KR100785043B1 - Co-b catalyst/structured support for hydrogen generating using alkaline borohydrides solution and method for preparing the same - Google Patents

Co-b catalyst/structured support for hydrogen generating using alkaline borohydrides solution and method for preparing the same Download PDF

Info

Publication number
KR100785043B1
KR100785043B1 KR1020060058559A KR20060058559A KR100785043B1 KR 100785043 B1 KR100785043 B1 KR 100785043B1 KR 1020060058559 A KR1020060058559 A KR 1020060058559A KR 20060058559 A KR20060058559 A KR 20060058559A KR 100785043 B1 KR100785043 B1 KR 100785043B1
Authority
KR
South Korea
Prior art keywords
catalyst
support
solution
boron hydride
hydrogen
Prior art date
Application number
KR1020060058559A
Other languages
Korean (ko)
Inventor
이재영
남석우
임태훈
윤성필
한종희
하흥용
조은애
김형준
함형철
이상엽
김영천
정창렬
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020060058559A priority Critical patent/KR100785043B1/en
Application granted granted Critical
Publication of KR100785043B1 publication Critical patent/KR100785043B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/305Boron

Abstract

A cobalt-boron catalyst/carrier for generating hydrogen and a method for manufacturing the same are provided to improve the activity of the catalyst, reduce the loss of catalyst in a continuous circulation type reaction, and substitute for noble metal catalysts, by manufacturing the cobalt-boron catalyst/carrier using an alkaline borohydride solution. A cobalt-boron catalyst/carrier for generating hydrogen is manufactured by using an alkaline borohydride solution. One or two types of cobalt-boron catalysts are supported on a carrier, wherein the one or two types of cobalt-boron catalysts are cobalt-boron oxides or cobalt-boron compounds except cobalt-carbon oxides. The alkaline borohydride solution is prepared by mixing one hydroxide selected from NaOH and KOH into one borohydride selected from NaBH4, KBH4, and LiBH4.

Description

알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 코발트-붕소 촉매/담지체 및 그 제조 방법{Co-B catalyst/structured support for hydrogen generating using alkaline borohydrides solution and method for preparing the same}Co-B catalyst / structured support for hydrogen generating using alkaline borohydrides solution and method for preparing the same}

도 1은 본 발명의 실시예에 따른 다공성 담지체의 사진(a) 및 촉매/담지체의 사진(b)이다.1 is a photograph (a) of a porous carrier and a photograph (b) of a catalyst / carrier according to an embodiment of the present invention.

도 2는 본 실시예에서 제조된 촉매의 ICP 결과에 의한 몰비를 나타낸 것이다.Figure 2 shows the molar ratio by the ICP results of the catalyst prepared in this example.

도 3은 본 실험예의 수소 발생 실험 장치를 나타내는 개략도이다. 3 is a schematic view showing a hydrogen generation experimental apparatus of the present experimental example.

도 4는 전구체 농도(precursor)의 변화에 따른 수소 방출량을 나타내는 그래프이다. 4 is a graph showing the amount of hydrogen released according to the change of precursor concentration (precursor).

도 5는 본 실시예의 Co-B 촉매/담지체를 열처리하는 경우 열처리 온도에 따른 각각의 XRD 패턴을 나타내는 것이다.5 shows each XRD pattern according to the heat treatment temperature when the Co-B catalyst / support of the present embodiment is heat treated.

도 6은 본 실시예에서 제조된 촉매/담지체의 열처리 온도에 따른 각각의 SEM 이미지를 나타내는 것이다. FIG. 6 shows respective SEM images according to the heat treatment temperatures of the catalyst / carrier prepared in this example.

도 7은 본 실험예에 있어서, Co-B/Ni을 사용한 경우의 25 wt% NaBH4 + 3 wt% NaOH 용액으로부터의 수소 발생시 소성온도의 영향을 보여주는 그래프이다.FIG. 7 is a graph showing the effect of calcination temperature upon hydrogen generation from a 25 wt% NaBH 4 + 3 wt% NaOH solution in the case of Co-B / Ni.

도 8은 본 발명의 실험예에 있어서 소성온도별로 제조된 Co-B 촉매의 시간에 따른 물리적인 촉매 유실율을 보여주는 그래프이다. 8 is a graph showing the physical catalyst loss rate with time of the Co-B catalyst prepared by firing temperature in the experimental example of the present invention.

*주요 도면 부호의 간단한 설명** Short description of the major reference marks *

10 : 수소 방출 반응기 11 : 교반기10: hydrogen evolution reactor 11: agitator

12 : 써모커플 13 : 온도 조절 장치12: thermocouple 13: temperature control device

14 : 질량 유랑계 15 : 워터 자켓14 mass wander meter 15 water jacket

20 : 수소 발생 흐름 31 : 냉각수 유입20: hydrogen generation flow 31: cooling water inflow

32 : 냉각수 유출 40 : NaBH4 용액 32: cooling water outflow 40: NaBH 4 solution

50 : Co-B/Ni 50: Co-B / Ni

1. H.I. Schlesinger, H.C. Brown, A.E. Finholt, J.R. Gilbreath, H.R. Hockstra, and E.K. Hyde : "Sodium Borohydride, Its Hydrolysis and Its Use as a Reducing Agent and in the Generation of Hydrogen", J. Am. Chem. Soc., Vol. 75, 1953, p. 215;1. H.I. Schlesinger, H.C. Brown, A.E. Finholt, J.R. Gilbreath, H. R. Hockstra, and E.K. Hyde: "Sodium Borohydride, Its Hydrolysis and Its Use as a Reducing Agent and in the Generation of Hydrogen", J. Am. Chem. Soc., Vol. 75, 1953, p. 215;

2. S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, M.T. Kelly, P.J. Petillo, and M. Binder : "An Ultrasafe Hydrogen Generator : Aqueous, Alkaline Borohydride Solution and Ru Catlayst", J. power sources, Vol. 85, 2000, p. 186;2. S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, M.T. Kelly, P.J. Petillo, and M. Binder: "An Ultrasafe Hydrogen Generator: Aqueous, Alkaline Borohydride Solution and Ru Catlayst", J. power sources, Vol. 85, 2000, p. 186;

3. S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, N.C. Spencer, M.T. Kelly, P.J. Petillo, and M. Binder : "A Safe, Portable, Hydrogen Gas Generator Using Aqueous Borohydride Solution and Ru Catalyst", Int. J. Hydrog. Energy, 25(2000) 969;3. S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, N.C. Spencer, M.T. Kelly, P.J. Petillo, and M. Binder: "A Safe, Portable, Hydrogen Gas Generator Using Aqueous Borohydride Solution and Ru Catalyst", Int. J. Hydrog. Energy, 25 (2000) 969;

4. J.-H. Kim, H. Lee, S.-C. Han, H.-S. Kim, M.-S. Song, J.-Y. Lee, : "Production of hydorgen from sodium borohydride in alkaline solution: development of catalyst with high performance". Int. J. Hydrog. Energy, vol. 29, 2004, p. 263;4. J.-H. Kim, H. Lee, S.-C. Han, H.-S. Kim, M.-S. Song, J.-Y. Lee,: "Production of hydorgen from sodium borohydride in alkaline solution: development of catalyst with high performance". Int. J. Hydrog. Energy, vol. 29, 2004, p. 263;

5. I.-H. Oh, S. K. Park, E. A. Cho, H. Y. Ha, and S.-A. Hong, : "Characteritics of the Monopolar Type Small Polymer Electrolyte Membrane Fuel Cell for Portable Sources", 1st International Conference on Polymer Batteries and Fuel Cells, 2003;5. I.-H. Oh, S. K. Park, E. A. Cho, H. Y. Ha, and S.-A. Hong,: "Characteritics of the Monopolar Type Small Polymer Electrolyte Membrane Fuel Cell for Portable Sources", 1st International Conference on Polymer Batteries and Fuel Cells, 2003;

6. D. Hua, Y. Hanxi, A. Xingping, C. Chuansin : "Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst". Int. J. Hydrog. Energy, vol. 28, 2003, p. 1095.6. D. Hua, Y. Hanxi, A. Xingping, C. Chuansin: "Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst". Int. J. Hydrog. Energy, vol. 28, 2003, p. 1095.

본 발명은 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 코발트-붕소(이하, "Co-B"라고 한다) 촉매/담지체 및 그 제조 방법에 관한 것이다.The present invention relates to a cobalt-boron (hereinafter referred to as "Co-B") catalyst / support for hydrogen release reaction using an alkali boron hydride solution and a method for producing the same.

본 명세서에 있어서, "Co-B 촉매"는 Co와 B가 결합한 산화물 또는 Co와 B가 결합한 화합물(Co와 B가 결합한 산화물을 제외한다) 중 어느 하나 또는 둘인 촉매를 의미한다.In the present specification, "Co-B catalyst" means a catalyst which is either one or two of an oxide to which Co and B are bonded or a compound to which Co and B are bonded (except for an oxide to which Co and B are bonded).

본 명세서에 있어서, "촉매/담지체"는 촉매가 담지체에 담지된 것을 의미한다.In the present specification, "catalyst / support" means that the catalyst is supported on the support.

고분자 전해질막 연료전지(Polymer Electrolyte Membrane Fuel Cell; PEMFC)는 높은 효율과 전력밀도를 가지는데, 이를 휴대용 전원으로 활용하기 위해서는 연료인 수소를 저장하고 휴대해야 한다. Polymer Electrolyte Membrane Fuel Cell (PEMFC) has high efficiency and power density. To use this as a portable power source, hydrogen, a fuel, must be stored and carried.

수소 저장 방법으로서는 고압 수소 가스 저장 방법, 액체 수소 가스 저장 방법, 금속 수소화물 저장 방법, 화석 연료 개질 방법 등이 이용되고 있다. As the hydrogen storage method, a high pressure hydrogen gas storage method, a liquid hydrogen gas storage method, a metal hydride storage method, a fossil fuel reforming method and the like are used.

그러나, 기존의 방법들은 수소 저장 부피와 무게, 안전성이나 응답특성 등의 측면에서 휴대용 연료 전지에 적용하기 어렵다. However, existing methods are difficult to apply to portable fuel cells in terms of hydrogen storage volume and weight, safety and response characteristics.

따라서, 휴대 전원용 PEMFC의 상용화를 위하여는 반드시 휴대에 적합한 수소 저장 기술의 개발이 선행되어야 한다. Therefore, in order to commercialize the PEMFC for portable power supply, the development of a hydrogen storage technology suitable for portable must be preceded.

기존의 수소 저장 방법들을 대체할 수 있는 방법 중 하나는 NaBH4 수용액을 이용하는 방법이다. NaBH4 수용액을 이용한 수소 발생 반응은 다음 [반응식1]과 같다<종래 기술문헌 1 참조>.One alternative to the existing hydrogen storage methods is the use of aqueous NaBH 4 solution. Hydrogen generation reaction using NaBH 4 aqueous solution is as shown in the following [Scheme 1].

NaBH4 (aq) + 2H2O → 4H2 + NaBO2 (aq) + 열(217kJ)NaBH 4 (aq) + 2H 2 O → 4H 2 + NaBO 2 (aq) + heat (217 kJ)

상기 반응은 산성이나 중성 용액에서는 촉매 없이도 진행되지만, 강염기성 조건(pH > 13)에서는 촉매와 접촉했을 때에만 진행되므로 염기 조건 및 촉매의 투 입에 의하여 수소 발생 속도를 조절할 수 있다<종래 기술문헌 2 참조>.In the acidic or neutral solution, the reaction proceeds without a catalyst, but under strong basic conditions (pH> 13), the reaction proceeds only when contacted with the catalyst, and thus the rate of hydrogen evolution can be controlled by the addition of a base condition and a catalyst. See 2>.

이와 같이 NaBH4를 이용하여 수소를 저장하는 경우 에너지 저장 밀도가 높고, 반응물과 생성물이 비가연성이라는 장점이 있다. 또한, 대기 중에서 안정하며, 환경에 무해하고, 반응물의 재순환이 가능하다는 장점도 있다. 나아가, 상온에서도 수소 발생이 가능하다<종래 기술문헌 3 참조>. 그뿐만 아니라, 수용액으로부터 수소가 발생하므로 수증기를 포함하여 방출하게 되고 따라서 별도의 가습 없이도 연료전지 구동에 필요한 수분 공급이 가능하다는 장점도 있다. As such, when hydrogen is stored using NaBH 4 , the energy storage density is high, and the reactants and the product are nonflammable. It also has the advantage of being stable in the atmosphere, harmless to the environment, and allowing the recycling of the reactants. Further, hydrogen can be generated even at room temperature (see the prior art document 3). In addition, since hydrogen is generated from the aqueous solution, water is released, including water vapor, and thus, it is possible to supply water required for driving the fuel cell without additional humidification.

이와 같은 여러 가지 장점으로 인하여, NaBH4를 이용한 수소 저장 방법을 연료전지에 적용하기 위한 많은 연구가 진행되어 왔다<종래 기술문헌 2~5 참조>. Due to these various advantages, many studies have been conducted to apply a hydrogen storage method using NaBH 4 to a fuel cell (see the prior art documents 2 to 5).

그런데, 앞서 설명한 바와 같이, NaBH4를 이용하여 저장한 수소를 방출시키기 위해서는 촉매를 NaBH4 수용액에 접촉시켜야 하는데, 이를 위하여 기존에는 대부분 Pt 또는 Ru 계열의 귀금속 촉매를 사용하였다<종래 기술문헌 2~3 참조>. However, as described above, in order to release hydrogen stored using NaBH 4 , the catalyst must be contacted with an aqueous NaBH 4 solution. For this purpose, a noble metal catalyst of the Pt or Ru series was used in the past. See 3>.

그러나, 상기 귀금속 촉매들은 가격이 비싸므로 PEMFC 전체의 경제성을 크게 떨어뜨린다는 문제점이 있다.However, since the precious metal catalysts are expensive, there is a problem that significantly lowers the economics of the entire PEMFC.

이에 따라 귀금속 촉매가 아닌 비귀금속 촉매를 사용하기 위한 연구가 진행되어 왔지만, Ni 및 Co와 같은 비금속 촉매는 활성을 나타내더라도 Pt 또는 Ru와 비교하면 수소 방출 속도가 매우 낮은 것으로 보고되어 있다<종래 기술문헌 4 및 5참조>.As a result, studies have been conducted to use non-noble metal catalysts rather than noble metal catalysts, but non-metal catalysts such as Ni and Co have been reported to have very low hydrogen release rates compared to Pt or Ru even though they exhibit activity. See references 4 and 5>.

따라서, Pt 또는 Ru을 대체할 비귀금속 촉매로서 수소 방출 속도를 높일 수 있는 비금속 촉매에 대한 개발의 필요성은 크다.Therefore, there is a great need for the development of a non-metal catalyst capable of increasing the rate of hydrogen release as a non-noble metal catalyst to replace Pt or Ru.

한편, 기존에는 수소 방출 반응 용액으로서 NaBH4 용액을 사용하여 왔지만 NaBH4 용액외에 다른 붕소수소화물을 수소 저장 매체로서 사용 가능한지와 함께 이때 사용 가능한 촉매에 대한 연구도 필요하다.On the other hand, there is also an existing need for a study wherein the available catalyst with possible use of different boron hydride NaBH 4 solution in addition came with a solution of NaBH 4 as a hydrogen evolution reaction solution as the hydrogen storage media.

나아가, 기존의 비귀금속 촉매는 분말 형태로서 배치(batch) 형태의 수소방출 반응기를 사용할 경우 별다른 문제점을 나타내지 않지만, 연속식 반응시스템, 특히 반응물의 순환 공급 공정 시에는 촉매의 유실이 불가피하다는 단점이 있고, 나아가 기존의 비귀금속 촉매는 반응성과 내구성이 낮다는 문제점이 있으므로 이에 대한 해결책도 필요하다. In addition, the conventional non-noble metal catalyst does not exhibit any problems when using a batch hydrogen discharge reactor as a powder form, but the disadvantage that the loss of the catalyst is inevitable in the continuous reaction system, in particular in the circulating supply process of the reactants In addition, the conventional non-noble metal catalyst has a problem of low reactivity and durability, so there is also a need for a solution.

따라서, 본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은, 고가의 귀금속 촉매를 대체할 수 있는 비귀금속 촉매로서, 수소 방출 속도가 높고, NaBH4뿐만 아니라 다른 붕소수소화물의 수소 방출 반응에 사용될 수 있으며, 연속식 반응 시스템에서도 촉매의 유실율이 낮고, 높은 반응성과 장기 내구성을 가지는, 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체 및 그 제조 방법을 제공하는 것이다. Accordingly, the present invention is to solve the problems of the prior art as described above, the object of the present invention is a non-noble metal catalyst that can replace the expensive noble metal catalyst, high hydrogen release rate, NaBH 4 as well as other boron Co-B catalyst / support for hydrogen release reaction using alkali boron hydride solution, which can be used for hydrogen release reaction of hydride, and has low catalyst loss rate, high reactivity and long-term durability in continuous reaction system, and its It is to provide a manufacturing method.

상기와 같은 본 발명의 목적은, 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 촉매로서, Co와 B가 결합한 산화물 또는 Co와 B가 결합한 화합물(Co와 B가 결합한 산화물을 제외한다) 중 어느 하나 또는 둘인 Co-B 촉매가 담지체 내에 담지된 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체에 의하여 달성된다.An object of the present invention as described above is a catalyst for hydrogen release reaction using an alkali boron hydride solution, and any one of an oxide to which Co and B are bonded or a compound to which Co and B are bonded (excluding oxides to which Co and B are bonded). Or a Co-B catalyst / carrier for hydrogen release reaction using an alkali boron hydride solution, characterized in that two Co-B catalysts are supported in the carrier.

상기 알칼리 붕소수소화물은 NaBH4, KBH4 또는 LiBH4 중 어느 하나의 붕소수소화물에 NaOH 또는 KOH 중 하나의 수산화물을 혼합한 것이 바람직하다.The alkali boron hydride is NaBH 4 , KBH 4 Or LiBH 4 It is preferable to mix the hydroxide of either NaOH or KOH with any one of the boron hydrides.

상기 촉매는 Co와 B가 결합한 산화물인 것이 바람직하고, 상기 산화물은 Co 및 B의 조성이 Co1.5-3.0B1 인 것이 바람직하다.Preferably, the catalyst is an oxide in which Co and B are bonded, and the oxide preferably has a composition of Co and B of Co 1.5-3.0 B 1 .

상기 담지체는 금속 폼(foam), 탄소 펠트(carbon felt), 탄소 직물(carbon woven) 또는 탄소 나노튜브(carbon nanotube) 중 어느 하나인 것이 바람직하다.The support is preferably any one of a metal foam, carbon felt, carbon woven, or carbon nanotubes.

상기와 같은 본 발명의 목적은, 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체의 제조 방법으로서, 전구체를 이용하여 담지체 내에 Co2+를 담지시키고, 환원제로 알칼리 붕소수소화물 용액을 이용하여 상기 Co2+를 환원하는 단계(S1); 및 환원 후, 담지체에 담지된 Co와 B가 결합한 산화물 또는 Co와 B가 결합한 화합물(Co와 B가 결합한 산화물을 제외한다) 중 어느 하나 또는 둘인 Co-B 촉매를 건조하거나, 건조 및 소성하는 단계(S2);를 포함하는 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체의 제조 방법에 의하여 달성된다.An object of the present invention as described above is a method for producing a Co-B catalyst / carrier for hydrogen release reaction using an alkali boron hydride solution, in which a support is used to support Co 2+ in a support, and an alkali boron as a reducing agent. Hydride Reducing the Co 2+ using a solution (S1); And drying, drying, and calcining the Co-B catalyst, which is one or two of the oxides of Co and B bonded or the compounds of Co and B bonded (except the oxides of Co and B bonded) supported on the carrier after reduction. It is achieved by the method for producing a Co-B catalyst / support for hydrogen release reaction using an alkaline boron hydride solution, characterized in that (S2).

상기 S1 단계는 전구체로서 CoCl2을 사용하여 담지체에 Co2 +를 담지시키고, 알칼리 붕소수소화물 용액에 상기 담지체를 일정속도로 디핑(dipping)하는 것이 바람직하다.The step S1 is preferably using CoCl 2 as the precursor and the carrier carrying Co 2 +, to dipping (dipping) the carrier in the alkali boron hydride solution at a constant rate.

상기 S1 단계는 상기 전구체의 농도를 30wt%로 하는 것이 바람직하다.In the step S1, the concentration of the precursor is preferably 30wt%.

상기 S1 단계는 상기 환원제로 사용되는 알칼리 붕소수소화물 용액으로서 NaBH4, KBH4 또는 LiBH4 중 어느 하나의 붕소수소화물에 NaOH 또는 KOH 중 어느 하나의 수산화물을 혼합한 알칼리 붕소수소화물 용액을 사용하는 것이 바람직하다.The step S1 is an alkaline boron hydride solution used as the reducing agent NaBH 4 , KBH 4 Or LiBH 4 It is preferable to use the alkali boron hydride solution which mixed the hydroxide of any one of NaOH or KOH with the boron hydride in any one of these.

상기 S1 단계는 질소 또는 수소 분위기 하에서 상기 건조하거나, 건조 및 소성하는 것이 바람직하다.The step S1 is preferably dried, dried and calcined in a nitrogen or hydrogen atmosphere.

상기 S1 단계는 상기 소성 시 소성온도를 200~300℃로 하는 것이 바람직하고, 200~250℃로 하는 것이 더욱 바람직하다.In the step S1, the firing temperature during the firing is preferably 200 to 300 ° C, more preferably 200 to 250 ° C.

상기 담지체 내의 Co-B 촉매의 고밀화를 위하여 상기 S1 단계를 반복하는 것이 바람직하다.It is preferable to repeat the step S1 for densification of the Co-B catalyst in the support.

상기 S1 단계는 상기 담지체로서 금속 폼(foam), 탄소 펠트(carbon felt), 탄소 직물(carbon woven) 또는 탄소 나노튜브(carbon nanotube) 중 어느 하나를 사용하는 것이 바람직하다.The step S1 is preferably used any one of the metal foam (foam), carbon felt (carbon felt), carbon woven (carbon woven) or carbon nanotube (carbon nanotube) as the support.

이하, 본 발명의 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명이 하기 특정 실시예에 한정되는 것은 아니며, 단지 하기 실시예들은 본 발명의 개시가 완전하도록 함과 동시에 당업계에서 통상의 지식을 가진 자에게 발명의 실시를 용이하게 하고자 하는 것이며, 첨부된 특허청구범위내에서 다양한 형태의 변형이 가능하다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following specific examples, only the following examples are intended to facilitate the implementation of the invention to those skilled in the art while at the same time making the disclosure of the present invention complete, Various forms of modifications are possible within the scope of the appended claims.

<실시예 : Co-B 촉매/담지체 제조><Example: Co-B catalyst / support preparation>

도 1은 본 발명의 실시예에 따른 다공성 담지체의 사진(a) 및 촉매/담지체의 사진(b)이다.1 is a photograph (a) of a porous carrier and a photograph (b) of a catalyst / carrier according to an embodiment of the present invention.

우선, 상기 촉매/담지체 제조를 위하여 전구체인 CoCl2 (Aldrich Inc.) 수용액을 제조하였다. 담지체로는 예컨대 금속 폼(foam), 탄소 펠트(carbon felt), 탄소 직물(carbon woven), 탄소 나노튜브(carbon nanotube) 등의 다공성 담지체를 사용할 수 있으며, 이들은 내구성 및 경제성이 우수하다. 본 실시예예서는 특히 Ni 폼을 담지체로서 사용하였다.First, an aqueous solution of CoCl 2 (Aldrich Inc.), a precursor, was prepared to prepare the catalyst / carrier. As the carrier, for example, porous carriers such as metal foam, carbon felt, carbon woven, carbon nanotube, and the like may be used, and they are excellent in durability and economy. In the present Example, especially Ni foam was used as a support body.

환원제로서 NaBH4 용액을 사용하되, 상기 NaBH4는 물에 용해시켰을 때 촉매 없이도 수소를 발생시키므로, 이를 억제하기 위해 NaOH를 첨가하여 용액을 알칼리 상태로 유지하였다. 상기 환원 용액을 제조하기 위하여, 먼저 NaOH를 증류수에 녹여 수용액의 pH를 14 이상으로 유지하면서, NaBH4를 녹인 후, 4 시간 이상 교반하였다. A NaBH 4 solution was used as the reducing agent, but NaBH 4 generated hydrogen even without a catalyst when dissolved in water, so that the solution was kept in an alkaline state by adding NaOH to suppress it. In order to prepare the reducing solution, NaOH was first dissolved in distilled water to keep the pH of the aqueous solution at 14 or higher, NaBH 4 was dissolved, and then stirred for 4 hours or more.

상기 전구체 CoCl2의 농도를 변화시키면서 담지체인 Ni 폼에 Co2 + 이온을 우선 담지시켰다. 상기 NaBH4 수용액에 상기 담지체를 일정속도로 디핑(dipping)하여 Co-B를 담지체 내에 담지되도록 하였다. The precursor by varying the concentration of CoCl 2 was loaded first supporting Co 2 + ions in Ni chain form. NaBH 4 The carrier was dipped at a constant speed in an aqueous solution so that Co-B was supported in the carrier.

한편, 담지체 내의 Co-B의 농도를 높게 하는 고밀화를 수행하기 위하여 상기 공정을 5 ~ 20회 반복하였다. On the other hand, the process was repeated 5 to 20 times to perform the densification to increase the concentration of Co-B in the carrier.

이어서 반응이 완전히 종결된 후 증류수로 세척하였다. Subsequently the reaction was terminated completely and washed with distilled water.

제조된 촉매는 60℃ 질소 분위기(또는 수소 분위기)에서 건조한 후, 200, 250, 300, 400, 500℃ 질소 분위기(또는 수소 분위기)에서 2~4시간 동안 소성하였다. 한편, 아래의 도 5 및 6에서 상기 각 온도는 순차로 (a), (b), (c), (d), (e)로 표시되어 있다. 즉, (a)는 200℃, (b)는 250℃, (c)는 300℃, (d)는 400℃ 및 (e)는 500℃를 나타낸다. The prepared catalyst was dried in a 60 ° C. nitrogen atmosphere (or hydrogen atmosphere), and then calcined in 200, 250, 300, 400, and 500 ° C. nitrogen atmosphere (or hydrogen atmosphere) for 2 to 4 hours. Meanwhile, in the following FIGS. 5 and 6, the respective temperatures are sequentially indicated by (a), (b), (c), (d) and (e). That is, (a) shows 200 degreeC, (b) shows 250 degreeC, (c) shows 300 degreeC, (d) shows 400 degreeC, and (e) shows 500 degreeC.

상기와 같이 제조된 촉매는 질소(또는 메탄올 용액) 분위기에서 밀폐 용기에 보관하였으며, 하기 실험을 수행하였다. The catalyst prepared as described above was stored in a sealed container in a nitrogen (or methanol solution) atmosphere, and the following experiment was performed.

<실험예>Experimental Example

하기하는 바와 같이, 본 실험에서는 촉매의 구조와 조성, 표면 형상 및 표면적을 조사하기 위하여, XRD(X-Ray Diffraction), ICP-MS(Inductively Coupled Plasma Mass Spectrometer), SEM(Scanning Electron Microscopy) 분석을 수행하였다. 이와 같이 소성 후 제조된 촉매의 결정성, 형상 및 내구성을 분석하면 담지체를 이용하는 경우에 있어서 가장 효과적인 비귀금속 촉매 제조가 가능하다.As described below, in this experiment, X-ray diffraction (XRD), Inductively Coupled Plasma Mass Spectrometer (ICP-MS), and Scanning Electron Microscopy (SEM) analysis were performed to investigate the structure and composition, surface shape, and surface area of the catalyst. Was performed. By analyzing the crystallinity, shape and durability of the catalyst prepared after firing as described above, it is possible to prepare the most effective non-noble metal catalyst in the case of using the carrier.

먼저, 상기 ICP 분석은 촉매의 코발트와 붕소의 몰비를 조사하기 위해 수행한 것으로서, 도 2는 본 실시예에서 제조된 촉매의 ICP 결과에 의한 몰비를 나타내는 것이다.First, the ICP analysis was performed to investigate the molar ratio of cobalt and boron in the catalyst, and FIG. 2 shows the molar ratio due to the ICP result of the catalyst prepared in this example.

도 2에 도시된 바와 같이, 본 실시예에서 제조된 촉매의 조성은 대부분 Co와 B로 이루어져 있음을 알 수 있었다.As shown in Figure 2, it can be seen that the composition of the catalyst prepared in this embodiment is mostly composed of Co and B.

도 3은 본 실험예의 수소 발생 실험 장치를 나타내는 개략도이다. 3 is a schematic view showing a hydrogen generation experimental apparatus of the present experimental example.

도 3에 도시된 바와 같이, 교반기(11)가 설치되고 내부의 온도와 압력을 측 정할 수 있는 지름 10㎝, 높이 20㎝의 수소 방출 반응기(10)에 상기 NaBH4 용액(40)과 상기 제조된 Co-B/Ni(50)을 넣고 수소 방출 흐름(20)으로부터 질량 유량계(MFM; Mass Flow Meter)(14)를 통하여 수소 방출량을 측정하고 이를 퍼스널 컴퓨터로 기록하였다. 반응기 내부에 써모커플(12)을 설치하고 수소 발생 반응이 발열 반응이므로 반응기 외부에 온도 감지기(NI USB 9211)를 포함하는 온도 조절 장치(13)를 설치하였다. 냉각수의 유입(31)과 유출(32)을 통하여 냉각수를 순환시켜 용액의 온도를 일정하게 유지하였다. 한편, 수소 방출 반응기 주위로는 워터 자켓(15)을 설치하였다.As shown in FIG. 3, the NaBH 4 solution 40 and the preparation are prepared in a hydrogen discharge reactor 10 having a diameter of 10 cm and a height of 20 cm, in which a stirrer 11 is installed and can measure the temperature and pressure therein. Co-B / Ni (50) was added and the amount of hydrogen released from the hydrogen discharge stream 20 was measured through a mass flow meter (MFM) 14 and recorded on a personal computer. Since the thermocouple 12 was installed inside the reactor and the hydrogen generation reaction was an exothermic reaction, a temperature control device 13 including a temperature sensor (NI USB 9211) was installed outside the reactor. Cooling water was circulated through the inlet 31 and the outlet 32 of the cooling water to maintain a constant temperature of the solution. On the other hand, a water jacket 15 was installed around the hydrogen discharge reactor.

도 4는 전구체 농도의 변화에 따른 수소 발생량을 나타내는 그래프이다. 4 is a graph showing the amount of hydrogen generated according to the change in precursor concentration.

도 4에 도시된 바와 같이, 전구체의 농도가 증가할수록 수소 발생량도 증가하며 특히 전구체의 농도가 30wt% 일 때 가장 높은 수치를 나타내었다.As shown in FIG. 4, as the concentration of the precursor is increased, the amount of hydrogen generation is also increased, particularly when the concentration of the precursor is 30 wt%.

이상의 ICP 분석과 수소 방출 속도 결과로부터 본 실시예의 담지체 내 촉매는 Co1 .5-3.0B1와 같은 형태의 산화물이 가장 반응성이 높은 것으로 나타났고, Co3O4와 CoB나 Co2B 같은 Co-B 화합물이 혼합되어 있음을 알 수 있었다. Or more ICP analysis and the catalyst carrier of this embodiment from the hydrogen release rate results appeared to be high in the form of oxide is the most reactive, such as Co 1 .5-3.0 B 1, Co 3 O 4 and Co 2 CoB or as B It was found that Co-B compounds were mixed.

도 5는 본 실시예의 Co-B 촉매/담지체의 열처리 온도에 따른 각각의 XRD 패턴을 나타내는 것이다.FIG. 5 shows each XRD pattern according to the heat treatment temperature of the Co-B catalyst / support of the present embodiment.

도 5에 나타난 바와 같이, 담지체 내 형성된 촉매의 구조를 조사하기 위해 XRD 분석을 수행한 결과, 환원법으로 제조한 본 실시예의 촉매의 XRD 스펙트럼에서는 200℃ 이하의 소성 온도 이하에서 뚜렷한 결정성 피크가 검출되지 않았다. As shown in FIG. 5, as a result of performing XRD analysis to investigate the structure of the catalyst formed in the support, in the XRD spectrum of the catalyst of this example prepared by the reduction method, a distinct crystalline peak was observed at a firing temperature of 200 ° C. or lower. It was not detected.

이러한 결과는 무결정질(amorphous) 구조의 Co-B가 담지체 내에 형성되어 있는 것을 의미하는데, 무결정질 Co-B의 구조는 기존 결과에서도 나타나듯이 40~50°의 2θ값에서 형성되는 것으로 알려져 있으며, 본 실시예에서도 미세한 피크가 검출되었다. These results indicate that Co-B of amorphous structure is formed in the carrier. The structure of amorphous Co-B is known to be formed at 2θ value of 40 ~ 50 ° as shown in previous results. In this example as well, fine peaks were detected.

소성온도 300℃를 인가하면 금속 Co 피크가 관찰되며 400℃에서는 다시 무결정질 구조가 관찰되는데, 이러한 결과는 금속 Co의 결정성이 HCP에서 FCC로 변화하면서 나타나는 현상이다. 한편, 500℃의 소성온도는 금속 Co 형성을 유발하였다. When the firing temperature of 300 ℃ is applied to the metal Co peak is observed and at 400 ℃ the amorphous structure is observed again, this result is a phenomenon that appears when the crystallinity of the metal Co is changed from HCP to FCC. On the other hand, the firing temperature of 500 ℃ caused metal Co formation.

이와 같이, 본 실험예에 의하면 수소 방출에 촉매 역할을 할 수 있는 촉매구조는 300℃ 이하의 소성온도가 인가되었을 때 효과적으로 유지되는 것으로 판단되었다. As such, according to the present experimental example, it was determined that the catalyst structure capable of acting as a catalyst for hydrogen emission was effectively maintained when a calcination temperature of 300 ° C. or lower was applied.

도 6은 본 실시예에서 제조된 촉매/담지체의 SEM 이미지를 나타내는 것이다. 6 shows an SEM image of the catalyst / support prepared in this Example.

도 6에 도시된 바와 같이, 본 실시예의 열처리에 따른 촉매/담지체는 200℃ 이하의 소성온도가 인가될 경우 얽힌 형태(tangled state)의 구조가 형성되며, 300℃에서 더욱 분명한 형태의 촉매구조가 관찰되었다. 400℃에서는 다시 불분명한 구조가 형성되었고, 500℃에서 소성한 촉매의 경우 작은 구형들이 규칙적으로 뭉쳐 있는 형태의 구조를 나타내었다. As shown in FIG. 6, the catalyst / support according to the heat treatment of the present embodiment has a tangled state structure when a firing temperature of 200 ° C. or less is applied, and a catalyst structure having a more obvious shape at 300 ° C. Was observed. At 400 ° C, an unclear structure was formed again, and in the case of a catalyst fired at 500 ° C, small spheres were regularly aggregated.

이와 같이, XRD 분석과 SEM결과로부터, 본 실시예의 촉매/담지체는 소성온도에 따라 구조 및 형상 및 변화하는 것을 알 수 있었다. Thus, from the XRD analysis and SEM results, it was found that the catalyst / support of the present example changed in structure, shape and shape according to the firing temperature.

한편, 제조한 촉매/담지체를 이용한 NaBH4 수소 방출 반응 특성을 조사하기 위해 소성온도를 변화하면서 수소 발생 속도를 측정하였다. 소성온도만이 Co-B 촉매/담지체의 활성에 미치는 영향을 조사하기 위해 NaBH4, NaOH의 농도는 25wt%와 3wt%로 고정하여 사용하였다. 반응온도는 냉각장치를 이용하여 40℃로 일정하게 조절하였다. 사용된 촉매/담지체 내의 촉매의 양은 0.06 ± 0.005g을 사용하였다. On the other hand, in order to investigate the NaBH 4 hydrogen emission reaction characteristics using the prepared catalyst / carrier, the rate of hydrogen evolution was measured while changing the firing temperature. In order to investigate the effect of calcination temperature on the activity of Co-B catalyst / support, NaBH 4 and NaOH concentrations were fixed at 25wt% and 3wt%. The reaction temperature was constantly adjusted to 40 ° C. using a chiller. The amount of catalyst in the catalyst / carrier used was 0.06 ± 0.005 g.

도 7은 본 실험예에 있어서, Co-B/Ni을 사용한 경우의 25 wt% NaBH4 + 3 wt% NaOH 용액으로부터의 수소 발생시 소성온도의 영향을 보여주는 그래프이다.FIG. 7 is a graph showing the effect of calcination temperature upon hydrogen generation from a 25 wt% NaBH 4 + 3 wt% NaOH solution in the case of Co-B / Ni.

도 7에 나타난 바와 같이, 소성이 인가되지 않은 상태(DRY 상태)에서 제조된 촉매 자체의 경우 수소 발생량은 5000mL/min·g으로서 나노 분말 형태의 동일 촉매보다 무게당 수소발생량이 3 ~ 5배 증가하는 것을 관찰하였다. As shown in FIG. 7, in the case of the catalyst itself prepared in a state in which no calcination is applied (DRY state), the amount of hydrogen generated is 5000 mL / min · g, and the amount of hydrogen generated per weight is increased by 3 to 5 times than the same catalyst in the form of nano powder Was observed.

소성 온도가 200~250℃인 촉매의 경우 최대 7000~7300mL/min·g의 수소가 발생하는 것을 확인하였으며, 가장 좋은 발생 능력임을 알 수 있었다. 300℃에서 소성한 촉매는 DRY상태의 촉매를 사용한 경우의 수소발생량과 비슷한 5000mL/min·g 값을 나타내는 것을 알 수 있었다. 소성온도가 300℃ 이상으로 인가한 경우, 즉, 400℃와 500℃에서는 수소발생량이 감소하여 각각 4000mL/minㆍg 및 1850mL/minㆍg의 수소발생속도가 관찰되었다. In the case of the catalyst having a calcination temperature of 200 ~ 250 ℃ it was confirmed that the maximum generation of hydrogen of 7000 ~ 7300mL / min.g, it was found that the best generating capacity. It was found that the catalyst calcined at 300 ° C. had a value of 5000 mL / min · g similar to the amount of hydrogen generated when the catalyst in the DRY state was used. When the firing temperature was applied at 300 ° C. or higher, that is, at 400 ° C. and 500 ° C., the amount of hydrogen generation decreased, and hydrogen generation rates of 4000 mL / min · g and 1850 mL / min · g were observed, respectively.

소성온도에 따른 수소발생량의 차이는 SEM과 XRD에서 관찰된 담지체 내 촉매의 결정성 구조와 금속 Co의 형태 그리고 형상에 기인하는 것이다. 금속 Co의 경우 NaBH4로부터의 수소 발생 능력이 아주 낮은 것으로 알려져 있으며, 본 실험예에서의 발생 속도도 금속 Co 활성에 상당히 의존한다. The difference in the amount of hydrogen generated by the firing temperature is due to the crystalline structure of the catalyst in the carrier and the form and shape of the metal Co observed in the SEM and XRD. In the case of metal Co, hydrogen generating ability from NaBH 4 is known to be very low, and the rate of generation in this experimental example also depends heavily on the metal Co activity.

한편, 담지체 내의 Co-B 촉매의 격렬한 수소발생에 따른 유실 정도, 즉, 내구성을 관찰하기 위하여 소성온도별로 제조된 촉매/담지체를 초음파 세척기에 넣어 촉매의 물리적인 유실률을 관찰하였다.On the other hand, in order to observe the degree of loss due to the intense hydrogen generation of the Co-B catalyst in the support, that is, durability, the catalyst / support prepared by firing temperature was put in an ultrasonic cleaner to observe the physical loss rate of the catalyst.

도 8은 본 발명의 실험예에 있어서 소성온도별로 제조된 Co-B 촉매의 시간에 따른 물리적인 유실율을 보여주는 그래프이다. 8 is a graph showing the physical loss rate with time of the Co-B catalyst prepared by firing temperature in the experimental example of the present invention.

도 8에 나타난 바와 같이, 소성온도가 200℃ 이하의 경우에 가장 높은 무게감소, 40 ~ 50%의 감소가 관찰되었고 소성온도가 높을수록, 즉 결정성 금속 코발트가 형성될수록 유실율은 적어지는 것을 알 수 있었다. As shown in FIG. 8, the highest weight loss and a decrease of 40 to 50% were observed when the firing temperature was 200 ° C. or lower, and the higher the firing temperature, that is, the lower the loss rate was, the more crystalline metal cobalt was formed. Could.

결론conclusion

본 실시예에서는 알칼리 NaBH4 수용액을 이용한 수소 방출 반응용 Co-B 촉매가 다공성 Ni 담지체 내에 담지되도록 화학적 환원법으로 제조하였다. In this embodiment, a Co-B catalyst for hydrogen evolution using alkaline NaBH 4 aqueous solution was prepared by chemical reduction so as to be supported in a porous Ni carrier.

본 실시예에서 제조한 Co-B 촉매는 Co와 B가 결합한 산화물이나 Co와 B가 결합한 화합물(Co와 B가 결합한 산화물을 제외한다)이었으며, 소성온도 250℃에서 7,000 ml/minㆍg 이상의 수소발생속도를 나타내었다. 한편, 촉매 유실율 까지 고려하는 경우 바람직한 소성온도 범위는 200~250℃ 임을 알 수 있었다.The Co-B catalyst prepared in this Example was an oxide in which Co and B are bonded or a compound in which Co and B is bonded (except for oxides in which Co and B are bonded), and hydrogen of 7,000 ml / min · g or more at a baking temperature of 250 ° C. The rate of occurrence was shown. On the other hand, when considering the catalyst loss rate was found that the preferred firing temperature range is 200 ~ 250 ℃.

이는 기존의 분말 형태의 Co-B 촉매에 비해 3~5배 이상의 높은 활성을 갖는 것이므로 본 실시예의 Co-B 촉매/담지체는 고가의 Ru 촉매 및 분말 형태의 Co-B촉매를 대체할 수 있다. Since it has 3 to 5 times higher activity than that of the conventional powder Co-B catalyst, the Co-B catalyst / support of the present embodiment can replace the expensive Ru catalyst and the powder Co-B catalyst. .

상기 결과를 바탕으로 수소 공급 시스템을 제작하여 연료전지에 수소를 공급 한 결과 성공적으로 연료전지를 구동할 수 있었다. Based on the above results, a hydrogen supply system was fabricated and hydrogen was supplied to the fuel cell, thereby successfully driving the fuel cell.

본 실시예에서 제조한 고밀도화된 Co-B/담지체 촉매는 알칼리 NaBH4 수용액을 이용한 수소 방출 반응용 촉매로서 높은 활성을 가질 뿐만 아니라, KBH4 이나 LiBH4 등의 다른 붕소수소화물에 있어서도 수소 방출 반응용 촉매로서 사용가능하며 마찬가지로 높은 활성을 나타내었다.The densified Co-B / carrier catalyst prepared in this example has high activity as a catalyst for hydrogen release reaction using alkaline NaBH 4 aqueous solution, and also releases hydrogen in other boron hydrides such as KBH 4 or LiBH 4 . It can be used as a catalyst for the reaction and shows high activity as well.

본 발명의 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체는, 귀금속 촉매인 Ru 촉매에 비하여는 5~7배, 나노 분말 형태의 Co-B 촉매에 비해서는 3~5배 이상의 높은 활성(단위 부피당 30% 이상의 활성)을 갖는다. 나아가, 나노 분말 형태의 Co-B 촉매에 비하여 연속 순환식 반응에 있어서 촉매의 유실이 50% 이상 낮다. 따라서, 비귀금속 촉매로서 기존의 나노 분말 형태의 Co-B 및 고가의 Ru 등 귀금속 촉매를 대체할 수 있다. 또한, NaBH4뿐만 아니라 다른 붕소수소화물의 수소 방출 반응에 사용될 수 있으며, 높은 반응성과 함께 장기 내구성도 가진다. 따라서 이동용 연료전지 에너지시스템 제조에 효과적으로 사용되어 그 제조 원가를 낮출 수 있다.The Co-B catalyst / carrier for hydrogen release reaction using the alkali boron hydride solution of the present invention is 5-7 times higher than Ru catalyst which is a noble metal catalyst, and 3-5 times higher than Co-B catalyst in nano powder form. It has at least twice as high activity (at least 30% activity per unit volume). Furthermore, the loss of the catalyst is 50% or more lower in the continuous cyclic reaction than the Co-B catalyst in the form of nanopowder. Therefore, it is possible to replace the precious metal catalysts such as Co-B and expensive Ru in the form of non-noble metal catalysts. In addition, it can be used for hydrogen release reaction of other boron hydrides as well as NaBH 4 , and has high reactivity and long-term durability. Therefore, it can be effectively used in the manufacture of mobile fuel cell energy system, thereby lowering its manufacturing cost.

비록 본 발명이 상기 언급된 바람직한 실시예와 관련하여 설명되어졌지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허청구의 범위는 본 발명의 요지에서 속하는 이러한 수정이나 변형을 포함할 것이다. Although the present invention has been described in connection with the above-mentioned preferred embodiments, it is possible to make various modifications or variations without departing from the spirit and scope of the invention. Accordingly, the appended claims will cover such modifications and variations as fall within the spirit of the invention.

Claims (12)

알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 촉매로서, Co와 B가 결합한 산화물 또는 Co와 B가 결합한 화합물(Co와 B가 결합한 산화물을 제외한다) 중 어느 하나 또는 둘인 Co-B 촉매가 담지체 내에 담지된 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체.A catalyst for hydrogen release reaction using an alkali boron hydride solution, wherein a Co-B catalyst, which is one or two of an oxide bonded by Co and B or a compound bonded by Co and B (excluding an oxide bonded by Co and B), is supported. Co-B catalyst / support for hydrogen release reaction using an alkali boron hydride solution, characterized in that supported on. 제 1 항에 있어서, The method of claim 1, 상기 알칼리 붕소수소화물은 NaBH4, KBH4 또는 LiBH4 중 어느 하나의 붕소수소화물에 NaOH 또는 KOH 중 하나의 수산화물을 혼합한 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체.The alkali boron hydride is NaBH 4 , KBH 4 Or LiBH 4 Co-B catalyst / support for hydrogen release reaction using an alkali boron hydride solution, characterized in that any one of the hydroxides of NaOH or KOH mixed with the boron hydride. 제 1 항에 있어서, The method of claim 1, 상기 촉매는 Co와 B가 결합한 산화물이고, 그 Co 및 B의 조성이 Co1.5-3.0B1 인 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체.The catalyst is an oxide in which Co and B are bonded, and the composition of Co and B is Co 1.5-3.0 B 1 Co-B catalyst / support for hydrogen release reaction using an alkali boron hydride solution. 제 1 항에 있어서,The method of claim 1, 상기 담지체는 금속 폼(foam), 탄소 펠트(carbon felt), 탄소 직물(carbon woven) 또는 탄소 나노튜브(carbon nanotube) 중 어느 하나인 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체.The support is for hydrogen release reaction using an alkali boron hydride solution, characterized in that any one of a metal foam (carbon), carbon felt (carbon felt), carbon woven (carbon woven) or carbon nanotube (carbon nanotube) Co-B catalyst / support. 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체의 제조 방법에 있어서, In the production method of Co-B catalyst / support for hydrogen release reaction using an alkali boron hydride solution, 전구체를 이용하여 담지체 내에 Co2+를 담지시키고, 환원제로 알칼리 붕소수소화물 용액을 이용하여 상기 Co2+를 환원하여, 상기 담지체에 담지된 Co와 B가 결합한 산화물 또는 Co와 B가 결합한 화합물(Co와 B가 결합한 산화물을 제외한다) 중 어느 하나 또는 둘인 Co-B 촉매를 얻는 단계(S1); 및 Co 2+ is supported in the support using a precursor, and an alkali boron hydride is used as a reducing agent. Reducing the Co 2+ using a solution, Co-B which is any one or two of the oxides of Co and B bonded to the carrier or the compound of Co and B bonded (except the oxides of Co and B bonded) Obtaining a catalyst (S1); And 상기 담지체에 담지된 Co-B 촉매를 건조 및 소성하는 단계(S2);를 포함하는 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체의 제조 방법.Drying and calcining the Co-B catalyst supported on the support (S2); Method of producing a Co-B catalyst / support for hydrogen release reaction using an alkali boride hydride solution comprising a. 제 5 항에 있어서,The method of claim 5, 상기 S1 단계는 전구체로서 CoCl2을 사용하여 담지체에 Co2 +를 담지시키고, 알칼리 붕소수소화물 용액에 상기 담지체를 일정속도로 디핑(dipping)하는 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체의 제조 방법.The step S1 is with packages using CoCl 2 as the precursor and carrying a Co 2 + in the bearing member, can be an alkali boron to the bearing member to hydride alkali boron solution characterized in that the dipping (dipping) at a constant speed a solution Process for preparing Co-B catalyst / support for hydrogen release reaction. 제 6 항에 있어서,The method of claim 6, 상기 S1 단계는 상기 전구체의 농도를 30wt%로 하는 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체의 제조 방법.The step S1 is a method of producing a Co-B catalyst / support for hydrogen release reaction using an alkali boron hydride solution, characterized in that the concentration of the precursor to 30wt%. 제 5 항에 있어서, The method of claim 5, 상기 S1 단계는 상기 환원제로 사용되는 알칼리 붕소수소화물 용액으로서 NaBH4, KBH4 또는 LiBH4 중 어느 하나의 붕소수소화물에 NaOH 또는 KOH 중 어느 하나의 수산화물을 혼합한 알칼리 붕소수소화물 용액을 사용하는 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체의 제조 방법.The step S1 is an alkaline boron hydride solution used as the reducing agent NaBH 4 , KBH 4 Or LiBH 4 Co-B catalyst / carrier for hydrogen release reaction using an alkali boron hydride solution characterized by using an alkali boron hydride solution in which any one of the hydroxide of NaOH or KOH is mixed with any one of the boron hydride Manufacturing method. 제 5 항에 있어서, The method of claim 5, 상기 S2 단계는 질소 또는 수소 분위기 하에서 건조 및 소성하는 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체의 제조 방법.The step S2 is a method of producing a Co-B catalyst / support for hydrogen release reaction using an alkali boron hydride solution, characterized in that the drying and firing in a nitrogen or hydrogen atmosphere. 제 5 항에 있어서,The method of claim 5, 상기 S2 단계는 상기 소성 시 소성 온도를 200~250℃로 하는 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체의 제조 방법.The S2 step is a method of producing a Co-B catalyst / support for hydrogen release reaction using an alkali boron hydride solution, characterized in that the firing temperature during the firing to 200 ~ 250 ℃. 제 5 항에 있어서,The method of claim 5, 상기 담지체 내의 Co-B 촉매의 고밀화를 위하여 상기 S1 단계를 반복하는 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체의 제조 방법.Method for producing a Co-B catalyst / support for hydrogen release reaction using an alkali boron hydride solution, characterized in that to repeat the step S1 for densification of the Co-B catalyst in the support. 제 5 항에 있어서,The method of claim 5, 상기 S1 단계는 상기 담지체로서 금속 폼(foam), 탄소 펠트(carbon felt), 탄소 직물(carbon woven) 또는 탄소 나노튜브(carbon nanotube) 중 어느 하나를 사용하는 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체의 제조 방법.The step S1 is an alkali boride hydride solution, characterized in that using any one of metal foam (foam), carbon felt (carbon felt), carbon woven (carbon woven) or carbon nanotube (carbon nanotube) as the carrier Method for producing a Co-B catalyst / support for hydrogen release reaction using.
KR1020060058559A 2006-06-28 2006-06-28 Co-b catalyst/structured support for hydrogen generating using alkaline borohydrides solution and method for preparing the same KR100785043B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060058559A KR100785043B1 (en) 2006-06-28 2006-06-28 Co-b catalyst/structured support for hydrogen generating using alkaline borohydrides solution and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060058559A KR100785043B1 (en) 2006-06-28 2006-06-28 Co-b catalyst/structured support for hydrogen generating using alkaline borohydrides solution and method for preparing the same

Publications (1)

Publication Number Publication Date
KR100785043B1 true KR100785043B1 (en) 2007-12-12

Family

ID=39140828

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060058559A KR100785043B1 (en) 2006-06-28 2006-06-28 Co-b catalyst/structured support for hydrogen generating using alkaline borohydrides solution and method for preparing the same

Country Status (1)

Country Link
KR (1) KR100785043B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101699289B1 (en) 2015-10-01 2017-01-24 명지대학교 산학협력단 Sm OXIDE AND Ni OXIDE DOPED TiO2 NANOFIBER CATALYST AND PREPARATION METHOD OF THE SAME
KR20170039453A (en) 2015-10-01 2017-04-11 명지대학교 산학협력단 CeO2-NiO LOADED TiO2 NANOFIBER CATALYST AND SYNTHESIS METHOD OF THE SAME
KR101733492B1 (en) * 2015-01-09 2017-05-11 한국과학기술연구원 Non-precious metal based water eletrolysis catlayst for oxygen evolution at cathod and hydrogen evolution at anode, and preparation method of the same
CN114904505A (en) * 2022-05-11 2022-08-16 黑龙江哈船碳材料科技有限公司 For KBH 4 Composite catalyst for hydrogen production and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4132619A (en) 1976-08-06 1979-01-02 State Of Israel, Ministry Of Industry, Commerce And Tourism, National Physical Laboratory Of Israel Electrocatalyst
US6878664B1 (en) 2001-01-16 2005-04-12 Medis El Ltd. Class of electrocatalysts and a gas diffusion electrode based thereon for fuel cells
JP2006069869A (en) 2004-09-06 2006-03-16 Materials & Energy Research Institute Tokyo Ltd Hydrogen generation method, hydrogen generation device and fuel cell system
KR20060105957A (en) * 2005-04-02 2006-10-12 한국과학기술연구원 Co-b catalyst for hydrogen generating reaction using alkaline borohydrides solution and method to prepare the same
KR20070001830A (en) * 2005-06-29 2007-01-04 삼성엔지니어링 주식회사 Cobalt oxide catalyst for hydrogen generation and method of producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4132619A (en) 1976-08-06 1979-01-02 State Of Israel, Ministry Of Industry, Commerce And Tourism, National Physical Laboratory Of Israel Electrocatalyst
US6878664B1 (en) 2001-01-16 2005-04-12 Medis El Ltd. Class of electrocatalysts and a gas diffusion electrode based thereon for fuel cells
JP2006069869A (en) 2004-09-06 2006-03-16 Materials & Energy Research Institute Tokyo Ltd Hydrogen generation method, hydrogen generation device and fuel cell system
KR20060105957A (en) * 2005-04-02 2006-10-12 한국과학기술연구원 Co-b catalyst for hydrogen generating reaction using alkaline borohydrides solution and method to prepare the same
KR20070001830A (en) * 2005-06-29 2007-01-04 삼성엔지니어링 주식회사 Cobalt oxide catalyst for hydrogen generation and method of producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101733492B1 (en) * 2015-01-09 2017-05-11 한국과학기술연구원 Non-precious metal based water eletrolysis catlayst for oxygen evolution at cathod and hydrogen evolution at anode, and preparation method of the same
US9751078B2 (en) 2015-01-09 2017-09-05 Korea Institute Of Science And Technology Non-precious metal based water electrolysis catalyst for oxygen evolution at anode and hydrogen evolution at cathode and preparation method of the same
KR101699289B1 (en) 2015-10-01 2017-01-24 명지대학교 산학협력단 Sm OXIDE AND Ni OXIDE DOPED TiO2 NANOFIBER CATALYST AND PREPARATION METHOD OF THE SAME
KR20170039453A (en) 2015-10-01 2017-04-11 명지대학교 산학협력단 CeO2-NiO LOADED TiO2 NANOFIBER CATALYST AND SYNTHESIS METHOD OF THE SAME
CN114904505A (en) * 2022-05-11 2022-08-16 黑龙江哈船碳材料科技有限公司 For KBH 4 Composite catalyst for hydrogen production and preparation method thereof
CN114904505B (en) * 2022-05-11 2024-02-09 黑龙江哈船碳材料科技有限公司 Be used for KBH 4 Composite catalyst for hydrogen production and preparation method thereof

Similar Documents

Publication Publication Date Title
Lee et al. A structured Co–B catalyst for hydrogen extraction from NaBH4 solution
Jeong et al. Effect of preparation method on Co–B catalytic activity for hydrogen generation from alkali NaBH4 solution
Zou et al. Chitosan-mediated Co–Ce–B nanoparticles for catalyzing the hydrolysis of sodium borohydride
Baydaroglu et al. An effective synthesis route for improving the catalytic activity of carbon-supported Co–B catalyst for hydrogen generation through hydrolysis of NaBH4
Rakap et al. Cobalt–nickel–phosphorus supported on Pd-activated TiO2 (Co–Ni–P/Pd-TiO2) as cost-effective and reusable catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution
Yuan et al. Effects of heat-treatment temperature on properties of Cobalt–Manganese–Boride as efficient catalyst toward hydrolysis of alkaline sodium borohydride solution
US20060293173A1 (en) Hydrogen generation catalysts and systems for hydrogen generation
Akdim et al. Cobalt (II) salts, performing materials for generating hydrogen from sodium borohydride
Marchionni et al. High volume hydrogen production from the hydrolysis of sodium borohydride using a cobalt catalyst supported on a honeycomb matrix
US20060292067A1 (en) Hydrogen generation catalysts and methods for hydrogen generation
Jiang et al. Effect of zirconium addition on the structure and properties of CuO/CeO2 catalysts for high-temperature water–gas shift in an IGCC system
Wei et al. Highly active and durable catalyst for hydrogen generation by the NaBH4 hydrolysis reaction: CoWB/NF nanodendrite with an acicular array structure
Boran et al. Hydrogen generation from solid state NaBH4 by using FeCl3 catalyst for portable proton exchange membrane fuel cell applications
KR100782383B1 (en) Co-B catalyst for hydrogen generating reaction using alkaline borohydrides solution and method to prepare the same
US20070172417A1 (en) Hydrogen generation catalysts and systems for hydrogen generation
TW201026600A (en) Catalytic system for generating hydrogen by the hydrolysis reaction of metal borohydrides
Yang et al. Synthesis of “needle-cluster” NiCo2O4 carbon nanofibers and loading of Co-B nanoparticles for hydrogen production through the hydrolysis of NaBH4
Liao et al. One-step growth of CuO/ZnO/CeO2/ZrO2 nanoflowers catalyst by hydrothermal method on Al2O3 support for methanol steam reforming in a microreactor
US20090214417A1 (en) Preparation of cobalt-boron alloy catalysts useful for generating hydrogen from borohydrides
Feng et al. Copper oxide hollow spheres: synthesis and catalytic application in hydrolytic dehydrogenation of ammonia borane
CN108246332B (en) Two-dimensional non-noble metal supported catalyst and preparation method and application thereof
CN108479820B (en) Massive carrier nano-type alloy catalyst for hydrogen production by alcoholysis of sodium borohydride and preparation method thereof
KR100785043B1 (en) Co-b catalyst/structured support for hydrogen generating using alkaline borohydrides solution and method for preparing the same
Ding et al. The coralline cobalt oxides compound of multiple valence states deriving from flower-like layered double hydroxide for efficient hydrogen generation from hydrolysis of NaBH4
JP2008546533A (en) Hydrogen production catalyst and hydrogen production system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121203

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131129

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141201

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160829

Year of fee payment: 9

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20161202

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee