WO2004005013A1 - パイプ形状品の接合方法 - Google Patents

パイプ形状品の接合方法 Download PDF

Info

Publication number
WO2004005013A1
WO2004005013A1 PCT/JP2003/008716 JP0308716W WO2004005013A1 WO 2004005013 A1 WO2004005013 A1 WO 2004005013A1 JP 0308716 W JP0308716 W JP 0308716W WO 2004005013 A1 WO2004005013 A1 WO 2004005013A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
laser
laser light
joint
shaped
Prior art date
Application number
PCT/JP2003/008716
Other languages
English (en)
French (fr)
Inventor
Tsutomu Katayama
Yoshiro Iwata
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to US10/520,718 priority Critical patent/US20050251986A1/en
Priority to AU2003281367A priority patent/AU2003281367A1/en
Priority to EP03741299A priority patent/EP1552916A1/en
Publication of WO2004005013A1 publication Critical patent/WO2004005013A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/735General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the extensive physical properties of the parts to be joined
    • B29C66/7352Thickness, e.g. very thin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/168Laser beams making use of an absorber or impact modifier placed at the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/1683Laser beams making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/116Single bevelled joints, i.e. one of the parts to be joined being bevelled in the joint area
    • B29C66/1162Single bevel to bevel joints, e.g. mitre joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/14Particular design of joint configurations particular design of the joint cross-sections the joint having the same thickness as the thickness of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/02Welded joints; Adhesive joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1606Ultraviolet [UV] radiation, e.g. by ultraviolet excimer lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49885Assembling or joining with coating before or during assembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49947Assembling or joining by applying separate fastener
    • Y10T29/49966Assembling or joining by applying separate fastener with supplemental joining
    • Y10T29/49968Metal fusion joining

Definitions

  • the present invention relates to a method of connecting pipe-shaped products made of a resin member by irradiating a laser beam to each other through a joint or a flange made of a resin member, or directly.
  • the present invention relates to a method for joining pipe-shaped products to be welded.
  • pipes made of resin material are joined by physical joining using a pressing force with a port or the like and a sealing material, chemical joining by applying a reactive substance and chemically joining, or partially dissolving the resin. Welding that joins together is known. Since long-term reliability of joints is important for pipe applications, welding methods that easily obtain reliability are preferably used. Known welding methods include heat welding using heat and solvent welding using a resin-soluble solvent.
  • the wire embedded joint has a problem that its structure is complicated and costly.
  • a solvent adhesive is applied to the joint surface of the pipe.
  • a cloth is inserted into a joint, and the solvent is evaporated to join the joints (see, for example, Japanese Patent Application Laid-Open No. 51069977).
  • the present invention solves the above problems, and irradiates a laser beam to connect pipe-shaped products made of a resin member to each other via a joint or flange made of a resin member or directly by laser welding.
  • An object of the present invention is to provide a method for joining pipe-shaped products that can be firmly joined. Disclosure of the invention
  • the present invention provides the following to achieve the above object.
  • At least one of the ends of the pipe-shaped product, or the flange or the joint is made of a resin material having transparency to laser light
  • At least one of the ends of the pipe-shaped product, or a flange or a joint, or the laser absorbing material is made of a resin material having absorptivity to laser light,
  • a method for joining pipe-shaped products comprising irradiating a laser beam to an end, a flange, a joint, and a portion of the pipe-shaped product or a portion where the laser absorbing material comes into contact, and laser welding them.
  • a pipe-shaped product made of a resin material having absorptivity to laser light is inserted into a joint made of a resin material having a permeability to laser light, and laser light is irradiated from the joint side. Laser welding the two; or
  • a laser-absorbing material is arranged on the outer surface of a pipe-shaped product made of a resin member that is permeable to laser light, and the pipe-shaped product is permeable to laser light. Is inserted into a joint made of a resin member having a laser beam, and laser light is irradiated from the joint side to laser-weld the two.
  • the pipe-shaped article is composed of an outer layer made of a resin member having absorptivity to a laser beam and a resin member made of a laser beam having a transmissivity to one light. Composed of inner layer and The method for joining pipe-shaped articles according to [2] above.
  • the first pipe-shaped article, joint or flange is made of a resin member that is weakly absorbing laser light.
  • the weakly absorbing additive is at least one selected from the group consisting of ethylene and propylene copolymers, styrene copolymers, modified ethylene and / or propylene copolymers, and modified styrene copolymers.
  • 1A to 5B are schematic diagrams of a joint form of a joint and a pipe.
  • 6 to 8 are schematic diagrams of examples of the form of flange joining and the shape of a flange used in the present invention.
  • FIGS. 9 to 11 are schematic diagrams of a form of direct joining between pipes.
  • the end portions of a pipe-shaped product made of a resin member are brought into direct contact with each other, or butted through a flange made of a resin member, or inserted into a joint made of a resin member.
  • Placing a laser absorber between the ends of the pipe-shaped part, or between the end of the pipe-shaped part and the flange or the fitting; at least one of the ends of the pipe-shaped part, or The joint is made of a resin member that is transparent to the laser beam; at least one of the ends of the pipe-shaped product, or the flange or the joint, or the laser absorbing material absorbs the laser beam.
  • a laser beam is applied to the end of the pipe-shaped product, the flange, the joint, and / or the portion where the laser absorbing material is in contact with the end of the pipe-shaped product.
  • the contact laser soluble, in the bonding method of the pipe-shaped article. More specifically, the following methods (A) to (I) can be exemplified.
  • a pipe-shaped product made of a resin material having an absorptivity to a laser beam is inserted into a joint made of a resin material having a absorptivity to a laser beam, and a laser beam is irradiated from the joint side. Laser welding of both.
  • a pipe-shaped article 1 or 2 made of a resin member having absorptivity to a laser beam is converted into a resin member having a laser beam transmissive property. And welded by laser light 9 from the joint side.
  • the laser beam 9 passes through the joint 5 made of a resin member that is transparent to the laser beam, and the transmitted laser beam becomes absorptive to the laser beam.
  • the laser beam reaches the surface of the pipe-shaped product composed of the resin members 1 and 2 and the laser beam is absorbed at the joint surface, and the pipe-shaped products 1 and 2 and the joint 5 to be brought into contact are melted and joined.
  • the problem of sagging and cost and the difficulty of welding thin-walled pipes can be solved.
  • the resin is polyethylene (PE)
  • sagging does not easily occur because high-molecular-weight, high-viscosity materials are easily produced
  • PA polyamide
  • the laser welding method is suitable because there is a limit to the viscosity, and there is also the problem of further lowering of the viscosity due to water absorption.
  • a laser-absorbing material is disposed on the outer surface of a pipe-shaped article made of a resin member having a property of transmitting laser light, and the pipe-shaped article is made of a resin material having a property of transmitting laser light. Insert into the fitting A method of irradiating a laser beam from the joint side and laser welding the two parts. In this method, referring to FIG. 2, laser absorption is performed on the joints of the outer surfaces of the pipe-shaped products 3 and 4 with the joint 5. Material 8 is placed.
  • a laser absorbing material 8 is arranged on the outer surface of a pipe-shaped article 3 or 4 made of a resin member having transparency to a laser beam, and the pipe-shaped article is made transparent to laser light. Is inserted into a joint 5 made of a resin member having a laser beam, and laser light is irradiated from the joint side to weld them together.
  • the laser beam when the laser beam is irradiated, the laser beam transmits through the joint 5 made of a resin member that is transparent to the laser beam, and the transmitted laser beam becomes transparent to the laser beam.
  • the pipe-shaped products and joints that are absorbed by the laser absorbing material 8 disposed on the outer surface of the pipe-shaped products 3 and 4 made of a resin member having the same and are brought into contact at the joining surface are melted and joined.
  • the joint in the above methods (A) and (B) is in contact with the pipe Grooves or pearskin-like fine irregularities can be provided inside. Providing grooves and fine irregularities is effective in improving pipe insertability and relaxing stress during solidification.
  • the laser welded surface be sufficiently adhered to achieve high adhesive strength, and it is desirable to make the pipe outer diameter larger than the joint inner diameter so that sufficient pressure is applied.
  • the outer diameter of the pipe / the inner diameter of the joint be in the range of 1.0 to 1.3.
  • a resin member that is weakly absorbing laser light (a resin that is transparent to laser light, but generates heat by absorbing some of the laser light
  • a resin member is used to irradiate a resin member with laser light, it absorbs energy, generates heat, and the temperature of the joint surface with the pipe-shaped product rises to some extent.
  • FIG. 3 shows an example of this embodiment.
  • 3 ′ and 4 ′ are pipe-shaped products made of a resin member that is weakly absorbing one laser beam, and 5 are weakly absorbing laser beams.
  • This is a joint made of a certain resin member.
  • the pipe-shaped products 1 and 2 made of a resin member having absorptivity to the laser beam have a high absorptivity to the laser beam.
  • Resin member with It may be composed of outer layers la and 2a made of resin, and inner layers lb and 2b made of a resin member having transparency to laser light.
  • the outer layers 1a and 2a preferably have a thickness of 10 to 100 ⁇ .
  • the thickness of the outer layer made of a resin member that absorbs laser light is 10 to 100 ⁇ m.
  • the effect of the color development is reduced, and the color of the pipe base material (inner layer) becomes dominant in appearance. Therefore, the apparent color can be controlled by coloring the pipe base material, and the degree of freedom in coloring is increased.
  • the laser absorption layer is limited to the outer layer, heat is not generated inside, so that a cylindrical melting mark is hardly formed on the inner surface of the pipe, and a defect at the joint is less likely to occur.
  • the joint 5 made of a resin member that is transparent to laser light is weakly absorbed by laser light.
  • the same effect can be obtained by comprising the inner layer 5c made of a resin member and the outer layer 5d made of a resin member that is transparent to laser light.
  • the ends of the pipe-shaped products 3 and 4 made of a resin material that transmits laser light are abutted against a flange 6 made of a resin material that absorbs laser light. Then, the laser light is irradiated from the side of the pipe-shaped products 3 and 4 made of a resin member having transparency to the laser light.
  • the shape of the flange 6 can be a ring having substantially the same shape as the end of the pipe-shaped product. It is preferable that the outer diameter and the inner diameter of the flange are the same as those of the pipe-shaped product. For example, the outer diameter of the flange may be larger than the outer diameter of the pipe-shaped product.
  • a protrusion 6a that comes into contact with the inner surface (or outer surface) of the pipe-shaped product may be provided at the contact portion of the flange 6 with the end of the pipe-shaped product.
  • ends of a pipe-shaped product made of a resin member having a property of transmitting laser light are butted while being pressed through a flange made of a resin material having a property of absorbing laser light.
  • a laser beam is applied from the end of the tip-shaped product to perform laser welding. That is, when the laser beam is irradiated, the laser beam passes through a pipe-shaped product made of a resin member having transparency to the laser beam, and the transmitted laser beam has absorptivity to the laser beam.
  • the laser beam reaches the surface of the flange made of the resin member, the laser light is absorbed at the joint surface, and the flange and the abutting pipe-shaped product are melted and joined. Irradiation with laser light is performed for each pipe-shaped product that contacts both sides of the flange.
  • the pipe-shaped product is made of a resin member having absorptivity to the laser beam
  • the flange is made of a resin member having a permeability to the laser beam.
  • the laser beam is emitted from the flange side.
  • the laser beam when a laser beam is irradiated, the laser beam transmits through a flange made of a resin member having transparency to the laser beam, and the transmitted laser beam is absorbed by a resin having absorptivity to the laser beam.
  • the laser beam reaches the surface of the pipe-shaped article made of the member, and the laser beam is absorbed at the joining surface, and the pipe-shaped article and the flange that comes into contact are melted and joined. Irradiation of laser light is performed on each pipe-shaped product that comes into contact with both sides of the flange.
  • a pie made of a resin member having transparency to laser light A laser absorbing material is arranged between the ends of the pump-shaped product via a flange made of a resin material that is transparent to laser light, and at a contact portion between the flange and the pipe-shaped product.
  • laser welding is performed by irradiating a laser beam from the end of the pipe-shaped product while applying pressure and butt.
  • the ends of pipe-shaped products 3 and 4 made of a resin member having transparency to laser light are connected to each other by a flange made of a resin member having transparency to one laser beam.
  • the laser 6 is placed in contact with the flange 6 and the pipe-shaped products 3 and 4 through the flange 6 while the laser-absorbing material 8 is arranged.
  • Laser welding is performed by irradiating a laser beam.
  • This method is the same as that shown in Fig. 8, except that the laser beam is irradiated from the flange 6 instead of the ends 3 and 4 of the pipe-shaped product, and the laser is welded.
  • a laser beam is irradiated from the first pipe-shaped product side to weld the joint surfaces with each other.
  • the first pipe-shaped product is made of a resin member having a property of transmitting laser light, and has a tapered joining surface on the inner surface at the end.
  • the second pipe-shaped article is made of a resin member having absorptivity to laser light, and has an outer surface at an end thereof and a taper aligned with a tapered joining surface at an end of the first pipe-shaped article. It has a joint surface.
  • the resin of the second pipe-shaped product is usually the first pipe-shaped product. It is preferable to use the same type of resin as the resin used for the first pipe-shaped product in consideration of the adhesiveness with the resin.
  • the laser light when the laser light is irradiated, the laser light passes through the first pipe-shaped article made of a resin member that is transparent to the laser light, and the transmitted laser light absorbs the laser light. Reaches the surface of the second pipe-shaped article made of a resin member having a shape, the laser light is absorbed at the joint surface, and the second pipe-shaped article and the first pipe-shaped article to be brought into contact are melted, Join.
  • the tapered joining surfaces provided at the respective contact ends are laser-welded, the degree of freedom of the laser light emitting position is increased. Is also increased.
  • the first method involves irradiating laser light from the pipe-shaped product side to weld the joint surfaces together.
  • the first pipe-shaped product in this method is made of a resin member having transparency to laser light, and has a tapered joint surface on the inner surface of its end.
  • the second pipe-shaped article is formed of a resin member having a property of transmitting laser light, and has a tapered joint that is aligned with an outer surface of an end of the second pipe-shaped article at a tapered joining surface of the end of the first pipe-shaped article. Having a surface.
  • the resin of the second pipe-shaped article it is preferable to use the same resin as the resin used for the first pipe-shaped article in consideration of the adhesiveness to the first pipe-shaped article.
  • a laser absorbing material 14 is arranged on a tapered joint surface on the outer surface of the end of the second pipe-shaped product 13.
  • the tapered joint surface at the end of the first pipe-shaped article 11 and the tapered joint surface at the end of the second pipe-shaped article 13 where the laser absorbing material 14 is disposed abut each other, A laser beam is irradiated from the first pipe-shaped product side to weld the joint surfaces together.
  • the laser light passes through the first pipe-shaped product made of a resin member that is transparent to the laser light, and the transmitted laser light passes through the second pipe-shaped product.
  • the first and second pipe-shaped products are melted and joined on the joining surface by being absorbed by the laser absorbing material arranged on the tapered joining surface at the end.
  • this laser welding method there is no need to mix a coloring material having absorptivity with respect to laser light in the second pipe-shaped product, so there is no possibility of coloring and discoloration by the absorbing material, and a desired color is obtained. It can be easily colored.
  • tapered joining surfaces are provided at respective contacting ends so as to be aligned and contact with each other, and the tapered joining surfaces are joined to each other. Therefore, the bonding area at the bonding portion is increased by the amount of the tapered shape, and higher bonding strength and pressure resistance can be achieved.
  • the degree of freedom of the laser light emitting position is increased. It also has an effect. Even when the pipe-shaped products are directly joined to each other, it is possible to use a resin member having a weak absorptivity to the laser beam as the resin member having a transmittance to the laser beam.
  • the laser absorbing material is disposed on the joint surface between the resin members having a property of transmitting laser light. It is clear that a laser absorbing material may be arranged on the joint surface between the resin materials having absorptivity.
  • the pipe-shaped product, the joint or the flange is made of a resin member having an absorptive property with respect to a laser beam or a resin member having a laser light transmitting property.
  • a resin that absorbs laser light it has thermoplasticity and can be formed into pipe-shaped products such as gas pipes, or joints or flanges, and shows sufficient absorption to laser light If so, there is no particular limitation.
  • polyolefins such as polyvinyl alcohol, polyvinyl acetate, polyamide, polyethylene, polypropylene, or copolymers of ethylene, propylene, etc., polystyrene, polyvinyl chloride, polyvinylidene chloride, and poly (vinylidene) Methyl methacrylate or a copolymer of styrene, vinyl chloride, methyl methacrylate, vinylidene chloride, etc., polycarbonate, polyamide, polyester, polyether, polyether ketone, polyether ether ketone Examples thereof include those obtained by mixing a resin such as condensed engineering plastics such as polysulfone and polyimide with a coloring material having absorptivity to laser light. If necessary,
  • a polyamide resin or a polyamide resin composition containing a polyamide resin as a main component is used for automotive pipes that require chemical resistance and toughness, such as for flammable gas supply and Z or transportation pipes. Is preferably used.
  • sufficient absorbency refers to absorbency such that a portion that has received laser light absorbs the laser light and the portion melts.
  • polyamide resin consist of a diamine and a dibasic acid? Or latamam or aminocarboxylic acid, or a copolymer of two or more of these.
  • diamines examples include aliphatic diamines such as tetramethylene diamine, hexamethylene diamine, otatamethylene diamine, nonamethylesamine, pendeforce methylene diamine, dodecamethylene diamine, and the like.
  • Diamines having an aromatic / cyclic structure such as meta-xylylene diamine are exemplified.
  • dicarboxylic acids examples include adipic acid, heptane dicarboxylic acid, aliphatic diamine / terephthalic acid such as octanedicarboxylic acid / reponic acid, nonanedicarboxylic acid, pendecanedicarboxylic acid and dodecanedicarboxylic acid, and aromatics such as isophtalic acid.
  • dicarboxylic acids having a group / cyclic structure.
  • Ratatams are ratatams having 6 to 12 carbon atoms
  • aminocarboxylic acids are aminocarboxylic acids having 6 to 12 carbon atoms. 6-Aminocaproic acid, 7-Aminoheptanoic acid, 11-Amino undecanoic acid, 12-Amino dodecanoic acid, ⁇ -pyrrolidone, ⁇ -force prolactam, ⁇ -laurolactam, ⁇ -enanthate Lactams and the like.
  • polyamide 6 Polyamide 11, Polyamide 12, Polyamide Homopolymers with relatively low melting points, such as amide 6 10 and polyamide 6 12, and copolymers such as polyamide 6/66, polyamide 6/12 and polyamide 11/12 Is preferably used.
  • polyamide 11 and polyamide 12 are desirable in terms of viscosity and water absorption.
  • polyamide resin may be a mixture with another polyamide resin or another polymer.
  • Polyamide resin in the mixture Is preferably 50% by weight or more.
  • Polyamide resins to be mixed include Polyamide 6, Polyamide 66, Polyamide 11, Polyamide 12, Polyamide 610, Polyamide 612 and Polyamide 9. 12, Polyamide 10 10, Polyamide 12 12, Polyamide 6/66 copolymer, Polyamide 6/12 copolymer, Polyamide 11 1 Z 12 copolymer, etc. Can be mentioned.
  • Examples of other polymers include polypropylene, ABS resin, polyphenylene oxide, polycarbonate, polyethylene terephthalate, and polybutylene terephthalate.
  • a function-imparting agent such as a heat-resistant agent, a weather-resistant agent, a release agent, a lubricant, an antistatic agent, a flame retardant, or a flame retardant auxiliary may be added to the resin.
  • any coloring material having such properties can be used.
  • carbon black, composite oxide Colorants such as inorganic pigments such as organic pigments, phthalocyanine pigments, and polymethine pigments are used.
  • the resin having transparency to laser light is not particularly limited as long as it has thermoplasticity, can be molded into a pipe joint or the like, and has transparency to laser light.
  • polyolefins such as polyvinyl alcohol, polyvinyl acetate, polyamide, polyethylene, polypropylene, or copolymers of ethylene, propylene, etc.
  • Resin such as condensed engineering plastics can be mentioned. If necessary, reinforcing fibers such as glass fibers and carbon fibers may be used. '
  • the same kind of resin as the resin having the property of transmitting laser light in consideration of the adhesiveness with the resin having the property of absorbing laser light.
  • having transparency with respect to the laser light means, for example, a permeability in which, even if a part of the laser light is absorbed, the remaining laser light is transmitted and the resin in that part is not melted.
  • Functionality-imparting agents such as a heat-resistant agent, a weather-resistant agent, a release agent, a lubricant, an antistatic agent, a flame retardant, and a flame retardant auxiliary may be added to the resin.
  • a coloring material that transmits laser light may be added to the resin.
  • organic dyes such as anthraquinone dyes, perylene dyes, perrinone dyes, heterocyclic dyes, disazo dyes and monoazo dyes can be mentioned. These dyes may be used as a mixture.
  • the resin member material having transparency to laser light a resin member having weak absorption to laser light may be used.
  • the term "weakly absorbable with respect to laser light” means that although the resin is transparent to laser light but absorbs a part of the laser light, the resin in that part generates heat. .
  • the resin member when the resin member is irradiated with laser light, it absorbs energy and generates heat, and the temperature of the joint surface with the pipe-shaped product rises to some extent.
  • the pipe-shaped product, a joint, or a flange made of a resin member having absorptivity to laser light is melted by absorbing the laser light and being heated, the pipe-shaped article, the joint or the flange melts.
  • the weakly absorbent resin member is also easily melted, so that the resin member becomes a sufficiently entangled joint at the joint, and the joining force is increased.
  • Examples of a resin member that is weakly absorbing laser light include resin that has an additive that is weakly absorbing laser light, and resin that is weakly absorbing laser light.
  • An additive having absorptivity may be used in such a range that the resin does not melt even if it absorbs laser light.
  • the additive weakly absorbing the laser light may be any material that resonates with the wavelength of the laser light, absorbs part of the laser light, and transmits part of the laser light. In particular, those having a transmittance of 40 to 90% for laser light are preferable.
  • the transmittance to the laser beam is a value measured for a weakly absorbing additive formed into a 3.2 mm thick ASTM No. 1 dumbbell.
  • the content of the weakly absorbing additive is preferably 0.1 to 50% by weight based on the resin. If the content is less than 0.1% by weight, the heat generated by absorbing the energy of the laser beam is small, so that the temperature of the resin member does not rise sufficiently and the joining strength of the joining portion decreases. On the other hand, if the content exceeds 50% by weight, physical properties such as flexural modulus are deteriorated, and more laser light energy is required to obtain sufficient welding strength, which is not preferable.
  • Examples of the weakly absorbing additive include copolymers of ethylene and / or propylene with other olefins and vinyl compounds (hereinafter, referred to as ethylene and / or propylene copolymers).
  • styrene-based copolymer such ethylene and Z or propylene-based copolymer, styrene-based copolymer, and Q ;,] modified ethylene obtained by adding 3-unsaturated carboxylic acid or a derivative thereof; / Or Mouth pyrene copolymers and modified styrene copolymers are exemplified.
