WO2004002881A1 - 水素製造方法および水素供給装置 - Google Patents

水素製造方法および水素供給装置 Download PDF

Info

Publication number
WO2004002881A1
WO2004002881A1 PCT/JP2003/006050 JP0306050W WO2004002881A1 WO 2004002881 A1 WO2004002881 A1 WO 2004002881A1 JP 0306050 W JP0306050 W JP 0306050W WO 2004002881 A1 WO2004002881 A1 WO 2004002881A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
iron
water
added
iron oxide
Prior art date
Application number
PCT/JP2003/006050
Other languages
English (en)
French (fr)
Inventor
Kiyoshi Otsuka
Sakae Takenaka
Kiyozumi Nakamura
Kazuyuki Iizuka
Original Assignee
Uchiya Thermostat Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchiya Thermostat Co.,Ltd. filed Critical Uchiya Thermostat Co.,Ltd.
Priority to JP2004517242A priority Critical patent/JP4858890B2/ja
Priority to EP03725779A priority patent/EP1516853A1/en
Priority to AU2003231473A priority patent/AU2003231473A1/en
Priority to US10/519,080 priority patent/US20050255037A1/en
Publication of WO2004002881A1 publication Critical patent/WO2004002881A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/006Separating solid material from the gas/liquid stream by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • B01J7/02Apparatus for generating gases by wet methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/061Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of metal oxides with water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/10Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a technology for efficiently producing hydrogen by decomposing water.
  • Partial oxidation and steam reforming using petroleum and natural gas as raw materials generate a large amount of carbon dioxide gas during hydrogen synthesis. Therefore, solar heat was used as a method of not generating carbon dioxide gas.
  • the steam iron method is known as a method for producing hydrogen from water.
  • This method uses the oxidation-reduction of iron only (F e ⁇ F e 0 (F e 30 ⁇ ) —F e), but the reaction requires a high temperature of, for example, 600 ° C or more.
  • metallic iron aggregates that is, a so-called thin ring occurs, and the activity of metallic iron is rapidly reduced. Therefore, there has been a demand for a hydrogen generating medium (oxidation-reduction material) that does not cause a thin ring phenomenon, has excellent durability, and exhibits high activity.
  • the inventors of the present application have disclosed in the previously filed Japanese Patent Application No.
  • An object of the present invention is to provide a method capable of decomposing water to produce hydrogen more efficiently than a conventional method for producing hydrogen from water, or a method capable of generating hydrogen at a lower temperature than the conventional method.
  • the present invention provides a method for producing hydrogen based on the invention of Japanese Patent Application No. 2001-102845. Disclosure of the invention
  • the above problem is solved by a method for producing hydrogen by contacting iron or iron oxide with water, steam or a gas containing steam as described in claim 1, wherein the iron or iron oxide is This is achieved by a hydrogen production method characterized by adding at least one metal of Rh, Ir, Ru, Pd, Pt and 0 s.
  • a method for producing hydrogen by contacting iron or iron oxide with water, water vapor, or a gas containing water vapor, wherein Rh, iron, iron oxide, At least one metal of Ir, Ru, Pd, Pt, and 0 s; and Ti, Zr, V, Nb, Cr, Mo, Al, Ga, Mg, Sc, Ni, and Cu
  • a hydrogen production method characterized by adding at least one metal of the following.
  • the water used as a raw material does not necessarily have to be pure water, and tap water, industrial water and the like are used.
  • the iron used in the present invention an iron compound such as pure iron, iron oxide, iron nitrate, iron chloride or iron sulfate is used as a raw material.
  • the first metal added to the iron or iron oxide in the present invention is at least one of at least one member of the platinum group, preferably, R h, Ir, Ru, P d, P t And at least one of 0 s is selected.
  • the metal added to iron or iron oxide includes at least one of the platinum group and at least one of Ti, Zr, V, Nb, Cr, M At least one of o, Al, Ga, Mg, Sc, Ni and Cu may be added.
  • the addition amount of the platinum group to be added to iron or iron oxide is calculated as the number of moles of metal atoms, preferably 0.1 to 3 O mo 1% of all metal atoms, more preferably 0.5 to 15 mo. Adjust to 1%.
  • Both the first additive metal (platinum group) and the second additive metal have no effect of improving the hydrogen generation efficiency when the addition amount is less than 0.1 lmo 1%, and the oxidation and reduction when the addition amount is more than 3 Omo 1%. The efficiency of the reaction decreases.
  • the metal is added by a physical mixing or impregnation method, preferably a coprecipitation method.
  • a shape with a large surface area suitable for the reaction such as powdery or pellet-like, cylindrical, honeycomb, non-woven, etc. is selected for efficient use, and used for the water decomposition reaction .
  • This iron compound is placed in a reactor and reduced with hydrogen or the like.
  • the reduced iron compound is brought into contact with water, steam or a gas containing steam to produce hydrogen.
  • iron reacting with water becomes iron oxide.
  • the oxidation / reduction reaction can be performed at a low temperature of less than 600 ° C.
  • hydrogen can be supplied inexpensively to a fuel cell for local facilities, factories, homes or vehicles, without generating carbon monoxide that poisons the electrodes of the fuel cell.
  • the produced hydrogen can be used not only for fuel cells but also for a wide range of hydrogen supply means such as hydrogen burners.
  • the reduced iron compound can be filled in a container and used as a portable hydrogen supply power set for a hydrogen supply means such as a fuel cell as described above.
  • the hydrogen generating medium is housed therein and includes a portable cassette having at least two pipe mounting means. Contains iron or iron oxide as a main component, to which a platinum group metal or a platinum group metal and the second additive metal are added.
  • the cassette is provided with water through one of the pipe mounting means.
