WO2004001870A1 - 圧電素子及び液体噴射ヘッド及びこれらの製造方法 - Google Patents

圧電素子及び液体噴射ヘッド及びこれらの製造方法 Download PDF

Info

Publication number
WO2004001870A1
WO2004001870A1 PCT/JP2003/007990 JP0307990W WO2004001870A1 WO 2004001870 A1 WO2004001870 A1 WO 2004001870A1 JP 0307990 W JP0307990 W JP 0307990W WO 2004001870 A1 WO2004001870 A1 WO 2004001870A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
film
layer
sol
lower electrode
Prior art date
Application number
PCT/JP2003/007990
Other languages
English (en)
French (fr)
Inventor
Masami Murai
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002183512A external-priority patent/JP4081809B2/ja
Priority claimed from JP2003178799A external-priority patent/JP4096185B2/ja
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to US10/517,840 priority Critical patent/US7291520B2/en
Priority to EP03760949A priority patent/EP1517382A4/en
Priority to CNB038148722A priority patent/CN100385698C/zh
Publication of WO2004001870A1 publication Critical patent/WO2004001870A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1623Manufacturing processes bonding and adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1607Production of print heads with piezoelectric elements
    • B41J2/161Production of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1628Manufacturing processes etching dry etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1645Manufacturing processes thin film formation thin film formation by spincoating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/077Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
    • H10N30/078Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition by sol-gel deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • B41J2002/14241Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm having a cover around the piezoelectric thin film element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14419Manifold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14491Electrical connection
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead based oxides
    • H10N30/8554Lead zirconium titanate based

Definitions

  • the present invention relates to a piezoelectric element and a liquid ejecting head using the same, and more particularly, to a method for manufacturing a piezoelectric element capable of making the crystal orientation uniform in a wafer surface and making the piezoelectric characteristics uniform.
  • a piezoelectric element is an element in which a piezoelectric film exhibiting an electromechanical conversion function is sandwiched between two electrodes, and the piezoelectric film is made of crystallized piezoelectric ceramics.
  • a so-called sol-gel method has been known as a method for manufacturing a piezoelectric element. That is, a sol of an organometallic compound is applied to the substrate on which the lower electrode is formed, dried and degreased to form a piezoelectric precursor film. After performing the application, drying, and degreasing processes a predetermined number of times, heat treatment is performed at a high temperature to crystallize. In order to further increase the film thickness, the application of a sol, the drying and degreasing step, and the crystallization step are repeatedly performed on the crystallized piezoelectric layer.
  • a part of a pressure generating chamber communicating with a nozzle opening for discharging ink droplets is configured by a vibration plate, and the vibration plate is deformed by the piezoelectric element to reduce an ink of the pressure generation chamber. It is applied to a liquid jet head such as an ink jet recording head which pressurizes and ejects ink droplets from a nozzle opening.
  • a liquid jet head such as an ink jet recording head which pressurizes and ejects ink droplets from a nozzle opening.
  • Two types of ink jet recording heads have been put into practical use, one that uses a longitudinal vibration mode piezoelectric actuator that expands and contracts in the axial direction of the piezoelectric element, and the other that uses a flexural vibration mode piezoelectric actuator. I have. For example, a flexural vibration mode actuator is used.
  • a uniform piezoelectric layer is formed by a film forming technique over the entire surface of a vibration plate, and this piezoelectric layer corresponds to a pressure generating chamber by lithography. Cut into shapes It is known that a piezoelectric element is formed so as to be independent for each pressure generating chamber separately.
  • An ink jet recording head having such a piezoelectric element in a flexural vibration mode is disclosed in, for example, As disclosed in Japanese Patent Application Laid-Open No. 0-3202503, the initial deflection of the diaphragm is suppressed by patterning the lower electrode constituting the piezoelectric element in a region opposed to the pressure generating chamber. In some cases, the amount of displacement of the diaphragm caused by driving the element is increased. '
  • the present invention provides a piezoelectric element that can obtain the desired good crystallinity, improve the uniformity thereof, prevent the piezoelectric film from being broken, and obtain a stable displacement characteristic. It is an object of the present invention to provide an element, a liquid jet head using the element, and a method for manufacturing the same.
  • a first aspect of the present invention that solves the above-mentioned problems includes a step of forming a lower electrode on a substrate, a step of forming a piezoelectric film on the lower electrode, and a step of forming an upper electrode on the piezoelectric film.
  • the method of manufacturing a piezoelectric element, wherein the step of forming the piezoelectric film includes applying a sol of an organometallic compound, drying the sol of the organometallic compound, By degreased, the sol of the organometallic compound is gelled, and the step of crystallizing the gelled organometallic compound to form a piezoelectric layer is performed a plurality of times to laminate a plurality of piezoelectric layers.
  • a method of manufacturing a piezoelectric element, wherein, when forming the lowermost piezoelectric layer, at least a temperature rising rate at the time of initial degreasing is set to 500 ° C./min or less. .
  • the lowermost piezoelectric layer when forming the lowermost piezoelectric layer, a large number of small seed crystals are formed in the lowermost piezoelectric layer by keeping the rate of temperature rise during degreasing relatively low. Thus, a piezoelectric film having good film quality can be formed.
  • the temperature rising rate during degreasing is set to 100 ° C./min or more. And a method for manufacturing a piezoelectric element.
  • the crystal grows with the previously crystallized piezoelectric crystal as a nucleus, so that the crystal of the piezoelectric film can be prevented from being discontinuous.
  • a third aspect of the present invention includes a step of forming a lower electrode on a substrate, a step of forming a piezoelectric film on the lower electrode, and a step of forming an upper electrode on the piezoelectric film.
  • the step of forming the piezoelectric film includes applying a sol of an organometallic compound, drying the sol of the organometallic compound, and degrease the sol to thereby remove the organic metal.
  • the compound sol is gelled, and the step of crystallizing the gelled organometallic compound to form a piezoelectric layer is performed a plurality of times, thereby stacking a plurality of piezoelectric f layers.
  • the rate of temperature increase during the initial degreasing is set to be equal to or lower than the rate of temperature increase during the degreasing of the other piezoelectric layers.
  • the lowermost piezoelectric layer when the lowermost piezoelectric layer is formed, a large number of small seed crystals are formed in the lowermost piezoelectric layer by keeping the rate of temperature rise during degreasing relatively low. .
  • a piezoelectric film having good film quality can be formed.
  • the first piezoelectric layer is a lowermost piezoelectric layer on the lower electrode provided on substantially the entire surface of the substrate.
  • the lower electrode and the first piezoelectric layer are patterned into a predetermined shape.
  • another piezoelectric layer is formed so as to cover the lower electrode and the end face of the first piezoelectric layer, and the second piezoelectric layer provided immediately above the first piezoelectric layer and the first piezoelectric layer.
  • the film quality of the piezoelectric film particularly, the film quality of the end face of the lower electrode and the piezoelectric film outside the end face is improved.
  • the first and second piezoelectric layers are formed by applying a sol of an organometallic compound once and then gelling the sol to crystallize the sol. And forming the remaining piezoelectric layer by applying the sol of the organometallic compound twice or more, then gelling the sol, and crystallizing the sol. It is in. ⁇
  • the film quality of the piezoelectric film can be improved and the manufacturing efficiency can be improved.
  • the crystal seed serving as a nucleus of the piezoelectric film is replaced with the first seed.
  • the crystal structure of the second piezoelectric layer is substantially uniformly formed in one direction by the crystal seed, so that the film quality of the piezoelectric film is reliably improved.
  • a seventh aspect of the present invention is the method for manufacturing a piezoelectric element according to any one of the fourth to sixth aspects, wherein the lower electrode and the first piezoelectric layer are patterned by ion milling. is there.
  • the lower electrode and the first piezoelectric layer can be relatively easily patterned into a desired shape.
  • a step of forming a lower electrode on a substrate, a step of forming a piezoelectric film on the lower electrode, and a step of forming an upper electrode on the piezoelectric film A step of forming a piezoelectric film, wherein the step of forming the piezoelectric film includes applying a sol of an organometallic compound, drying the sol of the organometallic compound, and degreased the organic material to remove the organic material.
  • the metal compound sol is gelled, and the gelled organic metal compound is The process of crystallizing to form a piezoelectric layer is performed a plurality of times to laminate a plurality of piezoelectric layers.
  • the temperature rise during degreasing A method for manufacturing a piezoelectric element, characterized in that the rate is set to be equal to or lower than the rate of temperature increase during degreasing for a piezoelectric layer formed by another crystallization.
  • the rate is set to be equal to or lower than the rate of temperature increase during degreasing for a piezoelectric layer formed by another crystallization.
  • a ninth aspect of the present invention is the method for manufacturing a piezoelectric element according to any one of the first to eighth aspects, wherein heating is performed from the substrate side when performing the degreasing.
  • heating can be performed under relatively uniform temperature conditions, and uniform and efficient degreasing can be performed.
  • a tenth aspect of the present invention is a method for manufacturing a liquid jet head, comprising using the piezoelectric element manufactured by the manufacturing method according to any one of the first to ninth aspects.
  • a piezoelectric element including: a lower electrode; a piezoelectric film formed on the lower electrode; and an upper electrode formed on the piezoelectric film.
  • the film includes a lower layer portion having columnar crystals and an upper layer portion having a columnar crystal continuous with the columnar crystals of the lower layer portion and having a larger diameter than the columnar crystals of the lower layer portion.
  • the film quality such as the crystallinity of the piezoelectric film is improved, and the film quality is made uniform.
  • the lower electrode is patterned in a predetermined shape, and a lowermost layer of a plurality of piezoelectric layers constituting the piezoelectric film is used.
  • a first piezoelectric layer is formed only on the lower electrode, and another piezoelectric layer is formed so as to cover end surfaces of the lower electrode and the first piezoelectric layer;
  • a second piezoelectric layer formed immediately above the first piezoelectric layer constitutes the lower layer portion.
  • the film quality such as crystallinity of the piezoelectric film is improved.
  • the film quality of the end face of the pole and the piezoelectric film on the outside thereof is improved, and good piezoelectric characteristics can be obtained.
  • each of the first and second piezoelectric layers is thinner than each of the other piezoelectric layers. In the piezoelectric element.
  • the quality of the piezoelectric film is more reliably improved.
  • the end face of the lower electrode and the first piezoelectric layer is an inclined face inclined at a predetermined angle with respect to the surface in the first or the thirteenth aspect.
  • the piezoelectric element is characterized in that:
  • the film quality of the lower electrode and the second piezoelectric layer formed immediately above the first piezoelectric layer is improved, and generation of cracks and the like in the piezoelectric film due to voltage application is prevented. Is done.
  • a metal layer electrically disconnected from the lower electrode is provided near an end of the piezoelectric film.
  • the feature is the piezoelectric element.
  • the piezoelectric layer is formed by crystallization under substantially uniform heating conditions, a piezoelectric film having good film quality can be obtained.
  • a liquid jet head including the piezoelectric element according to any one of the first to fifteenth aspects as a liquid discharge drive source.
  • FIG. 1 is an explanatory diagram of the structure of the printer according to the first embodiment.
  • FIG. 2 is an exploded perspective view schematically showing a recording head according to the first embodiment.
  • FIG. 3 is a plan view and a cross-sectional view of the recording head according to the first embodiment.
  • FIG. 4 is a schematic sectional view showing a layer structure of the piezoelectric element according to the first embodiment.
  • FIG. 5 is a sectional view showing a manufacturing process of the recording head according to the first embodiment.
  • FIG. 6 is a cross-sectional view of a recording head manufacturing process according to Embodiment 1.
  • FIG. 7 is a partial cross-sectional view showing a detailed layer structure of the piezoelectric element.
  • FIG. 8 is a perspective view showing the outline of a recording head according to the second embodiment.
  • FIG. 9 is a plan view and a cross-sectional view of the recording head according to the second embodiment.
  • FIG. 10 is a sectional view of a recording head according to the second embodiment.
  • FIG. 11 is a sectional view showing a manufacturing process of the recording head according to the second embodiment.
  • FIG. 12 is a sectional view showing a manufacturing process of the recording head according to the second embodiment.
  • FIG. 13 is a cross-sectional view of a recording head manufacturing process according to Embodiment 2.
  • FIG. 14 is a cross-sectional view showing a manufacturing step of the recording head according to the second embodiment.
  • FIG. 15 is a sectional view showing a manufacturing process of the recording head according to the second embodiment.
  • FIG. 16 is a plan view and a cross-sectional view of a recording head according to the third embodiment.
  • FIG. 1 is an explanatory view of the structure of a printer (an example of a liquid ejecting apparatus) that uses an ink jet recording head (an example of a liquid ejecting head) provided with a piezoelectric element manufactured by the method of the present embodiment.
  • a tray 3 a discharge port 4 and an operation button 9 are provided on a main body 2.
  • an inkjet recording head 1, a supply mechanism 6, and a control circuit 8 are provided inside the main body 2.
  • the ink jet recording head 1 includes a piezoelectric element manufactured by the manufacturing method of the present invention.
  • the ink jet recording head 1 is configured to be able to discharge liquid ink from nozzles in response to a discharge signal supplied from the control circuit 8.
  • the main body 2 is a housing of the printer, in which the supply mechanism 6 is arranged at a position where the paper 5 can be supplied from the tray 3, and the ink jet recording head 1 is arranged so that the paper 5 can be printed.
  • the tray 3 is configured to be able to supply the paper 5 before printing to the supply mechanism 6, and the outlet 4 is an outlet for discharging the paper 5 on which printing has been completed.
  • the supply mechanism 6 includes a motor 600, rollers 61, 602, and other mechanical structures (not shown).
  • the motor 600 can rotate in response to a drive signal supplied from the control circuit 8.
  • the mechanical structure is configured so that the rotational force of the motor 600 can be transmitted to the rollers 61,602.
  • Rollers 600 and 602 are motors When a rotational force of 600 is transmitted, the paper 5 rotates so that the paper 5 placed on the tray 3 is drawn by the rotation and supplied by the head 1 so as to be printable.
  • the control circuit 8 includes a CPU, ROM, RAM, an interface circuit, and the like (not shown), and supplies a drive signal to the supply mechanism 6 in accordance with print information supplied from a computer via a connector (not shown).
  • An ejection signal can be supplied to the ink jet recording head 1.
  • the control circuit 8 can set an operation mode, perform a reset process, and the like in accordance with an operation signal from the operation panel 9.
  • FIG. 2 is an exploded perspective view schematically showing an ink jet recording head according to Embodiment 1 of the present invention
  • FIG. 3 is a plan view and a cross-sectional view taken along line AA ′ of FIG.
  • FIG. 4 is a schematic sectional view showing a layer structure of the piezoelectric element.
  • the flow path forming substrate 10 is, in the present embodiment, a silicon single crystal substrate having a plane orientation of (110), and one surface of the substrate is formed of a silicon oxide crystal previously formed by thermal oxidation.
  • An elastic film 50 having a thickness of 1 to 2 zim made of silicon is formed.
  • a plurality of pressure generating chambers 12 are provided in the flow path forming substrate 10 in parallel in the width direction.
  • a communication portion 13 is formed in a region outside the pressure generation chamber 12 of the flow path forming substrate 10 in the longitudinal direction, and the communication portion 13 and each pressure generation chamber 12 are connected to each pressure generation chamber 12. They are communicated via ink supply paths 14 provided for each.
  • the communication portion 13 forms a part of a reservoir 100 which communicates with a reservoir portion 31 of a reservoir forming substrate 30 described later and serves as a common ink chamber for each pressure generating chamber 12.
  • the ink supply path 14 is formed to have a width smaller than that of the pressure generation chamber 12, and maintains a constant flow resistance of the ink flowing from the communication section 13 into the pressure generation chamber 12.
  • the thickness of the flow path forming substrate 10 in which the pressure generating chambers 12 and the like are formed be selected in accordance with the density at which the pressure generating chambers 12 are provided.
  • the thickness of the flow path forming substrate 10 is from 180 to 280 / xm The degree is more preferably about 220 ⁇ . Also, for example, 360 dpi
  • the thickness of the flow path forming substrate 10 is not more than 100 ⁇ . This is because the arrangement density can be increased while maintaining the rigidity of the partition 11 between the adjacent pressure generating chambers 12.
  • a nozzle plate provided with a nozzle opening 21 communicating with the vicinity of the end of each pressure generating chamber 12 opposite to the end opposite to the ink supply path 14.
  • the nozzle plates 2 0 has a thickness of, for example, 0. L ⁇ l mm, linear expansion coefficient of 3 0 0 ° C or less, if example embodiment 2. 5 ⁇ 4. 5 [X 1 0- 6 / ° C]
  • an elastic film 50 having a thickness of, for example, about 1.0 ⁇ is provided on the side opposite to the opening surface of the flow path forming substrate 10 as described above.
  • An insulator film 55 having a thickness of, for example, about 0.4 m is formed on the elastic film 50.
  • the upper electrode film 80 having a thickness of, for example, about 0.05 ⁇ is laminated and formed by a process described later,
  • the piezoelectric element 300 refers to a portion including the lower electrode film 60, the piezoelectric layer 70 and the upper electrode film 80.
  • one of the electrodes of the piezoelectric element 300 is used as a common electrode, and the other electrode and the piezoelectric layer 70 are patterned for each pressure generating chamber 12.
  • a portion which is constituted by one of the electrodes and the piezoelectric layer 70 which is patterned and in which a piezoelectric strain is generated by applying a voltage to both electrodes is referred to as a piezoelectric active portion.
  • the lower electrode film 60 is used as a common electrode of the piezoelectric element 300
  • the upper electrode film 80 is used as an individual electrode of the piezoelectric element 300.
  • the piezoelectric active portion is formed for each pressure generating chamber.
  • the piezoelectric element 300 and the vibration plate whose displacement is generated by driving the piezoelectric element 300 are collectively referred to as a piezoelectric actuator.
  • the lower electrode film 60 has the same region as the insulator film 55 so as to function as a common electrode of the plurality of piezoelectric elements 300 formed on the flow path forming substrate 10. It is formed in the area and also serves as a diaphragm.
  • the material of the lower electrode film 60 As the material, a conductive material, for example, platinum, iridium, or the like is suitable. This is because, as described later, the piezoelectric film 70 formed by the sputtering method or the sol-gel method needs to be crystallized by baking at a temperature of about 600 to 1000 ° C. in an air atmosphere or an oxygen atmosphere after the film formation. Because there is.
  • the composition of the piezoelectric film 70 for example lead zirconate titanate (P b (Z r 0 56 , T i 0 44) 0 3:.. PZT) using a piezoelectric ceramics or the like.
  • P b lead zirconate titanate
  • titanium acid lead lanthanum ((Pb, La) T I_ ⁇ 3), zirconium acid lead lanthanum ((Pb, La) Z R_ ⁇ 3) or magnesium niobate zirconium titanate (P b (Mg, Nb ) (Z r, T i) 0 3: PMN-P ZT), Jinorekoniumu titanate Bariumu (B a (Z r, T i) 0 3: B ZT) or the like may be used.
  • the material of the upper electrode film 80 is not particularly limited as long as it is a material having conductivity.
  • iridium (Ir) is used.
  • a reservoir having a reservoir part 31 constituting at least a part of a reservoir 100 serving as a common ink chamber of each pressure generating chamber 12 is provided on the flow path forming substrate 10 on which such a piezoelectric element 300 is formed.
  • the forming substrate 30 is joined.
  • a compliance substrate including a sealing film 41 formed of a material having low rigidity and flexibility and a fixing plate 42 formed of a hard material such as metal is provided on the reservoir forming substrate 30, a compliance substrate including a sealing film 41 formed of a material having low rigidity and flexibility and a fixing plate 42 formed of a hard material such as metal is provided. 40 are joined.
