WO2004001830A1 - 基板処理装置 - Google Patents

基板処理装置 Download PDF

Info

Publication number
WO2004001830A1
WO2004001830A1 PCT/JP2003/008048 JP0308048W WO2004001830A1 WO 2004001830 A1 WO2004001830 A1 WO 2004001830A1 JP 0308048 W JP0308048 W JP 0308048W WO 2004001830 A1 WO2004001830 A1 WO 2004001830A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
substrate processing
processing apparatus
steam
pure water
Prior art date
Application number
PCT/JP2003/008048
Other languages
English (en)
French (fr)
Inventor
Norihiro Ito
Hiroaki Kawaguchi
Yasuhiro Chouno
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to KR1020047021052A priority Critical patent/KR100895035B1/ko
Priority to JP2004515185A priority patent/JP4576230B2/ja
Priority to US10/519,126 priority patent/US7180035B2/en
Priority to AU2003243974A priority patent/AU2003243974A1/en
Publication of WO2004001830A1 publication Critical patent/WO2004001830A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S134/00Cleaning and liquid contact with solids
    • Y10S134/902Semiconductor wafer

Definitions

  • the present invention relates to a substrate processing apparatus for processing a substrate such as a semiconductor wafer or glass for an LCD substrate using water vapor.
  • a process of removing a resist applied to a surface of a semiconductor wafer there is a process of removing a resist applied to a surface of a semiconductor wafer.
  • a method for removing the resist a method is known in which the resist is converted to water-soluble and then washed away with pure water.
  • the wafer is housed in a processing chamber, a mixed fluid of ozone gas and steam is supplied into the chamber, and the resist is oxidized by the mixed fluid to dissolve the resist.
  • a substrate processing apparatus is used.
  • Such a substrate processing apparatus is provided with a steam generator that generates steam to be supplied to the heater in the chamber 1 by heating pure water stored in a tank.
  • the pure water heated in the tank rises to the upper part of the tank as steam, is sent out by the steam supply path connected to the upper part of the tank, is mixed with the ozone gas, and is supplied into the chamber.
  • the metal that forms the wall of the steam generator tank elutes into the heated pure water and enters the chamber with the steam, generating particles and contaminating the wafer. There is a problem to do.
  • an object of the present invention is to provide a substrate processing apparatus provided with a steam generator capable of supplying steam, which is not contaminated with components harmful to the processing of a substrate such as a metal, to a processing chamber. is there.
  • Still another object of the present invention is to provide a substrate processing apparatus provided with a steam processing apparatus having a simple structure capable of solving at least one of the above objects.
  • the present invention has a tank and at least one heater, and generates steam by heating pure water stored in an internal space of the tank by the heater to vaporize the pure water.
  • the tank includes: a hollow cylindrical body having openings at both ends in a horizontal direction; A pair of plate-like bodies that close the openings at both ends of the tubular body and define the internal space of the tank together with the tubular body, wherein the tubular body is made of a resin material, A substrate processing apparatus is provided, wherein at least one heat sink is provided outside or outside the internal space of the above-mentioned ink, in contact with or close to at least one outer surface of the pair of plate-like bodies.
  • the resin material forming the cylindrical body is preferably a material from which components harmful to substrate processing do not elute into pure water when exposed to a pure water atmosphere in a liquid state and a gas state. Become.
  • the resin material forming the cylindrical body is: It is preferably made of a fluororesin material such as 1 to 8 or so. More preferably, a mixture of PTEF and PFA having excellent creep resistance is used as the resin material forming the cylindrical body.
  • the plate-shaped body with which the sun is in contact with or in close proximity is made of a resin constituting the cylindrical body in consideration of heat conduction from the sun to pure water in the sunken. It is formed of a material having higher thermal conductivity than the material.
  • a material having high thermal conductivity suitable for use in the plate-like body there is a metal material or an amorphous carbon.
  • a coating layer made of a resin material may be provided on a surface of the metal material facing the internal space of the tank in order to prevent metal elution from the metal material into pure water. preferable.
  • the resin material constituting the coating layer is a material in which components harmful to substrate processing do not elute into pure water when exposed to a pure water atmosphere in a liquid state or a gas state, PTFE and It is made of fluorine material such as PFA.
  • fluorine material such as PFA.
  • the metal material forming the plate-like body is exposed to a pure water atmosphere in a liquid state or a gaseous state, elution of components harmful to substrate processing into pure water can be ignored. If the material is extremely small, for example, high-purity titanium, the coating layer may not be provided.
  • the pair of plate members are both formed of a material having high thermal conductivity, and a pair of heaters are arranged in contact with or close to the pair of plate members, respectively.
  • the substrate processing apparatus may further include a shell provided around the tank and configured to limit deformation of the tank due to an internal pressure of the tank.
  • the heat sink can be attached to the shell near the plate-like body.
  • the seal covers the entire outer periphery of the cylindrical body of the tank formed of a resin material, and effectively prevents cleave deformation of the resin material.
  • the heater may include a heat transfer block and a heating element provided on the heat transfer block.
  • a heating element provided on the heat transfer block.
  • an upper edge of the heat transfer block may be connected to the tank.
  • the heating element can be provided at a lower portion of the heat transfer block.
  • a steam discharge passage for discharging the steam out of the tank are provided through the tubular body made of a resin material.
  • the supply passage opens to an internal space of the tank below a set liquid level of the pure water in the tank, and the discharge passage includes a set liquid level of the pure water in the tank. An opening is provided below the height in the internal space of the tank, and the steam discharge passage is opened above the set liquid level of the pure water in the tank.
  • At least one baffle plate is provided in the internal space of the tank. Be placed.
  • a plurality of baffles arranged upward and downward are provided as the at least one baffle, and each baffle has at least one opening through which steam can pass.
  • the upper baffle plate is arranged such that the opening does not overlap the opening of the lower baffle plate in the vertically adjacent baffle plate.
  • the substrate processing apparatus may further include a shell provided around the tank and configured to limit deformation of the tank due to an internal pressure of the tank.
  • an elastic sealing member is provided between the cylindrical body of the tank and the pair of plate bodies of the tank, and the tank is provided in the shell.
  • the plate-shaped body When disposed, the plate-shaped body is pressed against the cylindrical body by the shell, whereby the elastic sealing member is crushed, and a water-tight seal is formed between the cylindrical body and the plate-shaped body.
  • the tank and the shell are formed such that a seal is formed.
  • the tank and the plate-like body do not come into direct contact with each other. Seals are dimensioned.
  • the internal space of the tank has a substantially cylindrical shape with its central axis oriented in the horizontal direction.
  • the cylinder corresponds to a side surface of the tank It is preferable that the diameter of the bottom surface of the cylinder is dimensioned so as to be larger than the height of the cylinder corresponding to the lateral width of the tank.
  • the substrate processing apparatus may further include an ozone gas generator that generates an ozone gas.
  • the processing container may include a steam generated by the steam generator and an ozone gas generated by the ozone gas generator. Is supplied, and the substrate is processed in the processing container using the mixed fluid.
  • FIG. 1 is a schematic plan view showing a processing system incorporating a substrate processing apparatus according to the present invention.
  • FIG. 2 is a schematic side view of the processing system shown in FIGS.
  • FIG. 3 is a schematic sectional view showing a piping system of the substrate processing apparatus shown in FIG.
  • FIG. 4 is a longitudinal sectional view showing a configuration of a processing container of the substrate processing apparatus shown in FIG. 3, and is a longitudinal sectional view showing an opened state of the processing container.
  • FIG. 5 is a longitudinal sectional view showing the sealed state of the processing container shown in FIG.
  • FIG. 6 is a cross-sectional view of the container main body of the processing container shown in FIG.
  • FIG. 7 is an enlarged vertical cross-sectional view of a support member provided on the container body of the processing container shown in FIG.
  • FIG. 8 is an enlarged vertical cross-sectional view of an introduction nozzle provided in a container main body of the processing container shown in FIG.
  • FIG. 9 is an enlarged vertical sectional view of a discharge port provided in a container main body of the processing container shown in FIG.
  • FIG. 10 is a perspective view of an introduction nozzle installation portion of the container main body of the processing container shown in FIG. 4.c
  • FIG. 11 is an enlarged vertical sectional view of a holding member provided on a lid of the processing container shown in FIG. It is.
  • FIG. 12 is an enlarged longitudinal sectional view showing a state where the holding member shown in FIG. 11 is located in the concave groove of the container body.
  • FIG. 13 is a plan view showing a lock mechanism of the processing container shown in FIG.
  • FIG. 14 is an enlarged view taken along the arrow XIV in FIG.
  • FIG. 15 is a longitudinal sectional view of the steam generator of the substrate processing apparatus shown in FIG.
  • FIG. 16 is a longitudinal sectional view of the steam generator shown in FIG.
  • FIG. 17 is a cross-sectional view of the steam generator shown in FIG. 15 taken along the line XVI I-XVII.
  • FIG. 18 is a perspective view showing a modification of the introduction nozzle installation section shown in FIG.
  • FIG. 19 is a longitudinal sectional view showing another embodiment of the steam generator.
  • FIG. 20 is a cross-sectional view of the steam generator shown in FIG. 19, taken along line XX-XX.
  • FIG. 21 is an enlarged sectional view showing the region XXI of FIG. 20 in detail.
  • FIG. 22 is a piping diagram of a substrate processing apparatus applied when the steam generator shown in FIG. 19 is used. Description of the preferred embodiment
  • FIG. 1 is a plan view of a processing system 1 incorporating the substrate processing units 23a to 23h.
  • FIG. 2 is a side view thereof.
  • the processing system 1 includes a processing unit 2 for performing a cleaning process and a resist water-solubilizing process on the wafer W, and a loading / unloading unit 3 for loading / unloading the wafer W into / from the processing unit 2.
  • the loading / unloading section 3 is provided with a mounting table 6 for mounting a container (carrier C) capable of storing a plurality of, for example, 25 substantially disk-shaped wafers W at predetermined intervals substantially horizontally.
  • a port 4 and a wafer transfer unit 5 provided with a wafer transfer unit 7 for transferring a wafer W between the carrier C mounted on the mounting table 6 and the processing unit 2.
  • the wafer W is carried in and out through one side of the carrier C.
  • the side of the carrier C is provided with a lid that can be opened and closed. Further, a shelf for holding the wafers W at predetermined intervals is provided on the inner wall, and 25 slots for accommodating the wafers W are formed.
  • the wafers W are accommodated one by one in each slot, with the front surface (the surface on which semiconductor devices are formed) facing upward (the upper surface when W is held horizontally).
  • the carrier C is placed with the side provided with the lid facing the interface wall 8 between the in-out port 4 and the wafer transport unit 5.
  • a window 9 is formed in the boundary wall 8 at a position corresponding to the place where the carrier C is placed.On the wafer transfer section 5 side of the window 9, a window for opening and closing the window 9 with a shirt or the like. An opening / closing mechanism 10 is provided.
  • the cover provided on the carrier C can also be opened and closed, and simultaneously with the opening and closing of the window 9, the cover of the carrier C also opens and closes.
  • the window 9 is opened to allow the wafer loading / unloading port of the carrier C to communicate with the wafer transfer unit 5
  • the wafer transfer unit 7 provided in the wafer transfer unit 5 can access the carrier C, and the wafer W It will be ready to be transported.
  • the wafer transfer device 7 provided in the wafer transfer section 5 is movable in the Y direction and the Z direction, and is configured to be rotatable in the XY plane (0 direction). Further, the wafer transfer device 7 has a take-out and storage arm 11 for holding the wafer W, and the take-out and storage arm 11 is slidable in the X direction. In this way, the wafer transfer device 7 accesses the slots of any height of all the carriers C mounted on the mounting table 6, and the upper and lower two wafer transfer units 1 arranged in the processing section 2. It is configured to be able to access wafers 6 and 17 to transfer the wafer W from the in / out port 4 side to the processing unit 2 side, and conversely from the processing unit 2 side to the in / out port 4 side. .
  • the processing unit 2 includes a wafer transfer unit (wafer relay) for temporarily placing the wafer W in order to transfer the wafer W between the main wafer transfer device 18 serving as a transfer unit and the wafer transfer unit 5.
  • a wafer transfer unit wafer relay
  • the processing unit 2 sends an ozone gas generator 24 that generates ozone gas to be supplied to the substrate processing units 23 a to 23 h and a substrate cleaning unit 12, 13, 14, and 15.
  • a chemical storage unit 25 for storing a predetermined processing liquid is provided.
  • a fan filter unit (FFU) 26 for down-flowing clean air is installed in each unit and the main wafer transfer unit 18 on the ceiling of the processing unit 2. Have been.
  • Each of the wafer transfer units 16 and 17 temporarily mounts the wafer W between the wafer transfer unit 5 and the wafer transfer units 16 and 17 are stacked in two upper and lower tiers. It is arranged.
  • the lower wafer transfer unit 17 is used to place the wafer W so as to be transferred from the port 4 side to the processing unit 2 side
  • the upper wafer transfer unit 16 is used for the processing unit 2 It can be used to place the wafer W to be transferred from the side to the in / out port 4 side.
  • the main wafer transfer device 18 is movable in the X direction and the Z direction, and is configured to be rotatable in the XY plane (the ⁇ direction). Further, the transfer device 18 has a transfer arm 18a for holding the wafer W, and the transfer arm 18a is freely slidable in the Y direction. In this way, the main wafer transfer unit 18 distributes the wafer delivery units 16 and 17, the substrate cleaning units 12 to 15, and the substrate processing units 23 a to 23 h in an accessible manner. Has been established.
  • Each substrate cleaning unit 12, 13, 14, 15 is a cleaning and drying process for the wafer W that has been subjected to the resist solubilization process in the substrate processing units 23 a to 23 h. Is applied.
  • the substrate cleaning units 12, 13, 14, and 15 are arranged in two stages in each of the upper and lower stages. As shown in FIG. 1, the substrate cleaning units 12 and 13 and the substrate cleaning units 14 and 15 have a symmetrical structure with respect to the wall surface 27 forming the boundary, but the symmetrical structure Except for the above, each of the substrate cleaning units 12, 13, 14, and 15 has a substantially similar configuration.
  • Each of the substrate processing units 23 a to 23 h performs a process of making the resist applied to the surface of the wafer W water-soluble.
  • the substrate processing units 23a to 23h are vertically arranged in four stages and two units are arranged in each stage.
  • Substrate processing units 23 a, 23 b, 23 c, and 23 d are arranged in this order from the top on the left, and the base
  • the plate processing units 23e, 23f, 23g and 23h are arranged in this order from the top. As shown in FIG.
  • the unit 23d and the substrate processing unit 23h have a symmetrical structure with respect to the wall surface 28 that defines the boundary, but except for the symmetry, each of the substrate processing units 23a to 23h. Has almost the same configuration.
  • the structure of the substrate processing units 23a and 23b will be described in detail below as an example.
  • FIG. 3 is a schematic configuration diagram showing a piping system of the substrate processing units 23a and 23b.
  • the processing chambers (processing vessels) 30A and 30B provided in the substrate processing units 23a and 23b have a steam supply pipe 38 (hereinafter, referred to as a “steam supply path”) for supplying steam to the chambers 30A and 30B respectively.
  • a steam generator 40 which is one steam supply source, is connected via a main supply pipe 38).
  • the supply switching means 41 includes a flow control valve 50 for communicating and shutting off the main supply pipe 38 and adjusting the flow rate, a flow adjusting valve 52 for communicating and shutting off the ozone gas supply pipe 51 and adjusting the flow rate, and N 2 gas.
  • a switching valve 54 for communicating and shutting off the supply pipe 53 is provided.
  • the N 2 gas supply pipe 53 is provided with a flow rate switching valve 55 capable of switching between a large flow rate section 55a and a small flow rate section 55b.
  • the flow control valves 50, 50 are used to adjust the flow rate so that the steam generated in the steam generator 40 and passing through the main supply pipes 38, 38 is supplied at a flow rate equal to each chamber 30A, 30B.
  • the balance is adjusted.
  • the flow control valves 52, 52 are built in so that the ozone gas passing from the ozone gas generator 42 through the ozone gas supply pipe 51 and the main supply pipes 38, 38 is supplied at a flow rate equal to each chamber 30A, 30B.
  • the opening balance of the adjusted variable throttle is adjusted.
  • a temperature controller 57 which is installed in a tubular shape along the shape of the main supply pipe 38, and is sent out from the steam generator 40. The temperature of the steam is controlled while passing through the main supply pipe 38 to the flow control valve 50.
  • a flow meter 58 is provided upstream of the flow control valve 52 of the ozone gas supply pipe 51.
  • a discharge pipe 60 is connected to a portion of the chamber 30 °, 30 ° opposite to the connection of the main supply pipe 38.
  • the discharge pipe 60 is connected to the mist trap 61.
  • the exhaust pipe 60 is provided with an exhaust switching section 65 as pressure adjusting means.
  • the exhaust switching section 65 has branch pipes 66 and 67, and the branch pipes 66 and 67 have a first exhaust flow control valve 71 that discharges a small amount of air when opened, and a large amount of exhaust when opened.
  • a second exhaust flow control valve 72 is provided in each case.
  • the downstream sides of the exhaust flow control valves 71 and 72 in the branch pipes 66 and 67 join together to form a discharge pipe 60, which is connected to the mist trap 61.
  • a branch pipe 81 connecting the upstream side of the displacement control valve 72 in the branch pipe 67 and the downstream side of the junction of the branch pipes 66, 67 is provided.
  • a third exhaust switching valve 83 is provided, which normally keeps the closed state, and is opened in an emergency, for example, when the pressure in the chambers 30A, 30B excessively increases.
  • the mist trap 61 cools the discharged processing fluid, separates the processing fluid into a gas containing ozone gas and a liquid, and discharges the liquid from the drain pipe 91.
  • the gas containing the separated ozone gas is subjected to thermal decomposition of the ozone gas component into oxygen by the ozone killer 92, cooled by the cooling device 93, and then exhausted.
  • the flow rate of the steam supplied to the chambers 30 A and 30 B is adjusted by the flow control valves 50 and 50, and the flow rate of the ozone gas supplied to the chambers 30 A and 30 B is: It is adjusted by the flow control valves 52 and 52. Further, the pressure in the chambers 30 A and 30 B due to the atmosphere of steam, ozone gas, or a mixed fluid of steam and ozone gas, etc., is set to 30 A and 30 A by the exhaust switching units 65 and 65, respectively. It is controlled by adjusting the flow rate exhausted from inside 0B.
  • a leak sensor 95 is attached to each of the chambers 30A and 30B so that leakage of the processing fluid in -30A can be monitored.
  • the chambers 30A and 30B have the same configuration. Therefore, next, the chambers 30 A and 30 B will be described by taking the one chamber 30 A as a representative.
  • the chamber 13OA receives the container body (the chamber body) 100 for storing the wafer W and the wafer W from the main carrier W transfer device 18 described above.
  • the cover 101 is separated from the container body 100 when receiving the wafer W from the main wafer W transfer device 18 and the cover 101 to be transferred to 100, and the wafer W is being processed.
  • a main part is constituted by a cylinder 102 as a moving means for bringing the lid 101 into close contact with the container body 100.
  • a sealed processing space S1 is formed between the container main body 100 and the lid 101.
  • the container main body 100 includes a disc-shaped base 100a and a circumferential wall 100b that rises upward from a peripheral portion of the base 100a.
  • a lower engagement piece 103 that engages with a lower engagement roller 162 described later projects in a donut shape from the entire outer peripheral surface of the pace 100a.
  • the base 100a has a built-in base 105, and the upper surface of the base 100a has a circular lower plate 110 having a diameter smaller than that of the wafer W protruding.
  • the upper surface of the lower plate 110 is formed below the upper surface of the circumferential wall 10 Ob.
  • a concave groove 100c is formed between the circumferential wall 10Ob and the lower plate 110.
  • each supporting member 1 1 1 is provided at four locations around the lower plate 110 and in contact with four peripheral edges on the lower surface of the wafer W stored in the container body 100. Is provided.
  • the wafer W is stably supported at the storage position by these four support members 111.
  • a gap G having a height of about l mm is formed between the lower surface of the wafer W supported at the storage position by the support member 111 and the upper surface of the lower plate 110.
  • the material of the support member 111 is a resin such as PTFE.
  • the 0 ring 1 fitted into the concentrically provided double circumferential grooves 112 a and 112 b 15a and 115b are provided on the upper surface of the circumferential wall 100 b.
  • the upper surface of the circumferential wall 100b and the lower surface of the lid 101 can be brought into close contact, and the processing space S1 can be sealed.
  • an introduction nozzle 120 for introducing a processing fluid into the chamber 13 OA is provided in the circumferential wall 10 Ob, and the center of the wafer W supported at the storage position is centered.
  • a discharge port 121 is provided at a position facing the introduction nozzle 120.
  • the main supply pipe 38 penetrates through the lower engagement piece 103 and is connected to the inlet portion 125 of the introduction nozzle 120. Further, the discharge pipe 60 penetrates through the lower engagement piece 103 and is connected to the discharge outlet 122.
  • the introduction nozzle 120 opens at the upper side of the groove 100c as shown in FIG. 8, and the discharge port 121 opens at the bottom side of the groove 100c as shown in FIG.
  • the introduction nozzle 120 above the discharge outlet 121, the processing fluid introduced from the introduction nozzle 120 can be smoothly supplied into the processing space S1 without stagnation. it can. Further, when the processing fluid is discharged from the processing space S1, the processing fluid is prevented from remaining in the chamber 13OA.
  • the introduction nozzle 120 and the discharge port 121 are disposed between the four support members 111 around the periphery W. That is, the support members 111 are arranged so as not to hinder the smooth introduction and discharge of the processing fluid.
  • the inlet nozzles 120 are connected to the main supply pipe 38 and are connected to the inlet part 125 and the inlet part 125 for allowing the processing fluid to flow in from the outside of the circumferential wall 100 Ob. It is composed of an outlet part 126 that opens in a fan shape in the horizontal direction toward the inside of the chamber 3OA. On the opening side of the outlet portion 126, a porous mesh 127 made of quartz is provided. The processing fluid sent out from the main supply pipe 38 spreads in a fan shape at the outlet portion 126, flows through the porous mesh 127, and is introduced into the chamber 130A. In this way, by opening the outlet portion 126 in a fan shape, the processing fluid can be efficiently diffused and supplied into the chamber 30A.
  • the uniformity of etching is improved. Furthermore, when the processing fluid passes through the porous mesh 127, the flow velocity of the processing fluid decreases.For example, even if the particles have settled in the concave groove 100c, the particles and the like are removed. It does not wind up, and has the effect of reducing particles and the like adhering to W.
  • an introduction nozzle installation portion 130 having a convex surface 130a and a concave surface 130b is cut from the circumferential wall 100b.
  • the inlet part 1 25 is formed from the convex surface 130 a of the introduction nozzle installation part 130, which is a part of the outer peripheral surface of the circumferential wall 100 b, while the inside of the circumferential wall 100 b is formed.
  • the outlet portion 126 is formed from the concave surface 130b which is a part of the peripheral surface. Further, the perforated mesh 127 is fitted into the opening of the outlet 126.
  • the introducing nozzle installation part 130 penetrating the introduction nozzle 120 is fitted again to the cut part 131, which cuts the introduction nozzle installation part 130 of the circumferential wall 100b, and the introduction nozzle Weld between the installation part 130 and the cut part 131.
  • welding can be performed with high accuracy by using an electron beam welding method. In this way, processing of the introduction nozzle 120 is possible.
  • the lid 101 has a base 101 a having a built-in body 135 therein, and a center of the lower surface of the base 101 a at a periphery of the base 101 a. It is composed of a pair of holding members 136 suspended at two locations facing each other. In addition, as shown in FIG. 13, 12 upper engagement pieces 1337 are protruded from the outer peripheral surface of the lid body 101.
  • the holding member 13 6 is formed in a substantially L-shaped cross section having a horizontal piece 13 b b bent inward from the lower end of the vertical piece 13 a. .
  • the tip of the horizontal piece 1 36 b that is, the inward end has an arc surface 1 37, and the step 1 on which the edge of W is placed is provided on the top surface of the tip of the horizontal piece 1 36 b. 38 are formed.
  • the cylinder 102 which is a moving means, is mounted on the upper ends of four columns 141, which are erected on a rectangular fixed platen 140 as shown in Fig. 13, and is fixed with bolts 144.
  • Cylinder body 144 fixed vertically to the lower surface of the top plate 144, and the upper surface of the lid body 101, which slidably protrudes from the lower end of the cylinder body 144 as shown in FIG. It is composed of a piston rod 1 4 6 which is fixed to.
  • the lid 101 moves upward and separates from the container body 100, and as shown in FIG. By extension, the lid 101 moves downward to abut against the upper surface of the circumferential wall 100b of the container body 100, and the ⁇ rings 1 15a and 115b are pressed against each other. Can be sealed.
  • the lock mechanism 150 is rotatable via a bearing 1502 on a support shaft 150 protruding from the lower surface of the center of the base 100a of the container body 100.
  • Rotating cylinder 15 3 mounted on the main body, a rotary actuator 15 4 that rotates the rotating cylinder 15 3 so that it can rotate forward and backward in the horizontal direction, and a horizontal direction from the outer periphery of the rotating cylinder 15 3
  • It has a disk 155 that extends to the side.
  • brackets 156 standing upright at the tip of the disc 155 and a lower horizontal shaft 160 projecting inward from the lower side of each bracket 156.
  • a lower engaging roller 162 rotatably mounted and capable of engaging with the lower surface of the lower engaging piece 103 described above, and an upper portion projecting inward from the upper side of the bracket 156. It has an upper engagement opening 16a rotatably mounted on the horizontal shaft 16 and capable of engaging with the upper surface of the upper engagement piece 1337.
  • the above-mentioned upper engaging piece 13 7 has a cut along the outer peripheral surface of the lid 10 1 having a size slightly larger than the diameter of an upper engaging port 16 6 described later. It protrudes through the notch 1 6 7. Also, as shown in FIG. 14, the upper surface of the upper engagement piece 13 7 has an inclined surface 1 680 which is upwardly sloped from one end of the notch 16 7 (the left side in FIG. 14). A flat surface 169 is formed at the upper end of the surface 168.
  • the rotary cylinder is driven by driving the rotary actuator 154 with the lid 101 in contact with the container main body 100.
  • the lower engaging port 16 2 rolls on the lower surface of the lower engaging piece 10 3
  • the upper engaging roller 16 6 Rolling the inclined surface 1 6 8 of 1 3 7 reaches the flat surface 1 6 9. That is, the pair of lower engagement ports 16 2 and upper engagement ports 16 6 of the pair are protruded from the base 100 a of the container body 100.
  • the container body 100 and the lid 101 are fixed (locked) by sandwiching the lower engagement piece 103 and the upper engagement piece 137 projecting from the lid 101. In this state, the rings 115a and 115b are pressed against each other, so that the lid 101 is sealed to the container body 100.
  • the locked state can be released by positioning it in the notch 1 67. In this state, by contracting the piston rod 146 of the cylinder 102, the lid 101 is separated from the container body 100.
  • the steam generator 40 is composed of a tank 170 for storing pure water, and fixed supporting members 1-1 for fixedly supporting the tank 170.
  • the tank 170 is composed of a cylindrical body 175 that is open on both sides, and a pair of side wall plates 177a and 177b that close both sides of the cylindrical body 175 as shown in FIG. Outside the side walls 177a and 177b, heaters 180 and 180 are installed, respectively.
  • the pure water in the tank 170 is stored in the tank internal space S2 surrounded by the cylindrical body 175 and the side walls 177a and 177b, and is heated through the side walls 177a and 177b. Heated by 180.
  • the temperature in the tank is adjusted to about 120 ° C by heating at 180 ° C and 180 ° C, and the steam is kept pressurized.
  • the pure water in the tank is efficiently heated from both sides of the side wall plates 177a and 177b by 180 and 180.
  • the tank 170 has a sealed and pressure-resistant structure.
  • the cylindrical body 175 has a substantially prismatic inner peripheral surface with rounded corners, and comes into contact with the side wall plates 177a and 177b at the annular end surfaces 182a and 182b.
  • Bolt holes (not shown) are formed at a plurality of locations on the cylindrical body 175 and the side wall plates 177a and 177b so as to surround the tank internal space S2. 1 75,
  • the side wall plates 177a and 177b are fixed to the cylindrical body 175 by being inserted through bolt holes in the side wall plate 177b and tightening nuts on the side wall plate 177b side.
  • Both ends 182a and 182b of the cylindrical body 175 are provided with circumferential grooves 183a and 183b as shown in FIGS. 16 and 17, respectively.
  • O-rings 185a and 185b are fitted between 183a and the side wall plate 177a, and between the circumferential groove 183 and the side wall plate 177b. Thereby, the side wall plates 177a and 177b and the both end surfaces 182a and 182b can be brought into close contact with each other.
  • the material of the cylinder 175 is a mixture of PFA (tetrafluoroethylene) and PTFE (polytetrafluoroethylene), and the material of the side walls 177a and 177b is high-purity titanium.
  • the tank 170 has heat resistance and vapor resistance, and has a pressure-resistant structure.
  • the mixture does not exhibit “metal elution,” a phenomenon in which metal ions elute into pure water when exposed to liquid and gaseous pure water atmospheres.
  • high-purity titanium has very little metal elution into pure water compared to stainless steel and the like.
  • heat generators 180 and 180 are provided with heat generating devices 190 and 190, which generate heat, and heat generated from the heat generating devices 190 and 190, which are transferred to side wall plates 177a and 177b.
  • It is composed of a heat transfer member 191, 191, which is made of metal, for example, aluminum, which transfers heat.
  • Heat transfer member 191 is in contact with the outer surface of side wall plate 177a or 177b, and the upper edge of heat transfer member 191 is almost as high as liquid level L of pure water in tank 170. Are formed so as to be positioned substantially horizontally. Further, the heat transfer member 191 is formed such that the lower edge thereof is located below the height of the bottom surface of the tank 170.
  • the heat generating device 190 is provided with a heat transfer member 19 1, such that the upper edge of the heat generating device 190 is located below the level of the liquid level L and the lower edge is located substantially at the level of the bottom surface of the tank 100. beneath It is installed in.
  • the heat generated from the heat generating device 190 is conducted to the heat transfer member 191, and is conducted from the heat transfer member 191 to the side wall plate 177 a or 177 b, and the side wall plate 177 a, 1 Conducts from 7 b to pure water.
  • the heat transfer member 19 1 since the upper edge of the heat transfer member 19 1 is formed at substantially the same height as the liquid level L, the heat from the heated heat transfer member 19 1 is transferred to the side wall plate 17 7 Conduct efficiently to stored pure water via a or 1 ⁇ 7 b. Therefore, it is possible to prevent the heat transfer member 191 and the side wall plate 177a or 177b from being excessively heated, and to enhance safety.
  • the cylindrical body 175 is provided with two main supply pipes 38, 38 for supplying steam from the tank 170 to the chambers 30 A, 3 OB.
  • a pure water supply pipe 200 for supplying pure water and N 2 gas into the tank 170, a drain pipe 201 for discharging pure water from the tank 1 ⁇ 0, and a tank 17
  • the main supply pipe 38 steam supply pipe 38
  • the pure water supply pipe 200 is provided at a position where pure water is supplied from below the liquid level L of the pure water.
  • the drain pipe 201 is provided at a position where pure water is drained from the bottom side of the tank 170.
  • the main supply pipe 38 is provided at a position where steam is delivered from the side of the ceiling of the tank 170.
  • a temperature sensor 202 for measuring the temperature of the pure water is provided between the pure water supply pipe 200 and the drain pipe 201.
  • the right side of the cylindrical body 175, that is, a pure water supply pipe 200, a drain pipe 201, and a main supply pipe 38 for sending steam to the chamber 13 OA are arranged.
  • a main supply pipe 38 for sending steam to the chamber 30B and a level gauge 210 are provided on the side opposite to the side.
  • the main supply pipe 38 for sending steam to the chamber 170B is provided at a position for sending steam from the side of the ceiling of the tank 170.
  • the level gauge 210 has a measuring part 210a for measuring the liquid level, and a lower pipe 210 opening to the bottom of the tank 170 and connected to the lower end of the measuring part 210a. b and an upper pipe 210c connected to the upper end of the measuring section 210a, which is opened at a position above the liquid level L so as not to contact the pure water.
  • baffle plates 2 1 1 and 2 12 are arranged substantially parallel to the liquid level L.
  • the lower baffle 2 1 1 It is formed so that the four sides are in contact with the cylinder 1 75 and the side wall plates 1 77 a and 1 77 b so as to cover the entire upper side of the liquid level L.
  • the upper baffle plate 2 1 2 The four sides are brought into contact with the side wall plate 177 a and the side wall plate 177, and are formed so as to cover the liquid surface L and the entire upper part of the baffle plate 211.
  • the lower baffle plate 2 11 1 has through holes 2 13 .a, 2 1 3, through which the generated steam passes, on the left and right sides of the cylindrical body 17 5 in FIG. b is provided for each.
  • the upper baffle plate 2 12 is provided with a passage opening 2 14 in the center of the baffle plate 2 14 through which the steam passing through the passage openings 2 13 a and 2 13 b passes.
  • the passage ports 2 13 a, 2 13 b, and the passage port 2 14 are open so as not to overlap each other. That is, right above the passages 2 1 3a and 2 1 3b is covered by the portion of the baffle 2 1 2 where there is no passage 2 14 and just below the passage 2 1 4 is the baffle 2 1 1 It is covered by the part without the passage 2 13 a and 2 13 b.
  • the steam generated under the baffle plate 2 1 1 passes through the passage openings 2 1 3 a and 2 13 b, is deflected by the baffle plate 2 1 2 right above, passes through the passage opening 2 1 4 Discharged from supply pipe 38.
  • mist-like pure water can be received by the baffle plates 2 1 1 and 2 1 2. it can. Therefore, mist-like pure water is not sent out by the main supply pipe 38, and is prevented from entering the chambers 30A and 30B. As a result, it is possible to prevent the occurrence of the war-shaped mark on the wafer W. Further, since the height between the liquid level L and the main supply pipe 38 can be reduced, the height of the entire tank 170 can be reduced, and the amount of pure water stored can be increased. In addition, if the steam is made to meander as much as possible when bypassing the baffle plates 211 and 212, mist-like pure water can be effectively received.
  • the materials of the baffle plates 2 11 and 2 12 include, for example, those exposed to a liquid or gaseous pure water atmosphere such as PTFE, amorphous carbon, silicon carbide ceramics (SiC), etc. Use a material that does not elute the material components into pure water or a material such as titanium that does not substantially elute into pure water.
  • a flow control valve V 2 is interposed in the pure water supply pipe 200, and a pure water supply source 25 is connected.
  • the N 2 gas supply source 4 3 is connected to the downstream side of the flow control valve V 2 of the pure water supply source 2 25 via a branch pipe 2 26 from the N 2 gas supply pipe 53. Have been.
  • a flow regulating valve V3 is interposed in the branch pipe 226. In this case, both the flow control valves V2 and V3 can perform the communication and the shutoff operation in the same manner.
  • the drain pipe 201 is provided with a drain valve DV interlocked with the flow control valve V3, and a mist trap 227 is provided at the downstream end. Further, the downstream end of the relief path 220 is connected to the drain pipe 201 downstream of the flow regulating valve V3.
  • a flow control valve V 4 and an on-off valve V 5 are interposed in the relief path 220, and are branched from the upstream side of the flow control valve V 4 and connected to the downstream side of the on-off valve V 5.
  • a branch pipe 230 is connected to the branch pipe 230, and a relief valve RV1 is interposed in the branch pipe 230.
  • the mist trap 227 cools the pure water drained from the drain pipe 201 and the steam discharged from the release path 220, converts it into a liquid, and drains it from the drain pipe 91.
  • the steam generators 180 and 180 are operated at a constant output. Also, as described above, the flow rate adjustment valves 50, 50 are controlled so that the steam generated in the steam generator 40 is supplied at a flow rate equal to each chamber 30A, 30B. Is set in advance. For example, assuming that the amount of steam generated per unit time in the steam generator 40 is 5 units, when steam is simultaneously supplied to the chambers 30 A and 30 B, the steam is generated in the steam generator 40. Of the 5 units of steam, steam is supplied to each chamber at 3 O As 30 B at a flow rate of 2 units, and the remaining 1 unit of steam is discharged from the tank 170 through the escape path 220. Discharge.
  • the opening of the flow control valve V 4 is adjusted so that one unit of steam flows through the release path 220, and The regulating valves 50, 50 and the on-off valve V5 provided in the relief path 220 are opened.
  • the flow rate of the flow control valve V 4 is adjusted so that steam at a flow rate of 3 units passes through the release path 220, and one of the flow control valves 50 Open / close valve V5 is opened.
  • each flow control valve 50, 50 is closed, and the on-off valve V5 and the flow control valve V4 are opened.
  • the steam discharged from the escape passage 220 passes through the drain pipe 201 and is sent to the mist trap 227.
  • the relief valve RV1 is opened to allow steam to escape from the tank 170 to the escape passage 220, branch pipe 230, and escape passage 2 20 and drain pipe 201 in order.
  • the steam generated in the steam generator 40 is discharged through the relief path 220 while adjusting the flow rate by the flow control valve V4, so that the steam is generated in the chambers 30A and 30B.
  • the flow rate of the supplied steam can be adjusted.
  • a flow control valve 50 that is preset to a balance in which steam is supplied at a flow rate equal to 30 A and 30 B is used. There is no need to change the flow rate adjustment amounts of 50 and 50, only opening and closing are required.
  • each of the chambers 30 A, 3 It is easy to adjust the flow rate of steam supplied to the OB. Therefore, the flow rate of the steam supplied to each chamber 30 A, 30 B can be accurately adjusted according to the process performed in each chamber 30 A, 30 B, and the resist water-solubilization process can be adjusted. Uniformity and reliability can be improved.
  • the wafers W are taken out one by one from the carrier C mounted on the mounting table 6 of the in / out port 4 by the take-out and storage arm 11, and the wafer W taken out by the take-out and storage arm 11 is transferred to the wafer transfer unit 17.
  • the main wafer transfer unit 18 receives the wafer W from the wafer transfer unit 17 and transfers the wafer W to each of the substrate processing units 23 a to 23 h by the main transfer unit 18 as appropriate.
  • the resist applied to the surface of the wafer W is made water-soluble.
  • the wafer W having been subjected to the predetermined resist water-solubilizing process is appropriately carried out of each of the substrate processing units 23a to 23h by the transfer arm 18a. Thereafter, the wafer W is transported again to the respective substrate cleaning units 12, 13, 14, and 15 by the transfer arm 18 a as needed, and is subjected to a cleaning process for removing the water-soluble resist attached to the wafer W. Is applied by pure water or the like. As a result, the resist applied to the wafer W is removed.
  • Each of the substrate cleaning units 12, 13, 14, and 15 is subjected to a cleaning process for the wafer W, a particle and metal removal process by a chemical solution process if necessary, and then a drying process.
  • the wafer W is transported to the delivery unit 17 again by the transport arm 18a. Then, the wafer W is received from the delivery unit 17 to the removal storage arm 11, and the wafer W from which the resist has been peeled is stored in the carrier C by the removal storage arm 11.
  • the transfer arm 18a of the main wafer transfer device 18 is moved below the cover 101 with the cover 101 separated from the container body 100, the cover 1
  • the holding member 1 36 of 01 receives the wafer W from the transfer arm 18a (wafer receiving step).
  • the lid 101 moves in the direction close to the container body 100 and is held.
  • the holding member 136 enters the concave groove 100c of the container body 100, and transfers the wafer W supported by the holding member 136 to the support member 111 of the container body 100 (a wafer transfer step).
  • a gap G is formed between the lower surface of the wafer W and the upper surface of the lower plate 110.
  • the supply switching means 41 is operated to supply a predetermined concentration of ozone gas from the ozone gas generator 42 into the chamber 13 OA via the ozone gas supply pipe 51.
  • the ozone gas is adjusted to a predetermined flow rate according to the degree of the flow rate adjustment valve 52 and supplied into the chamber 13 OA.
  • the first exhaust flow control valve 71 of the exhaust switching section 65 is opened, and the exhaust flow from the chamber 30A through the discharge pipe 60 is adjusted by the first exhaust flow control valve 71.
  • the inside of the chamber 30A is made to have an ozone gas atmosphere while keeping the pressure inside the chamber 13OA constant.
  • the pressure in the chamber 30A is kept higher than the atmospheric pressure, for example, at a gauge pressure of about 0.2 MPa.
  • the chamber 13 OA is filled with a predetermined concentration of ozone gas.
  • the atmosphere in the chamber 13 OA and the temperature of the wafer W are maintained by heating the heaters 105 and 135. Further, the atmosphere in the chamber 3 OA exhausted by the exhaust pipe 60 is exhausted to the mist trap 61.
  • the steam generator 40 when the heat generating devices 190, 190 of the two heaters 180, 180 generate heat, heat is conducted from the heat generating devices 190, 190 to the heat transfer members 191, 191 respectively. Further, heat is transmitted from the heat transfer members 191 and 191 to the side wall plates 177a and 177b, respectively, and heat is transferred from the side wall plates 177a and 177b to pure water in the tank to generate steam.
  • the temperature in the tank 170 is adjusted to about 120 ° C.
  • the tank 170 is maintained in a pressurized state by heating.
  • the pressure in the tank 170 is reduced, and the temperature in the tank 170 is reduced to about 120 ° C. Maintain moderately.
  • the steam discharged by the escape path 220 is cooled in the mist trap 227 and discharged from the drain pipe 91.
  • the flow control valve 50 is operated to simultaneously supply the ozone gas and the vapor into the chamber 13OA, thereby performing the resist water-solubilizing treatment on the wafer W.
  • the first exhaust flow control valve 71 of the exhaust switching section 65 provided in the discharge pipe 60 is opened, and the ozone gas and the vapor are simultaneously supplied while exhausting the inside of the chamber 13OA.
  • the steam supplied from the steam generator 40 passes through the main supply pipe 38 while being controlled at a predetermined temperature, for example, about 115 ° C. by the temperature controller 57, and the ozone gas is supplied to the supply switching means 41. And supplied into the chamber 13 OA.
  • the pressure in the chamber OOA is kept higher than the atmospheric pressure, for example, at a gauge pressure of about 0.2 Mpa. Further, the atmosphere in the chamber 13OA and the temperature of the wafer W are maintained by heating the heaters 105 and 135. In this way, the resist applied on the surface of the wafer W is oxidized (solubilized) by the mixed processing fluid of the ozone gas and the vapor filled in the chamber OOA (processing step).
  • the ozone gas is adjusted to a predetermined flow rate in accordance with the opening of the flow rate adjustment valve 52, and is supplied into the chamber 13OA through the main supply pipe 38.
  • the steam is adjusted to a predetermined flow rate in accordance with the opening of the flow control valve 50 and the flow control valve V4, and is supplied into the chamber 13OA through the main supply pipe 38.
  • the first exhaust flow control valve 71 of the exhaust switching section 65 is opened, and the exhaust flow through the exhaust pipe 60 from inside the chamber 30A is controlled by the first exhaust flow control valve 71. adjust.
  • the supply of the mixed processing fluid is continued from the main supply pipe 38, and the discharge of the mixed processing fluid is continued from the discharge pipe 60.
  • the mixed fluid is on the top and bottom of wafer W Flows along the surface (gap G) and the periphery toward the outlets 121 and 60.
  • the supply of the mixed processing fluid from the main supply pipe 38 is stopped, the discharge from the discharge pipe 60 is stopped, and the mixed processing fluid filling the chamber 13 OA is maintained while the pressure in the chamber 13 OA is kept constant.
  • the wafer W may be subjected to a resist solubilization treatment. After the predetermined resist water-solubilizing process is completed, a mixed fluid of ozone gas and vapor is discharged from the chamber 13OA.
  • the flow switching valve 55 is switched to the large flow portion 55a side to supply a large amount of N 2 gas into the chamber 13 OA from the N 2 gas supply source 43, and through the discharge pipe 60.
  • the second exhaust flow control valve 72 of the installed exhaust switching section 65 is opened. Then, supplying the N 2 gas from the N 2 gas supply source 4 3 while evacuating the chamber one 3 in OA. This makes it possible to purge the main supply pipe 3 8, the chamber one 3 0 A, through the exhaust extraction pipe 6 0 by N 2 gas.
  • the discharged ozone gas is discharged to the mist trap 61 by the discharge pipe 60.
  • the holding member 1336 housed in the concave groove 100c is re-engaged with the green parts on both sides opposite to each other.
  • the wafer W is received from the support member 111 in contact with the lid 101, and the cover 101 is separated from the container body 100.
  • the transfer arm 18a of the main wafer transfer device 18 is moved under the lid 101 to receive the wafer W supported by the holding member 136, and from within the chamber 13OA. Unload wafer W.
  • the creep of the tank 170 can be prevented, so that the sealing failure can be prevented.
  • the heat transfer member 191 and the side wall plate 177a or 177b are excessively heated. Can be prevented and safety can be improved.
  • the liquid contact surface in contact with the wall of the tank 170 is formed of a mixture of PFA and PTFE and high-purity titanium, the material of the liquid contact surface can be eluted into pure water.
  • the mist-like pure water is effectively received by the baffle plates 2 1 1 and 2 1 2, and the mist-like pure water enters the chambers 30 A and 30 B from the main supply pipe 38. To prevent the wafer from It is possible to prevent the occurrence of the war mark. Further, the height of the entire tank 170 can be reduced, and the amount of pure water stored can be increased.
  • the substrate is not limited to a semiconductor wafer, but may be another glass for an LCD substrate, a CD substrate, a printed substrate, a ceramic substrate, or the like.
  • a manifold-shaped introduction nozzle 240 as shown in FIG. 18 may be used as the introduction nozzle.
  • the inlet nozzle 240 is connected to the main supply pipe 38, and has an inlet portion 241, through which the processing fluid flows from the outside of the circumferential wall 100b, and an inlet portion 241, inside the chamber 13OA. It is composed of five outlets 2 4 2 that penetrate in a horizontal direction. By radially opening the outlets 242, the processing fluid can be radially supplied into the chamber OA, and can be efficiently diffused and supplied. Also, when performing the processing for forming the introduction nozzle 240, the introduction nozzle installation portion 130 is cut out from the circumferential wall 100b, and the entrance portion 241 is formed from the convex surface 130a.
  • Each of the outlet portions 242 is formed so as to be excavated toward the inlet portion 241 from five locations arranged in a horizontal direction on the concave surface 130a.
  • the introduction nozzle installation portion 130 penetrating the introduction nozzle 240 is fitted to the cut portion 131 cut out of the introduction nozzle installation portion 130 of the circumferential wall 100 Ob again. Weld the nozzle installation section 130 and the cut section 131.
  • the processing of cutting the introduction nozzle installation portion 130 from the circumferential wall 100 b to form the introduction nozzle 120 has been described.
  • the introduction nozzle installation portion 130 is formed as the container body 100. May be a part manufactured as a separate member.
  • the container main body 100 is manufactured as a part having a cutout for fitting the introduction nozzle installation part 130
  • the introduction nozzle installation part 130 is manufactured as a part having the introduction nozzle 120 formed therein.
  • the circumferential wall 100b of the container body 100 is completed by fitting the inlet nozzle installation portion 13 ° into the notch and welding.
  • the material of the cylindrical body 175 may be PTFE. Further, the material of the side wall plates 177a and 177b may be SiC, amorphous carbon, or the like. No metal elution occurs in PTF E, S i C; and amorphous carbon. Also in this case, it is possible to prevent the material on the liquid contact surface from entering the chamber 30A, thereby preventing the adhesion of particles and the generation of metal contamination.
  • baffles in the tank may be provided. Also in this case, it is preferable that the passages of the baffle plates vertically adjacent to each other are provided at positions not overlapping with each other so that the steam is detoured while meandering to the main supply pipe 38. As a result, the mist-like pure water is effectively received by the baffle plate, and the mist-like pure water is prevented from entering the chambers 30A and 30B from the main supply pipe 38. Thus, it is possible to prevent the occurrence of a mark every night on the wafer W.
  • the ratio of the steam generated in the steam generator 40 to the steam supplied to each chamber 3OA or 30B is not limited to 5: 2 described in the present embodiment.
  • the flow rate of steam generated in the steam generator 40 is increased according to the number of chambers, and the ratio Is set as appropriate.
  • creep of the tank can be prevented, so that poor sealing can be prevented. Further, the heat transfer member and the side wall plate can be prevented from being excessively heated, and safety can be improved. Further, the material on the liquid contact surface does not substantially enter the chamber to generate particles, thereby preventing the substrate from being adversely affected. It is possible to prevent the occurrence of a war mark on the substrate. Tanks can be made smaller and pure water storage capacity can be increased.
  • the steam generator may be configured as shown in FIGS.
  • the steam generator 40 ′ shown in FIGS. 19 to 21 has a flat cylindrical tank 310 that stores pure water.
  • the tank 301 has a hollow cylindrical body 302 having a central axis oriented in the horizontal direction and both ends in the axial direction being open, and a disk-shaped side wall plate 30 closing both sides of the cylindrical body 302. 3 and. From the viewpoint of improving the steam generation efficiency, the distance W between the side wall plates 303 is set smaller than the inner diameter D of the cylindrical body 302.
  • the cylinder 302 has a hole through which a plurality of pipes pass, as described later.
  • the cylindrical body 302 is made of pure liquid and gas. It is formed of a resin material, preferably a mixture of PTFE and PFA, which does not elute components harmful to wafer W processing when exposed to a water atmosphere.
  • the mixture of PTFE and PFA is characterized by high cleaving resistance and no elution of components that are harmful to wafer W processing in pure water.
  • PTFE and PFA suitable as materials for the cylinder 302 include, for example, New Valflon EX 1 (registered trademark) provided by Nippon Barka Ichigo Co., Ltd., Mitsui's Dupont Fluoro There is Teflon (registered trademark) 70-J provided by Chemical Co., Ltd.
  • a resin material such as PTFE, PFA, PEEK (polyether ether ketone) can be used as the material of the cylinder 302 .
  • the side wall plate 303 desirably has good thermal conductivity because it constitutes a heat transfer path from the heater to the pure water in the tank 301. Therefore, as shown in FIG. 21 in particular, the side wall plate 303 is composed of a base material 303a made of an aluminum alloy as a metal having high thermal conductivity and a PFA coating 303b covering the inner surface of the base material 303a. Become. PFA does not elute components that are harmful to wafer W processing when exposed to liquid and gaseous pure water atmospheres.
  • the side wall plate 303 may be formed of high-purity titanium similarly to the embodiment shown in FIGS. 15 to 17, and in this case, the PFA coating 303b is not necessarily required. C However, harmful to wafer W processing. In order to completely prevent components, especially metal components from being eluted into pure water, it is coated with a resin material such as PFA, which does not elute components that are harmful to wafer W processing in pure water. Is preferred. Further, the side wall plate 303 may be formed by an amorphous carbon. Amorphous carbon has excellent thermal conductivity and does not elute harmful components for wafer W processing when exposed to liquid or gaseous pure water atmosphere. When amorphous carbon is used for the side wall plate 303, it is not necessary to provide the PFA coating 303b. No.
  • a circumferential groove is formed continuously over the entire circumference of the cylindrical body 302, and an O-ring 304 is inserted into the circumferential groove.
  • the O-ring 304 seals the space between the cylindrical body 302 and the side wall plate 303 in a watertight manner.
  • the O-ring 304 is made of a material having high heat resistance and a component which is harmful to the processing of the wafer W and does not elute into pure water, preferably a fluoro rubber, more preferably a fluoroelastomer. Has been established.
  • a suitable commercially available perfluoroelastomer is, for example, Carledge® from Dupont Dow Chemical Company.
  • the periphery of the tank 301 is covered by a shell 305, that is, an outer shell.
  • the inner surface of the seal 305 has a shape that is substantially complementary to the outer surface of the tank 301.
  • the shell 300 is formed of a cylindrical or ring-shaped member 360 surrounding the cylindrical body 302 and a disk-shaped plate member 300 arranged outside the side wall plate 303. ing.
  • the ring-shaped member 300 is composed of two halves 300a and 306b.
  • the shell 305 has such a rigidity that the cylindrical body 302 and the side wall plate 303 constituting the tank 301 can be prevented from being deformed by the internal pressure of the tank 301.
  • the shell 305 is formed of a metal material having a sufficient thickness.
  • the plate-like member 307 of the shell 305 forms a heat transfer path from the heater to the pure water in the tank 301, it is desirable that the plate-like member 307 has good thermal conductivity.
  • the ring-shaped member 303 and the plate-shaped member 307 of the shell 305 are formed of aluminum alloy.
  • the outer surface of the plate member 307 of the shell 305 is provided with a heater 308.
  • the heater 308 is formed of a metal having excellent thermal conductivity, for example, an aluminum alloy.
  • the resistance heating wire 308 b is supplied with power from a power source (not shown) to generate heat, and heats and vaporizes the pure water supplied into the tank 302.
  • the upper edge 308c of the heat transfer block 300a extends in the horizontal direction, and its length is approximately equal to the set water level (liquid level L) of the pure water in the tank 302.
  • the lower edge of the heat transfer block 308 is formed so as to be located below the height of the bottom surface of the tank 301. Then, the upper end of the arrangement area of the resistance heating wire 308 b is located below the level of the liquid level L, The lower end of the area is located approximately at the level of the bottom of the tank 301.
  • the heat generated from the resistance heating wire 308 b is transferred to the tank 300 via the heat transfer block 308, the plate member 307 of the shell 305, and the side wall plate 303 of the tank 301. Conducted to pure water in 1.
  • the pure water in the tank is efficiently heated in the same manner as in the steam generators shown in FIGS. 15 to 17 due to the positional relationship between the heater 310 and the tank 301 described above.
  • a casing 309 is provided outside the shell 305 and the hot plate 308.
  • the casing 309 is formed of a material having heat insulating properties.
  • the pure water supply hole 200a is open into the tank at a position lower than the set water level of the pure water in the tank 301 so as to supply the pure water from below the liquid level L of the pure water.
  • the drain hole 201a opens into the tank at the bottom of the tank 301.
  • the main supply hole 38a is open at the top of the tank 301.
  • the main supply holes 38a and 38a, the pure water supply hole 200a and the drain hole 201a are provided with the main supply pipe 38 inserted in the shell 105 and the cylinder 302.
  • the pure water supply pipe 200 and the drain pipe 201 are connected to each other.
  • At least the inner surface of the tubes 38, 200, 201 is made of PTFE or PTFE so that components harmful to the processing of the wafer W are not eluted by contact with pure water in a liquid or gas state. It is formed by PFA.
  • the tubes 38, 200, 201 are preferably made of PTFE, but can also be metal tubes having a surface coated with PTFE or PFA.
  • the tank 301 is provided with a liquid level gauge 210.
  • the level gauge 210 has a measuring section 210a for measuring the liquid level, a lower pipe 210b connected to a lower end of the measuring section 210a, and an upper end of the measuring section 210a. And an upper pipe 210c connected to the upper pipe.
  • the lower pipe 210b is inserted into the cylindrical body 302 and the ring-shaped member 306 so as to communicate with the lower pipe hole opening at the bottom of the tank 301
  • the upper pipe 210c is It is inserted into the cylindrical body 302 and the ring-shaped member 360 so as to communicate with the upper pipe hole opened at a position above the liquid level L in the tank 301 and not in contact with pure water.
  • the measuring section 210a is connected to the upper pipe 21 Ob and the lower pipe 210c and communicates with the vertical pipe 210d and the liquid level sensor attached to the pipe 210d (see Fig. (Not shown) Have been.
  • the liquid level sensor may be a liquid level sensor having a float floating in pure water in the pipe 210d.
  • the pipe 210d may be formed of a transparent material, and the liquid level sensor may be a sensor that optically detects the water level in the pipe 210d.
  • the detection signal of the liquid level sensor is transmitted to a controller (not shown), and the controller controls the flow control valve V 2 (see FIG. 22) to detect the level of pure water in the tank 301 (the height of the liquid level L). ) Is kept constant.
  • the water level of the pure water in the tank 301 is adjusted by a water level adjusting means including a controller and a flow control valve V2 (not shown). Therefore, the internal space of the tank 301 is divided into a lower pure water space in which pure water in a liquid state always exists during the normal operation of the steam generator 301 and an upper pure water space in which vaporized pure steam always exists. It is distinguished from steam space.
  • the surface of the components of the liquid level gauge 210 (tubes 21 Ob, 210 c, 210 d and sensors) that can come into contact with pure water or steam is also in contact with pure water in liquid or gaseous state. It is made of a material that does not elute components harmful to the processing of the wafer W by contact with the wafer.
  • baffle plates 310, 311 are provided above the liquid level L in the tank 301 and below the opening positions of the main supply holes 38a, 38a.
  • Baffle board 3 1
  • baffles 3110 and 3111 cover the entire surface of the pure water in the tank 301.
  • the baffle plates 3 0 and 3 1 1 are provided with a plurality of openings 3 1 2 and 3 1 3 through which steam passes.
  • the openings 312, 313 of the baffles 3110, 311 are provided in the same manner as described above with reference to Figs. 15 to 17, and Figs. It has the same effect as the baffle shown in FIG. Baffle 3
  • the 10 and 311 are preferably formed of a material such as PTFE, which is negligible in dissolving components harmful to the processing of the wafer W when exposed to a pure water vapor atmosphere.
  • the temperature sensor 202 provided in the steam generator 40 shown in FIGS. 15 to 17 is abolished.
  • the relief path 220 directly connected to the tank 170 is not directly connected to the tank 301.
  • the cylindrical body 302 and the side wall plate 303 constituting the tank 301 are connected to each other without using a mechanical fastening member such as a bolt penetrating them. That is, the side wall plate 303 is disposed on the side surface of the cylindrical body 302 with the O-ring 304 inserted into the circumferential groove of the cylindrical body 302. Then, the ring-shaped members 300 (half bodies 300 a, 306 b) of the shell 305 are arranged around the cylindrical body 302 of the tank 301, and the outside of the side wall plate 303. The plate-like member 307 of the seal 305 is disposed on the nip. Then, the plate member 307 is fixed to the ring member 306 using a plurality of bolts 314. For this bolt connection, a plurality of screw holes are formed on the side surface of the ring-shaped member 300 at intervals in the circumferential direction. A through hole is provided at a position corresponding to the screw hole.
  • a small axial gap (axial direction of tank 301, A direction) between the side surface of cylindrical body 302 and the inner surface of side wall plate 303.
  • a small radial direction (the radial direction of the tank 301) is provided between the inner peripheral surface 302 of the axial convex portion 302a of the cylindrical body 302 and the outer peripheral surface of the side wall plate 303. , R direction).
  • a minute gap 317 in the axial direction A exists between the distal end surface of the axially convex portion 302a of the cylindrical body 302 and the plate-like member 307.
  • a small radial gap (R direction) 318 exists between the outer peripheral surface of the cylindrical body 302 and the ring-shaped member 303. You. By providing these gaps 315 to 318, a large contact surface pressure is generated between the members due to the difference in thermal expansion between the constituent materials (resin or metal) of the tank 301 and the shell 304. Prevents resin materials with relatively low cleave strength from being damaged. Further, in particular, the gap 315 between the side surface of the cylindrical body 302 and the inner surface of the side wall plate 303 contributes to the prevention of the generation of particles due to the rubbing of these members. The size of the gaps 315 to 318 is appropriately determined in consideration of the temperature distribution during operation of the steam generator 40 ′ and the size of each component.
  • the cylindrical body 302 of the tank 301 and the side wall plate 303 are connected to each other by being restrained by the shell 305 surrounding the periphery thereof. That is, in order to connect the cylindrical body 302 and the side wall plate 303, no mechanical fastening member such as a bolt penetrating therethrough is used. Therefore, the problem of creep at the fastening portion is greatly reduced. Further, since the shell 305 has sufficient rigidity, it is possible to prevent the deformation of the cylindrical body 302 and the side wall plate 303 due to an increase in the pressure in the tank 301. For this reason, there is no need to use a metal material having a high creep strength for the tank 301, particularly the cylinder 302.
  • the cylinder 302 is cylindrical, the pressure in the tank 301 is not locally applied to a part of the cylinder 302. Note that a ring-shaped member 360 of the shell 300 is provided around the cylinder 302, but since there is a gap 318 between these, the local portion of the cylinder 302 is From the viewpoint of preventing deformation, it is effective to make the cylinder 302 cylindrical.
  • the steam generator 40 shown in FIGS. 19 to 21, has a simple structure and is easily disassembled.
  • a pressure gauge 201a is provided on the upstream side of the drain valve DV of the drain pipe 201.
  • the pressure gauge 210 a is The steam pressure in the tank 301 can be monitored.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

基板処理装置に設けられる蒸気発生器40’は、PTFEとPFAの混合物からなる中空円筒状部材302と、該円筒状部材302の両端に接続された一対の側壁板303とを有するタンク301を備えている。側壁板303はアルミニウム合金からなり、その内面にPFA被覆が施されている。タンク301の周囲は、タンク内圧に起因するタンクの変形を防止するためのアルミニウム合金製のシェル305により覆われている。シェル305の板状部材307の外面にはヒータ308が取り付けられている。シェル305はタンク301を拘束し、円筒状部材302と側壁板303との間の弾性シール304を押しつぶし、円筒状部材302と側壁板303とを密封係合させる。

Description

明 細
技術分野
本発明は、 半導体ウェハや L C D基板用ガラス等の基板を水蒸気を用いて処理 する基板処理装置に関する。 背景技術
半導体デバイスの一連の製造工程において、 半導体ウェハの表面に塗布された レジストを剥離する工程がある。 レジストの剥離方法として、 レジストを水溶性 に変質させた後、 純水により洗い流す方法が知られている。 また、 レジストを水 溶性に変質させる処理においては、 ウェハを処理チャンバ一内に収納し、 該チヤ ンバ一内にオゾンガスと蒸気の混合流体を供給して、 混合流体によってレジスト を酸化させることにより水溶化させる基板処理装置が使用される。 このような基 板処理装置には、 チャンバ一内のゥヱハに供給する蒸気を、 タンクに貯留した純 水を加熱することにより生成する蒸気発生器が設けられる。 タンク内で加熱され た純水は蒸気となってタンク上部に上昇し、 タンク上部に接続された蒸気供給路 によって送出され、 オゾンガスと混合されてチャンバ一内に供給される。
従来の基板処理装置にあっては、 蒸気発生器のタンクの壁面を構成する金属が、 加熱された純水中に溶出し、 蒸気と共にチャンバ一内に侵入してパーティクルを 発生させ、 ウェハを汚染する問題がある。
また、 気化していないミスト状の純水が蒸気と共にチャンバ一内に侵入すると、 ウェハにウォー夕一マークを発生させる問題がある。 そのため、 従来の蒸気発生 器では、 タンク内の液面位置を蒸気供給路に対して低位置とし、 ミスト状の純水 が蒸気供給路に侵入することを防止する必要がある。 この場合、 液面位置と蒸気 供給路との間に十分な空間が必要であるため、 タンクを小型化できない制約があ ο
Lorimer に付与された米国特許第 5 0 6 3 6 0 9号 (対応日本国特許出願公 閧公報は特開平 3— 1 3 7 4 0 1号) は、 上記の問題を解決することができる蒸 気発生器の一例を開示している。 Lorimer の装置では、 ウェハの金属汚染を回 避するために、 タンクをテフロン (登録商標) 等の純水中へのメタル溶出が生じ ない材料により形成している。 また、 ミスト状の純水に関連する問題は、 テフ口 ン被覆されたコイルヒー夕が内部にそれそれ配置された複数のタンクを多段に積 み重ねた構成により解決している。 しかし、 Lorimer の装置は構造が複雑であ り、 製造コストも高く、 メインテナンスの手間もかかる。 また、 コイルヒー夕は 接液面積が小さいため、 加熱効率が低い。 また、 コイルヒー夕上のテフロン被覆 には経時劣化の不安もある。 発明の開示
従って、 本発明の目的は、 金属等の基板の処理に有害な成分で汚染されていな い蒸気を処理チャンバ一に供給することができる蒸気発生器を備えた基板処理装 置を提供することにある。
本発明の他の目的は、 ミスト状の純水が処理チャンバ一に供給されることを防 止することができる蒸気発生器を備えた基板処理装置を提供することにある。 本発明の更に他の目的は、 長期間にわたって安定した性能を発揮することがで きる蒸気発生器を備えた基板処理装置を提供することにある。
本発明の更に他の目的は、 上記目的のうちの少なくとも 1つを解決することが できる簡潔な構造の蒸気処理装置を備えた基板処理装置を提供することにある。 上記目的を達成するため、 本発明は、 タンクおよび少なくとも 1つのヒー夕を 有し、 前記タンクの内部空間に貯留されている純水を前記ヒー夕によって加熱し て気化させることにより蒸気を発生させる蒸気発生器と、 前記蒸気発生器が発生 した蒸気を用いて内部で基板を処理する処理容器と、 を備え、 前記タンクは、 水 平方向両端に開口を有する中空の筒状体と、 前記筒状体の両端の開口を塞いで前 記筒状体とともに前記タンクの前記内部空間を画成する一対の板状体と、 を有し ており、 前記筒状体は、 樹脂材料からなり、 前記少なくとも一つのヒー夕は、 前 記一対の板状体のうちの少なくとも一方の外面に接触するか若しくは近接して前 記夕ンクの前記内部空間の外側に設けられている、 基板処理装置を提供する。 前記筒状体を形成する樹脂材料は、 好適には、 液体状態および気体状態の純水 雰囲気にさらされた場合に基板の処理に有害な成分が純水中に溶出することのな い材料からなる。 前記筒状体を形成する樹脂材料は、 ?1 ? ぉょび 八等の フッ素系樹脂材料からなることが好ましい。 更に好ましくは、 前記筒状体を形成 する樹脂材料として、 耐クリ一プ性に優れた P T E Fと P F Aの混合物が用いら れる。
好ましくは、 前記ヒ一夕が接触若しくは近接して配置される板状体は、 前記ヒ —夕から前記夕ンク内の純水への熱伝導を考慮して、 前記筒状体を構成する樹脂 材料よりも熱伝導率の高い材料により形成される。 前記板状体に用いるのに好適 な高熱伝導性の材料として、 金属材料またはアモルファス力一ボンがある。 金属 材料が用いられる場合には、 該金属材料からの純水中へのメタル溶出を防止する ため、 該金属材料の前記タンクの内部空間を向いた表面に樹脂材料からなる被覆 層を設けることが好ましい。 好適には、 前記被覆層を構成する樹脂材料は、 液体 状態および気体状態の純水雰囲気にさらされた場合に基板の処理に有害な成分が 純水中に溶出することのない材料、 P T F Eおよび P F A等のフッ素系材料から なる。 しかしながら、 前記板状体を形成する金属材料が、 液体状態および気体状 態の純水雰囲気にさらされた場合に基板の処理に有害な成分の純水中への溶出が 無視することができる程度に少ない材料、 例えば高純度チタニウムであるである 場合には、 被覆層を設けなくてもよい。
好適な一実施形態においては、 前記一対の板状体はともに熱伝導率の高い材料 により形成され、 一対のヒーターが前記一対の板状体にそれそれ接触して若しく は近接して配置される。
前記基板処理装置は、 前記タンクを囲んで設けられ、 前記タンクの内圧に起因 する前記タンクの変形を制限するシェルを更に備えて構成することができる。 こ の場合、 前記ヒー夕は、 前記板状体の近傍で前記シェルに取り付けることができ る。 好ましくは、 前記シヱルは、 樹脂材料により形成される前記タンクの筒状体 の外周全域を覆い、 樹脂材料のクリーブ変形を効果的に防止する。
前記ヒー夕は、 伝熱ブロックと、 前記伝熱ブロックに設けられた発熱体とを有 して構成することができ、 この場合、 前記伝熱プロックの上縁を前記タンクにお ける純水の設定液面高さと概ね同じ高さに位置させるとともに、 前記発熱体を前 記伝熱プロックの下部に設けることができる。
液体状態または気体状態の純水が金属と接触することを防止する観点から、 好 ましくは、 前記タンク内に純水を供給する供給通路と、 前記タンク内から純水を 排液する排出通路と、 前記蒸気をタンク外に排出する蒸気排出通路とが、 樹脂材 料からなる前記筒状体を貫通して設けられる。 この場合、 好適には、 前記供給通 路は、 前記タンクにおける純水の設定液面高さより下方において前記タンクの内 部空間に開口し、 前記排出通路は、 前記タンクにおける純水の設定液面高さより 下方において前記タンクの内部空間に開口し、 前記蒸気排出通路は、 前記タンク における純水の設定液面高さより上方において前記タンクの内部空間に開口する。 前記タンク内で気化することなくミスト状に飛散した純水が、 前記タンクの蒸 気排出口に到達することを防止する観点から、 好ましくは、 少なくとも 1つの邪 魔板が前記タンクの内部空間に配置される。 好適な実施形態においては、 上下方 向に配列された複数の邪魔板が、 前記少なくとも 1つの邪魔板として設けられ、 前記各邪魔板は蒸気が通過することが可能な少なくとも 1つの開口を有しており、 上下方向に隣接する邪魔板において、 上側の邪魔板は開口が下側の邪魔板の開口 と重ならないように配置されている。
前記基板処理装置は、 前記タンクを囲んで設けられ、 前記タンクの内圧に起因 する前記タンクの変形を制限するシェルを更に備えて構成することができる。 好 適な実施形態においては、 前記タンクの前記筒状体と、 前記タンクの一対の前記 板状体との間にそれそれ弾性シ一ル部材が設けられており、 前記シエル内に前記 タンクが配置されると、 前記シェルにより前記板状体が前記筒状体に向かって押 し付けられ、 これにより前記弾性シール部材がつぶれて前記筒状体と前記板状体 との間に気水密なシールが形成されるように、 前記タンクおよび前記シェルが形 成されている。 好ましくは、 前記シェル内に前記タンクが配置されて前記タンク 構成部材間に気水密なシールが形成された際に前記筒状体と前記板状体とが直接 接触しないように、 前記タンクおよび前記シヱルが寸法付けられている。
好ましくは、 前記タンクの内部空間は、 その中心軸線が水平方向を向いた概ね 円柱の形状となっている。 この場合、 前記円柱は、 前記タンクの側面に相当する 円柱底面の直径が、 前記タンクの横幅に相当する円柱高さより大きいように寸法 付けられていることが好ましい。
前記基板処理装置は、 オゾンガスを発生させるオゾンガス発生器を更に備えて 構成することができ、 この場合、 前記処理容器に、 前記蒸気発生器が発生した蒸 気と前記オゾンガス発生器が発生したオゾンガスとを含む混合流体が供給され、 該混合流体を用いて前記処理容器内で基板が処理される。 図面の簡単な説明
図 1は、 本発明に係る基板処理装置を組み込んだ処理システムを示す概略平面 図である。
図 2、 図 1に示す処理システムの概略側面図である。
図 3は、 図 1に示す基板処理装置の配管系統を示す概略断面図である。
図 4は、 図 3に示す基板処理装置の処理容器の構成を示す縦断面図であって、 処理容器の開放状態を示す縦断面図である。
図 5は、 図 4に示す処理容器の密閉状態を示す縦断面図である。
図 6は、 図 4に示す処理容器の容器本体の横断面図である。
図 7は、 図 4に示す処理容器の容器本体に設けられた支持部材の拡大縦断面図 である。
図 8は、 図 4に示す処理容器の容器本体に設けられた導入ノズルの拡大縦断面 図である。
図 9は、 図 4に示す処理容器の容器本体に設けられた排出口の拡大縦断面図で ある。
図 1 0は、 図 4に示す処理容器の容器本体の導入ノズル設置部の斜視図である c 図 1 1は、 図 4に示す処理容器の蓋体に設けられた保持部材の拡大縦断面図で ある。
図 1 2は、 図 1 1に示す保持部材が容器本体の凹溝内に位置した状態を示す拡 大縦断面図である。
図 1 3は、 図 4に示す処理容器のロック機構を示す平面図である。
図 1 4は、 図 1 3における XIV矢視拡大図である。 図 1 5は、 図 3に示す基板処理装置の蒸気発生器の縦断面図である。
図 1 6は、 図 1 5に示す蒸気発生器の縦断面図である。
図 1 7は、 図 1 5に示す蒸気発生器の XVI I ― XVII線に沿う断面図である。 図 1 8は、 図 1 0に示す導入ノズル設置部の変形例を示す斜視図である。
図 1 9は、 蒸気発生器の他の実施形態を示す縦断面図である。
図 2 0は、 図 1 9に示す蒸気発生器の XX— XX線に沿う断面図である。
図 2 1は、 図 2 0の領域 XXIを詳細に示す拡大断面図である。
図 2 2は、 図 1 9に示す蒸気発生器が使用される場合に適用される、 基板処理 装置の配管系統図である。 好適な実施形態の説明
以下、 本発明の好ましい実施の形態を、 基板の一例としてのウェハに対して、 ウェハの表面に塗布されたレジストを水溶化する処理を施す、 本発明に基づく基 板処理装置としての基板処理ユニットに基づいて説明する。 図 1は、 基板処理ュ ニット 2 3 a〜 2 3 hを組み込んだ処理システム 1の平面図である。 図 2は、 そ の側面図である。 この処理システム 1は、 ゥ ハ Wに洗浄処理及びレジスト水溶 化処理を施す処理部 2と、 処理部 2に対してゥェハ Wを搬入出する搬入出部 3か ら構成されている。
搬入出部 3は、 複数枚、 例えば 2 5枚の略円盤形状のウェハ Wを所定の間隔で 略水平に収容可能な容器 (キヤリア C ) を載置するための載置台 6が設けられた イン ·ァゥトポート 4と、 載置台 6に載置されたキャリア Cと処理部 2との間で ウェハ Wの受け渡しを行うウェハ搬送装置 7が備えられたウェハ搬送部 5と、 か ら構成されている。
ウェハ Wはキヤリア Cの一側面を通して搬入出され、 キヤリア Cの側面には開 閉可能な蓋体が設けられている。 また、 ウェハ Wを所定間隔で保持するための棚 板が内壁に設けられており、 ウェハ Wを収容する 2 5個のスロットが形成されて いる。 ウェハ Wは表面 (半導体デバイスを形成する面) が上面 (ゥヱハ Wを水平 に保持した場合に上側となっている面) となっている状態で各スロットに 1枚ず つ収容される。 イン ·アウトポート 4の載置台 6上には、 例えば、 3個のキャリアを水平面の Y方向に並べて所定位置に載置することができるようになつている。 キャリア C は蓋体が設けられた側面をィン *アウトポート 4とゥェハ搬送部 5との境界壁 8 側に向けて載置される。 境界壁 8においてキヤリア Cの載置場所に対応する位置 には窓部 9が形成されており、 窓部 9のウェハ搬送部 5側には、 窓部 9をシャツ 夕一等により開閉する窓部開閉機構 1 0が設けられている。
この窓部開閉機構 1 0は、 キャリア Cに設けられた蓋体もまた開閉可能であり、 窓部 9の開閉と同時にキヤリア Cの蓋体も開閉する。 窓部 9を開口してキャリア Cのウェハ搬入出口とウェハ搬送部 5とを連通させると、 ウェハ搬送部 5に配設 されたウェハ搬送装置 7のキヤリア Cへのアクセスが可能となり、 ウェハ Wの搬 送を行うことが可能な状態となる。
ウェハ搬送部 5に配設されたウェハ搬送装置 7は、 Y方向と Z方向に移動可能 であり、 かつ、 X— Y平面内 (0方向) で回転自在に構成されている。 また、 ゥ ェハ搬送装置 7は、 ウェハ Wを把持する取出収納アーム 1 1を有し、 この取出収 納アーム 1 1は X方向にスライド自在となっている。 こうして、 ウェハ搬送装置 7は、 載置台 6に載置された全てのキヤリア Cの任意の高さのスロットにァクセ スし、 また、 処理部 2に配設された上下 2台のウェハ受け渡しユニット 1 6、 1 7にアクセスして、 イン 'アウトポート 4側から処理部 2側へ、 逆に処理部 2側 からイン ·アウトポート 4側へウェハ Wを搬送することができるように構成され ている。
上記処理部 2は、 搬送手段である主ウェハ搬送装置 1 8と、 ウェハ搬送部 5と の間でウェハ Wの受け渡しを行うためにウェハ Wを一時的に載置するウェハ受け 渡しユニット (ウェハ中継ユニット) 1 6、 1 7と、 4台の基板洗浄ユニット 1 2、 1 3、 1 4、 1 5と、 基板処理ユニット 2 3 a〜2 3 hとを備えている。
また、 処理部 2には、 基板処理ュニヅト 2 3 a〜2 3 hに供給するオゾンガス を発生させるオゾンガス発生装置 2 4と、 基板洗浄ユニット 1 2、 1 3、 1 4、 1 5に送液する所定の処理液を貯蔵する薬液貯蔵ュニット 2 5とが配設されてい る。 処理部 2の天井部には、 各ュニット及び主ウェハ搬送装置 1 8に、 清浄な空 気をダウンフローするためのファンフィルタ一ユニット (F F U) 2 6が配設さ れている。
上記ファンフィル夕一ユニット (F F U) 2 6からのダウンフローの一部は、 ウェハ受け渡しユニット 1 6、 1 7と、 その上部の空間を通ってウェハ搬送部 5 に向けて流出する構造となっている。 これにより、 ウェハ搬送部 5から処理部 2 へのパーティクル等の侵入が防止され、 処理部 2の清浄度が保持される。
上記ウェハ受け渡しユニット 1 6、 1 7は、 いずれもウェハ搬送部 5との間で ウェハ Wを一時的に載置するものであり、 これらウェハ受け渡しュニット 1 6、 1 7は上下 2段に積み重ねられて配置されている。 この場合、 下段のウェハ受け 渡しュニット 1 7は、 イン ·ァゥトポート 4側から処理部 2側へ搬送するように ウェハ Wを載置するために用い、 上段のウェハ受け渡しユニット 1 6は、 処理部 2側からイン ·アウトポ一ト 4側へ搬送するウェハ Wを載置するために用いるこ とができる。
上記主ウェハ搬送装置 1 8は、 X方向と Z方向に移動可能であり、 かつ、 X— Y平面内 (Θ方向) で回転自在に構成されている。 また、 主ゥヱハ搬送装置 1 8 は、 ウェハ Wを把持する搬送アーム 1 8 aを有し、 この搬送アーム 1 8 aは Y方 向にスライ ド自在となっている。 こうして、 主ゥヱハ搬送装置 1 8は、 ウェハ受 け渡しュニヅト 1 6、 1 7と、 基板洗浄ュニット 1 2〜 1 5、 基板処理ュニヅト 2 3 a〜 2 3 hの全てのュニヅトにアクセス可能に配設されている。
各基板洗浄ュニヅ ト 1 2、 1 3、 1 4、 1 5は、 基板処理ュニッ ト 2 3 a〜 2 3 hにおいてレジスト水溶化処理が施されたウェハ Wに対して、 洗浄処理及び乾 燥処理を施す。 なお、 基板洗浄ュニヅ ト 1 2、 1 3、 1 4、 1 5は、 上下 2段で 各段に 2台ずっ配設されている。 図 1に示すように、 基板洗浄ュニット 1 2、 1 3と基板洗浄ユニット 1 4、 1 5とは、 その境界をなしている壁面 2 7に対して 対称な構造を有しているが、 対称であることを除けば、 各基板洗浄ュニット 1 2、 1 3、 1 4、 1 5は概ね同様の構成を備えている。
各基板処理ュニヅ ト 2 3 a〜 2 3 hは、 ウェハ Wの表面に塗布されているレジ ストを水溶化する処理を行う。 基板処理ュニット 2 3 a〜 2 3 hは、 図 2に示す ように、 上下方向に 4段で各段に 2台ずっ配設されている。 左段には基板処理ュ ニット 2 3 a、 2 3 b、 2 3 c、 2 3 dが上からこの順で配設され、 右段には基 板処理ユニット 23e、 23f、 23g、 23 hが上からこの順で配設されてい る。 図 1に示すように、 基板処理ュニット 23 aと基板処理ュニット 23 e、 基 板処理ュニヅ ト 23 bと基板処理ュニヅ ト 23 f、 基板処理ュニヅ ト 23 cと基 板処理ュニヅト 23 g、 基板処理ュニット 23 dと基板処理ュニヅト 23 hとは、 その境界をなしている壁面 28に対して対称な構造を有しているが、 対称である ことを除けば、 各基板処理ュニヅト 23 a~23 hは概ね同様の構成を備えてい る。 そこで、 基板処理ユニット 23a、 23 bを例として、 その構造について詳 細に以下に説明することとする。
図 3は、 基板処理ュニヅト 23 a、 23 bの配管系統を示す概略構成図である。 基板処理ユニット 23a、 23bに備えられる処理チャンバ一 (処理容器) 30 A、 30Bには、 蒸気をチャンバ一 30 A、 30 Bにそれそれ供給する蒸気供給 路としての蒸気供給管 38 (以下、 「主供給管 38」 という) 、 38を介して、 1つの蒸気供給源である蒸気発生器 40が接続されている。
また、 主供給管 38、 38には、 供給切換手段 41を介して、 オゾンガス発生 器 42と、 N2ガス供給源 43がそれそれ接続されている。 供給切換手段 41は、 それそれ主供給管 38の連通 ·遮断と流量調整を行う流量調整弁 50と、 オゾン ガス供給管 51の連通 ·遮断と流量調整を行う流量調整弁 52と、 N2ガス供給管 53の連通 ·遮断を行う切換弁 54とを具備している。 なお、 N2ガス供給管 53 には、 大流量部 55aと小流量部 55bを切換可能な流量切換弁 55が介設され ている。
流量調整弁 50、 50は、 蒸気発生器 40において発生して主供給管 38、 3 8を通過する蒸気が、 各チャンバ一 30 A、 30Bに等しい流量で供給されるよ うに、 流量調整量のバランスが調節される。 また、 流量調整弁 52、 52は、 ォ ゾンガス発生器 42からオゾンガス供給管 51、 主供給管 38、 38を通過する オゾンガスが、 各チャンバ一 30A、 30Bに等しい流量で供給されるように、 内蔵された可変絞りの開度のバランスが調節される。 そして、 流量切換弁 55、 55は、 N2ガス供給源 43から N2ガス供給管 53、 主供給管 38、 38を通過 する N2ガスが、 各チャンバ一 30 A、 30Bに等しい流量で供給されるように、 調節される。 主供給管 3 8の流量調整弁 5 0より上流側には、 主供給管 3 8の形状に沿って 管状に設置される温度調節器 5 7が備えられ、 蒸気発生器 4 0から送出される蒸 気は、 主供給管 3 8を流量調整弁 5 0まで通過する間、 温度調節される。 また、 オゾンガス供給管 5 1の流量調整弁 5 2より上流側には、 フローメータ一 5 8が 介設されている。
一方、 チャンバ一 3 0 Α、 3 0 Βにおける主供給管 3 8の接続部と対向する部 位には排出管 6 0が接続されている。 この排出管 6 0はミストトラップ 6 1に接 続されている。 また、 排出管 6 0には、 圧力調整手段である排気切換部 6 5が介 設されている。 排気切換部 6 5は、 分岐管 6 6、 6 7を備え、 分岐管 6 6、 6 7 には、 開放時には小量の排気を行う第 1の排気流量調整弁 7 1、 開放時には大量 の排気を行う第 2の排気流量調整弁 7 2がそれそれ介設されている。 この分岐管 6 6、 6 7における排気流量調整弁 7 1、 7 2の下流側は合流して排出管 6 0と なり、 ミストトラップ 6 1に接続されている。 また、 分岐管 6 7における排気 量調整弁 7 2の上流側と、 分岐管 6 6、 6 7の合流部分の下流側を接続する分岐 管 8 1が設けられており、 分岐管 8 1には、 通常では閉鎖状態を維持し、 緊急時、 例えばチャンパ一 3 O A, 3 0 B内の圧力が過剰に上昇する場合などに開放する 第 3の排気切換弁 8 3が介設されている。
ミストトラップ 6 1は、 排出された処理流体を冷却し、 処理流体中のオゾンガ スを含む気体と液体とに分離して、 液体を排液管 9 1から排出する。 分離したォ ゾンガスを含む気体は、 オゾンキラー 9 2によってオゾンガス成分を酸素に熱分 解され、 冷却装置 9 3によって冷却された後、 排気される。
前述のように、 チャンバ一 3 0 A、 3 0 Bに供給する蒸気の流量は流量調整弁 5 0、 5 0によって調整され、 チャンバ一 3 0 A、 3 0 Bに供給するオゾンガス の流量は、 流量調整弁 5 2、 5 2によって調整される。 また、 蒸気、 オゾンガス、 又は蒸気とオゾンガスとの混合流体等の雰囲気によるチャンバ一 3 0 A、 3 0 B 内の圧力は、 各排気切換部 6 5、 6 5によって、 チャンバ一 3 0 A、 3 0 B内か ら排気する流量を調節することにより、 制御される。
なお、 チャンバ一 3 0 A、 3 0 Bには、 リークセンサ 9 5が取り付けられて、 - 3 0 A内の処理流体の洩れを監視できるようになつている。 チャンバ一 3 0 A、 3 0 Bは同じ構成を有する。 そこで、 次に、 チャンバ一 3 0 A、 3 0 Bについて、 一方のチャンバ一 3 0 Aを代表して説明する。 図 4に示 すように、 チャンバ一 3 O Aは、 ウェハ Wを収納する容器本体 (チャンバ一本 体) 1 0 0と、 ゥヱハ Wを前述の主ゥヱハ W搬送装置 1 8から受け取り、 容器本 体 1 0 0に受け渡す蓋体 1 0 1と、 ウェハ Wを主ウェハ W搬送装置 1 8から受け 取る際に容器本体 1 0 0に対して蓋体 1 0 1を離間し、 ゥヱハ W処理中は容器本 体 1 0 0に対して蓋体 1 0 1を密着させる移動手段であるシリンダ 1 0 2とで主 要部が構成されている。 図 5に示すように、 容器本体 1 0 0と蓋体 1 0 1を密着 させると、 容器本体 1 0 0と蓋体 1 0 1の間には、 密閉された処理空間 S 1が形 成される。
容器本体 1 0 0は、 円盤状のベース 1 0 0 aと、 ベース 1 0 0 aの周縁部から 上方に起立する円周壁 1 0 0 bを備えている。 また、 ペース 1 0 0 aの外周面全 体から、 後述の下部係合ローラ 1 6 2と係合する下部係合片 1 0 3が、 ドーナヅ 状に突設されている。
ベース 1 0 0 aの内部にはヒ一夕 1 0 5が内蔵されており、 ペース 1 0 0 aの 上面には、 ウェハ Wより小径の円形状の下プレート 1 1 0が隆起している。 下プ レート 1 1 0上面は円周壁 1 0 O bの上面より下方位置に形成されている。 円周 壁 1 0 O bと下プレート 1 1 0の間には、 凹溝 1 0 0 cが形成されている。
図 6に示すように、 下プレート 1 1 0の周囲 4箇所には、 容器本体 1 0 0に収 納されたウェハ W下面の周縁 4箇所に対してそれそれ当接する 4つの支持部材 1 1 1が設けられている。 これら 4つの支持部材 1 1 1によって、 ウェハ Wは収納 位置に安定的に支持される。 支持部材 1 1 1によって収納位置に支持されたゥェ ハ W下面と下プレート 1 1 0上面との間には、 図 7に示すように、 約 l mm程度 の高さの隙間 Gが形成される。 なお、 支持部材 1 1 1の材質は P T F E等の樹脂 である。
図 4及び図 5に示すように、 円周壁 1 0 0 bの上面には、 同心円状に二重に設 けられた周溝 1 1 2 a、 1 1 2 bに嵌合される 0リング 1 1 5 a、 1 1 5 bが備 えられている。 これにより、 円周壁 1 0 0 b上面と蓋体 1 0 1下面を密着させ、 処理空間 S 1を密閉することができる。 図 6に示すように、 円周壁 1 0 O bには、 チャンバ一 3 O A内に処理流体を導 入する導入ノズル 1 2 0が設けられ、 収納位置に支持されたウェハ Wの中心を中 心として導入ノズル 1 2 0に対向する位置には、 排出口 1 2 1が設けられている。 主供給管 3 8は、 下部係合片 1 0 3内を貫通して、 導入ノズル 1 2 0の入口部 1 2 5に接続している。 また、 排出管 6 0は、 下部係合片 1 0 3内を貫通して、 排 出口 1 2 1に接続している。
導入ノズル 1 2 0は図 8に示すように凹溝 1 0 0 cの上部側に、 排出口 1 2 1 は図 9に示すように凹溝 1 0 0 cの底部側に開口している。 このように、 導入ノ ズル 1 2 0を排出口 1 2 1より上側に設けることにより、 導入ノズル 1 2 0から 導入される処理流体を、 処理空間 S 1内に淀み無く円滑に供給することができる。 また、 処理流体を処理空間 S 1内から排出する場合に、 チャンバ一 3 O A内に処 理流体が残存することを防止する。 なお、 図 6に示すように、 導入ノズル 1 2 0 及び排出口 1 2 1は、 ゥヱハ Wの周囲において前述の 4つの支持部材 1 1 1の間 に設置されている。 即ち、 支持部材 1 1 1が処理流体の円滑な導入及び排出を妨 げないように配置されている。
導入ノズル 1 2 0は、 図 6に示すように、 主供給管 3 8に接続して円周壁 1 0 O bの外側から処理流体を流入させる入口部 1 2 5と、 入口部 1 2 5からチャン バー 3 O Aの内側に向かって水平方向に扇形状に広がって開口する出口部 1 2 6 から構成されている。 出口部 1 2 6の開口側には、 石英製の多孔メッシュ 1 2 7 が備えられている。 主供給管 3 8から送出された処理流体は、 出口部 1 2 6にお いて扇形状に広がって流れ、 多孔メッシュ 1 2 7を通過してチャンバ一 3 O A内 に導入される。 このように、 出口部 1 2 6を扇形状に開口させることにより、 チ ヤンバー 3 0 A内に処理流体を効率良く拡散させて供給することができる。 従つ て、 エッチングの均一性が向上する。 さらに、 処理流体が多孔メッシュ 1 2 7を 通過する際には処理流体の流速が低下するので、 例えば凹溝 1 0 0 cにパーティ クル等が沈下している場合であっても、 パーティクル等を巻き上げることがなく、 ゥヱハ Wに付着するパ一ティクル等を低減する効果がある。
ところで、 円周壁 1 0 O bに上記のような導入ノズル 1 2 0を形成する加工を 施す場合、 容器本体 1 0 0の円周壁 1 0 0 bの内側には下プレート 1 1 0が形成 されているため、 円周壁 1 0 O bの内側に加工具を挿入できず、 加工が困難であ る。 そのため、 導入ノズル 1 2 0を形成する部分のみを円周壁 1 0 O bから切り 取って加工を施す。 先ず、 円周壁 1 0 O bの上部の一部を、 容器本体 1 0 0の中 心から放射する方向に 2箇所で切断し、 かつ、 円周壁 1 0 O bの上面から所定の 厚さの位置を上面に対して略平行に切断し、 図 1 0に示すような、 凸面 1 3 0 a と凹面 1 3 0 bを有する導入ノズル設置部 1 3 0を、 円周壁 1 0 0 bから切り取 る。 その後、 円周壁 1 0 0 bの外周面の一部である、 導入ノズル設置部 1 3 0の 凸面 1 3 0 aから入口部 1 2 5を形成し、 一方、 円周壁 1 0 0 bの内周面の一部 である、 凹面 1 3 0 bから出口部 1 2 6を形成する。 さらに、 出口部 1 2 6の開 口に多孔メッシュ 1 2 7を嵌合させる。 こうして、 導入ノズル 1 2 0を貫通させ た導入ノズル設置部 1 3 0を、 再び円周壁 1 0 0 bの導入ノズル設置部 1 3 0を 切り取った切断部 1 3 1に嵌合させ、 導入ノズル設置部 1 3 0と切断部 1 3 1の 間を溶接する。 このとき、 電子ビーム溶接方式を用いると精度良く溶接すること ができる。 このようにして、 導入ノズル 1 2 0の加工が可能である。
蓋体 1 0 1は、 図 4に示すように、 内部にヒ一夕 1 3 5が内蔵された基体 1 0 1 aと、 基体 1 0 1 aの周縁において基体 1 0 1 aの下面の中心を中心として対 向する 2箇所に垂下される一対の保持部材 1 3 6から構成されている。 また、 蓋 体 1 0 1の外周面には、 図 1 3に示すように、 1 2個の上部係合片 1 3 7が突設 されている。
図 1 1に示すように、 保持部材 1 3 6は、 垂直片 1 3 6 aの下端から内方側に 折曲される水平片 1 3 6 bを有する断面略 L字状に形成されている。 また、 水平 片 1 3 6 bの先端すなわち内方側端部は円弧面 1 3 7を有すると共に、 水平片 1 3 6 bの先端側上面にはゥヱハ Wのエッジ部を載置する段部 1 3 8が形成されて いる。 シリンダ 1 0 2を駆動して、 蓋体 1 0 1を下降させると、 図 1 2に示すよ うに、 蓋体 1 0 1が容器本体 1 0 0に対して近接方向に移動して保持部材 1 3 6 が容器本体 1 0 0の凹溝 1 0 0 c内に進入すると共に、 保持部材 1 3 6に支持さ れたウェハ Wを容器本体 1 0 0の支持部材 1 1 1に受け渡す構成となっている。 移動手段であるシリンダ 1 0 2は、 図 1 3に示すような矩形状の固定盤 1 4 0 に立設された 4本の支柱 1 4 1の上端に架設され、 ボルト 1 4 2をもって固定さ れた天板 1 4 3の下面に鉛直状に固定されるシリンダ本体 1 4 5と、 図 4に示す ようにシリンダ本体 1 4 5の下端から摺動自在に突出し、 蓋体 1 0 1の上面に固 定されるピストンロッド 1 4 6とで構成されている。 したがって、 ピストンロヅ ド 1 4 6が収縮移動することによって、 蓋体 1 0 1が上方に移動して容器本体 1 0 0に対して離間し、 また、 図 5に示すようにピストンロッド 1 4 6が伸張する ことによって、 蓋体 1 0 1が下方に移動して容器本体 1 0 0の円周壁 1 0 0 bの 上面に当接すると共に、 〇リング 1 1 5 a、 1 1 5 bを圧接して密閉することが できる。
ロック機構 1 5 0は、 図 5に示すように、 容器本体 1 0 0のベース 1 0 0 aの 中心部下面に突設される支持軸 1 5 1にべァリング 1 5 2を介して回転自在に装 着される回転筒 1 5 3と、 この回転筒 1 5 3を水平方向に正逆回転可能に回転す るロー夕リーアクチユエ一夕 1 5 4と、 回転筒 1 5 3の外周から水平方向に延在 する円板 1 5 5を備えている。 さらに、 円板 1 5 5の先端部に立設される 1 2個 のブラケヅト 1 5 6と、 各ブラケヅト 1 5 6の下部側から内方に向かって突設さ れる下部水平軸 1 6 0に回転自在に装着されて、 前述の下部係合片 1 0 3の下面 に係合可能な下部係合ローラ 1 6 2と、 ブラケット 1 5 6の上部側から内方に向 かって突設される上部水平軸 1 6 に回転自在に装着されて、 上部係合片 1 3 7 の上面に係合可能な上部係合口一ラ 1 6 6とを備えている。
前述の上部係合片 1 3 7は、 図 1 3に示すように、 蓋体 1 0 1の外周面に沿つ て、 後述の上部係合口一ラ 1 6 6の径よりやや大きな寸法の切欠き 1 6 7を介し て突設されている。 また、 上部係合片 1 3 7の上面には、 図 1 4に示すように、 切欠き 1 6 7の一端 (図 1 4において左側) から上り勾配の傾斜面 1 6 8と、 こ の傾斜面 1 6 8の上端に連なる平坦面 1 6 9が形成されている。
上記のように構成されるロック機構 1 5 0によれば、 容器本体 1 0 0に対して 蓋体 1 0 1が当接した状態で、 ロー夕リーアクチユエ一夕 1 5 4が駆動して回転 筒 1 5 3及び円板 1 5 5を回転させると、 下部係合口一ラ 1 6 2は下部係合片 1 0 3の下面を転動し、 上部係合ローラ 1 6 6は、 上部係合片 1 3 7の傾斜面 1 6 8を転動して平坦面 1 6 9に達する。 すなわち、 対をなす 1 2組の下部係合口一 ラ 1 6 2と上部係合口一ラ 1 6 6が、 容器本体 1 0 0のべ一ス 1 0 0 aに突設さ れた下部係合片 103と蓋体 10 1に突設された上部係合片 137を挟持するこ とによって、 容器本体 100と蓋体 10 1とを固定 (ロック) する。 この状態で、 〇リング 1 1 5 a、 1 15 bが圧接されるので、 容器本体 100に対して蓋体 1 0 1が密封される。
ロックを解除する場合は、 ロー夕リーアクチユエ一夕 154を逆方向に回転さ せて、 各組の下部係合ローラ 162及び上部係合ローラ 166を待機位置すなわ ち上部係合口一ラ 16 6を切欠き 1 67内に位置させて、 ロック状態を解除する ことができる。 この状態で、 シリンダ 102のピストンロッド 146を収縮させ ることによって、 蓋体 101は容器本体 100に対して離間される。
次に、 蒸気発生器 40について説明する。 図 15に示すように、 蒸気発生器 4 0は、 純水を貯留するタンク 170と、 タンク 170を固定支持する固定支持部 材 1 Ί 1から構成されている。 タンク 170は、 両側が開口した筒体 175と、 図 16に示すように筒体 175の両側を塞く、一対の側壁板 177 a、 177 bに よって構成されている。 また、 側壁板 177 a、 1 77 bの外側には、 それそれ ヒー夕 1 80、 180が設置されている。 タンク 1 70内の純水は、 これら筒体 175と側壁板 1 77 a、 177 bとで囲まれたタンク内部空間 S 2内に貯留さ れ、 側壁板 177 a、 177bを介してヒー夕 180、 180によって加熱され る。 タンク内の温度はヒー夕 180、 1 80の加熱により約 120°C程度に温度 調節され、 蒸気は加圧された状態に保持される。 タンク内の純水は、 ヒ一夕 18 0、 180によって側壁板 177 a、 177 bの両側から効率的に加熱される。 なお、 タンク 170は密閉、 耐圧構造となっている。
筒体 1 75は、 コーナーに丸みを形成した略角柱形状の内周面を有し、 環状の 両端面 1 82 a、 182 bにおいて側壁板 177 a、 177 bに接触する。 また、 筒体 175、 側壁板 1 77 a、 177bには、 図示しないボルト穴がタンク内部 空間 S 2を囲むように複数箇所に形成されており、 側壁板 1 Ί 7 a側からボルト を筒体 1 75、 側壁板 177b内のボルト穴に貫挿させ、 側壁板 177 b側にお いてナツトを締めることにより、 側壁板 177 a、 177 bを筒体 175に固定 する構成となっている。 筒体 175の両端面 1 82 a、 182 bには、 図 1 6及 び図 17に示すようにそれぞれ周溝 183 a、 183bが設けられており、 周溝 183 aと側壁板 177 a、 周溝 1 83 と側壁板 177 bとの間には、 それそ れ 0リング 18 5 a、 185 bが嵌合されている。 これにより、 側壁板 177 a、 177 bと両端面 182 a、 182 bを密着させることができる。
筒体 175の材質は PFA (四フッ化工チレン) と PTFE (ポリテトラフル ォロエチレン) の混合物であり、 側壁板 177 a、 177 bの材質は高純度チタ ンである。 これにより、 タンク 170は耐熱性、 耐ベーパ一性を有するとともに、 耐圧構造となっている。 また、 ?丁 又は? 八と?丁 £の混合物は、 液体 および気体状態の純水雰囲気にさらされた場合に金属イオンが純水中に溶出する 現象である 「メタル溶出」 が発生しない。 また、 高純度チタンは、 純水中へのメ タル溶出がステンレス等と比較して非常に少ない。 従って、 純水がタンク 170 の壁面に接触する接液面から純水中へのメタル溶出は殆ど無い。 即ち、 このよう に非常に微量な接液面の材料が純水に溶出してチャンバ一 3 OA内に侵入しても、 パーティクル付着やメタルコン夕ミネ一シヨンが発生することは殆ど無く、 ゥェ ハ Wの処理に悪影響を与えない。 なお、 0リング 185 a、 185bには、 耐熱 性と耐べ一パー性があり、 純水中へのメタル溶出がないフッ素系のゴムを使用す る。
さらに、 タンク 170に PFAと PTFEの混合物を用いることにより、 タン ク 1 70のクリープを防止できるので、 シール不良を防止できる。 なお、 タンク 170のクリ一プを防止するためには、 筒体 175の両端面 182 a、 182 b の間の距離をなるベく小さくすることが効果的である。
図 1 6に示すように、 ヒー夕 180、 180は、 熱を発生させる発熱装置 1 9 0、 1 90と、 発熱装置 190、 1 90から発生した熱を側壁板 177 a、 17 7 bにそれそれ伝熱する、 金属製、 例えばアルミニウム製の伝熱部材 1 9 1、 1 9 1と、 から構成される。 伝熱部材 1 9 1は側壁板 177 a又は 177 bの外側 の面に接触しており、 伝熱部材 1 9 1の上縁は、 タンク 170内の純水の液面 L とほぼ同じ高さに略水平に位置するように形成されている。 また、 伝熱部材 1 9 1の下縁がタンク 170の底面の高さより下方に位置するように形成されている。 そして、 発熱装置 190は、 発熱装置 1 90の上縁が液面 Lの高さより下方に、 下縁がほぼタンク 1 Ί 0の底面の高さに位置するように、 伝熱部材 1 9 1の下部 に設置されている。 発熱装置 1 9 0から発生した熱は伝熱部材 1 9 1に伝導し、 伝熱部材 1 9 1から側壁板 1 7 7 a又は 1 7 7 bに伝導し、 側壁板 1 7 7 a、 1 7 7 bから純水に伝導する。 この場合、 伝熱部材 1 9 1の上縁が液面 Lとほぼ同 じ高さに形成されていることにより、 加熱された伝熱部材 1 9 1からの熱が、 側 壁板 1 7 7 a又は 1 Ί 7 bを介して、 貯留されている純水に効率的に伝導する。 従って、 伝熱部材 1 9 1や側壁板 1 7 7 a又は 1 7 7 bが過剰に加熱されること を防止でき、 安全性を高めることができる。
筒体 1 7 5には、 タンク 1 7 0から各チャンバ一 3 0 A、 3 O Bに蒸気を供給 する 2本の主供給管 3 8、 3 8が設けられている。 図 1 5において、 タンク 1 7 0内に純水及び N 2ガスを供給する純水供給管 2 0 0と、 タンク 1 Ί 0から純水を 排液するドレン管 2 0 1と、 タンク 1 7 0内に発生した蒸気をタンク 1 7 0から チャンバ一 3 O Aに供給する前述の主供給管 3 8 (蒸気供給管 3 8 ) が、 筒体 1 7 5の左側部を横方向に貫通して設けられている。 純水供給管 2 0 0は、 純水の 液面 Lより下方から純水を供給する位置に設けられている。 ドレン管 2 0 1は、 タンク 1 7 0の底部側方から純水を排液する位置に設けられている。 主供給管 3 8は、 タンク 1 7 0の天井部の側方から蒸気を送出する位置に設けられている。 さらに、 純水供給管 2 0 0とドレン管 2 0 1の間には、 純水の温度を計測する温 度センサ 2 0 2が設けられている。
また、 図 1 5において筒体 1 7 5の右側部、 即ち、 純水供給管 2 0 0、 ドレン 管 2 0 1、 チャンバ一 3 O Aに蒸気を送出する主供給管 3 8が配置されている側 部に対向する側部には、 蒸気をチャンバ一 3 0 Bに送出する主供給管 3 8と、 液 面計 2 1 0が設けられている。 蒸気をチャンバ一 3 0 Bに送出する主供給管 3 8 は、 タンク 1 7 0の天井部の側方から蒸気を送出する位置に設けられている。 液 面計 2 1 0は、 液面を計測する計測部 2 1 0 aと、 タンク 1 7 0の底部側方に開 口し、 計測部 2 1 0 aの下端に接続する下管 2 1 0 bと、 液面 Lより上方の純水 に接触しない位置に開口し、 計測部 2 1 0 aの上端に接続する上管 2 1 0 cとに よって構成されている。
さらに、 タンク 1 7 0には、 液面 Lと主供給管 3 8との間に、 2枚の邪魔板 2 1 1 , 2 1 2が液面 Lに対して略平行に配置されている。 下側の邪魔板 2 1 1は、 筒体 1 7 5、 側壁板 1 7 7 a、 1 7 7 bに四辺を接触させて液面 Lの上方全体を 覆うように形成されており、 上側の邪魔板 2 1 2も同様に筒体 1 7 5、 側壁板 1 7 7 a 1 7 7 bに四辺を接触させており、 液面 L及び邪魔板 2 1 1の上方全体 を覆うように形成されている。 さらに、 下側の邪魔板 2 1 1には、 図 1 5におい て筒体 1 7 5の左側部側と右側部側に、 発生した蒸気を通過させる通過口 2 1 3 .a、 2 1 3 bがそれそれ設けられている。 上側の邪魔板 2 1 2には、 通過口 2 1 3 a、 2 1 3 bを通過した蒸気を通過させる通過口 2 1 4が、 邪魔板 2 1 2の中 央に設けられている。
図 1 7に示すように、 通過口 2 1 3 a、 2 1 3 bと通過口 2 1 4は、 互いに上 下に重ならないように開口している。 即ち、 通過口 2 1 3 a、 2 1 3 bの真上は 邪魔板 2 1 2の通過口 2 1 4の無い部分に覆われており、 通過口 2 1 4の真下は 邪魔板 2 1 1の通過口 2 1 3 a、 2 1 3 bの無い部分に覆われている。 邪魔板 2 1 1の下で発生した蒸気は、 通過口 2 1 3 a、 2 1 3 bを通過し、 真上の邪魔板 2 1 2で偏向されて通過口 2 1 4を通過し、 主供給管 3 8から送出される。 この ようにすると、 加熱されてミスト状となった純水が飛散したり、 蒸気と共に上昇 した場合であっても、 ミスト状の純水を邪魔板 2 1 1、 2 1 2によって受け止め ることができる。 従って、 ミスト状の純水が主供給管 3 8によって送出されるこ とは無く、 チャンバ一 3 0 A、 3 0 B内に侵入することを防止する。 これにより、 ウェハ Wにウォー夕一マークが発生することを防止することができる。 さらに、 液面 Lと主供給管 3 8との間の高さを小さくすることができるので、 タンク 1 7 0全体の高さを小型化したり、 純水の貯水量を增加させることができる。 なお、 蒸気が邪魔板 2 1 1、 2 1 2を迂回する際に、 なるべく蛇行をさせるようにする と、 ミスト状の純水を効果的に受け止めることができる。 なお、 邪魔板 2 1 1、 2 1 2の材質には、 例えば P T F E、 アモルファス力一ボン、 炭化珪素セラミツ クス (S i C ) 等の、 液体および気体状態の純水雰囲気にさらされた場合に純水 中への材料成分の溶出がない材料又は、 チタン等の純水中への溶出が実質的に無 い材料を用いる。
さらに、 筒体 1 7 5の右側部において、 邪魔板 2 1 1、 2 1 2の間には、 蒸気 をタンク 1 7 0から排出してタンク 1 7 0内の圧力を下降させる逃がし路 2 2 0 が接続されている。 この場合、 タンク 1 7 0内に発生した蒸気を、 主供給管 3 8 によってチャンバ一 3 0 A、 3 0 B内に送出せずに、 逃がし路 2 2 0によって排 出し、 タンク 1 7 0内の温度又は圧力を制御できる。例えば、 ヒー夕 1 8 0、 1 8 0の出力を一定にしても、 逃がし路 2 2 0によって蒸気を排出することにより、 タンク 1 7 0内の圧力を低下させ、 タンク 1 7 0内の温度を一定値に制御し、 異 常温度上昇を防止できる。 タンク 1 7 0内の温度は、 約 1 2 0 °C程度に維持され る。
図 3に示すように、 純水供給管 2 0 0には、 流量調整弁 V 2が介設されており、 純水供給源 2 2 5が接続されている。 この純水供給源 2 2 5における流量調整弁 V 2の下流側には、 前述の N 2ガス供給管 5 3からの分岐管 2 2 6を介して前述の N 2ガス供給源 4 3が接続されている。 この分岐管 2 2 6には流量調整弁 V 3が介 設されている。 この場合、 両流量調整弁 V 2、 V 3は共に連通及び遮断動作を同 様に行えるようになつている。
ドレン管 2 0 1には、 流量調整弁 V 3と連動するドレン弁 D Vが介設されてお り、 下流端にはミストトラップ 2 2 7が備えられている。 また、 ドレン管 2 0 1 の流量調整弁 V 3の下流側に、 逃がし路 2 2 0の下流端が接続されている。 逃が し路 2 2 0には、 流量調整弁 V 4、 開閉弁 V 5が介設されると共に、 この流量調 整弁 V 4の上流側から分岐して開閉弁 V 5の下流側に接続する分岐管 2 3 0が接 続され、 この分岐管 2 3 0にリリーフ弁 R V 1が介設されている。 ミストトラッ プ 2 2 7は、 ドレン管 2 0 1から排液された純水及び逃がし路 2 2 0から排出さ れた蒸気を冷却して、 液体にして排液管 9 1から排液する。
蒸気発生器 4 0のヒー夕 1 8 0、 1 8 0は、 一定の出力で稼働される。 また、 前述のように、 蒸気発生器 4 0において発生した蒸気が、 各チャンバ一 3 0 A、 3 0 Bに等しい流量で供給されるように、 流量調整弁 5 0、 5 0の流量調整量が 予め設定される。 例えば、 蒸気発生器 4 0において単位時間当たりに発生させる 蒸気量を 5単位とすると、 蒸気を同時に各チャンバ一 3 0 A、 3 0 Bに供給する 場合は、 蒸気発生器 4 0において発生させた 5単位の蒸気のうち、 各チャンバ一 3 O As 3 0 Bに、 2単位の流量で蒸気をそれそれ供給し、 残りの 1単位の蒸気 は、 タンク 1 7 0内から逃がし路 2 2 0によって排出する。 そのため、 蒸気を同 時に各チャンバ一 3 0 A、 3 0 Bに供給する場合は、 1単位の流量の蒸気が逃が し路 2 2 0を通過するように流量調整弁 V 4の開度調整を行い、 各流量調整弁 5 0、 5 0、 及び逃がし路 2 2 0に介設された開閉弁 V 5を開く。
また、 蒸気を片方のチャンバ一 3 O A又は 3 0 Bのみに供給する場合、 例えば チャンバ一 3 O A (又は 3 0 B ) でウェハ Wの搬入を行い、 同時にチャンバ一 3 0 B (又は 3 0 A) でオゾンガスと蒸気を用いるレジスト水溶化処理を行うよう な場合は、 蒸気発生器 4 0において発生させた 5単位の蒸気のうち、 チャンバ一 3 0 A又は 3 0 Bにのみ、 2単位の流量の蒸気を供給し、 残りの 3単位の流量の 蒸気は、 逃がし路 2 2 0によって排出する。 そのため、 蒸気を片方のチャンバ一
3 0 A又は 3 0 Bにのみ供給する場合は、 3単位の流量の蒸気が逃がし路 2 2 0 を通過するように流量調整弁 V 4の流量調整を行い、 一方の流量調整弁 5 0と開 閉弁 V 5を開く。
蒸気をチャンバ一 3 0 A、 3 0 Bのいずれにも供給しない場合は、 蒸気発生器
4 0において発生させた 5単位の蒸気を、 すべて逃がし路 2 2 0によって排出す る。 そのため、 各流量調整弁 5 0、 5 0を閉じ、 開閉弁 V 5及び流量調整弁 V 4 を開く。
なお、 逃がし路 2 2 0によって排出された蒸気は、 ドレン管 2 0 1を通過して ミストトラヅプ 2 2 7に送出される。 また、 タンク 1 7 0内の圧力が過剰に上昇 するなどの異常時には、 リリーフ弁 R V 1を開いて、 蒸気をタンク 1 7 0内から 逃がし路 2 2 0、 分岐管 2 3 0、 逃がし路 2 2 0、 ドレン管 2 0 1の順に通過さ せて排出する。
上記のように、 蒸気発生器 4 0において発生させた蒸気を、 流量調整弁 V 4に よって流量調整しながら逃がし路 2 2 0によって排出することにより、 各チャン バー 3 0 A、 3 0 Bに供給する蒸気の流量を調整することができる。 この場合、 例えば、 蒸気を同時に供給するチャンバ一の数が変更しても、 各チャンバ一 3 0 A、 3 0 Bに等しい流量で蒸気が供給されるバランスに予め設定された流量調整 弁 5 0、 5 0の流量調整量を変更する必要は無く、 開閉を行うだけでよい。 この ように各流量調整弁 5 0、 5 0によって流量調整を行う場合や、 ヒー夕 1 8 0、 1 8 0の出力を制御して流量調整を行う場合と比較して、 各チャンバ一 3 0 A、 3 O Bに供給する蒸気の流量調整が容易である。 従って、 各チャンバ一 3 0 A、 3 0 Bに供給する蒸気の流量を、 各チャンバ一 3 0 A、 3 0 Bで行う工程に応じ て、 正確に調整することができ、 レジズト水溶化処理の均一性、 信頼性を向上さ せることができる。
次に、 上記のように構成された処理システム 1におけるウェハ Wの処理工程を 説明する。 まず、 イン ·アウトポート 4の載置台 6に載置されたキャリア Cから 取出収納アーム 1 1によって一枚ずつウェハ Wが取り出され、 取出収納アーム 1 1によって取り出したゥヱハ Wをウェハ受け渡しュニット 1 7に搬送する。 する と、 主ウェハ搬送装置 1 8がウェハ受け渡しュニット 1 7からウェハ Wを受け取 り、 主ゥヱハ搬送装置 1 8によって各基板処理ュニヅト 2 3 a〜 2 3 hに適宜搬 入する。 そして、 各基板処理ユニット 2 3 a〜 2 3 hにおいて、 ウェハ Wの表面 に塗布されているレジス卜が水溶化される。 所定のレジスト水溶化処理が終了し たウェハ Wは、 搬送アーム 1 8 aによって各基板処理ュニヅト 2 3 a〜 2 3 hか ら適宜搬出される。 その後、 ゥヱハ Wは、 搬送アーム 1 8 aによって再び各基板 洗浄ユニット 1 2、 1 3、 1 4、 1 5に適宜搬入され、 ウェハ Wに付着している 水溶化されたレジストを除去する洗浄処理が純水等により施される。 これにより、 ウェハ Wに塗布されていたレジストが剥離される。 各基板洗浄ュニット 1 2、 1 3、 1 4、 1 5は、 ウェハ Wに対して洗浄処理を施した後、 必要に応じて薬液処 理によりパーティクル、 金属除去処理を行った後、 乾燥処理を行い、 その後、 ゥ ェハ Wは再び搬送アーム 1 8 aによって受け渡しュニット 1 7に搬送される。 そ して、 受け渡しュニット 1 7から取出収納アーム 1 1にウェハ Wが受け取られ、 取出収納アーム 1 1によって、 レジストが剥離されたウェハ Wがキャリア C内に 収納される。
次に、 基板処理ュニヅト 2 3 a〜 2 3 hの動作態様について、 基板処理ュニヅ ト 2 3 aを代表して説明する。 まず、 容器本体 1 0 0に対して蓋体 1 0 1を離間 させた状態で、 主ウェハ搬送装置 1 8の搬送アーム 1 8 aを蓋体 1 0 1の下方に 移動させると、 蓋体 1 0 1の保持部材 1 3 6が、 搬送アーム 1 8 aからウェハ W を受け取る (ウェハ受け取り工程) 。 次に、 シリンダ 1 0 2を駆動して蓋体 1 0 1を下降させると、 蓋体 1 0 1が容器本体 1 0 0に対して近接方向に移動して保 持部材 136が容器本体 100の凹溝 100 c内に進入すると共に、 保持部材 1 36に支持されたウェハ Wを容器本体 100の支持部材 111に受け渡す (ゥェ ハ受け渡し工程) 。 ウェハ W下面と下プレート 110上面との間には隙間 Gが形 成される。 このようにしてウェハ Wを支持部材 111に受け渡した後、 更に蓋体 101が下降すると、 蓋体 101が容器本体 100の円周壁 10 Obの上面に当 接すると共に、 〇リング 115a、 115bを圧接して容器本体 100を密閉す る (密閉工程) 。
蓋体 101を容器本体 100に密閉した状態において、 ヒー夕 105、 135 の作動により、 チャンバ一 3 OA内の雰囲気及びウェハ Wを昇温させる。 これに より、 ウェハ Wのレジスト水溶化処理を促進させることができる。 次いで、 供給 切換手段 41を作動させてオゾンガス発生器 42からオゾンガス供給管 51を介 してチャンバ一 3 OA内に所定濃度のオゾンガスを供給する。 オゾンガスは、 流 量調整弁 52の閧度に従い所定流量に調整されてチャンバ一 3 OA内に供給され る。 さらに、 排気切換部 65の第 1の排気流量調整弁 71を開放した状態とし、 チヤンバ一 30 A内からの排出管 60による排気流量を第 1の排気流量調整弁 7 1によって調整する。 このように、 チャンバ一 30A内を排出管 60によって排 気しながらオゾンガスを供給することにより、 チャンバ一 3 OA内の圧力を一定 に保ちながらチャンバ一 30A内をオゾンガス雰囲気にする。 この場合、 チャン バー 30A内の圧力は、 大気圧より高い状態、 例えばゲージ圧 0. 2Mpa程度 に保つ。 このようにして、 チャンバ一 3 OA内に所定濃度のオゾンガスを充填す る。 このとき、 ヒ一夕 105、 135の加熱によって、 チャンバ一 3 OA内の雰 囲気及びウェハ Wの温度が維持される。 また、 排出管 60によって排気したチヤ ンバー 3 OA内の雰囲気は、 ミストトラップ 61に排出される。
—方、 蒸気発生器 40において、 2台のヒ一夕 180、 180の各発熱装置 1 90、 190を発熱させると、 発熱装置 190、 190から各伝熱部材 191、 191にそれぞれ熱が伝導し、 さらに、 各伝熱部材 191、 191から側壁板 1 77 a, 177 bにそれそれ熱が伝導し、 側壁板 177 a、 177bからタンク 内の純水に熱が伝導し、 蒸気が発生する。 タンク 170内の温度は約 120°C程 度に温度調節される。 また、 タンク 170内は加熱により加圧状態に維持される が、 タンク 1 7 0内に発生した蒸気を、 逃がし路 2 2 0によって排出することに より、 タンク 1 7 0内の圧力を低下させ、 タンク 1 7 0内の温度を約 1 2 0 °C程 度に維持する。 逃がし路 2 2 0によって排出させられた蒸気は、 ミストトラップ 2 2 7において冷却され、 排液管 9 1から排液される。
オゾンガスを充填後、 流量調整弁 5 0を作動させて、 チャンバ一 3 O A内にォ ゾンガスと蒸気とを同時にチャンバ一 3 O A内に供給して、 ウェハ Wのレジスト 水溶化処理を行う。 排出管 6 0に介設された排気切換部 6 5の第 1の排気流量調 整弁 7 1を開放した状態とし、 チャンバ一 3 O A内を排気しながらオゾンガスと 蒸気を同時に供給する。 蒸気発生器 4 0から供給される蒸気は、 温度調節器 5 7 によって所定温度、 例えば約 1 1 5 °C程度に温度調節されながら主供給管 3 8を 通過し、 供給切換手段 4 1においてオゾンガスと混合してチャンバ一 3 O A内に 供給される。 この場合も、 チャンバ一 3 O A内の圧力は、 大気圧よりも高い状態、 例えばゲージ圧 0 . 2 M p a程度に保たれている。 また、 ヒー夕 1 0 5、 1 3 5 の加熱により、 チャンバ一 3 O A内の雰囲気及びウェハ Wの温度を維持する。 こ のようにして、 チャンバ一 3 O A内に充填したオゾンガスと蒸気の混合処理流体 によってウェハ Wの表面に塗布されたレジストを酸化 (水溶化) させる (処理工 程) 。
なお、 レジスト水溶化処理工程において、 オゾンガスは、 流量調整弁 5 2の開 度に従い所定流量に調整されて、 主供給管 3 8を介してチャンバ一 3 O A内に供 給される。 蒸気は、 流量調整弁 5 0及び流量調整弁 V 4の開度に従い所定流量に 調整されて、 主供給管 3 8を介してチャンバ一 3 O A内に供給される。 一方、 排 気切換部 6 5の第 1の排気流量調整弁 7 1を開放した状態とし、 チャンバ一 3 0 A内からの排出管 6 0による排気流量を第 1の排気流量調整弁 7 1によって調整 する。 このように、 チャンバ一 3 O A内を排出管 6 0によって排気しながらォゾ ンガス及び蒸気を所定流量で供給することにより、 チャンバ一 3 O A内の圧力を 一定に保ちながらチャンバ一 3 O A内にオゾンガスと蒸気の混合処理流体を供給 する。
レジスト水溶化処理中は、 主供給管 3 8から混合処理流体の供給を続け、 排出 管 6 0から混合処理流体の排出を続ける。 混合処理流体は、 ウェハ Wの上面、 下 面 (隙間 G) 、 周縁に沿って、 排出口 1 2 1及び排出管 6 0に向かって流れる。 なお、 主供給管 3 8から混合処理流体の供給を止めると共に、 排出管 6 0からの 排出を止め、 チャンバ一 3 O A内の圧力を一定に保ちながらチャンバ一 3 O A内 を満たす混合処理流体によってウェハ Wのレジスト水溶化処理を行ってもよい。 所定のレジスト水溶化処理が終了した後、 チャンバ一 3 O Aからオゾンガスと 蒸気の混合処理流体を排出する。 まず、 流量切換弁 5 5を大流量部 5 5 a側に切 り換えて N 2ガス供給源 4 3から大量の N 2ガスをチャンバ一 3 O A内に供給する と共に、 排出管 6 0に介設された排気切換部 6 5の第 2の排気流量調整弁 7 2を 開放した状態にする。 そして、 チャンバ一 3 O A内を排気しながら N 2ガス供給源 4 3から N 2ガスを供給する。 これにより、 主供給管 3 8、 チャンバ一 3 0 A、 排 出管 6 0の中を N2ガスによってパージすることができる。 排出されたオゾンガス は、 排出管 6 0によってミストトラップ 6 1に排出される。
その後、 シリンダ 1 0 2を作動させて蓋体 1 0 1を上方に移動させると、 凹溝 1 0 0 c内に収納されていた保持部材 1 3 6が再びゥヱハ Wの対向する両側緑部 に当接して支持部材 1 1 1からウェハ Wを受け取り、 蓋体 1 0 1が容器本体 1 0 0から離間した状態にする。 この状態で、 主ウェハ搬送装置 1 8の搬送アーム 1 8 aを蓋体 1 0 1の下方に進入させ、 保持部材 1 3 6にて支持されているウェハ Wを受け取り、 チャンバ一 3 O A内からウェハ Wを搬出する。
かかる基板処理ュニヅト 2 3 aによれば、 タンク 1 7 0に P F Aと P T F Eの 混合物を用いることにより、 タンク 1 7 0のクリープを防止できるので、 シール 不良を防止できる。 また、 伝熱部材 1 9 1の上縁が液面 Lとほぼ同じ高さに形成 されているため、 伝熱部材 1 9 1や側壁板 1 7 7 a又は 1 7 7 bが過剰に加熱さ れることを防止でき、 安全性を高めることができる。 さらに、 タンク 1 7 0の壁 面に接触する接液面が、 P F Aと P T F Eの混合物と、 高純度チタンとによって 形成されていることにより、 純水中に接液面の材料が溶出することが実質的に無 いため、 チャンバ一 3 O A内に接液面の材料が侵入してもパーティクルが実質的 に発生せず、 ウェハの処理に悪影響を与えることが無い。 また、 ミスト状の純水 が邪魔板 2 1 1、 2 1 2に効果的に受け止められ、 ミスト状の純水が主供給管 3 8からチャンバ一 3 0 A、 3 0 B内に侵入することを防止するので、 ウェハ に ウォー夕一マークが発生することを防止することができる。 さらに、 タンク 1 7 0全体の高さを小型化したり、 純水の貯水量を増加させることができる。
以上、 本発明の好適な実施の形態の一例を示したが、 本発明はここで説明した 形態に限定されない。 例えば、 基板は半導体ウェハに限らず、 その他の L C D基 板用ガラスや C D基板、 プリント基板、 セラミック基板などであっても良い。
導入ノズルには、 図 1 8に示すようなマニホ一ルド形状の導入ノズル 2 4 0を 使用しても良い。 導入ノズル 2 4 0は、 主供給管 3 8に接続して円周壁 1 0 0 b の外側から処理流体を流入させる入口部 2 4 1と、 入口部 2 4 1からチャンバ一 3 O Aの内側に向かって水平方向に放射するように貫通する 5本の出口部 2 4 2 から構成されている。 各出口部 2 4 2を放射状に開口させることにより、 チャン バ一3 O A内に処理流体を放射状に供給し、 効率良く拡散させて供給することが できる。 また、 この導入ノズル 2 4 0を形成する加工を施すときも、 導入ノズル 設置部 1 3 0を円周壁 1 0 O bから切り取り、 凸面 1 3 0 aから入口部 2 4 1を 形成し、 一方、 凹面 1 3 0 aにおける横方向に並ぶ 5箇所から、 各出口部 2 4 2 を入口部 2 4 1に向かって掘削するように形成する。 こうして、 導入ノズル 2 4 0を貫通させた導入ノズル設置部 1 3 0を、 再び円周壁 1 0 O bの導入ノズル設 置部 1 3 0を切り取った切断部 1 3 1に嵌合させ、 導入ノズル設置部 1 3 0と切 断部 1 3 1を溶接する。
上記実施形態では、 導入ノズル設置部 1 3 0を円周壁 1 0 0 bから切り取って 導入ノズル 1 2 0を形成する加工を説明したが、 導入ノズル設置部 1 3 0を容器 本体 1 0 0とは別部材として製作された部品としても良い。 この場合、 容器本体 1 0 0は、 導入ノズル設置部 1 3 0を嵌合させる切欠きを形成した部品として、 導入ノズル設置部 1 3 0は導入ノズル 1 2 0を形成した部品として製作する。 そ して、 切欠きに導入ノズル設置部 1 3◦を嵌合させ溶接することにより、 容器本 体 1 0 0の円周壁 1 0 0 bを完成させる。
上記実施形態では、 2台のチャンバ一 3 0 A、 3 0 Bに、 1つの蒸気発生器 4 0を接続した場合について説明したが、 筒体 1 Ί 5の上部に 3つ以上の主供給管 3 8を備え、 各主供給管 3 8を 3台以上の複数のチャンバ一にそれそれ接続して、 1つの蒸気発生器 4 0から 3台以上の複数のチャンバ一に蒸気を導入することも 可能である。
筒体 1 7 5の材質は P T F Eであっても良い。 また、 側壁板 1 7 7 a、 1 7 7 bの材質は S i C、 アモルファス力一ボン等であっても良い。 P T F E、 S i C;、 アモルファス力一ボンはメタル溶出が発生しない。 この場合も、 チャンバ一 3 0 A内に接液面の材料が侵入してパーティクル付着やメタルコン夕ミネーシヨンが 発生することを防止できる。
タンク内の邪魔板は、 3枚以上備えても良い。 この場合も、 上下に隣接する邪 魔板の各通過口を、 互いに重ならない位置に設けることにより、 蒸気を主供給管 3 8までなるベく蛇行させながら迂回させることが好ましい。 これにより、 ミス ト状の純水が邪魔板に効果的に受け止められ、 ミスト状の純水が主供給管 3 8か らチャンバ一 3 0 A、 3 0 B内に侵入することを防止するので、 ウェハ Wにゥォ 一夕一マークが発生することを防止することができる。
蒸気発生器 4 0において発生させる蒸気と、 各チャンバ一 3 O A又は 3 0 Bに 供給する蒸気の比率は、 本実施の形態において説明した 5 : 2に限定されない。 例えば、 1つの蒸気発生器 4 0から 3台以上の複数のチャンバ一に蒸気を導入す る場合は、 チャンバ一の台数に応じて蒸気発生器 4 0において発生させる蒸気の 流量を増加させ、 比率を適宜設定する。
上記実施形態によれば、 タンクのクリープを防止できるので、 シール不良を防 止できる。 また、 伝熱部材ゃ側壁板が過剰に加熱されることを防止でき、 安全性 を高めることができる。 さらに、 チャンバ一内に接液面の材料が侵入してパ一テ イクルを発生させることが実質的に無く、 基板に悪影響を与えることを防止でき る。 基板にウォー夕一マークが発生することを防止することができる。 タンクを 小型化したり、 純水の貯水量を増加させることができる。
なお、 蒸気発生器は、 図 1 9乃至 2 1に示すように構成してもよい。 図 1 9乃 至 2 1に示す蒸気発生器 4 0 ' は純水を貯留する扁平円筒形のタンク 3 0 1を有 する。 タンク 3 0 1は、 中心軸線が水平方向を向き該軸線方向両端が開口した中 空円筒形の筒体 3 0 2と、 筒体 3 0 2の両側開口を塞ぐ円板形の側壁板 3 0 3と を有する。 蒸気生成効率向上の観点から、 側壁板 3 0 3間の距離 Wは、 筒体 3 0 2の内径 Dより小さく設定される。 筒体 302は、 後述するように、 複数の管を通す孔が形成される。 このため、 ウェハ W処理に有害な成分が筒体 302の内周面のみならず前記孔表面から純水 中に溶出することをも防止する観点から、 筒体 302は、 液体および気体状態の 純水雰囲気にさらされた場合にウェハ W処理に有害な成分が溶出することのない 樹脂材料、 好ましくは PTFEと PFAの混合物により形成される。 PTFEと PF Aの混合物は耐クリーブ性が高く、 純水中へのウェハ W処理に有害な成分の 溶出がないという特徴がある。 筒体 302用の材料として好適な商業的に入手可 能な PTFEと PFAの混合物としては、 例えば、 日本バルカ一工業 (株) から 提供されるニューバルフロン EX 1 (登録商標)、 三井 'デュポンフロロケミカ ル (株) から提供されるテフロン (登録商標) 70— Jがある。 なお、 筒体 30 2の材料として、 PTFE、 PFA、 PEEK (ポリェ一テルエーテルケトン) 等の樹脂材料を用いることもできる。
側壁板 303のタンク 301の内部空間を向いた面から、 ウェハ W処理に有害 な成分が純水中に溶出することがないことが望ましい。 また、 側壁板 303は、 ヒー夕からタンク 301中の純水への伝熱経路を構成するため、 良好な熱伝導性 を有していることが望ましい。 このため、 特に図 21に示すように、 側壁板 30 3は、 高熱伝導性の金属としてのアルミニウム合金からなる基材 303 aと、 こ の基材 303 aの内側表面を覆う P F A被覆 303 bからなる。 PFAからも、 液体および気体状態の純水雰囲気にさらされた場合にウェハ W処理に有害な成分 が溶出することはない。
なお、 側壁板 303は、 図 15乃至図 17に示す実施形態と同様に高純度チタ ニゥムにより形成してもよく、 この場合 PF A被覆 303 bは必ずしも必要ない c しかしながら、 ウェハ W処理に有害な成分、 特に金属成分が純水中に溶出するこ とを完全に防止する観点からは、 P F A等の純水中へのウェハ W処理に有害な成 分が溶出することがない樹脂材料により被覆されていることが好ましい。 また、 側壁板 303は、 アモルファス力一ボンにより形成してもよい。 アモルファス力 一ボンは、 熱伝導性に優れており、 また、 液体および気体状態の純水雰囲気にさ らされた場合にウェハ W処理に有害な成分が溶出することはない。 側壁板 303 にアモルファスカーボンを用いる場合には PF A被覆 303 bを設ける必要はな い。
筒体 3 0 2の側面には、 筒体 3 0 2の全周にわたって連続する円周溝が形成さ れており、 この円周溝には 0リング 3 0 4が挿入されている。 0リング 3 0 4は、 筒体 3 0 2と側壁板 3 0 3との間を気水密にシールする。 0リング 3 0 4は、 耐 熱性が高く、 かつ、 ウェハ W処理に有害な成分が純水中に溶出することがない材 料、 好ましくはフッ素系ゴム、 更に好ましくはパ一フロロエラストマ一により形 成されている。 好適な商業的に入手可能なパ一フロロエラストマ一としては、 例 えばデュポンダウケミカル社から提供されるカルレッヅ (登録商標) がある。
タンク 3 0 1の周囲はシェル 3 0 5すなわち外殻により覆われている。 シヱル 3 0 5の内面はタンク 3 0 1の外面と実質的に相補的な形状を有する。 シェル 3 0 5は、 筒体 3 0 2を囲む筒状またはリング状部材 3 0 6と、 側壁板 3 0 3の外 側に配置された円板状の板状部材 3 0 7とから形成されている。 リング状部材 3 0 6は、 2つの半体 3 0 6 a, 3 0 6 bからなる。 シェル 3 0 5は、 タンク 3 0 1の内圧によりタンク 3 0 1を構成する筒体 3 0 2および側壁板 3 0 3が変形す ることを防止することができる程度の剛性を有する。 本実施形態においては、 シ エル 3 0 5は十分な厚さを有する金属材料により形成されている。 なお、 シェル 3 0 5の板状部材 3 0 7は、 ヒー夕からタンク 3 0 1中の純水への伝熱経路を構 成するため、 良好な熱伝導性を有していることが望ましい。 本実施形態において は、 シェル 3 0 5のリング状部材 3 0 6および板状部材 3 0 7はアルミニウム合 金により形成されている。
シェル 3 0 5の板状部材 3 0 7の外側面には、 ヒー夕 3 0 8が設けられている c ヒー夕 3 0 8は、 熱伝導性に優れた金属、 例えばアルミニウム合金により形成さ れた伝熱プロヅク 3 0 8 aと、 伝熱プロック 3 0 8 a内に埋め込まれた抵抗力口熱 線 3 0 8 bとを有している。 抵抗加熱線 3 0 8 bは、 図示しない電源から給電さ れて発熱し、 タンク 3 0 2内に供給された純水を加熱して気化させる。 伝熱プロ ック 3 0 8 aの上端縁 3 0 8 cは水平方向に延び、 その髙さは、 タンク 3 0 2内 における純水の設定水位 (液面 L ) と概ね等しい。 また、 伝熱ブロック 3 0 8の 下縁はタンク 3 0 1の底面の高さより下方に位置するように形成されている。 そ して、 抵抗加熱線 3 0 8 bの配置領域の上端は液面 Lの高さより下方に、 該配置 領域の下端はほぼタンク 3 0 1の底面の高さに位置している。 抵抗加熱線 3 0 8 bから発生した熱は、 伝熱プロック 3 0 8、 シェル 3 0 5の板状部材 3 0 7およ びタンク 3 0 1の側壁板 3 0 3を介してタンク 3 0 1内の純水に伝導する。 上述 したヒー夕 3 0 8とタンク 3 0 1の位置関係により、 図 1 5乃至図 1 7に示す蒸 気発生器と同様に、 タンク内の純水は効率良く加熱される。
シェル 3 0 5および熱板 3 0 8の外側には、 ケーシング 3 0 9が設けられてい る。 ケーシング 3 0 9は断熱性を有する材料から形成されている。
タンク 3 0 1の筒体 3 0 2には、 2つの主供給孔 3 8 a、 3 8 aと、 純水供給 孔 2 0 0 aと、 ドレン孔 2 0 1 aとが形成されている。 純水供給孔 2 0 0 aは、 純水の液面 Lより下方から純水を供給するように、 タンク 3 0 1内における純水 の設定水位より低い位置でタンク内に開口している。 ドレン孔 2 0 1 aは、 タン ク 3 0 1の底部においてタンク内に開口している。 主供給孔 3 8 aは、 タンク 3 0 1の上部に開口している。 主供給孔 3 8 a、 3 8 a、 純水供給孔 2 0 0 aおよ びドレン孔 2 0 1 aには、 シェル 3 0 5および筒体 3 0 2に挿入された主供給管 3 8、 3 8、 純水供給管 2 0 0およびドレン管 2 0 1がそれぞれ接続されている。 これら管 3 8、 2 0 0、 2 0 1は、 液体および気体状態の純水に接触することに よりウェハ Wの処理に有害な成分が溶出することがないように、 少なくともその 内面が P T F Eまたは P F Aにより形成されている。 管 3 8、 2 0 0、 2 0 1は、 好適には P T F Eからなるが、 表面に P T F Eまたは P F Aの被覆が施された金 属管とすることもできる。
タンク 3 0 1には液面計 2 1 0が設けられている。 液面計 2 1 0は、 液面を計 測する計測部 2 1 0 aと、 計測部 2 1 0 aの下端に接続された下管 2 1 0 bと、 計測部 2 1 0 aの上端に接続する上管 2 1 0 cとによって構成されている。 下管 2 1 O bは、 タンク 3 0 1の底部に開口する下管用孔と連通するように筒体 3 0 2およびリング状部材 3 0 6に揷入され、 上管 2 1 0 cは、 タンク 3 0 1内の液 面 Lより上方の純水に接触しない位置に開口する上管用孔と連通するように筒体 3 0 2およびリング状部材 3 0 6に挿入されている。
計測部 2 1 0 aは、 上管 2 1 O bおよび下管 2 1 0 cと連通し鉛直方向に延び る管 2 1 0 dと、 管 2 1 0 dに付設された液面センサ (図示せず) とから構成さ れている。 液面センサは管 2 1 0 d内の純水中に浮かぶフロートを有する液面セ ンサとすることができる。 これに代えて、 管 2 1 0 dを透明材料により形成し、 液面センサを管 2 1 0 d内の水位を光学的に検出するセンサとすることもできる。 液面センサの検出信号は、 図示しないコントローラに送信され、 コントローラが 流量制御弁 V 2 (図 2 2参照) を制御して、 タンク 3 0 1内の純水の水位 (液面 Lの高さ) を一定に維持する。 すなわち、 タンク 3 0 1内の純水の水位は、 図示 しないコントローラおよび流量制御弁 V 2からなる水位調整手段により調整され る。 従って、 タンク 3 0 1の内部空間は、 蒸気発生器 3 0 1の通常運転中に液体 状態の純水が常時存在する下部の純水空間と、 気化された純水蒸気が常時存在す る上部の蒸気空間とに区別される。
なお、 先に述べたヒ一夕 3 0 8には一定の電力が供給される。 タンク 3 0 1内 の水位が一定に維持されているため、 蒸気発生器 4 0 ' が単位時間当たり発生す る水蒸気の量は実質的に一定である。
また、 純水または蒸気に接触しうる液面計 2 1 0の構成部材 (管 2 1 O b, 2 1 0 c、 2 1 0 dおよびセンサ類) の表面も、 液体および気体状態の純水に接触 することによりウェハ Wの処理に有害な成分が溶出することのない材料により構 成されている。
タンク 3 0 1内の液面 Lより上方であって主供給孔 3 8 a、 3 8 aの開口位置 より下方には、 2枚の邪魔板 3 1 0、 3 1 1が設けられている。 邪魔板 3 1 0、
3 1 1の長手方向両端は筒体 3 0 2に形成されたスロットに揷入され、 邪魔板の 幅方向両端は側壁板 3 0 3に接触するか若しくは側壁板 3 0 3に対して微少な間 隔をおいて配置されている。 従って、 邪魔板 3 1 0、 3 1 1はタンク 3 0 1内の 純水の液面の全域を覆っている。 邪魔板 3 1 0 , 3 1 1には、 蒸気を通過させる 複数の開口 3 1 2、 3 1 3がそれそれ設けられている。 邪魔板 3 1 0、 3 1 1の 開口 3 1 2、 3 1 3は、 先に図 1 5乃至図 1 7を参照して説明したのと同様の態 様で設けられ、 図 1 5乃至図 1 7に示す邪魔板と同様の効果を奏する。 邪魔板 3
1 0、 3 1 1は、 純水蒸気雰囲気にさらされた場合にウェハ Wの処理に有害な成 分の溶出が無視できる程度に少ない材料、 例えば P T F Eにより形成することが 好適である。 なお、 図 1 9乃至図 2 1に示される蒸気発生器 4 0 ' においては、 図 1 5乃至 図 1 7に示す蒸気発生器 4 0に設けられていた温度センサ 2 0 2が廃止され、 ま た、 図 1 5乃至図 1 7に示す蒸気発生器 4 0においてタンク 1 7 0に直接接続さ れていた逃がし路 2 2 0をタンク 3 0 1に直接接続しないようにしている。 なお、 温度センサ 2 0 2を廃止することにより、 タンク 3 0 1の内部空間には、 金属材 料からなる部材は全く存在しなくなる。 ,
タンク 3 0 1を構成する筒体 3 0 2および側壁板 3 0 3は、 これらを貫通する ボルト等の機械的締結部材を用いることなく、 互いに連結される。 すなわち、 筒 体 3 0 2の円周溝に 0リング 3 0 4を揷入した状態で、 側壁板 3 0 3が筒体 3 0 2の側面に配置される。 そして、 タンク 3 0 1の筒体 3 0 2の周りにシェル 3 0 5のリング状部材 3 0 6 (半体 3 0 6 a、 3 0 6 b ) が配置され、 側壁板 3 0 3 の外側にシヱル 3 0 5の板状部材 3 0 7が配置される。 そして、 板状部材 3 0 7 が、 リング状部材 3 0 6に複数のボルト 3 1 4を用いて固定される。 このボルト 結合のため、 リング状部材 3 0 6の側面には円周方向に間隔をおいて複数のねじ 孔が形成されており、 円板状の板状部材 3 0 7の周縁部には該ねじ孔に対応する 位置に貫通孔が設けられている。
ボルト 3 1 4を締め付けてゆく過程において、 板状部材 3 0 7およびこれに接 触する側壁板 3 0 3が筒体 3 0 2に向けて移動し、 0リング 3 0 4がつぶれてゆ く。 これにより、 筒体 3 0 2と側壁板 3 0 3との間に気水密なシールが形成され る。 ボルト 3 1 4の締め付けが完了すると、 タンク 3 0 1の周囲を囲む強固なシ エル構造が完成する。 この時点におけるタンク 3 0 1およびシェル 3 0 5の状態 が図 2 1に示されている。
図 2 1に示すように、 筒体 3 0 2の側面と側壁板 3 0 3の内面との間には、 微 少な軸方向 (タンク 3 0 1の軸線方向、 A方向) の間隙 3 1 5が存在する。 また、 筒体 3 0 2の軸方向凸部 3 0 2 aの内周面 3 0 2と側壁板 3 0 3の外周面との間 には、 微少な半径方向 (タンク 3 0 1の半径方向、 R方向) の間隙 3 1 6が存在 する。 更に、 筒体 3 0 2の軸方向凸部 3 0 2 aの先端面と板状部材 3 0 7との間 には、 微少な軸方向 Aの間隙 3 1 7が存在する。 また、 筒体 3 0 2の外周面とリ ング状部材 3 0 6との間には、 微少な半径方向 (R方向) の間隙 3 1 8が存在す る。 これら間隙 3 1 5〜3 1 8を設けることにより、 タンク 3 0 1およびシェル 3 0 4の構成材料 (樹脂または金属) の熱膨張差に起因して部材間に大きな接触 面圧が発生し、 クリーブ強度が相対的に低い樹脂材料が損傷を受けることを防止 する。 また、 特に、 筒体 3 0 2の側面と側壁板 3 0 3の内面との間の間隙 3 1 5 は、 これら部材が擦れあうことによるパーティクルの発止防止にも寄与する。 間 隙 3 1 5〜3 1 8の大きさは、 蒸気発生器 4 0 ' の運転中の温度分布および各構 成部材のサイズを考慮して適宜決定される。
以上の説明より理解できるように、 タンク 3 0 1の筒体 3 0 2と側壁板 3 0 3 は、 その周囲を取り囲むシェル 3 0 5により拘束されることにより互いに連結さ れる。 すなわち、 筒体 3 0 2と側壁板 3 0 3を連結するために、 これらを貫通す るボルト等の機械的締結部材を用いていない。 従って、 締結部のクリープの問題 が大幅に低減される。 また、 シェル 3 0 5は十分な剛性を有するため、 タンク 3 0 1内の圧力上昇に伴う筒体 3 0 2および側壁板 3 0 3の変形を防止することが できる。 このため、 タンク 3 0 1、 特に筒体 3 0 2にクリープ強度の高い金属材 料を用いる必要性がなくなる。 従って、 P T F Eや P F A等の樹脂材料を用いる ことができる。 また、 筒体 3 0 2が円筒形であるため、 タンク 3 0 1内の圧力が 筒体 3 0 2の一部に局所的に負荷されることがない。 なお、 筒体 3 0 2の周りに はシェル 3 0 5のリング状部材 3 0 6が設けられているが、 これらの間には間隙 3 1 8があるため、 筒体 3 0 2の局所的変形を防止する観点からは、 筒体 3 0 2 を円筒形とすることは有効である。
また、 図 1 9乃至図 2 1に示す蒸気発生器 4 0, は構造が簡潔であり、 分解組 立も容易である。
次に、 図 1 9乃至図 2 1に示す蒸気発生器 4 0 ' が適用される基板処理装置の 配管系統について図 2 2を参照して説明する。 なお、 説明は図 3に示す配管系統 と異なる部分についてのみ行う。
逃がし路 2 2 0のタンク 3 0 1への直接接続を廃止したことに伴い、 主供給管 3 8、 3 8における流量調整弁 5 0、 5 0の直近の上流側には、 逃がし路 2 2 0 a、 2 2 0 bが接続されている。 逃がし路 2 2 0 a、 2 2 O bは合流して逃がし 路 2 2 0となっている。 逃がし路 2 2 0 a, 2 2 0 bの合流点より下流側の逃が し路 2 2 0構成は図 3に示したものと同一である。
図 2 2に示す実施形態の場合、 チャンバ一 3 0 A、 3 0 Bへの蒸気の供給状況 に関係なく、 蒸気発生器 4 0 ' で発生した蒸気の全てが主供給管 3 8、 3 8に送 り出される。 一方のチャンバ一 3 O Aのみに蒸気が供給される場合には、 他方の チャンバ一 3 0 Bに対応する流量調整弁 5 0が閉じられるので、 チャンバ一 3 0 B側の主供給管 3 8を通る蒸気は、 逃がし路 2 2 O bに流入し、 逃がし路 2 2 0 を介してミストトラップ 2 2 7に排出される。 両方のチャンバ一 3 0 A、 3 0 B に蒸気が供給される場合には、 2つの流量調整弁 5 0がともに開かれ、 開閉弁 V 5が閉じられる。 この場合、 逃がし路 2 2 0 a、 2 2 0 b、 2 2 0には蒸気は流 れない。 また、 いずれのチャンバ一にも蒸気が供給されない場合には、 2つの流 量調整弁 5 0がともに閉じられ、 開閉弁 V 5が開かれる。
以上の説明より理解できるように、 チャンバ一 3 0 A、 3 0 Bへの蒸気の供給 状況に関係なく、 両主供給管 3 8、 3 8の蒸気発生器 4 0 ' から流量調整弁 5 0 の手前までの区間では、 蒸気発生器 4 0 ' で生成された直後の熱い蒸気が通流し ている。 従って、 図 3の配管系統に含まれていた温度調節器 5 7は不要となる。 また、 図 2 2に示す実施形態においては、 ドレン管 2 0 1のドレン弁 D Vの上 流側に圧力計 2 0 1 aが設けられている。 図 1 9より分かるように、 圧力計 2 0 l aには純水 (液体) を介して蒸気発生器 4 0 ' のタンク 3 0 1内の圧力が伝播 されるため、 圧力計 2 0 1 aはタンク 3 0 1内の蒸気圧力を監視することができ る。

Claims

請求の範囲
1 . 基板処理装置において、
タンクおよび少なくとも 1つのヒータを有し、 前記タンクの内部空間に貯留さ れている純水を前記ヒータによって加熱して気化させることにより蒸気を発生さ せる蒸気発生器と、
前記蒸気発生器が発生した蒸気を用いて内部で基板を処理する処理容器と、 を 備え、
前記タンクは、 水平方向両端に開口を有する中空の筒状体と、 前記筒状体の両 端の開口を塞いで前記筒状体とともに前記タンクの前記内部空間を画成する一対 の板状体と、 を有しており、
前記筒状体は、 樹脂材料からなり、
前記少なくとも一つのヒ一夕は、 前記一対の板状体のうちの少なくとも一方の 外面に接触するか若しくは近接して前記夕ンクの前記内部空間の外側に設けられ ている、
基板処理装置。
2 . 請求項 1に記載の基板処理装置において、
前記筒状体を形成する樹脂材料は P T E Fと P F Aの混合物である、 ことを特徴とする基板処理装置。
3 . 請求項 1に記載の基板処理装置において、
前記ヒータが接触若しくは近接して配置される板状体は、 前記筒状体を構成す る樹脂材料よりも熱伝導率の高い材料からなる、
ことを特徴とする基板処理装置。
4 . 請求項 3に記載の基板処理装置において、
前記ヒー夕が接触若しくは近接して配置される板状体は金属材料からなり、 該 板状体の表面に樹脂材料からなる被覆層が設けられている、 ことを特徴とする基板処理装置。
5 . 請求項 1に記載の基板処理装置において
前記タンクを囲んで設けられ、 前記タンクの内圧に起因する前記タンクの変形 を制限するシェルを更に備え、
前記ヒー夕は、 前記板状体の近傍で前記シエルに取り付けられている、 ことを特徴とする基板処理装置。
6 . 請求項 1に記載の基板処理装置において、
前記一対の板状体は、 前記筒状体を構成する樹脂材料よりも熱伝導率の高い材 料からなり、
2つのヒー夕が前記少なくとも 1つのヒー夕として設けられ、
前記 2つのヒー夕は、 前記金属材料からなる前記一対の板状体の外面に接触す るか若しくは近接して前記夕ンクの前記内部空間の外側に設けられている、 ことを特徴とする基板処理装置。
7 . 請求項 6に記載の基板処理装置において、
前記一対の板状体は金属材料からなり、 該板状体の表面に樹脂材料からなる被 覆層が設けられている、
ことを特徴とする基板処理装置。
8 . 請求項 1に記載の基板処理装置において、
前記ヒー夕は、 伝熱ブロックと、 前記伝熱プロックに設けられた発熱体とを有 しており、
前記伝熱プロックの上縁は、 前記タンクにおける純水の設定液面高さと概ね同 じ高さに位置しており、
前記発熱体は、 前記伝熱プロックの下部に設けられる、
ことを特徴とする、 請求項 5に記載の基板処理装置。
9 . 請求項 1に記載の基板処理装置において、
前記タンク内に純水を供給する供給通路と、 前記タンク内から純水を排液する 排出通路と、 前記蒸気をタンク外に排出する蒸気排出通路とが、 前記筒状体を貫 通して設けられ、
前記供給通路は、 前記タンクにおける純水の設定液面高さより下方において前 記タンクの内部空間に開口し、
前記排出通路は、 前記タンクにおける純水の設定液面高さより下方において前 記タンクの内部空間に開口し、
前記蒸気排出通路は、 前記タンクにおける純水の設定液面高さより上方におい て前記タンクの内部空間に開口している、
ことを特徴とする基板処理装置。
1 0 . 請求項 1に記載の基板処理装置において、
前記タンクに、 前記タンク内で発生させた蒸気を前記処理容器に向けて前記夕 ンク外に排出する蒸気排出口が設けられており、
ミスト状の純水が前記蒸気排出口に到達することを防止するための少なくとも
1つの邪魔板が、 前記タンクの内部空間に配置されている、 基板処理装置。
1 1 . 請求項 1 0に記載の基板処理装置において、
上下方向に配列された複数の邪魔板が、 前記少なくとも 1つの邪魔板として設 けられ、
前記各邪魔板は蒸気が通過することが可能な少なくとも 1つの開口を有してお り、 上下方向に隣接する邪魔板において、 上側の邪魔板は開口が下側の邪魔板の 開口と重ならないように配置されている、
ことを特徴とする基板処理装置。
1 2 . 請求項 1に記載の基板処理装置において、
前記タンクを囲んで設けられ、 前記タンクの内圧に起因する前記タンクの変形 を制限するシェルを更に備え、 前記タンクの前記筒状体と、 前記タンクの一対の前記板状体との間にそれそれ 弾性シール部材が設けられており、
前記シェル内に前記タンクが配置されると、 前記シェルにより前記板状体が前 記筒状体に向かって押し付けられ、 これにより前記弾性シール部材がつぶれて前 記筒状体と前記板状体との間に気水密なシールが形成されるように、 前記タンク および前記シェルが形成されている、 基板処理装置。
1 3 . 請求項 1 2に記載の基板処理装置において、
前記シェル内に前記タンクが配置されて前記タンク構成部材間に気水密なシ一 ルが形成された際に前記筒状体と前記板状体とが直接接触しないように、 前記夕 ンクおよび前記シヱルが寸法付けられている、
ことを特徴とする基板処理装置。
1 4 . 請求項 1に記載の基板処理装置において、
前記タンクの内部空間は、 その中心軸線が水平方向を向いた概ね円柱の形状と なっている、
ことを特徴とする基板処理装置。
1 5 . 請求項 1 4に記載の基板処理装置において、
前記円柱は、 前記タンクの側面に相当する円柱底面の直径が、 前記タンクの横 幅に相当する円柱高さより大きいように寸法付けられている、
ことを特徴とする基板処理装置。
1 6 . 請求項 1に記載の基板処理装置において、
オゾンガスを発生させるオゾンガス発生器を更に備え、
前記処理容器に、 前記蒸気発生器が発生した蒸気と前記オゾンガス発生器が発 生したオゾンガスとを含む混合流体が供給され、 該混合流体を用いて前記処理容 器内で基板が処理される、
ことを特徴とする基板処理装置。
PCT/JP2003/008048 2002-06-25 2003-06-25 基板処理装置 WO2004001830A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020047021052A KR100895035B1 (ko) 2002-06-25 2003-06-25 기판 처리 장치
JP2004515185A JP4576230B2 (ja) 2002-06-25 2003-06-25 基板処理装置
US10/519,126 US7180035B2 (en) 2002-06-25 2003-06-25 Substrate processing device
AU2003243974A AU2003243974A1 (en) 2002-06-25 2003-06-25 Substrate processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002184378 2002-06-25
JP2002-184378 2002-06-25

Publications (1)

Publication Number Publication Date
WO2004001830A1 true WO2004001830A1 (ja) 2003-12-31

Family

ID=29996702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008048 WO2004001830A1 (ja) 2002-06-25 2003-06-25 基板処理装置

Country Status (5)

Country Link
US (1) US7180035B2 (ja)
JP (1) JP4576230B2 (ja)
KR (1) KR100895035B1 (ja)
AU (1) AU2003243974A1 (ja)
WO (1) WO2004001830A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034203A (ja) * 2008-07-28 2010-02-12 Tokyo Electron Ltd 半導体製造装置の洗浄装置及び洗浄方法
TWI745744B (zh) * 2018-09-27 2021-11-11 日商國際電氣股份有限公司 基板處理裝置、半導體裝置之製造方法及記錄媒體

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5411866B2 (ja) * 2009-10-30 2014-02-12 株式会社アドバンテスト パターン計測装置及びパターン計測方法
US9863029B2 (en) * 2012-08-01 2018-01-09 Dongkuk Steel Mill Co., Ltd. Apparatus for forming nitrogen cloud to produce hot dip coated steel sheet
JP6195803B2 (ja) * 2014-05-02 2017-09-13 東京エレクトロン株式会社 基板処理装置、基板処理方法および記憶媒体
CN112469665B (zh) * 2018-05-22 2023-10-17 Etx公司 用于二维材料的转移的方法和装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128733U (ja) * 1984-01-05 1984-08-30 日本電気株式会社 3−v族化合物半導体の表面処理装置
US5063609A (en) * 1989-10-11 1991-11-05 Applied Materials, Inc. Steam generator
US5520743A (en) * 1992-09-03 1996-05-28 Tokyo Electron Kabushiki Kaisha Processing apparatus with means for rotating an object mounting means and a disk body located in the mounting means differently relative to each other
JPH09199472A (ja) * 1996-01-12 1997-07-31 Komatsu Electron Kk 半導体処理液用冷却加熱装置
JPH09251975A (ja) * 1996-03-14 1997-09-22 Sakaguchi Dennetsu Kk 洗浄容器
JPH09327669A (ja) * 1996-06-11 1997-12-22 Ibiden Co Ltd 蒸気洗浄装置
JPH1055991A (ja) * 1996-08-08 1998-02-24 Hitachi Ltd 半導体装置の製造方法及び製造装置
JP2000091288A (ja) * 1998-09-11 2000-03-31 Pyuarekkusu:Kk 高温霧状硫酸による半導体基板の洗浄方法及び洗浄装置
JP2001252550A (ja) * 2000-03-10 2001-09-18 Yokogawa Electric Corp 水蒸気供給装置
JP2002110611A (ja) * 2000-10-04 2002-04-12 Texas Instr Japan Ltd 半導体ウェハの洗浄方法及び装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4186032A (en) * 1976-09-23 1980-01-29 Rca Corp. Method for cleaning and drying semiconductors
JPS59128733A (ja) 1983-01-12 1984-07-24 Hamai Denkyu Kogyo Kk ハロゲンランプの製造方法
US4749440A (en) * 1985-08-28 1988-06-07 Fsi Corporation Gaseous process and apparatus for removing films from substrates
EP0284052B1 (en) * 1987-03-25 1993-09-29 Hitachi, Ltd. Process for producing ultra-pure water and process for using said ultra-pure water
US5105556A (en) * 1987-08-12 1992-04-21 Hitachi, Ltd. Vapor washing process and apparatus
JPH0684464A (ja) 1992-09-02 1994-03-25 Hitachi Ltd 電子銃カソードの欠陥検出方法
US5464480A (en) * 1993-07-16 1995-11-07 Legacy Systems, Inc. Process and apparatus for the treatment of semiconductor wafers in a fluid
US5911837A (en) * 1993-07-16 1999-06-15 Legacy Systems, Inc. Process for treatment of semiconductor wafers in a fluid
KR980012044A (ko) * 1996-03-01 1998-04-30 히가시 데츠로 기판건조장치 및 기판건조방법
US6701941B1 (en) * 1997-05-09 2004-03-09 Semitool, Inc. Method for treating the surface of a workpiece
JPH1167717A (ja) 1997-08-19 1999-03-09 Komatsu Electron Kk 半導体処理液用冷却加熱装置
US6729041B2 (en) * 2000-12-28 2004-05-04 Tokyo Electron Limited Substrate processing apparatus and substrate processing method
KR100863782B1 (ko) * 2002-03-08 2008-10-16 도쿄엘렉트론가부시키가이샤 기판처리장치 및 기판처리방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128733U (ja) * 1984-01-05 1984-08-30 日本電気株式会社 3−v族化合物半導体の表面処理装置
US5063609A (en) * 1989-10-11 1991-11-05 Applied Materials, Inc. Steam generator
US5520743A (en) * 1992-09-03 1996-05-28 Tokyo Electron Kabushiki Kaisha Processing apparatus with means for rotating an object mounting means and a disk body located in the mounting means differently relative to each other
JPH09199472A (ja) * 1996-01-12 1997-07-31 Komatsu Electron Kk 半導体処理液用冷却加熱装置
JPH09251975A (ja) * 1996-03-14 1997-09-22 Sakaguchi Dennetsu Kk 洗浄容器
JPH09327669A (ja) * 1996-06-11 1997-12-22 Ibiden Co Ltd 蒸気洗浄装置
JPH1055991A (ja) * 1996-08-08 1998-02-24 Hitachi Ltd 半導体装置の製造方法及び製造装置
JP2000091288A (ja) * 1998-09-11 2000-03-31 Pyuarekkusu:Kk 高温霧状硫酸による半導体基板の洗浄方法及び洗浄装置
JP2001252550A (ja) * 2000-03-10 2001-09-18 Yokogawa Electric Corp 水蒸気供給装置
JP2002110611A (ja) * 2000-10-04 2002-04-12 Texas Instr Japan Ltd 半導体ウェハの洗浄方法及び装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034203A (ja) * 2008-07-28 2010-02-12 Tokyo Electron Ltd 半導体製造装置の洗浄装置及び洗浄方法
US8297292B2 (en) 2008-07-28 2012-10-30 Tokyo Electron Limited Cleaning device and cleaning method of semiconductor manufacturing apparatus
TWI745744B (zh) * 2018-09-27 2021-11-11 日商國際電氣股份有限公司 基板處理裝置、半導體裝置之製造方法及記錄媒體

Also Published As

Publication number Publication date
AU2003243974A1 (en) 2004-01-06
KR20050013618A (ko) 2005-02-04
US7180035B2 (en) 2007-02-20
US20060110143A1 (en) 2006-05-25
JPWO2004001830A1 (ja) 2005-10-27
JP4576230B2 (ja) 2010-11-04
KR100895035B1 (ko) 2009-05-04

Similar Documents

Publication Publication Date Title
JP4093462B2 (ja) 基板処理方法及び基板処理装置
US7651584B2 (en) Processing apparatus
US7476291B2 (en) High chamber temperature process and chamber design for photo-resist stripping and post-metal etch passivation
KR102667399B1 (ko) 극저온 냉각식 회전가능 정전 척
JP4601070B2 (ja) 熱処理装置
KR880000472B1 (ko) 화학 증착 장치 및 방법
TWI721234B (zh) 前驅物控制系統及製程
US20050257735A1 (en) Method and apparatus for providing gas to a processing chamber
KR20130031236A (ko) 트윈 챔버 프로세싱 시스템
US7086410B2 (en) Substrate processing apparatus and substrate processing method
JP2005064018A (ja) 熱処理装置
CN102105312A (zh) 用于化学处置和热处置的高产量处理系统及操作方法
JP4576230B2 (ja) 基板処理装置
JP2003332322A (ja) 基板処理装置及び基板処理方法
US6913670B2 (en) Substrate support having barrier capable of detecting fluid leakage
JP4278407B2 (ja) 基板処理装置及び基板処理方法
JP4255014B2 (ja) 基板処理方法及び基板処理装置
JP4653018B2 (ja) 処理装置及び処理方法
US20040154537A1 (en) Diffusion furnace used for manufacturing integrated circuits and method for cooling the diffusion furnace
JP2004288766A (ja) 基板処理装置及び基板処理方法
JP2003178991A (ja) 処理チャンバ内のシールを断熱する装置及び方法
US11674227B2 (en) Symmetric pump down mini-volume with laminar flow cavity gas injection for high and low pressure
WO2024097853A1 (en) Segregated reactant delivery using showerhead and shroud
JPH0719139Y2 (ja) 気相成長装置の冷却装置
KR20060006306A (ko) 반도체 제조 장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020047021052

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004515185

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020047021052

Country of ref document: KR

122 Ep: pct application non-entry in european phase
ENP Entry into the national phase

Ref document number: 2006110143

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10519126

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10519126

Country of ref document: US