EP1899264A2 - Hydrogen generation catalysys and system for hydrogen generation - Google Patents
Hydrogen generation catalysys and system for hydrogen generationInfo
- Publication number
- EP1899264A2 EP1899264A2 EP06773824A EP06773824A EP1899264A2 EP 1899264 A2 EP1899264 A2 EP 1899264A2 EP 06773824 A EP06773824 A EP 06773824A EP 06773824 A EP06773824 A EP 06773824A EP 1899264 A2 EP1899264 A2 EP 1899264A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalyst
- metal
- hydrogen generation
- ruthenium
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 84
- 239000001257 hydrogen Substances 0.000 title claims abstract description 75
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 75
- 239000003054 catalyst Substances 0.000 claims abstract description 128
- 229910052751 metal Inorganic materials 0.000 claims abstract description 65
- 239000002184 metal Substances 0.000 claims abstract description 65
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 41
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 38
- 239000010941 cobalt Substances 0.000 claims abstract description 38
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000000203 mixture Substances 0.000 claims abstract description 25
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 17
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 17
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 17
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 17
- 239000011733 molybdenum Substances 0.000 claims abstract description 17
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 17
- 239000011701 zinc Substances 0.000 claims abstract description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 16
- 239000010936 titanium Substances 0.000 claims abstract description 16
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 15
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052718 tin Inorganic materials 0.000 claims abstract description 15
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical class B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052741 iridium Inorganic materials 0.000 claims abstract description 13
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000011135 tin Substances 0.000 claims abstract description 10
- 229910052796 boron Inorganic materials 0.000 claims abstract description 9
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052738 indium Inorganic materials 0.000 claims abstract 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract 2
- 239000000446 fuel Substances 0.000 claims description 34
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 18
- 150000002739 metals Chemical class 0.000 claims description 13
- 239000011148 porous material Substances 0.000 claims description 13
- 229910052759 nickel Inorganic materials 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 150000003839 salts Chemical class 0.000 claims description 8
- 229910000085 borane Inorganic materials 0.000 claims description 7
- 239000000835 fiber Substances 0.000 claims description 7
- -1 monolith Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 5
- 239000003610 charcoal Substances 0.000 claims description 4
- 239000000571 coke Substances 0.000 claims description 4
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- UORVGPXVDQYIDP-BJUDXGSMSA-N borane Chemical class [10BH3] UORVGPXVDQYIDP-BJUDXGSMSA-N 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 125000004429 atom Chemical group 0.000 claims 4
- 239000006260 foam Substances 0.000 claims 3
- 150000002431 hydrogen Chemical class 0.000 claims 1
- 238000006460 hydrolysis reaction Methods 0.000 abstract description 10
- 230000007062 hydrolysis Effects 0.000 abstract description 6
- 229910052723 transition metal Inorganic materials 0.000 abstract description 5
- 150000003624 transition metals Chemical class 0.000 abstract description 5
- 239000000243 solution Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 8
- 229910000033 sodium borohydride Inorganic materials 0.000 description 8
- 239000012279 sodium borohydride Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 150000004678 hydrides Chemical class 0.000 description 4
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910021580 Cobalt(II) chloride Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910003018 M(BH4)n Inorganic materials 0.000 description 1
- 229910003019 MBH4 Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910019891 RuCl3 Inorganic materials 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- HSSJULAPNNGXFW-UHFFFAOYSA-N [Co].[Zn] Chemical compound [Co].[Zn] HSSJULAPNNGXFW-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000102 alkali metal hydride Inorganic materials 0.000 description 1
- 150000008046 alkali metal hydrides Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- KVLCHQHEQROXGN-UHFFFAOYSA-N aluminium(1+) Chemical compound [Al+] KVLCHQHEQROXGN-UHFFFAOYSA-N 0.000 description 1
- 229940007076 aluminum cation Drugs 0.000 description 1
- 229940077464 ammonium ion Drugs 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910010277 boron hydride Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- DRVWBEJJZZTIGJ-UHFFFAOYSA-N cerium(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[Ce+3].[Ce+3] DRVWBEJJZZTIGJ-UHFFFAOYSA-N 0.000 description 1
- MZZUATUOLXMCEY-UHFFFAOYSA-N cobalt manganese Chemical compound [Mn].[Co] MZZUATUOLXMCEY-UHFFFAOYSA-N 0.000 description 1
- WHDPTDWLEKQKKX-UHFFFAOYSA-N cobalt molybdenum Chemical compound [Co].[Co].[Mo] WHDPTDWLEKQKKX-UHFFFAOYSA-N 0.000 description 1
- VLWBWEUXNYUQKJ-UHFFFAOYSA-N cobalt ruthenium Chemical compound [Co].[Ru] VLWBWEUXNYUQKJ-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000010763 heavy fuel oil Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000003863 metallic catalyst Substances 0.000 description 1
- 239000006262 metallic foam Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- NVIFVTYDZMXWGX-UHFFFAOYSA-N sodium metaborate Chemical compound [Na+].[O-]B=O NVIFVTYDZMXWGX-UHFFFAOYSA-N 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229940006486 zinc cation Drugs 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/065—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/882—Molybdenum and cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/889—Manganese, technetium or rhenium
- B01J23/8892—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8913—Cobalt and noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/892—Nickel and noble metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/08—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/18—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/58—Fabrics or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/612—Surface area less than 10 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Definitions
- the present invention relates to catalysts and systems for the catalytic generation of hydrogen from, for example, aqueous chemical hydride solutions.
- Chemical hydrides are known hydrogen storage materials characterized by relatively high gravimetric hydrogen storage density. Chemical hydrides, such as alkali metal hydrides and metal borohydrides, can generate hydrogen through a hydrolysis reaction with water. For these chemical hydrides, the gravimetric hydrogen densities range from about 4 to about 9% by weight.
- Sodium borohydride (NaBH 4 ) is of particular interest because it can be dissolved in alkaline water solutions with virtually no reaction until it contacts a catalyst. In this case, the stabilized alkaline solution of sodium borohydride is referred to as "fuel” or "fuel solution.”
- catalysts for hydrogen generation systems are needed that ensure fast dynamic system control and high fuel conversion over the lifetime of the system.
- Durable catalysts that tolerate hot caustic solutions and that deliver high performance under catalyst reactor conditions, such as temperatures above 100 0 C and pressures exceeding 50 psig (pounds-force per square inch gauge), also are needed, as well as systems and methods for generating hydrogen gas employing such durable catalysts.