  • a hydrogen supply device characterized by being able to supply hydrogen generated by decomposition of water by steam power injection to the hydrogen consuming device from the other connecting hole pipe mounting means.
  • a cassette may be provided inside the cassette. Further, the cassette may be provided with a pipe for supplying an inert gas or air. Air is used when the reaction heat of the reaction between air and reduced iron oxide is used for the water splitting reaction during the water splitting reaction.
  • Iron oxidized by reacting with water is reduced again by hydrogen or the like, and can be repeatedly used as an oxidizing reduction medium without lowering the activity.
  • the above-mentioned effects can be obtained by preventing sintering, accelerating the oxygen diffusion rate in the solid, and improving the water decomposition activity on the surface.
  • FIG. 1 is a schematic diagram of a reaction system of an iron compound used in an example of the present invention.
  • FIG. 2 is a graph showing the hydrogen generation rate and reaction temperature during the water splitting reaction.
  • FIG. 3 is a graph showing the total amount of generated hydrogen.
  • FIG. 4 is a diagram showing a configuration of the present invention in which a reaction vessel containing a hydrogen generating medium and a device for supplying water are connected by a tube.
  • FIG. 5 is a diagram showing a state in which the cassette containing the reduced hydrogen generating medium is connected to the fuel cell.
  • FIG. 1 shows a schematic diagram of the reaction system of the iron-based compound used in this example.
  • the apparatus shown in Fig. 1 is a normal-pressure fixed-bed flow-type reaction apparatus. A part of the reaction gas was sampled and measured by gas chromatography.
  • the iron compound contained in the reaction vessel was prepared by the following coprecipitation method (urea method). That is, in 5 L of water degassed by ultrasonic for 5 minutes, iron (III) nitrate nonahydrate (F e (NOg) 3 ⁇ 9H n 0: manufactured by Wako Pure Chemical Industries, Ltd.) 0.194m 01, added to that the platinum group metal rhodium chloride is chloride (RhC 1. ⁇ 3H 2 0: Wako Junkusurye industry Co., Ltd.) 0. 006mo 1, 1 Omo 1 of urea as precipitation agent (NH n (CO) H 2 : manufactured by Wako Pure Chemical Industries, Ltd.) and dissolved. The mixed solution was heated to 90 ° C.
  • Fig. 2 shows the results of the water splitting reaction when the sample prepared by the above-mentioned coprecipitation method (urea method) was weighed so that the Fe content became 0.2 g and used for the reaction. It is a graph which shows temperature-hydrogen generation rate.
  • Ir, Ru, Pd, and Pt of platinum group other than Rh were similarly prepared by the coprecipitation method to prepare samples, and the water splitting reaction was measured in the same manner as for Rh described above.
  • the unsubstituted calo iron oxide is 300 ° C Below, there is almost no generation of hydrogen, and the hydrogen generation rate becomes maximum at about 500 ° C.
  • the hydrogen generation rate becomes maximum at about 500 ° C.
  • Rh-added iron oxide ⁇ symbol
  • Rh-added iron oxide ⁇ symbol
  • Ir-added iron oxide Ir-added iron oxide
  • sufficient hydrogen generation can be confirmed even at a low temperature of 300 ° C or less, as with Rh-added iron oxide, and the peak of hydrogen generation rate is about 350 to 400 ° C. .
  • the peak of hydrogen generation rate of Ru-added iron oxide is about 400 ° C, but even below 400 ° C, it exceeds the maximum value of hydrogen generation rate of non-added iron oxide.
  • the peak of the hydrogen generation rate of Pd-added iron oxide ( ⁇ symbol) is about 500 ° C, but already exceeds the maximum value of the hydrogen generation rate of non-added oxidized iron at around 400 ° C.
  • the Pt-added iron oxide (symbol) has a peak hydrogen generation rate of less than 500 ° C, and already exceeds the maximum value of the hydrogen generation rate of the non-added iron oxide at around 450 ° C. ⁇
  • the peak of the hydrogen generation rate of the platinum group-added iron oxide is lower than the peak of the non-added iron oxide, and shows a higher value.
  • Example 2 similarly to Example 1, a part of the reaction gas was collected using a normal-pressure fixed-bed flow reactor shown in FIG. 1 and measured by gas chromatography.
  • the iron compound contained in the reaction vessel was prepared by the following coprecipitation method (urea method). That is, in 5 L of water degassed by ultrasonic for 5 minutes, ⁇ iron ferrate (III) nonahydrate (F e (NO 0 ) 3 ⁇ 9 Ho 0: manufactured by Wako Pure Chemical Industries, Ltd.) 0 . 188mo l, chlorides is rhodium chloride first metal you added (platinum group) (RhC l '3H 2 0 :. by Wako Pure Chemical Industries, Ltd.) 0. 006mo 1, second metal to be added chloride der Ru aluminum nitrate (a 1 (NO 3) 3 ⁇ 9 H 2 0: manufactured by Wako Pure Chemical Industries, Ltd.) 0.
  • urea method that is, in 5 L of water degassed by ultrasonic for 5 minutes, ⁇ iron ferrate (III) nonahydrate (F e (NO 0 ) 3 ⁇ 9 Ho 0: manufactured by Wako Pure Chemical Industries,
  • urea 10Mo 1 as the precipitating agent (NHg (CO) NH 2: (Wako Pure Chemical Industries, Ltd.) was added and dissolved.
  • the mixed solution was heated to 90 ° C while stirring, and kept at the same temperature for 3 hours. Leave for 16 hours after the reaction is completed.Precipitate and filter by suction. Passed.
  • the precipitate was dried at 80 ° C for 24 hours, and then calcined in air at 100 ° C for 5 hours, 300 ° C for 5 hours, and 500 ° C for 10 hours.
  • the first platinum group atom and the second metal atom to be added in the sample in the sample were each set to 3 mo 1% of the total metal atom.
  • After firing pulverize the sample in a mortar, shape it into a pellet, put the sample in a reaction vessel, purge the air in the system with nitrogen (inert gas), introduce hydrogen, and inject hydrogen at 470 for 1 hour.
  • a reduction reaction was performed.
  • Fig. 3 is a graph comparing the total amount of hydrogen generated by the above method with the sample prepared by the above-mentioned coprecipitation method (urea method) weighed so that the Fe content becomes 4.0 g. It is.
