 該積層板に層間接続用の 貫通孔をあけ、 該貫通孔に層間接続用メツキを施した後、 最外層の回路等の加工 を行う方法が主流であった。 しかし、 更なる搭載部品の小型化 ·高密度化が進み、 全層を通して同一の個所に各層の接続ランドぉよぴ貫通孔をぁける従来の技術で は、 設計上配線密度が不足して、 部品の搭載に問題が生じるようになってきてい る。
このような背景により、 近年多層リジッド配線板では、 新しい積層技術として ビルドアップ法が採用されている。 ビルドアップ法とは、 樹脂のみで構成される 絶縁層と導体とを積み重ねながら、 単層間で層間接続をする方法である。 層間接 続方法としては、 従来のドリル加工に代わって、 レーザー法、 プラズマ法やフォ ト法など、 多岐にわたり、 小径のビアホールを自由に配置することで高密度化を 達成するものである。
ビルドアップ法は、 絶縁層にビアを形成してから層間接続する方法と、 層間接 続部を形成してから絶縁層を積層する方法とに大別される。 また、 層間接続部は、 ビアホールをメツキで形成する場合と、 導電性ペーストなどで形成する場合とに 分けられ、 使用される絶縁材料やビア形成方法により、 更に細分ィ匕される。 その中でも、 絶縁層に層間接続用の微細ビアをレーザーで形成し、 ビアホール を銅ペースト等の導電性接着剤で孔埋めし、 この導電性接着剤により電気的接続 を得る方法 (例えば、 特開平 8— 3 1 6 5 9 8号公報参照) では、 ビアの上にビ ァを形成するスタックドビアが可能なため、 高密度化はもちろんのこと、 配線設 計も簡易化することができる。 し力 し、 この方法では、 層間の電気的接続を導電 十生接着剤で行っているため、 信頼性が十分ではない。 また、 微細なビアに導電性 接着剤を埋め込む高度な技術も必要となり、 更なる微細化に対応することが困難 である。
また、 従来の多層フレキシブル配線板として、 層間接着するために熱硬化型接 着剤を使用しているものがある。 従来の技術では、 単純にポスト部分が接着剤を 物理的に排除し接続パッド上まで達し接続する等の方法もあるが、 これでも完全 に接続ポストとパッド間の接着剤を除去することは難しく、 信頼性が低いと考え られる。 さらに、 接続ポストを形成するための方法としてメツキを用いた場合、 このボストは片面回路基板の基材厚みに接続させるパッドを有するフレキシブル 配線板の表面被覆材の厚みにさらに、 層間の接着剤厚を加えたメツキ厚をつけな くてはならず、 このポスト形成のメツキ工程は長時間にわたる効率の悪い工程と なる。
また、 前記した層間接続を形成する場合は、 通常、 貫通孔又はビアホールに鲖 メツキを施す。 しかし、 層間接続を樹脂のみで形成する絶縁層の素材は、 熱によ り厚みが変化し銅メッキでは耐えられなくなり、 接続が断裂して、 信頼性が低下 する場合がある。 又、 貫通孔或いはビアホールを形成する際に発生する樹脂の染 み出しなどが原因であるスミアが障害となり、 層間接続が十分に取れず、 信頼性 が低下する。
多層フレキシブル配線板や Vジッドフレックス配線板と、 多層リジッド配線板 との最大の相違点は、 フレキシブルな部分の有無である。 このフレキシブルな部 分は、 自由に可撓できるように、 層数を少なくする必要がある。 このフレキシプ ルな部分の作製では、 フレキシブルな部分が積層されないように外層を除く力 \ あるいは積層後外層を除かなければならない。 どちらにしても、 フレキシブルな 部分の外層は不要となり、 多層フレキシプル配線板内のフレキシブル部分の占め る割合が多くなるにつれて除去される多層部面積は増加し、 コストアップにつな がり、 不経済となる。
フレキシブル配線板を安価に製造するために、 複数のパターンを 1枚のシート に配置して作製する。 そのため、 多層フレキシブル配線板も同様の製造方法を経 ることで、 安価に製造することができる。 し力 し、 現状の製造方法では、 特に一 般的に用いられる層間の接続方法としては、 スルーホールが全層を貫く形で各層 間を接続する手法が用いられる。 し力 し、 この接続方法では、 加工方法が簡単で はあるが回路の設計上非常に制約が多くなる。 また最も劣る点としては、 スルー ホールで全層を接続するため、 最外層はスルーホールが多くなりまたスルーホー ルランドが占める面積割合も増えるため、 部品の実装、 回路のパターンに致命的 となる回路密度を上げることができない。 また、 今後の市場要求が高まる高密度 実装、 高密度パターンの作製が困難な仕様となる。
発明の開示
本発明は、 上記の問題を解決するためになされたもので、 その目的は、 製造が 簡単で、 確実に層間接続を達成でき、 信頼性が高く、 また、 外層回路基板を積層 することができる回路基板、 多層配線板、 回路基板の製造方法および多層配線板 の製造方法を提供するものである。
このような目的は、 下記 (1 ) 〜 (3 4 ) の発明により達成される。
( 1 ) 絶縁基材と、
前記絶縁基材の一方の面側に形成された導体回路と、
前記導体回路に電気的に接続された少なくとも 1つの導体ボストとを有し、 前記導体ポストは、 前記絶縁基材を貫通する孔内に形成され、 一端が前記導体 回路と接続され、 他端が前記絶縁基材の他方の面よりも突出する突起状端子と、 前記突起状端子の前記絶縁基材の他方の面よりも突出した部分を覆う金属被覆層 とで構成されている回路基板。
( 2 ) 前記金属被覆層は、 金、 銀、 ニッケル、 錫、 鉛、 亜鉛、 ビスマス、 ァ 'ン、 銅からなる群より選択される少なくとも 1種の金属または該金属を含 む合金で構成される上記 (1) に記載の回路基板。
(3) 絶縁基材と、
前記絶縁基材の一方の面側に形成された導体回路と、
前記導体回路に電気的に接続された少なくとも 1つの導体ボストとを有し、 前記絶縁基材の片面または両面に、 フラックス機能を有する接着層を設けた回
(4) 絶縁基材と、
前記絶縁基材の一方の面側に形成された導体回路と、
前記導体回路に電気的に接続された少なくとも 1つの導体ボストとを有し、 前記絶縁基材の一方の面側に前記導体回路をその一部を残して覆う表面被覆を 設けるとともに、 前記絶縁基材の他方の面側にフラックス機能を有する接着層を 設けた回路基板。
(5) 前記導体ポストは、 前記絶縁基材を貫通する孔内に形成され、 一端が 前記導体回路と接続され、 他端が前記絶縁基材の他方の面よりも突出する突起状 端子と、 前記突起状端子の前記絶縁基材の他方の面よりも突出した部分を覆う金 属被覆層とで構成されている上記 (3) または (4) に記載の回路基板。
(6) 前記金属被覆層は、 金、 銀、 ニッケル、 錫、 鉛、 亜鉛、 ビスマス、 ァ ンチモン、 銅からなる群より選択される少なくとも 1種の金属または該金属を含 む合金で構成される上記 (5) に記載の回路基板。
(7) 絶縁基材と、
前記絶縁基材の両面にそれぞれ形成された導体回路と、
前記導体回路の一部に被覆形成された厚さ 5 m以上の金属層と、
前記導体回路の前記金属層以外の部分を覆う表面被覆とを有する回路基板。
(8) 前記表面被覆は、 接着層と、 フィルムとで構成される上記 (4) また は (7) に記載の回路基板。
(9) 上記 (1) または (2) に記載の回路基板を含む複数の回路基板を積 層してなる多層配線板。
(10) 上記 (3) ないし (6) のいずれかに記載の回路基板を含む複数の 回路基板を積層してなる多層配線板。 (1 1) 上記 (7) または (8) に記載の回路基板を含む複数の回路基板を 積層してなる多層配線板。
(1 2) 上記 (1) ないし (6) のいずれかに記載の回路基板と、 上記 (7) または (8) に記載の回路基板とを含む複数の回路基板を積層してなる多 層配線板。
(1 3) 上記 (1) または (2) に記載の回路基板と、 上記 (3) ないし (6) のいずれかに記載の回路基板と、 上記 (7) または (8) に記載の回路基 板とを含む複数の回路基板を積層してなる多層配線板。
(14) 上記 ( 7 ) または ( 8 ) に記載の回路基板の両面側にそれぞれ上記 (1) ないし (6) のいずれかに記載の回路基板が接合されており、 前記導体ポ ストを介して各回路基板の導体回路の所定部位が電気的に接続されている多層配 線板。
(1 5) 上記 (7) または (8) に記載の回路基板の両面側にそれぞれ上記 (3) ないし (6) のいずれかに記載の回路基板が接合され、 これら両回路基板 にそれぞれ上記 (1) または (2) に記載の回路基板が接合されており、 前記導 体ボストを介して各回路基板の導体回路の所定部位が電気的に接続されている多
(1 6) 複数の回路基板が積層された多層部と、 前記多層部における少なく とも 1つの回路基板が該多層部から延出する単層部とを有する上記 (9) ないし
(1 5) のいずれかに記載の多層配線板。
(1 7) 前記単層部を構成する回路基板は、 可撓性を有するフレキシブル回 路基板である上記 (16) に記載の多層配線板。
(1 8) 絶縁基材の一方の面側に導体回路を形成する工程と、
前記絶縁基材に貫通孔を形成する工程と、
前記貫通孔内に、 突起状端子をその一端が前記導体回路と電気的に接続され、 他端が前記絶縁基材の他方の面よりも突出するように形成する工程と、
前記突起状端子の前記絶縁基材の他方の面よりも突出した部分を覆う金属被覆 層を形成する工程とを有する回路基板の製造方法。
(1 9) 絶縁基材の一方の面側に導体回路となる金属層が形成された前記絶 2003/009611
6 縁基材に貫通孔を形成する工程と、 ·
前記貫通孔内に、 突起状端子をその一端が前記金属層と電気的に接続され、 他 端が前記絶縁基材の他方の面よりも突出するように形成する工程と、
前記突起状端子の前記絶縁基材の他方の面よりも突出した部分を覆う金属被覆 層を形成する工程と、
前記金属層をパターニングして導体回路を形成する工程とを有する回路基板の 製造方法。
( 2 0 ) 絶縁基材の一方の面側に導体回路を形成する工程と、
前記絶縁基材に貫通孔を形成する工程と、
前記貫通孔内に、 突起状端子をその一端が前記導体回路と電気的に接続され、 他端が前記絶縁基材の他方の面よりも突出するように形成する工程と、
前記絶縁基材の片面または両面に、 フラックス機能を有する接着層を形成する 工程とを有する回路基板の製造方法。
( 2 1 ) 絶縁基材の一方の面側に導体回路となる金属層が形成された前記絶 縁基材に貫通孔を形成する工程と、
前記貫通孔内に、 突起状端子をその一端が前記金属層と電気的に接続され、 他 端が前記絶縁基材の他方の面よりも突出するように形成する工程と、
前記金属層をパターニングして導体回路を形成する工程と、
前記絶縁基材の片面または両面に、 フラックス機能を有する接着層を形成する 工程とを有する回路基板の製造方法。
( 2 2 ) 前記突起状端子を形成した後、 その前記絶縁基材の他方の面よりも 突出した部分を覆う金属被覆層を形成する工程を有する上記 (2 0 ) または (2 1 ) に記載の回路基板の製造方法。
( 2 3 ) 絶縁基材の両面にそれぞれ導体回路となる金属層が形成された前記 絶縁基材に貫通孔を形成し、 該貫通孔内にて前記両金属層同士を導通させる工程 と、
前記金属層をパター二ングして導体回路を形成する工程と、
前記導体回路の一部を残して前記導体回路を覆う表面被覆を形成する工程と、 前記導体回路の前記表面被覆で覆われていない部分に厚さ 5 / m以上の金属層 を形成する工程とを有する回路基板の製造方法。
(24) 少なくとも 1つの上記 (1) ないし (6) のいずれかに記載の回路 基板と、 少なくとも 1つの上記 (7) または (8) に記載の回路基板とを所定の 順序で重ね、 これらを熱圧着して積層、 一体化する多層配線板の製造方法。
(25) 少なくとも 1つの上記 (1) または (2) に記載の回路基板と、 少 なくとも 1つの上記 (3) ないし (6) のいずれかに記載の回路基板と、 少なく とも 1つの上記 (7) または (8) に記載の回路基板とを所定の順序で重ね、 こ れらを熱圧着して積層、 一体化する多層配線板の製造方法。