  • An area of the fixing plate 42 facing the reservoir 100 is an opening 43 completely removed in the thickness direction, and one surface of the reservoir 100 is sealed with only the sealing film 41.
  • the ink jet recording head takes in ink from an external ink supply means (not shown), fills the inside with ink from the reservoir 100 to the nozzle opening 21, and then drives a drive circuit (not shown).
  • a voltage is applied between the lower electrode film 60 and the upper electrode film 80 corresponding to the pressure generating chamber 12 via the external wiring according to the recording signal from the elastic film 50, the insulator film 55, and the lower electrode film.
  • FIG. 5 (a) the silicon wafer 110 serving as the flow path forming substrate 10 is thermally oxidized in a diffusion furnace at about 1100 ° C. to form the elastic film 50 and the mask film 51. A film 52 is formed on the entire surface.
  • a zirconium (Zr) layer is formed on the elastic film 50 (silicon dioxide film 52), and then thermally oxidized in a diffusion furnace at 500 to 1200 ° C, for example.
  • a lower electrode film 60 made of, for example, platinum and iridium is formed on the insulator film 55.
  • a crystal seed layer made of titanium or titanium oxide is preferably formed on lower electrode film 60, preferably 2 ⁇ ! The thickness is about 200 nm, more preferably, 5 nm.
  • a known DC sputtering method or the like is used for forming the titanium seed layer. This seed layer is formed with a uniform thickness, but may be island-shaped in some cases.
  • a titanium film having a thickness of about 20 nm or a titanium oxide film may be further formed between the lower electrode film 60 and the insulator film 55. Good. By providing this adhesion layer, the adhesion between the insulator film 55 and the lower electrode film 60 can be improved.
  • a piezoelectric precursor film 711 ′ is formed on the lower electrode film 60.
  • the piezoelectric precursor film 711 ′ is formed as an amorphous film before being crystallized by a process described below to become the first piezoelectric f layer 711.
  • a PZT precursor film is formed by a sol-gel method.
  • a metal organic compound such as a metal alkoxide is hydrolyzed and polycondensed in a solution system. Specifically, first, a solution (sol) 71 ⁇ "containing a metal-organic compound is applied to a substrate and dried.
  • the metal-organic compound used is methoxide, ethoxide, or propoxy of a metal constituting an inorganic oxide.
  • alkoxide acetate compounds such as butoxide, etc.
  • Inorganic salts such as nitrates, oxalates and perchlorates may be used.
  • the drying temperature is set to, for example, 150 ° C. or more and 200 ° C. or less.
  • the drying time is, for example, not less than 5 minutes and not more than 15 minutes.
  • it is dried for about 10 minutes.
  • the degreasing means removing organic components of the sol film, for example, N 0 2 , C 2 , H 20 and the like.
  • the degreasing temperature is preferably in the range of 300 ° C or more and 500 ° C or less. At temperatures higher than this range, crystallization starts, and at temperatures lower than this range, sufficient degreasing cannot be performed. Preferably, the temperature is set to about 360 ° C to 400 ° C.
  • the degreasing time is, for example, 5 minutes or more and 90 minutes or less.
  • the film is not sufficiently degreased. It is preferably defatted for about 10 minutes.
  • the organic matter coordinated to the metal is dissociated from the metal by degreasing, causing an oxidizing combustion reaction and scattering into the atmosphere.
  • the temperature rising rate in the first degreasing is set to 500 ° C./min or less. ⁇
  • the degreasing conditions can be made uniform and a large number of small seed crystals can be generated in the applied sol 711 ⁇ .
  • a room temperature substrate coated with the sol is placed on a room temperature aluminum substrate, for example, and this is placed on a hot plate heated to 400 ° C. Put it on top. As a result, the heating rate becomes about 430 ° C / min.
  • the process is repeated a predetermined number of times, for example, twice, to form a first piezoelectric precursor film 71 1 ′ composed of two gel layers (FIG. 5 (e)).
  • a heating rate 500 ° C./min or less also in the second degreasing step, as in the first degreasing step.
  • the first piezoelectric precursor film 711 ′ obtained by the above steps is crystallized by heat treatment to form a first piezoelectric layer 711 (FIG. 5 (f)).
  • a diffusion furnace can be used, or an RTA (Rapid Thermal Annealing) device may be used.
  • RTA Rapid Thermal Annealing
  • the crystallized PZT has a degree of (100) plane orientation of 80% or more, so that a piezoelectric film having excellent piezoelectric characteristics can be formed.
  • good characteristics can be obtained over the entire substrate with little variation in the substrate surface.
  • FIG. 7 is a partial cross-sectional view showing a detailed layer structure of the piezoelectric element. A plurality of piezoelectric layers 712 to 715 are stacked on the first piezoelectric layer 711 formed in the first crystallization step.
  • the temperature increase rate should be 1000 ° C / min or more.
  • the sol-coated normal-temperature substrate may be placed directly on a hot plate heated to, for example, 400 ° C. This results in a heating rate of about 25000 ° C / min. 'By increasing the heating rate faster than the initial rate, seed crystals are less likely to form in the sol film. Since seed crystals are unlikely to be generated, crystal growth in a subsequent crystallization step is performed using a piezoelectric crystal crystallized before that as a nucleus. Therefore, it is possible to prevent the piezoelectric crystal from being discontinuous in the upper and lower layers.
  • the first piezoelectric layer 711 has a columnar shape with a small particle size by heating the first degreasing rate at a lower rate than the other degreasing rate. Crystals are formed, and columnar crystals having a larger particle size are formed in the second and subsequent piezoelectric layers 712 to 715, and are continuous with the columnar crystals of the first piezoelectric layer 711. Further, according to this embodiment, the crystallized PZT has a degree of (100) plane orientation of 80% or more due to the influence of the lower layer. It is possible to reduce variations in the surface of the substrate.
  • an upper electrode film 80 is formed on the piezoelectric film 70 thus formed.
  • platinum (Pt) is formed as the upper electrode film 80 by DC sputtering to a thickness of about 0.05 ⁇ .
  • the upper electrode film 80 and the piezoelectric film 70 are etched by ion milling or the like (FIG. 6 (b)).
  • a pressure generating chamber 12 is formed in the flow path forming substrate 10.
  • the mask film 51 provided on the surface of the flow path forming substrate 10 is patterned into a predetermined shape, and the mask film 51 is used as an etching mask, for example, a parallel plate type reactive ion etching or the like.
  • the pressure generating chamber 12 is formed by dry etching using an active gas to a predetermined depth, in this embodiment, until the gas passes through the flow path forming substrate 10. The portion left without being etched becomes the partition 11.
  • the nozzle plate 20 is bonded to the flow path forming substrate 10 using a resin or the like.
  • the nozzle openings 21 are aligned so as to be arranged corresponding to the respective spaces of the pressure generating chambers 12.
  • FIG. 8 is an exploded perspective view schematically showing an ink jet recording head according to the second embodiment of the present invention
  • FIG. 9 is a plan view and a cross-sectional view taken along the line BB ′ of FIG.
  • FIG. 10 is a schematic view showing a layer structure of a piezoelectric element.
  • the same members as those described in the first embodiment are denoted by the same reference numerals, and overlapping description will be omitted.
  • the present embodiment is another example of the layer structure of the piezoelectric element.
  • the lower electrode film 6 OA constituting the piezoelectric element 300 is:
  • Each of the pressure generating chambers 12 is patterned in the vicinity of both ends thereof, and is provided continuously along the direction in which the pressure generating chambers 12 are juxtaposed. Further, in the present embodiment, each pressure generating chamber 12 is opposed to each other.
  • the end surface of the lower electrode film 6 OA in a region which is formed as an inclined surface inclined at a predetermined angle with respect to the surface of the flow path forming substrate 10.
  • the piezoelectric film 7 OA is provided independently for each of the pressure generating chambers 12, and as shown in FIG. 10, as shown in FIG. 10, a plurality of piezoelectric layers 7 2 1 to 7 2 in the present embodiment.
  • the first piezoelectric layer 721, which is the lowermost layer among them, is provided only on the lower electrode film 6OA.
  • the end face of the first piezoelectric layer 721 is an inclined face that is continuous with the end face of the lower electrode film 6OA.
  • the second to sixth piezoelectric layers 72 2 to 72 26 formed on the first piezoelectric layer 72 1 are made of an insulating film from the first piezoelectric layer 72 1. Up to 55, the first piezoelectric layer 721 and the lower electrode film 60A are provided so as to cover the inclined end faces of the lower electrode film 60A.
  • the first piezoelectric layer 721 and the second piezoelectric layer 722 formed on the first piezoelectric layer 721 are the remaining third to sixth piezoelectric layers. It is formed so as to have a higher crystal density than 723 to 726. That is, the third to sixth piezoelectric layers 72 3 to 72 26 which are upper layers of the piezoelectric film 7 OA are composed of the first and second piezoelectric layers 72 1 and 72 2 which are lower layers. Columnar crystal having a larger diameter than that of the columnar crystal. As a result, the crystal orientation and denseness of each of the piezoelectric layers 72 1 to 72 26 are improved, and the film quality of the piezoelectric film 7OA can be significantly improved.
  • first piezoelectric layer 72 1 and the second piezoelectric layer 72 2 may be formed to be thinner than the other third to sixth piezoelectric layers 72 3 to 72 26.
  • first and second piezoelectric layers 72 1 and 72 2 can be formed with a thickness of about 0.1 ⁇ m, and the other third to sixth piezoelectric layers can be formed. It is formed to a thickness of about 0.2 ⁇ m.
  • the upper electrode film 80 provided on the piezoelectric film 70 A is extended to the insulator film 55 made of, for example, gold (Au). Lead electrodes 90 are respectively connected.
  • the reservoir forming substrate 30 A joined to the flow path forming substrate 10 has a space in the region facing the piezoelectric element 300 so as not to hinder the movement of the piezoelectric element 300.
  • a piezoelectric element holding portion 32 capable of sealing the space is provided while maintaining the above condition.
  • Each piezoelectric element 300 is sealed in the piezoelectric element holding portion 32. And has been diagnosed with the external environment.
  • a through hole 33 penetrating the reservoir forming substrate 3 OA in the thickness direction is provided in a region between the reservoir part 31 of the reservoir forming substrate 3 OA and the piezoelectric element holding part 32.
  • the drawn-out lead electrode 90 is configured such that the vicinity of its end is exposed in the through hole 33.
  • FIG. 11 to FIG. 15 are cross-sectional views of the manufacturing process of the ink jet recording head according to the present embodiment.
  • a silicon dioxide film 52 serving as an elastic film 50 and a mask film 51 is formed on a silicon wafer 110, as shown in FIG.
  • An insulator film 55 and a lower electrode film 6 OA are formed.
  • a crystal seed (layer) 65 made of titanium or titanium oxide is formed on the lower electrode film 6OA.
  • the crystal seed is formed in an island shape.
  • an amorphous piezoelectric precursor film 721 ′ is formed with a predetermined thickness, in this embodiment, about 0.1 tm.
  • the piezoelectric film precursor film 72 is formed by a sol-gel method, that is, by applying a solution (sol) containing a metal organic compound to a predetermined thickness, followed by drying and degreasing. You.
  • the rate of temperature increase during the degreasing is set lower than that of the third to sixth piezoelectric layers 723 to 726 formed in a later step.
  • the rate of temperature increase during degreasing is preferably, for example, about 1.5 to 2 ° C./sec when the temperature is increased from 250 ° C. to 300 ° C.
  • the silicon wafer 110 on which the piezoelectric precursor film 721 ′ is formed is inserted into a predetermined diffusion furnace, and the piezoelectric precursor film 72 ⁇ ′ is fired at a high temperature of about 700 ° C. for crystallization. Thereby, the first piezoelectric layer 721 closest to the lower electrode film 6OA is formed.
  • the lower electrode film 6 OA and the first piezoelectric layer 721 are simultaneously patterned. Specifically, first, as shown in FIG. 12 (c), the registration is performed on the first piezoelectric layer 721.
  • a resist film 200 having a predetermined pattern is formed by applying a resist, exposing using a mask, and developing.
  • the resist is formed by, for example, applying a negative resist by a spin coating method or the like, and forming the resist film 200 by performing exposure, development, and beta using a predetermined mask thereafter.
  • a positive resist may be used instead of the negative resist.
  • the end face 201 of the resist film 200 is formed so as to be inclined at a predetermined angle. The inclination angle of the end face of the resist film 200 becomes smaller as the post beta time is longer. Also, the tilt angle can be adjusted by exposing excessively.
  • the lower electrode film 6OA and the first piezoelectric layer 721 are patterned by ion milling through such a resist film 200.
  • the lower electrode film 6-OA and the first piezoelectric layer 72 1 are puttered along the inclined end face 201 of the resist film 200, and these end faces are Is inclined at a predetermined angle with respect to.
  • the other piezoelectric layers can be formed on the first piezoelectric layer 721 with good film quality. Can be formed.
  • a crystal seed (layer) 65A is formed again on the entire surface of the silicon wafer 110 including the first piezoelectric layer 721, and then spinning is performed.
  • the piezoelectric precursor film 72 2 Z is formed to a predetermined thickness by a coating method or the like, and in this embodiment, to a thickness of about 0.1 ⁇ .
  • the piezoelectric precursor film 72 2 ′ is dried, degreased, and fired to form a second piezoelectric layer 722.
  • the degreasing of the piezoelectric precursor film 72 2 ′ serving as the second piezoelectric layer 72 2 is performed similarly to the case of the first piezoelectric layer 72 1. It is preferable that the temperature rising rate of 22 ′ is relatively low.
  • the piezoelectric precursor film 72 2 ′ a large number of crystal nuclei can be favorably generated in the piezoelectric precursor film 72 2 ′. That is, the second piezoelectric layer 722 in which a large number of crystal nuclei are formed substantially uniformly from the region facing the lower electrode film 6OA to the region facing the insulator film 55 is obtained.
  • a piezoelectric precursor film 72 3 ′ is formed on this second piezoelectric layer 72 2 by a predetermined thickness, in this embodiment, 0.2 ⁇ m. Formed with a thickness of ⁇ . Since the thickness of the piezoelectric precursor film by one application is about 0.1 / zm, in the present embodiment, the piezoelectric precursor film 7 having a desired thickness is obtained by twice application, drying, and degreasing. Two 3 ; Then, the piezoelectric precursor film 723 ′ is fired and crystallized to form a third piezoelectric layer 723.
  • the step of forming the piezoelectric precursor film by twice application, drying, and degreasing and the step of firing the piezoelectric precursor film are performed a plurality of times.
  • third to sixth piezoelectric layers 723 to 726 are formed.
  • a piezoelectric film 7OA having a plurality of piezoelectric layers 721 to 726 and a thickness of about 1 ⁇ is formed.
  • the temperature rising rate is set relatively high.
  • the temperature is set to be higher than the rate at which the piezoelectric precursor films 721 ′ and 722 ′ serving as the first and second piezoelectric layers 721 and 722 are degreased.
  • the upper electrode film 80 is formed by lamination, and the piezoelectric film 7OA and the upper electrode film 80 are pressure-generated.
  • the piezoelectric element 300 is formed by patterning in a region facing the living room 12 (FIG. 14 (b)).
  • the piezoelectric precursor film is formed at a relatively low temperature rising rate.
  • the piezoelectric precursor films 723 ′ to 726 ′ are degreased at a relatively high heating rate. I did it.
  • the first and second piezoelectric layers 721 and 722 many crystal nuclei are generated, and the denseness and orientation of the crystal are greatly improved.
  • the remaining crystals of the third to sixth piezoelectric layers 723 to 726 are continuously and favorably formed with the crystals of the second piezoelectric layer 722 as nuclei. Therefore, the film quality of the piezoelectric film 7OA is improved, and the film quality of all portions is substantially uniform. Accordingly, good displacement characteristics can be obtained when a voltage is applied to the piezoelectric element 300, and even when a relatively high voltage is applied, the piezoelectric film 7OA does not break and is excellent in reliability. The obtained piezoelectric element 300 is obtained.
  • FIG. 15 (a) After that, as shown in FIG. 15 (a), after forming a metal layer made of gold (Au) over the entire surface of the silicon wafer 110, for example, a mask made of resist or the like is formed. This metal layer is patterned for each piezoelectric element 300 via a metal pattern (not shown) to form a lead electrode 90. After forming the film in this manner, as shown in FIG. 15 (b), after bonding the reservoir-formed substrate 3OA to the silicon wafer 110, the pressure generating chambers 12 and the like are formed. . In the present embodiment, the pressure generation chambers 12 and the like are formed by anisotropically etching the silicon wafer 110.
  • the lower electrode film 60A is provided continuously over a region corresponding to the pressure generating chamber 12 in which the lower electrode film 60A is juxtaposed.
  • the film may be formed in a comb-like shape, and the lower electrode film in a region facing each pressure generating chamber may be substantially independent.
  • FIG. 16 is a plan view and a cross-sectional view of an ink jet recording head according to the third embodiment.
  • the present embodiment is an example in which a metal layer is provided on the diaphragm near the end of the piezoelectric film 7OA, and is the same as Embodiment 2 except that a metal layer is provided.
  • the piezoelectric film 7 OA is formed of the same layer as the lower electrode film 6 OA, but is electrically cut off from the lower electrode film 6 OA.
  • the provided metal layer 61 is provided.
  • the piezoelectric film 7OA extends to a part of the metal layer 61, respectively.
  • the metal film 61 A provided near the end of the piezoelectric film 70 A on the lead electrode 90 side is provided separately for each piezoelectric element. 0 extends over this metal layer 61A.
  • the metal layer 61 B provided near the end opposite to the lead electrode 90 is continuously provided in a region corresponding to the plurality of piezoelectric elements 300.
  • the piezoelectric precursor film when firing the piezoelectric precursor film, the piezoelectric precursor film can be heated substantially uniformly, and a piezoelectric film 70A having uniform piezoelectric characteristics can be formed. . That is, since the insulator film 55 made of zirconium oxide has a lower near-infrared absorptivity than the lower electrode film 6OA, the temperature rise during firing in the region where the lower electrode film 6OA is not formed. Become dull. Therefore, the piezoelectric characteristics may not be uniform between the region corresponding to the lower electrode film 60A of the piezoelectric film 70A and the other region.
  • the metal layers 61A and 61B are provided in regions corresponding to both ends of the piezoelectric film 7OA, so that the piezoelectric precursor film is uniformly heated during firing. Accordingly, the piezoelectric film 7OA having uniform piezoelectric characteristics as a whole can be formed.
  • the inkjet recording head is described as an example.
  • electrodes such as a color material ejection head, an organic EL display, and an FED (surface emitting display) used for manufacturing a color filter such as a liquid crystal display.
  • the present invention can be applied to a head for ejecting various liquids, such as an electrode material ejection head used for forming, a biological organic matter ejection head used for producing a biochip, and the like.
  • the piezoelectric element of the present invention can be applied not only to the liquid ejecting head but also to any other apparatus using an actuator in a flexural vibration mode.
  • a method for manufacturing a piezoelectric element capable of obtaining desired good crystallinity and improving in-plane uniformity of piezoelectric characteristics, and the piezoelectric element having such improved uniformity. Can be provided. In addition, even if a relatively high voltage is applied, the piezoelectric film is not broken, and a highly reliable piezoelectric element can be obtained.