  • the platinum group Pt the combination of Ru ⁇ Pd ⁇ Ir and A1
  • the combination of Rh and Mo the combinations of A1 and Mo were also prepared by the coprecipitation method.
  • a sample was prepared in the same manner as above, and the total amount of generated hydrogen was measured in the same manner as for Rh described above.
  • iron oxide to which Rh alone was added generated much more hydrogen than iron oxide to which no Rh was added, and compared to iron oxide to which A1 and Mo were added alone. Even so, the first and second rounds generate a large amount of hydrogen, and the third round of hydrogen generation is similar.
  • Rh oxidized iron (Rh—A 1 -added iron oxide) to which A 1 is added as a second additional metal generates much more hydrogen than iron oxide without addition. Compared to iron oxide to which A1 or Mo is added alone, the amount of generated hydrogen is larger, and the strength is not deteriorated by repetition.
  • Rh-Mo added iron oxide are also Rh-A1 added iron oxide. There is a similar tendency.
  • a 1 and Mo which are the second added metals, not only have the effect of improving the hydrogen generation efficiency, but also have the effect of preventing inferiority due to repetition.
  • Al and Mo are preferable, but Ti, Zr, V, Nb, Cr, Ga, Mg, Sc, Ni and Cu may also be used.
  • FIG. 4 shows an embodiment for industrially implementing the present invention.
  • FIG. 4 shows a system in which a reaction vessel 1 containing a hydrogen generation medium 9 and a device 2 for supplying water are connected by a tube according to the present invention, and a system 10 is provided as a cassette 10 for supplying hydrogen.
  • 1 is a schematic drawing showing one embodiment.
  • the hydrogen generation medium 9 is iron oxide to which the metal of the present invention is added, and is mainly composed of iron or iron oxide, and at least one of Rh, Ir, Ru, Pd, Pt, and 0 s.
  • the reaction vessel 1 for the water splitting / reduction reaction is connected to a device 2 for supplying water with a pipe 3, and the device 2 for supplying water is connected to a pipe 4 for introducing an inert gas or air.
  • the inert gas include nitrogen, argon, and helium.
  • Nitrogen (inert gas) is not necessarily needed as a carrier gas to lubricate the reaction or to purge air (oxygen) in the system.
  • Air is used when the reaction heat of the reaction between air and reduced iron oxide is used for the water splitting reaction in the water splitting reaction, but is not necessarily required. Instead of air, only oxygen or the above-mentioned inert gas containing oxygen may be used.
  • the pipe 5 may be connected so that the water in the cassette 10 can be replenished to the water supply device from outside the cassette 10 as necessary.
  • the reaction vessel 1 is connected to a pipe 6 for discharging hydrogen and water vapor, performs a water splitting reaction, and sends the generated hydrogen to a system requiring hydrogen, such as a polymer electrolyte fuel cell.
  • a heat source 7 is installed inside the power set 10 as a heat source for supplying heat for the water splitting / reduction reaction and dewatering the water.
  • the heat source may be any of commonly used electric furnaces, heaters, induction heating, catalytic combustion heating, and heat generated by chemical reactions.
  • the reaction vessel 1 is made of metal such as stainless steel and aluminum, ceramics such as alumina and zirconia, and heat-resistant plastic such as phenol and polyphenylene sulfide, and has a structure capable of withstanding heat and internal and external pressures. I have.
  • a heat insulating material 7a such as silica fiber is inserted into the cassette 10 and is covered with a cover 11.
  • Each of the gas inlets and outlets of the cassette 10 is provided with a filter 18.
  • the water supply device 2 is provided inside the cassette 10, but water is supplied directly from the water supply port pipe 5 into the reaction vessel 1 without providing the water supply device 2. You may do it.
  • the water supply pipe 5 may not be provided, and water may be supplied from the pipe 4.
  • the heater 7 is installed inside the cassette 10, but the heater may not be installed in the cassette 10, but may be installed separately from the cassette.
  • FIG. 5 shows a state in which the cassette 10 containing the reduced hydrogen generating medium is connected to the fuel cell 20.
  • the reduced hydrogen generating medium reacts with water to generate hydrogen from cassette 10.
  • the generated hydrogen is supplied to the fuel electrode 21 of the polymer electrolyte fuel cell through a tube 15 connected to the polymer electrolyte fuel cell 20.
  • Air is introduced into the cathode 22 of the solid polymer fuel cell, and the reaction between hydrogen and oxygen in the air is carried out. Electricity is extracted.
  • hydrogen in a method of producing hydrogen by bringing iron, iron oxide into contact with water, water vapor, or a gas containing water vapor, hydrogen is generated at a low temperature by adding a platinum group metal to iron or iron oxide. Hydrogen generation rate is high. And the total amount of hydrogen generated at a constant temperature can be increased.
  • the addition of the platinum group metal and the above-mentioned second metal to iron or iron oxide can increase the total amount of generated hydrogen, and maintain the activity even when the water splitting / reducing reaction is repeated. Does not decrease, and the total amount of generated hydrogen remains large. Therefore, it can be recycled by reducing the oxidized / reduced iron medium which has generated and finished hydrogen again.
  • ADVANTAGE OF THE INVENTION According to the present invention, the hydrogen generation reaction rate per unit weight and the total amount of generated hydrogen are improved, so that hydrogen can be supplied very efficiently to a system requiring hydrogen, such as a polymer electrolyte fuel cell. be able to.
  • the fuel electrode of a low-temperature operation type fuel cell (solid polymer type, phosphoric acid type, KOH type, etc.) is covered. It is not poisonous, does not require a CO removal device, and has a large economic effect because it consists of a simple system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

低温でも水素の発生ができ、水素発生速度が速く、活性が低下することなく、酸化・還元の繰り返しに対する耐久性のある水素発生用媒体を提供することにより、効率的に水を分解し水素を製造する方法を提供する。鉄または酸化鉄に水、水蒸気または水蒸気を含むガスを接触させて水素を製造する方法において、鉄または酸化鉄に、Rh、Ir、Ru、Pd、PtおよびOsのうちの少なくともいずれか一つの金属と、Ti、Zr、V、Nb、Cr、Mo、Al、Ga、Mg、Sc、NiおよびCuのうちの少なくともいずれか一つの金属とを添加する。

Description

明 細 書 水素製造方法および水素供給装置 技術分野
本発明は、 水を分解し水素を効率良く製造する技術に関する。 背景技術
石油 ·天然ガスを原料とした部分酸化や水蒸気改質は水素合成の際に多くの炭 酸ガスを発生する。 そこで、 炭酸ガスを発生しない方法として太陽熱を利用した
U T— 3サイクルや、 特開平 0 7— 2 6 7 6 0 1号公報の方法が提案されている。 し力、し、 この方法は太陽熱を利用するに当たり、 大きなシステムが必要で、 コス トもそれに伴い多大なものになる。
また、 水素を安全に貯蔵 ·運搬する手段として高圧ボンベの代わりに、 水素吸 蔵合金を用いる提案が多くなされているが、 水素吸蔵合金への水素吸蔵には高い 水素圧が必要であり、 空気および水蒸気雰囲気下で使用できなく、 非常に高価で ある、 などの問題点がある。
水素と空気を原料とした燃料電池の場合、 メタノ一ルゃガソリンの水蒸気改質 により水素を供給する方法が一般的で多くの発明力提案されているが、 いずれの 方法も一酸化炭素、 炭酸ガスの発生が同時に起こり、 特に一酸化炭素は燃料電池 電極の被毒の問題により、 1 O p p m以下に除去するための装置が必要とな.り、 コストカ多大にかかっている。
水から水素を製造する方法として、 スチームアイアン法が知られている。 この 方法は、 鉄のみの酸化還元 (F e→F e 0 (F e 3 0 Λ )— F e ) を反応に利用 する方法だが、 反応には例えば 6 0 0 °C以上の高い温度が必要であり、酸化還元 を繰り返すと金属鉄が凝集していく、 いわゆるシン夕リングが発生し、金属鉄の 活性が急速に低下するという欠点があった。 従って、 シン夕リング現象が起こら ない、 耐久性に優れ、 高い活性を示す水素発生用媒体 (酸化還元材料) が要望さ れていた。 上述のような従来の問題に鑑みて、 本願の発明者は先に出願した特願 2001 -102845において、 水素発生反応速度が速く、 活性力低下することなく、 酸化還元の繰り返しに対する耐久性のある水素発生媒体 (酸化還元材料) を用い る水素製造方法を提案した。 すなわち、 鉄または酸化鉄に水、 水蒸気または水蒸 気を含むガスを接触させて水素を製造する方法において、 前記鉄または酸化鉄に、 Ti、 Zr、 V、 Nb、 C r、 Mo、 Al、 Ga、 Mg、 S c、 Niおよび Cu のうちの少なくともいずれか一つの金属とを添加することにより、 効率的に水素 を製造する。
本発明の課題は、 従来の水から水素を製造する方法よりも効率的に水を分解し 水素を製造すること、 または従来の方法よりも低温で水素を発生することが可能 な方法を提供するものであり、 先の特願 2001 -102845の発明を踏まえ、 水素製造方法を提供するものである。 発明の開示
本発明においては、 上記の課題を、 請求項 1に記載のように、 鉄または酸化鉄 に水、 水蒸気または水蒸気を含むガスを接触させて水素を製造する方法において、 前記鉄または酸化鉄に、 Rh、 I r、 Ru、 P d、 P tおよび 0 sのうちの少な くともいずれか一つの金属を添加することを特徴とする水素製造方法により、 達 成する。
また、上記の課題を、 請求項 2記載のように、 鉄または酸化鉄に水、 水蒸気ま たは水蒸気を含むガスを接触させて水素を製造する方法において、 前記鉄または 酸化鉄に、 Rh、 I r、 Ru、 Pd、 P tおよび 0 sのうちの少なくともいずれ か一つの金属と、 Ti、 Zr、 V、 Nb、 C r、 Mo、 Al、 Ga、 Mg、 S c、 Niおよび Cuのうちの少なくともいずれか一つの金属とを添加することを特徴 とする水素製造方法により、 達成する。
本発明において、 原料として使用する水は、必ずしも純水でなくても良く、 水 道水、 工業用水などが用いられる。
また、 本発明に用いる鉄は、純鉄、 酸化鉄、 硝酸鉄、 塩化鉄または硫酸鉄など の鉄化合物が原料に用いられる。 更に、 本発明において鉄または酸化鉄に添加される第 1の金属は、 白金族の少 なくともいずれ力、一つであり、好ましくは、 R h、 I r、 R u、 P d、 P tおよ び 0 sのうちの少なくともいずれか一つが選ばれる。 '
また、 本発明において鉄または酸化鉄に添加される金属は、 白金族の少なくと ' もいずれか一つと、 第 2の添加金属として、 T i、 Z r、 V、 N b、 C r、 M o、 A l、 G a、 M g、 S c、 N iおよび C uのうちの少なくともいずれか一つを追 加してもよい。
鉄または酸化鉄に添加する白金族の添加量は、 金属原子のモル数で計算して、 好ましくは全金属原子の 0. 1〜3 O m o 1 %、 より好ましくは 0 . 5〜1 5 m o 1 %になるように調製する。
第 1の添加金属 (白金族) および第 2の添加金属とも、 0. l m o 1 %未満の 添加量では水素発生効率向上の効果がなく、 また 3 O m o 1 %より多い場合、 酸 化 ·還元反応の効率が悪くなる。
金属の添加方法は、 物理混合または含浸法、 好ましくは共沈法により調製する。 調製した鉄化合物は、 効率よく利用するために、 粉末伏またはペレツト状、 円筒 状、 ハニカム構造、 不繊布形状など、 反応に適した表面積の大きい形状が選択さ れ、 水の分解反応に用いられる。
この鉄化合物は、 反応装置内に置かれ、水素などにより還元する。 この還元さ れた鉄化合物に、 水、 水蒸気または水蒸気を含むガスを接触させて水素を製造す る。 この際、 水と反応した鉄は酸化鉄になる。 なお、 この酸化 ·還元反応は 6 0 0 °C未満の低 ^、温度で行うこともできる。
本発明によれば、 局地設備用、 工場用、 家庭用もしくは車両搭載用の燃料電池 に、 燃料電池の電極を被毒する一酸化炭素の発生無しに、 水素を安価に供給する ことができる。 製造した水素は燃料電池に用いられるだけでなく、 水素バ一ナな どの広範囲な水素供給手段として用いることができる。 また、 還元された鉄化合 物を容器に充填させ可搬型水素供給力セットとして、 前述したような燃料電池な どの水素供給手段に用 L、ることができる。
更に、 本発明によれば、 内部に水素発生用媒体カ収納されるとともに少なくと も 2つの配管取付け手段を具備した可搬カセットカヽらなり、前記水素発生用媒体 が鉄または酸化鉄を主成分とし、 これに白金族の金属または白金族の金属と前記 第 2の添加金属とが添加されたものであり、 該カセットは前記配管取付け手段の 一方を介して水または水蒸気力注入されて、 水が分解して発生した水素を、 他方 の連結孔配管取付け手段から水素消費装置へ供給可能であることを特徴とする水 素供給装置が提供される。
カセットの内部にはヒ一夕が設けられていてもよい。 更に、 カセットには不活 性ガスまたは空気を供給する配管が設けられていてもよい。 なお、 空気は水分解 反応の際に、 空気と還元された酸化鉄の反応による反応熱を、 水分解反応に利用 する場合に用いられる。
水と反応し酸化された鉄は、 再度水素などにより還元され、 活性が低下するこ となく繰り返し酸ィ匕還元媒体として用いることができる。
前記のような効果が得られたる理由は、 シンタリングの防止、 固体中の酸素拡 散速度の促進、 表面での水分解活性の向上などが推察できる。
特に、 本発明のように白金族の金属を添加すると、 還元反応速度および酸化反 応速度が非常に高くなる傾向がある。 図面の簡単な説明
以下、 本発明の実施例を図示した添付図面を参照して、 本発明につき詳細に説 明する。
第 1図は、 本発明の実施例に用いた鉄化合物の反応システムの概略図である。 第 2図は、 水分解反応時の水素発生速度と反応温度を示すダラフである。 第 3図は、 水素発生総量を示すグラフである。
第 4図は、 本発明の、 水素発生用媒体が入った反応容器と水を供給するための 装置を管で結合させた構成を示す図である。
第 5図は、 還元された水素発生用媒体の入ったカセットが、 燃料電池に接続さ れた状態を示す図である。 発明を実施するための最良の形態
〔実施例 1〕 本実施例に用いた鉄ィ匕合物の反応システムの概略を第 1図に示す。 第 1図に示 す装置は常圧固定床流通式の反応装置であり、 反応ガスの一部を採取しガスクロ マトグラフで測定した。
反応容器に収納される鉄化合物は以下のような共沈法 (尿素法) にて調製した。 すなわち、 超音波で 5分間脱気した水 5 L中に、 硝酸鉄 (III) 九水和物 (F e (NOg) 3 · 9Hn0:和光純薬工業株式会社製) 0. 194m 01、 添加す る白金族金属の塩化物である塩化ロジウム (RhC 1。 · 3H20:和光純薬ェ 業株式会社製) 0. 006mo 1、 沈殿剤として 1 Omo 1の尿素 (NHn (CO) H2 :和光純薬工業株式会社製) を加え、 溶解させた。 混合溶液を撹 拌しながら 90°Cに加熱し、 3時間同温度に保持した。 反応終了後 16時間放置 ,沈殿させ、 吸引ろ過を行った。 沈殿を 80°Cで 24時間乾燥させ、 その後、 100°Cで 5時間、 300°Cで 5時間、 500°Cで 10時間空気焼成を行った。 試料中の添加する白金族原子は、 全金属原子の 3mo 1%となるようにした。 試 料は焼成後、 乳鉢で粉砕し、 顆粒の状態にして実験に用いた。
最初に試料を反応容器に入れ、 アルゴン (不活性ガス) により系内の空気をパ —ジした後に、 水素を導入し、 290°Cから 550°Cまで 1分間に 7. 5°C上昇 させ、 還元による水素の消費が見られなくなるまで 550°Cに保持し、 還元を行 つた。
水素による還元反応が終了した後、 装置内にアルゴンを導入し、 装置内の残留 水素を排気した。 その後、 水 3. 6x10~3mL/mi n (200 zmo l/ mi n) を気化器により気ィ匕させ、 キャリアガスとしてアルゴンガスを使用し、 反応容器に導入し、 水分解反応を行わせた。 この際、 反応容器は 120°Cから 600°Cまで 1分間に 4°C上昇させた。
第 2図は、前述の共沈法 (尿素法) にて調製した試料を、 Fe含有量が 0. 2 gになるように秤量して前記反応に用いた場合の水分解反応の結果 (反応温度一 水素発生速度) を示すグラフである。 なお、 Rh以外の白金族の I r、 Ru、 Pd、 Ptについても、 同様に共沈法にて調製して試料を作成し、 前述した Rh と同様にして水分解反応を測定した。
第 2図に示したグラフに見られるように、 無添カロ酸化鉄 (X記号) は 300°C 以下では水素の発生がほとんど無く、 約 500°Cで水素発生速度が最大となる。 一方、 Rh添加酸化鉄 (〇記号) は、 300°C以下の低温でも十分な水素の発生 が確認でき、 水素発生速度のピークは約 350°Cである。 I r添加酸化鉄 (秦記 号) は、 Rh添加酸化鉄と同様に 300°C以下の低温でも十分な水素の発生が確 認でき、 水素発生速度のピークは約 350〜 400 °Cである。 R u添加酸化鉄 (△記号) は、 水素発生速度のピークが約 400°Cであるが、 400°C未満でも 無添加酸化鉄の水素発生速度の最高値を越えている。 Pd添加酸化鉄 (▲記号) は、 水素発生速度のピークが約 500°Cであるが、 400°C付近で既に無添加酸 ィ匕鉄の水素発生速度の最高値を越えている。 P t添加酸化鉄 (口記号) は、 水素 発生速度のピ一クカ 500 °C未満であり、 450 °C付近で既に無添加酸化鉄の水 素発生速度の最高値を越えている。 ·
このように第 2図のグラフにおいて、 白金族添加酸化鉄は水素発生速度のピ一 クが無添加酸化鉄のピークよりもいずれも低温であり且つ高い値を示している。 このことから、 白金族の金属を酸化鉄に添加することにより、 低温で水素を発生 させることができ、 すなわち、 低温で水分解による水素発生速度を高める効果が あることが分かる。
〔実施例 2〕
実施例 2は、 実施例 1と同様に、 第 1図に示す常圧固定床流通式の反応装置を 用い、 反応ガスの一部を採取し、 ガスクロマトグラフで測定した。
反応容器に収納される鉄化合物は以下のような共沈法 (尿素法) にて調製した。 すなわち、 超音波で 5分間脱気した水 5 L中に、 δ肖酸鉄 (III) 九水和物 (F e (NO 0) 3 · 9 H o 0:和光純薬工業株式会社製) 0. 188mo l、 添加す る第 1の金属 (白金族) の塩化物である塩化ロジウム (RhC l。 ' 3H20 : 和光純薬工業株式会社製) 0. 006mo 1、 添加する第 2の金属の塩化物であ る硝酸アルミニウム (A 1 (NO 3) 3 · 9 H20:和光純薬工業株式会社製) 0. 006mo 1、 沈殿剤として 10mo 1の尿素 (NHg (CO) NH2 :和 光純薬工業株式会社製) を加え、 溶解させた。 混合溶液を撹拌しながら 90°Cに 加熱し、 3時間同温度に保持した。 反応終了後 16時間放置 ·沈殿させ、 吸引ろ 過を行った。 沈殿を 80°Cで 24時間乾燥させ、 その後、 100°Cで 5時間、 300°Cで 5時間、 500°Cで 10時間空気焼成を行った。 試料中の試料中の添 加する第 1の白金族原子および第 2の添加金属原子は、 それぞれ全金属原子の 3 mo 1%となるようにした。 試料は焼成後、 乳鉢で粉砕し、 ペレツト状に成形し 最初に試料を反応容器に入れ、 窒素 (不活性ガス) により系内の空気をパージ した後に、 水素を導入し、 470でで1時間、 還元反応を行った。
水素による還元反応が終了した後、 装置内に窒素を導入し、 装置内の残留水素 を排気した。 その後、 反応容器を 300°Cに加熱し、 水 0. lmL/m i n (5556 zmo \ /m i n) を気化器により気化させ、 キヤリアガスとして窒 素ガスを使用し、 反応容器に導入し、 水分解反応を行った。
上記の水分解反応が終了した後、 再度還元反応を行い、 水分解反応を計 3回行 つた o .
第 3図は、 前述の共沈法 (尿素法) にて調製した試料を、 F e含有量が 4. 0 gになるように秤量し、 前述の方法により発生した水素の総量を比較したグラフ である。 なお、 Rh_A 1の組合せ以外に、 白金族の P t、 Ruヽ Pdヽ I rと A 1の組合せ、 Rhと Moの組合せ、 A 1および Moについても、 それぞれ同様 に共沈法にて調製して試料を作成し、 前述した Rhと同様にして発生した水素の 総量を測定した。
第 3図に見られるように、 R hを単独で添加した酸化鉄は、 無添加の酸化鉄と 比較して水素発生量が遥かに多く、 A 1や Moを単独で添加した酸化鉄と比較し ても、 1回目および 2回目は水素発生量が多く、 3回目においても水素発生量は 同程度である。
また、 Rhの他に第 2の添加金属として A 1を添加した酸ィ匕鉄 (Rh— A 1添 加酸化鉄) は、 無添加の酸化鉄と比較して水素発生量が遥かに多く、 A 1や Mo を単独で添加した酸化鉄と比較しても水素発生量が多く、 し力、も、 繰り返しによ る劣化が見られない。 更に、 第 3図に見られるように、 1;ー八 1添加酸化鉄、 Ru - A1添加酸化鉄、 Pd— A 1添加酸化鉄、 Rh—Mo添加酸化鉄も、 Rh — A 1添加酸化鉄と同様の傾向がある。 一 Ί 一 このことから、 第 1の金属である白金族 (Rh、 I r、 Ru、 P d、 P t、 Os) カ水素発生効率向上に寄与することが分かり、 同時に還元反応を速める効 果があることが分かる。 これは本実施例で、 還元条件を一定にして還元を行うこ とで、 発生した水素の量すなわち再酸化量により、還元が行われた量が推察でき るため、 還元速度の差を見ることができる。
また、 第 2の添加金属である A 1、 Moは水素発生効率向上に寄与する効果だ けではなく、 繰り返しによる劣ィ匕を起こさない効果もある。 第 2の添加金属とし ては、 A 1、 Moが好ましいが、 T i、 Z r、 V、 Nb、 C r、 G a、 Mg、 Sc、 Niおよび Cuでもよい。
従って、 鉄に添加する金属が第 1の白金族だけでも、 水素発生効率向上に大き く寄与し、 更に、 前記第 2の金属を添加することにより水分解反応の活性を繰返 し維持できるので、 水分解 ·還元反応を繰返しても非常に安定して水素を発生さ せることができる。 〔発明の産業的な実施の形態〕
本発明を産業的に実施する形態を第 4図に示す。 第 4図は本発明の、 水素発生 用媒体 9が入つた反応容器 1と水を供給するための装置 2を管で結合させた構成 であり、 水素を供給するためのカセット 10とした、 システムの一実施例を示す 概略図面である。
水素発生用媒体 9は本発明の金属が添加された酸化鉄であり、 鉄若しくは酸化 鉄を主成分とし、 これに Rh、 I r、 Ru、 Pd、 P tおよび 0 sのうちの少な くともいずれか一つの金属が添加されたもの、 または鉄若しくは酸化鉄を主成分 とし、 これに Rh、 I r、 Ru、 Pd、 P tおよび 0 sのうちの少なくともいず れか一つの金属と、 Ti、 Z r、 V、 Nb、 C r、 Mo、 A l、 Ga、 Mg、 S c、 N iおよび Cuのうちの少なくともいずれか一つの金属とが添加されたも のである。
水分解 ·還元反応を行う反応容器 1は、 水を供給するための装置 2と管 3で接 続され、 水を供給するための装置 2は、 不活性ガスまたは空気を導入する管 4と 接続される。 不活性ガスとしては例えば窒素、 アルゴン、 ヘリウムなどである。 窒素 (不活性ガス) は、 反応を潤滑に行うためのキヤリャガスとして、 または系 内の空気 (酸素) をパージするために使用される力 必ずしも必要としない。 空 気は水分解反応の際に、 空気と還元された酸化鉄の反応による反応熱を、 水分解 反応に利用する場合に用いられるが、 必ずしも必要としない。 また、 空気の代わ りに酸素のみや酸素を含んだ前述の不活性ガスでもよい。 カセット 1 0内の水は、 必要に応じてカセット 1 0外部から水供給装置に補充することができるように、 管 5が接続される場合もある。
反応容器 1は水素や水蒸気排出のための管 6と接続され、 水分解反応を行い、 発生させた水素を、 固体高分子型燃料電池など水素を必要とする系に送られる。 水分解 ·還元反応や水を気ィ匕させるための熱を供給する熱源としてヒ一夕 7が力 セット 1 0内部に設置されている。 熱源は一般的に使用される電気炉、 ヒータ、 誘導加熱、 触媒燃焼加熱、 化学反応による発熱のいずれでもよい。 反応容器 1は ステンレススチール、 アルミなどの金属やアルミナ、 ジルコニァなどのセラミツ クス、 フエノ一ル、 ポリフエニレンサルファィドなど耐熱性プラスチックなどで 作られ、 熱や内外圧力に耐え得る構造をとつている。
カセット 1 0内にはシリカ繊維などの断熱材 7 aが揷入され、 カバ一 1 1で覆 われている。 カセット 1 0のガス導入排出口にはそれぞれフィルタ一 8か、設けら れている。
また、 第 4図に示した実施例ではカセット 1 0の内部に水供給装置 2を設けて いるが、 これを設けずに水供給口管 5から反応容器 1内に直接に水を供給するよ うにしてもよい。 また、 水分解反応に窒素を用いない場合は、 水供給口管 5はな くてもよく、 管 4から水を供給してもよい。 更に、 この実施例ではカセット 1 0 の内部にヒータ 7を設置しているが、 ヒータをカセット 1 0に設けずに、 カセッ 卜とは別に設置するようにしてもよい。
第 5図は、 還元された水素発生用媒体の入ったカセット 1 0力^ 燃料電池 2 0 に接続された状態を示す。 還元された水素発生用媒体と水が反応し、 カセット 1 0から水素が発生する。 発生した水素は固体高分子型燃料電池 2 0と接続され た管 1 5を通して、 固体高分子型燃料電池の燃料極 2 1へ供給される。 固体高分 子型燃料電池の空気極 2 2へは空気が導入され、 水素と空気中の酸素の反応によ り、 電気エネルギーが取り出される。 産業上の利用可能性
本発明によれば、 鉄または酸化鉄に水、 水蒸気または水蒸気を含むガスを接触 させて水素を製造する方法において、 鉄または酸化鉄に白金族の金属を添加した ことにより、 低温で水素を発生させることができ、 しかも水素発生速度が早い。 そして、 一定温度での水素発生総量も多くできる。
更に、 本発明によれば、 鉄または酸化鉄に白金族の金属と前述の第 2の金属と を添加したことにより、 水素発生総量を多くできると共に、 水分解 ·還元反応を 繰返しても、 活性が低下せず、水素発生総量は多いままである。 従って、 水素を 発生し終わつた酸化 ·還元鉄媒体を再び還元することでリサイクルできる。 本発明によれば、 単位重量あたりの水素発生反応速度、 水素発生総量が向上し たことにより、 固体高分子型燃料電池などの水素を必要とする系に、非常に効率 的に水素を供給することができる。
本発明で添加する鉄以外の金属が、 高価な金属だとしても、 反応効率向上には 0. 1〜 3 0 m o 1 %の少量で効果があるため、 低コストで水素製造を行うこと ができる。
また、 本発明ではカセットから発生するガスは純粋な水素と水蒸気以外の不純 物は含まないため、 低温作動型燃料電池 (固体高分子型、 リン酸型、 K O H型な ど) の燃料極を被毒することはなく、 C O除去装置も必要でなくシンプルなシス テムで構成されることより、 経済的な効果が大きい。

Claims

請 求 の 範 囲
1. 鉄または酸化鉄に水、 水蒸気または水蒸気を含むガスを接触させて水素 を製造する方法において、 前記鉄または酸化鉄に、 Rh、 I r、 Ru、 Pd、 P tおよび 0 sのうちの少なくともいずれか一つの金属を添加することを特徴と する水素製造方法。
2. 鉄または酸化鉄に水、 水蒸気または水蒸気を含むガスを接触させて水素 を製造する方法において、 前記鉄または酸化鉄に、 Rh、 I r、 Ru、 Pd、 P tおよび 0 sのうちの少なくともいずれか一つの金属と、 Ti、 Zr、 V、 N b、 Cr、 Mo、 Al、 Ga、 Mg、 Sc、 Niおよび Cuのうちの少なくとも いずれか一つの金属とを添加することを特徵とする水素製造方法。
3. 前記金属の添加を共沈法により行うことを特徴とする請求項 1または 2 記載の水素製造方法。
4. 内部に水素発生用媒体が収納されるとともに少なくとも 2つの配管取付 け手段を具備した可搬カセッ卜からなり、前記水素発生用媒体が鉄または酸化鉄 を主成分とし、 これに Rh、 I r、 Ru、 Pd、 P tおよび 0 sのうちの少なく ともいずれか一つの金属が添加されたものであり、 該カセットは前記配管取付け 手段の一方を介して水または水蒸気が注入されて、 水が分解して発生した水素を、 他方の連結孔配管取付け手段から水素消費装置へ供給可能であることを特徴とす る水素供給装置。
5. 内部に水素発生用媒体が収納されるとともに少なくとも 2つの配管取付 け手段を具備した可搬カセットからなり、 前記水素発生用媒体が鉄または酸ィ匕鉄 を主成分とし、 これに Rh、 I r、 Ru、 Pd、 P tおよび 0 sのうちの少なく ともいずれか一つの金属と、 Ti、 Zr、 V、 Nb、 Cr、 Mo、 Al、 Ga、 Mg、 S c、 N iおよび Cuのうちの少なくともいずれか一つの金属とが添加さ れたものであり、 該カセットは前記配管取付け手段の一方を介して水または水蒸 気が注入されて、 水力分解して発生した水素を、 他方の連結孔配管取付け手段か ら水素消費装置へ供給可能であることを特徴とする水素供給装置。
1
PCT/JP2003/006050 2002-06-26 2003-05-15 水素製造方法および水素供給装置 WO2004002881A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004517242A JP4858890B2 (ja) 2002-06-26 2003-05-15 水素製造方法および水素供給装置
EP03725779A EP1516853A1 (en) 2002-06-26 2003-05-15 Method for producing hydrogen and apparatus for supplying hydrogen
AU2003231473A AU2003231473A1 (en) 2002-06-26 2003-05-15 Method for producing hydrogen and apparatus for supplying hydrogen
US10/519,080 US20050255037A1 (en) 2002-06-26 2003-05-15 Method for producing hydrogen and apparatus for supplying hydrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-185563 2002-06-26
JP2002185563 2002-06-26

Publications (1)

Publication Number Publication Date
WO2004002881A1 true WO2004002881A1 (ja) 2004-01-08

Family

ID=29996744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006050 WO2004002881A1 (ja) 2002-06-26 2003-05-15 水素製造方法および水素供給装置

Country Status (6)

Country Link
US (1) US20050255037A1 (ja)
EP (1) EP1516853A1 (ja)
JP (1) JP4858890B2 (ja)
CN (1) CN1662440A (ja)
AU (1) AU2003231473A1 (ja)
WO (1) WO2004002881A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243649A (ja) * 2004-02-26 2005-09-08 Samsung Sdi Co Ltd 燃料電池システムの改質器及び燃料電池システム
JP2006106968A (ja) * 2004-10-01 2006-04-20 Nitto Denko Corp 携帯型コンピュータ
JP2006143560A (ja) * 2004-11-24 2006-06-08 Kiyoshi Otsuka 水素発生媒体製造方法及び水素製造方法
US7374717B2 (en) 2004-03-22 2008-05-20 Osamu Yamada Method for producing intermetallic compound porous material
JP4659923B1 (ja) * 2010-04-30 2011-03-30 エナジー・イノベーション・ワールド・リミテッド 水素生成用触媒
US8287098B2 (en) 2005-11-25 2012-10-16 Canon Finetech Inc. Liquid ejection head, liquid supply apparatus, liquid ejection apparatus, and liquid supply method

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007082089A2 (en) * 2006-01-12 2007-07-19 The Ohio State University Systems and methods of converting fuel
US7485209B2 (en) * 2006-06-22 2009-02-03 Martinez Nestor Process, method, and device for the production and/or derivation of hydrogen utilizing microwave energy
DE102008021562B4 (de) * 2008-04-30 2012-06-21 Voestalpine Stahl Gmbh Verfahren zur Herstellung von Wasserstoffgas mit Hilfe von Hüttenreststoffen und Verwendung von Hüttenreststoffen
WO2010037011A2 (en) 2008-09-26 2010-04-01 The Ohio State University Conversion of carbonaceous fuels into carbon free energy carriers
CA3011693C (en) 2009-09-08 2021-03-09 The Ohio State University Research Foundation Synthetic fuels and chemicals production with in-situ co2 capture
ES2630217T3 (es) 2009-09-08 2017-08-18 The Ohio State University Research Foundation Integración de reformación/división de agua y sistemas electromagnéticos para generación de energía con captura de carbono integrada
CN103354763B (zh) 2010-11-08 2016-01-13 俄亥俄州立大学 具有反应器之间的气体密封和移动床下导管的循环流化床
CN103635449B (zh) 2011-05-11 2016-09-07 俄亥俄州国家创新基金会 用来转化燃料的系统
CN103635673B (zh) 2011-05-11 2016-05-04 俄亥俄州国家创新基金会 载氧材料
CN102671664B (zh) * 2012-05-25 2013-12-04 西安建筑科技大学 矿渣基胶凝材料-氧化铁半导体复合催化剂及在太阳能光催化分解水制氢中的应用
CN103691459B (zh) * 2012-09-27 2016-06-29 陈怀超 水蒸汽裂解催化剂及其制法和水蒸汽裂解氢燃烧方法
RU2521632C1 (ru) * 2012-11-13 2014-07-10 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ получения водорода из воды
WO2014124011A1 (en) 2013-02-05 2014-08-14 Ohio State Innovation Foundation Methods for fuel conversion
US9616403B2 (en) 2013-03-14 2017-04-11 Ohio State Innovation Foundation Systems and methods for converting carbonaceous fuels
US10899610B2 (en) 2013-03-29 2021-01-26 Centre National De La Recherche Scientifique Method for producing high-purity hydrogen gas and/or nanomagnetite
WO2014154910A1 (en) * 2013-03-29 2014-10-02 Centre National De La Recherche Scientifique (Cnrs) Method for producing high-purity hydrogen gas
CN104418298A (zh) * 2013-09-02 2015-03-18 中国科学院大连化学物理研究所 含微量贵金属的钙钛矿类活性材料光热分解h2o和/或co2的方法
CN104418300A (zh) * 2013-09-04 2015-03-18 中国科学院大连化学物理研究所 含微量贵金属的氧化铈固溶体光热分解h2o和/或co2的方法
US20150238915A1 (en) 2014-02-27 2015-08-27 Ohio State Innovation Foundation Systems and methods for partial or complete oxidation of fuels
AU2017250214B2 (en) 2016-04-12 2021-08-12 Ohio State Innovation Foundation Chemical looping syngas production from carbonaceous fuels
US11090624B2 (en) 2017-07-31 2021-08-17 Ohio State Innovation Foundation Reactor system with unequal reactor assembly operating pressures
US10549236B2 (en) 2018-01-29 2020-02-04 Ohio State Innovation Foundation Systems, methods and materials for NOx decomposition with metal oxide materials
US11413574B2 (en) 2018-08-09 2022-08-16 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
CA3129146A1 (en) 2019-04-09 2020-10-15 Liang-Shih Fan Alkene generation using metal sulfide particles
CN111001421A (zh) * 2019-04-28 2020-04-14 蔡勇梅 一种水蒸气制氢催化剂及其制法、应用和燃烧装置
CN113753854A (zh) * 2020-12-31 2021-12-07 厦门大学 一种具有直孔结构的储氢燃料及其制备方法
CN115010086B (zh) * 2022-05-20 2024-01-26 泰州中和氢能源科技有限公司 一种制氢用裂解剂、其制备方法及使用其制备氢气的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS30871B1 (ja) * 1953-09-02 1955-02-12
JPS5748343A (en) * 1980-09-06 1982-03-19 Babcock Hitachi Kk Catalyst for preparing hydrogen
JPS5795803A (en) * 1980-12-04 1982-06-14 Babcock Hitachi Kk Production of hydrogen
JPH03267558A (ja) * 1990-03-15 1991-11-28 Iseki & Co Ltd エンジン
JPH04100518A (ja) * 1990-03-14 1992-04-02 Iseki & Co Ltd エンジンの排気ガス処理装置
WO2002081368A1 (fr) * 2001-04-02 2002-10-17 Uchiya Thermostat Co., Ltd. Procede de production d'hydrogene et appareil destine a fournir de l'hydrogene

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993577A (en) * 1974-09-19 1976-11-23 The United States Of America As Represented By The Secretary Of The Navy Method for production of heat and hydrogen gas
US6018091A (en) * 1998-06-08 2000-01-25 Quantum Marketing Corporation Methods for thermally degrading unwanted substances using particular metal compositions
CN1233545C (zh) * 2000-06-16 2005-12-28 打矢恒温器株式会社 氢供应装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS30871B1 (ja) * 1953-09-02 1955-02-12
JPS5748343A (en) * 1980-09-06 1982-03-19 Babcock Hitachi Kk Catalyst for preparing hydrogen
JPS5795803A (en) * 1980-12-04 1982-06-14 Babcock Hitachi Kk Production of hydrogen
JPH04100518A (ja) * 1990-03-14 1992-04-02 Iseki & Co Ltd エンジンの排気ガス処理装置
JPH03267558A (ja) * 1990-03-15 1991-11-28 Iseki & Co Ltd エンジン
WO2002081368A1 (fr) * 2001-04-02 2002-10-17 Uchiya Thermostat Co., Ltd. Procede de production d'hydrogene et appareil destine a fournir de l'hydrogene

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243649A (ja) * 2004-02-26 2005-09-08 Samsung Sdi Co Ltd 燃料電池システムの改質器及び燃料電池システム
US7374717B2 (en) 2004-03-22 2008-05-20 Osamu Yamada Method for producing intermetallic compound porous material
JP2006106968A (ja) * 2004-10-01 2006-04-20 Nitto Denko Corp 携帯型コンピュータ
JP2006143560A (ja) * 2004-11-24 2006-06-08 Kiyoshi Otsuka 水素発生媒体製造方法及び水素製造方法
JP4688477B2 (ja) * 2004-11-24 2011-05-25 大塚 潔 水素発生媒体製造方法及び水素製造方法
US8287098B2 (en) 2005-11-25 2012-10-16 Canon Finetech Inc. Liquid ejection head, liquid supply apparatus, liquid ejection apparatus, and liquid supply method
JP4659923B1 (ja) * 2010-04-30 2011-03-30 エナジー・イノベーション・ワールド・リミテッド 水素生成用触媒
WO2011135709A1 (ja) * 2010-04-30 2011-11-03 エナジー・イノベーション・ワールド・リミテッド 水素生成用触媒

Also Published As

Publication number Publication date
CN1662440A (zh) 2005-08-31
JPWO2004002881A1 (ja) 2005-10-27
JP4858890B2 (ja) 2012-01-18
EP1516853A1 (en) 2005-03-23
US20050255037A1 (en) 2005-11-17
AU2003231473A1 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
WO2004002881A1 (ja) 水素製造方法および水素供給装置
JP4295515B2 (ja) 水素供給方法及び水素供給装置
WO2005078160A1 (ja) 水素の製造方法及び装置
US6869585B2 (en) Method and apparatus for supplying hydrogen and portable cassette for supplying hydrogen
US20060293173A1 (en) Hydrogen generation catalysts and systems for hydrogen generation
KR20090114408A (ko) 마이크로파 보조 촉매 상 메탄 분해를 이용한 수소 농후 연료 제조 방법 및 시스템
US20060292067A1 (en) Hydrogen generation catalysts and methods for hydrogen generation
US11795055B1 (en) Systems and methods for processing ammonia
JPH08180896A (ja) 内部改質高温燃料電池での電気エネルギーの製造方法
CN101145617A (zh) 用于燃料电池的重整器和包括该重整器的燃料电池系统
EP1899264A2 (en) Hydrogen generation catalysys and system for hydrogen generation
EP1726360A1 (en) Reforming catalyst composition
EP1494806B1 (en) Catalyst for removing carbon monoxide in hydrogen rich gas according to water gas shift reaction
JP2006036579A (ja) 水素製造方法
JP4594649B2 (ja) 水素発生媒体及び水素製造方法
JP4795741B2 (ja) 窒素ガス発生装置及びそれを用いた燃料電池発電システム
KR20190059638A (ko) 국부 가열을 위한 고함수율 연료용 촉매연소기
JP2005255505A (ja) 水素供給方法
JP2004359536A (ja) 金属酸化物の還元方法及び水素製造方法
JP4688477B2 (ja) 水素発生媒体製造方法及び水素製造方法
JP2004255264A (ja) 水分解複合媒体及びそれを用いた燃料電池用水素供給システム
CN111470473A (zh) 一种氢气发生装置
EP4187651A1 (en) Electrochemical device
US20240132346A1 (en) Systems and methods for processing ammonia
US20050217181A1 (en) Method and system for supplying hydrogen to fuel cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004517242

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003725779

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10519080

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038148668

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003725779

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003725779

Country of ref document: EP