(26) 上記 (7) または (8) に記載の回路基板の両面側にそれぞれ上記 (1) ないし (6) のいずれかに記載の回路基板を配置し、 これらを熱圧着して 積層、 一体化し、 各回路基板の導体回路の所定部位が前記導体ポス トを介して電 気的に接続するようにした多層配線板の製造方法。
(27) 上記 (7) または (8) に記載の回路基板の両面側にそれぞれ上記 (3) ないし (6) のいずれかに記載の回路基板を配置し、 さらにこれら両回路 基板の外側にそれぞれ上記 (1) または (2) に記載の回路基板を配置し、 これ らを熱圧着して積層、 一体ィヒし、 各回路基板の導体回路の所定部位が前記導体ポ ス トを介して電気的に接続するようにした多層配線板の製造方法。
(28) 上記 (1 8) ないし (22) のいずれかに記載の方法により製造さ れた少なくとも 1つの回路基板と、 上記 (23) に記載の方法により製造された 少なくとも 1つの回路基板とを所定の順序で重ね、 これらを熱圧着して積層、 一 体化する多層配線板の製造方法。
(29) 上記 (1 8) または (19) に記載の方法により製造された少なく とも 1つの回路基板と、 上記 (20) ないし (22) のいずれかに記載の方法に より製造された少なくとも 1つの回路基板と、 上記 (23) に記載の方法により 製造された少なくとも 1つの回路基板とを所定の順序で重ね、 これらを熱圧着し て積層、 一体化する多層配線板の製造方法。
(30) 上記 (23) に記載の方法により製造された回路基板の両面側にそ れぞれ上記 (1 8) ないし (22) のいずれかに記載の方法により製造された回 路基板を配置し、 これらを熱圧着して積層、 一体化し、 各回路基板の導体回路の 1
8 所定部位が前記突起状端子または突起状端子と金属被覆層とを介して電気的に接 続するようにした多層配線板の製造方法。
(3 1) 上記 (23) に記載の方法により製造された回路基板の両面側にそ れぞれ上記 (20) ないし (22) のいずれかに記載の方法により製造された回 路基板を配置し、 さらにこれら両回路基板の外側にそれぞれ上記 (1 8) または (1 9) に記載の方法により製造された回路基板を配置し、 これらを熱圧着して 積層、 一体化し、 各回路基板の導体回路の所定部位が前記突起状端子または突起 状端子と金属被覆層とを介して電気的に接続するようにした多層配線板の製造方 法。
(32) 前記熱圧着は、 ろう材が溶融する第 1の温度で行つた後、 それより 低い第 2の温度で行う上記 (24) ないし (3 1) のいずれかに記載の多層配線 板の製造方法。
(3 3) 前記第 2の温度は、 接着剤が硬化するのに適した温度である上記 (3 2) に記載の多層配線板の製造方法。
(34) 上記 (24) ないし (3 3) のいずれかに記載の多層配線板の製造 方法により製造されたことを特徴とする多層配線板。
図面の簡単な説明
図 l a、 l b、 l c、 l d、 l e、 l f 、 1 g及び 1 hは、 本発明の回路基板 (片面回路基板) とその製造方法を説明するための断面図である。
図 2 a、 2 b、 2 c、 2 d及び 2 eは、 本発明の回路基板 (フレキシブル配,線 板) とその製造方法を説明するための断面図である。
図 3 a及ぴ図 3 bは、 本発明の多層配線板 (4層構成の多層フレキシブルプリ ント配線板) とその製造方法を説明するための断面図である。
図 4 a、 4 b、 4 c、 4 d、 4 e、 4 f及ぴ 4 gは、 本発明の回路基板 (内層 用の片面回路基板) とその製造方法を説明するための断面図である。
図 5 a及び 5 bは、 本発明の多層配線板 ( 6層構成の多層フレキシブルプリン ト配線板) とその製造方法を説明するための断面図である。
図 6 a、 6 b、 6 c、 6 d、 6 e、 6 f及ぴ 6 gは、 本発明の回路基板 (最外 層用の片面回路基板) とその製造方法を説明するための断面図である。 図 7 a、 7 b、 7 c、 7 d、 7 e、 7 f及び 7 gは、 本発明の回路基板 (内層 用の片面回路基板) とその製造方法を説明するための断面図である。
図 8 a及び 8 bは、 本発明の多層配線板 ( 6層構成の多層フレキシブルプリン ト配線板) とその製造方法を説明するための断面図である。
図中の数字は下記の意味を有する。
1 0 1、 2 01、 40 1、 45 1 :銅箔
1 02、 2 02、 402、 45 2 :絶縁基材
1 0 3、 204、 403、 45 6 :導体回路
1 04、 206、 405 :表面被覆
1 05、 207、 406 :開口部 (表面被覆開口部)
1 06、 407、 45 3 :開口部 (絶縁基材開口部)
1 0 7、 408、 455 :導体ポスト (導体 2層ポスト)
1 08、 409、 454 :銅ポスト
1 08 1、 408 1、 4 54 1 :金属被覆層
1 09、 208、 4 1 1 :金属層
1 1 0 :片面積層板 (片面銅張積層板)
1 1 1、 41 2、 45 7、 45 8 : フラックス機能付き接着剤層
1 20、 1 30 :外層片面回路基板
20 3 :スルーホーノレ
205、 404 : ノヽ0ッ ド (ランド)
2 1 0 :両面板 (両面銅張積層板)
220 :内層フレキシブル配線板
3 1 0 :多層フレキシブル配線板 (4層)
320、 520、 6 20 :多層部
330、 530、 6 30 : フレキシブル部 (単層部)
41 0、 46 0 :片面積層板 (片面銅張積層板)
420、 47 0 :内層フレキシブル配線板
5 1 0 :多層フレキシブル配線板 (6層)
6 1 0 :多層フレキシブル配線板 (6層) 4 0 5 1 :絶縁性樹脂材料 '
4 0 5 2 :接着剤
発明の実施の形態
以下、 図面に基づき本発明の実施形態について説明するが、 本発明はこれに何 ら限定されるものではない。
図 1〜図 5は、 本発明を多層フレキシブル配,線板おょぴその製造方法に適用し た場合の実施形態を示す断面図である。 図 3 bは、 多層部 3 2 0とフレキシブノレ 部 3 3 0を併せ持つ 4層 (両面板と片面板 2枚とを積層した回路層数が合計 4層 の意。 以下同様) の多層フレキシブル配線板 3 1 0、 図 5 bは、 多層部 5 2 0と フレキシブル部 5 3 0を併せ持つ 6層 (両面板と片面板 4枚とを積層した回路層 数が合計 6層の意。 以下同様) の多層フレキシブル配線板 5 1 0を示す断面図で める。
本発明の多層フレキシブル配線板の製造方法として、 先ず、 4層フレキシブル 配線板の一例を説明する。 ステップ A (図 1 ) として、 本発明の回路基板である 外層用の片面回路基板 1 2 0を製造する。 また、 ステップ B (図 2 ) として、 本 発明の回路基板である内層用のフレキシブル回路基板 2 2 0を製造する。 また、 ステップ C (図 3 ) として、 内層フレキシブル回路基板 2 2 0に外層片面回路基 板 1 2 0を積層し、 多層フレキシブル配線板 3 1 0を製造する。 以上、 3ステツ プに分けることができる。 ステップ A、 Bの順序は、 特に限定されないが、 例え ば、 ステップ A、 Bの順序で行い、 その後、 ステップ Cを行うことができる。
5層以上の積層の場合、 前記ステップ Aで作製した片面回路基板 1 2 0を最外 層の配線板として用いる。 外側から数えて第 2層以降から中心層の両面板間まで は、 ステップ D (図 4 ) で得られる内層用の回路基板 4 2 0を用い、 前記ステツ プ Bで作製した内層フレキシブル回路基板 2 2 0を中心層の配線板として用いる。 ステップ Eとして、 内層フレキシブル回路基板 2 2 0を中心層にしてその両面に 内層回路基板 4 2 0を積層し、 さらにそれらに最外層の片面回路基板 1 2 0を積 層して、 多層フレキシブル配線板 5 1 0を製造する。 5層以上の積層の場合、 最 外層となる片面回路基板 1 2 0と中心層となる内層フレキシブル回路基板 2 2 0 との間には、 内層回路基板 4 2 0を所望の層数、 積層すれば良い。 以下、 各ステ T JP2003/009611
11
ップについて説明する。
( 1 - 1 ) ステップ A
ステップ Aでは、 外層片面回路基板 1 2 0を製造する (図 1参照) 。 まず、 例 えばポリイミド、 エポキシ樹脂などの樹脂を硬ィ匕させた絶縁基材 1 0 2の片面に 銅箔 1 0 1が付いた片面積層板 1 1 0を用意する (図 1 a ) 。 この際、 絶縁基材 1 0 2と銅箔 1 0 1との間には、 導体接続の妨げとなるスミアの発生を防ぐため、 銅箔 1 0 1と絶縁基材 1 0 2を貼り合わせるための接着剤層は存在しない方が好 ましいが、 接着剤を用いて貼りあわせたものでもよい。
前記絶縁基材 1 0 2の片面に接合された銅箔 1 0 1に対し例えばエッチングを 施すことにより、 所望の導体回路 1 0 3を形成する (図 l b ) 。 さらに、 この導 体回路 1 0 3に対し、 表面被覆 1 0 4を施す (図 1 c ) 。 この表面被覆 1 0 4の 形成は、 例えば絶縁性樹脂材料に接着剤を塗布したオーバーレイフィルムを貼付 する力、 または、 インクを直接絶縁基材 1 0 2に印刷する方法などがあるが、 図 1に示す構成では、 表面被覆 1 0 4は、 インクを直接印刷したものを示す。 なお、 この表面被覆 1 0 4は、 導体回路 1 0 3の一部を残して被覆するのが好ましい。 すなわち、 表面被覆 1 0 4上に、 部品などを実装するために開口部 1 0 5を形成 してもよレ、。 またその際、 必要に応じて、 メツキなどの表面処理を施してもよい。 次に、 絶縁基材 1 0 2の所望の箇所に、 絶縁基材 1 0 2の図中下面から、 導体 回路 1 0 3が露出するまで (導体回路 1 0 3に到達するまで) 、 絶縁基材開口部 (貫通孔) 1 0 6を形成する (図 1 d ) 。
この際、 レーザー法を用いると開口部 1 0 6を容易に形成することができ、 か つ小径のものでも精度良く形成することができる。 さらに、 過マンガン酸力リウ ム水溶液によるゥエツトデスミアまたはプラズマによるドライデスミアなどの方 法により、 絶縁基材開口部 1 0 6内に残存している樹脂を除去すると、 層間接続 の信頼性が向上し好ましい。
絶縁基材開口部 1 0 6の径は、 特に限定されないが、 この径は銅ボスト 1 0 8 の太さを規定するので、 それを考慮に入れると、 2 0〜2 0 0 / m程度が好まし く、 3 0〜1 0 0 μ πι程度がより好ましい。 上記方法によれば、 このようなサイ ズの絶縁基材開口部 1 0 6を容易かつ高い寸法精度で形成することができる。 2003/009611
12 次に、 .絶縁基材開口部 1 0 6内に、 突起状端子として、 銅ボスト 1 0 8を形成 する (図 1 e ) 。 銅ボスト 1 0 8は、 その一端が導体回路 1 0 3と電気的に接続 (導通) され、 他端部は、 絶縁基材 1 0 2の図中下面から所定長さ突出するよう に形成される。 さらにこの銅ポスト 1 0 8の突出部分には、 該突出部分を覆う金 属被覆層 1 0 8 1が形成される (図 1 f ) 。 これら銅ボスト 1 0 8と金属被覆層 1 0 8 1とで、 導体ボスト (導体 2層ボスト) 1 0 7が構成される。
導体ボスト 1 0 7の形成方法としては、 特に限定されないが、 例えばペースト またはメツキ法などで銅ポスト 1 0 8を形成した後 (図 l e ) 、 金属 (合金を含 む) を被覆する。 金属被覆層 1 0 8 1を構成する金属としては、 例えば、 金、 銀、 ニッケル、 錫、 鉛、 亜鉛、 ビスマス、 アンチモン、 銅の少なくとも 1種類、 ある いは、 これらのうちの 1種以上を含む合金が挙げられる。 この場合、 合金として は、 前記金属のうちの 2種以上の金属を主とするろう材 (半田) が好ましく、 例 えば、 錫一鉛系、 錫一銀系、 錫一亜鉛系、 錫一ビスマス系、 錫一アンチモン系、 錫一銀一ビスマス系、 錫一銅系等が挙げられる。 半田を構成する金属の組合せや 組成には、 特に限定はなく、 その特性等を考慮して、 最適なものを選択すればよ レ、。