Abstract

良好な結晶性を得ることができると共にその均一性を向上でき、また圧電体膜の破壊を防止でき安定した変位特性が得られる圧電素子及びそれを用いた液体噴射ヘッド並びにこれらの製造方法を提供する。 有機金属化合物のゾルを塗布し、有機金属化合物のゾルを乾燥させ、これを脱脂させることにより有機金属化合物のゾルをゲル化させ、このゲル化させた有機金属化合物を結晶化させて圧電体層を形成する工程を複数回行なって複数層の圧電体層を積層することで圧電体膜を形成し、最下層の圧電体層を形成する際、少なくとも初回の脱脂時の昇温レートを500℃/min以下とする。

Description

明 細 書 圧電素子及び液体噴射へッド及ぴこれらの製造方法 技術分野
本発明は、 圧電素子及びそれを用いた液体噴射ヘッドに関し、 特に、 ウェハ面 内の結晶配向を均一にし、 圧電特性を均一にすることの可能な圧電素子の製造方 法に関する。 技術背景
圧電素子は、 電気機械変換機能を呈する圧電体膜を 2つの電極で挟んだ素子で あり、 圧電体膜は結晶化した圧電性セラミックスにより構成されている。
従来、 圧電素子の製造方法として、 いわゆるゾルーゲル法が知られている。 す なわち、 下電極を形成した基板上に有機金属化合物のゾルを塗布して乾燥および 脱脂させて圧電体の前駆体膜を形成する。 この塗布、 乾燥および脱脂の工程を所 定回数実行した後、 高温で熱処理して結晶化させる。 これを更に厚膜化するには 、 結'晶化した圧電体層の上に更にゾルの塗布、 乾燥おょぴ脱脂の工程、 および結 晶化工程を繰り返し実行する。
上記の有機金属化合物のゾルを脱脂させる方法としては、 箱型乾燥機を用いる もの、 ホットプレートを用いるものが知られている。
また、 このような圧電素子は、 例えば、 インク滴を吐出するノズル開口と連通 する圧力発生室の一部を振動板で構成し、 この振動板を圧電素子により変形させ て圧力発生室のィンクを加圧してノズル開口からインク滴を吐出させるインクジ ヱッ.ト式記録へッド等の液体噴射へッドに適用される。 インクジェット式記録へ ッドには、 圧電素子の軸方向に伸長、 収縮する縦振動モードの圧電ァクチユエ一 タを使用したものと、 たわみ振動モードの圧電ァクチユエータを使用したものの 2種類が実用化されている。 たわみ振動モードのァクチユエータを使用したもの としては、 例えば、 振動板の表面全体に亙って成膜技術により均一な圧電体層を 形成し、 この圧電体層をリソグラフィ法により圧力発生室に対応する形状に切り 分けて各圧力発生室毎に独立するように圧電素子を形成したものが知られている そして、 このような撓み振動モードの圧電素子を有するインクジエツト式記録 へッドには、 例えば、 特開 2 0 0 0— 3 2 6 5 0 3号公報に開示されているよう に、 圧電素子を構成する下電極を圧力発生室に対向する領域にパターニングする ことで、 振動板の初期撓みを抑え、 圧電素子の駆動による振動板の変位量を增加 させたものがある。 '
圧電素子の製造における従来の脱脂工程では、 圧電体の前駆体中に、 圧電体結 晶の核が形成されにくかった。 そのため、 結晶化させた際に目的とする結晶を得 ることが困難であった。 また、 ウェハの面内における位置によって昇温レートに
' ばらつきが生じるなど、 脱脂条件がまちまちになっていた。 そのため、 結晶配向 及ぴ圧電体の特性にもばらつきが生じることがあった。
また、 上述したようにパターニングされた下電極上に圧電体膜を形成しようと すると、 下電極の端部を覆う部分及びその外側に形成される圧電体膜の膜質が悪- く、 圧電素子の駆動信頼性が低下するという問題がある。 すなわち、 下電極上の 圧電体膜と、 下電極の外側の圧電体膜とで結晶性等の特性が異なってしまい、 圧 電体層は下電極の端部近傍で実質的に不連続となる。 このため、 圧電体膜に電圧 を印加するとクラック等の破壌が生じてしまうという問題がある。 特に、 下電極 の長手方向の端部に対応する領域の圧電体膜が破壊されやすい。 · 発明の開示
本発明は、 このような事情に鑑み、 目的とする良好な結晶性を得ることができ ると共にその均一性を向上でき、 また圧電体膜の破壊を防止でき安定した変位特 性が得られる圧電素子及びそれを用いた液体噴射へッド並びにこれらの製造方法 を提供することを課題とする。
上記課題を解決する本発明の第 1の態様は、 基板上に下電極を形成する工程と 、 この下電極上に圧電体膜を形成する工程と、 この圧電体膜上に上電極を形成す る工程とを備える] £電素子の製造方法であって、 前記圧電体膜を形成する工程は 、 有機金属化合物のゾルを塗布し、 該有機金属化合物のゾルを乾燥させ、 これを 脱脂させることにより当該有機金属化合物のゾルをゲルイ匕させ、 このゲルィ匕させ た有機金属化合物を結晶化させて圧電体層を形成する工程を複数回行なつて複数 層の圧電体層を積層するものであり、 最下層の圧電体層を形成する際、 少なくと も初回の脱脂時の昇温レートを 5 0 0 °C/m i n以下とすることを特徴とする圧 電素子の製造方法にある。
かかる第 1の態様では、 最下層の圧電体層を形成する際、 脱脂時の昇温レート を比較的低く抑えることで、 最下層の圧電体層内に多数の小さな種結晶が形成さ れる。 これにより、 膜質が良好な圧電体膜を形成することができる。
本発明の第 2の態様は、 第 1の態様において、 最下層を除く少なくとも 1層の 圧電体層を形成する際、 脱脂時の昇温レートを 1 0 0 0 °C/m i n以上とするこ とを特徴とする圧電素子の製造方法にある。
かかる第 2の態様では、 昇温レートを上げることにより、 それ以前に結晶化さ れた圧電体結晶を核として結晶が成長するため、 圧電体膜の結晶が不連続となる のを防止できる。
本発明の第 3の態様は、 基板上に下電極を形成する工程と、 この下電極上に圧 電体膜を形成する工程と、 この圧電体膜上に上電極を形成する工程とを備える圧 電素子の製造方法であって、 前記圧電体膜を形成する工程は、 有機金属化合物の ゾルを塗布し、 該有機金属化合物のゾルを乾燥させ、 これを脱脂させることによ り当該有機金属化合物のゾルをゲル化させ、 このゲル化させた有機金属化合物を 結晶化させて圧電体層を形成する工程を複数回行なつて複数層の圧電 f本層を積層 するものであり、 最下層の圧電体層を形成する際、 少なくとも初回の脱脂時の昇 温レートを他の圧電体層の脱脂時の昇温レート以下とすることを特徴とする圧電 素子の製造方法にある。
力かる第 3の態様では、 最下層の圧電体層を形成する際、 脱脂時の昇温レート を比較的低く抑えることで、 最下層の圧電体層内に多数の小さな種結晶が形成さ れる。 これにより、 膜質が良好な圧電体膜を形成することができる。
本発明の第 4の態様は、 第 3の態様において、 前記圧電体膜を形成する工程で は、 前記基板の略全面に設けられた前記下電極上に最下層の圧電体層である第 1 の圧電体層を形成し、 当該下電極及び第 1の圧電体層を所定形状にパターニング 後に前記下電極及び第 1の圧電体層の端面を覆うように他の圧電体層を形成し、 前記第 1の圧電体層及び当該第 1の圧電体層の直上に設けられる第 2の圧電体層 を形成するための脱脂時の昇^レートを、 残りの圧電体層を形成するための脱脂 時の昇温レート以下とすることを特徴とする圧電素子の製造方法にある。
力かる第 4の態様では、 圧電体膜の膜質、 特に下電極の端面及びその外側の圧 電体膜の膜質が向上する。
本発明の第 5の態様は、 第 4の態様において、 前記第 1及び第 2の圧電体層を 、 有機金属化合物のゾルを一度塗布した後当該ゾルをゲル化させこれを結晶化さ せることで形成し、 残りの圧電体層を、 前記有機金属化合物のゾルを二度以上塗 布した後当該ゾルをゲル化させこれを結晶化させることで形成することを特徴と する圧電素子の製造方法にある。 ·
かかる第 5の態様では、 圧電体膜の膜質を向上できると共に製造効率を向上す ることができる。
本努明の第 6の態様は、 第 4又は 5の態様において、 前記下電極及び前記第 1 の圧電体層をパターユングした後に、 前記圧電体膜の核となる結晶種を前記第 1 の圧電体層上からその外側まで連続的に形成することを特徴とする圧電素子の製 造方法にある。
- ' かかる第 6の態様では、 結晶種により第 2の圧電体層の結晶構造が一方向に配 向して略一様に形成されるため、 圧電体膜の膜質が確実に向上する。
本発明の第 7の態様は、 第 4〜 6の何れかの態様において、 前記下電極及ぴ前 記第 1の圧電体層をイオンミリングによってパターニングすることを特徴とする 圧電素子の製造方法にある。
かかる第 7の態様では、 下電極及び第 1の圧電体層を比較的容易に所望の形状 にパターエングすることができる。
本発明の第 8の態様は、 基板上に下電極を形成する工程と、 この下電極上に圧 ' 電体膜を形成する工程と、 この圧電体膜上に上電極を形成する工程とを備える圧 電素子の製造方法であって、 前記圧電体膜を形成する工程は、 有機金属化合物の ゾルを塗布し、 該有機金属化合物のゾルを乾燥させ、 これを脱脂させることによ り当該有機金属化合物のゾルをゲル化させ、 このゲルィ匕させた有機金属化合物を 結晶化させて圧電体層を形成する工程を複数回行なって複数層の圧電体層を積層 するものであり、 少なくとも初回の結晶化によって形成される圧電体層のための ■ 脱脂時の昇温レートを、 他の回の結晶化によって形成される圧電体層のための脱 脂時の昇温レート以下とすることを特徴とする圧電素子の製造方法にある。 かかる第 8の態様では、 下層側の圧電体層を形成する際、 脱脂時の昇温レート を比較的低く抑えることで、 圧電体層内に多数の小さな種結晶が形成される。 こ れにより、 膜質が良好な圧電体膜を形成することができる。
本発明の第 9の態様は、 第 1〜8の何れかの態様において、 前記脱脂を行う際 に、 基板側から加熱することを特徴とする圧電素子の製造方法にある。
かかる第 9の態様では、 比較的均一な温度条件で加熱することができ、 均一且 つ効率的に脱脂を行うことができる。
本発明の第 1 0の態様は、 第 1〜 9の何れかの態様の製造方法により製造した 圧電素子を用いることを特徴とする液体噴射へッドの製造方法にある。
かかる第 1 0の態様では、 吐出特性が向上すると共に均一化されるため、 信頼 ,性を向上した液体噴射へッドを比較的容易に実現することができる。
本発明の第 1 1の態様は、 下電極と、 下電極上に形成された圧電体膜と、 この 圧電体膜上に形成された上電極と、 を備えた圧電素子において、.前記圧電体膜は 、 柱状結晶を備えた下層部分と、 当該下層部分の柱状結晶と連続し、 かつ当該下 層部分の柱状結晶より径の大きな柱状結晶を備えた上層部分とを備えていること を特徴とする圧電素子にある。
かかる第 1 1の態様では、 圧電体膜の結晶性等の膜質が向上すると共に、 膜質 が均一化される。
本発明の第 1 2の態様は、 第 1 1の態様において、 前記下電極が所定形状にパ ターニングされており、 前記圧電体膜を構成する複数層の圧電体層のうち、 最下 層である第 1の圧電体層が前記下電極上のみに形成されると共に、 他の圧電体層 が前記下電極及び第 1の圧電体層の端面を覆って形成され、 前記第 1の圧電体層 及び当該第 1の圧電体層の直上に形成される第 2の圧電体層が前記下層部分を構 成していることを特徴とする圧電素子にある。
かかる第 1 2の態様では、 圧電体膜の結晶性等の膜質が向上する。 特に、 下電 極の端面及びその外側の圧電体膜の膜質が向上し、 良好な圧電特性が得られる。 本発明の第 1 3の態様は、 第 1 2の態様において、 前記第 1及び第 2の圧電体 層のそれぞれの厚さが、 他の圧電体層のそれぞれの厚さよりも薄いことを特徴と する圧電素子にある。
かかる第 1 3の態様では、 圧電体膜の膜質がより確実に向上する。
本努明の第 1 4の態様は、 第 1 2又は 1 3の態様において、 前記下電極及び前 記第 1の圧電体層の端面が、 その表面に対して所定角度で傾斜する傾斜面となつ ていることを特徴とする圧電素子にある。
かかる第 1 4の態様では、 下電極及び第 1の圧電体層の直上に形成される第 2 の圧電体層等の膜質が向上し、 電圧印加による圧電体膜のクラック等の発生が防 止される。
本発日 の第 1 5の態様は、 第 1 2〜1 4の何れかの態様において、 前記圧電体 膜の端部近傍に、 前記下電極と 電気的に切断された金属層を有することを特徴 'とする圧電素子にある。
かかる第 1 5の態様では、 略均一な加熱条件で結晶化されて圧電体層が形成さ れるため、 膜質が良好な圧電体膜が得られる。
本発明の第 1 6の態様は、 第 1 1〜 1 5の何れかの態様の圧電素子を液体吐出 駆動源として備えていることを特徴とする液体噴射へッドにある。
かかる第 1 6の態様では、 吐出特性が向上すると共に均一化されるため、 信頼 性を向上した液体噴射ヘッドを実現できる。 ' ' ' 囪面の簡単な説明 . 第 1図は、 実施形態 1に係るプリンタの構造の説明図である。
第 2図は、 ■ 実施形態 1に係る記録ヘッドの概略を示す分解斜視図である。 第 3図は、 実施形態 1に係る記録へッドの平面図及ぴ断面図である。
第 4図は、 実施形態 1に係る圧電素子の層構造を示す概略斬面図である。 第 5図は、 実施形態 1に係る記録へッドの製造工程断面図である。
第 6図は、 実施形態 1に係る記録へッドの製造工程断面図である。
第 7図は、 圧電素子の詳細な層構造を示す一部断面図である。 第 8図は、 実施形態 2に係る記録へッドの概略を示す分角军斜視図である。 第 9図は、 実施形態 2に係る記録へッドの平面図及び断面図である。
第 1 0図は、 実施形態 2に係る記録へッドの断面図である。
第 1 1図は、 . 実施形態 2に係る記録へッドの製造工程断面図である。
第 1 2図は、 実施形態 2に係る記録へッドの製造工程断面図である。
第 1 3図は、 実施形態 2に係る記録へッドの製造工程断面図である。
第 1 4図は、 実施形態 2に係る記録へッドの製造工程断面図である。
第 1 5図は、 実施形態 2に係る記録へッドの製造工程断面図である。
第 1 6図は、 実施形態 3に係る記録へッドの平面図及び断面図である。 本発明を実施するための最良の形態 .
以下、 本発明の実施の形態を、 図面を参照して説明する。
(実施形態 1 )
第 1図は、 本実施形態の方法により製造される圧電素子を備えたィンクジヱッ ト式記録ヘッド (液体噴射ヘッドの一例) が使用されるプリンタ (液体噴射装置 の一例) の構造の説明図である。 このプリンタには、 本体 2に、 トレイ 3、 排出 口 4および操作ボタン 9が設けられている。 さらに本体 2の内部には、 インクジ ェット式記録へッド 1、 供給機構 6、 制御回路 8が備えられている。
インクジェット式記録へッド 1は、 本努明の製造方法で製造された圧電素子を 備えている。 インクジェット式記録ヘッド 1は、 制御回路 8から供給される吐出 信号に対応して、 ノズルから液体であるインクを吐出可能に構成されている。 本体 2は、 プリンタの筐体であって、 用紙 5をトレイ 3から供給可能な位置に 供給機構 6を配置し、 用紙 5に印字可能なようにインクジヱット式記録へッド 1 を配置している。 トレイ 3は、 印字前の用紙 5を供給機構 6に供給可能に構成さ れ、 排出口 4は、 印刷が終了した用紙 5を排出する出口である。
供給機構 6は、 モータ 6 0 0、 ローラ 6 0 1, 6 0 2、 その他の図示しない機 械構造を備えている。 モータ 6 0 0は、 制御回路 8から供給される駆動信号に対 応して回転可能になっている。 機械構造は、 モータ 6 0 0の回転力をローラ 6 0 1, 6 0 2に伝達可能に構成されている。 ローラ 6 0 1および 6 0 2は、 モータ 6 0 0の回転力が伝達されると回転するようになっており、 回転により トレイ 3 に載置された用紙 5を引き込み、 ヘッド 1によって印刷可能に供給するようにな つている。
制御回路 8は、 図示しない C P U、 R OM, R AM、 インターフェース回路な どを備え、 図示しないコネクタを介してコンピュータから供給される印字情報に 対応させて、 駆動信号を供給機構 6に供給したり、 吐出信号をインクジェット式 記録へッド 1に供給したりできるようになっている。 また、 制御回路 8は操作パ ネル 9からの操作信号に対応させて動作モードの設定、 リセット処理などが行え るようになっている。
次に、 このようなプリンタに搭載されるインクジェット式記録ヘッドの構造に ついて説明する。 なお、 第 2図は、 本発明の実施形態 1に係るインクジェット式 記録へヅドの概略を示す分解斜視図であり、 第 3図は、 第 2図の平面図及び A_ A' 断面図である。 第 4図は、 圧電素子の層構造を示す概略断面図である。 図示するように、 流路形成基板 1 0は、 本実施形態では面方位 (1 1 0 ) のシ リコン単結晶基板からなり、 その一方の面には予め熱酸ィ匕により形成した二酸ィ匕 シリコンからなる、 厚さ 1〜2 zi mの弾性膜 5 0が形成されている。 流路形成基 板 1 0には、 複数の圧力発生室 1 2がその幅方向に並設されている。 また、 流路 形成基板 1 0の圧力発生室 1 2の長手方向外側の領域には連通部 1 3が形成され 、 連通部 1 3と各圧力発生室 1 2とが、 各圧力発生室 1 2毎に設けられたインク 供給路 1 4を介して連通されている。 なお、 連通部 1 3は、 後述するリザーバ形 成基板 3 0のリザーバ部 3 1と連通して各圧力発生室 1 2の共通のインク室とな るリザーバ 1 0 0の一部を構成する。 ィンク供給路 1 4は、 圧力発生室 1 2より も狭い幅で形成されており、 連通部 1 3から圧力発生室 1 2に流入するインクの 流路抵抗を一定に保持している。
なお、 このような圧力発生室 1 2等が形成される流路形成基板 1 0の厚さは、 圧力発生室 1 2を配設する密度に合わせて最適な厚さを選択することが好ましい 。 例えば、 1ィンチ当たり 1 8 0個 (1 8 0 d p i ) 程度に圧力発生室 1 2を配 置する場合には、 流路形成基板 1 0の厚さは、 1 8 0〜2 8 0 /x m程度、 より望 ましくは、 2 2 0 μ ηι程度とするのが好適である。 また、 例えば、 3 6 0 d p i 程度と比較的高密度に圧力発生室 1 2を配置する場合には、 流路形成基板 1 0の 厚さは、 Ί 0 0 μ πι以下とするのが好ましい。 これは、 隣接する圧力発生室 1 2 間の隔壁 1 1の剛性を保ちつつ、 配列密度を高くできるからである。
また、 流路形成基板 1 0の開口面側には、 各圧力発生室 1 2のィンク供給路 1 4とは反対側の端部近傍に連通するノズル開口 2 1が穿設されたノズルプレート
2 0が接着剤や熱溶着フィルム等を介して固着されている。 なお、 ノズルプレー ト 2 0は、 厚さが例えば、 0 . l〜l mmで、 線膨張係数が 3 0 0 °C以下で、 例 えば 2 . 5〜4 . 5 [ X 1 0— 6 /°C] であるガラスセラミックス、 シリコン単結
•晶基板又は不鲭鋼などからなる。
一方、 第 4図に示すように、 このような流路形成基板 1 0の開口面とは反対側 には、 上述したように、 厚さが例えば約 1 . 0 μ ιηの弾性膜 5 0が形成され、 こ の弾性膜 5 0上には、 厚さが例えば、 約 0 . 4 mの絶縁体膜 5 5が形成されて いる。 さらに、 この絶縁体膜 5 5上には、 厚さが例えば、 約 0 . 2 μ ηιの下電極 膜 6 0と、 厚さが例えば、 約 1 . Ο μ ιηの圧電体層 7 0と、 厚さが例えば、 約 0 . 0 5 μ πιの上電極膜 8 0とが、 後述するプロセスで積層形成されて、 圧竃素子
3 0 0を構成している。 ここで、 圧電素子 3 0 0は、 下電極膜 6 0、 圧電体層 7 0及ぴ上電極膜 8 0を含む部分をいう。 一般的には、 圧電素子 3 0 0の何れか一 方の電極を共通電極とし、 他方の電極及ぴ圧電体層 7 0を各圧力発生室 1 2毎に パターユングして構成する。 そして、 ここではパターユングされた何れか一方の 電極及ぴ圧電体層 7 0から構成され、 両電極への電圧の印加により圧電歪みが生 じる部分を圧電体能動部という。 本実施形態では、 下電極膜 6 0は圧電素子 3 0 0の共通電極とし、 上電極膜 8 0を圧電素子 3 0 0の個別電極としているが、 駆 動回路や配線の都合でこれを逆にしても支障はない。 何れの場合においても、 各 圧力発生室毎に圧電体能動部が形成されていることになる。 また、 ここでは、 圧 電素子 3 0 0と当該圧電素子 3 0 0の駆動により変位が生じる振動板とを合わせ て圧電ァクチユエータと称する。
ここで、 下電極膜 6 0は、 流路形成基板 1 0上に形成される複数の圧電素子 3 0 0の共通電極として機能するように、 本実施形態では、 絶縁体膜 5 5と同じ領 域に形成されており、 振動板の役割も兼ねている。 また、 この下電極膜 6 0の材 料としては、 導電性を有する材料、 例えば、 白金、 イリジウム等が好適である。 これは、 後述するようにスパッタリング法ゃゾルーゲル法で成膜する圧電体膜 7 0は、 成膜後に大気雰囲気下又は酸素雰囲気下で 600〜1000°C程度の温度 で焼成して結晶化させる必要があるからである。
また、 圧電体膜 70の組成は、 例えばジルコニウム酸チタン酸鉛 (P b (Z r 0.56、 T i 0.44) 03 : PZT) 等の圧電性セラミックスを用いる。 その他、 チ タン酸鉛ランタン ( (Pb, La) T i〇3) 、 ジルコニウム酸鉛ランタン ( ( Pb, La) Z r〇3) またはマグネシウムニオブ酸ジルコニウム酸チタン酸鉛 (P b (Mg、 Nb) (Z r、 T i ) 03 : PMN—P ZT) 、 ジノレコニゥム酸 チタン酸バリゥム (B a (Z r、 T i ) 03: B ZT) などでもよい。 また、 上 電極膜 80の材料としては、 導電性を有する材料であれば、 特に限定されないが 、 例えば、 本実施形態では、 イリジウム (I r) を用いている。
なお、 このような圧電素子 300が形成された流路形成基板 10上には、 各圧 力発生室 12の共通のインク室となるリザーバ 100の少なくとも一部を構成す るリザーパ部 31を有するリザーバ形成基板 30が接合されている。 さらに、 こ のリザーパ形成基板 30上には、 剛性が低く可撓性を有する材料で形成される封 止膜 41と金属等の硬質の材料で形成される固定板 42とからなるコンプライア ンス基板 40が接合されている。 なお、 固定板 42のリザーバ 100に対向する 領域は、 厚さ方向に完全に除去された開口部 43となっており、 リザーバ 100 の一方面は封止膜 41のみで封止されている。
このような本実施形態のィンクジェット式記録へッドは、 図示しない外部ィン ク供給手段からインクを取り込み、 リザーバ 100からノズル開口 21に至るま で内部をインクで満たした後、 図示しない駆動回路からの記録信号に従い、 外部 配線を介して圧力発生室 12に対応するそれぞれの下電極膜 60と上電極膜 80 との間に電圧を印加し、 弾性膜 50、 絶縁体膜 55、 下電極膜 60及び圧電体層 70をたわみ変形させることにより、 各圧力発生室 12内の圧力が高まりノズル 開口 21からインク滴が吐出する。
以下、 このような本実施形態に係るィンクジェット式記録へッドの製造方法、 特に、 圧電素子の製造方法について第 5図〜第 7図を参照して説明する。 まず、 第 5図 (a) に示すように、 流路形成基板 10となるシリコンウェハ 110を約 1100°Cの拡散炉で熱酸化して弾性膜 50及ぴマスク膜 51を構成する二酸ィ匕 シリコン膜 52を全面に形成する。 次いで、 第 5図 (b— ) に示すように、 弾性膜 50 (二酸化シリコン膜 52) 上に、 ジルコニウム (Z r) 層を形成後、 例えば 、 500〜 1200°Cの拡散炉で熱酸化して酸化ジルコニウム (Z r〇2 ) から' なる絶縁体膜 55を形成する。 次いで、 第 5図 (c) に示すように、 例えば、 白 金とイリジウムとからなる下電極膜 60を絶縁体膜 55上に形成する。 また、 図 示しないが、 下電極膜 60上に、 チタン又は酸化チタンからなる結晶種層を好ま しくは 2 ηπ!〜 200 nm程度、 更に好ましくは、 5 n mの厚みで形成する。 こ のチタン種層の形成には、 例えば公知の直流スパッタ法等を用いる。 この種層は 一様の厚みで形成するが、 場合によっては島状となっても構わない。
なお、 下電極膜 60と絶縁体膜 55との間にも、 例えば、 厚さが 20 nm程度 のチタン膜又は酸ィ匕チタン膜 (密着層:図示せず) を更に形成するようにしても よい。 この密着層を設けることにより、 絶縁体膜 55と下電極膜 60との密着性 を向上させることができる。
次に、 第 5図 (d) に示すように、 下電極膜 60上に圧電体前駆体膜 711' を成膜する。 圧電体前駆体膜 711' は、 後述の処理で結晶化され 第 1の圧電 f 層 711となる以前の、 非晶質膜として構成される。 本実施例では PZT前駆 体膜をゾルーゲル法で成膜する。
ゾルーゲル法とは、 金属アルコキシド等の金属有機化合物を溶液系で加水分解 、 重縮合させるものである。 具体的には、 まず、 基板上に金属有機化合物を含む 溶液 (ゾル) 71 \"を塗布し、 乾燥させる。 用いられる金属有機化合物として は、 無機酸化物を構成する金属のメトキシド、 エトキシド、 プロポキシド、 ブト キシド等のアルコキシドゃアセテート化合物等が挙げられる。 硝酸塩、 しゅう酸 塩、 過塩素酸塩等の無機塩でも良い。
本実施形態においては、 P ZT膜の出発原料として、 Pb (CH3COO) 2 • 3H20、 Z r (t— OCH4H9) 4、 T i ( i一 Ο C 3Η7) 4の混合溶液 ( ゾル) を用意する。 この混合溶液を 1500 r pmで 0. Ι μπιの厚さにスピン コーティングする。 塗布した段階では、 ΡΖΤを構成する各金属原子は有機金属 錯体として分散している。
塗布後、 一定温度で一定時間乾燥させ、 ゾルの溶媒を蒸発させる。 例えば、 乾 燥温度は例えば 1 5 0 °C以上 2 0 0 °C以下に設定する。 好ましくは、 1 8 0 °Cで 乾燥させる。 乾燥時間は例えば 5分以上 1 5分以下にする。 好ましくは 1 0分程 度乾燥させる。
乾燥後、 さらに大気雰囲気下において一定の脱脂温度で一定時間脱脂する。 な お、 ここで言う脱脂とは、 ゾル膜の有機成分、 例えば、 N 02、 C〇2、 H 20等 を離脱させることである。 脱脂温度は、 3 0 0 °C以上 5 0 0 °C以下の範囲が好ま しい。 この範囲より高い温度では結晶化が始まってしまい、 この範囲より低い温 度では、 十分な脱脂が行えないからである。 好ましくは 3 6 0 °C〜4 0 0 °C程度 に設定する。 脱脂時間は、 例えば 5分以上 9 0分以下にする。 この範囲より長い 時間では膜内部の結晶化が行われない状態で膜表面のみの結晶化が始まってしま い、 この範囲より短い時間では十分に脱脂されないからである。 好ましくは 1 0 分程度脱脂させる。 脱脂により金属に配位している有機物が金属から解離し酸ィ匕 燃焼反応を生じ、 大気中に飛散する。
最初の脱脂、 すなわち、 第 1の圧電体層 7 1 1を形成するための脱脂では、 少 なくとも初回の脱脂時の昇温レートを 5 0 0 °C/m i n以下としている。 ' 温レ ートを低くしてゆつくり加熱することにより、 脱脂条件が均一となるようにし、 塗布したゾル 7 1 1〃 内に多数の小さな種結晶を生じさせることができる。 昇温 レートを 5 0 0 °C/m i n以下に制御するには、 ゾルの塗布された常温の基板を 、 例えば常温のアルミニウム基板上に置き、 これを 4 0 0 °Cに加熱されたホット プレート上に置けばよい。 これにより昇温レートは約 4 3 0 °C/m i nとなる。 ゾルが塗布された面をホットプレートの载置面と反対側にすることにより、 基板 側から加熱することができるため、 均一かつ効率的に脱脂を行なうことができる 以上の塗布 ·乾燥 ·脱脂の工程を所定回数、 例えば 2回繰り返して 2つのゲル 層からなる第 1の圧電体前駆体膜 7 1 1 ' を形成する (第 5図 (e ) ) 。 この場 合、 2回目の脱脂工程でも、 初回の脱脂工程と同様に 5 0 0 °C/m i n以下の昇 温レートで加熱することが望ましい。 なお、 これら塗布 ·乾燥'脱脂の繰り返し 回数は 2回に限らず、 1回のみでもよいし、 3回以上でもよい。
次に、 上記の工程によって得られた第 1の圧電体前駆体膜 711' を加熱処理 することによって結晶化させ、 第 1の圧電体層 711を形成する (第 5図 (f ) ) 。 焼結条件は材料により異なるが、 本実施形態では〇2雰囲気下において、 7 00°Cで 30分間加熱を行う。 加熱装置としては、 拡散炉を使用することができ るほか、 RTA (Rapid Thermal Annealing) 装置でもよい。 この結晶化により 、 第 1の圧電体層 711が形成される。 本実施形態によれば、 結晶化された PZ Tは (100) 面配向度が 80%以上を示すため、 圧電特性に優れた圧電体膜を 形成することができる。 しかも基板面内のばらつきが少なく基板全体にわたって 良好な特性を得ることができる。
次に、 ゾルの塗布 ·乾燥 ·脱脂を 2回繰返し、 更に結晶化させるという上述と 同様の工程を、 5回繰り返すことで所定厚さの圧電体膜 70を形成する。 例えば 、 ゾルの塗布 1回あたりの膜厚が 0. 1 m程度の場合には、 圧電体膜 70全体 の膜厚は約 Ι μπιとなる。 第 7図は、 圧電素子の詳細な層構造を示す一部断面図 である。 最初の結晶化工程で形成された第 1の圧電体層 711の上に、 複数層の 圧電体層 712〜715が積層される。
初回の結晶化より後に行なわれる脱脂工程では、 昇温レートを 1000°C/m i n以上とする。 昇温レートを 1000°C/m i n以上に制御するには、 ゾルの 塗布された常温の基板を例えば 400°Cに加熱されたホットプレート上に直接置 けばよい。 これにより昇温レートは約 25000°C/m i nとなる。 ' 昇温レートを初回より高くして速く加熱することで、 ゾル膜内には種結晶が生 じにくくなる。 種結晶が生じにくいため、 それ以前に結晶化された圧電体結晶を 核として、 後の結晶化工程における結晶成長が行なわれる。 従って、 圧電体結晶 が上下層で不連続になることを防止することができる。 以上のように、 初回の脱 脂時の昇温レートを、 他の回の脱脂時の昇温レートより低くして加熱することに より、 第 1の圧電体層 711には粒径の小さな柱状結晶が形成され、 2層目以降 の圧電体層 712〜 715には第 1の圧電体層 711の柱状結晶と連続し且つこ れより粒径の大きな柱状結晶が形成される。 また、 本実施形態によれば、 結晶化 された PZTは下層の影響を受けて (100) 面配向度が 80%以上となり、 し かも基板面内のばらつきを小さくすることができる。
次いで、 第 6図 (a ) に示すように、 このように形成された圧電体膜 7 0上に 上電極膜 8 0を形成する。 具体的には、 上電極膜 8 0として白金 (P t ) を D C スパッタ法で、 0 . 0 5 μ πι程度の膜厚に成膜する。
次に、 上電極膜 8 0上にレジストをスピンコートした後、 インク室が形成され るべき位置に合わせて露光 .現像してパターユングする。 残ったレジストをマス クとして上電極膜 8 0、 圧電体膜 7 0をイオンミリング等でエッチングする (第 6図 (b ) ) 。
その後、 第 6図 (c ) に示すように、 流路形成基板 1 0に圧力発生室 1 2を形 成する。 具体的には、 流路形成基板 1 0の表面に設けられたマスク膜 5 1を所定 形状にパターユングし、 このマスク膜 5 1をエッチングマスクとして、 例えば平 行平板型反応性ィオンエツチング等の活性気体を用レ、たドライエッチングにより 、 予め定められた深さまで、 本実施形態では、 流路形成基板 1 0を貫通するまで エッチングして圧力発生室 1 2を形成する。 なお、 エッチングされずに残つた部 分が隔壁 1 1となる。
—最後に、 第 6図 (d ) に示すように、 樹脂等を用いてノズルプレート 2 0を流 路形成基板 1 0に接合する。 ノズルプレート 2 0を流路形成基板 1 0に接合する 際には、 ノズル開口 2 1が圧力発生室 1 2の各々の空間に対応して配置されるよ う位置合せする。 以上の工程により、 インクジヱット式記録ヘッドが形成される
(実施形態 2 )
第 8図は、 本発明の実施形態 2に係るインクジェット式記録へッドの概略を示 す分解斜視図であり、 第 9図は、 第 8図の平面図及び B— Β ' 断面図であり、 第 1 0図は、 圧電素子の層構造を示す概略図である。 なお、 実施形態 1で説明した 部材と同一の部材には同一符号を付し、 重複する説明は省略する。
本実施形態は、 圧電素子の層構造の他の例であり、 具体的には、 第 8図〜第 1 0図に示すように、 圧電素子 3 0 0を構成する下電極膜 6 O Aは、 圧力発生室 1 2の両端部近傍でそれぞれパターニングされ、 圧力発生室 1 2の並設方向に沿つ て連続的に設けられている。 また、 本実施形態では、 各圧力発生室 1 2に対向す る領域の下電極膜 6 O Aの端面は、 流路形成基板 1 0の表面に対して所定角度で 傾斜する傾斜面となっている。
圧電体膜 7 O Aは、 各圧力発生室 1 2毎に独立して設けられ、 第 1 0図に示す ように、 複数層、 本実施形態では、 6層の圧電体層 7 2 1〜7 2 6で構成され、 それらのうちの最下層である第 1の圧電体層 7 2 1は下電極膜 6 O A上のみに設 けられている。 そして、 この第 1の圧電体層 7 2 1の端面は、 下電極膜 6 O Aの 端面に連続する傾斜面となっている。 また、 この第 1の圧電体層 7 2 1上に形成 される第 2〜第 6の圧電体層 7 2 2〜 7 2 6は、 第 1の圧電体層 7 2 1上から絶 縁体膜 5 5上まで、 第 1の圧電体層 7 2 1及ぴ下電極膜 6 0 Aの傾斜した端面を 覆って設けられている。
ここで、 第 1の圧電体層 7 2 1及びこの第 1の圧電体層 7 2 1上に形成される 第 2の圧電体層 7 2 2は、 残りの第 3〜第 6の圧電体層 7 2 3〜 7 2 6よりも結 晶密度が高くなるように形成されている。 すなわち、 圧電体膜 7 O Aの上層部分 である第 3〜第 6の圧電体層 7 2 3〜7 2 6は、 下層部分である第 1及び第 2の 圧電体層 7 2 1, 7 2 2の柱状結晶よりも径の大きな柱状結晶を備えている。 こ れにより、 各圧電体層 7 2 1〜7 2 6の結晶の配向性、 緻密性が向上し、 圧電体 膜 7 O Aの膜質を著しく向上することができる。
また、 第 1の圧電体層 7 2 1及び第 2の圧電体層 7 2 2は、 他の第 3〜第 6の 圧電体層 7 2 3〜7 2 6よりも薄く形成されていることが好ましい。 例えば、 本 '実施形態では、 第 1及び第 2の圧電体層 7 2 1, 7 2 2が、 約 0 . 1 μ mの厚さ で形成きれ、 他の第 3〜第 6の圧電体層 7 2 3〜7 2 6カ 約0 . 2 μ mの厚さ で形成されている。
なお、 このような圧電体膜 7 0 A上に設けられた上電極膜 8 0には、 本実施形 態では、—例えば、 金 (A u ) 等からなる絶縁体膜 5 5上まで延設されるリード電 極 9 0がそれぞれ接続されている。
また、 本実施形態では、 流路形成基板 1 0に接合されるリザーバ形成基板 3 0 Aには、 圧電素子 3 0 0に対向する領域に、 圧電素子 3 0 0の運動を阻害しない 程度の空間を確保した状態で、 その空間を密封可能な圧電素子保持部 3 2が設け られている。 そして、 各圧電素子 3 0 0は、 この圧電素子保持部 3 2内に密封さ れて外部環境と ¾断されている。 また、 リザーバ形成基板 3 OAのリザーパ部 3 1と圧電素子保持部 32との間の領域には、 リザーバ形成基板 3 OAを厚さ方向 に貫通する貫通孔 33が設けられ、 各圧電素子 300から引き出されたリード電 極 90は、 その端部近傍が貫通孔 33内で露出されるようになっている。
以下、 このような本実施形態に係るインクジェット式記録へッドの製造方法、 特に、 圧電素子の製造方法について説明する。 なお、 第 1 1図〜第 15図は、 本 実施形態に係るインクジェット式記録へッドの製造工程断面図である。
まず、 第 11図 (a) 〜第 1 1図 (c) に示すように、 実施形態 1と同様に、 シリコンウェハ 1 10に、 弾性膜 50及ぴマスク膜 51となる二酸ィヒシリコン膜 52、 絶縁体膜 55及ぴ下電極膜 6 OAを形成する。 次いで、 第 12図 (a) に 示すように、 下電極膜 6 OA上に、 チタン又は酸化チタンからなる結晶種 (層) 65を形成する。 なお、 本実施形態では、 この結晶種を島状に形成した。 次いで 、 第 12図 (b) に示すように、 未結晶の圧電体前駆体膜 721' を所定の厚さ 、 本実施形態では、 0. 1 t m程度の厚さで成膜する。 なお、 この圧電体膜前駆 体膜 72 は、 実施形態 1と同様に、 ゾルーゲル法、 すなわち、 金属有機化合 物を含む溶液 (ゾル) を所定厚さに塗布後、 乾燥及び脱脂することにより形成す る。
ここで、 実施形態では、 この脱脂時の昇温レートを、 後の工程で形成される 第 3〜第 6の圧電体層 723〜726の場合よりも低くしている。 この脱脂時の 昇温レートは、 具体的には、 例えば、 250°Cから 300°Cに上昇する際に 1. 5〜2°C/秒程度の昇温レートであることが好ましい。 これにより、 圧電体前駆 体膜 72 I' に結晶核を多く発生させることができるため、 後述する焼成工程を 経て得られる第 1の圧電体層 721の緻密性及び配向性が向上する。
そして、 このように圧電体前駆体膜 721' が形成されたシリコンゥヱハ 1 1 0を所定の拡散炉に挿入し、 圧電体前駆体膜 72 \' を約 700°Cの高温で焼成 して結晶化することにより、 下電極膜 6 OAに最も近い第 1の圧電体層 721を 形成する。
次に、 下電極膜 6 OAと第 1の圧電体層 721とを同時にパターユングする。 具体的には、 まず第 12図 ( c ) に示すように、 第 1の圧電体層 721上にレジ ストを塗布してマスクを用いて露光し現像することにより所定パターンのレジス ト膜 2 0 0を形成する。 ここで、 レジストは、 '例えば、 ネガレジストをスピンコ ート法等により塗布して形成し、 レジスト膜 2 0 0は、 その後、 所定のマスクを 用いて露光 ·現像 ·ベータを行うことにより形成する。 勿論、 ネガレジストの代 わりにポジレジストを用いてもよい。 また、 本実施形態では、 レジスト膜 2 0 0 の端面 2 0 1が所定角度で傾斜するように形成している。 このレジスト膜 2 0 0 の端面の傾斜角度は、 ポストベータの時間が長いほど小さくなる。 また、 過剰に 露光することによっても傾斜角度を調整することができる。
そして、 第 1 3図 (a ) に示すように、 このようなレジスト膜 2 0 0を介して 下電極膜 6 O A及ぴ第 1の圧電体層 7 2 1をイオンミリングによってパターニン グする。 このとき、 これら下電極膜 6— O A及ぴ第 1の圧電体層 7 2 1は、 レジス ト膜 2 0 0の傾斜した端面 2 0 1に沿ってパターユングされ、 これらの端面は、 振動板に対して所定角度で傾斜する傾斜面となる。 このように下電極膜 6 O A及 ぴ第 1の圧電体層 7 2 1の端面を傾斜面とすることで、 第 1の圧電体層 7 2 1上 に他の圧電体層を良好な膜質で形成することができる。
次に、 第 1 3図 (b ) に示すように、 第 1の圧電体層 7 2 1上を含むシリコン ウェハ 1 1 0の全面に、 再び結晶種 (層) 6 5 Aを形成後、 スピンコート法等に より圧電体前駆体膜 7 2 2 Z を所定厚さ、 本実施形態では、 約 0 . Ι μ πιの厚さ で形成する。 そして、 この圧電体前駆体膜 7 2 2 ' を乾燥 ·脱脂 ·焼成すること により第 2の圧電体層 7 2 2を形成する。 なお、 この第 2の圧電体層 7 2 2とな る圧電体前駆体膜 7 2 2 ' の脱脂も、 第 1の圧電体層 7 2 1の場合と同様に、 圧 電体前駆体膜 7 2 2 ' の昇温レートは比較的低くすることが好ましい。 これによ り、 圧電体前駆体膜 7 2 2 ' に結晶核を多数良好に発生させることができる。 す なわち、 下電極膜 6 O Aに対向する領域から絶縁体膜 5 5に対向する領域まで多 数の結晶核が略均等に形成された第 2の圧電体層 7 2 2が得られる。
次いで、 第 1 3図 (c ) に示すように、 この第 2の圧電体層 7 2 2上に圧電体 前駆体膜 7 2 3 ' を所定の厚さ、 本実施形態では、 0 . 2 μ πιの厚さで形成する 。 一度の塗布による圧電体前駆体膜の厚さは、 約 0 . 1 /z m程度であるため、 本 実施形態では、 二度の塗布 ·乾燥 ·脱脂により所望の厚さの圧電体前駆体膜 7 2 3; を得ている。 そして、 この圧電体前駆体膜 723' を焼成して結晶化させて 第 3の圧電体層 723とする。 そして、 このように、 二度の塗布 ·乾燥 ·脱脂に よつて圧電体前駆体膜を形成する工程と、 その圧電体前駆体膜を焼成す δ工程と を複数回く 本実施形態では、 4回繰り返すことにより、 第 3〜第 6の圧電体層 7 23〜726を形成する。 これにより、 複数層の圧電体層 721〜726からな り、 厚さが約 1 μπιの圧電体膜 7 OAが形成される。
なお、 これら第 3〜第 6の圧電体層 723〜726となる圧電体前駆体膜 72 3; 〜726' を脱脂する際には、 上述したように、 その昇温レートを比較的高 くすることが好ましく、 例えば、 本実施形態では、 第 1及び第 2の圧電体層 72 1, 722となる圧電体前駆体膜 721' , 722' を脱脂する際の昇温レート よりも高くしている。
そして、 このように圧電体膜 7 OAを形成した後は、 第 14図 (a) に示すよ うに、 上電極膜 80を積層形成し、 圧電体膜 7 OA及び上電極膜 80を各圧力発 生室 12に対向する領域内にパターユングして圧電素子 300を形成する (第 1 4図 (b) ) 。
以上説明したように、 本実施形態では、 圧電体膜 7 OAを構成する第 1及び第 2の圧電体層 721, 722を形成する際に、 比較的低い昇温レートで圧電体前 駆体膜 721' , 722' を脱脂し、 且つ残りの第 3〜第 6の圧電体層 723〜 726を形成する際に、 比較的高い昇温レートで圧電体前駆体膜 723' 〜72 6' を脱脂するようにした。 これにより、 第 1及び第 2の圧電体層 721, 72 2は、 結晶核が多く発生し結晶の緻密性、 配向性が大幅に向上する。 また、 残り の第 3〜第 6の圧電体層 723〜 726の結晶は、 第 2の圧電体層 722の結晶 を核として連続的に良好に形成される。 したがって、 圧電体膜 7 OAの膜質が向 上すると共に、 全ての部分の膜質が略均一となる。 よって、 圧電素子 300に電 圧を印加した際に良好な変位特性が得られ、 また、 比較的高い電圧を印加しても 圧電体膜 7 OAが破壌されることがなく、 信頼性に優れた圧電素子 300が得ら れる。 一
なお、 その後は、 第 15図 (a) に示すように、 金 (Au) からなる金属層を シリコンウェハ 1 10の全面に亘つて形成後、 例えば、 レジスト等からなるマス クパターン (図示なし) を介してこの金属層を各圧電素子 3 0 0毎にパターニン グすることによってリード電極 9 0を形成する。 そして、 このようにして膜形成 を行った後、 第 1 5図 ( b ) に示すように、 シリコンウェハ 1 1 0にリザーバ形 成基板 3 O Aを接合後、 圧力発生室 1 2等を形成する。 本実施形態では、 シリコ ンウェハ 1 1 0を異方性エッチングすることにより圧力発生室 1 2等を形成して いる。 その後、 シリコンウェハ 1 1 0に、 上述したノズルプレート 2 0及ぴコン プライアンス基板 4 0を接着して一体化し、 シリコンウェハ 1 1 0を第 8図に示 すような一つのチップサイズの流路形成基板 1 0毎に分割することによってイン クジエツト式記録へッドとする。
なお、 本実施形態では、 下電極膜 6 0 Aが並設された圧力発生室 1 2に対応す る領域に亘つて連続的に設けられているが、 これに限定されず、 例えば、 下電極 膜を櫛歯状に形成し、 各圧力発生室に対向する領域の下電極膜が実質的に独立す るようにしてもよい。
(実施形態 3 )
第 1 6図は、 実施形態 3に係るインクジエツト式記録へッドの平面図及び断面 図である。
本実施形態は、 圧電体膜 7 O Aの端部近傍の振動板上に金属層を設けるように した例であり、 金属層が設けられている以外は、 実施形態 2と同様である。 具体 的には、 第 1 6図に示すように、 圧電体膜 7 O Aの長手方向端部近傍に、 下電極 膜 6 O Aと同一の層からなるが下電極膜 6 O Aとは電気的に切断された金属層 6 1が設けられている。 そして、 圧電体膜 7 O Aは、 これらの金属層 6 1上の一部 までそれぞれ延設されている。 ― なお、 本実施形態では、 圧電体膜 7 0 Aのリード電極 9 0側の端部近傍に設け られる金属膜 6 1 Aは、 各圧電素子毎に分離して設けられており、 リード電極 9 0がこの金属層 6 1 A上に延設されている。 一方、 リード電極 9 0とは反対側の 端部近傍に設けられる金属層 6 1 Bは、 複数の圧電素子 3 0 0に対応する領域に 連続的に設けられている。
このような構成では、 圧電体前駆体膜を焼成する際に、 圧電体前駆体膜を略均 一に加熱することができ、 均一な圧電特性を有する圧電体膜 7 0 Aを形成できる 。 すなわち、 酸ィ匕ジルコニウムからなる絶縁体膜 5 5は、 下電極膜 6 O Aに比べ て近赤外線の吸収率が低いため、 下電極膜 6 O Aが形成されていない領域では、 焼成時に温度上昇が鈍くなる。 このため圧電体膜 7 0 Aの下電極膜 6 0 Aに対応 する領域とそれ以外の領域とで、 圧電特性が均一にならない場合がある。 しかし ながら、 本実施形態では、 圧電体膜 7 O Aの両端部に対応する領域に金属層 6 1 A, 6 1 Bを設けるように.したので、 焼成時に圧電体前駆体膜を均一に加熱する ことができ、 全体的に均一な圧電特性を有する圧電体膜 7 O Aを形成することが できる。
(他の実施形態)
以上、 本発明の実施形態について説明したが、 本発明の構成ほ上述したものに 限定されるものではない。
例えば、 上述の実施形態では、 インクジェット式記録ヘッドを一例として説明 したが、 例えば、 液晶ディスプレイ等のカラーフィルタの製造に用いられる色材 噴射ヘッド、 有機 E Lディスプレイ、 F E D (面発光ディスプレイ) 等の電極形 成に用いられる電極材料噴射へッド、 バイオ c h i p製造に用いられる生体有機 物噴射ヘッド等、 種々の液体を噴射するヘッドに適用することができる。 また、 本発明の圧電素子は、 勿論、 液体嘖射ヘッドだけでなく、 たわみ振動モードのァ クチユエータを使用した装置であれば、 あらゆる装置に適用が可能である。 産業上の利用可能性
本発明によれば、 目的とする良好な結晶性を得ることができ、 且つ圧電特性の 面内均一性を向上することのできる圧電素子の製造方法を提供し、 かかる均一性 を向上した圧電素子を提供することが可能となる。 また、 比較的高い電圧を印加 しても圧電体膜が破壊されることのなレ、信頼性に優れた圧電素子が得られる。

Claims

請 求 の 範 囲
1 . 基板上に下電極を形成する工程と、 この下電極上に圧電体膜を形成するェ 程と、 この圧電体膜上に上電極を形成する工程とを備える圧電素子の製造方法で あって、
前記圧電体膜を形成する工程は、 有機金属化合物のゾルを塗布し、 該有機金属 化合物のゾルを乾燥させ、 これを脱脂させることにより当該有機金属化合物のゾ ルをゲル化させ、 このゲルィヒさせた有機金属化合物を結晶化させて圧電体層を形 成する工程を複数回行なって複数層の圧電体層を積層するものであり、 ' 最下層の圧電体層を形成する際、 少なくとも初回の脱脂時の昇温レートを 5 0 0 °C/m i n以下とすることを特徴とする圧電素子の製造方法。
2 . 請求の範囲 1において'、 最下層を除く少なくとも 1層の圧電体層を形成す る際、 脱脂時の昇温レートを 1 0 0 0 °CZm i n以上とすることを特徴とする圧 電素子の製造方法。
3 . 基板上に下電極を形成する工程と、 この下電極上に圧電体膜を形成するェ 程と、 この圧電体膜上に上電極を形成する工程とを備える圧電素子の製造方法で あって、
前記圧電体膜を形成する工程は、 有機金属化合物のゾルを塗布し、 該有機金属 化合物のゾルを乾燥させ、 これを脱脂させることにより当該有機金属化合物のゾ ルをゲル化させ、 このゲル化させた有機金属化合物を結晶化させて圧電体層を形 成する工程を複数回行なって複数層の圧電体層を積層するものであり、
最下層の圧電体層を形成する際、 少なくとも初回の脱脂時の昇温レートを他の 圧電体層の脱脂時の昇温レート以下とすることを特徴とする圧電素子の製造方法
4 . 請求の範囲 3において、 前記圧電体膜を形成する工程では、 前記基板の略 全面に設けられた前記下電極上に最下層の圧電体層である第 1の圧電体層を形成 し、 当該下電極及び第 1の圧電体層を所定形状にパターニング後に前記下電極及 び第 1の圧電体層の端面を覆うように他の圧電体層を形成し、
前記第 1の圧電体層及び当該第 1の圧電体層の直上に設けられる第 2の圧電体 層を形成するための脱脂時の昇温レートを、 残りの圧電体層を形成するための脱 脂時の昇温レート以下とすることを特徴とする圧電素子の製造方法。
5 . 請求の範囲 4において、 前記第 1及ぴ第 2の圧電体層を、 有機金属化合物 のゾルを一度塗布した後当該ゾルをゲル化させこれを結晶化させることで形成し 、 残りの圧電体層を、 前記有機金属化合物のゾルを'二度以上塗布した後当該ゾル をゲル化させこれを結晶化させることで形成することを特徴とする圧電素子の製 造方法。
6 . 請求の範囲 4又は 5において、 前記下電極及び前記第 1の圧電体層をパタ 一ユングした後に、 前記圧電体膜の核となる結晶種を前記第 1の圧電体層上から その外側まで連続的に形成することを特徴とする圧電素子の製造方法。
7 . 請求の範囲 4〜 6の何れかにおいて、 前記下電極及び前記第 1の圧電体層 をイオンミリングによってパターニングすることを特徴とする圧電素子の製造方 法。
8 . 基板上に下電極を形成する工程と、 この下電極上に圧電体膜を形成するェ 程と、 この圧電体膜上に上電極を形成する工程とを備える圧電素子の製造方法で あって、
前記圧電体膜を形成する工程は、 有機金属化合物のゾルを塗布し、 該有機金属 化合物のゾルを乾燥させ、 これを脱脂させることにより当該有機金属化合物のゾ ルをゲル化させ、 このゲル化させた有機金属化合物を結晶化させて圧電体層を形 成する工程を複数回行なつて複数層の圧電体層を積層するものであり、
少なくとも初回の結晶化によって形成される圧電体層のための脱脂時の昇温レ ートを、 他の回の結晶化によって形成される圧電体層のための脱脂時の昇温レー ト以下とすることを特徴とする圧電素子の製造方法。
9 . 請求の範囲 1〜8の何れかにおいて、 前記脱脂を行う際に、 基板側から加 熱することを特徴とする圧電素子の製造方法。..,
1 0 . 請求の範囲 1〜9の何れかの製造方法により製造した圧電素子を用いる ことを特徴とする液体噴射へッドの製造方法。
1 1 . 下電極と、 下電極上に形成された圧電体膜と、 この圧電体膜上に形成さ れた上電極と、 を備えた圧電素子において、
前記圧電体膜は、 柱状結晶を備えた下層部分と、 当該下層部分の柱状結晶と連 続し、 力つ当該下層部分の柱状結晶より径の大きな柱状結晶を備えた上層部分と を備えていることを特徴とする圧電素子。
1 2 . 請求の範囲 1 1において、 前記下電極が所定形状にパターニングされて おり、 前記圧電体膜を構成する複数層の圧電体層のうち、 最下層である第 1の圧 電体層が前記下電極上のみに形成されると共に、 他の圧電体層が前記下電極及び 第 1の圧電体層の端面を覆って形成され、 . 前記第 1の圧電体層及び当該第 1の圧電体層の直上に形成される第 2の圧電体 層が前記下層部分を構成していることを特徴とする圧電素子。
1 3 . 請求の範囲 1 2において、 前記第 1及ぴ第 2の圧電体層のそれぞれの厚 さが、 他の圧電体層のそれぞれの厚さよりも薄いことを特徴とする圧電素子。
1 4 . 請求の範囲 1 2又は 1 3において、 前記下電極及び前記第 1の圧電体層 の端面が、 その表面に対して所定角度で傾斜する傾斜面となっていることを特徴 とする圧電素子。
1 5 . 請求の範囲 1 2〜 1 4の何れかにおいて、 前記圧電体膜の端部近傍に、 前記下電極とは電気的に切断された金属層を有することを特徴とする圧電素子。
1 6 . 請求の範囲 1 1〜 1 5の何れかの圧電素子を液体吐出駆動源として備え ていることを特徴とする液体噴射へッド。
PCT/JP2003/007990 2002-06-24 2003-06-24 圧電素子及び液体噴射ヘッド及びこれらの製造方法 WO2004001870A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/517,840 US7291520B2 (en) 2002-06-24 2003-06-24 Piezoelectric element and liquid jet head using the piezoelectric element
EP03760949A EP1517382A4 (en) 2002-06-24 2003-06-24 PIEZOELECTRIC ELEMENT AND HEAD FOR SPRAYING A LIQUID AND METHOD FOR THE PRODUCTION THEREOF
CNB038148722A CN100385698C (zh) 2002-06-24 2003-06-24 压电元件及液体喷头

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002183512A JP4081809B2 (ja) 2002-06-24 2002-06-24 圧電体素子の製造方法
JP2002-183512 2002-06-24
JP2003178799A JP4096185B2 (ja) 2003-06-23 2003-06-23 液体噴射ヘッド及びその製造方法並びに液体噴射装置
JP2003-178799 2003-06-23

Publications (1)

Publication Number Publication Date
WO2004001870A1 true WO2004001870A1 (ja) 2003-12-31

Family

ID=30002266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007990 WO2004001870A1 (ja) 2002-06-24 2003-06-24 圧電素子及び液体噴射ヘッド及びこれらの製造方法

Country Status (4)

Country Link
US (1) US7291520B2 (ja)
EP (1) EP1517382A4 (ja)
CN (1) CN100385698C (ja)
WO (1) WO2004001870A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5013035B2 (ja) * 2003-12-11 2012-08-29 セイコーエプソン株式会社 誘電体膜の製造方法及び液体噴射ヘッドの製造方法
US7497962B2 (en) * 2004-08-06 2009-03-03 Canon Kabushiki Kaisha Method of manufacturing liquid discharge head and method of manufacturing substrate for liquid discharge head
JP5019020B2 (ja) * 2005-03-31 2012-09-05 セイコーエプソン株式会社 誘電体膜の製造方法及び圧電体素子の製造方法並びに液体噴射ヘッドの製造方法
JP2009255531A (ja) * 2008-03-28 2009-11-05 Seiko Epson Corp 液体噴射ヘッド及び液体噴射装置並びにアクチュエータ
JP5510663B2 (ja) * 2009-09-30 2014-06-04 セイコーエプソン株式会社 液滴噴射ヘッド、液滴噴射装置および圧電素子
US8866367B2 (en) 2011-10-17 2014-10-21 The United States Of America As Represented By The Secretary Of The Army Thermally oxidized seed layers for the production of {001} textured electrodes and PZT devices and method of making
US9761785B2 (en) 2011-10-17 2017-09-12 The United States Of America As Represented By The Secretary Of The Army Stylo-epitaxial piezoelectric and ferroelectric devices and method of manufacturing
DE102014215009B4 (de) * 2014-07-30 2022-03-17 Robert Bosch Gmbh Herstellungsverfahren für eine piezoelektrische Schichtanordnung und entsprechende piezoelektrische Schichtanordnung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650810A (en) * 1992-12-03 1997-07-22 Brother Kogyo Kabushiki Kaisha Ink jet print head having a manifold wall portion and method of producing the same by injection molding
JP2001210888A (ja) * 1999-11-18 2001-08-03 Kansai Research Institute 圧電体素子およびその製造方法ならびにそれを用いたインクジェット式プリンタヘッド
US6336717B1 (en) * 1998-06-08 2002-01-08 Seiko Epson Corporation Ink jet recording head and ink jet recording apparatus
JP2002043642A (ja) * 2000-07-21 2002-02-08 Seiko Epson Corp 強誘電体薄膜素子およびその製造方法、ならびにこれを用いたインクジェット記録ヘッド及びインクジェットプリンタ
JP2002084012A (ja) * 2000-09-08 2002-03-22 Seiko Epson Corp 圧電体膜及びこれを備えた圧電体素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520403B2 (ja) * 1998-01-23 2004-04-19 セイコーエプソン株式会社 圧電体薄膜素子、アクチュエータ、インクジェット式記録ヘッド、及びインクジェット式記録装置
JP3517876B2 (ja) * 1998-10-14 2004-04-12 セイコーエプソン株式会社 強誘電体薄膜素子の製造方法、インクジェット式記録ヘッド及びインクジェットプリンタ
EP1039559A1 (en) * 1999-03-25 2000-09-27 Seiko Epson Corporation Method for manufacturing piezoelectric material
JP4110503B2 (ja) * 2000-04-14 2008-07-02 セイコーエプソン株式会社 圧電体素子およびインクジェット式記録ヘッドの製造方法
US6900579B2 (en) * 2000-07-24 2005-05-31 Matsushita Electric Industrial Co., Ltd. Thin film piezoelectric element
KR100570586B1 (ko) * 2002-12-17 2006-04-13 (주)아이블포토닉스 강유전성 단결정 막 구조물 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650810A (en) * 1992-12-03 1997-07-22 Brother Kogyo Kabushiki Kaisha Ink jet print head having a manifold wall portion and method of producing the same by injection molding
US6336717B1 (en) * 1998-06-08 2002-01-08 Seiko Epson Corporation Ink jet recording head and ink jet recording apparatus
JP2001210888A (ja) * 1999-11-18 2001-08-03 Kansai Research Institute 圧電体素子およびその製造方法ならびにそれを用いたインクジェット式プリンタヘッド
JP2002043642A (ja) * 2000-07-21 2002-02-08 Seiko Epson Corp 強誘電体薄膜素子およびその製造方法、ならびにこれを用いたインクジェット記録ヘッド及びインクジェットプリンタ
JP2002084012A (ja) * 2000-09-08 2002-03-22 Seiko Epson Corp 圧電体膜及びこれを備えた圧電体素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1517382A4 *

Also Published As

Publication number Publication date
US7291520B2 (en) 2007-11-06
US20060051913A1 (en) 2006-03-09
CN100385698C (zh) 2008-04-30
EP1517382A1 (en) 2005-03-23
EP1517382A4 (en) 2008-09-03
CN1663058A (zh) 2005-08-31

Similar Documents

Publication Publication Date Title
JP5251031B2 (ja) 圧電素子、液体噴射ヘッド、液体噴射装置、センサー
JP3555682B2 (ja) 液体吐出ヘッド
JP2012253161A (ja) 圧電素子及び液体噴射ヘッド並びに液体噴射装置
JP4535246B2 (ja) アクチュエータ装置、液体噴射ヘッド及びその製造方法並びに液体噴射装置
JP4069578B2 (ja) 圧電体膜及びこれを備えた圧電体素子
WO2004001870A1 (ja) 圧電素子及び液体噴射ヘッド及びこれらの製造方法
JP4081809B2 (ja) 圧電体素子の製造方法
JP4096185B2 (ja) 液体噴射ヘッド及びその製造方法並びに液体噴射装置
JP2012139919A (ja) 液体噴射ヘッドの製造方法、液体噴射装置、及び圧電素子の製造方法
JP3591316B2 (ja) 圧電アクチュエータ、インクジェット式記録ヘッド、及びプリンタ
JP5104609B2 (ja) 液体噴射ヘッド及び液体噴射装置並びに圧電素子
JP2005168172A (ja) 圧電アクチュエータ及びこれを用いた液体噴射ヘッド並びに液体噴射装置
JP2002043642A (ja) 強誘電体薄膜素子およびその製造方法、ならびにこれを用いたインクジェット記録ヘッド及びインクジェットプリンタ
JP3542018B2 (ja) 圧電体素子、インクジェット式記録ヘッド及びそれらの製造方法
JP4310672B2 (ja) 圧電体素子、インクジェット式記録ヘッド、及びプリンタ
JP2008085353A (ja) 圧電体素子及び液体吐出ヘッド
JP4836003B2 (ja) 圧電体膜の製造方法、圧電体素子の製造方法、インクジェット式記録ヘッドの製造方法
JP2008205048A (ja) 圧電素子の製造方法及び液体噴射ヘッドの製造方法
JP2006245248A (ja) 圧電素子及びその製造方法、液体噴射ヘッド及びその製造方法並びに液体噴射装置
JP2007042949A (ja) 圧電素子の製造方法及び圧電素子並びに液体噴射ヘッド及び液体噴射装置
JP3740851B2 (ja) インクジェット式記録ヘッド
JP2005209898A (ja) 圧電体素子、及びその製造方法並びに液体噴射ヘッド
JP2002219804A (ja) インクジェット式記録ヘッド
JP2002043641A (ja) 圧電体素子及びこれを用いたインクジェット式記録ヘッド
JP2011124405A (ja) アクチュエーター装置の製造方法、液体噴射ヘッドの製造方法および液体噴射装置の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003760949

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038148722

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003760949

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006051913

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10517840

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10517840

Country of ref document: US