- the present invention provides supported catalysts that promote the hydrolysis of fuel solutions to produce hydrogen.
- the supported catalysts can be supported metallic catalysts comprising a support substrate carrying a mixture of at least a first transition metal selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, iron, titanium, tin, cadmium, nickel, and iridium, and at least a second component selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, iron, boron, titanium, tin, cadmium, nickel, and iridium.
- the catalyst according to the invention is bimetallic, although additional catalyst components, including but not limited to, a third transition metal may optionally be included.
- the invention also provides a hydrogen generation supported catalyst, comprising a mixture of at least first and second metals, wherein each of the first and second metals is different and is independently selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, titanium, tin, cadmium, and iridium.
- the invention further provides a hydrogen generation supported catalyst, comprising a support substrate; and a metallic mixture on the support, wherein the mixture comprises a first metal in an amount of about 0.05 to about 20% by weight, and a second metal in an amount of about 0.01 to about 25% by weight of the supported catalyst, hi a preferred embodiment, the invention provides a ruthenium/cobalt hydrogen generation catalyst, comprising a support; and ruthenium in an amount of about 0.1 to about 2% by weight, and cobalt in an amount of about 1 to about 5% by weight, based on the total weight of the supported catalyst.
- the supported catalyst has a BET surface area greater than typically seen for common metallic wires, sheets, or fibers, for example, and preferably in the range of about 5 to 20 mVg.
- the invention provides a system and method of generating hydrogen gas, comprising providing an aqueous fuel solution containing a material selected from the group consisting of boranes, polyhedral boranes, borohydride salts, and polyhedral borane salts; and contacting the aqueous fuel solution with a hydrogen generation catalyst comprising a support, a first metal selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, iron, boron, titanium, tin, cadmium, and iridium, the first metal being present in an amount of about 0.05 to about 20% by weight of the hydrogen generation catalyst; and a second metal selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, titanium, tin, cadmium, and iridium to produce hydrogen gas, the second metal being present in an amount of about 0.01 to about 25% by weight of the hydrogen generation catalyst.
- a hydrogen generation catalyst comprising
- Figure 1 illustrates the relation between fuel conversion and fuel space velocity for five samples of a ruthenium/cobalt catalyst according to the present invention.
- Figure 2 illustrates the relation between reactor temperature and time at two reactor pressures using a ruthenium/cobalt catalyst according to the present invention. DESCRIPTION OF THE INVENTION
- the present invention provides durable, highly active supported catalysts and systems for hydrogen generation from, for example, the hydrolysis of boron hydride compounds.
- the systems of the present invention can serve to enhance the hydrolysis reactions of boron hydride compounds to produce hydrogen gas.
- the hydrolysis reaction shown in equation (1) below is characteristic of borohydride compounds:
- the high purity hydrogen produced by the above hydrolysis reaction is suitable for a variety of end use applications, including, but not limited to, use in proton exchange membrane (PEM) fuel cells, as the gas stream is warm and humidified due to the exothermic nature of the reaction.
- PEM fuel cells require a humid hydrogen gas stream to prevent dehydration of the membrane and resultant loss of electrical efficiency.
- the preferred supported catalysts of the present invention are highly active, durable and can be used repeatedly without significant loss of catalytic activity.
- the supported catalysts of the present invention can comprise various mixtures of metals selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, iron, boron, titanium, tin, cadmium, nickel, and iridium.
- the supported catalysts of the present invention contain bimetallic metal mixtures comprising a first component and a second component.
- the first component is a transition metal selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, iron, titanium, tin, cadmium, nickel, and iridium and is present in an amount of from about 0.05 to about 20% by weight, preferably from about 1 to about 10% by weight, and most preferably from about 1 to about 5% by weight.
- the second component in this embodiment is a metal selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, iron, boron, titanium, tin, cadmium, nickel, and iridium and is present in an amount of from about 0.01 to about 25% by weight, preferably from about 0.1 to about 2% by weight.
- cobalt-ruthenium, cobalt-zinc, cobalt-manganese, and cobalt- molybdenum are particularly preferred.
- the cobalt is present in an amount ranging from about 0.05 wt-% to about 20 wt-%, preferably from about 1 wt-% to about 10 wt- %, and most preferably from about 1 to 5 wt-%
- the second component is present in an amount ranging from about 0.01 wt-% to 25 wt-%, preferably from about 0.1 wt-% and 2 wt-%. All weight percentages herein are expressed as a percent of the total weight of the supported catalyst, i.e., the support and the metallic mixture, which may be deposited on or impregnated in the support.
- the most reactive metals for initiating the hydrolysis of boron hydrides are the relatively expensive Group VIII metals, such as platinum, rhodium, and ruthenium, and thus catalysts comprising such metals can be a major contributor to the cost of a hydrogen generating system.
- Group VIII metals such as platinum, rhodium, and ruthenium
- catalysts comprising such metals can be a major contributor to the cost of a hydrogen generating system.
- Table 1 shows that a higher loading of a less reactive metal (e.g., 3 wt-% cobalt) provides a similar hydrogen generation rate as compared to a lower loading of a more reactive metal (e.g., 0.5 wt-% ruthenium).
- Table 1 further demonstrates that appropriate combinations of less reactive metals, which are often a tenth or a hundredth of the price of platinum, rhodium, and ruthenium, can offer effective hydrogen generation rates. Accordingly, catalyst components and loadings can be selected to meet the operating demands and cost constraints of particular hydrogen generation systems, given the teachings herein.
- the above weight percentages are calculated based on the total weight of the individual component with respect to the total weight of all catalyst components including the support material.
- the term "hydrogen generation catalyst” as used herein means the metal mixture together with the support substrate or carrier on which the mixture is deposited, impregnated, or otherwise carried.
- the catalytically active species may include the metals in ineir re ⁇ uced elemental state or in high oxidation states as found in compounds such as metal oxides or metal borides.
- Analytical techniques such as inductively coupled plasma-mass spectrometry (ICP-MS) and energy dispersive X-ray analysis (EDX) are useful as they permit measurement of the elements without regard to oxidation state.
- the support or carrier may be any substrate that allows deposition of metals on its surface, or impregnation of metals, and which will not readily break apart or erode from the rapid formation of hydrogen gas on the surface and in internal pores.
- the use of a support is preferred as it allows easy separation of the catalyst from the reaction media.
- the rate of hydrogen generation can be controlled by regulating the contact with the catalyst, as disclosed in U.S. Patent No. 6,534,033 entitled "System for Hydrogen Generation,” the entire disclosure of which is hereby incorporated herein.
- the carrier is preferably chemically inert in caustic solutions at pressures up to 200 psig or more and temperatures up to 200 °C or more.
- Suitable carriers include (1) activated carbon, coke, or charcoal; (2) ceramics and refractory inorganic oxides such as titanium dioxide, zirconium oxide, cerium oxides, used individually or as mixtures thereof; (3) metal foams, sintered metals and metal fibers or composite materials of nickel and titanium; and (4) perovskites with the general formula ABO 3 , where A is a metallic atom with a valence of +2 and B is a metallic atom with a valence of +4.
- the supported catalysts of the present invention may be formed by any suitable deposition method, including, for example, deposition on and/or impregnation of active elements, or mixtures of active elements, on a support. This deposition may be followed by a further surface treatment, including reduction with a reducing agent (hydrogen for example, although other reducing agents including sodium borohydride can be used), calcination, or oxidation with an oxidizing agent (such as, but not limited to, air and oxygen). Suitable methods are disclosed in, for example, U.S. Patent No. 6,534,033.
- an impregnated support is prepared by mixing 50 g of 50:50 nickel powde ⁇ nickel fiber composite pads, cut into 0.25" x 0.25" chips, with about 30 mL of an aqueous solution containing 6.31g CoCl 2 *6H 2 O and 1.431 g RuCl 3 »H 2 O, heating the mixture to about 70 0 C and evaporating the water until completely dry.
- the resulting supported catalyst is then heated in a tube furnace at about 240°C under a 20 mL/min hydrogen (4% in nitrogen) flow for about 3 hours at atmospheric pressure.
- the final catalyst has a nominal loading of about 1.2% Ru by weight and about 3% Co by weight (assuming final total catalyst weight equals the Ni-pad plus the Ru metal plus the Co metal).
- Various other methods for depositing or impregnating a transition metal mixture on a carrier may be employed as known in the art or determined by one skilled in the art given the teachings herein.
- the supported catalysts of the invention also may be employed in the form of pellets, monoliths, chips, or other physical forms suitable for use in a fixed-bed, trickle-bed, or other reactor, such as the one described in co-pending U.S. Patent Application Serial No. 10/741,032, entitled “Catalytic Reactor for Hydrogen Generator Systems,” the entire disclosure of which is hereby incorporated herein.
- the catalyst For highly efficient hydrogen generation from the hydrolysis of boron hydrides, it is preferred that the catalyst have a high surface area as a means to increase the number of potentially available and reactive catalytic sites.
- the term "high surface area" as used in this application refers to a BET surface area of about 5 to about 100 m 2 /g, preferably between about 7 to about 25 m 2 /g, and most preferably of about 10 m 2 /g of the supported catalyst.
- the supported catalyst is preferably porous with an average pore radius between 5 and 50 A, more preferably between 15 and 35 A, and most preferably between about 20 and 30 A.
- a total pore volume is preferably about 5 to about 100 mL/g, more preferably about 30 to about 70 mL/g.
- boron hydride or "boron hydrides” as used herein include boranes, polyhedral boranes, and anions of borohydrides or polyhedral boranes, such as those provided in co-pending U.S. Patent Application Serial No. 10/741,199, entitled “Fuel Blends for Hydrogen Generators,” filed December 19, 2003, the entire disclosure of which is hereby incorporated herein.
- Suitable boron hydrides include, without intended limitation, the group of borohydride salts M(BH 4 ) n , triborohydride salts M(B 3 Hs) n , decahydrodecaborate salts M 2 (B 10 H 1O ) n , tridecahydrodecaborate salts M(BioH 13 ) n , dodecahydrododecaborate salts M 2 (B 12 H 12 ) n , and octadecahydroicosaborate salts M 2 (B 2 oH 18 ) n , among others, where M is a cation selected from the group consisting of alkali metal cations, alkaline earth metal cations, aluminum cation, zinc cation, and ammonium cation, and n is equal to the charge of the cation.
- M is preferably sodium, potassium, lithium, or calcium.
- a catalyst comprising 0.6 wt-% ruthenium and 2 wt-% cobalt supported on a nickel metallic mat containing pressed nickel fibers and sintered nickel particles in a 40:60 ratio was used to evaluate durability and hydrogen generation activity.
- Fresh catalysts were subject to fuel treatments conducted under atmospheric pressure and using a 20 wt-% sodium borohydride and 3 wt-% NaOH fuel solution at about 70 °C, as a way to simulate multi-cycle usage of the catalyst.
- 200 mL of fuel solution was added to a reactor immersed in a water bath preheated to about 30 0 C, and the reactor system thoroughly purged with hydrogen.
- Catalyst was then added to the reactor and stirred with a magnetic stirrer for 0.5 hours. Rate of hydrogen generation and reaction temperature were measured.
- Activity of the catalyst was evaluated based on initial rate of hydrogen generation at 30°C under the controlled conditions. Catalyst durability can be evaluated by comparison of activities obtained after the catalyst was subjected to different fuel treatment cycles.
- the hydrogen generation activity of the catalyst was evaluated with a packed bed tubular reactor (0.842" internal diameter x 7" long) under various fuel flow conditions, hi operation, a fuel pump fed the fuel (20 wt-% sodium borohydride and 3 wt-% NaOH aqueous solution) from a storage tank to a reactor packed with a catalyst according to the present invention.
- the fuel flow rate was monitored by using a scale and a timer.
- the fuel solution generated hydrogen gas and sodium metaborate as shown in equation (1) above.
- the hydrogen and metaborate solution were separated in a gas-liquid separator, and the humidified hydrogen then cooled down to room temperature after passage through a heat exchanger and a drier.
- the steady-state hydrogen evolution rate was monitored with a mass flow meter.
- Table 4 The operating conditions for the reactor tests are summarized in Table 4 below.
- Figure 1 illustrates the relation between the fuel conversion and the fuel throughput (or space velocity) for five samples A, B, C, D and E of a ruthenium/cobalt catalyst according to the present invention.
- the reactor was started at ambient conditions at a constant liquid fuel space velocity and operated continuously at 55 or 80 psig for about 6 to 8 hours before reactor shutdown. Following shutdown, the reactor was flushed with water to remove residual fuel inside the reactor. Fuel conversions of at least 90% were achieved over a wide range of fuel flow rates.
- a high reactor throughput greater than 680 standard liters of hydrogen per minute (SLPM H 2 ) per liter reactor volume was achieved with fuel conversions greater than 92%.
- Figure 2 illustrates the relation between reactor temperature and time at different pressures for a catalytic reactor containing a ruthenium/cobalt catalyst according to the present invention.
- Fast reactor start up dynamics are preferred in the design of a hydrogen storage system.
- reactor startup profiles were measured at a constant fuel flow rate of 20g/min at 55 and 80 psig pressure, as higher pressures lead to a faster reactor startup.
- ruthenium/cobalt supported catalysts according to the present invention demonstrate rapid startup profiles.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Catalysts (AREA)
Abstract
Supported catalysts are provided to promote hydrogen generation from the hydrolysis of boron hydrides. The supported catalyst is a supported metallic mixture comprising a first transition metal selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, titanium, tin, cadmium, and indium, in an amount of from about 0.1 to about 20% by weight, and a second metal selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, titanium, tin, cadmium, boron, and iridium, in an amount of from about 0.05 to about 25% by weight of the supported catalyst.
Description
HYDROGEN GENERATION CATALYSTS AND SYSTEMS FOR HYDROGEN GENERATION
FIELD OF THE INVENTION
[0001] The present invention relates to catalysts and systems for the catalytic generation of hydrogen from, for example, aqueous chemical hydride solutions.
BACKGROUND OF THE INVENTION
[0002] Chemical hydrides are known hydrogen storage materials characterized by relatively high gravimetric hydrogen storage density. Chemical hydrides, such as alkali metal hydrides and metal borohydrides, can generate hydrogen through a hydrolysis reaction with water. For these chemical hydrides, the gravimetric hydrogen densities range from about 4 to about 9% by weight. Sodium borohydride (NaBH4) is of particular interest because it can be dissolved in alkaline water solutions with virtually no reaction until it contacts a catalyst. In this case, the stabilized alkaline solution of sodium borohydride is referred to as "fuel" or "fuel solution."
[0003] Various hydrogen generation systems have been developed for the production of hydrogen gas by the metal catalyzed hydrolysis of aqueous sodium borohydride fuel solutions. One current technology for hydrogen generation from stabilized sodium borohydride solutions involves feeding the fuel solution at ambient temperature to a catalyst bed packed with a catalyst to promote hydrogen generation.
[0004] Activity, durability and cost of the catalyst are the major barriers for meeting commercial specifications. Improvements in catalyst activity would enable higher reactor throughput, therefore reducing the required total volume of catalyst bed, and consequently the static liquid hold-up volume of the hydrogen generation system. A durable catalyst must ensure that such high throughput is maintained over a relatively long period of time, thus eliminating the need to over-design the amount of catalyst used in order to compensate for the reduced activity of the aged catalyst bed. Ultimately, improvements in catalyst activity are
needed to achieve overall reduced system volume and higher system hydrogen storage densities.
[0005] hi addition, catalysts for hydrogen generation systems are needed that ensure fast dynamic system control and high fuel conversion over the lifetime of the system. Durable catalysts that tolerate hot caustic solutions and that deliver high performance under catalyst reactor conditions, such as temperatures above 100 0C and pressures exceeding 50 psig (pounds-force per square inch gauge), also are needed, as well as systems and methods for generating hydrogen gas employing such durable catalysts.
BRIEF SUMMARY OF THE INVENTION
[0006] The present invention provides supported catalysts that promote the hydrolysis of fuel solutions to produce hydrogen. The supported catalysts can be supported metallic catalysts comprising a support substrate carrying a mixture of at least a first transition metal selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, iron, titanium, tin, cadmium, nickel, and iridium, and at least a second component selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, iron, boron, titanium, tin, cadmium, nickel, and iridium. Thus, in one embodiment the catalyst according to the invention is bimetallic, although additional catalyst components, including but not limited to, a third transition metal may optionally be included.
[0007] The invention also provides a hydrogen generation supported catalyst, comprising a mixture of at least first and second metals, wherein each of the first and second metals is different and is independently selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, titanium, tin, cadmium, and iridium.
[0008] The invention further provides a hydrogen generation supported catalyst, comprising a support substrate; and a metallic mixture on the support, wherein the mixture comprises a first metal in an amount of about 0.05 to about 20% by weight, and a second metal in an amount of about 0.01 to about 25% by weight of the supported catalyst, hi a preferred embodiment, the invention provides a ruthenium/cobalt hydrogen generation catalyst,
comprising a support; and ruthenium in an amount of about 0.1 to about 2% by weight, and cobalt in an amount of about 1 to about 5% by weight, based on the total weight of the supported catalyst. In particularly preferred embodiments the supported catalyst has a BET surface area greater than typically seen for common metallic wires, sheets, or fibers, for example, and preferably in the range of about 5 to 20 mVg.
[0009] In another embodiment the invention provides a system and method of generating hydrogen gas, comprising providing an aqueous fuel solution containing a material selected from the group consisting of boranes, polyhedral boranes, borohydride salts, and polyhedral borane salts; and contacting the aqueous fuel solution with a hydrogen generation catalyst comprising a support, a first metal selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, iron, boron, titanium, tin, cadmium, and iridium, the first metal being present in an amount of about 0.05 to about 20% by weight of the hydrogen generation catalyst; and a second metal selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, titanium, tin, cadmium, and iridium to produce hydrogen gas, the second metal being present in an amount of about 0.01 to about 25% by weight of the hydrogen generation catalyst.
[0010] The accompanying drawings together with the detailed description herein illustrate these and other embodiments and serve to explain the principles of the invention. Other features and advantages of the present invention will also become apparent from the following description of the invention which refers to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] Figure 1 illustrates the relation between fuel conversion and fuel space velocity for five samples of a ruthenium/cobalt catalyst according to the present invention; and
[0012] Figure 2 illustrates the relation between reactor temperature and time at two reactor pressures using a ruthenium/cobalt catalyst according to the present invention.
DESCRIPTION OF THE INVENTION
[0013] The present invention provides durable, highly active supported catalysts and systems for hydrogen generation from, for example, the hydrolysis of boron hydride compounds. The systems of the present invention can serve to enhance the hydrolysis reactions of boron hydride compounds to produce hydrogen gas. The hydrolysis reaction shown in equation (1) below is characteristic of borohydride compounds:
MBH4 + 2 H2O -» MBO2 + 4 H2 + heat Equation 1
[0014] The high purity hydrogen produced by the above hydrolysis reaction is suitable for a variety of end use applications, including, but not limited to, use in proton exchange membrane (PEM) fuel cells, as the gas stream is warm and humidified due to the exothermic nature of the reaction. In particular, PEM fuel cells require a humid hydrogen gas stream to prevent dehydration of the membrane and resultant loss of electrical efficiency.
[0015] The preferred supported catalysts of the present invention are highly active, durable and can be used repeatedly without significant loss of catalytic activity. The supported catalysts of the present invention can comprise various mixtures of metals selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, iron, boron, titanium, tin, cadmium, nickel, and iridium. Preferably, the supported catalysts of the present invention contain bimetallic metal mixtures comprising a first component and a second component. In an exemplary embodiment, the first component is a transition metal selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, iron, titanium, tin, cadmium, nickel, and iridium and is present in an amount of from about 0.05 to about 20% by weight, preferably from about 1 to about 10% by weight, and most preferably from about 1 to about 5% by weight. The second component in this embodiment is a metal selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, iron, boron, titanium, tin, cadmium, nickel, and iridium and is present in an amount of from about 0.01 to about 25% by weight, preferably from about 0.1 to about 2% by weight.
[0016] Mixtures of cobalt-ruthenium, cobalt-zinc, cobalt-manganese, and cobalt- molybdenum are particularly preferred. Most preferably, the cobalt is present in an amount
ranging from about 0.05 wt-% to about 20 wt-%, preferably from about 1 wt-% to about 10 wt- %, and most preferably from about 1 to 5 wt-%, and the second component is present in an amount ranging from about 0.01 wt-% to 25 wt-%, preferably from about 0.1 wt-% and 2 wt-%. All weight percentages herein are expressed as a percent of the total weight of the supported catalyst, i.e., the support and the metallic mixture, which may be deposited on or impregnated in the support.
[0017] Typically, the most reactive metals for initiating the hydrolysis of boron hydrides are the relatively expensive Group VIII metals, such as platinum, rhodium, and ruthenium, and thus catalysts comprising such metals can be a major contributor to the cost of a hydrogen generating system. As shown in Table 1 below, a higher loading of a less reactive metal (e.g., 3 wt-% cobalt) provides a similar hydrogen generation rate as compared to a lower loading of a more reactive metal (e.g., 0.5 wt-% ruthenium). Table 1 further demonstrates that appropriate combinations of less reactive metals, which are often a tenth or a hundredth of the price of platinum, rhodium, and ruthenium, can offer effective hydrogen generation rates. Accordingly, catalyst components and loadings can be selected to meet the operating demands and cost constraints of particular hydrogen generation systems, given the teachings herein.
[0018] The above weight percentages are calculated based on the total weight of the individual component with respect to the total weight of all catalyst components including the support material. The term "hydrogen generation catalyst" as used herein means the metal mixture together with the support substrate or carrier on which the mixture is deposited, impregnated, or otherwise carried. The catalytically active species may include the metals in
ineir reαuced elemental state or in high oxidation states as found in compounds such as metal oxides or metal borides. Analytical techniques such as inductively coupled plasma-mass spectrometry (ICP-MS) and energy dispersive X-ray analysis (EDX) are useful as they permit measurement of the elements without regard to oxidation state.
[0019] The support or carrier may be any substrate that allows deposition of metals on its surface, or impregnation of metals, and which will not readily break apart or erode from the rapid formation of hydrogen gas on the surface and in internal pores. The use of a support is preferred as it allows easy separation of the catalyst from the reaction media. In addition, when a support or carrier is employed, the rate of hydrogen generation can be controlled by regulating the contact with the catalyst, as disclosed in U.S. Patent No. 6,534,033 entitled "System for Hydrogen Generation," the entire disclosure of which is hereby incorporated herein.
[0020] The carrier is preferably chemically inert in caustic solutions at pressures up to 200 psig or more and temperatures up to 200 °C or more. Suitable carriers include (1) activated carbon, coke, or charcoal; (2) ceramics and refractory inorganic oxides such as titanium dioxide, zirconium oxide, cerium oxides, used individually or as mixtures thereof; (3) metal foams, sintered metals and metal fibers or composite materials of nickel and titanium; and (4) perovskites with the general formula ABO3, where A is a metallic atom with a valence of +2 and B is a metallic atom with a valence of +4.
[0021] The supported catalysts of the present invention may be formed by any suitable deposition method, including, for example, deposition on and/or impregnation of active elements, or mixtures of active elements, on a support. This deposition may be followed by a further surface treatment, including reduction with a reducing agent (hydrogen for example, although other reducing agents including sodium borohydride can be used), calcination, or oxidation with an oxidizing agent (such as, but not limited to, air and oxygen). Suitable methods are disclosed in, for example, U.S. Patent No. 6,534,033. In an exemplary embodiment, an impregnated support is prepared by mixing 50 g of 50:50 nickel powdeπnickel fiber composite pads, cut into 0.25" x 0.25" chips, with about 30 mL of an aqueous solution containing 6.31g CoCl2*6H2O and 1.431 g RuCl3»H2O, heating the mixture to about 70 0C and
evaporating the water until completely dry. The resulting supported catalyst is then heated in a tube furnace at about 240°C under a 20 mL/min hydrogen (4% in nitrogen) flow for about 3 hours at atmospheric pressure. The final catalyst has a nominal loading of about 1.2% Ru by weight and about 3% Co by weight (assuming final total catalyst weight equals the Ni-pad plus the Ru metal plus the Co metal). Various other methods for depositing or impregnating a transition metal mixture on a carrier may be employed as known in the art or determined by one skilled in the art given the teachings herein.
[0022] The supported catalysts of the invention also may be employed in the form of pellets, monoliths, chips, or other physical forms suitable for use in a fixed-bed, trickle-bed, or other reactor, such as the one described in co-pending U.S. Patent Application Serial No. 10/741,032, entitled "Catalytic Reactor for Hydrogen Generator Systems," the entire disclosure of which is hereby incorporated herein.
[0023] For highly efficient hydrogen generation from the hydrolysis of boron hydrides, it is preferred that the catalyst have a high surface area as a means to increase the number of potentially available and reactive catalytic sites. The term "high surface area" as used in this application refers to a BET surface area of about 5 to about 100 m2/g, preferably between about 7 to about 25 m2/g, and most preferably of about 10 m2/g of the supported catalyst. The supported catalyst is preferably porous with an average pore radius between 5 and 50 A, more preferably between 15 and 35 A, and most preferably between about 20 and 30 A. A total pore volume is preferably about 5 to about 100 mL/g, more preferably about 30 to about 70 mL/g.
[0024] The terms "boron hydride" or "boron hydrides" as used herein include boranes, polyhedral boranes, and anions of borohydrides or polyhedral boranes, such as those provided in co-pending U.S. Patent Application Serial No. 10/741,199, entitled "Fuel Blends for Hydrogen Generators," filed December 19, 2003, the entire disclosure of which is hereby incorporated herein. Suitable boron hydrides include, without intended limitation, the group of borohydride salts M(BH4)n, triborohydride salts M(B3Hs)n, decahydrodecaborate salts M2(B10H1O)n, tridecahydrodecaborate salts M(BioH13)n, dodecahydrododecaborate salts M2(B12H12)n, and octadecahydroicosaborate salts M2(B2oH18)n, among others, where M is a cation selected from the group consisting of alkali metal cations, alkaline earth metal cations,
aluminum cation, zinc cation, and ammonium cation, and n is equal to the charge of the cation. For the above-mentioned boron hydrides, M is preferably sodium, potassium, lithium, or calcium.
[0025] The following example further describes and demonstrates features of the present invention. The example is given solely for illustration purposes and is not to be construed as a limitation of the present invention.
Example
[0026] A catalyst comprising 0.6 wt-% ruthenium and 2 wt-% cobalt supported on a nickel metallic mat containing pressed nickel fibers and sintered nickel particles in a 40:60 ratio was used to evaluate durability and hydrogen generation activity.
[0027] Bulk and surface chemical composition were measured by ICP-MS and EDX to determine any catalyst degradation during use. Resulting data are summarized in Tables 2 and 3 below.
[0028] Fresh catalysts were subject to fuel treatments conducted under atmospheric pressure and using a 20 wt-% sodium borohydride and 3 wt-% NaOH fuel solution at about 70 °C, as a way to simulate multi-cycle usage of the catalyst. For each test, 200 mL of fuel solution was added to a reactor immersed in a water bath preheated to about 30 0C, and the reactor system thoroughly purged with hydrogen. Catalyst was then added to the reactor and stirred with a magnetic stirrer for 0.5 hours. Rate of hydrogen generation and reaction temperature were measured. Activity of the catalyst was evaluated based on initial rate of hydrogen generation at 30°C under the controlled conditions. Catalyst durability can be evaluated by comparison of activities obtained after the catalyst was subjected to different fuel treatment cycles.
[0029] The ICP-MS analysis revealed that bulk composition is close to nominal loading of 0.6 wt-% Ru and 2 wt-% Co. No significant changes in bulk composition were noted before and after fuel treatments. Initially, minor ruthenium metal leaching from the surface is observed, but the surface concentrations remain relatively stable after 2 and 35 fuel treatments.
[0030] The hydrogen generation activity of the catalyst was evaluated with a packed bed tubular reactor (0.842" internal diameter x 7" long) under various fuel flow conditions, hi operation, a fuel pump fed the fuel (20 wt-% sodium borohydride and 3 wt-% NaOH aqueous solution) from a storage tank to a reactor packed with a catalyst according to the present invention. The fuel flow rate was monitored by using a scale and a timer. Upon contacting the catalyst bed, the fuel solution generated hydrogen gas and sodium metaborate as shown in equation (1) above. The hydrogen and metaborate solution were separated in a gas-liquid separator, and the humidified hydrogen then cooled down to room temperature after passage through a heat exchanger and a drier. The steady-state hydrogen evolution rate was monitored with a mass flow meter. The operating conditions for the reactor tests are summarized in Table 4 below.
[0031] Figure 1 illustrates the relation between the fuel conversion and the fuel throughput (or space velocity) for five samples A, B, C, D and E of a ruthenium/cobalt catalyst according to the present invention. The reactor was started at ambient conditions at a constant liquid fuel space velocity and operated continuously at 55 or 80 psig for about 6 to 8 hours before reactor shutdown. Following shutdown, the reactor was flushed with water to remove residual fuel inside the reactor. Fuel conversions of at least 90% were achieved over a wide range of fuel flow rates. A high reactor throughput greater than 680 standard liters of hydrogen per minute (SLPM H2) per liter reactor volume was achieved with fuel conversions greater than 92%.
[0032] Figure 2 illustrates the relation between reactor temperature and time at different pressures for a catalytic reactor containing a ruthenium/cobalt catalyst according to the present invention. Fast reactor start up dynamics are preferred in the design of a hydrogen storage system. According to another embodiment of the present invention, reactor startup profiles were measured at a constant fuel flow rate of 20g/min at 55 and 80 psig pressure, as higher pressures lead to a faster reactor startup. As shown in Figure 2, ruthenium/cobalt supported catalysts according to the present invention demonstrate rapid startup profiles.
[0033] Although the invention has been described in detail in connection with the exemplary embodiments, it should be understood that the invention is not limited to the above disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions, or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Accordingly, the invention is not limited by the foregoing description, but is only limited by the scope of the appended claims and equivalents thereof.
Claims
1. A supported catalyst for the generation of hydrogen, comprising: a mixture of at least first and second metals, wherein each of the first and second metals is different and is independently selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, iron, titanium, tin, cadmium, nickel, boron, and iridium; and wherein the supported catalyst has a BET surface area of about 5 to about 100 m2/g.
2. The hydrogen generation catalyst of claim 1, wherein the first metal is present in an amount of about 0.05 to about 20% by weight of the supported catalyst.
3. The hydrogen generation catalyst of claim 1 , wherein the first metal is present in an amount of about 1 to about 10% by weight of the supported catalyst.
4. The hydrogen generation catalyst of claim 1, wherein the first metal is present in an amount of about 1 to about 5% by weight of the supported catalyst.
5. The hydrogen generation catalyst of claim 1 , wherein the second metal is present in an amount of about 0.01 to about 25% by weight of the supported catalyst.
6 . The hydrogen generation catalyst of claim 1, wherein the second metal is present in an amount of about 0.1 to about 2% by weight of the supported catalyst.
7. The hydrogen generation catalyst of claim 1 , wherein the first metal is cobalt.
8. The hydrogen generation catalyst of claim 7, wherein the second metal is selected from the group consisting of ruthenium, manganese, molybdenum, and zinc.
9. The hydrogen generation catalyst of claim 1, further comprising a support containing a material selected from the group consisting of activated carbon, coke, and charcoal.
10. The hydrogen generation catalyst of claim 1, further comprising a support containing at least one refractory inorganic oxide.
11. The hydrogen generation catalyst of claim 1 , further comprising a support that contains a metal in the form of a foam, sintered particle, fiber, monolith, or a mixture thereof.
12. The hydrogen generation catalyst of claim 1, further comprising a support in the form of a perovskite of the formula ABO3, wherein A is a metallic atom with a valence of +2 and B is a metallic atom with a valence of +4.
13. The hydrogen generation catalyst of claim 1, wherein the catalyst has a BET surface area of about 5 to about 25 m2/g.
14. The hydrogen generation catalyst of claim 1, wherein the catalyst has a BET surface area of about 10 m2/g .
15. The hydrogen generation catalyst of claim 1, wherein the supported catalyst has pores and an average pore radius of about 5 to about 50 Angstroms.
16. The hydrogen generation catalyst of claim 1 , wherein the supported catalyst has pores having a volume of about 5 to 100 mL/g.
17. A supported catalyst for hydrogen generation , comprising: a support substrate; and a metallic mixture on the support, wherein the mixture comprises a first metal in an amount of about 0.05 to about 20% by weight, and a second metal in an amount of about 0.01 to about 25% by weight of the supported catalyst.
18. The supported catalyst of claim 17, wherein the first metal is selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, iron, titanium, tin, cadmium, and indium.
19. The supported catalyst of claim 17, wherein the second metal is selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, iron, boron, titanium, tin, cadmium, and iridium.
20. The supported catalyst of claim 17, wherein the first metal is cobalt.
21. The supported catalyst of claim 17, wherein the first metal is present in an amount of about 1 to about 10% by weight.
22. The supported catalyst of claim 17, wherein the first metal is present in an amount of about 1 to about 5% by weight.
23. The supported catalyst of claim 17, wherein the second metal is ruthenium.
24. The supported catalyst of claim 17, wherein the second metal is present in an amount of about 0.05 to about 2% by weight.
25. The supported catalyst of claim 17, wherein the first metal is cobalt and the second metal is ruthenium.
26. The supported catalyst of claim 17, wherein the support comprises activated carbon, coke, or charcoal.
27. The supported catalyst of claim 17, wherein the support comprises a refractory inorganic oxide.
28. The supported catalyst of claim 17, wherein the support comprises a metal in the form of a foam, sintered particle or metal, fibers, monolith, or a mixture thereof.
29. The supported catalyst of claim 17, wherein the catalyst has a BET surface area of about 5 to about 50 m2/g.
30. The supported catalyst of claim 17, wherein the catalyst has pores having an average pore radius of about 5 to about 50 Angstroms.
31. A ruthenium/cobalt hydrogen generation catalyst, comprising: a support; and ruthenium in an amount of about 0.05 to about 2% by weight, and cobalt in an amount of about 1 to about 5% by weight.
32. The ruthenium/cobalt hydrogen generation catalyst of claim 31 , wherein the support comprises a nickel mat.
33. The ruthenium/cobalt hydrogen generation catalyst of claim 31 , wherein the support comprises granular carbon.
34. The ruthenium/cobalt hydrogen generation catalyst of claim 31 , wherein the catalyst has a BET surface area of about 5 to about 50 mVg.
35. The ruthenium/cobalt hydrogen generation catalyst of claim 34, wherein the
BET surface area is about 7 to about 15 m2/g.
36. The ruthenium/cobalt hydrogen generation catalyst of claim 34, wherein the
BET surface area is about 10 m2/g.
37. The ruthenium/cobalt hydrogen generation catalyst of claim 31, wherein the catalyst has pores having an average pore radius of about 5 to about 50 Angstroms.
38. A method of generating hydrogen gas, comprising: providing an aqueous fuel solution comprising a material selected from the group consisting of boranes, polyhedral boranes, borohydride salts, and polyhedral borane salts; and contacting the aqueous fuel solution with a hydrogen generation catalyst comprising a support, a first metal selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, titanium, tin, cadmium, and iridium, the first metal being present in an amount of about 0.05 to about 20% by weight of the hydrogen generation catalyst; and a second metal selected from the group consisting of cobalt, ruthenium, zinc, molybdenum, manganese, titanium, tin, cadmium, boron, and iridium to produce hydrogen gas, the second metal being present in an amount of about 0.01 to about 25% by weight of the hydrogen generation catalyst.
39. The method of claim 38, wherein the first metal is cobalt and the second metal is ruthenium.
40. The method of claim 38, wherein the first metal is present in an amount of about 1 to about 10% by weight.
41. The method of claim 38, wherein the first metal is present in an amount of about 1 to about 5% by weight.
42. The method of claim 38, wherein the second metal is present in an amount of about 0.1 to about 2% by weight.
43. The method of claim 38, wherein conversion of the aqueous fuel solution with the hydrogen generation catalyst is conducted with a conversion rate of at least 80%.
44. The method of claim 38, wherein the second metal is present in an amount of about 0.1 to about 2% by weight of the supported catalyst.
45. The method of claim 38, wherein the first metal is cobalt.
46. The method of claim 45, wherein the second metal is selected from the group consisting of ruthenium, manganese, molybdenum, and zinc.
47. The method of claim 38, wherein the support contains a material selected from the group consisting of activated carbon, coke, and charcoal.
48. The method of claim 38, wherein the support contains at least one refractory inorganic oxide.
49. The method of claim 38, wherein the support contains a metal in the form of a foam, sintered particle, fiber, monolith, or a mixture thereof.
50. The method of claim 38, wherein the support is in the form of a perovskite of the formula ABO3, wherein A is a metallic atom with a valence of +2 and B is a metallic atom with a valence of +4.
51. The method of claim 38, wherein the catalyst has a BET surface area of about 5 to about 25 m2/g.
52. The method of claim 38, wherein the catalyst has a BET surface area of about 10 m2/g .
53. The method of claim 38, wherein the supported catalyst has pores and an average pore radius of about 5 to about 50 Angstroms.
54. The method of claim 38, wherein the supported catalyst has pores having a volume of about 5 to 100 mL/g.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/167,608 US20060293173A1 (en) | 2005-06-28 | 2005-06-28 | Hydrogen generation catalysts and systems for hydrogen generation |
US11/167,607 US20060292067A1 (en) | 2005-06-28 | 2005-06-28 | Hydrogen generation catalysts and methods for hydrogen generation |
PCT/US2006/024417 WO2007002357A2 (en) | 2005-06-28 | 2006-06-21 | Hydrogen generation catalysys and system for hydrogen generation |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1899264A2 true EP1899264A2 (en) | 2008-03-19 |
Family
ID=37595847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06773824A Withdrawn EP1899264A2 (en) | 2005-06-28 | 2006-06-21 | Hydrogen generation catalysys and system for hydrogen generation |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1899264A2 (en) |
JP (1) | JP2008546533A (en) |
KR (1) | KR20080034443A (en) |
WO (1) | WO2007002357A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10637071B2 (en) | 2015-12-27 | 2020-04-28 | Industrial Technology Research Institute | Electrochemical energy conversion device and method of electrochemical energy conversion |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7951349B2 (en) | 2006-05-08 | 2011-05-31 | The California Institute Of Technology | Method and system for storing and generating hydrogen |
FR2937630B1 (en) * | 2008-10-24 | 2011-05-06 | Commissariat Energie Atomique | CATALYTIC SYSTEM FOR THE GENERATION OF HYDROGEN BY THE HYDROLYSIS REACTION OF METAL BOROHYDRIDES |
KR101039071B1 (en) * | 2009-06-30 | 2011-06-08 | 순천대학교 산학협력단 | Manufacturing process and Device for hydrogen production using Co-P-B/Cu catalyst by hydrolysis of borohydride material |
CN105148918B (en) * | 2015-07-05 | 2020-05-05 | 桂林电子科技大学 | Preparation method and application of Co-B/Ni-B amorphous nanosphere composite alloy catalyst |
KR102188016B1 (en) * | 2019-07-22 | 2020-12-07 | 울산과학기술원 | Complex catalyst having double perovskite structure, method of manufacturing the same, water splitting cell having the same, and apparatus for generating hydrogen gas having the same |
CN116600890A (en) * | 2020-12-11 | 2023-08-15 | 北京光合氢能科技有限公司 | Method for generating hydrogen molecules by energy radiation |
CN116099547A (en) * | 2023-02-17 | 2023-05-12 | 福大紫金氢能科技股份有限公司 | Preparation method and application of integral ruthenium-based ammonia decomposition catalyst |
CN116251603B (en) * | 2023-02-24 | 2024-07-26 | 广西师范大学 | Porous ceramic with fibrous sepiolite-cinder supported by cobalt ruthenium oxide compound, and preparation method and application thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998046525A1 (en) * | 1997-04-11 | 1998-10-22 | Chiyoda Corporation | Process for preparing synthesis gas by autothermal reforming |
US6616909B1 (en) * | 1998-07-27 | 2003-09-09 | Battelle Memorial Institute | Method and apparatus for obtaining enhanced production rate of thermal chemical reactions |
US7132093B2 (en) * | 2002-06-05 | 2006-11-07 | UNIVERSITé LAVAL | Mesoporous mixed oxide materials as a new class of SO2 resistant catalysts for hydrocarbon oxidation |
-
2006
- 2006-06-21 EP EP06773824A patent/EP1899264A2/en not_active Withdrawn
- 2006-06-21 WO PCT/US2006/024417 patent/WO2007002357A2/en active Application Filing
- 2006-06-21 JP JP2008519420A patent/JP2008546533A/en active Pending
- 2006-06-21 KR KR1020087002177A patent/KR20080034443A/en not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO2007002357A2 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10637071B2 (en) | 2015-12-27 | 2020-04-28 | Industrial Technology Research Institute | Electrochemical energy conversion device and method of electrochemical energy conversion |
Also Published As
Publication number | Publication date |
---|---|
JP2008546533A (en) | 2008-12-25 |
WO2007002357A2 (en) | 2007-01-04 |
WO2007002357A3 (en) | 2007-03-01 |
KR20080034443A (en) | 2008-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060293173A1 (en) | Hydrogen generation catalysts and systems for hydrogen generation | |
US20060292067A1 (en) | Hydrogen generation catalysts and methods for hydrogen generation | |
US20070172417A1 (en) | Hydrogen generation catalysts and systems for hydrogen generation | |
WO2007002357A2 (en) | Hydrogen generation catalysys and system for hydrogen generation | |
Bai et al. | Carbon-supported platinum catalysts for on-site hydrogen generation from NaBH4 solution | |
US11697108B2 (en) | Systems and methods for processing ammonia | |
Krishnan et al. | Catalysts for the hydrolysis of aqueous borohydride solutions to produce hydrogen for PEM fuel cells | |
KR101320388B1 (en) | Hydrocarbon reforming catalyst, method for manufacturing the same and a fuel treatment device comprising the same | |
JP4849519B2 (en) | Hydrogen generation method | |
WO2022261488A1 (en) | Systems and methods for processing ammonia | |
US11795055B1 (en) | Systems and methods for processing ammonia | |
KR100782383B1 (en) | Co-B catalyst for hydrogen generating reaction using alkaline borohydrides solution and method to prepare the same | |
Swartz et al. | Fuel processing catalysts based on nanoscale ceria | |
CN101147863A (en) | Integral ammonia decomposition hydrogen producing catalyst | |
CN113019394B (en) | Ammonia decomposition hydrogen production Ni-Pt/CeO2Catalyst, preparation method and application thereof | |
CN101143319A (en) | A catalyst and its preparation and application in preparing hydrogen by borohydride hydrolysis | |
Sun et al. | Hydrogen generation from NaBH4 for portable proton exchange membrane fuel cell | |
KR100785043B1 (en) | Co-b catalyst/structured support for hydrogen generating using alkaline borohydrides solution and method for preparing the same | |
KR100976789B1 (en) | Catalyst for water gas shift reaction, method for production thereof, and method of water gas shift by using same | |
US20060111457A1 (en) | Process for the production of a hydrogen-rich reformate gas by methanol autothermal reforming reaction | |
KR20110081377A (en) | A catalyst for hydrolysis reaction of alkaline borohydride and the preparation method thereof | |
Wu et al. | Desirable performance and mechanism of RuPd nanoalloys in catalyzing hydrolytic dehydrogenation of NH3BH3 | |
CN102438752B (en) | Method for producing catalyst for use in selective oxidation reaction of carbon monoxide | |
KR100785052B1 (en) | Non precious metal-b catalyst/structured support for hydrogen generating using capacitive deionization and chemical reduction and method for preparing the same | |
Jain et al. | 5 Ammonia: a promising candidate for hydrogen economy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080124 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20080701 |