  • the ethylene and Z or propylene copolymers include (ethylene and Z or propylene) ⁇ ⁇ -olefin copolymer, (ethylene and ⁇ or propylene) ⁇ ⁇ , and unsaturated carboxylic acid copolymers. Examples thereof include polymers, (ethylene and / or propylene) ⁇ ⁇ , monounsaturated carboxylic acid ester copolymers, and ionomer polymers.
  • the olefin copolymer is a polymer obtained by copolymerizing ethylene and / or propylene with ⁇ -olefin having 3 or more carbon atoms, and is a polymer having 3 or more carbon atoms.
  • olefins include propylene, butene-11, hexene-11, decene1-1,4-methylbutene-11, and 4-methylpentene-11.
  • (Ethylene and Z or propylene) ⁇ ⁇ , / 3-unsaturated carboxylic acid-based copolymer is a polymer obtained by copolymerizing ethylene and / or propylene with 3) -unsaturated carboxylic acid monomer
  • the ⁇ , jS-unsaturated carboxylic acid monomer includes acrylic acid, methacrylic acid, ethacrylic acid, maleic anhydride and the like.
  • ⁇ ,) 3-Unsaturated carboxylic acid ester-based copolymer is a polymer obtained by copolymerizing ethylene and / or propylene with an ⁇ , ⁇ monounsaturated carboxylic acid ester monomer.
  • methacrylic acid esters such as acid esters, methyl methacrylate, methyl methacrylate, propyl methacrylate, and butyl methacrylate.
  • An ionomer polymer is one in which at least a part of the carboxyl groups of the [3] -unsaturated carboxylic acid copolymer is ionized by neutralization of a metal ion.
  • Ethylene as ethylene oxide
  • ⁇ , i3-unsaturated carboxylic acid is acrylic acid, methacrylic acid or the like.
  • Metal ions include ions of sodium, potassium, magnesium, calcium, zinc and the like.
  • Styrene-based copolymers include at least one, preferably two or more, polymer blocks A mainly composed of styrene and at least one polymer block mainly composed of a co-gen compound.
  • a block copolymer obtained by hydrogenating a block copolymer consisting of B for example, A—B—A, B—A—B—A, A—B—A—B—A, It has a structure such as B—A—B—A—B.
  • conjugated diene compound examples include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene.
  • styrene-based copolymer examples include a hydrogenated styrene-butadiene-styrene copolymer (SEBS) and a hydrogenated styrene-isoprene-styrene copolymer (SEPS).
  • SEBS hydrogenated styrene-butadiene-styrene copolymer
  • SEPS hydrogenated styrene-isoprene-styrene copolymer
  • Modified (ethylene and Z or propylene) copolymers and modified styrene copolymers are as defined above (ethylene and Z or propylene).
  • Methods for producing these modified (ethylene and / or propylene) copolymers and modified styrene copolymers include, for example, extruder in the presence of a radical initiator, (ethylene and / or propylene) There is a method of reacting a styrene-based copolymer or a styrene-based copolymer with a compound containing a sulfonic acid group or a derivative thereof.
  • a, j3—unsaturated carboxylic acid or its derivative (hereinafter simply referred to as unsaturated power
  • the rubric acid include acrylic acid, methacrylic acid, ethacrylic acid, maleic acid, fumaric acid, and anhydrides or esters of these acids.
  • additives having an absorptivity to laser light include car pump racks, inorganic coloring materials such as complex oxide pigments, and organic coloring materials such as phthalocyanine pigments and polymethine pigments. .
  • an inner layer made of a resin member in which the resin is mixed with an additive that is weakly absorbing laser light an outer layer made of a resin member that does not contain an additive or the like that weakly absorbs laser light may be used.
  • the thickness of the inner layer is preferably less than 1/2 of the total joint thickness.
  • the laser absorbing material examples include those in which a coloring material having absorptivity to laser light is directly applied. Specifically, a suspension in which a coloring material is dispersed in a solvent is applied to a joint surface such as an outer surface of a pipe-shaped product, an inner surface of a joint, an end surface of a pipe-shaped product or a flange, and dried. The coloring material is located on the joint surface, such as the outer surface of the pipe-shaped product, the inner surface of the joint, the end face of the pipe-shaped product or flange.
  • the colorant having absorptivity to laser light an inorganic colorant such as carbon black and a complex oxide pigment, and an organic colorant such as a phthalocyanine facial pigment and a polymethine pigment are used.
  • a film made of a resin member containing a coloring material having absorptivity to laser light can be used as the laser absorbing material.
  • the resin is not particularly limited as long as it can be formed into a film and has sufficient absorptivity to laser light.
  • polyolefins such as polyvinylinoleanol, polyvinyl acetate, polyamide, polyethylene, polypropylene, or copolymers of ethylene, propylene, etc.
  • polystyrene polyvinyl chloride, polyvinylidene chloride , Polymethyl methacrylate, or copolymers of styrene, vinyl chloride, methyl methacrylate, vinylidene chloride, etc.
  • polycarbonates polyamides, polyesters, polyethers, polyester ketones, polyamides Resin, such as condensed engineering plastics such as tenoleate, tenoroketon, polysolefone, and polyimide, mixed with a coloring material that absorbs laser light.
  • condensed engineering plastics such as tenoleate, tenoroketon, polysolefone, and polyimide, mixed with a coloring material that absorbs laser light.
  • the same resin as the resin used for the pipe-shaped product, the joint and / or the flange in consideration of the adhesiveness to the pipe-shaped product, the joint and / or the flange.
  • the thickness of the film is preferably from 100 to 100 / m, more preferably from 10 to 500 ⁇ m. If it is less than 10 ⁇ m, breakage is apt to occur at the time of joining the pipe and the joint. If it exceeds ⁇ ⁇ ⁇ ⁇ , the film becomes rigid and handling becomes poor.
  • glass Nd 3+ laser, YAG: Nd 3+ laser, / Levy Laser, f Li cormorant-time - there may be mentioned neon laser, click re-flops tons laser, Anore Gon laser, H 2 laser, N 2 laser, a record one The first light of the semiconductor laser first class.
  • a more preferred laser is a semiconductor laser.
  • the wavelength of the laser beam varies depending on the resin material to be joined, it cannot be roughly determined, but it is preferably at least 400 nm. If the wavelength is shorter than 400 nm, the resin may deteriorate significantly.
  • the output of the laser beam can be adjusted by the scanning speed and the absorption capacity of the transmission substrate. If the output of the laser beam is low, it becomes difficult to melt the joining surfaces of the resin materials to each other, and if the output is high, the resin material will evaporate, deteriorate, and the strength will decrease.
  • This joining method can be used for automotive fuel pipes, automotive air brake pipes, chemical liquid transport pipes, flammable gas supply or transport pipes, and the like.
  • a laser-permeable cylindrical joint 5 (inner diameter 31.5) was used with polyamide 12 (UBES TA335 U manufactured by Ube Industries, Ltd.). mm, thickness 3.5 mm).
  • laser-absorbing pipes 1 and 2 (outer diameter 32 mm, thickness 1.5 mm) were prepared using the same polyamide 12 mixed with 0.5% by weight of carbon black.
  • a pipe was inserted into this joint and set in a semiconductor laser device.
  • the irradiation nozzle was moved along the circumference of the joint while irradiating laser light from the joint side.
  • melting and solidification occurred at the contact surface between the joint and the pipe, and the joint and the pipe were firmly welded.
  • the laser beam used for laser welding had a wavelength of 8.08 nm, an output of 30 W, and a scanning speed of 10 mmZs.
  • the other end of the pipe is laser-welded to another joint, and the adhesive force between the laser-welded pipe and the joint is pulled out in the longitudinal direction at the joint side at both ends.
  • the joint was released at 420 N.
  • a laser permeable cylindrical joint 5 (inner diameter 31.5) was used using polyamide 12 (UBES TA 335 U manufactured by Ube Industries, Ltd.). mm, thickness 3.5 mm).
  • laser-permeable pipes 3 and 4 (outer diameter 32 mm, thickness 1.5 mm) were fabricated.
  • a carbon black black ink was applied to the outer surfaces of the pipes 3 and 4, dried, and a laser absorber 8 was arranged.
  • This pipe was inserted into the joint and set in a semiconductor laser device.
  • the irradiation nozzle was moved along the circumference of the joint while irradiating laser light from the joint side.
  • melting and solidification occurred at the contact surface between the joint and the pipe, and the joint and the pipe were firmly welded.
  • the laser beam used for laser welding had a wavelength of 808 nm, an output of 30 W, and a scanning speed of 10 mmZs.
  • polyamide 12 Ube Industries, Ltd.
  • a laser-permeable cylindrical joint 5 (inner diameter 31.5 mm, thickness 3.5 mm) was fabricated using UB ESTA 335 U).
  • Laser permeable pipes 3 'and 4 (outer diameter 32 mm, thickness 1.5 mm) were fabricated using the same polyamide 12.
  • melt-extruded film was subjected to biaxial stretching treatment to produce a heat-shrinkable film.
  • the heat-shrinkable film was coated on the outer surface of the pipe 7, heat-treated and adhered to the pipe, and the laser absorber 8 was arranged.
  • This pipe was inserted into the joint and set in a semiconductor laser device.
  • the irradiation nozzle was moved along the circumference of the joint while irradiating laser light from the joint side.
  • melting and solidification occurred at the contact surface between the joint and the pipe, and the joint and the pipe were welded firmly.
  • the laser beam used for laser welding had a wavelength of 808 nm, an output of 30 W, and a scanning speed of 10 mmZs.
  • a laser permeable cylindrical joint 5 (inner diameter 31.5) was used using polyamide 12 (UBES TA3035U manufactured by Ube Industries, Ltd.). mm, thickness 3.5 mm).
  • the same polyamide 12 mixed with 0.05% by weight of a yellow colorant and an infrared absorber (PRO-JET830NP manufactured by Avecia) was used to form a laser-absorbent pipe 2 (outside).
  • the diameter was 32 mm and the thickness was 1.5 mm).
  • the color of the pipe was dark yellow.
  • a pipe was inserted into this joint and set in a semiconductor laser device. While irradiating laser light from the joint side, irradiate the irradiation nozzle around the joint Moved along. As a result, melting and solidification occurred at the contact surface between the joint and the pipe, and the joint and the pipe were firmly welded.
  • the laser beam used for laser welding had a wavelength of 808 nm, an output of 30 W, and a scanning speed of 10 mm / s.
  • a laser-permeable cylindrical joint 5 (31.5 mm inner diameter) was manufactured using Polyamide 12 (UB ESTA 3035 U manufactured by Ube Industries, Ltd.). And a thickness of 3.5 mm).
  • the same polyamide 12 mixed with a yellow colorant and an infrared absorber (PRO-JET830NP manufactured by Avecia) at 0.05% by weight was added to the outer layers la and 2a, and only the yellow material without the infrared absorber was mixed.
  • the resulting layers were co-extruded into inner layers 1b and 2b to produce a laser-absorbing multilayer pipe (outer diameter 32 mm, thickness 1.5 mm).
  • the thickness of the outer layer containing the absorbent was 10 ⁇ m ⁇ , and the appearance of the two-layer pipe was bright yellow.
  • a pipe was inserted into this joint and set in a semiconductor laser device.
  • the irradiation nozzle was moved along the circumference of the joint while irradiating laser light from the joint side.
  • melting and solidification occurred at the contact surface between the joint and the pipe, and the joint and the pipe were firmly welded.
  • the laser beam used for laser welding had a wavelength of 808 nm, an output of 30 W, and a scanning speed of 10 mm / s.
  • the adhesive strength between the laser-welded pipe and the joint was evaluated in the same manner as in Example 1, the adhesive strength was 440 ⁇ N, which was higher than that of a single-layer pipe. Also, the deformation of the weld observed on the inner surface was smaller than that of the single layer.
  • Example 6 As shown in FIGS. 1A and IB, a mixture of 2% by weight of maleic acid-modified EPR (T77 12SP manufactured by JSR) in Polyamide 12 (UB ESTA 3035 U manufactured by Ube Industries, Ltd.) was used. A laser-permeable cylindrical joint 5 (inner diameter 31.5 mm, thickness 3.5 mm) was fabricated using the method.
  • a pipe was inserted into this joint and set in a semiconductor laser device.
  • the irradiation nozzle was moved along the circumference of the joint while irradiating laser light from the joint side.
  • melting and solidification occurred at the contact surface between the joint and the pipe, and the joint and the pipe were firmly welded.
  • the laser beam used for laser welding had a wavelength of 808 nm, an output of 100 W, and a scanning speed of 10 mmZs.
  • an infrared absorber PR0-JET8 30NP, manufactured by Avecia
  • Polyamide 12 UESTA3035U, manufactured by Ube Industries, Ltd.
  • a laser-transmissive cylindrical joint 5 inner diameter 31.5 mm, thickness 3.5 mm
  • carbon black was added to the same polyamide 12. 0/0 using those combined distribution, to prepare a laser-absorbing pipe 1, 2 (outside diameter 3 2 mm, thickness 1. 5 mm).
  • a pipe was inserted into this joint and set in a semiconductor laser device.
  • the irradiation nozzle was moved along the circumference of the joint while irradiating laser light from the joint side.
  • Melting and solidification occurred, and the joints and pipes were welded firmly.
  • the laser beam used for laser welding had a wavelength of 808 nm, an output of 100 W, and a scanning speed of 10 mm / s.
  • Laser permeable pipes 3 and 4 (outer diameter 32 mm, thickness 1.5 mm) were prepared using polyamide 12 (UBESTA 335 U manufactured by Ube Industries, Ltd.).
  • a laser-absorbing ring-shaped flange 6 (outer diameter 32 mm, inner diameter 29 mm, thickness 3 mm) ) was prepared.
  • the pipes were set in a semiconductor laser device in a state where the pipes were pressed against each other via a flange while being pressed.
  • the irradiation nozzle was moved along the circumference of the pipe while irradiating laser light from one of the pipes.
  • melting and solidification occurred at the contact surface between the flange and the pipe, and the flange and the pipe were welded firmly.
  • laser light was irradiated from the other pipe side.
  • melting and solidification occurred at the contact surface between the flange and the pipe, and the flange and the pipe were welded firmly.
  • the adhesive strength between the laser-welded pipe and the flange was evaluated by fixing the pipes at both ends with jigs and pulling in the longitudinal direction.
  • the adhesive strength was 420 ON.
  • the pipes were set in a semiconductor laser device in a state where the pipes were pressed against each other via a flange while being pressed.
  • the irradiation nozzle was moved along the circumference of the flange while irradiating laser light from the flange side to one of the pipes.
  • melting and solidification occurred at the contact surface between the flange and the pipe, and the flange and the pipe were firmly welded.
  • laser light was irradiated from the flange side to the other pipe.
  • a laser-transparent pipe (outer diameter 32 mm, thickness 1.5 mm) was manufactured using Polyamide 12 (UBESTA 3035 U manufactured by Ube Industries, Ltd.).
  • a laser-transmissive ring-shaped flange (outer diameter 32 mm, inner diameter 29 mm, thickness 3 mm) was fabricated.
  • a carbon black-based black ink was applied to both end surfaces of the flange, dried, and a laser absorber was disposed.
  • the pipes were set in a semiconductor laser device in a state where the pipes were pressed against each other via a flange while being pressed. While irradiating laser light from the flange side to one of the pipes, connect the irradiation nozzle to the flange. Was moved along the circumference of. As a result, melting and solidification occurred at the contact surface between the flange and the pipe, and the flange and the pipe were firmly welded. Similarly, laser light was irradiated from the flange side to the other pipe.
  • the laser beam used for laser welding had a wavelength of 808 nm and output power.
  • the running speed was 30 W and the running speed was 10 mmZs.
  • Laser permeable pipes (outer diameter 32 mm, thickness 1.5 mm) were prepared using polyamide 12 (UBESTA '335 U manufactured by Ube Industries, Ltd.).
  • a melt-extruded film was prepared using the same polyamide 12 mixed with 0.5% by weight of carbon black.
  • This film was placed on both ends of the flange, and a pipe was pressed against both ends to fix the laser absorbing material.
  • the pipes were set in a semiconductor laser device in a state where the pipes were pressed against each other via a flange while being pressed.
  • the irradiation nozzle was moved along the circumference of the flange while irradiating laser light from the flange side to one of the pipes.
  • melting and solidification occurred at the contact surface between the flange and the pipe, and the flange and the pipe were firmly welded.
  • Irradiated with laser light from the flange side to the other pipe.
  • the laser beam used for laser welding had a wavelength of 808 nm and output Was 30 W, and the scanning speed was 10 mmZs.
  • Laser permeable pipes (outer diameter 32 mm, thickness 1.5 mm) were prepared using Polyamide 12 (UBESTA 3035 U manufactured by Ube Industries, Ltd.).
  • This film was placed on both ends of the flange, and a pipe was pressed against both ends to fix the laser absorbing material.
  • the pipes were set in a semiconductor laser device in a state where the pipes were pressed against each other via a flange while being pressed.
  • the irradiation nozzle was moved along the circumference of the flange while irradiating laser light from the flange side to one of the pipes.
  • melting and solidification occurred at the contact surface between the flange and the pipe, and the flange and the pipe were firmly welded.
  • laser light was irradiated from the flange side to the other pipe.
  • the laser beam used for laser welding had a wavelength of 808 nm, an output of 60 W, and a scanning speed of 10 mmZs.
  • a laser-transparent pipe (outer diameter 32 mm, thickness 1.5 mm) was prepared using Polyamide 12 (UBESTA3035U manufactured by Ube Industries, Ltd.).
  • a laser-transmissive ring-shaped flange (outer diameter of 32 mm) was used by mixing the same polyamide 12 with an infrared absorber (PRO-JET830 NP manufactured by Avecia) at 0.05% by weight. mm, inner diameter 29 mm, thickness 3 mm).
  • a melt-extruded film was prepared using the same polyamide 12 mixed with 0.5% by weight of carbon black.
  • This film was placed on both ends of the flange, and a pipe was pressed against both ends to fix the laser absorbing material.
  • the pipes were set in a semiconductor laser device in a state where the pipes were pressed against each other via a flange while being pressed.
  • the irradiation nozzle was moved along the circumference of the flange while irradiating laser light from the flange side to one of the pipes.
  • melting and solidification occurred at the contact surface between the flange and the pipe, and the flange and the pipe were firmly welded.
  • laser light was irradiated from the flange side to the other pipe.
  • the laser beam used for laser welding had a wavelength of 80
  • the output was 8 nm, the output was 60 W, and the scanning speed was l O mmZ s.
  • a polyamide 12 (UBESTA 335 U manufactured by Ube Industries, Ltd.) was used to form a first pipe 11 (outer diameter 32 mm, thickness 1.5 mm).
  • the outer surface of the end is tapered to the tapered joint surface at the end of the first pipe.
  • a second pipe 12 (outer diameter 32 mm, thickness 1.5 mm) having a shape-like joint surface was produced.
  • the tapered joining surfaces at the ends of the first and second pipes were brought into contact with each other and set in the semiconductor laser device 9.
  • the irradiation nozzle was moved along the circumference of the first pipe while irradiating laser light from the first pipe 11 side. 'As a result, melting and solidification occurred at the tapered joint surfaces at the ends of the first and second pipes, and the first and second pipes were firmly welded.
  • a first pipe 11 with a tapered joint surface on the inner surface at the end is used. (Outer diameter 32 mm, thickness 1.5 mm) Also, the same polyamide 12 was used to attach the first A second pipe 13 (outer diameter 32 mm, thickness 1.5 mm) having a tapered joint surface matching the tapered joint surface at the end of the pipe was produced. A carbon black-based black ink was applied to the tapered joining surface of the second pipe 13 and dried, and a laser absorbing material 14 was disposed.
  • the tapered joining surfaces at the ends of the first and second pipes were brought into contact with each other and set in a semiconductor laser device.
  • the irradiation nozzle was moved along the circumference of the first pipe while irradiating one laser beam from the first pipe side.
  • melting and solidification occurred at the tapered joint surfaces at the ends of the first and second pipes, and the first and second pipes were firmly welded.
  • the laser beam used for laser welding had a wavelength of 808 nm, an output of 30 W, and a scanning speed of 1 Omm / s.
  • a first pipe 1 with a tapered joint surface on the inner surface at the end was used. 6 (outer diameter 32 mm, thickness 1.5 mm) Also, using the same polyamide 12, the outer surface of the end is aligned with the tapered joint surface of the end of the first pipe A second pipe 17 (outer diameter 32 mm, thickness 1.5 mm) having a tapered joint surface was produced.
  • melt-extruded film was subjected to a biaxial stretching treatment to produce a heat-shrinkable film 18.
  • the heat-shrinkable film 18 is coated on the tapered joint surface of the second pipe 17, heat-treated and brought into close contact with the pipe to form a laser absorbing material 1. 8 was arranged.
  • the tapered joining surfaces at the ends of the first and second pipes were brought into contact with each other and set in a semiconductor laser device.
  • the irradiation nozzle was moved along the circumference of the first pipe while irradiating one laser beam from the first pipe side.
  • melting and solidification occurred at the tapered joint surfaces at the ends of the first and second pipes, and the first and second pipes were firmly welded.
  • the laser beam used for laser welding had a wavelength of 808 nm, an output of 30 W, and a scanning speed of 10 mm / s.
  • a mixture of Polyamide 12 (UBESTA 335 U, manufactured by Ube Industries, Ltd.) and maleic acid-modified EPR (T7712SP, manufactured by JSR) was blended at 2% by weight.
  • a first pipe 11 (outer diameter 32 mm, thickness 1.5 mm) having a tapered joint surface on the inner surface at the end was produced.
  • the outer surface of the end is tapered to the tapered joint surface at the end of the first pipe.
  • a second pipe 12 (outer diameter 32 mm, thickness 1.5 mm) having a shape-like joining surface was produced.
  • the tapered joining surfaces at the ends of the first and second pipes 11 and 12 were brought into contact with each other and set in the semiconductor laser device 9.
  • the irradiation nozzle was moved along the circumference of the first pipe while irradiating the laser light from the first pipe side.
  • melting and solidification occurred at the tapered joint surfaces at the ends of the first and second pipes, and the first and second pipes were firmly welded.
  • the laser beam used for laser welding has a wavelength of 80
  • the output was 8 nm, the output was 60 W, and the scanning speed was 1 OmmZs.
  • a mixture of polyamide 12 (UBESTA 3035 U manufactured by Ube Industries, Ltd.) and 0.05% by weight of an infrared absorbent (PRO-JET830NP manufactured by Avecia) was blended.
  • a first pipe 11 (outer diameter 32 mm, thickness 1.5 mm) having a tapered joint surface on the inner surface at the end was produced using the method described above.
  • the outer surface of the end is tapered to match the tapered joint surface at the end of the first pipe.
  • a second pipe 12 (outer diameter 32 mm, thickness 1.5 mm) having a joint surface was produced.
  • the tapered joint surfaces at the ends of the first and second pipes 11 and 12 were brought into contact with each other and set in the semiconductor laser device 9.
  • the irradiation nozzle was moved along the circumference of the first pipe 11 while irradiating the laser light from the first pipe 11 side.
  • melting and solidification occurred at the tapered joint surfaces at the ends of the first and second pipes, and the first and second pipes were firmly welded.
  • the laser beam used for laser welding had a wavelength of 808 nm, an output of 60 W, and a scanning speed of 1 Omm / s.
  • pipe-shaped products made of a resin member are connected to each other through a joint or a flange or directly. It can be firmly joined by one-to-one welding.
  • the laser welding method of the present invention can solve the sagging, the environmental safety problem and the cost problem due to the strong solvent in the case of the conventional heat welding, and can achieve a higher bonding strength than the solvent bonding agent. It can be suitably used for gas pipes.
  • the confidentiality can be increased as compared with the mechanical joining method, so that it can be suitably used for fuel pipes for automobiles, air brake pipes for automobiles, and chemical liquid transport pipes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

樹脂部材からなるパイプ形状品の端部同士を、直接に当接させ、又は樹脂部材からなるフランジを介して突き合わせ、又は樹脂部材からなる継手内に挿入し、又は、上記において、パイプ形状品の端部同士の間、又はパイプ形状品の端部とフランジもしくは継手との間にレーザー吸収材を配置し;パイプ形状品の端部の少なくとも一方、又はフランジもしくは継手がレーザー光に対して透過性を有する樹脂部材からなり;パイプ形状品の端部の少なくとも一方、又はフランジもしくは継手、又は前記レーザー吸収材がレーザー光に対して吸収性を有する樹脂部材からなり;パイプ形状品の端部、フランジ、継手、及び前記レーザー吸収材が接する部分に、レーザー光を照射してレーザー溶接することを特徴とするパイプ形状品の接合方法。

Description

パイプ形状品の接合方法
発明の分野
本発明は、 レーザー光を照射して樹脂部材からなるパイプ形状品 同士を、 樹脂部材からなる継手もしく はフラ ンジを介して、 又は直 明
接に、 溶着させるパイプ形状品の接合方法に関する。
田 胃京技
従来、 樹脂部材からなるパイプを接合する方法として、 ポルト等 による押しつけ力とシール材を利用した物理接合、 反応性物質を塗 布して化学的に接合する化学接合、 樹脂を部分的に溶解して接合す る溶着が知られている。 パイプ用途では接合部の長期信頼性が重要 であるため、 信頼性を得やすい溶着方法が好適に用いられている。 溶着方法としては、 熱を利用した熱溶着と樹脂可溶性溶媒を用い た溶剤溶着が知られている。
熱溶着方法と しては、 熱板によるバッ ト溶着や電線埋め込み継手 にパイプを挿入し、 溶着する方法があった (例えば、 特開平 9一 2 3 9 8 3 9号公報参照) 。
しかしながら、 パッ ト溶着では、 垂れが生じやすく、 かけらが剥 がれてパイプ内を搬送されて閉塞等を引き起こしたり、 あるいは、 圧損等の問題があり、 また薄肉パイプでは、 芯合わせが難しく、 適 切な融着が困難であった。
また、 電線埋め込み継手は、 その構造が複雑であり、 コス トが高 い問題があった。
また、 溶剤溶着方法としては、 パイプの接合面に溶剤接着剤を塗 布して、 継手に挿入し、 溶剤を蒸発させて接合させる方法がある ( 例えば、 特表平 4一 5 0 6 9 7 7号公報参照) 。
しかしながら、 使用する溶剤が有害であったり、 接着剤の乾燥時 間が長くかかりすぎるという欠点があり、 また、 樹脂部材の種類に よつては十分な接着力が得られないという問題があった。
本発明は、 前記問題点を解決し、 レーザー光を照射して、 樹脂部 材からなるパイプ形状品同士を、 樹脂部材からなる継手もしくはフ ランジを介して、 又は直接に、 レーザー溶着によ り強固に接合させ ることができるパイプ形状品の接合方法を提供することを目的とす る。 発明の開示
本発明は、 上記目的を達成するために下記を提供するものである
〔 1〕 樹脂部材からなるパイプ形状品の端部同士を、 直接に当接 させ、 又は樹脂部材からなるフラ ンジを介して突き合わせ、 又は樹 脂部材からなる継手内に挿入し、 又は、 上記において、 パイプ形状 品の端部同士の間、 又はパイプ形状品の端部とフランジもしく は継 手との間にレーザー吸収材を配置し、
パイプ形状品の端部の少なく とも一方、 又はフラ ンジもしく は継 手がレーザー光に対して透過性を有する樹脂部材からなり、
パイプ形状品の端部の少なく とも一方、 又はフランジもしくは継 手、 又は前記レーザー吸収材がレーザー光に対して吸収性を有する 樹脂部材からなり、
パイプ形状品の端部、 フランジ、 継手及びノ又は前記レーザー吸 収材が接する部分に、 レーザー光を照射してそれらをレーザー溶接 するこ とを特徴とするパイプ形状品の接合方法。 PC蘭 003/008716
〔 2〕 パイプ形状品を継手を介して接合する方法であって、 下記 のいずれかの方法で接合する、 上記 〔 1〕 に記載のパイプ形状品の 接合方法。 "
( A ) レーザー光に対して吸収性を有する樹脂部材からなるパイ プ形状品を、 レーザー光に対して透過性を有する樹脂部材からなる 継手に挿入し、 該継手側からレーザー光を照射して両者をレーザー 溶着する ; 又は
( B ) レーザー光に対して透過性を有する榭脂部材からなるパイ プ形状品の外側表面にレ一ザ一吸収材を配置し、 該パイプ形状品を レ一ザ一光に対して透過性を有する樹脂部材からなる継手に挿入し 、 該継手側からレーザー光を照射して両者をレーザー溶着する。
〔 3〕 パイプ形状品をフランジを介して接合する方法であって、 下記のいずれかの方法で接合する上記 〔 1〕 に記載のパイプ形状品 の接合方法。
( C ) レーザー光に対して透過性を有する樹脂部材からなるパイ プ形状品の端部同士を、 レーザー光に対して吸収性を有する樹脂部 材からなるフランジを介して加圧しながら突き合わせ、 パイプ形状 品の端部側からレーザー光を照射してレーザー溶着する ;
( D ) レーザー光に対して吸収性を有する樹脂部材からなるパイ プ形状品の端部同士を、 レーザー光に対して透過性を有する樹脂部 材からなるフランジを介して加圧しながら突き合わせ、 フランジ側 からレーザー光を照射してレーザー溶着する ;
( E ) レーザー光に対して透過性を有する樹脂部材からなるパイ プ形状品の端部同士を、 レーザー光に対して透過性を有する樹脂部 材からなるフランジを介して、 さらに、 該フランジとパイプ形状品 との当接部にレーザー吸収材を配置した状態で、 加圧しながら突き 合わせ、 パイプ形状品の端部側からレーザー光を照射してレーザー 溶着する ; 又は
( F ) レーザー光に対して透過性を有する樹脂部材からなるパイ プ形状品の端部同士を、 レーザー光に対して透過性を有する樹脂部 材からなるフランジを介して、 さ らに、 該フランジとパイプ形状 との当接部にレーザー吸収材を配置した状態で、 加圧しながら突き 合わせ、 フ ラ ンジ側からレーザー光を照射してレーザー溶着する。
〔4〕 パイプ形状品の端部同士を接合する方法であり、 下記のい ずれかの方法で接合する上記 〔 1〕 に記載のパイプ形状品の接合方 法。
( G ) レーザー光に対して透過性を有する樹脂部材からなり 、 そ の端部の内面にテーパ状接合面を有する第一のパイプ形状品の端部 と、 レーザ一光に対して吸収性を有する樹脂部材からなり、 その端 部の外面に、 前記第一のパイプ形状品の端部のテーパ状接合面に整 合するテーパ状接合面を有する第二のパイプ形状品の端部とを互い に当接し、 該第一のパイプ形状品側からレーザー光を照射して接合 面同士をレーザ一溶着する ; 又は
( H ) レーザ一光に対して透過性を有する樹脂部材からなり、 そ の端部の内面にテーパ状接合面を有する第一のパイプ形状品の端部 と、 レーザー光に対して透過性を有する樹脂部材からなり 、 その端 部の外面に、 前記第一のパイプ形状品の端部のテーパ状接合面に整 合するテーパ状接合面を有し、 該テーパ状接合面にレーザー吸収材 が配置された第二のパイプ形状品の端部とを互いに当接し、 該第一 のパイプ形状品側からレーザー光を照射して接合面同士をレーザ一 溶着する。
〔 5〕 前記 (A ) の方法で接合するに当たり、 パイプ形状品が、 レーザー光に対して吸収性を有する樹脂部材からなる外層と、 レー ザ一光に対して透過性を有する樹脂部材からなる内層とから構成さ れてなる上記 〔 2〕 記載のパイプ形状品の接合方法。
〔 6〕 外層の厚みが、 1 0〜 1 0 0 0 μ πιである上記 〔5〕 記载 のパイプ形状品の接合方法。
〔 7〕 レーザ一吸収材が、 レーザー光に対して吸収性を有する着 色材である上記 〔 1〕 〜 〔 7〕 のいずれか 1項に記載のパイプ形状 品の接合方法。 '
〔 8〕 レーザー吸収材が、 レーザー光に対して吸収性を有する着 色材を含む樹脂部材からなるフィルムである上記 〔 7〕 に記載のパ ィプ形状品の接合方法。
〔 9〕 フィルムの厚みが 1 0〜 1 0 0 0 μ ιηである上記 〔9〕 記 載のパイプ形状品の接合方法。
〔 1 0〕 第一のパイプ形状品、 継手又はフランジが、 レーザー光 に対して弱吸収性である樹脂部材からなることを特徴とする上記 〔
2〕 〜 〔 9〕 のいずれか 1項に記載のパイプ形状品の接合方法。 〔 1 1〕 樹脂部材が、 樹脂と レーザー光に対して弱吸収性の添加 剤とからなることを特徴とする上記 〔 1 0〕 記載のパイプ形状品の 接合方法。
〔 1 2〕 弱吸収性の添加剤が、 レーザー光に対して 4 0〜 9 0 % の透過率を有するものである上記 〔 1 1〕 記載のパイ プ形状品の接 合方法。
〔 1 3〕 弱吸収性の添加剤が、 エチレン及びノ又はプロ ピレン系 共重合体、 スチレン系共重合体、 変性エチレン及び/又はプロピレ ン系共重合体及び変性スチレン系共重合体の少なく とも一種である ことを特徴とする上記 〔 1 2〕 記載のパイプ形状品の接合方法。
〔 1 4〕 樹脂部材が、 樹脂にレーザー光に対して吸収性を有する 添加剤をレーザー光の吸収があっても樹脂が溶融しない範囲で配合 してなることを特徴とする上記 〔 1 0〕 記載のパイ プ形状品の接合 方法。
〔 1 5〕 パイプ形状品及び継手を構成する樹脂部材が、 ポリアミ ド樹脂またはポリアミ ドを主成分とするポリアミ ド樹脂組成物から なる上記 〔 1〕 〜 〔 1 4〕 記載のパイプ形状品の接合方法。
〔 1 6〕 パイプ形状品が、 自動車用燃料パイプ、 自動車用ェアブ レーキパイプ、 薬液輸送パイプ、 可燃性ガス供給または輸送パイプ 用である上記 〔 1〕 〜 〔 1 5〕 記載のパイプ形状品の接合方法。 図面の簡単な説明
図 1 A〜 5 Bは継手とパイプの接合形態の概略図である。
図 6 ~ 8は本発明におけるフランジ接合の形態及び用いるフラン ジの形状の例の概略図である。
図 9〜 1 1はパイプ同士の直接接合形態の概略図である。 発明の実施の形態
本発明は、 樹脂部材からなるパイプ形状品の端部同士を、 直接に 当接させ、 又は樹脂部材からなるフランジを介して突き合わせ、 又 は樹脂部材からなる継手内に挿入し、 又は、 上記において、 パイプ 形状品の端部同士の間、 又はパイプ形状品の端部とフランジもしく は継手との間にレーザー吸収材を配置し ; パイプ形状品の端部の少 なく とも一方、 又はフランジもしくは継手がレーザ一光に対して透 過性を有する樹脂部材からなり ; パイプ形状品の端部の少なく とも 一方、 又はフランジもしく は継手、 又は前記レーザー吸収材がレー ザ一光に対して吸収性を有する樹脂部材からなり ; パイプ形状品の 端部、 フラ ンジ、 継手及び/又は前記レーザー吸収材が接する部分 に、 レーザー光を照射して、 それらの接する部分の間をレーザー溶 接する、 パイプ形状品の接合方法にある。 より具体的には、 下記 (A ) 〜 ( I ) の方法を例示することがで ぎる。
パイプ形状品を継手を介して接合する方法 :
( A ) レーザー光に対して吸収性を有する樹脂部材からなるパイプ 形状品を、 レーザー光に対して透過性を有する樹脂部材からなる継 手に挿入し、 該継手側からレーザー光を照射して両者をレーザー溶 着する方法。
この方法では、 図 1 A及び図 1 Bを参照すると、 レーザー光に対 して吸収性を有する樹脂部材からなるパイプ形状品 1, 2を、 レー ザ一光に対して透過性を有する樹脂部材からなる継手 5に挿入し、 継手側からレーザー光 9を照射して両者をレーザー溶着する。
すなわち、 レーザ一光が照射されたとき、 レーザー光に対して透 過性を有する樹脂部材からなる継手 5をレーザー光 9が透過し、 透 過したレーザー光は、 レーザー光に対して吸収性を有する樹脂部材 1 , 2からなるパイプ形状品の表面に到達し、 接合面においてレー ザ一光が吸収され、 パイプ形状品 1, 2および当接する継手 5を溶 融させ、 接合する。
このレーザー溶着法によ り、 パイプ形状品と継手を接合すること ίこよ り 、 垂れとコス トの問題、 さらに薄肉パイ プの融着の困難性を 解決できる。 特に、 樹脂がポ リ エチレン ( P E ) の場合には高分子 量で高粘度の材料が製造しやすため、 垂れが発生しにくいが、 ポリ アミ ド (P A ) の場合は、 工業的に粘度上昇に限界があり、 また吸 水による更なる粘度低下の問題もあり、 垂れが発生しやすいので、 このレーザー溶着法が適している。
, ( B ) レーザー光に対して透過性を有する樹脂部材からなるパイ プ形状品の外側表面にレーザー吸収材を配置し、 該パイプ形状品を レーザー光に対して透過性を有する樹脂部材からなる継手に挿入し 、 該継手側からレ一ザ一光を照射して両者をレーザー溶着する方法 この方法においては、 図 2を参照すると、 パイプ形状品 3 , 4の 外側表面の継手 5 との接合部分にレーザー吸収材 8を配置する。
この方法では、 レ一ザ一光に対して透過性を有する樹脂部材から なるパイプ形状品 3, 4 の外側表面にレーザー吸収材 8を配置し、 該パイプ形状品をレーザー光に対して透過性を有する樹脂部材から なる継手 5に挿入し、 継手側からレーザー光を照射して両者をレー ザ一溶着する。
すなわち、 レ一ザ一光が照射されたとき、 レーザー光に対して透 過性を有する樹脂部材からなる継手 5をレーザー光が透過し、 透過 したレーザー光は、 レーザー光に対して透過性を有する樹脂部材か らなるパイプ形状品 3, 4 の外側表面に配置されたレーザー吸収材 8に吸収され、 接合面において当接するパイプ形状品および継手を 溶融させ、 接合する。
このレーザー溶着法によれば、 パイプ形状品にレーザー光に対し て吸収性を有する着色材を配合する必要がないため、 本吸収材によ る着色 · 変色の可能性が無く、 所望の色に容易に着色することがで きる。
このレーザー溶着法によ り、 パイプ形状品と継手を接合すること によ り、 垂れ、 強い溶剤による環境安全問題、 コス トの問題、 さら に薄肉パイプの融着の困難性を解決できる。 特に、 樹脂が P Eの場 合には高分子量で高粘度の材料が製造しやすため、 垂れが発生しに くいが、 P Aの場合は、 工業的に粘度上昇に限界があり、 また吸水 による更なる粘度低下の問題もあり、 垂れが発生しやすいので、 こ のレーザー溶着法が適している。
上記 (A ) ( B ) の方法における継手と しては、 パイプと接する 内側に溝や梨地状の微細な凹凸を設けることもできる。 溝や微細な 凹凸を設けることによ り、 パイプの挿入性の改善と固化時の応力緩 和に効果がある。
さらに、 高い接着強度発現のためにレーザー溶着面を十分密着さ せることが必要であり、 十分な圧力がかかるよう継手内径よ りパイ プ外径の寸法を大きくすることが望ましい。 例えば、 パイプ外径/ 継手内径 = 1 . 0〜 1 . 3の範囲にすることが好ましい。
また、 必要に応じ、 内側から外側 (パイプ開口部) へ向けて広が るよ うにテーパーをつけ、 パイプを挿入しやすくすることができる また、 レーザー光に対して透過性を有する樹脂部材料として、 レ 一ザ一光に対して弱吸収性である樹脂部材 (レーザー光に対して透 過性であるが、 一部のレーザー光を吸収することによ り、 その部分 の樹脂が発熱する樹脂部材) を用いて、 樹脂部材にレーザー光を照 射すると、 エネルギーを吸収して、 発熱し、 パイプ形状品との接合 面部分の温度がある程度まで高くなる。 こ の状態で、 レーザー光に 対して吸収性を有する樹脂部材からなるパイプ形状品、 継手又はフ ランジがレーザー光を吸収して加熱されることにより、 溶融する と 、 レーザー光に対して弱吸収性である樹脂部材も容易に溶融するた め、 接合部において樹脂部材同士が十分に互いに絡み合った接合部 となり、 接合力が強くなる。
図 3のこの態様の例を示すが、 図において、 3 ' 、 4 ' はレーザ 一光に対して弱吸収性である樹脂部材からなるパイプ形状品、 5 , レーザー光に対して弱吸収性である樹脂部材からなる継手である。 また、 これらの継手を用いる方法では、 図 4 A及び図 4 Bを参照 すると、 レーザー光に対して吸収性を有する樹脂部材からなるパイ プ形状品 1 , 2は、 レーザー光に対して吸収性を有する樹脂部材か らなる外層 l a, 2 a と、 レーザー光に対して透過性を有する樹脂 部材からなる内層 l b, 2 b とから構成してもよレ、。 外層 1 a , 2 aの厚みは、 1 0〜 1 0 0 0 μ πιであることが好ましい。
これは、 レーザー吸収性材料は可視光も吸収するものが多く配合 によ り着色するが、 レーザー光に対して吸収性を有する樹脂部材か らなる外層の厚みを 1 0〜 1 0 0 0 μ πιの範囲にすることによ り、 その発色の影響が小さくなり、 パイプ基材 (内層) の色が外観上支 配的になる。 よって、 パイプ基材の着色によ り見かけ上の色をコン ト ロ ールでき、 着色の自由度が高くなる。
また、 レーザー吸収層を外層に限定することにより、 内部で発熱 しないため、 パイプ内面に円筒状の溶解痕が出来にく くなり、 接合 部の欠陥が発生しにく くなる。
また、 図 5 Α及び図 5 Βを参照すると、 図 1 A及び図 1 Bに示す 態様において、 レーザー光に対して透過性である樹脂部材からなる 継手 5をレーザ一光に対して弱吸収性である樹脂部材からなる内層 5 c と、 レーザー光に対して透過性である樹脂部材からなる外層 5 dから構成することで、 同様の効果を得ることができる。
パイプ形状品をフランジを介して接合する方法 :
( C ) レーザー光に対して透過性を有する樹脂部材からなるパイ プ形状品の端部同士を、 レーザー光に対して吸収性を有する樹脂部 材からなるフランジを介して加圧しながら突き合わせ、 パイプ形状 品の端部側からレーザー光を照射してレーザー溶着する方法。
図 6を参照する と、 レーザー光に対して透過性を有する樹脂部材 からなるパイプ形状品 3, 4 の端部をレーザー光に対して吸収性を 有する榭脂部材からなるフラ ンジ 6に突き当てて、 レーザー光に対 して透過性を有する樹脂部材からなるパイプ形状品 3, 4の側から レーザー光を照射する。 上記フランジ 6の形状としては、 図 7 Aに示すように、 パイプ形 状品の端部と略同形のリ ング状とすることができる。 フランジの外 径及び内径はパイプ形状品のそれと同じであるこ とが好ましいが、 例えば、 フランジの外径をパイプ形状品の外径よ り大きく してもよ い。 また、 図 7 Bに示すように、 フランジ 6におけるパイプ形状品 の端部との当接部に、 パイプ形状品の内面 (又は外面) と接する突 出部 6 a を設けることもできる。 これにより、 フランジとパイプ形 状品の端部の接合面積が増大し、 より高い接合強度及び耐圧強度と することができ、 また、 垂れを防止することもできる。
この方法では、 レーザ一光に対して透過性を有する樹脂部材から なるパイプ形状品の端部同士を、 レーザー光に対して吸収性を有す る樹脂部材からなるフランジを介して加圧しながら突き合わせ、 ノ ィプ形状品の端部側からレーザー光を照射してレーザー溶着する。 すなわち、 レーザー光が照射されたとき、 レーザ一光に対して透 過性を有する樹脂部材からなるパイプ形状品をレーザー光が透過し 、 透過したレーザー光は、 レーザー光に対して吸収性を有する樹脂 部材からなるフランジの表面に到達し、 接合面においてレーザー光 が吸収され、 フランジおよび当接するパイプ形状品を溶融させ、 接 合する。 なお、 レーザ一光の照射は、 フランジの両側に当接するそ れぞれのパイプ形状品について行われる。
このレーザー溶着法によ り、 パイプ形状品同士をフランジを介し て接合するこ とによ り、 垂れとコス トの問題、 さらに薄肉パイプの 融着の困難性を解決できる。 特に、 樹脂が P Eの場合には高分子量 で高粘度の材料が製造しやすため、 垂れが発生しにくいが、 P Aの 場合は、 工業的に粘度上昇に限界があり、 また吸水による更なる粘 度低下の問題もあり、 垂れが発生しやすいので、 このレーザ一溶着 法が適している。 このレーザー溶着法によれば、 パイプ形状品にレーザー光に対し て吸収性を有する着色材を配合する必要がないため、 本吸収材によ る着色 · 変色の可能性が無く、 所望の色に容易に着色することがで さる。
( D ) レーザー光に対して吸収性を有する樹脂部材からなるパイ プ形状品の端部同士を、 レーザー光に対して透過性を有する樹脂部 材からなるフランジを介して加圧しながら突き合わせ、 フランジ側 からレーザ一光を照射してレーザー溶着する方法。
この方法では、 図 6 と類似の態様において、 パイプ形状品がレー ザ一光に対して吸収性を有する樹脂部材からなり、 フラ ンジがレー ザ一光に対して透過性を有する樹脂部材からなり、 レーザ一光はフ ランジ側から照射される。
この方法では、 レーザー光が照射されたとき、 レーザー光に対し て透過性を有する樹脂部材からなるフラ ンジをレーザー光が透過し 、 透過したレーザー光は、 レーザー光に対して吸収性を有する樹脂 部材からなるパイプ形状品の表面に到達し、 接合面においてレーザ 一光が吸収され、 パイプ形状品および当接するフランジを溶融させ 、 接合する。 なお、 レーザー光の照射は、 フラ ンジの両側に当接す るそれぞれのパイプ形状品について行われる。
このレーザー溶着法により、 パイプ形状品同士をフラ ンジを介し て接合することによ り、 垂れとコス トの問題、 さらに薄肉パイプの 融着の困難性を解決できる。 特に、 樹脂が P Eの場合には高分子量 で高粘度の材料が製造しやすため、 垂れが発生しにくいが、 P Aの 場合は、 工業的に粘度上昇に限界があり、 また吸水による更なる粘 度低下の問題もあり、 垂れが発生しやすいので、 このレーザ一溶着 法が適している。
( E ) レーザー光に対して透過性を有する樹脂部材からなるパイ プ形状品の端部同士を、 レーザー光に対して透過性を有する樹脂部 材からなるフランジを介して、 さ らに、 該フラ ンジとパイプ形状品 との当接部にレーザー吸収材を配置した状態で、 加圧しながら突き 合わせ、 パイプ形状品の端部側からレーザー光を照射してレーザー 溶着する方法。
この方法では、 図 8を参照すると、 レーザー光に対して透過性を 有する樹脂部材からなるパイプ形状品 3, 4 の端部同士を、 レーザ 一光に対して透過性を有する樹脂部材からなるフラ ンジ 6を介して 、 さらに、 該フラ ンジ 6 とパイプ形状品 3, 4 との当接部にレーザ 一吸収材 8を配置した状態で、 加圧しながら突き合わせ、 パイプ形 状品の端部側からレーザー光を照射してレーザー溶着する。
( F ) レーザー光に対して透過性を有する樹脂部材からなるパイ プ形状品の端部同士を、 レーザー光に対して透過性を有する樹脂部 材からなるフランジを介して、 さらに、 該フランジとパイプ形状品 との当接部にレーザー吸収材を配置した状態で、 加圧しながら突き 合わせ、 フラ ンジ側からレーザー光を照射してレーザー溶着する方 法。
この方法では、 図 8 の場合と同様であるが、 レーザー光をパイプ 形状品の端部側 3, 4からではなく、 フラ ンジ 6側から照射してレ 一ザ一溶着するものである。
これら (E ) ( F ) の方法では、 レーザー光が照射されたとき、 レーザー光に対して透過性を有する樹脂部材からなるパイプ形状品 又はフランジをレーザ一光が透過し、 透過したレーザー光は、 フラ ンジとパイプ形状品との当接部に配置されたレーザー吸収材に吸収 され、 接合面において当接するパイプ形状品及びフランジを溶融さ せ、 接合する。
このレーザー溶着法によ り、 パイプ形状品同士をフランジを介し て接合することにより、 垂れとコ ス ト の問題、 さらに薄肉パイプの 融着の困難性を解決できる。 特に、 樹脂が P Eの場合には高分子量 で高粘度の材料が製造しやすため、 垂れが発生しにくいが、 P Aの 場合は、 工業的に粘度上昇に限界があり、 また吸水による更なる粘 度低下の問題もあり、 垂れが発生しやすいので、 このレーザー溶着 法が適している。
このレーザ一溶着法によれば、 パイプ形状品にレーザー光に対し て吸収性を有する着色材を配合する必要がないため、 本吸収材によ る着色 ' 変色の可能性が無く、 所望の色に容易に着色することがで きる。
上記のパイプ形状品同士をブランジを介して接合する場合にも、 レーザー光に対して透過性を有する樹脂部材と してレーザー光に対 して弱吸収性を有する樹脂部材を用いることが可能である。
パイプ形状品の端部同士を接合する方法 :
( G ) レーザー光に対して透過性を有する樹脂部材からなり、 そ の端部の内面にテーパ状接合面を有する第一のパイプ形状品の端部 と、 レーザ一光に対して吸収性を有する樹脂部材からなり 、 その端 部の外面に、 前記第一のパイプ形状品の端部のテーパ状接合面に整 合するテーパ状接合面を有する第二のパイプ形状品の端部とを互い に当接し、 該第一のパイプ形状品側からレーザー光を照射して接合 面同士をレーザー溶着する方法。
第一のパイプ形状品は、 レーザー光に対して透過性を有する樹脂 部材からなり、 その端部の内面にテーパ状接合面を有する。
第二のパイプ形状品は、 レーザー光に対して吸収性を有する樹脂 部材からなり、 その端部の外面に、 前記第一のパイプ形状品の端部 のテ一パ状接合面に整合するテーパ状接合面を有する。
第二のパイプ形状品の樹脂は、 通常は、 前記第一のパイプ形状品 との接着性を考慮して、 前記第一のパイプ形状品に用いられる樹脂 と同種の樹脂を用いることが好ましい。
この方法では、 図 9を参照すると、 第一のパイプ形状品 1 1 の端 部のテーパ状接合面と、 第二のパイプ形状品 1 2の端部のテーパ状 接合面とを互いに当接し、 該第一のパイプ形状品側からレーザー光 9を照射して接合面同士をレーザー溶着する。
すなわち、 レーザー光が照射されたとき、 レーザー光に対して透 過性を有する樹脂部材からなる第一のパイプ形状品をレーザー光が 透過し、 透過したレーザー光は、 レーザー光に対して吸収性を有す る樹脂部材からなる第二のパイプ形状品の表面に到達し、 接合面に おいてレーザー光が吸収され、 第二のパイプ形状品および当接する 第一のパイプ形状品を溶融させ、 接合する。
このレーザー溶着法によ り、 パイプ形状品同士を接合することに より、 垂れとコス トの問題、 さ らに薄肉パイプの融着の困難性を解 決できる。 特に、 榭脂が P Eの場合には高分子量で高粘度の材料が 製造しやすため、 垂れが発生しにくいが、 P Aの場合は、 工業的に 粘度上昇に限界があり、 また吸水による更なる粘度低下の問題もあ り、 垂れが発生しやすいので、 このレーザー溶着法が適している。 また、 前記第一及び第二のパイプ形状品は、 各当接端部に互いに 整合して当接し合うテーパ状接合面がそれぞれ設けられ、 各該テー パ状接合面同士が接合されている。 このため、 テーパ状とされた分 だけ接合部における接合面積が増大し、 より高い接合強度及び耐圧 強度とすることができる。
さ らに、 前記第一及び第二のパイプ形状品では、 各当接端部に設 けられたテーパ状接合面同士がレーザ溶着されていることから、 レ 一ザ光の発射位置の自由度が増すという作用効果も奏する。
( H ) レーザー光に対して透過性を有する樹脂部材からなり 、 そ の端部の内面にテーパ状接合面を有する第一のパイプ形状品の端部 と、 レーザー光に対して透過性を有する樹脂部材からなり、 その端 部の外面に、 前記第一のパイプ形状品の端部のテーパ状接合面に整 合するテーパ状接合面を有し、 該テーパ状接合面にレーザー吸収材 が配置された第二のパイプ形状品の端部とを互いに当接し、 該第一 のパイプ形状品側からレーザー光を照射して接合面同士をレーザー 溶着する方法。
この方法における第一のパイプ形状品は、 レーザー光に対して透 過性を有する樹脂部材からなり、 その端部の内面にテーパ状接合面 を有する。
第二のパイプ形状品は、 レーザー光に対して透過性を有する樹脂 部材からなり、 その端部の外面に、 前記第一のパイプ形状品の端部 のテーパ状接合面に整合するテーパ状接合面を有する。 第二のパイ プ形状品の樹脂は、 第一のパイプ形状品との接着性を考慮して、 前 記第一のパイプ形状品に用いられる樹脂と同種の樹脂を用いること が好ましい。
この方法においては、 図 1 0を参照すると、 第二のパイプ形状品 1 3の端部の外面のテーパ状接合面にレーザー吸収材 1 4を配置す る。 第一のパイプ形状品 1 1の端部のテーパ状接合面と、 第二のパ イブ形状品 1 3の端部のレーザー吸収材 1 4が配置されたテーパ状 接合面とを互いに当接し、 該第一のパイプ形状品側からレーザー光 を照射して接合面同士をレーザー溶着する。
すなわち、 レーザー光が照射されたとき、 レーザー光に対して透 過性を有する樹脂部材からなる第一のパイプ形状品をレーザー光が 透過し、 透過したレーザー光は、 第二のパイプ形状品の端部のテー パ状接合面に配置されたレーザー吸収材に吸収され、 接合面におい て第一及び第二のパイプ形状品を溶融させ、 接合する。 このレーザー溶着法によれば、 第二のパイプ形状品にレーザー光 に対して吸収性を有する着色材を配合する必要がないため、 本吸収 材による着色 · 変色の可能性が無く、 所望の色に容易に着色するこ とができる。
このレーザー溶着法によ り、 パイプ形状品同士を接合することに より、 垂れ、 強い溶剤による環境安全問題、 コス トの問題、 さ らに 薄肉パイプの融着の困難性を解決できる。 特に、 樹脂が P Eの場合 には高分子量で高粘度の材料が製造しやすため、 垂れが発生しにく いが、 P Aの場合は、 工業的に粘度上昇に限界があり、 また吸水に よる更なる粘度低下の問題もあり、 垂れが発生しやすいので、 この レーザー溶着法が適している。
また、 前記第一及び第二のパイプ形状品は、 各当接端部に互いに 整合して当接し合うテーパ状接合面がそれぞれ設けられ、 各該テー パ状接合面同士が接合されている。 このため、 テーパ状とされた分 だけ接合部における接合面積が増大し、 よ り高い接合強度及び耐圧 強度とすることができる。
さらに、 前記第一及び第二のパイプ形状品では、 各当接端部に設 けられたテーパ状接合面同士がレーザー溶着されていることから、 レーザー光の発射位置の自由度が増すという作用効果も奏する。 上記のパイプ形状品同士を直接に接合する場合にも、 レーザー光 に対して透過性を有する樹脂部材と してレーザー光に対して弱吸収 性を有する樹脂部材を用いることが可能である。
( I ) 上記では、 レーザー光に対して透過性を有する樹脂部材の 間の接合面にレーザー吸収材を配置したが、 レーザ一光に対して透 過性を有する樹脂部材とレーザー光に対して吸収性を有する樹脂部 材の間の接合面にレーザー吸収材を配置してもよいことは明らかで める。 樹脂部材
本発明において、 パイプ形状品又は継手もしく はフランジは、 レ 一ザ一光に対して吸収性を有する樹脂部材、 又はレーザー光に対し て透過性を有する樹脂部材からなる。
(レーザー光に対して吸収性を有する樹脂)
レーザー光に対して吸収性を有する樹脂と しては、 熱可塑性を有 し、 ガスパイプ等のパイプ形状品、 又は継手もしくはフランジに成 形可能で、 レーザー光に対して十分な吸収性を示すものであれば特 に限定されない。 例えば、 ポリ ビュルアルコール、 ポリ酢酸ビニル 、 ポリ アミ ド、 ポリエチレン、 ポリ プロ ピレン、 あるいはエチレン 、 プロ ピレンなどの共重合体などのポリ オレフイ ン、 ポリ スチレン 、 ポリ塩化ビュル、 ポリ塩化ビ-リデン、 ポリ メチルメタク リ レー ト、 あるいはスチレン、 塩化ビニル、 メチルメ タク リ レー ト 、 塩化 ビニリデンなどの共重合体、 ポリ カーボネー ト、 ポリ アミ ド、 ポリ エステル、 ポリ エーテル、 ポリ エーテルケ ト ン、 ポリ エーテルエー テルケ ト ン、 ポリ スルフォン、 ポリイ ミ ドなどの縮合系のェンジ二 ァリ ングプラスチック等の樹脂に、 レーザー光に対して吸収性を有 する着色材を混入したものを挙げることができる。 なお、 必要に応 じて、 ガラス繊維や力一ボン繊維等の補強繊維を添加したものを用 いてもよい。
特に、 耐薬品性 · 靭性が必要な自動車用パイプゃ可燃性ガス供給 および Z又は輸送用パイプ用などには、 ポリアミ ド樹脂または、 ポ リ アミ ド榭脂を主成分とするポリアミ ド樹脂組成物が好適に用いら れる。
ここで、 十分な吸収性とは、 レーザー光を受けた部分がレーザー 光を吸収し、 その部分が溶融するような吸収性をいう。
前記ポリアミ ド樹脂としては、 ジアミンとニ塩基酸とからなるか 、 またはラタタムもしく はァミ ノカルボン酸からなるか、 またはこ れらの 2種以上の共重合体からなるものが挙げられる。
ジァミ ンと しては、 テ トラメチレンジァミ ン、 へキサメチレンジ ァミ ン、 オタタメチレンジァミ ン、 ノナメチレジアミ ン、 ゥンデ力 メチレンジァミ ン、 ドデカメチレンジアミ ン等の脂肪族ジァミ ンゃ 、 メタキシリ レンジアミ ン等の芳香族 · 環状構造を有するジァミ ン が挙げられる。
ジカルボン酸と しては、 アジピン酸、 ヘプタンジカルボン酸、 ォ クタンジ力/レポン酸、 ノナンジカルボン酸、 ゥンデカンジカルボン 酸、 ドデカンジカルボン酸等の脂肪族ジアミ ンゃテレフタル酸、 ィ ソフタル酸等の芳香族 · 環状構造を有するジカルボン酸が挙げられ る。
ラタタムと しては、 炭素数 6〜 1 2のラタタム類であり、 また、 アミ ノカルボン酸と しては炭素数 6〜 1 2のアミ ノカルボン酸であ る。 6—アミ ノカプロ ン酸、 7—ァミ ノヘプタン酸、 1 1ーァミ ノ ゥンデカン酸、 1 2—ァミ ノ ドデカン酸、 α—ピロ リ ドン、 ε—力 プロラクタム、 ω —ラウロ ラクタム、 ε —ェナント ラクタム等が挙 げられる。
特に、 パイプ用と しては、 加工温度範囲が広く、 熱的に安定な押 出加工性に優れた材料が好ましく 、 ポリ アミ ド 6、 ポリ アミ ド 1 1 、 ポリ アミ ド 1 2、 ポリ アミ ド 6 1 0、 ポリ アミ ド 6 1 2などの比 較的融点の低いホモポリ マーや、 ポリ アミ ド 6 / 6 6、 ポリ アミ ド 6 / 1 2、 ポリ アミ ド 1 1 / 1 2などのコポリマーが好適に使用さ れる。 特に粘度や吸水性の点でポリ アミ ド 1 1 、 ポリ アミ ド 1 2が 望ましい。
また、 上記ポリ アミ ド樹脂は、 他のポリ アミ ド樹脂またはその他 のポリ マーとの混合物であってもよい。 混合物中のポリ アミ ド榭脂 の含有率は、 5 0重量%以上が好ましい。
混合するポリアミ ド樹脂と しては、 ポリアミ ド 6、 ポリアミ ド 6 6、 ポリ アミ ド 1 1、 ポリ アミ ド 1 2、 ポリ アミ ド 6 1 0、 ポリ ア ミ ド 6 1 2、 ポリ アミ ド 9 1 2、 ポリ アミ ド 1 0 1 0、 ポリ アミ ド 1 2 1 2、 ポリ アミ ド 6 / 6 6共重合、 ポリ アミ ド 6 / 1 2共重合 、 ポリ アミ ド 1 1 Z 1 2共重合等を挙げることができる。 また、 そ の他のポリ マーと しては、 ポリ プロ ピレン、 A B S樹脂、 ポリ フエ 二レンオキサイ ド、 ポリ カーボネー ト、 ポリ エチレンテレフタ レー ト、 ポリ ブチレンテレフタレート等を挙げることができる。
また、 上記樹脂には、 耐熱剤、 耐候剤、 離型剤、 滑剤、 帯電防止 剤、 難燃剤、 難燃助剤等の機能性付与剤を添加してもよい。
本発明におけるレーザー光に対して吸収性を有する着色材と して はそのような性質を有するものであればどのようなものでも利用可 能であるが、 具体的には、 カーボンブラック、 複合酸化物系顔料等 の無機系着色材、 フタロシアニン系顔料、 ポリ メチン系顔料等の有 機系着色材が用いられる。
(レーザー光に対して透過性を有する樹脂)
レーザー光に対して透過性を有する樹脂と しては、 熱可塑性を有 し、 パイプ用継手等に成形可能で、 レーザー光に対して透過性を示 すものであれば特に限定されない。 例えば、 ポリ ビニルアルコール 、 ポリ酢酸ビュル、 ポリ アミ ド、 ポリ エチレン、 ポリ プロ ピレン、 あるいはエチレン、 プロ ピレンなどの共重合体などのポリオレフィ ン、 ポリ スチレン、 ポリ塩化ビュル、 ポリ塩化ビニリデン、 ポリ メ チルメ タク リ レー ト、 あるいはスチレン、 塩化ビ二ル、 メチルメ タ ク リ レート、 塩化ビニリデンなどの共重合体、 ポリ カーボネー ト、 ポリ アミ ド、 ポリ エステル、 ポリエーテル、 ポリエーテルケ ト ン、 ポリエーテルエーテルケ ト ン、 ポリ スルフォン、 ポリイ ミ ドなどの 縮合系のエンジニアリ ングプラスチック等の樹脂を挙げることがで きる。 なお、 必要に応じて、 ガラス繊維やカーボン繊維等の補強繊 維を添加したものを用いてもよい。 '
具体的には、 レーザー光に対して透過性を有する樹脂は、 レーザ 一光に対して吸収性を有する樹脂との接着性を考慮して、 同種の樹 脂を用いるこ とが好ましい。
こ こで、 レーザー光に対して透過性を有するとは、 たとえば一部 のレーザー光の吸収があっても、 残りのレーザー光が透過し、 その 部分の樹脂が溶融しない透過性をいう。
上記樹脂には、 耐熱剤、 耐候剤、 離型剤、 滑剤、 帯電防止剤、 難 燃剤、 難燃助剤等の機能性付与剤を添加してもよい。
また、 上記樹脂にレーザー光に対して透過性を示す着色材を添加 してもよい。 例えば、 アンスラキノ ン系染料、 ペリ レン系、 ぺリ ノ ン系、 複素環系、 ジスァゾ系、 モノァゾ系等の有機系染料をあげる ことができる。 また、 これらの染料を混合させて用いてもよい。
(レーザー光に対して弱吸収性である樹脂部材)
本発明においては、 レーザー光に対して透過性を有する樹脂部材 料と して、 レーザー光に対して弱吸収性である樹脂部材を用いても 良レヽ。
ここで、 レーザー光に対して弱吸収性であるとは、 レーザー光に 対して透過性であるが、 一部のレーザー光を吸収することによ り、 その部分の樹脂が発熱することをいう。
そのため、 樹脂部材にレーザー光を照射すると、 エネルギーを吸 収して、 発熱し、 パイプ形状品との接合面部分の温度がある程度ま で高くなる。 この状態で、 例えば、 レーザー光に対して吸収性を有 する樹脂部材からなるパイプ形状品、 継手又はフラ ンジがレーザー 光を吸収して加熱されることにより、 溶融すると、 レーザー光に対 して弱吸収性である樹脂部材も容易に溶融するため、 接合部におい て樹脂部材同士が十分に互いに絡み合った接合部となり、 接合力が 強くなる。
レ'一ザ一光に対して弱吸収性である樹脂部材としては、 樹脂にレ 一ザ一光に対して弱吸収性の添加剤を配合したものや、 樹脂にレー ザ一光に対して吸収性を有する添加剤をレーザー光の吸収があって も樹脂が溶融しない範囲で配合したものを用いることができる。
レーザー光に対して弱吸収性の添加剤としては、 レーザー光の波 長に共振して、 レーザー光の一部を吸収し、 一部を透過する材料で あればよい。 特にレーザー光に対して 4 0〜9 0 %の透過率を有す るものが好ましい。 なお、 前記レーザー光に対する透過率は、 弱吸 収性の添加剤を 3 . 2 m m厚さの A S T M 1号ダンベルの形状に成 形したものについて測定した数値である。
また、 弱吸収性の添加剤の含有量は、 樹脂に対し、 0 . 1〜5 0 重量%であることが好ましい。 含有量が 0 . 1重量%よ りも少ない と、 レーザー光のエネルギーを吸収することによる発熱が少ないた め、 樹脂部材の温度が十分にあがらず、 接合部の接合強度が低くな る。 また、 含有量が 5 0重量%を超えると、 曲げ弾性率等の物性が 低下したり、 十分な溶着強度を得るためによ り多くのレーザー光の エネルギーが必要になるので好ましくない。
弱吸収性の添加剤としては、 例えば、 エチレン及び/又はプロ ピ レンと他のォレフィ ン類やビニル系化合物との共重合体 (以下、 ェ チレン及び/又はプロ ピレン系共重合体という) 、 スチレンと、 共 役ジェン化合物との共重合体を水素添加してなるブロック共重合体
(以下、 スチレン系共重合体とい う ) 、 かかるエチレン及び Z又は プロピレン系共重合体、 スチレン系共重合体に Q;, ]3—不飽和カル ボン酸もしくはその誘導体を付加させた変性エチレン及び/又はプ 口 ピレン系共重合体、 変性スチレン系共重合体が挙げられる。
エチレン及び Z又はプロ ピレン系共重合体と しては、 (エチレン 及び Z又はプロ ピレン) · α —ォレフィ ン系共重合体、 (エチレン 及び Ζ又はプロ ピレン) · α , —不飽和カルボン酸共重合体、 ( エチレン及び/又はプロ ピレン) · α, 一不飽和カルボン酸エス テル系共重合体、 アイオノマー重合体などを挙げるこ とができる。
(エチレン及び/又はプロ ピレン) . ひ ーォレフイ ン系共重合体 とは、 エチレン及び 又はプロ ピレンと炭素数 3以上の α—ォレフ ィ ンを共重合した重合体であり、 炭素数 3以上のひーォレフイ ンと しては、 プロ ピレン、 ブテン一 1 、 へキセン一 1 、 デセン一 1 、 4 —メチルブテン一 1 、 4—メチルペンテン一 1 が挙げられる。
(エチレン及び Z又はプロ ピレン) · α , /3—不飽和カルボン酸 系共重合体とは、 エチレン及び/又はプロ ピレンと ひ , )3—不飽和 カルボン酸単量体を共重合した重合体であり 、 α , jS —不飽和カル ボン酸単量体と しては、 アク リル酸、 メ タク リル酸、 ェタク リル酸 、 無水マレイ ン酸等を挙げるこ とができる。
(エチレン及び Z又はプロ ピレン) . α , )3 —不飽和カルボン酸 エステル系共重合体とは、 エチレン及び/又はプロ ピレンと α, β 一不飽和カルボン酸エステル単量体を共重合した重合体であり、 α , j8 —不飽和カルボン酸エステル単量体と しては、 アク リル酸メチ ル、 アク リ ル酸ェチル、 アク リ ル酸プロ ピル、 アク リ ル酸ブチルな どのアク リ ル酸エステル、 メ タ ク リ ル酸メチル、 メ タ ク リノレ酸ェチ ル、 メ タク リル酸プロ ピル、 メ タク リル酸ブチルなどのメタク リノレ 酸エステル等を挙げられる。
アイオノマー重合体とは、 ォレフィ ンと ひ , ]3 —不飽和カルボン 酸共重合体のカルボキシル基の少なく とも一部が金属イ オンの中和 によ りイオン化されたものである。 ォレフィ ンと してはエチレンが 好ましく用いられ、 α, i3—不飽和カルボン酸と してはアク リル酸 、 メタク リル酸等が用いられる。 金属ィオンはナト リ ウム、 力 リ ウ ム、 マグネシウム、 カルシウム、 亜鉛等のイオンを挙げることでき る。
スチレン系共重合体とは、 少なく とも 1個、 好ましくは 2個以上 のスチレンを主体とする重合体ブロ ック Aと、 少なく とも 1個の共 役ジェン化合物を主体とする重合体ブロ ック Bとからなるブロ ック 共重合体を水素添加してなるプロ ック共重合体であり、 例えば A— B— A、 B— A— B— A、 A— B—A— B— A、 B— A— B— A— B等の構造を有する。
共役ジェン化合物と しては、 例えばブタジエン、 イ ソプレン、 1 , 3 —ペンタジェン、 2, 3 —ジメチルー 1, 3 —ブタジエンなど が挙げられる。
スチレン系共重合体と しては、 水添スチレン一ブタジエン—スチ レン共重合体 ( S E B S ) 、 水添スチレン一イ ソプレン一スチレン 共重合体 (S E P S ) 等が挙げられる。
変性 (エチレン及び Z又はプロ ピレン) 系共重合体、 変性スチレ ン系共重合体は、 前記に規定した (エチレン及び Z又はプロ ピレン
) 系共重合体、 スチレン系共重合体に a, j3 _不飽和カルボン酸基 またはその誘導体基を含有する化合物を溶液状態もしく は溶融状態 において付加することによって得られる。 これら変性 (エチレン及 び/又はプロ ピレン) 系共重合体、 変性スチレン系共重合体の製造 方法としては、 例えば押出機中で、 ラジカル開始剤存在下、 (ェチ レン及び/又はプロ ピレン) 系共重合体、 スチレン系共重合体と力 ルボン酸基またはその誘導体基を含有する化合物とを反応させる方 法がある。
a , j3—不飽和カルボン酸またはその誘導体 (以下単に不飽和力 ルボン酸という) と しては、 アク リル酸, メタク リル酸, エタタ リ ル酸, マレイ ン酸, フマル酸あるいはこれらの酸の無水物またはェ ステルなどを挙げることができる。
樹脂にレーザー光に対して吸収性を有する添加剤を配合する場合 には、 レーザー光を照射した際、 一部のレーザー光を吸収しても、 残りのレーザー光が透過し、 その部分の樹脂が溶融しない範囲で添 加量を調整する。
レーザー光に対して吸収性を有する添加剤と しては、 カーポンプ ラック、 複合酸化物系顔料等の無機系着色'材、 フタロシアニン系顔 料、 ポリ メチン系顔料等の有機系着色材が用いられる。
本発明においては、 レーザー光に対して弱吸収性である樹脂部材 からなる継手と して、 前記樹脂にレーザー光に対して弱吸収性の添 加剤等を配合した樹脂部材からなる内層と、 レーザー光に対して弱 吸収性の添加剤等を含有しない樹脂部材からなる外層とから構成し てもよい。 内層の厚みは、 全継手厚みの 1 / 2以下であることが好 ましい。 多層にすることにより、 弱吸収性の材料によるレーザーェ ネルギーロスを低減することができ、 必要なレーザー光出力が小さ くて済む。 それゆえ、 コンパク トな小型半導体レーザーが選択でき 、 よ り早い走査速度で対応可能になり、 装置 · 速度の面で好ましい
(レーザー吸収材)
レーザー吸収材と しては、 レーザー光に対して吸収性を有する着 色材を直接塗布したものが挙げられる。 具体的には、 着色材を溶媒 に分散させた懸濁液をパイプ形状品の外側表面、 継手の内面、 パイ プ形状品又はフランジの端面などの接合面に塗布し、 乾燥すること によ り、 着色材がパイプ形状品の外側表面、 継手の内面、 パイプ形 状品又はフランジの端面などの接合面に配置される。 レーザー光に対して吸収性を有する着色材としては、 カーボンプ ラック、 複合酸化物系顔料等の無機系着色材、 フタ ロ シアニン系顔 科、 ポリ メチン系顔料等の有機系着色材が用いられる。
また、 レーザー吸収材と して、 レーザー光に対して吸収性を有す る着色材を含む樹脂部材からなるフィルムを用いることもできる。 前記樹脂と してはフィルムに成形可能で、 レーザー光に対して十 分な吸収性を示すものであれば特に限定されない。 例えば、 ポリ ビ ニノレアノレコーノレ、 ポリ酢酸ビニル、 ポリアミ ド、 ポリ エチレン、 ポ リ プロピレン、 あるいはエチレン、 プロピレンなどの共重合体など のポ リ オレフイ ン、 ポリ スチレン、 ポリ塩化ビュル、 ポリ塩化ビニ リデン、 ポリ メチルメタタ リ レー ト、 あるいはスチレン、 塩化ビ二 ル、 メチルメタク リ レー ト、 塩化ビ-リデンなどの共重合体、 ポリ カーボネート、 ポリ アミ ド、 ポリエステル、 ポリエーテル、 ポリエ 一テルケ ト ン、 ポリ エーテノレエーテノレケ ト ン、 ポリ スノレフォ ン、 ポ リイ ミ ドなどの縮合系のエンジニアリ ングプラスチック等の樹脂に 、 レーザー光に対して吸収性を有.する着色材を混入したものを挙げ ることができる。
具体的には、 パイプ形状品、 継手及び/又はフランジとの接着性 を考慮して、 パイプ形状品、 継手及び 又はフランジに用いられる 樹脂と同種の樹脂を用いることが好ましい。
フィルムの厚みは、 1 0〜1 0 0 0 / m、 よ り好ましくは 1 0 ~ 5 0 0 μ mであることが好ましい。 1 0 μ m未満ではパイプと継手 接合時、 破損が発生しやすく、 Ι Ο Ο Ο μ πι超では、 フィルムが剛 直になり、 取り扱い性が悪くなる。
(レーザー光の照射による接合)
本発明のレーザー溶着方法に用いられるレーザー光としては、 ガ ラス : ネオジム 3 + レーザー、 Y A G : ネオジム 3 + レーザー、 /レビー レーザー、 ヘ リ ウ ム—ネオンレーザー、 ク リ プ ト ンレーザー、 ァノレ ゴンレーザー、 H2 レーザー、 N2 レーザー、 半導体レーザ一等のレ 一ザ一光をあげることができる。 より好ましいレーザーと しては、 半導体レーザーである。
レーザー光の波長は、 接合される樹脂材料によ り異なるためー概 に決定できないが、 4 0 0 n m以上であるこ とが好ましい。 波長が 4 0 0 n mよ り短いと、 樹脂が著しく劣化することがある。
また、 レーザ一光の出力は、 走査速度と透過基材の吸収能力によ り調整できる。 レーザー光の出力が低いと樹脂材料の接合面を互い に溶融させることが困難となり、 出力が高いと樹脂材料が蒸発した り、 変質し強度が低下する問題が生じるよ うになる。
(用途)
本接合方法は、 自動車用燃料パイプ、 自動車用エアブレーキパイ プ、 薬液輸送パイプ、 可燃性ガス供給または輸送パイプ等に用いる こ とができる。 実施例
以下、 実施例を用いて本発明を説明する。
(継手の実施例)
実施例 1
図 1 A及び図 1 Bに示すよ うに、 ポリ アミ ド 1 2 (宇部興産 (株 ) 製 U B E S TA 3 0 3 5 U) を用いて、 レーザー透過性の円筒形 継手 5 (内径 3 1 . 5 mm、 厚み 3. 5 mm) を作製した。
また、 同じポリ アミ ド 1 2にカーボンブラックを 0. 5重量%配 合したものを用いて、 レーザー吸収性のパイプ 1, 2 (外径 3 2 m m、 厚み 1. 5 mm) を作製した。
この継手にパイプを揷入し、 半導体レーザー装置にセッ ト した。 継手側からレーザー光を照射しながら、 照射ノズルを継手の円周に 沿って移動させた。 その結果、 継手とパイプとの当接面部において 、 溶融、 固化が生じ、 継手とパイプが強固に溶着した。
このとき、 レーザー溶着に用いられたレーザー光は、 波長が 8.0 8 n m、 出力が 3 0W、 走査速度が 1 0 m m Z sであった。
前記と同様にして、 前記パイ プの他端をも う一つの継手とレーザ 一溶着し、 このレーザ一溶着したパイプと継手の接着力を、 両端の 継手側を長手方向に引き抜く ことによ り評価したところ、 4 2 0 0 Nで接合部が外れた。
実施例 2
図 2 A及び図 2 Bに示すように、 ポリ アミ ド 1 2 (宇部興産 (株 ) 製 U B E S TA 3 0 3 5 U) を用いて、 レーザー透過性の円筒形 継手 5 (内径 3 1. 5 mm、 厚み 3. 5 mm) を作製した。
また、 同じポリ アミ ド 1 2を用いて、 レーザー透過性のパイプ 3 , 4 (外径 3 2 mm、 厚み 1 . 5 mm) を作製した。
前記パイプ 3, 4の外側表面にカーボンブラック系黒色ィンクを 塗布、 乾燥して、 レーザー吸収材 8を配置した。
このパイプを継手に挿入し、 半導体レーザー装置にセッ ト した。 継手側からレーザー光を照射しながら、 照射ノズルを継手の円周に 沿って移動させた。 その結果、 継手とパイプとの当接面部において 、 溶融、 固化が生じ、 継手とパイプが強固に溶着した。
この とき、 レーザー溶着に用いられたレーザー光は、 波長が 8 0 8 n m、 出力が 3 0W、 走査速度は l O mmZ sであった。
このレーザー溶着したパイプと継手の接着力を実施例 1 と同様に して評価したところ、 接着力は 3 6 0 O Nであった。
実施例 3
図 3 A及び図 3 Bに示すよ うに、 ポリ アミ ド 1 2 (宇部興産 (株 ) 製 UB E S T A 3 0 3 5 U) を用いて、 レーザー透過性の円筒形 継手 5, (内径 3 1. 5 mm、 厚み 3. 5 mm) を作製した。
また、 同じポリ アミ ド 1 2を用いて、 レーザー透過性のパイプ 3 ' 、 4, (外径 3 2 mm、 厚み 1. 5 mm) を作製した。
同じポリアミ ド 1 2にカーボンブラックを 0. 5重量%配合した ものを用いて、 溶融押出したフィルムを二軸延伸処理して熱収縮性 フィルムを作製した。
この熱収縮性フイルムをパイプ 7の外側表面に被覆し、 熱処理し てパイプに密着させて、 レーザー吸収材 8を配置した。
このパイプを継手に挿入し、 半導体レーザー装置にセ ッ トした。 継手側からレーザー光を照射しながら、 照射ノズルを継手の円周に 沿って移動させた。 その結果、 継手とパイプとの当接面部において 、 溶融、 固化が生じ、 継手とパイ プが強固に溶着した。
この と き、 レーザー溶着に用いられたレーザー光は、 波長が 8 0 8 n m、 出力が 3 0W、 走査速度は l O mmZ sであった。
このレーザー溶着したパイプと継手の接着力を実施例 1 と同様に して評価したところ、 接着力は 4 0 0 O Nであった。
実施例 4
図 1 A及び図 1 Bに示すように、 ポリ アミ ド 1 2 (宇部興産 (株 ) 製 U B E S TA 3 0 3 5 U) を用いて、 レーザー透過性の円筒形 継手 5 (内径 3 1 . 5 mm、 厚み 3. 5 mm) を作製した。
また、 同じポリ アミ ド 1 2に黄色の着色剤及び赤外線吸収剤 (Av ecia製 PRO- JET830NP) を 0. 0 5重量%配合したものを用いて、 レ 一ザ一吸収性のパイプ 2 (外径 3 2 mm、 厚み 1. 5 mm) を作製 した。 パイプの色は黒ずんだ黄色であった。
この継手にパイプを挿入し、 半導体レーザー装置にセッ トした。 継手側からレーザー光を照射しながら、 照射ノズルを継手の円周に 沿って移動させた。 その結果、 継手とパイプとの当接面部において 、 溶融、 固化が生じ、 継手とパイプが強固に溶着した。
このとき、 レーザー溶着に用いられたレーザー光は、 波長が 8 0 8 n m、 出力が 3 0 W、 走査速度が 1 0 mm/ s であった。
このレーザー溶着したパイプと継手の接着力を実施例 1 と同様に して評価したところ、 接着力は 3 9 0 O Nであった。
実施例 5
図 4 A及び図 4 Bに示すように、 ポリアミ ド 1 2 (宇部興産 (株 ) 製 UB E S T A 3 0 3 5 U) を用いて、 レーザー透過性の円筒形 継手 5 (内径 3 1 . 5 mm、 厚み 3. 5 mm) を作製した。
また、 同じポリアミ ド 1 2に黄色着色剤と赤外線吸収剤 (Avecia 製 PRO- JET830NP) を 0. 0 5重量%配合したものを外層 l a , 2 a に、 赤外線吸収剤抜きの黄色材料だけを配合したものを内層 1 b, 2 bにして共押出しで、 レーザー吸収性の多層パイプ (外径 3 2 m m、 厚み 1 . 5 mm) を作製した。 吸収剤入りの外層の厚みは 1 0 Ο μ πιであり、 2層パイ プの外観は、 明るい黄色であった。
この継手にパイプを揷入し、 半導体レーザー装置にセッ ト した。 継手側からレーザー光を照射しながら、 照射ノズルを継手の円周に 沿って移動させた。 その結果、 継手とパイプとの当接面部において 、 溶融、 固化が生じ、 継手とパイプが強固に溶着した。
このとき、 レーザー溶着に用いられたレーザー光は、 波長が 8 0 8 n m、 出力が 3 0 W、 走査速度が 1 0 mm/ s であった。
このレーザー溶着したパイプと継手の接着力を実施例 1 と同様に して評価したところ、 接着力は 4 4 0 Ό Nであり、 単層パイプよ り 高い強度であった。 また、 内面に観察される溶着部の変形は単層よ り小さかった。
実施例 6 図 1 A及び図 I Bに示すように、 ポリアミ ド 1 2 (宇部興産 (株 ) 製 UB E S TA 3 0 3 5 U) にマレイン酸変性 E P R (JSR製 T77 12SP) を 2重量%配合したものを用いて、 レーザー透過性の円筒形 継手 5 (内径 3 1 . 5 mm、 厚み 3. 5 mm) を作製した。
また、 同じポリ アミ ド 1 2にカーボンブラックを 0. 5重量0 /0配 合したものを用いて、 レーザー吸収性のパイプ 1 , 2 (外径 3 2 m m、 厚み 1. 5 mm) を作製した。
この継手にパイプを挿入し、 半導体レーザー装置にセッ トした。 継手側からレーザー光を照射しながら、 照射ノズルを継手の円周に 沿って移動させた。 その結果、 継手とパイプとの当接面部において 、 溶融、 固化が生じ、 継手とパイプが強固に溶着した。
このとき、 レーザー溶着に用いられたレーザー光は、 波長が 8 0 8 n m、 出力が 1 0 0W、 走査速度が l O mmZ sであった。
このレーザー溶着したパイプと継手の接着力を実施例 1 と同様に して評価したところ、 5 6 0 0 Nでパイプが破断した。
実施例 7
図 1 A及び図 1 Bに示すように、 ポリアミ ド 1 2 (宇部興産 (株 ) 製 UB E S TA 3 0 3 5 U) に赤外線吸収剤 ( Avecia製 PR0-JET8 30NP) を 0. 0 0 5重量%配合したものを用いて、 レーザー透過性 の円筒形継手 5 (内径 3 1. 5 mm、 厚み 3. 5 mm) を作製した また、 同じポリ アミ ド 1 2にカーボンブラックを 0. 5重量0 /0配 合したものを用いて、 レーザー吸収性のパイプ 1, 2 (外径 3 2 m m、 厚み 1. 5 mm) を作製した。
この継手にパイプを揷入し、 半導体レーザー装置にセッ ト した。 継手側からレーザー光を照射しながら、 照射ノズルを継手の円周に 沿って移動させた。 その結果、 継手とパイプとの当接面部において 、 溶融、 固化が生じ、 継手とパイプが強固に溶着した。
このとき、 レーザー溶着に用いられたレーザー光は、 波長が 8 0 8 n m、 出力が 1 0 0W、 走査速度が 1 0 mm/ s であった。
このレーザー溶着したパイプと継手の接着力を実施例 1 と同様に して評価したところ、 5 7 0 0 Nでパイプが破断した。
(フラ ンジの実施例)
実施例 8
ポリ アミ ド 1 2 (宇部興産 (株) 製 UB E S TA 3 0 3 5 U) を 用いて、 レーザー透過性のパイプ 3 , 4 (外径 3 2 mm、 厚み 1. 5 mm) を作製した。
また、 同じポリ アミ ド 1 2にカーボンブラックを 0. 5重量%配 合したものを用いて、 レーザー吸収性のリ ング状のフランジ 6 (外 径 3 2 mm、 内径 2 9 mm、 厚み 3 mm) を作製した。
このパイプ同士をフランジを介して加圧しながら突き合わせた状 態で、 半導体レーザー装置にセッ トした。 片方のパイプ側からレー ザ一光を照射しながら、 照射ノズルをパイプの円周に沿って移動さ せた。 その結果、 フランジとパイプとの当接面部において、 溶融、 固化が生じ、 フランジとパイプが強固に溶着した。 も う一方のパイ プ側から同様にレーザー光を照射した。 その結果、 フラ ンジとパイ プとの当接面部において、 溶融、 固化が生じ、 フランジとパイプが 強固に溶着した。
このレーザー溶着したパイプとフランジの接着力を、 両端のパイ プを治具で固定し、 長手方向に引っ張ることによ り評価したところ 、 接着力は 4 2 0 O Nであった。
実施例 9
ポリ アミ ド 1 2 (宇部興産 (株) 製 UB E S TA 3 0 3 5 U) に カーボンブラックを 0. 5重量0 /0配合したものを用いて、 レーザー 吸収性のパイプ (外径 3 2 mm、 厚み 1. 5 mm) を作製した。 また、 同じポリアミ ド 1 2を用いて、 レーザー透過性のリ ング状 のフランジ (外径 3 2 mm、 内径 2 9 mm、 厚み 3 mm) を作製し た。
このパイプ同士をフランジを介して加圧しながら突き合わせた状 態で、 半導体レーザー装置にセッ ト した。 フランジ側から片方のパ イブへ向かってレーザー光を照射しながら、 照射ノズルをフランジ の円周に沿って移動させた。 その結果、 フランジとパイプとの当接 面部において、 溶融、 固化が生じ、 フランジとパイプが強固に溶着 した。 また、 フランジ側からも う一方のパイプへ向かっても同様に レーザー光を照射した。 その結果、 フランジとパイプとの当接面部 において、 溶融、 固化が生じ、 フランジとパイプが強固に溶着した このレーザー溶着したパイプとフランジの接着力を実施例 8 と同 様にして評価したところ、 接着力は 4 0 0 O Nであった。
実施例 1 0
ポリアミ ド 1 2 (宇部興産 (株) 製 U B E S TA 3 0 3 5 U) を 用いて、 レーザ一透過性のパイプ (外径 3 2 mm、 厚み 1. 5 mm ) を作製した。
また、 同じポリアミ ド 1 2を用いて、 レーザー透過性のリ ング状 のフランジ (外径 3 2 mm、 内径 2 9 mm、 厚み 3 mm) を作製し た。
前記フランジの両端面にカーボンブラック系黒色ィンクを塗布、 乾燥して、 レーザー吸収材を配置した。
このパイプ同士をフランジを介して加圧しながら突き合わせた状 態で、 半導体レーザー装置にセッ ト した。 フランジ側から片方のパ ィプへ向かつてレーザー光を照射しながら、 照射ノズルをフランジ の円周に沿って移動させた。 その結果、 フラ ンジとパイプとの当接 面部において、 溶融、 固化が生じ、 フランジとパイプが強固に溶着 した。 また、 フランジ側からも う一方のパイプへ向かっても同様に レーザー光を照射した。 その結果、 フランジとパイプとの当接面部 において、 溶融、 固化が生じ、 フランジどパイプが強固に溶着した この と き、 レーザー溶着に用いられたレーザー光は、 波長が 8 0 8 n m、 出力が 3 0W、 走查速度は l O mmZ s であった。
このレーザー溶着したパイプとフランジの接着力を実施例 1 と同 様にして評価したところ、 接着力は 3 7 0 O Nであった。
実施例 1 1
ポリ アミ ド 1 2 (宇部興産 (株) 製 U B E S TA '3 0 3 5 U) を 用いて、 レーザー透過性のパイプ (外径 3 2 mm、 厚み 1. 5 mm ) を作製した。
また、 同じポリ アミ ド 1 2を用いて、 レーザー透過性のリ ング状 のフラ ンジ (外径 3 2 mm、 内径 2 9 mm、 厚み 3 mm) を作製し た。
同じポリ アミ ド 1 2にカーボンブラックを 0. 5重量%配合した ものを用いて、 溶融押出したフィルムを作製した。
このフィルムをフランジの両端面に配置し、 両端にパイプを押し 付けレーザー吸収材を固定した。
このパイプ同士をフランジを介して加圧しながら突き合わせた状 態で、 半導体レーザー装置にセッ ト した。 フラ ンジ側から片方のパ イブへ向かってレーザー光を照射しながら、 照射ノズルをフランジ の円周に沿って移動させた。 その結果、 フランジとパイプとの当接 面部において、 溶融、 固化が生じ、 フラ ンジとパイプが強固に溶着 した。 また、 フランジ側からも う一方のパイプへ向かっても同様に レーザー光を照射した。 その結果、 フラ ンジとパイプとの当接面部 において、 溶融、 固化が生じ、 フラ ンジとパイプが強固に溶着した このとき、 レーザー溶着に用いられたレーザー光は、 波長が 8 0 8 n m、 出力が 3 0W、 走査速度は l O mmZ s であった。
このレーザー溶着したパイプとフランジの接着力を実施例 8 と同 様にして評価したところ、 接着力は 4 1 0 O Nであった。
実施例 1 2
ポリアミ ド 1 2 (宇部興産 (株) 製 U B E S T A 3 0 3 5 U) を 用いて、 レーザー透過性のパイ プ (外径 3 2 mm、 厚み 1. 5 mm ) を作製した。
また、 同じポリ アミ ド 1 2にマレイ ン酸変性 E P R (JSR製 T7712 SP) を 2重量%配合したものを用いて、 レーザー透過性のリ ング状 のフランジ (外径 3 2 mm、 内径 2 9 mm、 厚み 3 mm) を作製し た。
同じポリアミ ド 1 2にカーボンブラックを 0. 5重量。/。配合した ものを用いて、 溶融押出したフィルムを作製した。
このフィルムをフランジの両端面に配置し、 両端にパイプを押し 付けレーザー吸収材を固定した。
このパイプ同士をフランジを介して加圧しながら突き合わせた状 態で、 半導体レーザー装置にセッ ト した。 フランジ側から片方のパ イブへ向かってレーザー光を照射しながら、 照射ノズルをフラ ンジ の円周に沿って移動させた。 その結果、 フランジとパイプとの当接 面部において、 溶融、 固化が生じ、 フラ ンジとパイプが強固に溶着 した。 また、 フランジ側からもう一方のパイプへ向かっても同様に レーザー光を照射した。 その結果、 フランジとパイプとの当接面部 において、 溶融、 固化が生じ、 フラ ンジとパイ プが強固に溶着した このとき、 レーザー溶着に用いられたレーザー光は、 波長が 8 0 8 n m、 出力が 6 0 W、 走査速度が l O mmZ sであった。
このレーザー溶着したパイプとフランジの接着力を実施例 8 と同 様にして評価したところ、 5 6 0 O Nでパイプが破断した。
実施例 1 3
ポリアミ ド 1 2 (宇部興産 (株) 製 U B E S TA 3 0 3 5 U) を 用いて、. レーザー透過性のパイプ (外径 3 2 mm、 厚み 1. 5 mm ) を作製した。
また、 同じポリ アミ ド 1 2に赤外線吸収剤 (Avecia製 PRO- JET830 NP) を 0. 0 0 5重量%配合したものを用いて、 レーザ一透過性の リ ング状のフランジ (外径 3 2 mm、 内径 2 9 mm、 厚み 3 mm) を作製した。
同じポリアミ ド 1 2にカーボンブラックを 0. 5重量%配合した ものを用いて、 溶融押出したフィルムを作製した。
このフィルムをフランジの両端面に配置し、 両端にパイプを押し 付けレーザー吸収材を固定した。
このパイプ同士をフランジを介して加圧しながら突き合わせた状 態で、 半導体レーザー装置にセッ ト した。 フランジ側から片方のパ イブへ向かってレーザー光を照射しながら、 照射ノズルをフランジ の円周に沿って移動させた。 その結果、 フランジとパイプとの当接 面部において、 溶融、 固化が生じ、 フランジとパイプが強固に溶着 した。 また、 フランジ側からも う一方のパイプへ向かっても同様に レーザー光を照射した。 その結果、 フランジとパイプとの当接面部 において、 溶融、 固化が生じ、 フランジとパイプが強固に溶着した このとき、 レーザー溶着に用いられたレーザー光は、 波長が 8 0 8 n m、 出力が 6 0W、 走査速度が l O mmZ s であった。
このレーザー溶着したパイプとフランジの接着力を実施例 8 と同 様にして評価したところ、 5 6 0 O Nでパイプが破断した。
(直接接合の実施例)
実施例 1 4
図 9に示すように、 ポリ アミ ド 1 2 (宇部興産 (株) 製 U B E S T A 3 0 3 5 U) を用いて、 端部の内面にテーパ状接合面を有する 第一のパイプ 1 1 (外径 3 2 mm、 厚み 1. 5 mm) を作製した。
また、 同じポリ アミ ド 1 2にカーボンブラックを 0. 5重量%配 合したものを用いて、 端部の外面に、 前記第一のパイプの端部のテ ーパ状接合面に整合するテーパ状接合面を有する第二のパイ プ 1 2 (外径 3 2 mm、 厚み 1. 5 mm) を作製した。
この第一及び第二のパイプの端部のテーパ状接合面を互いに当接 し、 半導体レーザー装置 9にセッ トした。 第一のパイプ 1 1側から レーザー光を照射しながら、 照射ノズルを第一のパイプの円周に沿 つて移動させた。 'その結果、 第一及び第二のパイプの端部のテーパ 状接合面において、 溶融、 固化が生じ、 第一及び第二のパイプが強 固に溶着した。
このレーザー溶着したパイプ同士の接着力を、 パイ プの両端を長 手方向に引き張ることによ り評価したところ、 3 6 0 O Nで接合部 が外れた。
実施例 1 5
図 1 0に示すよ うに、 ポリアミ ド 1 2 (宇部興産 (株) 製 U B E S TA 3 0 3 5 U) を用いて、 端部の内面にテーパ状接合面を有す る第一のパイプ 1 1 (外径 3 2 mm、 厚み 1. 5 mm) を作製した また、 同じポリアミ ド 1 2を用いて、 端部の外面に、 前記第一の パイプの端部のテーパ状接合面に整合するテーパ状接合面を有する 第二のパイプ 1 3 (外径 3 2 mm、 厚み 1 . 5 mm) を作製した。 前記第二のパイプ 1 3のテーパ状接合面にカーボンブラック系黒 色インクを塗布、 乾燥して、 レーザー吸収材 1 4を配置した。
この第一及び第二のパイプの端部のテーパ状接合面を互いに当接 し、 半導体レーザー装置にセッ トした。 第一のパイプ側からレーザ 一光を照射しながら、 照射ノズルを第一のパイプの円周に沿って移 動させた。 その結果、 第一及び第二のパイプの端部のテーパ状接合 面において、 溶融、 固化が生じ、 第一及び第二のパイプが強固に溶 着した。
このとき、 レーザー溶着に用いられたレーザー光は、 波長が 8 0 8 n m、 出力が 3 0 W、 走査速度は 1 O mm/ sであった。
このレーザー溶着したパイプ同士の接着力を実施例 1 4 と同様に して評価したところ、 接着力は 3 3 0 O Nであった。
実施例 1 6
図 1 1に示すように、 ポリ アミ ド 1 2 (宇部興産 (株) 製 U B E S TA 3 0 3 5 U) を用いて、 端部の内面にテーパ状接合面を有す る第一のパイプ 1 6 (外径 3 2 mm、 厚み 1 . 5 mm) を作製した また、 同じポリアミ ド 1 2を用いて、 端部の外面に、 前記第一の パイプの端部のテーパ状接合面に整合するテーパ状接合面を有する 第二のパイプ 1 7 (外径 3 2 mm、 厚み 1 . 5 mm) を作製した。
同じポリ アミ ド 1 2にカーボンブラックを 0. 5重量%配合した ものを用いて、 溶融押出したフィルムを二軸延伸処理して熱収縮性 フィルム 1 8を作製した。
この熱収縮性フィルム 1 8を前記第二のパイプ 1 7のテーパ状接 合面に被覆し、 熱処理してパイプに密着させて、 レーザー吸収材 1 8を配置した。
この第一及び第二のパイプの端部のテーパ状接合面を互いに当接 し、 半導体レーザー装置にセッ トした。 第一のパイプ側からレーザ 一光を照射しながら、 照射ノズルを第一のパイプの円周に沿って移 動させた。 その結果、 第一及び第二のパイプの端部のテーパ状接合 面において、 溶融、 固化が生じ、 第一及び第二のパイ プが強固に溶 着した。
このとき、 レーザー溶着に用いられたレーザー光は、 波長が 8 0 8 n m、 出力が 3 0 W、 走査速度は 1 0 mm/ sであった。
このレーザー溶着したパイプ同士の接着力を実施例 1 4 と同様に して評価したところ、 接着力は 3 7 0 O Nであった。
実施例 1 Ί
図 9に示すように、 ポリ アミ ド 1 2 (宇部興産 (株) 製 U B E S T A 3 0 3 5 U) にマ レイ ン酸変性 E P R ( JSR製 T7712SP) を 2重 量%配合したものを用いて、 端部の内面にテーパ状接合面を有する 第一のパイプ 1 1 (外径 3 2 mm、 厚み 1 . 5 mm) を作製した。
また、 同じポリ アミ ド 1 2にカーボンブラックを 0. 5重量%配 合したものを用いて、 端部の外面に、 前記第一のパイプの端部のテ ーパ状接合面に整合するテーパ状接合面を有する第二のパイプ 1 2 (外径 3 2 mm、 厚み 1 . 5 mm) を作製した。
この第一及び第二のパイプ 1 1, 1 2の端部のテーパ状接合面を 互いに当接し、 半導体レーザー装置 9にセッ トした。 第一のパイプ 側からレーザー光を照射しながら、 照射ノズルを第一のパイプの円 周に沿って移動させた。 その結果、 第一及び第二のパイプの端部の テーパ状接合面において、 溶融、 固化が生じ、 第一及び第二のパイ プが強固に溶着した。
このとき、 レーザー溶着に用いられたレーザー光は、 波長が 8 0 8 n m、 出力が 6 0 W、 走査速度は 1 O mmZ sであった。
このレーザー溶着したパイプ同士の接着力を実施例 1 4と同様に して評価したところ、 接着力は 4 9 0 O Nであった。
実施例 1 8
図 9に示すよ うに、 ポ'リ アミ ド 1 2 (宇部興産 (株) 製 U B E S T A 3 0 3 5 U) に赤外線吸収剤 (Avecia製 PRO- JET830NP) を 0. 0 0 5重量%配合したものを用いて、 端部の内面にテーパ状接合面 を有する第一のパイプ 1 1 (外径 3 2 mm、 厚み 1. 5 mm) を作 製した。
また、 同じポリアミ ド 1 2にカーボンブラックを 0. 5重量%配 合したものを用いて、 端部の外面に、 前記第一のパイプの端部のテ ーパ状接合面に整合するテーパ状接合面を有する第二のパイプ 1 2 (外径 3 2 mm、 厚み 1. 5 mm) を作製した。
この第一及び第二のパイプ 1 1, 1 2の端部のテーパ状接合面を 互いに当接し、 半導体レーザー装置 9にセッ ト した。 第一のパイプ 1 1側からレーザー光を照射しながら、 照射ノズルを第一のパイプ 1 1の円周に沿って移動させた。 その結果、 第一及び第二のパ 'イブ の端部のテーパ状接合面において、 溶融、 固化が生じ、 第一及び第 二のパイプが強固に溶着した。
このとき、 レーザー溶着に用いられたレーザー光は、 波長が 8 0 8 n m、 出力が 6 0 W、 走査速度は 1 O mm/ sであった。
このレーザー溶着したパイプ同士の接着力を実施例 1 4と同様に して評価したところ、 接着力は 4 6 0 0 Nであった。 産業上の利用可能性
本発明によれば、 レーザー光を照射して、 樹脂部材からなるパイ プ形状品同士を、 継手もしく はフランジを介して、 又は直接に、 レ 一ザ一溶着によ り強固に接合させることができる。
本発明のレーザー溶着法では、 従来の熱溶着の場合の垂れ、 強い 溶剤による環境安全問題、 コス トの問題を解決でき、 また、 溶剤接 着剤の場合に比べて高い接合強度で接合するこ とができるので、 ガ スパイプ用等に好適に利用できる。
また、 機械的な接合方法にく らべ、 機密性が高くできるため、 自 動車用燃料パイプ、 自動車用エアブレーキパイプ、 薬液輸送パイプ にも好適に利用できる。

Claims

請 求 の 範 囲
1 . 樹脂部材からなるパイプ形状品の端部同士を、 直接に当接さ せ、 又は樹脂部材からなるフ ラ ンジを介して突き合わせ、 又は樹脂 部材からなる継手内に挿入し、 又は、 上記において、 パイプ形状品 の端部同士の間、 又はパイプ形状品の端部とフランジもしく は継手 との間にレーザー吸収材を配置し、
パイプ形状品の端部の少なく とも一方、 又はフランジもしく は継 手がレーザー光に対して透過性を有する樹脂部材からなり、
パイプ形状品の端部の少なく とも一方、 又はフランジもしく は継 手、 又は前記レーザー吸収材がレーザー光に対して吸収性を有する 樹脂部材からなり、
パイプ形状品の端部、 フランジ、 継手及び/又は前記レーザー吸 収材が接する部分にレーザー光を照射して、 それらをレーザー溶接 することを特徴とするパイプ形状品の接合方法。
2 . パイプ形状品を継手を介して接合する方法であって、 下記の いずれかの方法で接合する、 請求項 1に記載のパイプ形状品の接合 方法。
( A ) レーザー光に対して吸収性を有する樹脂部材からなるパイ プ形状品を、 レーザー光に対して透過性を有する樹脂部材からなる 継手に挿入し、 該継手側からレーザー光を照射して両者をレーザー 溶着する ; 又は
( B ) レーザー光に対して透過性を有する樹脂部材からなるパイ プ形状品の外側表面にレーザー吸収材を配置し、 該パイプ形状品を レーザー光に対して透過性を有する樹脂部材からなる継手に挿入し 、 該継手側からレーザー光を照射して両者をレーザー溶着する。
3 . パイプ形状品をフランジを介して接合する方法であって、 下 記のいずれかの方法で接合する、 請求項 1 に記載のパイプ形状品の 接合方法。
( C ) レーザー光に対して透過性を有する樹脂部材からなるパイ プ形状品の端部同士を、 レーザー光に対して吸収性を有する樹脂部 材からなるフ ラ ンジを介して加圧しながら突き合わせ、 パイプ形状 品の端部側からレーザー光を照射してレーザー溶着する ;
( D ) レーザー光に対して吸収性を有する樹脂部材からなるパイ プ形状品の端部同士を レーザー光に対して透過性を有する樹脂部 材からなるフラ ンジを介して加圧しながら突き合わせ、 フラ ンジ側 からレーザー光を照射してレーザー溶着する ;
( Ε ) レーザー光に対して透過性を有する樹脂部材からなるパイ プ形状品の端部同士を、 レーザー光に対して透過性を有する樹脂部 材からなるフランジを介して、 さらに、 該フランジとパイプ形状品 との当接部にレーザー吸収材を配置した状態で、 加圧しながら突き 合わせ、 パイプ形状品の端部側からレーザー光を照射してレーザー 溶着する ; 又は
( F ) レーザー光に対して透過性を有する樹脂部材からなるパイ プ形状品の端部同士を、 レーザー光に対して透過性を有する樹脂部 材からなるフランジを介して、 さらに、 該フランジとパイプ形状品 との当接部にレーザー吸収材を配置した状態で、 加圧しながら突き 合わせ、 フラ ンジ側からレーザー光を照射してレーザー溶着する。
4 . パイプ形状品の端部同士を接合する方法であり、 下記のいず れかの方法で接合する請求項 1 に記載のパイプ形状品の接合方法。
( G ) レーザー光に対して透過性を有する樹脂部材からなり、 そ の端部の内面にテーパ状接合面を有する第一のパイプ形状品の端部 と、 レーザー光に対して吸収性を有する樹脂部材からなり、 その端 部の外面に、 前記第一のパイプ形状品の端部のテーパ状接合面に整 合するテーパ状接合面を有する第二のパイプ形状品の端部とを互い に当接し、 該第一のパイプ形状品側からレーザー光を照射して接合 面同士をレーザー溶着する ; 又は
( H ) レーザー光に対して透過性を有する樹脂部材からなり、 そ の端部の内面にテーパ状接合面を有する第一のパイプ形状品の端部 と、 レーザー光に対して透過性を有する樹脂部材からなり、 その端 部の外面に、 前記第一のパイプ形状品の端部のテーパ状接合面に整 合するテーパ状接合面を有し、 該テーパ状接合面にレーザー吸収材 が配置された第二のパイプ形状品の端部とを互いに当接し、 該第一 のパイプ形状品側からレーザー光を照射して接合面同士をレーザー 溶着する。
5 . 前記 (A ) の方法で接合するに当たり、 パイプ形状品が、 レ 一ザ一光に対して吸収性を有する樹脂部材からなる外層と、 レーザ 一光に対して透過性を有する樹脂部材からなる内層とから構成され てなる請求項 2記載のパイプ形状品の接合方法。
6 . 外層の厚みが、 1 0〜 1 0 0 0 μ πιである請求項 5記載のパ ィプ形状品の接合方法。
7 . レーザー吸収材が、 レーザー光に対して吸収性を有する着色 材である請求項 1〜 7のいずれか 1項に記載のパイプ形状品の接合 方法。
8 . レーザー吸収材が、 レーザー光に対して吸収性を有する着色 材を含む樹脂部材からなるフィルムである請求項 7に記載のパイプ 形状品の接合方法。
9 . フィルムの厚みが 1 0〜 1 0 0 0 μ ιηである請求項 9記載の パイプ形状品の接合方法。
1 0 . 第一のパイプ形状品、 継手又はフランジが、 レーザー光に 対して弱吸収性である樹脂部材からなることを特徴とする請求項 2 〜 9のいずれか 1項に記載のパイ プ形状品の接合方法。
1 1 . 樹脂部材が、 樹脂と レーザー光に対して弱吸収性の添加剤 とからなることを特徴とする請求項 1 0記載のパイプ形状品の接合 方法。
1 2 . 弱吸収性の添加剤が、 レーザー光に対して 4 0〜 9 0 %の 透過率を有するものである請求項 1 1記載のパイプ形状品の接合方 法。
1 3 . 弱吸収性の添加剤が、 エチレン及び/又はプロ ピレン系共 重合体、 スチレン系共重合体、 変性エチレン及び Z又はプロ ピレン 系共重合体及び変性スチレン系共重合体の少なく とも一種であるこ とを特徴とする請求項 1 2記載のパイプ形状品の接合方法。
1 4 . 樹脂部材が、 樹脂にレーザー光に対して吸収性を有する添 加剤をレーザー光の吸収があっても樹脂が溶融しない範囲で配合し てなることを特徴とする請求項 1 0記載のパイプ形状品の接合方法
1 5 . パイプ形状品及び継手を構成する樹脂部材が、 ポリアミ ド 樹脂またはポリ アミ ドを主成分とするポリ アミ ド樹脂組成物からな る請求項 1〜 1 4記載のパイプ形状品の接合方法。
1 6 . パイ プ形状品が、 自動車用燃料パイプ、 自動車用ェアブレ ーキパイプ、 薬液輸送パイプ、 可燃性ガス供給または輸送パイプ用 である請求項 1〜 1 5記載のパイプ形状品の接合方法。
PCT/JP2003/008716 2002-07-09 2003-07-09 パイプ形状品の接合方法 WO2004005013A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/520,718 US20050251986A1 (en) 2002-07-09 2003-07-09 Method of joining pipe-shaped articles
AU2003281367A AU2003281367A1 (en) 2002-07-09 2003-07-09 Method of joining pipe-shaped articles
EP03741299A EP1552916A1 (en) 2002-07-09 2003-07-09 Method of joining pipe-shaped articles

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002200036 2002-07-09
JP2002-200034 2002-07-09
JP2002-200035 2002-07-09
JP2002200035 2002-07-09
JP2002-200036 2002-07-09
JP2002200034 2002-07-09

Publications (1)

Publication Number Publication Date
WO2004005013A1 true WO2004005013A1 (ja) 2004-01-15

Family

ID=30118913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008716 WO2004005013A1 (ja) 2002-07-09 2003-07-09 パイプ形状品の接合方法

Country Status (4)

Country Link
US (1) US20050251986A1 (ja)
EP (1) EP1552916A1 (ja)
AU (1) AU2003281367A1 (ja)
WO (1) WO2004005013A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095546A1 (ja) * 2005-03-08 2006-09-14 Toyota Jidosha Kabushiki Kaisha 二部材の接合構造および接合方法、並びにガス容器およびその製造方法
WO2018221073A1 (ja) * 2017-05-30 2018-12-06 オリヱント化学工業株式会社 レーザー溶着体及びその製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080188793A1 (en) * 2007-02-06 2008-08-07 Possis Medical, Inc. Miniature flexible thrombectomy catheter
JP4813874B2 (ja) * 2005-11-24 2011-11-09 ヤマザキマザック株式会社 パイプ構造建造物の組立工法及び組立治具
JP5193996B2 (ja) 2006-04-06 2013-05-08 フレゼニウス メディカル ケアー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング 成形プラスチック体を接合するレーザー透過溶接方法
JP5342286B2 (ja) 2008-05-16 2013-11-13 日東電工株式会社 シート接合体の製造方法及びシート接合体
US20130048444A1 (en) 2011-08-25 2013-02-28 Shimano Inc. Bicycle disc brake caliper
FR3010090B1 (fr) 2013-09-05 2016-09-02 Arkema France Raccords pour tubes bases sur une composition de polyamide
FR3012813A1 (fr) 2013-11-04 2015-05-08 Arkema France Composition polymerique de couleur noire adaptee a la soudure laser
DE102014114249A1 (de) * 2014-09-30 2016-03-31 Illinois Tool Works Inc. Steckverbinder und Steckverbindung
WO2017049412A1 (en) * 2015-09-24 2017-03-30 Shawcor Ltd. Joint for thermoplastic pipe, assembly and method
US10794523B2 (en) * 2015-12-14 2020-10-06 Wilmarc Holdings, Llc Laser induced sealing of concentrically layered materials
DE102016212690A1 (de) * 2016-07-12 2018-01-18 Robert Bosch Gmbh Verfahren zum Ausbilden einer Laserschweißverbindung und Bauteileverbund
US10889064B1 (en) 2017-04-26 2021-01-12 Mercury Plastics Llc Process for laser welding of crosslinked polyethylene
JP6682063B1 (ja) 2019-02-25 2020-04-15 株式会社ニチリン 樹脂パイプと樹脂部品とのレーザー接合方法及びレーザー接合装置
JP2022155155A (ja) 2021-03-30 2022-10-13 住友理工株式会社 樹脂コネクタ連結構造およびその製造方法
DE102023101643A1 (de) * 2023-01-24 2024-07-25 Norma Germany Gmbh Fluidleitung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542336B2 (ja) * 1985-12-17 1993-06-28 Honda Motor Co Ltd
WO1994022661A1 (en) * 1993-04-01 1994-10-13 British Gas Plc Joining bodies of thermoplastic material
JPH10166452A (ja) * 1996-12-10 1998-06-23 Sekisui Chem Co Ltd 赤外線によるプラスチックの融着方法および赤外線吸収体
JPH10166451A (ja) * 1996-12-10 1998-06-23 Sekisui Chem Co Ltd プラスチックの融着方法および融着装置
JP2001105500A (ja) * 1999-08-05 2001-04-17 Toyota Motor Corp 樹脂成形品及びその製造方法
JP2001152985A (ja) * 1999-11-25 2001-06-05 Toyota Motor Corp 樹脂製インテークマニホールド
JP2001198982A (ja) * 2000-01-20 2001-07-24 Nissha Printing Co Ltd 加飾プラスチック成形品の製造方法
JP2002001826A (ja) * 2000-06-26 2002-01-08 Sekisui Chem Co Ltd 合成樹脂管の接合方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788928A (en) * 1971-03-26 1974-01-29 Sloane Mfg Co R & G Method of forming a lap joint between tubular articles of thermoplastic material
EP0171450A1 (de) * 1984-08-14 1986-02-19 Österreichische Salen-Kunststoffwerk Gesellschaft m.b.H. Rohrverbindung für Kunststoffrohre und Verfahren zur Herstellung
FR2726345B1 (fr) * 1994-11-02 1996-12-27 Atochem Elf Sa Tubes en polyamide et en polyethylene pour la distribution du gaz domestique
EP1105286A4 (en) * 1998-07-10 2002-07-10 Edison Welding Inst COVERING JOINTS AND JOINTS JOINTED PRODUCED SIMULTANEOUSLY

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542336B2 (ja) * 1985-12-17 1993-06-28 Honda Motor Co Ltd
WO1994022661A1 (en) * 1993-04-01 1994-10-13 British Gas Plc Joining bodies of thermoplastic material
JPH10166452A (ja) * 1996-12-10 1998-06-23 Sekisui Chem Co Ltd 赤外線によるプラスチックの融着方法および赤外線吸収体
JPH10166451A (ja) * 1996-12-10 1998-06-23 Sekisui Chem Co Ltd プラスチックの融着方法および融着装置
JP2001105500A (ja) * 1999-08-05 2001-04-17 Toyota Motor Corp 樹脂成形品及びその製造方法
JP2001152985A (ja) * 1999-11-25 2001-06-05 Toyota Motor Corp 樹脂製インテークマニホールド
JP2001198982A (ja) * 2000-01-20 2001-07-24 Nissha Printing Co Ltd 加飾プラスチック成形品の製造方法
JP2002001826A (ja) * 2000-06-26 2002-01-08 Sekisui Chem Co Ltd 合成樹脂管の接合方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095546A1 (ja) * 2005-03-08 2006-09-14 Toyota Jidosha Kabushiki Kaisha 二部材の接合構造および接合方法、並びにガス容器およびその製造方法
WO2018221073A1 (ja) * 2017-05-30 2018-12-06 オリヱント化学工業株式会社 レーザー溶着体及びその製造方法
JPWO2018221073A1 (ja) * 2017-05-30 2019-06-27 オリヱント化学工業株式会社 レーザー溶着体及びその製造方法
US11529763B2 (en) 2017-05-30 2022-12-20 Orient Chemical Industries Co., Ltd. Laser-welded body and production method therefor

Also Published As

Publication number Publication date
US20050251986A1 (en) 2005-11-17
EP1552916A1 (en) 2005-07-13
AU2003281367A1 (en) 2004-01-23

Similar Documents

Publication Publication Date Title
WO2004005013A1 (ja) パイプ形状品の接合方法
JP4161823B2 (ja) パイプ形状品の接合方法
Acherjee Laser transmission welding of polymers–a review on process fundamentals, material attributes, weldability, and welding techniques
CA2337220C (en) Simultaneous butt and lap joints
JP4771371B2 (ja) 異種部材の接合方法及び異種部材接合品
US20020100540A1 (en) Simultaneous butt and lap joints
WO2007046536A1 (ja) レーザ溶着用材料
JP2005193614A (ja) パイプ形状品の接合方法
EP1396334B1 (en) Laser welding material and laser welding method
US20030201059A1 (en) Selective manipulation of material for medical devices and methods and devices made therefrom
JP2011240496A (ja) レーザー光を用いた接合方法
US7718271B2 (en) Material for laser welding and laser welding method
JP2004148800A (ja) レーザー溶着用材料及びレーザー溶着方法
JP2002284895A (ja) 樹脂成形品
JP2007307913A (ja) パイプ形状品の接合方法
JP4453507B2 (ja) レーザー溶着用材料及びレーザー溶着方法
JP4161825B2 (ja) パイプ形状品の接合方法
JP4161824B2 (ja) パイプ形状品の接合方法
JP2007260937A (ja) レーザー溶着用サドル形部材およびサドル形部材とパイプ形状品のレーザー溶着方法
JP2003251699A (ja) 樹脂部品のレーザ溶着方法
JP5825758B2 (ja) 3層接着体
JP2008249090A (ja) レーザー溶着用継手及びそれを用いたパイプ形状品の接続方法
JP2006274121A (ja) 溶着用ポリアミド樹脂組成物
JP4274008B2 (ja) レーザー溶着用材料及びレーザー溶着方法
JP4492784B2 (ja) レーザ溶着部材の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003741299

Country of ref document: EP

Ref document number: 10520718

Country of ref document: US

Ref document number: 2003281367

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2003741299

Country of ref document: EP