金属被覆層 1 0 8 1の厚みは、 特に限定されないが、 好ましくは 0 . 0 5 μ πι 以上、 より好ましくは 0 . 以上である。 また、 表面被覆開口部 1 0 5内に も、 前記金属被覆層 1 0 8 1と同様の材料による表面処理 (金属層) 1 0 9を施 してもよレ、。 この表面処理 (金属層) 1 0 9は、 金属被覆層 1 0 8 1の形成と前 後して、 あるいは同時に行うことができる。
次に、 絶縁基材 1 0 2の導体ボスト 1 0 7が突出した面側に、 フラックス機能 を有するフラックス機能付き接着剤層 (以下単に 「接着剤層」 とも言う) 1 1 1 を形成する (図 l g ) 。 ここで、 フラックス機能とは、 酸化膜の除去機能や還元 機能等に代表される金属表面の清浄化機能を言う。 このフラックス機能により、 半田 (ろう材) の濡れ性を向上させることができるので、 半田濡れ性向上機能と も ¾える。
なお、 この接着剤層 1 1 1は、 導体ポスト 1 0 7と接続するためのパッドを有 する内層フレキシブル回路基板 2 2 0 (図 2 e ) に形成しても差し支えはない。 3 009611
13 この接着剤層 1 1 1の形成方法は特に限定されず、 例えば、 印刷法により絶縁 基材 1 0 2にフラックス機能付き接着剤を塗布する方法、 その他転写法などがあ るが、 シート状の接着剤 (接着剤シート) を絶縁基材 1 0 2にラミネートする方 法が簡便であり好ましい。
最後に、 図 l gで得られたものを、 多層部 3 2 0のサイズに応じて切断し、 外 層片面回路基板 1 2 0を得る (図 1 h ) 。
また、 この外層片面回路基板 1 2 0の他の製造方法としては、 片面積層板 1 1 0に対し、 先に絶縁基材開口部 1 0 6を形成し、 さらに導体ボスト 1 0 7を形成 後、 エッチング等により導体回路 1 0 3を形成し、 その後導体回路 1 0 3に表面 被覆 1 0 4を施してもよい。
本発明において、 接着剤層 (接着層) 1 1 1等に用いるフラックス機能付き接 着剤は、 金属表面の清浄化機能、 例えば、 金属表面に存在する酸化膜の除去機能 や、 酸化膜の還元機能を有する接着剤である。 このような接着剤の第 1の好まし レヽ例としては、 フエノール性水酸基を有するフエノールノボラック樹脂、 クレゾ ールノポラック樹脂、 アルキルフエノールノボラック樹脂、 レゾール樹脂、 ポリ ビュルフエノール樹脂などの樹脂 (A) と、 該樹脂の硬化剤 (B ) とを含むもの である。 硬化剤 ( B ) としては、 例えば、 ビスフエノール系、 フエノールノボラ ック系、 アルキルフエノールノボラック系、 ビフエノール系、 ナフトール系、 レ ゾルシノール系などのフエノールベースや、 脂肪族、 環状脂肪族や不飽和脂肪族 などの骨格をベースとしてエポキシ化されたエポキシ樹脂ゃィソシァネート化合 物が挙げられる。
フエノール性水酸基を有する樹脂の配合量は、 全接着剤中 2 0重量。/。〜 8 0重 量%が好ましく、 3 5重量%〜 6 5重量%がより好ましい。 2 0重量%未満だと 金属表面を清浄ィヒする作用が低下し、 8 0重量%を超えると十分な硬化物を得ら れず、 その結果として接合強度と信頼性が低下するおそれがある。 一方、 硬化剤 として作用する樹脂あるいは化合物は、 全接着剤中 2 0重量%〜8 0重量%が好 ましく、 3 5重量%〜 6 5重量%がより好ましい。 接着剤には、 必要に応じて着 色剤、 無機充填材、 各種のカップリング剤、 溶媒などの添加剤を添加してもよレ、。 フラックス機能付き接着剤の第 2の好ましい接着剤の例としては、 ビスフエノ ール系、 フエノールノボラック系、 アルキルフエノールノボラック系、 ビフエノ ール系、 ナフトール系、 レゾルシノール系などのフエノールベースや、 脂肪族、 環状脂肪族や不飽和脂肪族などの骨格をベースとしてエポキシ化されたエポキシ 榭月旨 (C) と、 イミダゾール環を有し、 かつ前記エポキシ樹脂の硬化剤 (D) を 含むものである。 イミダゾール環を有する硬化剤 (D) としては、 例えば、 イミ ダゾール、 2—メチルイミダゾール、 2ーェチルー 4ーメチルイミダゾール、 2 一フエ二ルイミダゾール、 1—ベンジルー 2—メチルイミダゾール、 2—ゥンデ シルイミダゾーノレ、 2—フエ二ルー 4ーメチノレイミダゾーノレ、 ビス ( 2—ェチノレ 一 4ーメチルーイミダゾール) などが挙げられる。
エポキシ樹脂の配合量は、 全接着剤中 3 0重量%〜 9 9重量%が好ましい。 3 0重量%未満だと十分な硬化物が得られなレ、おそれがある。
上記 2成分以外に、 シァネート樹脂、 アクリル酸樹脂、 メタクリル酸樹脂、 マ レイミド樹脂などの熱硬化性樹脂や熱可塑性樹脂を配合してもよい。 また、 必要 に応じて着色剤、 無機充填材、 各種のカップリング剤、 溶媒などを添加してもよ い。
前記のィミダゾール環を有しかつ前記エポキシ樹脂の硬化剤となるものの配合 量としては、 全接着剤中 0 . 0 5重量%〜1 0重量%が好ましい。 0 . 0 5重量 %未満だと金属表面を清浄化する作用が低下し、 エポキシ樹脂を十分に硬化させ ないおそれがあり、 1 0重量%を超えると硬化反応が急激に進行し、 接着剤層の 流動性が劣るおそれがある。
接着剤の調整方法は、 例えば固形のフエノール性水酸基を有する樹脂 (A) と、 固形の硬化剤として作用する樹脂 (B) を溶媒に溶解して調整する方法、 固形の フ ノール性水酸基を有する樹脂 (A) を液状の硬化剤として作用する樹脂 ( B ) に溶解して調整する方法、 固形の硬化剤として作用する樹脂 (B ) を液状 のフ ノール性水酸基を有する樹脂 (B ) に溶解して調整する方法、 また固形の エポキシ榭脂 (C ) を溶媒に溶解した溶液に、 イミダゾール環を有しかつェポキ シ樹脂の硬化剤として作用する化合物 (D) を分散もしくは溶解する方法などが 挙げられる。 使用する溶媒としては、 アセトン、 メチルェチルケトン、 メチルイ ソブチルケトン、 シクロへキサン、 トルエン、 プチルセノレソブル、 ェチルセロソ 2003/009611
15 プル、 N—メチルピロリ ドン、 γ—ブチルラクトンなどが挙げられる。 好ましく は沸点が 2 0 0 °C以下の溶媒である。
( 1— 2 ) ステップ B
ステップ Bでは、 内層フレキシブル回路基板 2 2 0を製造する (図 2参照) 。 まず、 例えばポリイミド、 エポキシ樹脂などの、 通常フレキシブル配線板に用い られる絶縁基材 2 0 2の両面にそれぞれ銅箔 2 0 1が付いた両面板 2 1 0を用意 する (図 2 a ) 。
両面板 2 1 0は、 フレキシブル部の素材となり、 銅箔 2 0 1と絶縁基材 2 0 2 との間には、 屈曲性 ·折り曲げ性を高めるために接着剤層は存在しない方が好ま しいが、 存在しても構わない。
この両面板 2 1 0に対し、 スルーホール (貫通孔) 2 0 3を形成し、 さらにメ ツキによりスルーホール 2 0 3の内面に金属層を形成して、 表裏の電気的導通を 得る (図 2 b ) 。 なお、 図示では、 両面板 2 1 0全体に対しこれを貫通するスル 一ホール (貫通孔) 2 0 3を形成する場合が示されているが、 これに限らず、 絶 縁基材 2 0 2の一方の面の銅箔 2 0 1を残し、 絶縁基材 2 0 2およぴ他方の面の 銅箔 2 0 1を貫通する貫通孔を形成し、 その貫通孔内に金属メツキを施して表裏 の銅箔同士の電気的導通を得るようにしてもよい。
次に、 エッチングにより、 導体回路 2 0 4および導体ポスト 1 0 7を受けるこ とができるパッド (ランド) 2 0 5を形成する (図 2 c ) 。
次に、 フレキシブル部 3 3 0に相当する部分の導体回路およびその他所望の部 位に表面被覆 2 0 6 (図 2 d ) を施し、 内層フレキシブル配線板を形成する。 表 面被覆 2 0 6は、 例えばポリイミドのような樹脂、 特に樹脂フィルムで構成され るもの、 またはこのような樹脂フィルムと、 その内側 (両面板 2 1 0 ) 側に位置 する接着層とで構成されるものが挙げられる。 このような表面被覆 2 0 6には、 パッド 2 0 5上に表面被覆開口部 2 0 7を形成し、 パッド 2 0 5を露出させる。 さらに、 表面被覆開口部 2 0 7内のパッド 2 0 5の表面には、 例えば半田メッ キまたは半田ペースト、 半田ボールにより表面処理を施し、 金属層 2 0 8を形成 する (図 2 e ) 。 この金属層 2 0 8の厚みは 5 μ πι以上とされる。 好ましくは表 面被覆 2 0 6の厚さと比べて同等もしくはそれより薄く (例えば 2 ほど薄 P T/JP2003/009611
16 く) する。 金属層 2 0 8の厚みが 5 μ m未満では、 導体ボスト 1 0 7と接合する 際、 十分な半田接合をとるだけの半田が得られず、 接続が不十分となるおそれが 生じ、 好ましくない。
金属層 2 0 8を構成する金属材料としては、 特に限定されないが、 錫、 鉛、 銀、 亜鉛、 ビスマス、 アンチモン、 銅の少なくとも 1種類、 あるいは、 これらのうち の 1種以上を含む合金が挙げられる。 この場合、 合金としては、 前記金属のうち の 2種以上の金属を主とするろう材 (半田) が好ましく、 例えば、 錫一鉛系、 錫 一銀系、 錫一亜鉛系、 錫—ビスマス系、 錫一アンチモン系、 錫一銀一ビスマス系、 錫一鲖系等が挙げられる。 半田を構成する金属の組合せや組成には、 特に限定は なく、 その特性等を考慮して、 最適なものを選択すればよい。 例えば、 錫または 錫を主とする合金は、 融点が低いため、 低温での接合に好ましい。
この金属層 2 0 8を比較的厚くすることで、 これに接合される導体ボスト 1 0 7の高さを低くすることができ、 かつ接続時に溶融した金属層 2 0 8の材料中に 導体ボスト 1 0 7が十分に進入し、 浸漬されて接続することができるため、 導体 ポスト 1 0 7を作製する工程を短縮することができ、 しかも、 導体ボスト 1 0 7 の高さにばらつきがあっても、 この金属層 2 0 8の厚みによりそれらが吸収され (緩衝させることができ) 、 接続部信頼性が向上する。
積層前に、 内層フレキシブル回路基板 2 2 0を個片に裁断しても問題はない。 個片に裁断された内層フレキシブル回路基板 2 2 0を用いる場合には、 不良品を 使用せず、 良品のみを積層することができるため最終製品の歩留向上が可能であ るという利点がある。 前記外層片面回路基板 1 2 0についても同様である。
( 1 - 3 ) ステップ C
ステップ Cでは、 多層フレキシブル配線板 3 1 0を製造する (図 3参照) 。 まず、 個片の外層片面回路基板 1 2 0を内層フレキシブル回路基板 2 2 0にレ ィアップする (図 3 a ) 。 その際の位置合わせは、 例えば、 各層の導体回路に予 め形成されている位置決めマーク (図示せず) を画像認識装置により読み取り、 位置合わせする方法、 位置合わせ用のピンで位置合わせする方法を用レ、ることが できる。
次に、 重ねられた内層フレキシブル回路基板 2 2 0および片面回路基板 1 2 0 2003/009611
17
を積層、 一体化する。 このような多層化は、 熱圧着、 すなわち加熱下で圧着しつ つ行う。 その具体的方法は、 次の通りである。
半田接合が可能な温度 (ろう材が溶融する第 1の温度) に加熱して、 導体ボス ト 1 0 7力 フラックス機能付き接着剤層 1 1 1を介して、 導体ボスト 1 0 7の 金属被覆層 1 0 8 1と内層フレキシブル回路基板 2 2 0のパッド部分 2 0 5の金 属層 (半田) 2 0 8とが溶融接合するまで熱圧着し、 次いで、 前記より低い温度 (半田が溶融しない温度でかつ接着剤が硬化するのに適した第 2の温度) で再カロ 熱してフラックス機能付き接着剤層 1 1 1を硬ィ匕させ、 層間を接着させることに より、 内層フレキシブル回路基板 2 2 0の両面にそれぞれ外層片面回路基板 1 2 0を積層、 一体化する (図 3 b ) 。 このように、 熱圧着の工程において、 温度差 を設けて行う (前半を高温、 後半を低温で加熱する) ことにより、 半田 (ろう 材) を十分に溶融して接合不良を防止するとともに、 かかる半田溶融接合がなさ れた後は直ちにフラックス機能付き接着剤層を硬化させて各層の接合部、 特に溶 融接合部を固定ィ匕するので、 導通不良等を生じることなく、 信頼性の高い多層配 線板が得られるという優れた効果を発揮する。
各層を積層する方法としては、 例えば、 真空プレスまたは熱ラミネートとベー キングを併用する方法等を用いることができる。
なお、 前記第 1の温度は、 好ましくは 1 7 0〜 2 7 0 °C、 より好ましくは 1 8 5〜2 6 0 °Cとされ、 前記第 2の温度は、 好ましくは 1 2 0〜2 0 0 °C、 より好 ましくは 1 5 0〜1 9 0 °Cとすることができる。
以上により、 中心層 (厚さ方向のほぼ中心に位置する層) である内層フレキシ ブル回路基板 2 2 0の両面に外層片面回路基板 1 2 0が積層された多層部 3 2 0 と、 該多層部 3 2 0における内層フレキシブル回路基板 2 2 0が多層部 3 2 0か ら延出して構成された可撓性 (柔軟性) を有するフレキシブル部 (単層部) 3 3 0とを有する多層フレキシブル配線板 3 1 0が得られる。
以上図 1〜図 3を用いて、 多層部 3 2 0が 4層の構成について説明したが、 本 発明には内層フレキシブル配線板の片面のみにパッドを設け、 該パッド上に外層 片面回路基板の個片を 1個レイアップした、 内層フレキシブノレ配,線板を片面とし た場合の 2層の構成や、 内層フレキシブル配線板を両面とした 3層の構成のもの、 2003/009611
18 また、 片面回路基板の個片を順次レイァップした 3層以上の多層フレキシプノレ配 線板も含まれる。
次に、 図 5に基づき、 多層部 (多層部 5 2 0 ) が 6層の場合の例について説明 する。
図 5に示すような多層積層体の場合、 最外層となる片面回路基板 1 2 0と中心 層となる内層フレキシブル回路基板 2 2 0とは、 前述した実施形態 (図 1〜図 3 ) において使用されるものと同じものを用いることができる。 また、 最外層と 中心層との間に挿入される層は、 ステップ D (図 4 ) として製造される内層回路 基板 4 2 0を用いることができる。
( 2 - 1 ) ステップ D
ステップ Dでは、 内層回路基板 4 2 0を製造する (図 4参照) 。 まず、 例えば ポリイミ ド、 エポキシ樹脂などの樹脂を硬化させた絶縁材からなる絶縁基材 4 0 2の片面に銅箔 4 0 1が付いた片面積層板 4 1 0を用意する (図 4 a ) 。 この際、 絶縁基材 4 0 2と銅箔 4 0 1との間には、 導体接続の妨げとなるスミァの発生を 防ぐため、 銅箔 4 0 1と絶縁基材 4 0 2を貼り合わせるための接着剤層は存在し ない方が好ましいが、 接着剤を用いて貼りあわせたものでもよい。
前記絶縁基材 4 0 2の片面に接合された銅箔 4 0 1に対し例えばエッチングを 施すことにより、 所望の導体回路 4 0 3を形成する (図 4 b ) 。 この導体回路 4 0 3は、 導体ポスト 1 0 7を受けることができるパッド 4 0 4を有する。
さらに、 この導体回路 4 0 3に対し、 表面被覆 4 0 5を施す (図 4 c ) 。 この 表面被覆 4 0 5の形成は、 例えば絶縁性樹脂材料 4 0 5 1に接着剤 4 0 5 2を塗 布したフィルム状のもの (オーバーレイフィルム) を貼付する方法が挙げられる。 この表面被覆 4 0 5は、 導体回路 4 0 3の全体を被覆する場合に限らず、 一部を 残して被覆するのが好ましい。 すなわち、 このような表面被覆 4 0 5には、 例え ば、 レーザ法によりパッド 4 0 4上に表面被覆開口部 4 0 6を形成する (図 4 c ) 。
次に、 絶縁基材 4 0 2の所望の箇所に、 絶縁基材 4 0 2の図中下面から、 導体 回路 4 0 3が露出するまで (導体回路 4 0 3に到達するまで) 、 絶縁基材開口部 (貫通孔) 4 0 7を形成する (図 4 d ) 。 この際、 レーザー法を用いると開口部 4 0 7を容易に形成することができ、 か つ小径のものでも精度良く形成することができる。 さらに、 過マンガン酸力リウ ム水溶液によるゥエツトデスミアまたはプラズマによるドライデスミアなどの方 法により、 絶縁基材開口部 4 0 7内に残存している樹脂を除去すると、 層間接続 の信頼性が向上し好ましい。
絶縁基材開口部 4 0 7の径は、 特に限定されず、 その好ましい径およびそれに よる効果は、 前記ステップ Aの絶縁基材開口部 1 0 6で述べたのと同様である。 次に、 絶縁基材開口部 4 0 7内に、 突起状端子として、 銅ボスト 4 0 9を形成 する (図 4 e ) 。 銅ボスト 4 0 9は、 その一端が導体回路 4 0 3と電気的に接続 (導通) され、 他端部は、 絶縁基材 4 0 2の図中下面から所定長さ突出するよう に形成される。 さらにこの銅ボスト 4 0 9の突出部分には、 該突出部分を覆う金 属被覆層 4 0 8 1が形成される (図 4 f ) 。 これら銅ボスト 4 0 9と金属被覆層 4 0 8 1とで、 導体ボスト (導体 2層ボスト) 4 0 8が構成される。
導体ボスト 4 0 8の形成方法、 金属被覆層 4 0 8 1を構成する金属材料、 金属 被覆層 4 0 8 1の好ましい厚み等については、 前記ステップ Aで述べたものと同 様である。
また、 表面被覆開口部 4 0 6内には、 例えば、 半田メツキ、 半田ペースト、 半 田ボール等のろう材による金属層 4 1 1を施す。 この金属層 4 1 1は、 金属被覆 層 4 0 8 1の形成と前後して、 あるいは同時に行うことができる。
この金属層 4 1 1の厚みは、 好ましくは 5 μ πι以上とされる。 より好ましくは 表面被覆 4 0 5の厚さと比べて同等もしくはそれより薄く (例えば 2 ^ ηιほど薄 く) する。 その理由は、 前記金属層 2 0 8の厚みと同様である。
この金属層 4 1 1を比較的厚くすることで、 これ接合する導体ポスト 1 0 7の 高さを低くすることができ、 かつ接続時に溶融した金属層 4 1 1の材料中に導体 ボスト 1 0 7が十分に進入し、 浸漬されて接続することができるため、 導体ボス ト 1 0 7を作製する工程を短縮することができ、 しかも、 導体ボスト 1 0 7の高 さにばらつきがあっても、 この金属層 4 1 1の厚みによりそれらが吸収され (緩 衝させることができ) 、 接続部信頼性が向上する。
金属層 4 1 1を構成する金属材料としては、 特に限定されないが、 錫、 鉛、 銀、 亜鉛、 ビスマス、 アンチモン、 銅の少なくとも 1種類、 あるいは、 これらのうち の 1種以上を含む合金が挙げられる。 この場合、 合金としては、 前記金属のうち の 2種以上の金属を主とするろう材 (半田) が好ましく、 例えば、 錫一鉛系、 錫 一銀系、 錫一亜鉛系、 錫一ビスマス系、 錫一アンチモン系、 錫一銀一ビスマス系、 錫一銅系等が挙げられる。 半田を構成する金属の組合せや組成には、 特に限定は なく、 その特'1~生等を考慮して、 最適なものを選択すればよい。 例えば、 錫または 錫を主とする合金は、 融点が低いため、 低温での接合に好ましい。
なお、 このような内層回路基板 4 2 0は、 積層前に個片に裁断しても問題はな い。
次に、 絶縁基材 4 0 2の導体ボスト 4 0 8が突出した面側に、 フラックス機能 を有するフラックス機能付き接着剤層 (単に 「接着剤層」 とも言う) 4 1 2を形 成する (図 4 g ) 。 ここで用いられるフラックス機能付き接着剤や接着剤層の形 成方法等の詳細については、 前述した通りである。 なお、 この接着剤層 (接着 層) 4 1 2は、 必要に応じ、 導体ポスト 4 0 8と接続するためのパッドを有する 側に形成しても差し支えはない。 すなわち、 積層する各層間に接着剤層 4 1 2が 1層介挿されていればよい。
最後に、 多層部 5 2 0のサイズに応じて切断し、 内層片面回路基板 4 2 0を得 る (図 4 g ) 。
また、 この内層回路基板 4 2 0の他の製造方法としては、 片面積層板 4 1 0に 対し、 先に絶縁基材開口部 4 0 7を形成し、 さらに導体ポスト 4 0 8を形成後、 エッチング等により導体回路 4 0 3を形成し、 その後導体回路 4 0 3に表面被覆 4 0 5を施してもよい。
( 2 - 2 ) ステップ E
ステツプ Eでは、 多層フレキシブル配 II板 5 1 0を製造する (図 5参照) 。 まず、 中心層の内層フレキシブル回路基板 2 2 0に内層回路基板 4 2 0をレイ アップ (積層) し、 さらにその外側に最外層となる片面回路基板 1 2 0をレイァ ップする (図 5 a ) 。 その際の位置合わせは、 前記ステップ Cと同様の方法で行 うことができる。 なお、 7層以上を積層する場合は、 内層回路基板 4 2 0を所望 の枚数積層すればよい。 T/JP2003/009611
21
次に、 重ねられた内層フレキシブル回路基板 2 2 0、 内層回路基板 4 2 0およ ぴ片面回路基板 1 2 0を積層、 一体化する。 このような多層化は、 熱圧着、 すな わち加熱下で圧着しつつ行う。 その方法 (熱圧着方法) は、 特に限定されず、 中 心層になる内層フレキシブル回路基板 2 2 0の個片をレイアップするごとに熱圧 着してもよいし、 全ての外層片面回路基板 1 2 0の個片をレイアップした後、 一 括して熱圧着してもよい。 また、 レイアップの仮接着時に、 半田の融点を超える 温度の熱を加えることにより、 導体ポストと接続されるパッド部の半田を溶融し て接合し、 その後、 融点以下の温度に加熱してこの層間の接着剤層の接着剤を硬 ィ匕させ、 積層、 一体化することもできる。
これらの場合、 具体的には、 半田接合が可能な温度 (ろう材が溶融する第 1の 温度) に加熱して、 導体ボスト 1 0 7、 4 0 8を、 フラックス機能付き接着剤層 1 1 1、 4 1 2を介して、 導体ボスト 1 0 7、 4 0 8の金属被覆層 1 0 8 1、 4 0 8 1と内層フレキシブル回路基板 2 2 0、 内層回路基板 4 2 0の金属層 (半 田) 2 0 8、 4 1 1とが溶融接合するまで、 熱圧着する。 そして、 この熱圧着が 行われた後、 前記より低い温度 (半田が溶融しない温度でかつ接着剤が硬化する のに適した第 2の温度) で再加熱してフラックス機能付き接着剤層 1 1 1、 4 1 2を硬ィ匕させ、 層間を接着させる。 このようにして、 内層フレキシブル回路基板 2 2 0の両面にそれぞれ内層回路基板 4 2 0が重ねられ、 さらにその両面に外層 片面回路基板 1 2 0が重ねられた多層フレキシブル配線板 5 1 0が積層、 一体ィ匕 されて得られる (図 5 b ) 。
なお、 熱圧着の工程において、 温度差を設けて行う (前半を高温、 後半を低温 で加熱する) ことによる効果や、 第 1の温度および第 2の温度の好適な範囲は、 前記ステップ Cで述べたのと同様である。
以上により、 中心層 (厚さ方向のほぼ中心に位置する層) である内層フレキシ プル回路基板 2 2 0の両面に内層回路基板 4 2 0、 さらにその両面に外層片面回 路基板 1 2 0が積層された多層部 5 2 0と、 該多層部 5 2 0における内層フレキ シブル回路基板 2 2 0が多層部 5 2 0から延出して構成された可撓性 (柔軟性) を有するフレキシブル部 (単層部) 5 3 0とを有する多層フレキシブル配線板 5 1 0が得られる。 T脑 03/009611
22
図 6〜図 8は、 本発明を多層フレキシブル配線板およびその製造方法に適用し た場合の他の実施形態を示す断面図である。 図 8 bは、 多層部 6 2 0とフレキシ ブル部 (単層部) 6 3 0を併せ持つ 6層の多層フレキシブル配線板 6 1 0を示す 断面図である。
本発明の多層フレキシブル配線板の製造方法として、 6層フレキシブル配線板 の一例を説明する。 ステップ F (図 6 ) として、 本発明の回路基板である外層片 面回路基板 1 3 0を製造する。 また、 前記と同様のステップ B (図 2 ) として、 本発明の回路基板である内層フレキシブル回路基板 2 2 0を製造する。 また、 ス テツプ G (図 7 ) として、 本発明の回路基板である内層フレキシブル配線板 4 7 0を製造する。 その後、 ステップ H (図 8 ) として、 内層フレキシブル回路基板 2 2 0の両面に内層フレキシブル配線板 4 7 0を積層し、 さらにその両面に外層 片面回路基板 1 2 0を積層し、 これらを接合 (一体化) して多層フレキシブル配 線板 6 1 0を製造する。 以上、 4ステップに分けることができる。 ステップ F、 B、 Gの順序は、 特に限定されないが、 例えば、 ステップ F、 B、 Gの順序で行 い、 その後、 ステップ Hを行うことができる。
7層以上の積層の場合、 前記ステップ Fで作製した片面回路基板 1 3 0を最外 層の配線板として用いる。 この最外層である片面回路基板 1 3 0と中心層である 内層フレキシブ^^回路基板 2 2 0との間に、 ステップ G (図 7 ) で得られる内層 フレキシブル配線板 4 7 0 (フラックス機能付き接着剤層 4 5 7または 4 5 8の いずれか一方がないものでも可) を所望の層数、 積層すれば良い。 以下、 各ステ ップについて説明する。
( 3 - 1 ) ステップ F
ステップ Fでは、 外層片面回路基板 1 3 0を製造する (図 6参照) 。 まず、 例 えばポリイミド、 エポキシ樹脂などの樹脂を硬化させた絶縁材からなる絶縁基材 1 0 2の片面に銅箔 1 0 1が付いた片面積層板 1 1 0を用意する (図 6 a ) 。 こ の際、 絶縁基材 1 0 2と銅箔 1 0 1 との間には、 導体接続の妨げとなるスミアの 発生を防ぐため、 銅箔 1 0 1と絶縁基材 1 0 2を貼り合わせるための接着剤層は 存在しない方が好ましいが、 接着剤を用いて貼りあわせたものでもよい。
次に、 絶縁基材 1 0 2の所望の箇所に、 絶縁基材 1 0 2の図中下面から、 銅箔 T/JP2003/009611
23
1 0 1が露出するまで (銅箔 1 0 1に到達するまで) 、 絶縁基材開口部 (貫通 孔) 1 0 6を形成する (図 6 b ) 。
この際、 レーザー法を用いると開口部 1 0 6を容易に形成することができ、 か つ小径のものでも精度良く形成することができる。 さらに、 過マンガン酸力リウ ム水溶液によるゥエツトデスミアまたはプラズマによるドライデスミアなどの方 法により、 絶縁基材開口部 1 0 6内に残存している樹脂を除去すると、 層間接続 の信頼性が向上し好ましい。
絶縁基材開口部 1 0 6の径は、 特に限定されず、 その好ましい径およびそれに よる効果は、 前記ステップ Aの絶縁基材開口部 1 0 6で述べたのと同様である。 次に、 絶縁基材開口部 1 0 6内に、 突起状端子として、 銅ボスト 1 0 8を形成 する (図 6 c ) 。 銅ボスト 1 0 8は、 その一端が銅箔 1 0 1の導体回路 1 0 3と なるべき部位と電気的に接続 (導通) され、 他端部は、 絶縁基材 1 0 2の図中下 面から所定長さ突出するように形成される。 さらにこの銅ポスト 1 0 8の突出部 分には、 該突出部分を覆う金属被覆層 1 0 8 1が形成される (図 6 d ) 。 これら 銅ポスト 1 0 8と金属被覆層 1 0 8 1とで、 導体ポスト (導体 2層ボスト) 1 0
7が構成される。
導体ボスト 1 0 7の形成方法、 金属被覆層 1 0 8 1を構成する金属材料、 金属 被覆層 1 0 8 1の厚み等については、 前記ステップ Aまたは Dで述べたのと同様 である。
次に、 絶縁基材 1 0 2の片面に接合された銅箔 1 0 1に対し例えばェツチング を施すことにより、 所望の導体回路 1 0 3を形成する (図 6 e ) 。 さらに、 この 導体回路 1 0 3に対し、 表面被覆 1 0 4を施す (図 6 ί ) 。 この表面被覆 1 0 4 の形成は、 例えば絶縁性樹脂材料に接着剤を塗布したオーバーレイフィルムを貼 付する力 \ または、 インクを直接絶縁基材 1 0 2に印刷する方法などがあるが、 図 6に示す構成では、 表面被覆 1 0 4は、 インクを直接印刷したものを示す。 な お、 この表面被覆 1 0 4は、 導体回路 1 0 3の全体を被覆する場合に限らず、 一 部を残して被覆するのが好ましい。 すなわち、 表面被覆 1 0 4上に、 部品などを 実装するために、 前記開口部 1 0 5と同様の開口部 1 0 5を形成してもよレ、。 ま たその際、 必要に応じて、 メツキなどの表面処理を施してもよい。 次に、 表面被覆 1 0 4の開口部 1 0 5内に、 金属層 1 0 9を施してもよい (図 6 f ) 。 この金属層 1 0 9は、 金属被覆層 1 0 8 1の形成と前後して、 あるいは 同時に行うことができる。
最後に、 図 6 f で得られたものを、 多層部 6 2 0のサイズに応じて切断し、 外 層片面回路基板 1 3 0を得る (図 6 g ) 。
( 3 - 2 ) ステップ G
ステップ Gでは、 内層回路基板 4 7 0を製造する (図 7参照) 。 まず、 例えば ポリイミド、 エポキシ樹脂などの通常フレキシブル配線板に用いられる絶縁基材 で構成される絶縁基材 4 5 2の片面にそれぞれ銅箔 4 5 1が付いた片面積層板 4 6 0を用意する (図 7 a ) 。 この際、 絶縁基材 4 5 2と銅箔 4 5 1との間には、 導体接続の妨げとなるスミアの発生を防ぐため、 銅箔 4 5 1と絶縁基材 4 5 2を 貼り合わせるための接着剤層は存在しない方が好ましいが、 接着剤を用いて貼り あわせたものでもよい。
次に、 絶縁基材 4 5 2の所望の箇所に、 絶縁基材 4 5 2の図中下面から、 銅箔 4 5 1が露出するまで (銅箔 4 5 1に到達するまで) 、 絶縁基材開口部 (貫通 孔) 4 5 3を形成する (図 7 b ) 。
この際、 レーザー法を用いると開口部 4 5 3を容易に形成することができ、 か つ小径のものも精度良く形成することができる。 さらに、 過マンガン酸カリウム 水溶液によるゥエツトデスミアまたはプラズマによるドライデスミアなどの方法 により、 絶縁基材開口部 4 5 3内に残存している樹脂を除去すると、 層間接続の 信頼性が向上し好ましい。
絶縁基材開口部 4 5 3の径は、 特に限定されず、 その好ましい径およびそれに よる効果は、 前記ステップ Aの絶縁基材開口部 1 0 6で述べたのと同様である。 次に、 絶縁基材開口部 4 5 3内に、 突起状端子として、 銅ポスト 4 5 4を形成 する (図 7 c ) 。 銅ポスト 4 5 4は、 その一端が銅箔 4 5 1の導体回路 4 5 6と なるべき部位と電気的に接続 (導通) され、 他端部は、 絶縁基材 4 5 2の図中下 面から所定長さ突出するように形成される。 さらにこの銅ポスト 4 5 4の突出部 分には、 該突出部分を覆う金属被覆層 4 5 4 1が形成される (図 7 d ) 。 これら 銅ボスト 4 5 4と金属被覆層 4 5 4 1とで、 導体ボスト (導体 2層ボスト) 4 5 03 009611
25
5が構成される。
導体ボスト 4 5 5の形成方法、 金属被覆層 4 5 4 1を構成する金属材料、 金属 被覆層 4 5 4 1の厚み等については、 前記ステップ Aまたは Dで述べたのと同様 である。
次に、 絶縁基材 4 5 2の片面に接合された銅箔 4 5 1に対し例えばェツチング を施すことにより、 所望の導体回路 4 5 6を形成する (図 7 e ) 。
さらに、 この導体回路 4 5 6を設けた絶縁基材 4 5 2の両面に、 それぞれ、 フ ラックス機能を有するフラックス機能付き接着剤層 (単に 「接着剤層」 とも言 う) 4 5 7、 4 5 8を形成する (図 7 f ) 。 ここで用いられるフラックス機能付 き接着剤や接着剤層の形成方法等の詳細については、 前述した通りである。
最後に、 図 7 f で得られたものを、 多層部 6 2 0のサイズに応じて切断し、 内 層フレキシブル配,線板 (内層片面回路基板) 4 7 0を得る (図 7 g ) 。
また、 この内層フレキシブル配線板 4 7 0の他の製造方法としては、 片面積層 板 4 6 0に対し、 先にエッチング等により導体回路 4 5 6を形成し、 その後、 絶 縁基材開口部 4 5 3を形成し、 さらに導体ボスト 4 5 4を形成してもよい。
( 3 - 3 ) ステップ B
前記ステップ Bと同様の方法で、 内層フレキシブル回路基板 2 2 0を製造する。 この内層フレキシブル回路基板 2 2 0は、 多層フレキシブル配線板 6 1 0におけ る中心層となる。
( 3 - 4 ) ステップ H
ステップ Hでは、 多層フレキシブル配線板 6 1 0を製造する (図 8参照) 。 まず、 中心層の内層両面フレキシブル回路基板 2 2 0に内層片面回路基板 4 7 0をレイアップ (積層) し、 さらにその外側に最外層となる片面回路基板 1 3 0 をレイアップする (図 8 a ) 。 その際の位置合わせは、 前記ステップ C、 Eと同 様の方法で行うことができる。 なお、 7層以上を積層する場合は、 内層フレキシ プル配線板 4 7 0 (フラックス機能付き接着剤層 4 5 7または 4 5 8のいずれか 一方がないものでも可) を所望の枚数積層すればよレ、。
次に、 重ねられた内層両面フレキシブル回路基板 2 2 0、 内層片面回路基板 4 7 0および片面回路基板 1 3 0を積層、 一体化する。 このような多層化は、 熱圧 P T/JP2003/009611
26 着、 すなわち加熱下で圧着しつつ行う。 その方法 (熱圧着方法) は、 特に限定さ れず、 中心層になる内層フレキシブル回路基板 2 2 0の個片にレイアップするご とに熱圧着してもよいし、 外層片面回路基板 1 3 0の個片をレイアップした後、 一括して熱圧着してもよい。 また、 レイアップの仮接着時に、 半田の融点を超え る温度の熱を加えることにより、 導体ポストと接続されるパッド部 (ランド部) の半田を溶融して接合し、 その後、 融点以下の温度に加熱してこの層間の接着剤 層の接着剤を硬ィ匕させ、 積層、 一体化することもできる。
これらの場合、 具体的には、 半田接合が可能な温度 (ろう材が溶融する第 1の 温度) に加熱して、 導体ボスト 1 0 7、 4 5 5を、 フラックス機能付き接着剤層 4 5 7、 4 5 8を介して、 導体ポスト 4 5 5の金属被覆層 4 5 4 1と内層フレキ シブル回路基板 2 2 0の金属層 (半田) 2 0 8とが溶融接合し、 かつ導体ボスト 1 0 7の金属被覆層 1 0 8 1が内層フレキシブル回路基板 4 7 0の導体回路 4 5 6の所定箇所 (パット部またはランド部など) に溶融接合するまで、 熱圧着する。 そして、 この熱圧着が行われた後、 前記より低い温度 (半田が溶融しない温度で かつ接着剤が硬化するのに適した第 2の温度) で再加熱してフラックス機能付き 接着剤層 4 5 7、 4 5 8を硬ィ匕させ、 層間を接着させる。 このようにして、 内層 フレキシブル回路基板 2 2 0の両面にそれぞれ内層フレキシブル配線板 4 7 0が 重ねられ、 さらにその両面に外層片面回路基板 1 3 0が重ねられ、 これらが積層、 一体ィ匕して多層フレキシブル配線板 6 1 0が得られる (図 8 b ) 。
なお、 熱圧着の工程において、 温度差を設けて行う (前半を高温、 後半を低温 で加熱する) ことによる効果や、 第 1の温度および第 2の温度の好適は範囲は、 前記ステップ Cで述べたのと同様である。
なお、 各層を一体化する方法として、 真空プレスまたは熱ラミネートとベーキ ングを併用する方法等を用いることができる。
以上により、 中心層である内層フレキシブル回路基板 2 2 0の両面に内層フレ キシブル配線板 4 7 0、 さらにその両面に外層片面回路基板 1 3 0が積層された 多層部 6 2 0と、 該多層部 6 2 0における内層フレキシブル回路基板 2 2 0が多 層部 6 2 0から延出して構成された可撓性 (柔軟性) を有するフレキシブル部 6 3 0とを有する多層フレキシブル配線板 6 1 0が得られる。 このような図 6〜図 8に示す実施形態では、 内層フレキシブル配線板 4 7 0カ その両面にそれぞれフラックス機能付き接着剤層 4 5 7、 4 5 8を有するため、 図 1〜図 3に示す実施形態や図 4、 図 5に示す実施形態に比べ、 表面被覆層を施 す工程が不要で、 工程を省略することができるという利点がある。
また、 ステップ Aで得られた片面回路基板 1 2 0と、 ステップ Gで得られたフ ラックス機能付接着剤層 4 5 7のない内層フレキシブル配線板 4 7 0と、 ステツ プ Bで得られた中心層の内層両面フレキシブル回路基板 2 2 0とを組み合わせて も同様の工程省略ができる。
以上図 6〜図 8を用いて、 多層部 6 2 0が 6層の構成について説明したが、 本 発明には、 内層フレキシブル回路基板の片面のみにランド部 (パット部) を設け、 該ランド部上に外層片面フレキシブル回路基板、 内層片面フレキシブル回路基板 の個片を各 1個積層した内層フレキシブル回路基板を片面とした場合の 3層の構 成や、 内層フレキシブル回路基板を両面とした 4層の構成のもの、 また、 片面回 路基板の個片を順次積層した 3層以上の多層フレキシブルプリント配線板も含ま れる。
また、 単層部 (薄層部) は、 多層部の中心層が延出して形成されたものに限ら ず、 多層部を構成する任意の少なくとも 1層で構成されていればよく、 例えば、 多層部の最外層が延出して単層部を形成するものでもよい。
実施例 1
[外層片面回路基板の作製 (ステップ A) ]
厚み 6 0 μ mのエポキシ樹脂を硬化させた絶縁基材 1 0 2 (住友ベータライト 製 スミライト A P L— 4 0 0 1 ) 上に厚み 1 2 i mの同箔 1 0 1が付いた片面 銅張積層板 1 1 0に対しエッチングを施して、 導体回路 1 0 3を形成し、 液状レ ジスト (日立化成製 S R 9 0 0 0 W) を印刷し、 表面被覆 1 0 4を施した。 次いで、 絶縁基材 1 0 2側の面から、 C〇 2レーザーを照射して 1 0 0 m径 の絶縁基材開口部 1 0 6を形成し、 過マンガン酸力リゥム水溶液によるデスミァ を施した。
この絶縁基材開口部 1 0 6内に電解銅メツキを施して高さ 1 0 0 μ ιηの銅ポス ト 1 0 8を形成した後、 厚み 1 0 // mの半田メツキを施し、 導体ボスト (導体2 層ポスト) 1 07を形成した。
次に、 絶縁基材 1 0 2の導体ボスト 1 0 7が突出した面に厚み 2 0 μ mの熱硬 化性のフラックス機能付き接着剤シート (住友ベークライト製 層間接着シート
RCF) をラミネートし、 フラックス機能付き接着剤層 1 1 1を形成した。 最後に、 積層部 (多層部) のサイズに外形加工し、 外層片面回路基板 1 2 0を 得た (図 1 h) 。
[内層フレキシブル配線板の作製 (ステップ B) ]
厚み 1 8 μ mの銅箔 2 0 1が、 厚み 2 5 μ mのポリイミ ドフィルム (絶縁基 材) による絶縁基材 2 0 2の両面に付された 2層両面銅張積層板 2 1 0 (新日鐡 ィ匕学製 エスパネックス S B— 1 8— 2 5— 1 8 FR) を用意し、 ドリルによ る孔明け後、 ダイレクトメツキし、 電解^!メツキによりスルーホール 2 0 3を形 成し、 表裏の電気的導通を得た。 次に、 エッチングにより、 導体回路 2 04およ び導体ボスト 1 0 7を受けることができるパッド 2 0 5を形成した。 その後、 導 体回路 2 0 4に、 厚み 2 5 μ mのポリイミド (鐘淵化学工業製 了ピカル N P I ) と厚み 2 5 jamの熱硬化性接着剤 (住友ベークライト製) とによる表面被覆 2 0 6を形成した。
次に、 ノ ノド 2 0 5を開口するため C02レーザーを照射して孔明けし、 デス ミァを行い、 表面被覆開口部 2 0 7を作製した。
次に、 この開口部 2 0 7内に金属層 2 08として厚み 4 5 mの半田メツキを 形成し、 シートに面付けされた内層フレキシブル回路基板 2 2 0を得た (図 2 e) 。
[多層フレキシブル配線板の作製 (ステップ C) ]
外層片面回路基板 1 2 0を内層フレキシブル回路基板 2 2 0の両面に、 位置合 わせ用のピンガイド付き治具を用いてレイアップ (積層) した (図 3 a) 。 その 後、 真空式加圧ラミネーターで 1 3 0 °C、 0. 6MP a、 3 0秒で仮接着した後、 油圧式プレスで 2 5 0°C、 1. OMP aで 3分間プレスし、 フラックス機能付き 接着剤層 1 1 1を介して、 導体ボスト 1 0 7を、 内層フレキシブル回路基板2 2 0のパッド 20 5上にある金属層 2 0 8の半田と溶融接合して金属接合を形成し、 次いで温度 1 5 0°C、 2MP a、 6 0分間加熱して接着剤を硬化させ、 各層を積 層、 一体化した多層フレキシブル配線板 310を得た (図 3 b) 。
実施例 2
外層片面回路基板 120の作製の際、 絶縁基材開口部 106の径を最小 50 μ πιまで変化させて、 導体ボスト 1 07を形成した以外は実施例 1と同様の方法 で、 多層フレキシブル配線板 310を得た (図 3 b) 。
実施例 3
外層片面回路基板 1 20の作製の際、 銅ボスト 108を形成する工程で無電解 銅メツキを施した後、 電解銅メツキを行い、 更に半田メツキによる金属被覆層 1 081を形成して導体ボスト 107とした以外は実施例 1と同様の方法で、 多層 フレキシプル配線板 3 10を得た (図 3 b ) 。
実施例 4
内層フレキシブル回路基板 220の作製の際、 パッド 205上に表面被覆開口 部 207がー致するようにあらかじめ金型にて打抜き加工し孔明けがなされた力 バーレイにより、 両面の全面にそれぞれ表面被覆 206を形成した以外は実施例 1と同様の方法で、 多層フレキシブル配線板 31 0を得た (図 3 b ) 。
実施例 5
多層フレキシブル配線板 310を作製するために各層を積層する際、 仮接着を 0.3MP aで行った以外は実施例 1と同様の方法で、 多層フレキシブル配線板 310を得た (図 3 b) 。
実施例 6
[外層片面回路基板の作製 (ステップ F) ]
厚み 50 μ mのエポキシ樹脂を硬化させた絶縁基材 102 (住友べークライト 製 スミライト APL— 4001) 上に厚み 1 2 μπιの銅箔 101が付いた片面 銅張積層板 1 10を用意し、 絶縁基材 1 02側の面から、 UVレーザーを照射し て、 1 00 μ m径の絶縁基材開口部 106を形成し、 過マンガン酸力リゥム水溶 液によるデスミアを施した。
この絶縁基材開口部 106内に電解銅めつきを施し高さ とした後、 厚 み 5 / mの半田メツキを施し、 導体ポスト (導体 2層ポスト) 107を形成した。 次に、 片面銅張積層板 1 10の銅箔 101に対しエッチングを施して、 導体回 路 103を形成し、 液状レジスト (日立化成製 S R 9000W) を印刷し、 表 面被覆 104を施した。
最後に、 積層部 (多層部) のサイズに外形加工し、 外層片面回路基板 1 30を 得た (図 6 g) 。
[内層片面回路基板の作製 (ステップ G) ]
厚み 50 μ mのエポキシ樹脂を硬化させた絶縁基材 452 (住友ベータライト 製 スミライト APL— 4001) 上に厚み 12 tmの銅箔 451が付いた片面 銅張積層板 460を用意し、 絶縁基材 452側の面から、 UVレーザーを照射し て、 100 μπι径の絶縁基材開口部 453を形成し、 過マンガン酸力リゥム水溶 ί夜によるデスミアを施した。
この絶縁基材開口部 453内に電解銅めつきを施して高さ 55 imの銅ポスト 454を形成した後、 厚み 5 /zmの半田めつきを施し、 導体ポスト (導体 2層ポ スト) 455を形成した。
次に、 片面銅張積層板 460の銅箔 45 1に対しエッチングを施して、 導体回 路 456を形成した。
次に、 絶縁基材 (支持基板) 452の両面、 すなわち導体回路 456側および 導体ポスト 455側のそれぞれの面に、 厚み 20 μπιの熱硬化性のフラックス機 能付き接着剤シート (住友ベークライト製 層間接着シート RCF) をラミネ ートし、 フラックス機能付き接着剤層 457および 458を形成した。
最後に、 積層部 (多層部) のサイズに外形加工し、 内層片面回路基板 470を 得た。 (図 7 g ) 。
[内層フレキシブル回路基板の作製 (ステップ B) ]
厚み 1 2 μ mの銅箔 20 1力 厚み 25 μ mのポリイミ ドフィルム (絶縁基 材) による絶縁基材 202の両面に付された 2層両面銅張積層板 210 (三井化 学製 NEX23 FE (25 T) ) を用意し、 ドリルによる孔明け後、 電解銅メ ツキによりスルーホール 203を形成し、 表裏の電気的導通を得た。 次に、 エツ チングにより、 導体回路 204および導体ポスト 455を受けることができるラ ンド (パッド) 205を形成した。 その後、 導体回路 204に、厚み 25 μπιの ポリイミド (鐘淵化学工業製 アビカル NP I) と厚み 25 /zmの熱硬化性接着 剤 (住友ベークライト製) とによる表面被覆 2 0 6を形成した。 次にランド 2 0
5を開口するため C O 2レーザーを照射して孔明けし、 デスミアを行い、 表面被 覆開口部 2 0 7を作製した。
次に、 この開口部 2 0 7内に金属層 2 0 8として厚み 4 5 μ πιの半田メツキを 形成し、 シートに面付けされた内層フレキシブル回路基板 2 2 0を得た (図 2 e ) 。
[多層フレキシブルプリント配線板の作製 (ステップ H) ]
外層片面回路基板 1 3 0、 内層片面回路基板 4 7 0をそれぞれ内層フレキシブ ル回路基板 2 2 0の両面に、 位置合わせ用のピンガイド付き治具を用いてレイァ ップ (積層) した (図 8 a ) 。 その後、 真空式加圧ラミネーターで 1 3 0 °C、 0 . 2 M P a、 6 0秒で仮接着した後、 油圧式プレスで 2 6 0 °C、 0 . 0 2 M P aで 3 0秒間プレスし、 フラックス機能付き接着剤層 4 5 7を介して、 導体ポスト 1 0 7を内層片面回路基板 4 7 0のランド (パッド) 4 5 6と、 およぴフラックス 機能付き接着剤層 4 5 8を介して、 導体ボスト 4 5 5を内層フレキシブル回路基 板 2 2 0のランド (パッド) 2 0 5上にある金属層 2 0 8の半田とそれぞれ溶 ΐ 接合して金属接合を形成する。 次いで、 温度 1 5 0 °C、 2 M P a、 6 0分間加熱 して接着剤を硬化させ、 各層を積層、 一体化した多層フレキシブルプリント配線 板 6 1 0を得た (図 8 b ) 。
実施例 7
外層片面回路基板 1 3 0の作製の際、 絶縁基材開口部 1 0 6の径を最小 5 0 mまで変ィ匕させて、 導体ボスト 1 0 7を形成した以外は実施例 6と同様の方法 で、 多層フレキシブル配線板 6 1 0を得た (図 8 b ) 。
実施例 8
- 内層フレキシプル回路基板 2 2 0の作製の際、 パッド 2 0 5上に表面被覆開口 部 2 0 7がー致するようにあらかじめ金型にて打抜き加工し孔明けがなされた力 バーレイにより、 両面の全面にそれぞれ表面被覆 2 0 6を形成した以外は実施例 6と同様の方法で、 多層フレキシブル配線板 6 1 0を得た (図 8 b ) 。
実施例 9
接着剤層 4 5 7に代わり、 厚み 2 5 μ mのポリイミド (鐘淵化学工業製 ァピ 2003/009611
32 カル N P I ) と厚み 2 5 μ mの熱硬化性接着剤 (住友ベータライト製) とによる 表面被覆 40 5を形成した以外は実施例 6の内層片面回路基板 4 7 0と同様の内 層片面回路基板 4 2 0をステップ Dにより製造したもの (図 4 g) を用いるとと もに、 導体ボスト 1 0 7 (高さ 7 0 μπιの銅メツキによる鲖ポストに、 厚み 1 0 mの半田メツキを被覆したもの) が突出している側に厚み 2 0 /imの熱硬化性 のフラックス機能付き接着剤シート (住友ベークライト製 層間接着シート
RCF) をラミネートした以外は実施例 6の外層片面回路基板 1 2 0と同様の 外層片面回路基板 1 20をステップ Aにより製造したもの (図 l h) を用い、 そ れ以外は実施例 6と同様にして、 多層フレキシブル配線板 5 1 0を得た (図 5 b;) 。
実施例 1 0
外層片面回路基板 1 2 0の作製の際、 絶縁基材開口部 1 0 6の径を最小 5 0 μ mまで変化させて、 導体ボスト 1 0 7を形成した以外は実施例 9と同様の方法 ■ で、 多層フレキシブル配線板 5 1 0を得た (図 5 b) 。
実施例 1 1
内層フレキシブル回路基板 2 2 0の作製の際、 パッド 2 0 5上に表面被覆開口 部 20 7がー致するようにあらかじめ金型にて打抜き加工し孔明けがなされた力 パーレイにより、 両面の全面にそれぞれ表面被覆 2 0 6を形成した以外は実施例 9と同様の方法で、 多層フレキシブル配線板 5 1 0を得た (図 5 b) 。
実施例 1 2
[外層片面回路基板の作製 (ステップ A) ]
実施例 1において、 絶縁基材 (支持基材) 1 0 2を、 厚み 5 5 μ mのエポキシ 樹脂を硬化させたもの (住友ベークライト製 スミライト C LB u— 1 0 0 1) に変更し、 表面被覆 1 04に用いた液状レジストを、 日立化成製 7 1 0 1 Gに 変更した。
また、 レーザー加工に用いたレーザー種を UVレーザーに変更し、 Ι Ο θ ίΐη 径の開口部 1 0 6を作製した。 この開口部 1 0 6に電解銅ボストを作製し、 その 高さを 7 0 μ πιとした以外は実施例 1と同様の方法で得られた外層片面回路基板 1 2 0とした。 2003/009611
33
[内層フレキシブル配線板の作製 (ステップ B) ]
内層フレキシブル配線板として、 両面銅張積層板 210を新日鐡ィ匕学製 エス パネックス SB— 12— 25— 12CEに変更し、 この内層フレキシブル配線 板上の開口部 207に、 表面処理 (金属層) 208として厚み 23 inの半田メ ツキを形成した以外は実施例 1と同様の方法で内層フレキシプル配線板 220を 得た。
[外層フレキシブル配線板の作製 (ステップ C) ]
多層フレキシブル配線板の作製において、 レイアップ後、 真空ラミネーターを 使用せず、 直接油圧プレスで 260 °C、 0. 02MP aで 1分間プレスし、 次レヽ で 180 °C、 60分間加熱した以外は実施例 1と同様の方法で多層フレキシプル 配線板 31 0を得た。
比較例 1
外層片面板 1 20のフラックス機能付接着剤シート 1 1 1をフラックス機能の ない一般的な接着剤シート (デュポン製 パイララックス L F 100 ) に変更し、 金属被覆層 1081のない銅ポスト 108のみの導体ポストを形成し、 さらに、 内層両面板 220のパッド 205上の半田メツキ (金属層) 208の厚みを 3 μ mとした以外は、 実施例 1と同様の方法で多層フレキシブル配線板を得た。 比較例 2
フラックス機能のない一般的な接着剤シートとして、 ソニーケミカル製 D 34 1に変更した以外は比較例 1と同様の方法で多層フレキシプルプリント配線板を 得た。
比較例 3
フラックス機能のない一般的な接着剤シートとして、 東レ製 TS A— 2103 に変更した以外は比較例 1と同様の方法で多層フレキシブルプリント配線板を得 た。
[評価]
前記実施例 1〜12の各多層フレキシブル配線板は、 金属同士で層間接続部が 確実に金属接合されており、 温度サイクル試験 (ホットオイル試験) として、 高 温: 260°CX 5秒処理後、 低温: 23 °C X 20秒処理を交互に繰り返し、 こ P T/JP2003/009611
34
れを 1 0 0サイクル行ったところ、 いずれも断線不良の発生はなく、 金属接合部 の接合状態も良好であり、 また、 導通抵抗を測定したところ、 いずれも抵抗の上 昇は生じなかった。
各実施例 1〜1 2においては、 外層片面回路基板として個片に切断されたもの を用いたことにより、 シート状で積層した場合よりも積層の位置精度が上がり、 歩留が向上した。
これに対し、 比較例 1〜3の場合、 いずれも、 導体ポストとそれを受けるパッ ドとの金属接合がなされないかまたは不十分な箇所があった。 また、 導体ポスト とそれを受けるパッドとの金属接合が初期においてはなされたが、 前記温度サイ クル試験を行うと、 抵抗値の上昇および断線が発生した。
産業上の利用可能性
本発明に従うと、 金属表面の清浄化機能を有した層間接着剤を用いることで配 線板 (回路基板) の積層における金属接合部を高い信頼性で接続することができ る。
また、 外層片面回路基板表面上にスルーホール等の接続用の孔を設けなくても よいので、 高密度の回路配線や高密度に部品を実装することができる。
さらに、 個片の配線板 (回路基板) を積層することにより、 良品のみを積層す ることができるため、 多層配線板を製造する上で、 歩留が向上する。
このようなことから、 高精度 (高密度化されたもの) で信頼性の高い多層配線 板、 特に多層フレキシブル配線板を、 容易かつ安価に提供することができる。

Claims

請求の範囲
1. 絶縁基材と、
前記絶縁基材の一方の面側に形成された導体回路と、
前記導体回路に電気的に接続された少なくとも 1つの導体ポストとを有し、 前記導体ポストは、 前記絶縁基材を貫通する孔内に形成され、 一端が前記導体 回路と接続され、 他端が前記絶縁基材の他方の面よりも突出する突起状端子と、 前記突起状端子の前記絶縁基材の他方の面よりも突出した部分を覆う金属被覆層 とで構成されている回路基板。
2. 前記金属被覆層は、 金、 銀、 ニッケル、 錫、 鉛、 亜鉛、 ビスマス、 アンチ モン、 銅からなる群より選択される少なくとも 1種の金属または該金属を含む合 金で構成される請求項 1に記載の回路基板。
3. 絶縁基材と、
前記絶縁基材の一方の面側に形成された導体回路と、
前記導体回路に電気的に接続された少なくとも 1つの導体ボストとを有し、 前記絶縁基材の片面または両面に、 フラックス機能を有する接着層を設けた回 路基板。
4. 絶縁基材と、
前記絶縁基材の一方の面側に形成された導体回路と、
前記導体回路に電気的に接続された少なくとも 1つの導体ボストとを有し、 前記絶縁基材の一方の面側に前記導体回路をその一部を残して覆う表面被覆を 設けるとともに、 前記絶縁基材の他方の面側にフラックス機能を有する接着層を 設けた回路基板。
5. 前記導体ポストは、 前記絶縁基材を貫通する孔内に形成され、 一端が前記 導体回路と接続され、 他端が前記絶縁基材の他方の面よりも突出する突起状端子 と、 前記突起状端子の前記絶縁基材の他方の面よりも突出した部分を覆う金属被 覆層とで構成されている請求項 3または 4に記載の回路基板。
6. 前記金属被覆層は、 金、 銀、 ニッケル、 錫、 鉛、 亜鉛、 ビスマス、 アンチ モン、 銅からなる群より選択される少なくとも 1種の金属または該金属を含む合 金で構成される請求項 5に記載の回路基板。
7. 絶縁基材と、
前記絶縁基材の両面にそれぞれ形成された導体回路と、
前記導体回路の一部に被覆形成された厚さ 5 μ m以上の金属層と、
前記導体回路の前記金属層以外の部分を覆う表面被覆とを有する回路基板。
8. 前記表面被覆は、 接着層と、 フィルムとで構成される請求項 4または 7に 記載の回路基板。
9. 請求項 1または 2に記載の回路基板を含む複数の回路基板を積層してなる
10. 請求項 3または 4に記載の回路基板を含む複数の回路基板を積層してなる 多層配線板。
11. 請求項 7に記載の回路基板を含む複数の回路基板を積層してなる多層配線 板。
12. 請求項 1ないし 4のいずれかに記載の回路基板と、 請求項 7に記載の回路 基板とを含む複数の回路基板を積層してなる多層配線板。
13. 請求項 1または 2に記載の回路基板と、 請求項 3または 4のいずれかに記 載の回路基板と、 請求項 7に記載の回路基板とを含む複数の回路基板を積層して なる多層配線板。
14. 請求項 7に記載の回路基板の両面側にそれぞれ請求項 1ないし 4のいずれ 力 記載の回路基板が接合されており、 前記導体ボストを介して各回路基板の導 体回路の所定部位が電気的に接続されている多層配線板。
15. 請求項 7に記載の回路基板の両面側にそれぞれ請求項 3または 4に記載の 回路基板が接合され、 これら両回路基板にそれぞれ請求項 1または 2に記載の回 路基板が接合されており、 前記導体ボストを介して各回路基板の導体回路の所定 部位が電気的に接続されている多層配線板。
16. 複数の回路基板が積層された多層部と、 前記多層部における少なくとも 1 つの回路基板が該多層部から延出する単層部とを有する請求項 9に記載の多層配
' 板。
17. 前記単層部を構成する回路基板は、-可撓性を有するフレキシブル回路基板 である請求項 1 6に記載の多層配線板。
18. 絶縁基材の一方の面側に導体回路を形成する工程と、
前記絶縁基材に貫通孔を形成する工程と、
前記貫通孔内に、 突起状端子をその一端が前記導体回路と電気的に接続され、 他端が前記絶縁基材の他方の面よりも突出するように形成する工程と、
前記突起状端子の前記絶縁基材の他方の面よりも突出した部分を覆う金属被覆 層を形成する工程とを有する回路基板の製造方法。
19. 絶縁基材の一方の面側に導体回路となる金属層が形成された前記絶縁基材 に貫通孔を形成する工程と、
前記貫通孔内に、 突起状端子をその一端が前記金属層と電気的に接続され、 他 端が前記絶縁基材の他方の面よりも突出するように形成する工程と、
前記突起状端子の前記絶縁基材の他方の面よりも突出した部分を覆う金属被覆 層を形成する工程と、
前記金属層をパターニングして導体回路を形成する工程とを有する回路基板の 製造方法。
20. 絶縁基材の一方の面側に導体回路を形成する工程と、
前記絶縁基材に貫通孔を形成する工程と、
前記貫通孔内に、 突起状端子をその一端が前記導体回路と電気的に接続され、 他端が前記絶縁基材の他方の面よりも突出するように形成する工程と、
前記絶縁基材の片面または両面に、 フラックス機能を有する接着層を形成する 工程とを有する回路基板の製造方法。
21. 絶縁基材の一方の面側に導体回路となる金属層が形成された前記絶縁基材 に貫通孔を形成する工程と、
前記貫通孔内に、 突起状端子をその一端が前記金属層と電気的に接続され、 他 端が前記絶縁基材の他方の面よりも突出するように形成する工程と、
前記金属層をパターニングして導体回路を形成する工程と、
前記絶縁基材の片面または両面に、 フラックス機能を有する接着層を形成する 工程とを有する回路基板の製造方法。
22. 前記突起状端子を形成した後、 その前記絶縁基材の他方の面よりも突出し た部分を覆う金属被覆層を形成する工程を有する請求項 2 0または 2 1に記載の 回路基板の製造方法。
23. 絶縁基材の両面にそれぞれ導体回路となる金属層が形成された前記絶縁基 材に貫通孔を形成し、 該貫通孔内にて前記両金属層同士を導通させる工程と、 前記金属層をパターニングして導体回路を形成する工程と、
前記導体回路の一部を残して前記導体回路を覆う表面被覆を形成する工程と、 前記導体回路の前記表面被覆で覆われていない部分に厚さ 5 μ πι以上の金属層 を形成する工程とを有する回路基板の製造方法。
24. 少なくとも 1つの請求項 1ないし 4のいずれかに記載の回路基板と、 少な くとも 1つの請求項 7に記載の回路基板とを所定の順序で重ね、 これらを熱圧着 して積層、 一体化する多層配線板の製造方法。
25. 少なくとも 1つの請求項 1または 2に記載の回路基板、 少なくとも 1つの 請求項 3または 4に記載の回路基板と、 少なくとも 1つの請求項 7または 8に記 載の回路基板とを所定の順序で重ね、 これらを熱圧着して積層、 一体化する多層 配線板の製造方法。
26. 請求項 7に記載の回路基板の両面側にそれぞれ請求項 1ないし 4のいずれ かに記載の回路基板を配置し、 これらを熱圧着して積層、 一体ィヒし、 各回路基板 の導体回路の所定部位が前記導体ボストを介して電気的に接続するようにした多 層配線板の製造方法。
27. 請求項 7に記載の回路基板の両面側にそれぞれ請求項 3または 4に記載の 回路基板を配置し、 さらにこれら両回路基板の外側にそれぞれ請求項 1または 2 に記載の回路基板を配置し、 これらを熱圧着して積層、 一体化し、 各回路基板の 導体回路の所定部位が前記導体ボストを介して電気的に接続するようにした多層 配線板の製造方法。
28. 請求項 1 8ないし 2 1のいずれかに記載の方法により製造された少なくと も 1つの回路基板と、 請求項 2 3に記載の方法により製造された少なくとも 1つ の回路基板とを所定の順序で重ね、 これらを熱圧着して積層、 一体化する多層配 線板の製造方法。
29. 請求項 1 8または 1 9に記載の方法により製造された少なくとも 1つの回 路基板と、 請求項 2 0または 2 1に記載の方法により製造された少なくとも 1つ の回路基板と、 請求項 2 3に記載の方法により製造された少なくとも 1つの回路 基板とを所定の順序で重ね、 これらを熱圧着して積層、 一体化する多層配線板の 製造方法。
30. 請求項 2 3に記載の方法により製造された回路基板の両面側にそれぞれ請 求項 1 8ないし 2 1のいずれかに記載の方法により製造された回路基板を配置し、 これらを熱圧着して積層、 一体化し、 各回路基板の導体回路の所定部位が前記突 起状端子または突起状端子と金属被覆層とを介して電気的に接続するようにした 多層配線板の製造方法。
31. 請求項 2 3に記載の方法により製造された回路基板の両面側にそれぞれ請 求項 2 0または 2 1に記載の方法により製造された回路基板を配置し、 さらにこ れら両回路基板の外側にそれぞれ請求項 1 8または 1 9に記載の方法により製造 された回路基板を配置し、 これらを熱圧着して積層、 一体化し、 各回路基板の導 体回路の所定部位が前記突起状端子または突起状端子と金属被覆層とを介して電 気的に接続するようにした多層配線板の製造方法。
32. 前記熱圧着は、 ろう材が溶融する第 1の温度で行った後、 それより低い第 2の温度で行う請求項 2 4に記載の多層配線板の製造方法。
33. 前記第 2の温度は、 接着剤が硬化するのに適した温度である請求項 3 2に 記載の多層配線板の製造方法。
34. 請求項 2 4のいずれかに記載の多層配線板の製造方法により製造された多
PCT/JP2003/009611 2002-07-30 2003-07-29 回路基板、多層配線板、回路基板の製造方法および多層配線板の製造方法 WO2004012489A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003252302A AU2003252302A1 (en) 2002-07-30 2003-07-29 Circuit substrate, multi-layer wiring plate, circuit substrate manufacturing method, and multi-layer wiring plate manufacturing method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002222101 2002-07-30
JP2002-222101 2002-07-30
JP2003-42238 2003-02-20
JP2003042238 2003-02-20
JP2003-131093 2003-05-09
JP2003131093A JP2004311909A (ja) 2002-07-30 2003-05-09 回路基板、多層配線板、回路基板の製造方法および多層配線板の製造方法

Publications (1)

Publication Number Publication Date
WO2004012489A1 true WO2004012489A1 (ja) 2004-02-05

Family

ID=31191869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009611 WO2004012489A1 (ja) 2002-07-30 2003-07-29 回路基板、多層配線板、回路基板の製造方法および多層配線板の製造方法

Country Status (3)

Country Link
JP (1) JP2004311909A (ja)
AU (1) AU2003252302A1 (ja)
WO (1) WO2004012489A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4554381B2 (ja) * 2005-01-21 2010-09-29 日本メクトロン株式会社 ビルドアップ型多層回路基板の製造方法
JP4824972B2 (ja) * 2005-08-25 2011-11-30 株式会社フジクラ 回路配線基板及びその製造方法
US8153901B2 (en) 2005-11-04 2012-04-10 Sumitomo Bakelite Co., Ltd. Method for fabricating multilayer circuit board, circuit plate, and method for fabricating the circuit plate
WO2008032386A1 (fr) * 2006-09-14 2008-03-20 Sumitomo Bakelite Co., Ltd. Structure de jonction, procédé de jonction, plaquette de câblage et son procédé de production
EP2141973A1 (en) 2008-07-02 2010-01-06 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Method of providing conductive structures in a multi-foil system and multi-foil system comprising same
CN102244974B (zh) * 2011-05-09 2013-05-15 厦门英诺尔电子科技股份有限公司 一种镂空fpc及其制成方法
CN110572927A (zh) * 2019-08-23 2019-12-13 鹤山市中富兴业电路有限公司 一种多层fpc四阶hdi软硬结合板制作方法及hdi板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0446656A1 (en) * 1990-03-15 1991-09-18 Rogers Corporation Method of manufacturing a multilayer circuit board
JPH08316641A (ja) * 1995-05-12 1996-11-29 Hitachi Ltd 一括接続法による多層配線基板
JP2000223835A (ja) * 1999-01-29 2000-08-11 Canon Inc 多層配線板
JP2001160600A (ja) * 1999-12-02 2001-06-12 Sony Chem Corp 多層フレキシブル配線板
JP2002033580A (ja) * 2000-05-11 2002-01-31 Sumitomo Bakelite Co Ltd 多層配線板およびその製造方法
JP2002158447A (ja) * 2000-09-08 2002-05-31 Sumitomo Bakelite Co Ltd 多層配線板の製造方法および多層配線板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0446656A1 (en) * 1990-03-15 1991-09-18 Rogers Corporation Method of manufacturing a multilayer circuit board
JPH08316641A (ja) * 1995-05-12 1996-11-29 Hitachi Ltd 一括接続法による多層配線基板
JP2000223835A (ja) * 1999-01-29 2000-08-11 Canon Inc 多層配線板
JP2001160600A (ja) * 1999-12-02 2001-06-12 Sony Chem Corp 多層フレキシブル配線板
JP2002033580A (ja) * 2000-05-11 2002-01-31 Sumitomo Bakelite Co Ltd 多層配線板およびその製造方法
JP2002158447A (ja) * 2000-09-08 2002-05-31 Sumitomo Bakelite Co Ltd 多層配線板の製造方法および多層配線板

Also Published As

Publication number Publication date
AU2003252302A1 (en) 2004-02-16
JP2004311909A (ja) 2004-11-04

Similar Documents

Publication Publication Date Title
JP3906225B2 (ja) 回路基板、多層配線板、回路基板の製造方法および多層配線板の製造方法
JP4201436B2 (ja) 多層配線基板の製造方法
JP2007273654A (ja) フレキシブル回路基板、フレキシブル回路基板の製造方法および電子機器
JP2005317943A (ja) プリント回路基板およびその製造方法
JPH11204939A (ja) 多層回路基板及びその製造方法
WO2004012489A1 (ja) 回路基板、多層配線板、回路基板の製造方法および多層配線板の製造方法
JP2007180421A (ja) 多層回路板の製造方法および多層回路板
JP2010258019A (ja) 樹脂多層モジュール及び樹脂多層モジュールの製造方法
JP2007173343A (ja) 多層基板および電子機器
JP2005039136A (ja) 回路基板および回路基板の接続方法
JP2003229665A (ja) 多層フレキシブル配線板及びその製造方法
JP4296975B2 (ja) 多層基板およびその製造方法
JP2004063908A (ja) 多層フレキシブル配線板及びその製造方法
JP4292905B2 (ja) 回路基板、多層基板、回路基板の製造方法および多層基板の製造方法
JP2004111758A (ja) 多層フレキシブル配線板及びその製造方法
JP2004228322A (ja) 多層フレキシブル配線板の製造方法
JP2005183944A (ja) 多層基板および多層基板の製造方法
JP2004095695A (ja) 多層フレキシブル配線板及びその製造方法
JP2005109188A (ja) 回路基板、多層基板、回路基板の製造方法および多層基板の製造方法
JP4277723B2 (ja) 多層回路基板及び多層回路基板の製造方法
JP2004072125A (ja) 印刷配線板の製造方法および印刷配線板
JP2005038951A (ja) 回路基板、多層基板、回路基板の製造方法および多層基板の製造方法
JP2004297053A (ja) 層間接合部及びそれを有する多層配線板
JP2004134536A (ja) 多層フレキシブル配線板の接続方法
JP2005259730A (ja) 回路基板、多層回路基板、回路基板の製造方法および多層回路基板の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase