KR20060105957A - Co-b catalyst for hydrogen generating reaction using alkaline borohydrides solution and method to prepare the same - Google Patents

Co-b catalyst for hydrogen generating reaction using alkaline borohydrides solution and method to prepare the same Download PDF

Info

Publication number
KR20060105957A
KR20060105957A KR1020050027817A KR20050027817A KR20060105957A KR 20060105957 A KR20060105957 A KR 20060105957A KR 1020050027817 A KR1020050027817 A KR 1020050027817A KR 20050027817 A KR20050027817 A KR 20050027817A KR 20060105957 A KR20060105957 A KR 20060105957A
Authority
KR
South Korea
Prior art keywords
catalyst
hydrogen
solution
boron hydride
nabh
Prior art date
Application number
KR1020050027817A
Other languages
Korean (ko)
Other versions
KR100782383B1 (en
Inventor
조은애
남석우
오인환
정성욱
김형준
임태훈
홍성안
하흥용
윤성필
한종희
이재영
함형철
이상엽
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020050027817A priority Critical patent/KR100782383B1/en
Publication of KR20060105957A publication Critical patent/KR20060105957A/en
Application granted granted Critical
Publication of KR100782383B1 publication Critical patent/KR100782383B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/305Boron

Abstract

본 발명에서는, 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 촉매로서, Co 및 B의 산화물 또는 Co 및 B의 화합물중 어느 하나 또는 둘을 포함하는 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매를 제공한다. 또한, 본 발명에서는, 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 촉매의 제조 방법에 있어서, 환원제로 알칼리 붕소수소화물 용액을 이용하여 Co2+를 환원하는 단계(S1); 및 환원 후 침전된 촉매를 건조 및 소성하여, Co 및 B의 산화물 또는 Co 및 B의 화합물중 어느 하나 또는 둘을 포함하는 촉매를 수득하는 단계(S2)로 구성되는 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매의 제조 방법을 제공한다. 본 발명에 따른 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매는, 귀금속 촉매인 Ru 촉매에 비하여 30~50% 이상의 높은 활성을 갖는 것이므로, 상용의 Co 금속 촉매와 달리 비귀금속 촉매로서 고가의 Ru 등 귀금속 촉매를 대체할 수 있다. In the present invention, the hydrogen release using the alkali boron hydride solution, the hydrogen release using the alkali boron hydride solution, characterized in that it comprises any one or both of the oxides of Co and B or the compounds of Co and B It provides a Co-B catalyst for the reaction. Moreover, in this invention, in the manufacturing method of the catalyst for hydrogen release reaction using an alkali boron hydride solution, alkali boron hydride as a reducing agent Reducing Co 2+ using the solution (S1); And drying and calcining the precipitated catalyst after reduction, to obtain a catalyst comprising any one or two of oxides of Co and B or a compound of Co and B (S2). Provided is a method for preparing a Co-B catalyst for hydrogen evolution using a solution. Since the Co-B catalyst for hydrogen release reaction using the alkali boron hydride solution according to the present invention has a higher activity of 30-50% or more than the Ru catalyst, which is a noble metal catalyst, it is a non-noble metal catalyst unlike commercial Co metal catalysts. It can replace precious metal catalysts such as expensive Ru.

붕소수소화물, 루테늄, 수소, 촉매, 고분자전해질막연료전지 Boron hydride, ruthenium, hydrogen, catalyst, polymer electrolyte membrane fuel cell

Description

알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 코발트-붕소 촉매 및 그 제조 방법{Co-B catalyst for hydrogen generating reaction using alkaline borohydrides solution and method to prepare the same}Co-B catalyst for hydrogen generating reaction using alkaline borohydrides solution and method to prepare the same}

도 1은 본 발명의 실험예에서의 수소 발생 실험 장치를 나타내는 개략도이다.1 is a schematic view showing a hydrogen generation experimental apparatus in an experimental example of the present invention.

도 2는 본 발명에 있어서, (a) 비교예의 Co 금속 분말 촉매 및 (b) 실시예에서 제조된 촉매 각각의 XRD 패턴을 나타내는 것이다.Figure 2 shows the XRD pattern of each of (a) Co metal powder catalyst of Comparative Example and (b) catalyst prepared in Example according to the present invention.

도 3은 본 발명의 실시예에서 제조된 촉매의 SEM 이미지를 나타내는 것이다.Figure 3 shows an SEM image of the catalyst prepared in the embodiment of the present invention.

도 4는 본 발명의 실험예에 있어서 0.05g Co-B 촉매(실시예에서 제조된 촉매)를 사용한 경우의 20 wt% NaBH4 + 5 wt% NaOH 용액으로부터의 수소 발생시 온도의 영향을 보여주는 그래프이다.FIG. 4 is a graph showing the effect of temperature upon hydrogen evolution from a 20 wt% NaBH 4 + 5 wt% NaOH solution using 0.05 g Co-B catalyst (catalyst prepared in Example) in the experimental example of the present invention. .

도 5는 본 발명의 실험예에 있어서 Co-B 촉매(실시예에서 제조된 촉매)를 사용한 경우 20℃에서 20 wt% NaBH4 + 5 wt% NaOH 용액으로부터의 수소 발생시 촉매의 양의 영향을 보여주는 그래프이다.FIG. 5 shows the effect of the amount of catalyst upon hydrogen evolution from a 20 wt% NaBH 4 + 5 wt% NaOH solution at 20 ° C. when using a Co-B catalyst (catalyst prepared in Example) in the experimental example of the present invention. It is a graph.

도 6은 본 발명의 실험예에 있어서 0.05g Co-B 촉매(실시예에서 제조된 촉매)를 사용한 경우 20℃에서 x wt% NaBH4 + 5 wt% NaOH 용액으로부터의 수소 발생시 NaBH4 농도의 영향을 보여주는 그래프이다.6 shows the effect of NaBH 4 concentration upon hydrogen evolution from x wt% NaBH 4 + 5 wt% NaOH solution at 20 ° C. when 0.05 g Co-B catalyst (catalyst prepared in Example) was used in the experimental example of the present invention. Is a graph showing

도 7은 본 발명의 실험예에 있어서 0.05g Co-B 촉매(실시예에서 제조된 촉매)를 사용한 경우 20℃에서 20 wt% NaBH4 + x wt% NaOH 용액으로부터의 수소 발생시 NaOH 농도의 영향을 보여주는 그래프이다.7 is 20 wt% NaBH 4 + x at 20 ° C. when 0.05 g Co-B catalyst (catalyst prepared in Example) was used in the experimental example of the present invention. A graph showing the effect of NaOH concentration on hydrogen evolution from wt% NaOH solution.

도 8은 본 발명의 실험예에 있어서 0.05g Co 촉매(비교예의 촉매)를 사용한 경우 20℃에서 20 wt% NaBH4 + x wt% NaOH 용액으로부터의 수소 발생시 NaOH 농도의 영향을 보여주는 그래프이다.8 is 20 wt% NaBH 4 + x at 20 ° C. when 0.05 g Co catalyst (comparative catalyst) was used in the experimental example of the present invention. A graph showing the effect of NaOH concentration on hydrogen evolution from wt% NaOH solution.

도 9는 본 발명의 실험예에 있어서 실시예에서 제조된 촉매를 이용한 경우 20℃에서 5 wt% NaBH4 + 5 wt% NaOH로부터의 수소 발생 속도 및 발생 부피를 나타내는 그래프이다.FIG. 9 is a graph showing hydrogen generation rate and volume generated from 5 wt% NaBH 4 + 5 wt% NaOH at 20 ° C. using the catalyst prepared in Example in the Experimental Example of the present invention. FIG.

*주요 도면 부호의 간단한 설명** Short description of the major reference marks *

5 : 냉각수 10 : 반응기5: cooling water 10: reactor

20 : 질량 유량계 25 : 퍼스널 컴퓨터20 mass flow meter 25 personal computer

30 : 온도 조절기30: thermostat

1. H.I. Schlesinger, H.C. Brown, A.E. Finholt, J.R. Gilbreath, H.R. Hockstra, and E.K. Hyde : "Sodium Borohydride, Its Hydrolysis and Its Use as a Reducing Agent and in the Generation of Hydrogen", J. Am. Chem. Soc., Vol. 75, 1953, p. 215;1. H.I. Schlesinger, H.C. Brown, A.E. Finholt, J.R. Gilbreath, H. R. Hockstra, and E.K. Hyde: "Sodium Borohydride, Its Hydrolysis and Its Use as a Reducing Agent and in the Generation of Hydrogen", J. Am. Chem. Soc., Vol. 75, 1953, p. 215;

2. S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, M.T. Kelly, P.J. Petillo, and M. Binder : "An Ultrasafe Hydrogen Generator : Aqueous, Alkaline Borohydride Solution and Ru Catlayst", J. power sources, Vol. 85, 2000, p. 186;2. S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, M.T. Kelly, P.J. Petillo, and M. Binder: "An Ultrasafe Hydrogen Generator: Aqueous, Alkaline Borohydride Solution and Ru Catlayst", J. power sources, Vol. 85, 2000, p. 186;

3. S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, N.C. Spencer, M.T. Kelly, P.J. Petillo, and M. Binder : "A Safe, Portable, Hydrogen Gas Generator Using Aqueous Borohydride Solution and Ru Catalyst", Int. J. Hydrog. Energy, 25(2000) 969;3. S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, N.C. Spencer, M.T. Kelly, P.J. Petillo, and M. Binder: "A Safe, Portable, Hydrogen Gas Generator Using Aqueous Borohydride Solution and Ru Catalyst", Int. J. Hydrog. Energy, 25 (2000) 969;

4. J.-H. Kim, H. Lee, S.-C. Han, H.-S. Kim, M.-S. Song, J.-Y. Lee, : "Production of hydorgen from sodium borohydride in alkaline solution: development of catalyst with high performance". Int. J. Hydrog. Energy, vol. 29, 2004, p. 263;4. J.-H. Kim, H. Lee, S.-C. Han, H.-S. Kim, M.-S. Song, J.-Y. Lee,: "Production of hydorgen from sodium borohydride in alkaline solution: development of catalyst with high performance". Int. J. Hydrog. Energy, vol. 29, 2004, p. 263;

5. I.-H. Oh, S. K. Park, E. A. Cho, H. Y. Ha, and S.-A. Hong, : "Characteritics of the Monopolar Type Small Polymer Electrolyte Membrane Fuel Cell for Portable Sources", 1st International Conference on Polymer Batteries and Fuel Cells, 2003;5. I.-H. Oh, S. K. Park, E. A. Cho, H. Y. Ha, and S.-A. Hong,: "Characteritics of the Monopolar Type Small Polymer Electrolyte Membrane Fuel Cell for Portable Sources", 1st International Conference on Polymer Batteries and Fuel Cells, 2003;

6. D. Hua, Y. Hanxi, A. Xingping, C. Chuansin : "Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst". Int. J. Hydrog. Energy, vol. 28, 2003, p. 1095. 6. D. Hua, Y. Hanxi, A. Xingping, C. Chuansin: "Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst". Int. J. Hydrog. Energy, vol. 28, 2003, p. 1095.

본 발명은 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 코발트-붕소 촉매 및 그 제조 방법에 관한 것이다.The present invention relates to a cobalt-boron catalyst for hydrogen release reaction using an alkali boron hydride solution and a method for producing the same.

고분자 전해질막 연료전지(Polymer Electrolyte Membrane Fuel Cell; PEMFC)는 높은 효율과 전력밀도를 가지는 연료전지로서, 이를 휴대용 전원으로 활용하기 위해서는 연료인 수소를 저장하고 휴대해야 한다. Polymer Electrolyte Membrane Fuel Cell (PEMFC) is a fuel cell with high efficiency and power density. To use it as a portable power source, hydrogen, a fuel, must be stored and carried.

수소 저장 방법으로서 고압 수소 가스로 저장하는 방법, 액체 수소 가스로 저장하는 방법, 금속 수소화물로 저장하는 방법, 화석 연료를 개질하는 방법 등이 현재 이용되고 있다. 그러나, 상기 방법들은 수소 저장 부피, 무게, 안전성, 응답특성 등의 측면에서 휴대용 연료 전지에 적용하기가 어렵다. As a hydrogen storage method, a method of storing with a high pressure hydrogen gas, a method of storing with a liquid hydrogen gas, a method of storing with a metal hydride, a method of reforming fossil fuels and the like are currently used. However, these methods are difficult to apply to portable fuel cells in terms of hydrogen storage volume, weight, safety, response characteristics, and the like.

따라서, 휴대전원용 PEMFC의 상용화를 위해서는 휴대에 적합한 수소 저장 기술의 개발이 선행되어야 한다. Therefore, in order to commercialize a PEMFC for a portable power source, development of a hydrogen storage technology suitable for a portable device must be preceded.

상기 수소 저장 방법들을 대체할 수 있는 방법 중 하나는 NaBH4 수용액을 이용하는 방법이다. NaBH4 수용액을 이용한 수소 발생 반응은 다음 [반응식1]과 같다<종래 기술문헌 1 참조>.One of the alternatives to the hydrogen storage methods is a method using NaBH 4 aqueous solution. Hydrogen generation reaction using NaBH 4 aqueous solution is as shown in the following [Scheme 1].

NaBH4 (aq) + 2H2O → 4H2 + NaBO2 (aq) + 열(217kJ)NaBH 4 (aq) + 2H 2 O → 4H 2 + NaBO 2 (aq) + heat (217 kJ)

상기 반응은 산성이나 중성 용액에서는 촉매 없이도 진행되지만, 강염기성 조건(pH > 13)에서는 촉매와 접촉했을 때에만 진행되어 수소 발생 속도를 조절할 수 있다<종래 기술문헌 2 참조>.In the acidic or neutral solution, the reaction proceeds without the catalyst, but under strong basic conditions (pH> 13), the reaction proceeds only when contacted with the catalyst to control the rate of hydrogen generation.

이와 같은 NaBH4를 이용하는 수소 저장 방법은, 에너지 저장 밀도가 높고, 반응물과 생성물이 비가연성이며, 대기 중에서 안정하고, 환경에 무해하고, 반응물의 재순환이 가능하며, 상온에서도 수소 발생이 가능하여 수소 저장 방법으로서 많은 장점을 가지고 있다<종래 기술문헌 3 참조>. 또한, 수용액으로부터 수소가 발생하므로 수증기가 포함되어 방출되어 별도의 가습 없이도 연료전지 구동에 필요한 수분 공급이 가능하다. The hydrogen storage method using NaBH 4 has a high energy storage density, a nonflammable reactant and a product, is stable in the atmosphere, harmless to the environment, recyclable of the reactant, and hydrogen can be generated at room temperature. It has many advantages as a storage method (see the prior art document 3). In addition, since hydrogen is generated from the aqueous solution, water vapor is included and released, so that the water supply for driving the fuel cell can be supplied without additional humidification.

이와 같은 여러 가지 장점으로 인하여, 상기 NaBH4를 이용한 수소 저장 방법을 연료전지에 적용하기 위한 많은 연구가 진행되어 왔다<종래 기술문헌 2~5 참조>. Due to these various advantages, many studies have been conducted to apply the hydrogen storage method using the NaBH 4 to the fuel cell (see the prior art documents 2 to 5).

그런데, NaBH4를 이용해 저장한 수소를 방출시키기 위해서는 NaBH4 수용액과 촉매를 접촉시켜야 하지만, 현재까지의 대부분의 연구에서는 Pt 또는 Ru 계열의 귀금속 촉매가 사용되었다<종래 기술문헌 2~3 참조>. 그러나, 상기 귀금속 촉매들은 가격이 비싸 경제성이 떨어지는 큰 단점이 있다. By the way, in order to release hydrogen stored using NaBH 4 , the NaBH 4 aqueous solution must be brought into contact with the catalyst. However, in most of the studies to date, Pt or Ru-based noble metal catalysts have been used (see prior art documents 2 to 3). However, the precious metal catalysts have a big disadvantage in that the cost is low and the economic efficiency is low.

한편, 비귀금속 촉매로서는 Ni 및 Co 가 활성을 나타내지만 Pt 또는 Ru와 비교하여 수소 방출 속도가 매우 낮은 것으로 보고되어 있다<종래 기술문헌 4,5 참조>.On the other hand, as a non-noble metal catalyst, Ni and Co show activity, but it is reported that hydrogen discharge rate is very low compared with Pt or Ru (refer prior art document 4,5).

따라서, Pt 또는 Ru을 대체할 비귀금속 촉매로서 수소 방출 속도가 높은 알 칼리 NaBH4 용액으로부터의 수소 방출 반응용 촉매가 요구된다.Therefore, there is a need for a catalyst for hydrogen release reaction from alkaline NaBH 4 solution with high hydrogen release rate as a non-noble metal catalyst to replace Pt or Ru.

한편, 현재까지는 NaBH4 가 수소 저장, 방출 매체로서 이용되어 왔으나, 수소 저장 방출 매체로서 NaBH4 를 제외한 다른 붕소수소화물 및 상기 붕소수소화물의 수소 방출 반응에 사용되는 촉매의 개발 필요성이 크다.On the other hand, NaBH 4 has been used as a hydrogen storage and release medium until now, but there is a great need for developing a boron hydride other than NaBH 4 as a hydrogen storage release medium and a catalyst used for the hydrogen release reaction of the boron hydride.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은, 귀금속 촉매인 Pt 또는 Ru를 대체할 수 있는 비귀금속 촉매로서, 기존의 상용 Co 금속 분말 촉매와 달리 높은 활성을 가지는, 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 촉매 및 그 제조 방법을 제공하는 것이다. Accordingly, the present invention has been made to solve the above problems, an object of the present invention, as a non-noble metal catalyst that can replace the precious metal catalyst Pt or Ru, unlike the conventional commercial Co metal powder catalyst, high activity It is to provide a catalyst for hydrogen release reaction using an alkali boron hydride solution and a method for producing the same.

상기와 같은 본 발명의 목적은, 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 촉매로서, Co 및 B의 산화물 또는 Co 및 B의 화합물중 어느 하나 또는 둘을 포함하는 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매에 의하여 달성된다.An object of the present invention as described above is an alkali boron hydride, comprising any one or two of an oxide of Co and B or a compound of Co and B as a catalyst for hydrogen release reaction using an alkali boron hydride solution Achieved by Co-B catalyst for hydrogen release reaction using a solution.

상기와 같은 본 발명의 목적은, 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 촉매의 제조 방법에 있어서, 환원제로 알칼리 붕소수소화물 용액을 이용하여 Co2+를 환원하는 단계(S1); 및 환원 후 침전된 촉매를 건조 및 소성하여, Co 및 B의 산화물 또는 Co 및 B의 화합물중 어느 하나 또는 둘을 포함하는 촉매를 수 득하는 단계(S2)로 구성되는 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매의 제조 방법에 의하여 달성된다.An object of the present invention as described above is an alkali boron hydride as a reducing agent in the method for producing a catalyst for hydrogen release reaction using an alkali boron hydride solution. Reducing Co 2+ using the solution (S1); And drying and calcining the precipitated catalyst after reduction, so as to obtain a catalyst comprising one or two of oxides of Co and B or a compound of Co and B (S2). It is achieved by a method for producing a Co-B catalyst for hydrogen release reaction using a digestion solution.

그리고, 상기 S1 단계는 상기 환원제로 사용되는 알칼리 붕소수소화물 용액으로서, NaBH4, KBH4 또는 LiBH4 중 어느 하나의 붕소수소화물 및 NaOH 또는 KOH 중 어느 하나의 수산화물을 혼합한 알칼리 붕소수소화물 용액을 사용하는 것이 바람직하다. 그리고, 상기 S2 단계는 질소 또는 수소 분위기 하에서 상기 건조 및 소성을 수행하는 것이 바람직하다.In addition, the step S1 is an alkali boron hydride solution used as the reducing agent, an alkali boron hydride solution of any one of NaBH 4 , KBH 4 or LiBH 4 boron hydride and NaOH or KOH hydroxide Preference is given to using. And, the S2 step is preferably carried out the drying and firing in a nitrogen or hydrogen atmosphere.

이와 같이, 본 발명에서는 NaBH4 뿐만 아니라 KBH4 또는 LiBH4 등의 붕소수소화물을 수소 저장, 방출 매체로서 이용하는 경우, NaBH4, KBH4 또는 LiBH4 등의 붕소수소화물 용액을 이용한 수소 방출 반응에 사용가능한 높은 활성의 비귀금속 촉매로 Co-B 촉매를 제안한다.As described above, in the present invention, when boron hydrides such as KBH 4 or LiBH 4 as well as NaBH 4 are used as hydrogen storage and release mediums, hydrogen hydride reactions using boron hydride solutions such as NaBH 4 , KBH 4 or LiBH 4 are used. Co-B catalyst is proposed as a high activity non-noble metal catalyst that can be used.

상기 Co-B 촉매는 Co-B의 산화물 또는 Co-B의 화합물 형태를 포함하는 것이고, 이와 같은 Co-B 촉매는 Co2+ 를 알칼리 붕소수소화물 용액으로 환원시켜서 얻는다.The Co-B catalyst comprises an oxide of Co-B or a compound form of Co-B, such a Co-B catalyst is obtained by reducing Co 2+ with an alkali boron hydride solution.

이하, 본 발명의 바람직한 실시예를 설명함으로써 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명이 하기 실시예에 한정되는 것은 아니며 첨부된 특허청구범위내에서 다양한 형태의 실시예들이 구현될 수 있고, 단지 하기 실시예는 본 발명의 개시가 완전하도록 함과 동시에 당업계에서 통상의 지식을 가진 자에게 발명의 실시를 용이하게 하고자 하는 것이다.Hereinafter, the present invention will be described in more detail by explaining preferred embodiments of the present invention. However, the present invention is not limited to the following examples, and various forms of embodiments can be implemented within the scope of the appended claims, and the following examples are only common in the art while making the disclosure of the present invention complete. It is intended to facilitate the implementation of the invention to those with knowledge.

<실시예><Example>

Co-B 촉매 제조Co-B Catalyst Preparation

Co-B 촉매 제조를 위해 전구체인 CoCl2 (Aldrich Inc.) 1 M 수용액을 제조하였다. 환원제로는 NaBH4 및 NaOH 수용액을 사용하였다(즉, 알칼리 붕소수소화물 용액을 환원제로 사용하는 것으로, 알칼리 붕소수소화물로서, 상기 NaBH4 이외에 KBH4 또는 LiBH4 등을 사용할 수 있고, 수산화물로서 상기 NaOH이외에 KOH 등을 사용할 수 있다). 상기 NaBH4는 물에 용해시켰을 때 촉매 없이도 수소를 발생시키므로 이를 억제하기 위해 NaOH를 첨가하여 용액을 알칼리 상태로 유지하였다. A precursor aqueous solution of CoCl 2 (Aldrich Inc.) 1 M was prepared to prepare a Co-B catalyst. NaBH 4 and NaOH aqueous solution were used as reducing agents (ie, alkali borohydride). By using the solution as a reducing agent, in addition to NaBH 4 , KBH 4 or LiBH 4 may be used as the alkali boron hydride, and KOH may be used in addition to NaOH as the hydroxide). The NaBH 4 generates hydrogen even without a catalyst when dissolved in water, so that NaOH was added to keep the solution in an alkaline state.

환원용액 제조를 위해 먼저 NaOH를 증류수에 녹여 수용액의 pH를 14 이상으로 유지하면서, NaBH4를 녹인 후 4 시간 이상 교반하였다. 반응 속도를 조절하기 위해 제조한 1 M CoCl2 수용액을 0 ℃로 유지하면서, NaBH4 및 NaOH 수용액을 1 g씩 첨가하여 Co2+ 가 환원되도록 하였다. In order to prepare a reducing solution, NaOH was first dissolved in distilled water while maintaining the pH of the aqueous solution at 14 or more, NaBH 4 was dissolved and stirred for at least 4 hours. While maintaining the 1 M CoCl 2 aqueous solution prepared to control the reaction rate at 0 ℃, 1 g of NaBH 4 and NaOH aqueous solution was added to reduce the Co 2+ .

반응이 완전히 종결된 후 거름종이를 이용해 침전된 분말을 걸러내어 증류수로 세척하였다. 제조된 촉매를 60℃ 질소 분위기(또는 수소 분위기)에서 건조한 후 200℃ 질소 분위기(또는 수소 분위기)에서 2시간 동안 소성하였다. 제조된 촉매는 질소 분위기에서 밀폐 보관하였고 하기와 같은 실험을 수행하였다. After the reaction was completely completed, the precipitated powder was filtered using a filter paper and washed with distilled water. The prepared catalyst was dried at 60 ° C. nitrogen atmosphere (or hydrogen atmosphere) and then calcined at 200 ° C. nitrogen atmosphere (or hydrogen atmosphere) for 2 hours. The prepared catalyst was kept sealed in a nitrogen atmosphere and the following experiment was performed.

<비교예>Comparative Example

본 실시예에서 제조된 촉매와 비교하고자 상용 Co 금속 분말을 준비하여 하기와 같은 실험을 수행하였다.In order to compare with the catalyst prepared in this Example, a commercial Co metal powder was prepared and the following experiment was performed.

<실험예>Experimental Example

촉매 특성 조사 및 결과Catalytic Characterization and Results

촉매의 구조와 조성, 표면 형상 및 표면적을 조사하기 위해 XRD(X-Ray Diffraction), AAS(Atomoc Absorption Spectroscopy), SEM(Scanning Electron Microscopy) 및 BET(Brunauer-Emmett-Teller) 분석을 수행하였다. X-Ray Diffraction (XRD), Atomoc Absorption Spectroscopy (AAS), Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analyzes were performed to investigate the structure and composition, surface morphology and surface area of the catalyst.

도 2는 (a) 비교예의 상용 Co 금속 분말 및 (b) 실시예에서 제조된 촉매 각각의 XRD 패턴을 나타내는 것이다.Figure 2 shows the XRD pattern of each of (a) the commercial Co metal powder of Comparative Example and (b) the catalyst prepared in Example.

도 2에 나타난 바와 같이, 분말 형태로 제조한 촉매의 구조를 조사하기 위해 비교예인 상용 Co 금속 분말과 본 실시예의 촉매에 대해 XRD 분석을 수행한 결과, 환원법으로 제조한 본 실시예의 촉매의 XRD 스펙트럼에서는 비교예의 Co 금속분말과는 달리 Co3O4 피크들이 관찰되었다. 이는 본 실시예의 촉매가 금속 상태가 아닌 산화물 상태임을 의미한다. As shown in FIG. 2, XRD spectra of the catalyst of the present Example prepared by the reduction method were obtained by performing XRD analysis on the commercial Co metal powder as a comparative example and the catalyst of the present Example to investigate the structure of the catalyst prepared in powder form. Unlike Co metal powder of Comparative Example, Co 3 O 4 peaks were observed. This means that the catalyst of the present embodiment is in an oxide state rather than a metal state.

한편, 제조한 촉매의 조성을 조사하기 위해 AAS 분석을 수행하였다. 표 1은 ASS에 의한 본 실시예에서 제조된 촉매의 원소 분석 결과를 나타낸다.Meanwhile, AAS analysis was performed to investigate the composition of the prepared catalyst. Table 1 shows the results of elemental analysis of the catalyst prepared in this example by ASS.

FeFe NiNi SiSi MgMg MnMn PP BB CuCu 10-3 10 -3 10-2 10 -2 10-2 10 -2 10-4 10 -4 10-3 10 -3 10-3 10 -3 100 10 0 10-3 10 -3 NaNa CoCo CaCa AlAl KK SrSr SS ClCl 10-3 10 -3 100 10 0 10-3 10 -3 10-3 10 -3 10-3 10 -3 10-3 10 -3 10-3 10 -3 10-3 10 -3

표 1에 나타낸 것처럼 본 실시예에서 제조된 촉매의 조성이 대부분 Co와 B로 이루어져 있음을 알 수 있었다. AAS 분석에서 산소는 검출되지 않았다. As shown in Table 1, the composition of the catalyst prepared in this example was found to be composed mostly of Co and B. No oxygen was detected in the AAS analysis.

이와 같이, XRD와 AAS 분석결과로부터 본 실시예의 촉매는 (CoxBy)3O4와 같이 Co-B의 산화물 형태이거나, Co3O4와 CoB나 Co2B 같은 Co-B 화합물이 혼합되어 있음을 알 수 있었다. 그러나, XRD 분석결과에서 CoB나 Co2B 의 피크는 관찰되지 않았으므로 Co-B 화합물은 존재하더라도 소량이거나 결정성이 낮은 형태일 것으로 판단되었다.As such, from the XRD and AAS analysis results, the catalyst of this example is in the form of an oxide of Co-B, such as (Co x B y ) 3 O 4 , or Co 3 O 4 and Co-B compounds such as CoB or Co 2 B are mixed. I could see that. However, since no peaks of CoB or Co 2 B were observed in the XRD analysis results, it was determined that the Co-B compound was present even in the presence of a small amount or low crystallinity.

도 3은 본 실시예에서 제조된 촉매의 SEM 이미지를 나타낸다. 도 3에 도시된 바와 같이, 본 실시예의 촉매는 비교적 균일한 입자크기의 구형임을 알 수 있다. 질소흡착법을 이용한 BET 분석결과 촉매의 BET 표면적은 77 m2/g 이었다. 3 shows an SEM image of the catalyst prepared in this example. As shown in Figure 3, it can be seen that the catalyst of the present embodiment is a spherical shape of a relatively uniform particle size. As a result of BET analysis using nitrogen adsorption method, the BET surface area of the catalyst was 77 m 2 / g.

수소 발생 실험Hydrogen Generation Experiment

도 1은 본 실험예의 수소 발생 실험 장치를 나타내는 개략도이다. 1 is a schematic view showing a hydrogen generation experimental apparatus of the present experimental example.

도 1에 도시된 바와 같이, 내부의 온도와 압력을 측정할 수 있는 지름 4 ㎝, 높이 10 ㎝의 반응기(10)에 NaBH4 용액과 촉매를 넣고 수소의 발생량을 질량 유량계(MFM; Mass Flow Meter)(20)로 측정하고 이를 퍼스널 컴퓨터(25)로 기록하였다. 수소 발생 반응이 발열 반응이므로 반응기 외부에 온도 조절기(30)를 설치하고, 냉각수(5)를 순환시켜 용액의 온도를 일정하게 유지하였다. As shown in FIG. 1, a NaBH 4 solution and a catalyst are placed in a reactor 10 having a diameter of 4 cm and a height of 10 cm capable of measuring internal temperature and pressure, and the amount of hydrogen generated is measured by a mass flow meter (MFM). 20 and recorded it with a personal computer 25. Since the hydrogen evolution reaction is an exothermic reaction, a temperature controller 30 is installed outside the reactor, and the cooling water 5 is circulated to maintain a constant temperature of the solution.

제조한 촉매를 이용한 NaBH4 수소 방출 반응 특성을 조사하기 위해 용액 온도, 촉매 사용량, NaBH4 농도, NaOH 농도를 변화시키면서 수소 발생 속도를 측정하였다. In order to investigate the NaBH 4 hydrogen emission reaction characteristics using the prepared catalyst, the rate of hydrogen evolution was measured while varying the solution temperature, catalyst usage, NaBH 4 concentration, and NaOH concentration.

실시예에서 제조된 촉매의 경우 반응 온도에 따른 수소 발생 결과In the case of the catalyst prepared in Example, the hydrogen generation result according to the reaction temperature

반응온도가 Co-B 촉매의 활성에 미치는 영향을 조사하기 위해 10~30℃의 20 wt% NaBH4 + 5 wt% NaOH 수용액으로부터 수소 발생 속도를 측정하였다.In order to investigate the effect of reaction temperature on the activity of Co-B catalyst, the rate of hydrogen evolution was measured from 20 wt% NaBH 4 + 5 wt% NaOH aqueous solution at 10-30 ° C.

도 4는 본 발명의 실험예에 있어서, 0.05 g Co-B 촉매를 사용한 경우의 20 wt% NaBH4 + 5 wt% NaOH 용액으로부터의 수소 발생시 온도의 영향을 보여주는 그래프이다.FIG. 4 is a graph showing the effect of temperature upon hydrogen generation from a 20 wt% NaBH 4 + 5 wt% NaOH solution when using 0.05 g Co-B catalyst in the experimental example of the present invention.

도 4에 나타난 바와 같이, Ru 촉매에서와 같이, 촉매가 활성화되면서 반응속도가 높아진 후 일정해져서 반응속도가 시간에 무관한 0 차 반응임을 알 수 있었다. 10 ℃에서는 수소가 460 mL/min·g이 발생하였으며, 용액온도가 20℃, 30℃로 증가함에 따라 1,800초에서의 수소 발생 속도가 1,000 mL/min·g 에서 2,800 mL/min·g 으로 높아졌다. 20℃에서 Ru 분말 촉매의 수소 발생 속도가 약 3,000 mL/min·g 임을 고려하면 비귀금속 Co-B 촉매의 활성이 상당히 높음을 알 수 있었다.As shown in FIG. 4, as in the Ru catalyst, as the catalyst is activated, the reaction rate increases and then becomes constant, indicating that the reaction rate is a zero-order reaction regardless of time. At 10 ° C, hydrogen was generated at 460 mL / min · g, and as the solution temperature increased to 20 ° C and 30 ° C, the rate of hydrogen evolution at 1,800 sec increased from 1,000 mL / min · g to 2,800 mL / min · g. . Considering that the hydrogen generation rate of the Ru powder catalyst at 20 ° C. was about 3,000 mL / min · g, the activity of the non-noble metal Co-B catalyst was found to be quite high.

실시예에서 제조된 촉매의 양에 따른 수소 발생 결과Hydrogen generation results according to the amount of catalyst prepared in the examples

수소 발생시 Co-B 촉매의 양이 활성에 미치는 영향을 조사하기 위해 20℃에서 20 wt% NaBH4 + 5 wt% NaOH 용액으로부터의 수소 발생 속도를 측정하였다.The rate of hydrogen evolution from 20 wt% NaBH 4 + 5 wt% NaOH solution at 20 ° C. was measured to investigate the effect of the amount of Co—B catalyst on the activity upon hydrogen evolution.

도 5는 본 발명의 실험예에 있어서 Co-B 촉매를 사용한 경우 20℃에서 20 wt% NaBH4 + 5 wt% NaOH 용액으로부터의 수소 발생시 촉매의 양의 영향을 보여주는 그래프이다.FIG. 5 is a graph showing the effect of the amount of catalyst upon hydrogen generation from a 20 wt% NaBH 4 + 5 wt% NaOH solution at 20 ° C. when the Co-B catalyst was used in the experimental example of the present invention.

도 5에 나타난 바와 같이, Co-B 촉매의 양을 달리하며 수소 발생 속도를 측정한 결과, 역시 초기에 반응속도가 높아졌다가 거의 일정한 값을 나타내었는데 촉매량이 많아질수록 최고 반응속도가 높아졌다. 이는 촉매량이 많아질수록 초기 활성화가 활발해 국부적으로 반응열이 제거되지 않고 온도가 올라가기 때문으로 판단되었다. As shown in FIG. 5, the hydrogen generation rate was measured while varying the amount of Co-B catalyst, and the reaction rate was also initially increased and then showed a substantially constant value. As the amount of the catalyst increased, the maximum reaction rate increased. This is because the higher the amount of catalyst, the more active the initial activation, the reaction heat is not removed locally and the temperature is increased.

한편, 촉매량을 0.002g에서 0.09g으로 증가시켜도 안정화된 이후에는 수소 발생속도가 1,000 mL/min·g 으로 거의 일정하였다. 이는 실시예에서 제조된 Co-B 촉매가 분말형의 촉매이므로 물질전달저항의 영향을 받지 않아, 사용한 촉매량에 상관없이 단위무게당 수소발생속도가 일정함을 의미한다. 따라서 여기에서 발생된 수소를 연료전지에 사용한다면 연료전지 스택에서 소모하는 수소량으로부터 수소발생기에 필요한 촉매량을 계산할 수 있게 된다.On the other hand, even after increasing the amount of catalyst from 0.002 g to 0.09 g, the hydrogen generation rate was almost constant at 1,000 mL / min · g after stabilization. This means that since the Co-B catalyst prepared in the example is a powder type catalyst, it is not affected by the material transfer resistance, and thus the hydrogen generation rate per unit weight is constant regardless of the amount of catalyst used. Therefore, if the hydrogen generated here is used in the fuel cell, the amount of catalyst required for the hydrogen generator can be calculated from the amount of hydrogen consumed in the fuel cell stack.

실시예에서 제조된 촉매의 경우 NaBHNaBH for the catalyst prepared in the examples 44 농도에 따른 수소 발생 결과 Hydrogen generation result by concentration

Co-B 촉매를 이용해 수소를 발생시키는 경우 최적의 용액 조건을 선정하기 위해 NaBH4의 농도 변화에 따른 수소 발생 속도를 측정하였다.In the case of generating hydrogen using a Co-B catalyst, the hydrogen evolution rate was measured according to the concentration change of NaBH 4 in order to select the optimal solution condition.

도 6은 본 발명의 실험예에 있어서 0.05 g Co-B 촉매를 사용한 경우 20℃에서 x wt% NaBH4 + 5 wt% NaOH 용액으로부터의 수소 발생시 NaBH4 농도의 영향을 보여주는 그래프이다.6 is a graph showing the effect of NaBH 4 concentration upon hydrogen generation from x wt% NaBH 4 + 5 wt% NaOH solution at 20 ° C. when 0.05 g Co-B catalyst was used in the experimental example of the present invention.

도 6에 나타난 바와 같이, NaBH4 용액의 농도가 증가함에 따라서 수소의 발생 속도는 감소하였다. 그러나, 10 wt%, 20 wt% 및 30 wt%로 증가시킴에 따라, 1,800초에서 수소 발생 속도는 1,345 mL/min·g에서 각각 1,000 mL/min·g 및 760 mL/min·g 으로 감소하였다. 수소 발생 속도 감소의 원인은 NaBH4의 농도가 높아짐에 따라 용액의 점도가 증가하여 물질전달저항이 증가하기 때문이다. As shown in FIG. 6, as the concentration of NaBH 4 solution was increased, the rate of hydrogen generation was decreased. However, as increasing to 10 wt%, 20 wt% and 30 wt%, the hydrogen evolution rate decreased from 1,345 mL / min · g to 1,000 mL / min · g and 760 mL / min · g, respectively, at 1,800 seconds. . The reason for the decrease in hydrogen generation rate is that the viscosity of the solution increases with increasing NaBH 4 concentration, thereby increasing the material transfer resistance.

그러나, Ru 촉매에 비해 NaBH4의 농도 증가에 따른 수소의 발생 속도가 적게 감소했는데, 이는 실시예에서 제조된 Co-B 촉매와 같은 분말형 촉매의 경우 물질전달저항에 대한 민감도가 담지 촉매보다 낮기 때문으로 판단되었다.However, compared with Ru catalyst, the generation rate of hydrogen was decreased with increasing NaBH 4 concentration, which is lower than the supported catalyst in the case of powder catalyst such as Co-B catalyst prepared in Example. It was judged that.

실시예 촉매의 경우 NaOH 농도에 따른 수소 발생 결과Example Results of Hydrogen Evolution According to NaOH Concentration

Co-B 촉매를 사용한 경우 NaOH의 농도에 따른 수소 발생 속도를 측정하였다.When Co-B catalyst was used, the hydrogen evolution rate was measured according to the concentration of NaOH.

도 7은 본 발명의 실험예에 있어서 0.05 g Co-B 촉매를 사용한 경우 20℃에서 20 wt% NaBH4 + x wt% NaOH 용액으로부터의 수소 발생시 NaOH 농도의 영향을 보여주는 그래프이다.7 is 20 wt% NaBH 4 + x at 20 ° C. when 0.05 g Co-B catalyst is used in the experimental example of the present invention. A graph showing the effect of NaOH concentration on hydrogen evolution from wt% NaOH solution.

도 7에 나타난 바와 같이, NaOH 농도가 1 wt%일 때는 수소발생속도가 550 mL/min·g 이었으나 NaOH 농도가 3wt%, 5wt% 일 때는 각각 885 mL/min·g, 1,000 mL/min·g으로 증가하였으며, 10~20wt%에서는 약 1,200 mL/min·g 으로 나타났다. Ru 촉매의 경우 NaOH 농도가 높아짐에 따라 수소발생속도가 감소한 것과는 반대의 결과를 나타내었다. As shown in FIG. 7, when the NaOH concentration was 1 wt%, the hydrogen evolution rate was 550 mL / min · g, but when the NaOH concentration was 3 wt% and 5 wt%, 885 mL / min · g and 1,000 mL / min · g, respectively. 10 ~ 20wt% was about 1,200 mL / min · g. In the case of Ru catalyst, as the NaOH concentration was increased, the hydrogen generation rate was reversed.

이는 Ru 촉매와 Co-B 촉매를 사용하였을 때 수소 발생 기구가 다르다는 것을 의미한다. 즉, Ru 촉매를 사용하는 경우, H+가 수소 발생 기구에 관여하여 OH- 이온 농도가 높아지면 생성된 H+가 OH- 과 재결합하여 수소발생속도가 감소할 것으로 생각된다. 반면, Co-B 의 경우에는 OH-가 수소 발생 반응에 관여하여 OH- 이온농도가 높아질수록 수소발생속도가 높아진 것으로 예상된다. This means that the hydrogen generating mechanism is different when the Ru catalyst and the Co-B catalyst are used. In other words, in the case of using the Ru catalyst, when H + is involved in the hydrogen generating mechanism and the OH ion concentration is increased, the generated H + may be recombined with OH to decrease the hydrogen generation rate. On the other hand, in the case of Co-B, OH - is involved in the hydrogen evolution reaction, the higher the OH - ion concentration is expected to increase the hydrogen generation rate.

비교예 촉매의 경우 NaOH 농도에 따른 수소 발생 결과Hydrogen generation results according to NaOH concentration

도 8은 0.05 g의 비교예의 Co 촉매를 사용한 경우 20℃에서 20 wt% NaBH4 + x wt% NaOH 용액으로부터의 수소 발생시 NaOH 농도의 영향을 보여주는 그래프이다.8 is 20 wt% NaBH 4 + x at 20 ° C. with 0.05 g of Co catalyst of the comparative example. A graph showing the effect of NaOH concentration on hydrogen evolution from wt% NaOH solution.

도 8에 나타난 바와 같이, NaOH 농도 증가에 따른 수소 발생 속도 증가 현상은 본 실시예의 Co-B 촉매와 같이 상용 Co 금속 촉매를 이용한 경우에도 관찰되었다. 나아가, 이러한 현상은 Ni 촉매에 대해서도 보고된 바 있지만 아직까지 그 정확한 기구는 규명되지 못하였다. As shown in Figure 8, the increase in hydrogen generation rate with increasing NaOH concentration was observed even when using a commercial Co metal catalyst, such as the Co-B catalyst of the present embodiment. Furthermore, this phenomenon has been reported for Ni catalysts, but the exact mechanism has not yet been identified.

실시예 촉매의 경우 수소 발생 능력EXAMPLES Hydrogen Generation Ability for Catalysts

도 9는 본 실시예에서 제조된 촉매를 사용한 경우 20℃에서 5 wt% NaBH4 + 5 wt% NaOH로부터의 수소 발생 속도 및 발생 부피를 나타내는 그래프이다.FIG. 9 is a graph showing the rate and volume of hydrogen evolution from 5 wt% NaBH 4 + 5 wt% NaOH at 20 ° C. with the catalyst prepared in this Example.

5 wt% NaBH4 용액으로부터 이론적으로 얻을 수 있는 수소의 부피는 20℃에서 5.07L이지만, 도 9에 나타난 바와 같이, 본 실험에서 최종적으로 얻은 수소의 부피는 4.77L로서 이론적인 양의 약 94% 가 방출되었음을 알 수 있다. The theoretical volume of hydrogen obtainable from a 5 wt% NaBH 4 solution is 5.07 L at 20 ° C., but as shown in FIG. 9, the final volume of hydrogen obtained in this experiment is 4.77 L, about 94% of the theoretical amount. It can be seen that is released.

수소의 발생 속도를 보면 초기에 수소 발생 속도가 급격히 증가하는데 이는 촉매가 활성화되는 영역이며, 이후 수소 발생 속도가 거의 일정하게 유지되다가 다소 증가한 후, 반응물이 모두 소모되면서 수소 발생 반응이 종결된다. 시간이 지남에 따라 수소 발생 속도가 다소 증가한 것은 반응이 진행되면서 pH가 증가하였기 때문으로 NaOH의 농도가 높아질수록 수소 발생 속도가 증가하는 것과 일치한다.In terms of the rate of hydrogen generation, the rate of hydrogen evolution is rapidly increased initially, which is the area where the catalyst is activated. After that, the rate of hydrogen generation remains substantially constant and increases slightly, and then the hydrogen evolution reaction is terminated as the reactants are consumed. The slightly increased rate of hydrogen evolution over time is consistent with the increase of NaOH as the concentration of NaOH increases as the pH increases as the reaction proceeds.

전지 스택에의 수소 공급Hydrogen Supply to the Cell Stack

상기 결과를 바탕으로 본 실시예에서 제조된 촉매를 수소 공급 시스템에 채택하여 2W PEMFC 스택(핸드폰 급)에 수소를 공급한 결과 성공적으로 스택을 작동시킬 수 있었다.Based on the above results, the catalyst prepared in the present example was adopted in the hydrogen supply system, and hydrogen was supplied to the 2W PEMFC stack (cell phone class). As a result, the stack was successfully operated.

결론conclusion

본 실시예에서 알칼리 NaBH4 수용액을 이용한 수소 방출 반응용 Co-B 촉매를 화학적 환원법으로 제조하였다. 본 실시예에서 제조한 촉매는 Co-B 산화물 또는 Co-B 화합물이었으며, 1,000 ml/minㆍg 이상의 수소발생속도를 나타내었다. 이는 Ru 촉매에 비해 30~50%의 높은 활성을 갖는 것이므로 본 실시예의 Co-B 촉매는 고가의 Ru 촉매를 대체할 수 있다. In this embodiment, a Co-B catalyst for hydrogen evolution using an aqueous NaBH 4 solution was prepared by chemical reduction. The catalyst prepared in this example was a Co-B oxide or a Co-B compound, and exhibited a hydrogen generation rate of 1,000 ml / min · g or more. Since it has a higher activity of 30 to 50% than the Ru catalyst, the Co-B catalyst of the present embodiment can replace the expensive Ru catalyst.

한편, 본 실시예의 Co-B 촉매를 이용해 용액온도, 촉매량, NaBH4 농도, NaOH 농도에 따른 수소 발생 속도를 측정하였다. 수소 발생은 시간에 따라 반응 속도가 일정하게 유지되는 0차 반응이었다. 수소 발생 속도는 용액온도가 높아짐에 따라 증가하였으며, 사용하는 촉매량에 비례하여 증가하였다. NaBH4의 농도가 증가함에 따라 수소의 발생속도는 감소하였는데, 이는 용액의 점도 증가에 기인하였다. NaOH의 농도가 높아짐에 따라 수소발생속도는 증가하였으며, 알칼리 NaBH4 수용액을 이용한 수소발생 반응은 반응이 진행되면서 pH가 높아지므로 시간이 지남에 따라 자발적으로 수소 발생 속도가 증가하였다. On the other hand, using the Co-B catalyst of the present embodiment was measured the hydrogen generation rate according to the solution temperature, catalyst amount, NaBH 4 concentration, NaOH concentration. Hydrogen evolution was a zero-order reaction in which the reaction rate remained constant over time. The rate of hydrogen evolution increased with increasing solution temperature and increased in proportion to the amount of catalyst used. As the concentration of NaBH 4 increased, the rate of hydrogen evolution decreased due to an increase in the viscosity of the solution. As the concentration of NaOH increases, the rate of hydrogen evolution increases, and the rate of hydrogen evolution using an alkaline NaBH 4 aqueous solution increases the pH as the reaction proceeds, so that the rate of hydrogen evolution spontaneously increases over time.

한편, 상기 결과를 바탕으로 수소 공급 시스템을 제작하여 연료전지에 수소를 공급한 결과 성공적으로 연료전지를 구동할 수 있었다. On the other hand, as a result of producing a hydrogen supply system to supply hydrogen to the fuel cell based on the above results it was able to successfully drive the fuel cell.

본 실시예에서 제조한 Co-B 촉매는 알칼리 NaBH4 수용액을 이용한 수소 방출 반응용 촉매로서 높은 활성을 가질 뿐만 아니라, KBH4 이나 LiBH4 등의 다른 붕소수소화물에 있어서도 수소 방출 반응용 촉매로서 사용되어 높은 활성을 나타낸다.Co-B catalyst prepared in the present embodiment not only has high activity as a catalyst for hydrogen evolution using alkaline NaBH 4 aqueous solution, but is also used as a catalyst for hydrogen evolution in other boron hydrides such as KBH 4 or LiBH 4 . High activity.

본 발명에 따른 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매는, 귀금속 촉매인 Ru 촉매에 비하여 30~50% 이상의 높은 활성을 갖는 것이므로, 상용의 Co 금속 촉매와 달리 비귀금속 촉매로서 고가의 Ru 등 귀금속 촉매를 대체할 수 있다. Since the Co-B catalyst for hydrogen release reaction using the alkali boron hydride solution according to the present invention has a higher activity of 30-50% or more than the Ru catalyst, which is a noble metal catalyst, it is a non-noble metal catalyst unlike commercial Co metal catalysts. It can replace precious metal catalysts such as expensive Ru.

비록 본 발명이 상기 언급된 바람직한 실시예와 관련하여 설명되어졌지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허청구의 범위는 본 발명의 요지에서 속하는 이러한 수정이나 변형을 포함할 것이다.Although the present invention has been described in connection with the above-mentioned preferred embodiments, it is possible to make various modifications or variations without departing from the spirit and scope of the invention. Accordingly, the appended claims will cover such modifications and variations as fall within the spirit of the invention.

Claims (4)

알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 촉매로서, As a catalyst for hydrogen release reaction using an alkali boron hydride solution, Co 및 B의 산화물 또는 Co 및 B의 화합물중 어느 하나 또는 둘을 포함하는 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매.Co-B catalyst for hydrogen release reaction using an alkali boron hydride solution, characterized in that it comprises an oxide of Co and B or a compound of Co and B. 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 촉매의 제조 방법에 있어서,In the method for producing a catalyst for hydrogen release reaction using an alkali boron hydride solution, 환원제로 알칼리 붕소수소화물 용액을 이용하여 Co2+를 환원하는 단계(S1); 및 Alkali boride hydride as reducing agent Reducing Co 2+ using the solution (S1); And 환원 후 침전된 촉매를 건조 및 소성하여, Co 및 B의 산화물 또는 Co 및 B의 화합물중 어느 하나 또는 둘을 포함하는 촉매를 수득하는 단계(S2)로 구성되는 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매의 제조 방법.Alkali borohydride solution, comprising the step (S2) of drying and calcining the precipitated catalyst after reduction to obtain a catalyst comprising any one or both of oxides of Co and B or compounds of Co and B Method for producing a Co-B catalyst for hydrogen evolution reaction using. 제 2 항에 있어서, The method of claim 2, 상기 S1 단계는 상기 환원제로 사용되는 알칼리 붕소수소화물 용액으로서, NaBH4, KBH4 또는 LiBH4 중 어느 하나의 붕소수소화물 및 NaOH 또는 KOH 중 어느 하 나의 수산화물을 혼합한 알칼리 붕소수소화물 용액을 사용하는 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매의 제조 방법.The step S1 is an alkali boron hydride solution used as the reducing agent, using an alkali boron hydride solution in which any one of NaBH 4 , KBH 4 or LiBH 4 boride and a hydroxide of NaOH or KOH is mixed. A method for producing a Co-B catalyst for hydrogen evolution using an alkali boron hydride solution, characterized in that 제 3 항에 있어서, The method of claim 3, wherein 상기 S2 단계는 질소 또는 수소 분위기 하에서 상기 건조 및 소성을 수행하는 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매의 제조 방법.The step S2 is a method of producing a Co-B catalyst for hydrogen release reaction using an alkaline boron hydride solution, characterized in that the drying and firing in a nitrogen or hydrogen atmosphere.
KR1020050027817A 2005-04-02 2005-04-02 Co-B catalyst for hydrogen generating reaction using alkaline borohydrides solution and method to prepare the same KR100782383B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050027817A KR100782383B1 (en) 2005-04-02 2005-04-02 Co-B catalyst for hydrogen generating reaction using alkaline borohydrides solution and method to prepare the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050027817A KR100782383B1 (en) 2005-04-02 2005-04-02 Co-B catalyst for hydrogen generating reaction using alkaline borohydrides solution and method to prepare the same

Publications (2)

Publication Number Publication Date
KR20060105957A true KR20060105957A (en) 2006-10-12
KR100782383B1 KR100782383B1 (en) 2007-12-07

Family

ID=37626735

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050027817A KR100782383B1 (en) 2005-04-02 2005-04-02 Co-B catalyst for hydrogen generating reaction using alkaline borohydrides solution and method to prepare the same

Country Status (1)

Country Link
KR (1) KR100782383B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713107B1 (en) * 2005-06-29 2007-05-02 삼성엔지니어링 주식회사 Cobalt oxide catalyst for hydrogen generation and method of producing the same
KR100785052B1 (en) * 2006-07-14 2007-12-12 한국과학기술연구원 Non precious metal-b catalyst/structured support for hydrogen generating using capacitive deionization and chemical reduction and method for preparing the same
KR100785043B1 (en) * 2006-06-28 2007-12-12 한국과학기술연구원 Co-b catalyst/structured support for hydrogen generating using alkaline borohydrides solution and method for preparing the same
US8956771B2 (en) 2011-09-27 2015-02-17 Samsung Sdi Co., Ltd. Electrode catalyst for fuel cell, method of preparation, MEA including the catalyst, and fuel cell including the MEA
CN107248455A (en) * 2017-06-15 2017-10-13 桂林电子科技大学 A kind of cellular porous Co W B alloyed oxides and its preparation method and application
CN114308040A (en) * 2022-01-07 2022-04-12 桂林电子科技大学 CoB-LDH-CNT (cobalt-layered double hydroxide) -CNT (carbon nanotube) nanomaterial with lamellar structure as well as preparation method and application thereof
KR20220046029A (en) * 2020-10-06 2022-04-14 한국과학기술원 A transition metal boride composite, a method for manufacturing the same, and a catalyst for hydrogen generation reaction comprising the transition metal boride composite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230088999A (en) 2021-12-13 2023-06-20 주식회사 별팀 Hydrogen Generation Device for Drone Power System

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100186951B1 (en) * 1996-05-29 1999-04-15 윤능민 Nickel boride catalyst on borohydride exchange resin and process for the preparation of cis-olefinic compounds by using same
US6946104B2 (en) * 2001-07-09 2005-09-20 Hydrogenics Corporation Chemical hydride hydrogen generation system and an energy system incorporating the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713107B1 (en) * 2005-06-29 2007-05-02 삼성엔지니어링 주식회사 Cobalt oxide catalyst for hydrogen generation and method of producing the same
KR100785043B1 (en) * 2006-06-28 2007-12-12 한국과학기술연구원 Co-b catalyst/structured support for hydrogen generating using alkaline borohydrides solution and method for preparing the same
KR100785052B1 (en) * 2006-07-14 2007-12-12 한국과학기술연구원 Non precious metal-b catalyst/structured support for hydrogen generating using capacitive deionization and chemical reduction and method for preparing the same
US8956771B2 (en) 2011-09-27 2015-02-17 Samsung Sdi Co., Ltd. Electrode catalyst for fuel cell, method of preparation, MEA including the catalyst, and fuel cell including the MEA
CN107248455A (en) * 2017-06-15 2017-10-13 桂林电子科技大学 A kind of cellular porous Co W B alloyed oxides and its preparation method and application
KR20220046029A (en) * 2020-10-06 2022-04-14 한국과학기술원 A transition metal boride composite, a method for manufacturing the same, and a catalyst for hydrogen generation reaction comprising the transition metal boride composite
CN114308040A (en) * 2022-01-07 2022-04-12 桂林电子科技大学 CoB-LDH-CNT (cobalt-layered double hydroxide) -CNT (carbon nanotube) nanomaterial with lamellar structure as well as preparation method and application thereof

Also Published As

Publication number Publication date
KR100782383B1 (en) 2007-12-07

Similar Documents

Publication Publication Date Title
KR100782383B1 (en) Co-B catalyst for hydrogen generating reaction using alkaline borohydrides solution and method to prepare the same
US20060293173A1 (en) Hydrogen generation catalysts and systems for hydrogen generation
US20060292067A1 (en) Hydrogen generation catalysts and methods for hydrogen generation
Huang et al. Mn-incorporated Co3O4 bifunctional electrocatalysts for zinc-air battery application: An experimental and DFT study
KR101280200B1 (en) Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
Krishnan et al. Catalysts for the hydrolysis of aqueous borohydride solutions to produce hydrogen for PEM fuel cells
Yuan et al. Effects of heat-treatment temperature on properties of Cobalt–Manganese–Boride as efficient catalyst toward hydrolysis of alkaline sodium borohydride solution
US20070172417A1 (en) Hydrogen generation catalysts and systems for hydrogen generation
US11697108B2 (en) Systems and methods for processing ammonia
CN102574103B (en) Porous catalytic object for decomposing hydrocarbon and process for producing same, process for producing hydrogen-containing mixed reformed gas from hydrocarbon, and fuel cell system
WO2008056621A1 (en) Desulfurizing agent for kerosene, desulfurization method and fuel cell system using the desulfurizing agent for kerosene
JP2008221200A (en) Reforming catalyst of oxygen-containing hydrocarbon, manufacturing method of hydrogen or synthetic gas using it and fuel cell system
Dasireddy et al. Cu–Mn–O nano-particle/nano-sheet spinel-type materials as catalysts in methanol steam reforming (MSR) and preferential oxidation (PROX) reaction for purified hydrogen production
KR101016891B1 (en) Oxyhydrocarbon reforming catalyst, process for producing hydrogen or synthetic gas therewith and fuel cell system
Baytar et al. Al2O3 supported Co-Cu-B (Co-Cu-B/Al2O3) catalyst for hydrogen generation by hydrolysis of aqueous sodium borohydride (NaBH4) solutions
WO2007002357A2 (en) Hydrogen generation catalysys and system for hydrogen generation
JP2007000703A (en) Reforming catalyst, method of manufacturing reforming catalyst and fuel cell system
Al‐Msrhad et al. Investigation of hydrogen production from sodium borohydride by carbon nano tube‐graphene supported PdRu bimetallic catalyst for PEM fuel cell application
Xue et al. Constructing Ni-based confinement catalysts with advanced performances toward the CO 2 reforming of CH 4: state-of-the-art review and perspectives
KR100785043B1 (en) Co-b catalyst/structured support for hydrogen generating using alkaline borohydrides solution and method for preparing the same
US11795055B1 (en) Systems and methods for processing ammonia
JPWO2014021224A1 (en) Hydrocarbon decomposition catalyst body, method for producing hydrogen-containing mixed reformed gas using the catalyst body, and fuel cell system
JP2005066516A (en) Catalyst for reforming dimethyl ether and synthesizing method therefor
KR100785052B1 (en) Non precious metal-b catalyst/structured support for hydrogen generating using capacitive deionization and chemical reduction and method for preparing the same
Sankir et al. Hydrogen generation from chemical hydrides

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20111019

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20121031

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee