WO2003087719A1 - Capteur d'inclinaison, procede de fabrication de ce capteur d'inclinaison et procede permettant de mesurer l'inclinaison - Google Patents

Capteur d'inclinaison, procede de fabrication de ce capteur d'inclinaison et procede permettant de mesurer l'inclinaison Download PDF

Info

Publication number
WO2003087719A1
WO2003087719A1 PCT/JP2003/004235 JP0304235W WO03087719A1 WO 2003087719 A1 WO2003087719 A1 WO 2003087719A1 JP 0304235 W JP0304235 W JP 0304235W WO 03087719 A1 WO03087719 A1 WO 03087719A1
Authority
WO
WIPO (PCT)
Prior art keywords
tilt angle
piezoresistor
angle sensor
inclination angle
wafer
Prior art date
Application number
PCT/JP2003/004235
Other languages
English (en)
French (fr)
Inventor
Koichi Hikida
Masaya Yamashita
Yuuichi Kanayama
Hirofumi Fukumoto
Original Assignee
Asahi Kasei Emd Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Emd Corporation filed Critical Asahi Kasei Emd Corporation
Priority to EP03746166A priority Critical patent/EP1491854A4/en
Priority to JP2003584621A priority patent/JPWO2003087719A1/ja
Priority to US10/509,873 priority patent/US20050151448A1/en
Priority to AU2003236348A priority patent/AU2003236348A1/en
Publication of WO2003087719A1 publication Critical patent/WO2003087719A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/12Measuring inclination, e.g. by clinometers, by levels by using a single pendulum plumb lines G01C15/10
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • G01C2009/068Electric or photoelectric indication or reading means resistive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Definitions

  • the present invention relates to a tilt angle sensor and a method of manufacturing the same, and more particularly, to a tilt angle capable of measuring a tilt angle using a piezoresistive effect without selectively etching a substrate on which a piezoresistor is formed.
  • the present invention relates to a sensor, a method of manufacturing a tilt angle sensor, and a method of measuring a tilt angle.
  • FIG. 76 (a) is a perspective view showing a schematic configuration of a conventional tilt angle sensor
  • FIG. 76 (b) is a cross-sectional view showing a schematic configuration of a conventional tilt angle sensor
  • FIG. 76 (c) is a conventional tilt angle sensor. It is sectional drawing which expands and shows the part of the piezo resistance of an angle sensor.
  • a piezoresistor R is formed on a silicon substrate 201, and in a region where the piezoresistor R is disposed, the silicon substrate 201 is formed by etching from the back surface so that the piezoresistor R is easily stressed. Displaced part 201c is provided.
  • a support portion 201a for supporting the displacement portion 201c is formed around the silicon substrate 201, and a support portion for deforming the displacement portion 201c is formed in the center of the silicon substrate 201.
  • a weight portion 201b is formed.
  • the support portion 201a, the weight portion 201b, and the displacement portion 201c are formed by selectively etching the silicon substrate 201 having a thickness of about 500 ⁇ from the back surface. It is configured such that the portion between 1a and the weight portion 201b is bridged by the displacement portion 201c.
  • the displacement portion 2Olc is deformed as shown in FIG. 76 (c), and stress is applied to the piezoresistance R.
  • the silicon substrate 2 When 01 tilts, the direction of gravity applied to the weight 201b changes, and the stress applied to the piezoresistor R also changes, so that the resistance value of the piezoresistor changes.
  • the inclination of the tilt angle sensor can be obtained by detecting the change in the resistance value of the piezo resistor R.
  • Fig. 77 (a) shows the increase / decrease of each piezo resistance during acceleration of the conventional tilt angle sensor in the X and Y directions.
  • Fig. 77 (b) shows the acceleration of the conventional tilt angle sensor in the Z direction. It is a figure which shows the increase / decrease of each piezo resistance at the time.
  • a tilt angle sensor there is a method in which a movable portion having four corners suspended by silicon springs, a capacitor is formed between the movable portion and a fixed portion, and a change in capacitance due to movement of the movable portion is measured.
  • the back surface of the silicon substrate is selectively etched to form the support portion 201a, the weight portion 201b, and the displacement portion 201c, which complicates the configuration of the tilt angle sensor.
  • the tilt angle sensor is vulnerable to impact. I got it.
  • the spring and the capacitor must be formed by fine processing of about 1 to 2 ⁇ , which increases the cost and reduces the impact.
  • the present invention has been made by focusing on the unresolved problems of the conventional technology, and the present invention does not selectively etch the substrate on which the piezoresistor is formed, and achieves the piezoresistive effect. It is a first object of the present invention to provide a tilt angle sensor capable of measuring a tilt angle by utilizing a method, a method of manufacturing a tilt angle sensor, and a method of measuring a tilt angle. Also, ffitt describes a tilt angle sensor capable of forming a weight member without selectively etching the back surface of a substrate on which a piezoresistor is formed, and a method of manufacturing a tilt angle sensor and a method of measuring a tilt angle. Is the second purpose. Disclosure of the invention
  • the tilt angle sensor according to claim 1 includes a substrate having a piezoresistive formed on a front surface and a uniform back surface that is uniformly ground to a thickness capable of being radiused. And a support member for supporting the substrate at at least one end of the substrate.
  • the configuration and manufacturing process of the tilt angle sensor can be simplified, the cost of the tilt angle sensor can be reduced, and the resistance to impact can be improved.
  • the tilt angle sensor according to claim 2 is the tilt angle sensor according to claim 1, further comprising a weight member disposed in a displaceable area of the piezoresistance forming surface. .
  • the weight member can be provided on the substrate on which the piezoresistor is formed without selectively etching the substrate on which the piezoresistor is formed, while suppressing the complexity of the manufacturing process of the tilt angle sensor.
  • the detection sensitivity of the tilt angle sensor can be improved You.
  • the tilt angle sensor according to claim 3 according to the present invention is the tilt angle sensor according to any one of claims 1 and 2, wherein the piezoresistor is provided on the surface of the substrate. They are arranged dimensionally.
  • the tilt angle sensor according to claim 4 of the present invention is the tilt angle sensor according to claim 3, wherein the piezoresistor detects a radius of the substrate.
  • the tilt angle sensor according to claim 5 may further include a hexahedral strip-shaped elastic body having a free surface that can be displaced, and a longitudinal direction on the same plane of the hexahedral strip-shaped elastic body. At least two locations, at least one of which is a piezoresistor disposed on the free surface; a support member for supporting both ends of the hexahedral strip-shaped elastic body in a longitudinal direction; and the hexahedral strip.
  • a weight member provided substantially at the center in the longitudinal direction of the displaceable region of the elastic body.
  • the tilt angle sensor according to claim 6 of the present invention may further comprise: a hexahedral strip-shaped elastic body having a free surface that can be displaced; and a longitudinal direction on the same surface of the hexahedral strip-shaped elastic body. At least two places, at least one of which is located on the free surface.
  • a tilt angle sensor by retrofitting a support member and a weight member to a hexahedral strip-shaped elastic body, and to increase the distance between the support member and the weight member to improve detection sensitivity.
  • the structure and manufacturing process of the tilt angle sensor can be simplified, and the cost of the tilt angle sensor can be reduced.
  • the characteristics of the tilt angle sensor can be improved and the tilt angle sensor can be downsized. Can be achieved.
  • the tilt angle sensor according to claim 7 according to the present invention is the tilt angle sensor according to any one of claims 5 and 6, wherein at least one of the support member and the weight member is At least one of the length and the width is the same as the hexahedral strip-shaped elastic body.
  • the tilt angle sensor according to claim 8 according to the present invention is the tilt angle sensor according to any one of claims 5 to 7, wherein the hexahedral strip-shaped elastic body is a silicon substrate. Wherein the piezoresistor is an impurity diffusion layer formed on the silicon substrate.
  • a plurality of piezoresistors can be collectively formed on a silicon substrate simply by selectively performing ion implantation, thereby simplifying the manufacturing process of the tilt angle sensor and reducing the cost of the tilt angle sensor. Becomes possible.
  • the tilt angle sensor according to claim 9 is the tilt angle sensor according to claim 8, wherein the hexahedral strip-shaped elastic body is a silicon substrate,
  • the support member has a recess formed therein, a glass substrate made of a material that can be anode-bonded to the silicon substrate, and an anode embedded in the recess, the anode being connected to the silicon substrate.
  • the silicon substrate and the supporting member can be firmly joined only by applying a voltage between the silicon substrate and the supporting member, and even when used in a severe environment, the supporting member falls off the silicon substrate.
  • the support member and the silicon substrate can be joined without using an adhesive.
  • the tilt angle sensor can be easily manufactured.
  • the surface of the support member can be flattened and a cavity can be prevented from being formed on the back surface of the silicon substrate, a load is applied on the silicon substrate or an impact is applied to the silicon substrate. Even if it is added, the entire back surface of the silicon substrate can be supported by the support member.
  • the silicon substrate and the support member can be partially joined only by applying a ⁇ ⁇ ⁇ between the silicon substrate and the silicon substrate. And the support member can be separated at the position of the embedding member.
  • the tilt angle sensor according to claim 10 of the present invention is the tilt angle sensor according to any one of claims 5 to 9, wherein the hexahedral strip-shaped elastic body is in the same plane.
  • a piezoresistor arranged to detect the amount of radius of the hexahedral strip-shaped elastic body, and a piezoresistance arranged to detect the amount of twist and twist of the hexahedral strip-shaped elastic body. .
  • a method for manufacturing a tilt angle sensor according to claim 11 of the present invention includes the steps of: forming two or more piezoresistors on a wafer surface; A step of uniformly grinding the entire back surface of the wafer; and a step of bonding the support substrate having the recessed portion to the back surface of the wafer so that the piezoresistor formation region is located inside the recess near the edge of the recess. Cutting the wafer and the support substrate into chips so that the displaceable region of the piezoresistive surface is supported on both sides of the recess.
  • a supporting portion for supporting the piezoresistor without selectively etching the substrate on which the piezoresistor is formed.
  • a support portion for supporting the piezoresistor can be collectively formed for a plurality of chips, thereby simplifying the manufacturing process of the tilt angle sensor and reducing the cost of the tilt angle sensor. .
  • the method for manufacturing an inclination angle sensor according to claim 12 is the method for manufacturing an inclination angle sensor according to claim 11, wherein the weight substrate on which the convex portion is formed includes: Further comprising a step of bonding the convex portion to the surface of the wafer such that the convex portion is disposed substantially at the center of the displaceable region of the piezoresistor forming surface, wherein the weight substrate, the wafer and the support substrate are formed in a chip shape. It is cut at once.
  • the method includes a step of cutting the wafer on which the pedestal is placed and the supporting substrate in a chip at a time, and a step of arranging a weight member on the pedestal.
  • a support portion for supporting the piezoresistor without selectively etching the substrate on which the piezoresistor is formed.
  • a support portion for supporting the piezoresistor can be formed collectively for multiple chips, simplifying the manufacturing process of the tilt angle sensor and reducing the cost of the tilt angle sensor.
  • the detection sensitivity can be improved by enlarging the weight member, and the arrangement position of the weight member can be adjusted for each chip.
  • a step of forming two or more piezoresistors on the wafer surface, and uniformly grinding the entire back surface of the wafer The supporting substrate having the recess formed therein such that one position of the recess is inside the recess near an edge of the piezoresistor forming region, and the other of the recess is over a scribe line of the wafer. Bonding the piezoresistive surface to the back surface of the wafer, arranging the pedestal in a displaceable area of the piezoresistive surface, and positioning the pedestal such that the piezoresistive surface is supported on one side of the recess. A step of cutting the wafer and the support substrate into chips at once, and a step of disposing a weight member on the pedestal.
  • support portion for supporting the piezoresistor without selectively etching the substrate on which the piezoresistor is formed.
  • Supports for supporting the piezoresistor can be formed collectively for multiple chips, simplifying the manufacturing process of the tilt angle sensor and reducing the cost of the tilt angle sensor.
  • the distance between the support substrate and the weight member can be increased to improve the detection sensitivity.
  • the protrusions are at 2 chip intervals Bonding a portion of the concave portion of the weight substrate in parallel with the scribe line, so that one end of the piezoresistor forming surface is on one side of the concave portion of the support substrate.
  • the method for manufacturing an inclination angle sensor according to claim 16 according to the present invention is the method for manufacturing an inclination angle sensor according to any one of claims 11 to 15,
  • the grinding is polishing or etching, or a combination thereof.
  • the tilt angle sensor according to claim 17 of the present invention comprises: a radial plate having a piezoresistor formed on a surface thereof; A support member for supporting the flexible plate, and a metal weight member disposed in a displaceable region of the radius plate are provided.
  • the configuration and the manufacturing process of the tilt angle sensor can be simplified, the size and cost of the tilt angle sensor can be reduced, and the resistance to impact can be improved.
  • the tilt angle sensor according to claim 18 of the present invention may further include: An SOI substrate on which a silicon layer is formed, a gap region formed in an insulating layer below the silicon layer, a piezoresistor formed in the silicon layer above the gap region, and a layer on the silicon layer above the gap region And a metal weight member disposed at the same position.
  • the weight member can be provided without selectively etching the back surface of the substrate on which the piezoresistor is formed, and the silicon layer on which the piezoresistor is formed so that stress is applied to the piezoresistor.
  • the silicon layer is supported, it is not necessary to attach the silicon layer to the support member after the silicon layer is thinned. For this reason, it is not necessary to increase the thickness of the silicon layer in order to secure the strength for bonding to the support member, so that the silicon layer is efficiently bent and stress is applied to the piezo resistance efficiently.
  • the configuration of the oblique angle sensor can be simplified, and the resistance to impact can be easily improved.
  • the specific gravity of the weight member disposed on the silicon layer can be increased, the size of the weight member can be reduced, and the tilt angle sensor can be downsized.
  • the tilt angle sensor according to claim 19 according to the present invention is the tilt angle sensor according to any one of claims 17 and 18, wherein the flexible plate or the silicon The layer is constricted over the area where the piezoresistor is formed.
  • the radial plate can be efficiently bent, and the detection accuracy of the tilt angle sensor can be easily improved while reducing the size and cost of the tilt angle sensor. It can be improved.
  • a method for manufacturing a tilt angle sensor according to claim 20 of the present invention comprises a step of forming two or more piezoresistors in each chip region on the wafer surface. Forming a pad in each chip region on the wafer surface; uniformly grinding the entire back surface of the wafer on which the piezoresistor and the pad are formed; and supporting the support substrate having the concave portion formed thereon. Bonding the piezoresistor to the rear surface of the wafer so that the piezoresistor forming region is located near the edge of the recess and the pad is located inside the recess; and each pad of the wafer bonded to the support substrate. A step of forming a metal weight member thereon; Forming an opening in the wafer, and cutting the wafer in which the opening is formed into chips.
  • a support portion for supporting the piezoresistor without selectively etching the back surface of the wafer on which the piezoresistor is formed, and to bond the wafer and the support substrate. With only one operation, a support portion for supporting the piezoresistor can be formed collectively for a plurality of chips.
  • the piezoresistor is provided at two or more locations in each chip region on the silicon layer formed on the silicon wafer via the silicon oxide film.
  • a weight member having a large specific gravity can be formed on the wafer without selectively etching the back surface of the wafer on which the piezoresistance is formed, and the weight member can be easily formed while reducing the size of the weight member. Can be formed. Therefore, the manufacturing process of the tilt angle sensor can be simplified, the size and cost of the tilt angle sensor can be reduced, and the detection accuracy of the tilt angle sensor can be easily improved.
  • a method of manufacturing an inclination angle sensor according to claim 22 according to the present invention is the method of manufacturing an inclination angle sensor according to any one of claims 20 and 21.
  • the formation of the metal weight member is an electrolytic plating.
  • the weight member can be hardly peeled off from the wafer, and the resistance to impact can be improved.
  • a weight member having a large specific gravity can be collectively formed on a plurality of chips, so that the manufacturing process of the tilt angle sensor can be simplified and the cost can be reduced.
  • the tilt angle sensor according to claim 23 of the present invention comprises: a radial plate having a piezoresistor formed on a surface thereof;
  • a tilt angle sensor comprising: a support member that supports a flexible plate; and a weight member that is disposed in a displaceable region of the radius plate.
  • a first piezoresistor group including two pairs of piezoresistors arranged at positions symmetrical with respect to a centerline passing through the midpoint of the width of the plate as an axis, and the centerline of the displaceable area of the radius plate.
  • a second piezoresistor group including two pairs of piezoresistors arranged at positions different from the first piezoresistor group at a line-symmetric position as an axis, and 1 While configuring a full bridge circuit, the second piezoresistor group A second full-bridge circuit, and further calculating a first inclination angle based on an output of the first full-bridge circuit and calculating an inclination angle about the longitudinal direction of the radial plate as a rotation axis.
  • the first tilt angle calculating means can calculate the tilt angle having the longitudinal direction as the rotation axis based on the output of the first full bridge circuit.
  • the second inclination angle calculation means calculates the inclination angle with the short direction as the rotation axis. Can be.
  • the tilt angle sensor according to claim 24 of the present invention further comprising: a flexure plate having a piezoresistance formed on a surface thereof; and a support member that supports the flexure plate at one end of the radius plate.
  • a weight member disposed in a displaceable region of the flexible plate, wherein the piezoresistor is a center line passing through a midpoint of the width of the flexible plate in the movable region of the flexible plate.
  • a first piezoresistor group including two pairs of piezoresistors arranged at symmetrical positions with respect to the axis, and a second piezoresistor including a plurality of piezoresistors arranged on the center line in the displaceable region of the flexible plate.
  • a first full-bridge circuit is configured by the first piezoresistor group, and a first full-bridge circuit is configured by the second piezoresistor group.
  • (2) forming a half-bridge circuit further comprising: a first inclination angle calculation means for calculating an inclination angle with the longitudinal direction of the flexible plate as a rotation axis based on an output of the first full bridge circuit; and A second inclination angle calculating means for calculating an inclination angle of which the rotation direction is the short side direction of the flexible plate based on the output of the half-bridge circuit and the inclination angle calculated by the first inclination angle calculating means.
  • the configuration and the manufacturing process of the tilt angle sensor can be simplified, the size and cost of the tilt angle sensor can be reduced, and the resistance to impact can be improved.
  • the first tilt angle calculating means can calculate the tilt angle having the longitudinal direction as the rotation axis based on the output of the first full bridge circuit.
  • the inclination angle sensor when the inclination angle sensor is tilted around the longitudinal direction or the lateral direction of the radial plate, the direction of gravity of the member changes and a bending moment is generated in the displaceable area, and the radial plate bends.
  • the resistance value of each piezo resistor changes, and the output of the second half-bridge circuit changes accordingly.
  • the output of the second half-bridge circuit changes according to the stress generated by the bending moment.
  • the stress caused by the bending moment is proportional to the product of the cosine value of the tilt angle with the longitudinal direction as the rotation axis and the cosine value of the tilt angle with the short direction as the rotation axis.
  • the second tilt angle calculating means shortens the length. It is possible to calculate a tilt angle with the hand direction as a rotation axis.
  • the tilt angle sensor according to claim 25, further comprising: a flexible plate having a piezoresistance formed on a surface thereof; and a support member for supporting the radial plate at one end of the radial plate. And a weight member disposed in a displaceable region of the radial plate, wherein the piezoresistor sets a midpoint of a width of the radial plate in a displaceable region of the flexible plate.
  • a first piezoresistor group including two pairs of piezoresistors arranged at positions symmetrical with respect to a passing center line as an axis, wherein the first piezoresistor group constitutes a first full-bridge circuit;
  • a second full-bridge circuit having a different connection from the first full-bridge circuit is constituted by a piezoresistor group, and a tilt having a longitudinal direction of the flexible plate as a rotation axis based on an output of the first full-bridge circuit.
  • First tilt angle calculating means for calculating the angle
  • a second inclination angle calculation for calculating an inclination angle with the short side direction of the radial plate as a rotation axis based on the output of the second full bridge circuit and the inclination angle calculated by the first inclination angle calculation means. Means.
  • the piezoresistor can be supported in a bendable and twistable state without selectively etching the back surface of the substrate on which the piezoresistor is formed. Even when the weight member is provided, the specific gravity of the weight member increases, so that it is possible to easily match the existing flip-chip mounting technology while suppressing an increase in the volume of the weight member.
  • the configuration and manufacturing process of the tilt angle sensor can be simplified, the size and cost of the tilt angle sensor can be reduced, and the resistance to impact can be improved.
  • the first tilt angle calculating means can calculate the tilt angle having the longitudinal direction as the rotation axis based on the output of the first full bridge circuit.
  • the tilt angle sensor when the tilt angle sensor is tilted around the longitudinal direction or the lateral direction of the flexible plate, the gravitational direction of the weight member changes, and a bending moment is generated in the displaceable region, so that the flexible plate bends.
  • the resistance value of each piezoresistor changes, and the output of the second full bridge circuit changes accordingly.
  • the output of the second bridge circuit changes according to the stress generated by the bending moment.
  • the stress generated by the bending moment is proportional to the product of the cosine value of the inclination angle with the longitudinal direction as the rotation axis and the cosine value of the inclination angle with the short direction as the rotation axis. Therefore, based on the output of the second full-bridge circuit and the calculated inclination angle with the longitudinal direction as the rotation axis, the second inclination angle calculation means calculates the inclination angle with the short direction as the rotation axis. Can be.
  • a tilt angle measuring method is characterized in that a bending plate having a piezoresistance formed on a surface thereof is provided at one end of the radius plate.
  • a first piezoresistor group including two pairs of piezoresistors arranged at positions symmetrical with respect to a center line passing through a point, and a position symmetrical with respect to the centerline as an axis in the displaceable region of the flexible plate; And a second piezoresistor group including two pairs of piezoresistors arranged at different positions from the first piezoresistor group to measure an inclination angle.
  • the first piezoresistor group forms the first full-bridge circuit and outputs A first bridge circuit output step, a second bridge circuit output step of forming and outputting a second full bridge circuit by the second piezoresistor group, and a step of outputting the first flexible bridge circuit based on the output of the first full bridge circuit.
  • a tilt angle measuring step based on an output of the second full bridge circuit and the tilt angle calculated in the first tilt angle calculating step.
  • a second inclination angle calculating step of calculating an inclination angle of the radius plate with the short side direction as a rotation axis.
  • the tilt angle measuring method according to claim 27 of the present invention further comprising: a flexure plate having a piezoresistance formed on a surface thereof; and a support member that supports the flexure plate at one end of the flexure plate.
  • the tilt angle measuring method according to claim 28 of the present invention may further comprise: a radial plate having a piezoresistance formed on a surface thereof; and a support for supporting the radial plate at one end of the flexible plate.
  • a first bridge circuit output step of configuring and outputting a full bridge circuit and (2) a second bridge circuit output step of configuring and outputting a second phenolic bridge circuit different in connection from the first full bridge circuit by the first piezo resistor group.
  • the first full bridge times A first inclination angle calculating step of calculating an inclination angle having a longitudinal direction of the radial plate as a rotation axis based on a road output, and an output of the second full bridge circuit and the first inclination angle calculating step.
  • the azimuth sensor according to claim 29 of the present invention is characterized in that the azimuth sensor according to claim 1 to claim 10, claim 17 to claim 19, or claim 2
  • a mobile phone according to claim 30 of the present invention includes the azimuth sensor according to claim 29.
  • FIG. 1 is a sectional view showing the operation of the tilt angle sensor according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a manufacturing process of the tilt angle sensor according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a manufacturing process of the tilt angle sensor according to the first embodiment of the present invention.
  • FIG. 4A is a plan view showing the configuration of the glass wafer according to the first embodiment of the present invention
  • FIG. 4B is the configuration of the glass wafer according to the first embodiment of the present invention.
  • FIG. FIG. 5A is a cross-sectional view illustrating the configuration of a weight wafer according to the first embodiment of the present invention
  • FIG. 5B is a cross-sectional view of the weight wafer according to the first embodiment of the present invention.
  • FIG. 3 is a plan view showing a configuration.
  • FIG. 6 is a cross-sectional view illustrating a manufacturing process of the tilt angle sensor according to the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view illustrating a manufacturing process of the tilt angle sensor according to the second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view illustrating a manufacturing process of the tilt angle sensor according to the third embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a manufacturing process of the peripheral angle sensor according to the third embodiment of the present invention.
  • FIG. 10 (a) is a plan view showing a configuration of a glass wafer according to a third embodiment of the present invention
  • FIG. 10 (b) is a glass according to a third embodiment of the present invention. It is sectional drawing which shows the structure of a wafer.
  • FIG. 11 is a cross-sectional view showing a manufacturing process of the tilt angle sensor according to the third embodiment of the present invention.
  • FIG. 12 is a cross-sectional view illustrating a manufacturing process of the tilt angle sensor according to the third embodiment of the present invention.
  • FIG. 13 is a cross-sectional view illustrating a configuration of a tilt angle sensor according to the fourth embodiment of the present invention.
  • FIG. 14 is a cross-sectional view showing a manufacturing process of the tilt angle sensor according to the fifth embodiment of the present invention.
  • FIG. 1.5 is a cross-sectional view showing a manufacturing process of the tilt angle sensor according to the fifth embodiment of the present invention.
  • FIG. 16 (a) shows the results of the present invention.
  • FIG. 16B is a plan view showing the configuration of the glass wafer according to the fifth embodiment.
  • FIG. 16B is a cross-sectional view showing the configuration of the glass wafer according to the fifth embodiment of the present invention.
  • FIG. 17A is a cross-sectional view illustrating the configuration of a weight wafer according to the fifth embodiment of the present invention.
  • FIG. 17B is a cross-sectional view illustrating the configuration of the weight wafer according to the fifth embodiment of the present invention.
  • FIG. 18 is a cross-sectional view illustrating a manufacturing process of the tilt angle sensor according to the fifth embodiment of the present invention.
  • FIG. 19A is a perspective view showing a schematic configuration of an inclination angle sensor according to a sixth embodiment of the present invention, and FIG. 19B is an inclination angle according to the sixth embodiment of the present invention.
  • FIG. 3 is a plan view illustrating a configuration of a silicon substrate surface of the sensor.
  • FIG. 20 is a perspective view showing the operation of the inclination angle sensor according to the sixth embodiment of the present invention.
  • FIG. 21 is a circuit diagram showing a connection configuration of the piezoresistors R11 and R12 in FIG. 19 (b).
  • FIG. 22 (a) is a perspective view showing the operation of the tilt angle sensor according to the sixth embodiment of the present invention, and FIGS. 22 (b) and 22 (c) show the operation of the sixth embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing the operation of the tilt angle sensor according to the first embodiment.
  • FIG. 23 is a circuit diagram showing a connection configuration of the piezo resistors R23 to R26 in FIG. 19B.
  • FIG. 24A is a cross-sectional view illustrating a schematic configuration of a tilt angle sensor according to a seventh embodiment of the present invention.
  • FIG. 24B is a cross-sectional view illustrating a tilt angle according to a seventh embodiment of the present invention.
  • FIG. 3 is a plan view showing a configuration of a silicon substrate surface of the sensor.
  • FIG. 25 is a circuit diagram showing a connection configuration of the piezo resistors R21, R22, R27, and R28 of FIG. 24 (b).
  • FIG. 26 is a circuit diagram showing a connection configuration of the piezo resistors R23 to R26 in FIG. 24 (b).
  • FIG. 27 (a) is a plan view showing a configuration of an inclination angle sensor according to an eighth embodiment of the present invention, and FIG. 27 (b) is a cross section taken along line A1-A1 of FIG. 27 (a).
  • FIGS. 28 (a) and (b) are cross-sectional views showing the operation of the tilt angle sensor according to the eighth embodiment of the present invention, and FIG. 28 (c) is the piezoresistor R1,
  • FIG. FIG. 4 is a circuit diagram showing a connection configuration of R2.
  • FIG. 29 (a) is a plan view showing a manufacturing process of the tilt angle sensor according to the eighth embodiment of the present invention, and FIG. 29 (b) is cut along the line A2-A2 in FIG. 29 (a).
  • FIG. FIG. 30 (a) is a plan view showing a manufacturing process of the tilt angle sensor according to the eighth embodiment of the present invention, and FIG. 30 (b) is a view taken along line A3-A3 in FIG. 30 (a). It is sectional drawing which cut
  • FIG. 31 (a) shows the manufacture of the tilt angle sensor according to the eighth embodiment of the present invention.
  • FIGS. 31 (b) and (c) are cross-sectional views taken along line A4-A4 in FIG. 31 (a).
  • FIG. 32 (a) is a plan view showing a manufacturing process of the tilt angle sensor according to the eighth embodiment of the present invention, and FIG. 32 (b) is cut along line A5-A5 in FIG. 32 (a).
  • FIG. FIG. 33 (a) is a plan view showing a manufacturing process of the tilt angle sensor according to the eighth embodiment of the present invention, and FIG. 33 (b) is a view taken along a line A6--A6 in FIG. It is sectional drawing which cut
  • FIG. 34 (a) is a plan view showing a manufacturing process of the tilt angle sensor according to the eighth embodiment of the present invention, and FIG. 34 (b) is a view taken along line A7-A7 in FIG. It is sectional drawing which cut
  • FIG. 35 (a) is a plan view showing a manufacturing process of the tilt angle sensor according to the eighth embodiment of the present invention
  • FIG. 35 (b) is a section taken along line A8-A8 in FIG. 35 (a).
  • FIG. FIG. 36 is a cross-sectional view showing a manufacturing process of the tilt angle sensor according to the eighth embodiment of the present invention.
  • FIG. 37 is a cross-sectional view showing an example of the manufacturing process of the solder bump of the inclination angle sensor according to one embodiment of the present invention.
  • FIG. 38 is a cross-sectional view showing an example of the manufacturing process of the solder bump of the inclination angle sensor according to one embodiment of the present invention.
  • FIG. 39 is a cross-sectional view showing an example of the manufacturing process of the solder bump of the inclination angle sensor according to one embodiment of the present invention.
  • FIG. 40 (a) is a plan view showing a configuration of an inclination angle sensor according to a ninth embodiment of the present invention, and FIG. 40 (b) is a section taken along line Bl-B1 in FIG. 40 (a). It is sectional drawing.
  • FIG. 41 (a) is a plan view showing a manufacturing process of the tilt angle sensor according to the ninth embodiment of the present invention, and FIG. 41 (b) is cut along a line B2-B2 in FIG. 41 (a). It is sectional drawing.
  • FIG. 42 (a) is a plan view showing a manufacturing process of the tilt angle sensor according to the ninth embodiment of the present invention, and FIG. 42 (b) is cut along line B 3 _B 3 in FIG. 42 (a).
  • FIG. 40 (a) is a plan view showing a configuration of an inclination angle sensor according to a
  • FIG. 43 (a) is a plan view showing a manufacturing process of the tilt angle sensor according to the ninth embodiment of the present invention, and FIG. 43 (b) is cut along line B4-B4 in FIG. 43 (a).
  • FIG. FIG. 44 (a) is a plan view showing a manufacturing process of the tilt angle sensor according to the ninth embodiment of the present invention, and FIG. 44 (b) is a line B5-B5 in FIG. 44 (a).
  • FIG. FIG. 45 (a) is a plan view illustrating a manufacturing process of the tilt angle sensor according to the ninth embodiment of the present invention, and FIG. 45 (b) is cut along a line B 6 _B 6 in FIG. 45 (a). did It is sectional drawing.
  • FIG. 46 (a) is a plan view showing a manufacturing process of the tilt angle sensor according to the ninth embodiment of the present invention
  • FIG. 46 (b) is a view taken along a line B7—B7 in FIG. It is sectional drawing which cut
  • FIG. 47 (a) is a plan view showing a manufacturing process of the tilt angle sensor according to the ninth embodiment of the present invention
  • FIG. 47 (b) is a view showing B8—B8 of FIG. 47 (a). It is sectional drawing cut
  • FIG. 48 is a cross-sectional view showing a manufacturing process of the oblique angle sensor according to the ninth embodiment of the present invention.
  • FIG. 49 (a) is a plan view showing the configuration of the tilt angle sensor according to the tenth embodiment of the present invention
  • FIG. 49 (b) is a plan view of A 1 in FIG. 49 (a).
  • FIG. 2 is a cross-sectional view taken along line A1.
  • FIG. 50 (a) is a diagram defining the coordinate system of the oblique angle sensor as viewed from a cross section of the silicon substrate 102 cut in the longitudinal direction
  • FIG. 50 (b) is a diagram illustrating the silicon substrate 10
  • FIG. 4 is a diagram defining a coordinate system of an inclination angle sensor when viewed from a cross section taken along a short side of FIG.
  • Fig. 51 (a) is a circuit diagram showing the wiring configuration of the piezoresistors R11, R12, R13, and R14.
  • Fig. 51 (b) shows the piezoresistors R21, R22.
  • FIG. 3 is a circuit diagram showing a connection configuration of R23, R23 and R24.
  • FIG. 52 is a diagram showing dimensional conditions of the silicon substrate 102 and the piezoresistor.
  • FIG. 53 (a) is a circuit diagram showing a connection configuration of the piezoresistors R11, R12, R13 and R14, and
  • FIG.53 (b) is a piezoresistor R21.
  • R22, R23, and R24 are circuit diagrams showing connection configurations.
  • FIG. 54 (a) is a graph showing the change of the output mi £ V o 1 when the inclination angle ⁇ is changed while keeping the inclination angle ⁇ constant.
  • 11 is a graph showing a change in the output V o1 when the inclination angle ⁇ is changed.
  • Fig. 55 (a) is a graph showing the change in the output lEV o2 when the tilt angle ⁇ is changed while keeping the tilt angle ⁇ constant.
  • Fig. 55 (b) shows the change in the output lEV o2 when the tilt angle ⁇ is constant.
  • 7 is a graph showing a change in the output voltage Vo 2 when the inclination angle ⁇ is changed.
  • FIG. 56 is a plan view showing a configuration of the tilt angle sensor according to the eleventh embodiment of the present invention.
  • FIG. 57 (a) is a circuit diagram showing a connection configuration of the piezo resistors R31, R32, R33 and R34, and
  • FIG. 57 (b) is a piezo resistor R41 and R42.
  • FIG. 3 is a circuit diagram showing a connection configuration of FIG. Figure 58 shows the silicon substrate 102 and the piezo resistor. It is a figure which shows the dimension condition of resistance.
  • FIG. 59 (a) is a circuit diagram showing a connection configuration of the piezo resistors R31, R32, R33 and R34
  • FIG. 59 (b) is a piezo resistor R41 and R4.
  • FIG. 2 is a circuit diagram showing a connection configuration of FIG. Fig. 60 (a) is a graph showing the change in output mEEVo3 when the inclination angle ⁇ is changed while keeping the inclination angle ⁇ constant.
  • Fig. 60 (b) shows the change in the output angle 6 is a graph showing a change in the output voltage V ⁇ 3 when the inclination angle ⁇ is changed.
  • FIG. 61 (a) is a graph showing the change of the output voltage V ⁇ 4 when the inclination angle ⁇ is changed while keeping the inclination angle ⁇ constant
  • Fig. 61 (b) is a graph showing that the inclination angle ⁇ is constant
  • 11 is a graph showing a change in the output voltage V o4 when the inclination angle ⁇ is changed in the following manner.
  • FIG. 62 is a plan view showing a configuration of the tilt angle sensor according to the 12th embodiment of the present invention.
  • FIG. 63 (a) is a circuit diagram showing a connection configuration of the piezo resistors R51, R52, R53 and R54
  • FIG. 63 (b) is a piezo resistor R51, R5.
  • FIG. 10 is a circuit diagram showing another connection configuration of 2, 53, and 54.
  • FIG. 64 is a diagram showing dimensional conditions of the silicon substrate 102 and the piezoresistor.
  • Fig. 65 (a) is a circuit diagram showing the connection configuration of the piezo resistors R51, R52, R53, and R54, and
  • Fig. 65 (b) is a piezo resistor R51, R5.
  • FIG. 9 is a circuit diagram showing another connection configuration of 2, R53, and R54.
  • Fig. 66 (a) is a rough graph showing the change in output 3 ⁇ 4 ⁇ Vo 5 when the inclination angle ⁇ is changed while keeping the inclination angle ⁇ constant.
  • Fig. 66 (b) shows the 11 is a graph showing a change in the output voltage V o5 when the inclination angle ⁇ is changed.
  • Fig. 67 (a) is a graph showing the change in the output voltage V ⁇ 6 when the tilt angle ⁇ is changed while keeping the tilt angle ⁇ constant.
  • Fig. 67 (b) shows the change in the output voltage V 11 is a graph showing a change in the output voltage V o 6 when the inclination angle ⁇ is changed in the following manner.
  • Fig. 68 (a) shows the change of the output voltage V ⁇ 5 for each material when the tilt angle ⁇ is fixed and the tilt angle ⁇ is changed when the material of the weight member 104 is changed.
  • Fig. 68 (b) shows the change in the output voltage V o5 when the material of the weight member 104 was changed and the tilt angle ⁇ was changed while the tilt angle was constant. Is a graph showing for each material.
  • Fig. 69 (a) shows the weight member 104 with different materials.
  • FIG. 69 (b) is a graph showing the change of the output voltage V ⁇ 6 for each material when the inclination angle ⁇ is changed while keeping the inclination angle ⁇ constant in FIG.
  • FIG. 9 is a graph showing a change in the output voltage Vo 6 for each material when the tilt angle ⁇ is changed while keeping the tilt angle constant in the case of the above.
  • FIG. 70 is a block diagram showing the configuration of the azimuth sensor according to the present invention.
  • FIG. 71 is a diagram showing the arrangement of piezoresistors R11, R12, R13 and R14
  • FIG. FIG. 6 is a diagram showing an arrangement of resistors R21, R22, R23 and R24.
  • FIG. 73 shows the arrangement of the piezoresistors R31, R32, R33 and R34
  • FIG. 74 shows the arrangement of the piezoresistors R41 and R42
  • FIG. 75 shows the arrangement of the piezoresistors R51 , R52, R53, and R54.
  • FIG. 76 (a) is a perspective view showing a schematic configuration of a conventional tilt angle sensor
  • FIG. 76 (b) is a cross-sectional view showing a schematic configuration of a conventional tilt angle sensor
  • FIG. 76 (c) is a conventional tilt angle sensor. It is sectional drawing which expands and shows the part of the piezo resistance of an angle sensor.
  • Fig. 77 (a) shows the increase / decrease of each piezo resistance during acceleration of the conventional tilt angle sensor in the X and Y directions.
  • Fig. 77 (b) shows the acceleration of the conventional tilt angle sensor in the Z direction.
  • FIG. 9 is a diagram showing an increase and decrease of each piezoresistance at the time.
  • FIGS. 1 to 6 are views showing a first embodiment of a tilt angle sensor and a method of manufacturing the tilt angle sensor according to the present invention.
  • FIG. 1 is a sectional view showing the operation of the tilt angle sensor according to one embodiment of the present invention. Note that the embodiment of FIG. 1 shows a configuration in which four tilt resistors R 1 to R 4 are provided on a silicon substrate 1 as a double-sided tilt angle sensor.
  • piezoresistors R 1 to R 4 are formed on the front surface of the silicon substrate 1, and the back surface is uniformly ground to a flexible thickness, and a convex portion 3 is provided in the center of the silicon substrate 1.
  • a weight member 3 is provided via a.
  • a support member 2 having a recess 2 a is provided on the back surface of the silicon substrate 1. Both ends of the silicon substrate 1 are supported by the support member 2.
  • a displaceable area on the surface on which the piezoresistors R1 to R4 are formed is formed.
  • a force FZ in the Z direction is applied to the weight member 3, and the weight member 3 tries to move in the Z direction. .
  • the back surface of the silicon substrate 1 is uniformly ground to a thickness that can be radiused, and the recess 2a is provided on the back surface of the silicon substrate 1, so that the silicon substrate 1 is deformed and the piezo resistance R 1 , R4 is subjected to compressive stress, and the piezoresistors R2, R3 are subjected to tensile stress. Then, the resistance values of the piezoresistors R1 to R4 increase or decrease according to these stresses.
  • FIG. 1 (b) when the tilt angle sensor receives a component force of gravity in the X direction, a force F X in the X direction is applied to the weight member 3, and the weight member 3 tries to move in the X direction.
  • the silicon substrate 1 is deformed, compressive stress is applied to the piezoresistors Rl and R3, and tensile stress is applied to the piezoresistors R2 and R4.
  • the resistance value increases or decreases.
  • FIG. 1 (c) when the tilt angle sensor is tilted, the weight member 3 is pulled by the weight W in the vertical direction, so that a force component WX is applied in a direction parallel to the silicon substrate 1, and the silicon substrate 1 A vertical force component WZ is applied.
  • the silicon substrate 1 is deformed, tensile stress is applied to the piezoresistors R2 and R4, and compressive stress is applied to the piezoresistors R1 and R3.
  • the resistance value increases or decreases. Therefore, by forming a Wheatstone bridge circuit composed of these piezoresistors R1 to R4, the inclination of the inclination angle sensor can be obtained.
  • the back surface is uniformly ground to a thickness that allows it to be radiused, and both ends of the silicon substrate 1 are supported by the support member 2 having the concave portion 2a, thereby simplifying the configuration and the manufacturing process of the tilt angle sensor, The cost of the tilt angle sensor can be reduced, and the resistance to impact can be improved.
  • the silicon substrate 1 has a hexahedral strip shape, and the silicon substrate preferably has a length-to-width ratio of 4 to 40 times and a thickness of 20 m or more and 200 or less. .
  • the silicon substrate 1 is used as it is as the displacement portion, the required detection sensitivity can be obtained, and the strength required for coupling the support member 2 and the weight member 3 to the silicon substrate 1 can be secured.
  • FIG 2, 3 and 6 are cross-sectional views showing the steps of manufacturing the tilt angle sensor according to the first embodiment of the present invention. Note that the first embodiment shows a manufacturing process of a doubly supported tilt angle sensor.
  • a silicon wafer 11 having a thickness of about 550 / im and a diameter of 6 inches is prepared.
  • a piezoresistor 12 (piezoresistor forming region) is formed on the silicon wafer 11 by selectively ion-implanting impurities using photolithography technology.
  • the piezoresistor 12 may actually be mainly composed of two or more piezoresistive elements.
  • a conductive layer is formed on the entire surface of the silicon wafer 11 by sputtering or vapor deposition, and the conductive layer is patterned using photolithography technology and etching technology.
  • a protection film 14 such as a silicon nitride film or a silicon oxide film is formed by CVD (chemical vapor deposition) or sputtering.
  • the protective film 15 is spread over the silicon wafer 11 on which the protective film 14 is formed.
  • the protective film 15 for example, an occupation sheet or the like can be used.
  • polishing or etching can be used as a grinding method.
  • a silicon wafer 11 having an initial thickness of 550 ⁇ is polished to a residual thickness of 150 m, It may be ground by etching until the wafer 11 has a residual thickness of 50 ⁇ .
  • back surface of silicon wafer 11 may be ground by CMP (chemical mechanical polishing).
  • the glass wafer 21 having the groove 21 a formed thereon is bonded to the back surface of the silicon wafer 11.
  • glass wafer 2 1 is silicon
  • the groove 21 a is directed toward the silicon wafer 11, and the groove 21 a is arranged so as to correspond to the piezoresistor 12 formation region.
  • a glass having a high ion mobility, such as sodium glass is used as the glass wafer 21, and the positive electrode is applied by applying a high voltage of about 1 KV to the silicon wafer 11 to selectively perform the bonding. Strong bonding strength can be obtained.
  • the groove 2 la may be left in a hollow state.
  • the surface of the glass wafer 21 may be flattened by filling a filling member 22 such as a normal glass or resin which is not anodically bonded. .
  • the groove 21a can be made hollow after the silicon wafer 11 is cut into chips.
  • FIG. 4A is a plan view showing the configuration of a glass wafer according to the first embodiment of the present invention
  • FIG. 4B is a plan view showing the configuration of the glass wafer according to the first embodiment of the present invention.
  • a glass wafer 21 has a chip cut out of a silicon wafer 11.
  • a groove 21a corresponding to the E row is formed, and the width of the groove 21a is set to correspond to the size of the formation region of the piezoresistor 12 for one chip. For example, if the length of one chip of the tilt angle sensor is 3 mm, the width of the groove 21a is set to 2 mm.
  • D1 to D6 are dicing lines, and the glass wafer 21 bonded to the silicon wafer 11 is cut into chips along the dicing lines D1 to D6. Therefore, for example, one oblique angle sensor can be cut out from the area surrounded by the dicing lines D1 to D3.
  • a two-sided tilt angle sensor can be configured.
  • the weight wafer 31 provided with the protrusions 31a is bonded onto the silicon wafer 11.
  • the convex portions 3 la are provided corresponding to each chip cut out from the silicon wafer 11.
  • the protrusion 31 a is directed toward the silicon wafer 11, and the protrusion 31 a is positioned at the longitudinal center of each chip. The weight wafer 31 is placed.
  • FIG. 5A is a cross-sectional view illustrating the configuration of a weight wafer according to the first embodiment of the present invention
  • FIG. 5B is a cross-sectional view illustrating the configuration of the weight wafer according to the first embodiment of the present invention.
  • D1 to D8 are dicing lines, and the weight wafer 31 bonded to the silicon wafer 11 is connected to the dicing lines D1 to D8 together with the glass wafer 21 bonded to the silicon wafer 11. It is cut into chips along.
  • an opening 31b is provided in the weight wafer 31 and the vertical dicing lines D1 and D2 are set at the center of the opening 31b so that the weight wafer 31 is not covered with the weight wafer 31. Regions can be provided on both sides of each chip, and wire bonding can be easily performed on each chip.
  • the silicon substrate 11 is bonded to the supporting member 21 ′ and the weight member by dicing the silicon wafer 11 on which the glass wafer 21 and the weight wafer 31 are bonded. 3 1 'and cut out into a chip.
  • the length of one chip can be, for example, 3 mm.
  • both ends of the silicon substrate 11 ′ are supported by the support member 21 ′.
  • a gap is formed between the silicon substrate 11 'and the support member 21' so that the silicon substrate 11 'can flex between the support member 21'.
  • the silicon substrate 11 ' cut out together with the support member 2' and the weight member 31 'is die-bonded on the lead frame 41.
  • the silicon substrate 11 ' is connected to the lead frame 41 by wires 42a and 42b by wire bonding to the silicon substrate 11'.
  • the opening 31 b is provided in the weight wafer 31, and the length of the weight member 31 ′ cut out from the weight wafer 31 is shorter than the length of the silicon substrate 11 ′. For this reason, both ends of the silicon substrate 1 1 ′ can be exposed from the weight member 3 1 ′, thereby preventing the weight member 3 1 ′ from obstructing wire bonding on the silicon substrate 11 ′. can do.
  • the first embodiment it is possible to manufacture a double-sided tilt angle sensor without forming irregularities on the silicon substrate 11 ′ itself, and to provide the support member 21 ′
  • the weight member 3 1 ′ and the weight member 3 1 ′ can be collectively formed on a plurality of chips, so that the support member 21 ′ and the weight member 31 ′ do not need to be arranged for each chip.
  • the configuration and manufacturing process of the tilt angle sensor can be simplified, the cost of the tilt angle sensor can be reduced, and the resistance to impact can be improved. .
  • FIG. 7 is a diagram showing a second embodiment of the tilt angle sensor and the method of manufacturing the tilt angle sensor according to the present invention.
  • FIG. 7 is a cross-sectional view illustrating a manufacturing process of the tilt angle sensor according to the second embodiment of the present invention.
  • the weight member 33 of the tilt sensor of the both-sided type is arranged via the pedestal 32.
  • the pedestal 32 is bonded onto the silicon wafer 11.
  • the pedestal 32 is provided for each chip cut out from the silicon wafer 11 and is arranged so as to be located at the center in the longitudinal direction of each chip.
  • the height of the pedestal 32 is set so that the surface of the pedestal 32 is at a position higher than the apex of the arch of the wires 42a and 42b.
  • the silicon wafer 11 to which the pedestal 32 is bonded is obtained by dicing the silicon wafer 11 to which the pedestal 32 is bonded while the glass wafer 21 is bonded. 'Together with the support member 2 1' is cut out into a single chip.
  • the silicon substrate 11 ′ provided with the support member 21 ′ and the pedestal 32 is die-bonded on the lead frame 41.
  • the silicon substrate 11 'and the lead frame 41 are connected by wires 42a and 42b by performing wire bonding on the silicon substrate 11'.
  • a weight member 33 is bonded onto the pedestal 32.
  • the weight member 33 is adhered onto the pedestal 32 after wire bonding of the silicon substrate 11 ′. Can be prevented, and the weight member 33 can be made larger to improve the detection sensitivity of the tilt angle sensor. Further, the weight member 33 can be individually arranged for each chip, and the weight member 33 can protrude from the chip, so that the degree of freedom in the arrangement of the weight member 33 can be improved.
  • FIG. 8 to 12 are views showing a third embodiment of the tilt angle sensor and the method of manufacturing the tilt angle sensor according to the present invention.
  • FIGS. 8 to 12 are cross-sectional views showing the manufacturing process of the tilt angle sensor according to the third embodiment of the present invention.
  • the third embodiment shows a manufacturing process of a cantilever type inclination angle sensor.
  • a silicon wafer 51 having a thickness of about 550 ⁇ ⁇ and a diameter of 6 inches is prepared.
  • a piezoresistor 52 is formed on the silicon wafer 51 by selectively ion-implanting an impurity by using a photolithography technique.
  • the piezoresistor 52 is actually composed of two or more piezoresistors. You may make it comprise from a child.
  • a conductive layer is formed on the entire surface of the silicon wafer 51 by sputtering or vapor deposition, and the conductive layer is patterned by using a photolithography technique and an etching technique.
  • a circuit pattern 53 is formed.
  • a protective film 54 such as a silicon nitride film or a silicon oxide film is formed by CVD (chemical vapor deposition) or sputtering.
  • a protective film 55 is attached on the silicon wafer 51 on which the protective film 54 is formed.
  • the protective film 55 for example, an adhesive sheet or the like can be used.
  • the entire back surface of the silicon wafer 51 is ground.
  • polishing or etching can be used as a grinding method.
  • a silicon wafer 51 having an initial thickness of 550 ⁇ is polished to a residual thickness of 150 // m, and The silicon wafer may be ground by etching until the residual thickness of 51 / m becomes 50 / m.
  • back surface of silicon wafer 51 may be ground by CMP (chemical mechanical polishing).
  • the glass wafer 61 on which the grooves 61 a are formed is bonded to the back surface of the silicon wafer 51.
  • the groove 61a force is applied to the silicon wafer 51 side and the piezoresistor 52 is formed on the scribe line and the scribe line.
  • the glass wafer 61 is placed on the back surface of the silicon wafer 51.
  • a glass having a high ion mobility such as sodium glass
  • a positive voltage of about 1 KV is applied between the glass wafer 61 and the silicon wafer 51 to selectively perform the positive electrode bonding. Strong bonding strength can be obtained.
  • the groove 6 la may be left in a hollow state, but may be filled with a filling member 62 such as a normal glass or resin which is not anodically bonded, and the surface of the glass wafer 61 may be flattened. ,.
  • a filling member 62 such as a normal glass or resin which is not anodically bonded
  • the grooves 61a can be made hollow.
  • FIG. 10 (a) is a plan view showing a configuration of a glass wafer according to the third embodiment of the present invention
  • FIG. 10 (b) is a configuration of a glass wafer according to the third embodiment of the present invention.
  • a groove 61 a corresponding to a chip arrangement cut out from a silicon wafer 51 is formed in a glass wafer 61, and the groove 61 a forms a piezoresistor 52 forming area and a scribe for one chip.
  • the width of the groove 61a is set so as to cover the line. For example, if the length of one chip of the tilt angle sensor is 3 mm, the width of the groove 2 la is set to 2.5 mm.
  • D11 to D17 are dicing lines, and the glass wafer 61 bonded to the silicon wafer 51 is cut into chips along the dicing lines D11 to D17. Therefore, for example, one tilt angle sensor can be cut out from a region surrounded by the dicing lines D11 to D12 to D15.
  • the grooves 61 a of the glass wafer 61 are arranged so as to overlap the vertical scribing lines of the silicon wafer 51, and the vertical dicing lines D 11 to D 13 are connected to the ends of the grooves 61 a.
  • the support member can be left on one side of the groove 61a for each chip, and a cantilever type inclination angle sensor can be configured.
  • a pedestal 71 is bonded to each chip cut out from the silicon wafer 51.
  • the arrangement position of the pedestal 71 is set so as to be on the opposite side of the longitudinal direction from the position where each chip is supported by the glass wafer 61.
  • 5 1 ′ is integrated with the supporting member 6 1 ′ into a chip. Cut it out.
  • the length of one chip can be, for example, 3 mm.
  • a weight member 72 is bonded onto the pedestal 71.
  • FIG. 11B by removing the embedded member 62 filled in the support member 61 ′, one side of the silicon substrate 51 ′ is supported by the support member 61 ′.
  • a gap is formed between the silicon substrate 5 1 ′ and the support member 6 1 ′ so that the silicon substrate 5 1 ′ can be bent with the support member 6 1 ′ as a fulcrum.
  • FIG. 11C the silicon substrate 5 provided with the supporting member 61 ′ and the weight member 72 is die-bonded on the lead frame 81.
  • the silicon substrate 51 ′ is connected to the lead frame 81 by wires 82 by performing wire bonding to the silicon substrate 51 ′.
  • the silicon substrate 51 ' is wire-bonded after the weight member 72 is bonded to the pedestal 71, but the silicon substrate 51 is wire-bonded.
  • the weight member 72 may be attached to the pedestal 71, whereby the weight member 72 can be prevented from obstructing the wire bonding.
  • a cantilever-type inclination angle sensor can be manufactured without reducing the manufacturing process, and the position where the silicon substrate 5 is supported by the support member 6 1 ′ can be manufactured.
  • the distance between the weight member 72 and the position where the weight member 72 is supported by the silicon substrate 51 ′ can be increased, and the silicon substrate 5 can be bent more efficiently.
  • the detection sensitivity of the tilt angle sensor can be improved without increasing the length of the tilt angle sensor in the longitudinal direction, and the tilt angle sensor can be reduced in size.
  • FIG. 13 is a diagram showing a tilt angle sensor and a method of manufacturing the tilt angle sensor according to a fourth embodiment of the present invention.
  • FIG. 13 is a cross-sectional view illustrating a configuration of the tilt angle sensor according to the fourth embodiment of the present invention.
  • a piezoresistor 9 2 and a circuit pattern 9 3 are formed on the surface of the silicon substrate 9 1, and the back surface of the silicon substrate 9 1 is uniformly ground to a thickness that can be radiused. .
  • a support member 95 having a concave portion 95a is provided on the back surface of the silicon substrate 91, and one end of the silicon substrate 91 is supported by the support member 95. Is provided with a weight member 97 via a pedestal 96, and the pedestal 96 is arranged at the other end of the silicon substrate 91.
  • the back surface of the support member 95 is adhered to a lead frame 98, and the lead frame 98 and the bonding pad of the circuit pattern 93 are connected by a wire 99.
  • the height of the pedestal 96 is set so that the surface of the pedestal 96 is located at a position higher than the vertex of the arch of the wire 99, and the pedestal 96 is positioned at the end of the weight member 97. Hold the weight member 97 with.
  • the member 97 can be prevented from coming into contact with the wire 99, and the tilt angle sensor can be made more compact while improving the detection sensitivity of the tilt angle sensor.
  • the support member 95 is made of glass having a high ion mobility, such as sodium glass, and the recess 95 a of the support member 95 has a buried member such as ordinary glass or resin that is not anodically bonded. And the surface of the support member 95 is flattened.
  • the layout is such that the silicon substrate 91 is located below the support member 95. Accordingly, when the silicon substrate 91 is made horizontal, the silicon substrate 91 can receive a stress in a direction away from the embedding member 100 by the static load of the weight member 97 due to gravity.
  • the surface of the support member 95 can be flattened while preventing the embedded member 100 from hindering the displacement of the silicon substrate 91, and the inclination angle sensor can be set to about ⁇ 90 degrees from the horizontal. It can function well in the range.
  • the substrate 91 can be supported by the embedding member 100, thereby preventing the silicon substrate 91 from cracking and reducing the manufacturing cost of the tilt angle sensor.
  • the process of removing the embedded member 100 is not required, and the manufacturing process can be simplified.
  • the manufacturing cost of the tilt angle sensor can be further reduced, and the silicon substrate 91 can be embedded with the embedded member 100 even when an impact is applied to the tilt angle sensor when the tilt angle sensor falls. It is possible to prevent the silicon substrate 91 from being broken.
  • FIG. 14 to FIG. 18 are views showing a fifth embodiment of a method of manufacturing the tilt angle sensor and the most specific tilt angle sensor according to the present invention.
  • the fourth embodiment shows a manufacturing process of a cantilever type inclination angle sensor.
  • a silicon wafer 11] having a thickness of about 5500 ⁇ and a diameter of 6 inches is prepared.
  • a piezoresistor 112 is formed on the silicon wafer 1] .1 by selectively ion-implanting an impurity using a photolithography technique. Then, a conductive layer is formed on the entire surface of the silicon wafer 11 by sputtering or vapor deposition, and the conductive layer is patterned using photolithography and etching techniques.
  • a protective film 114 such as a silicon nitride film or a silicon oxide film is formed by CVD (chemical vapor deposition) or sputtering.
  • the protective film 1 15 is spread over the silicon wafer 111 on which the protective film 114 is formed.
  • an adhesive sheet can be used as the protective film 115.
  • the entire back surface of the silicon wafer 111 is ground.
  • polishing or etching can be used as a grinding method.
  • a silicon wafer 11 having an initial thickness of 550 / im is polished to a residual thickness of 150 / im, and a silicon wafer is further polished. Grinding may be performed by etching until 1 1 1 has a residual thickness of 50 / im.
  • the back surface of the silicon wafer 111 may be polished by CMP (chemical mechanical polishing).
  • the glass wafer 121 on which the grooves 121 a and 121 b are formed is bonded to the back surface of the silicon wafer 111.
  • the grooves 121a and 121b face the silicon wafer 111 side, and the grooves 121a and 122 lb correspond to each other.
  • one of the grooves 1 2 1 a and 1 2 1 b is applied to the scribe line of the silicon wafer 1 1, and each groove 1 2 1 a and 1 2 Arrange so that the other line of 1b does not overlap the scribe line of the silicon wafer 111.
  • the grooves 121a and 121b may be left hollow,
  • the surface of the glass wafer 121 may be flattened by filling the embedded members 122a and 122b such as ordinary glass or resin.
  • the silicon wafer 11 When a material such as a resin which can be selectively removed with a solvent or the like is filled, the silicon wafer 11 is cut into chips, and the grooves 121a and 121b are made hollow. Is also good.
  • FIG. 16A is a plan view showing a configuration of a glass wafer according to a fifth embodiment of the present invention
  • FIG. 16B is a plan view showing a configuration of a glass wafer according to the fifth embodiment of the present invention.
  • grooves 121 a and 121 b corresponding to the chip arrangement cut out from the silicon wafer 111 are formed in the glass wafer 121, and the width of the grooves 121 a and 121 b is , 121b Force S, including the formation area of the piezoresistor 1 12 for one chip, and one line of each groove 121a, 121b is applied to the scribe line of the silicon nozzle 111, and each groove 121a, 121 The other line of b is set so as not to extend over the scribe line of the silicon wafer 11.
  • D21 to D28 and D31 to D34 are dicing lines, and the glass wafer 121 bonded to the silicon wafer 111 is cut into chips along the dicing lines D21 to D28 and D31 to D34. Is done. Therefore, for example, one oblique angle sensor can be cut out from a region surrounded by the dicing lines 1321, 025, 031, and 032.
  • the vertical dicing lines D21 and D22 are set at the center of the convex portion of the glass wafer 121, and the vertical dicing lines D23 to D28 are set so as to cover the ends of the grooves 121a and 121b.
  • the support member can be left on one side of the grooves 121a and 121b for each chip, and a cantilever tilt angle sensor can be configured.
  • the weight wafer 131 provided with the protrusion 131a is bonded onto the silicon wafer 111.
  • the protrusion 131a is a silicon wafer It is provided corresponding to two rows of chips cut out from the nodes 1 1 1. Then, when bonding the weight weight, 131, onto the silicon wafer 1 1 1 1, the projection 1 3 1 a faces the silicon wafer 1 1 1 side, and the projection 1 3 1 a straddles the scribe line, The weight wafer 13 1 is placed on the edge of the chip on both sides thereof.
  • FIG. 17A is a cross-sectional view illustrating a configuration of a weight wafer according to the fifth embodiment of the present invention
  • FIG. 17B is a cross-sectional view of the weight wafer according to the fifth embodiment of the present invention. It is a top view which shows a structure.
  • D 21 to D 28 and D 31 to D 34 are dicing lines, and the weight wafer 13 1 bonded to the silicon wafer 11 1 is a glass wafer bonded to the silicon wafer 11 1 Together with 121, it is cut into chips along D21-D28 and D31-D34.
  • H 1 to H 4 are half dicing lines.
  • the weight wafer 13 1 is bonded to the silicon wafer 11 1, and is half-diced along the half dicing lines H 1 to H 4.
  • the central portion of the concave portion between the convex portions 13a of the weight wafer 13 is cut off.
  • the weight wafer 1 3 1 1 is bonded to the silicon wafer 1 1 1 1, and the area not covered with the weight weight 1 13
  • the chip bonding can be easily performed on each chip.
  • the weight wafer 13 1 1 can be provided at the end of each chip only by cutting at the position a.
  • the silicon wafer 11 on which the glass wafer 121 and the weight bar 131 'are bonded] is diced along dicing lines D21 to D28 and D31 to D34.
  • the silicon substrate 111 ' is cut out integrally with the support member 121' and the weight member 131 '' into chips.
  • the length of one chip can be, for example, 3 mm.
  • one end of the silicon substrate 111' becomes the support member 121 '.
  • a gap is formed between the silicon substrate 111 'and the support member 121' so as to be supported, and the silicon substrate 111 'can be bent with the support member 121' as a fulcrum.
  • the silicon substrate 11 cut out together with the support member 121 ′ and the weight member 131 ′ ′ is die-bonded onto the lead frame 141.
  • the silicon substrate 111 ′ is connected to the lead frame 141 by wire bonding by performing wire bonding on the silicon substrate 111 ′.
  • one end of the silicon substrate 111 ′ can be exposed from the weight member 131 ′ ′, and the weight member 131 ′ ′ interferes with the silicon substrate 111 ′. It can be prevented that wire bonding cannot be performed thereon.
  • the fifth embodiment it is possible to manufacture a cantilever-type inclination angle sensor without providing irregularities on the silicon substrate 111 ′ itself, and furthermore, the support member 121 ′ and the weight member Since it is possible to integrally form 131 and ′ on a plurality of chips, it is not necessary to arrange the support member 121 ′ and the shingle member 131 ′ for each chip.
  • each groove 121.a, 121b is provided for each chip 7S row.
  • the two grooves 121a and 12lb may be connected to each other, and one groove may be used to cover two rows of chips.
  • FIGS. 19 to 23 are views showing a sixth embodiment of the tilt angle sensor according to the present invention.
  • FIG. 19 (a) is a perspective view showing a schematic configuration of an inclination angle sensor according to a sixth embodiment of the present invention
  • FIG. 19 (b) is an inclination angle sensor according to a sixth embodiment of the present invention.
  • FIG. 2 is a plan view showing the configuration of the silicon substrate surface of FIG.
  • a two-axis tilt angle sensor is configured using a single silicon substrate having a uniform thickness.
  • piezoresistors R11 to R16 and terminals P1 to P9 are formed on a surface 151a of a silicon substrate 151, and piezoresistors R11 to R16 and terminals P1 to P9 are formed. Is formed, and the back surface 151b of the silicon substrate 151 is uniformly ground to a thickness at which the silicon substrate 151 can be radiused.
  • a support member joining region J1 is provided at one longitudinal end of the silicon substrate 151, and a pedestal contact region J2 is provided at the other longitudinal end of the silicon substrate 151.
  • the support member 152 is joined via the convex portion 152a, and the weight member 154 is joined via the pedestal 153 to the pedestal contact area J2. Note that the support member 152 is disposed on the back surface of the silicon substrate 151, and the weight member 154 is disposed on the front surface of the silicon substrate 151.
  • the piezoresistors R11, R13, and R15 are arranged near the pedestal joint region J2, and the piezoresistors R12, R14, and R16 are arranged near the support member joint region J1. Is done.
  • FIG. 20 is a perspective view showing an operation when the tilt angle sensor of FIG. 19 is tilted around the Y axis.
  • the tensile stress of the piezoresistor R11 and the compressive stress of the piezoresistor R12 increase, and the resistance of the piezoresistors R11 and R12 increases and decreases according to the fluctuation of these stresses.
  • FIG. 21 is a circuit diagram showing the connection configuration of the piezo resistors R 11 and R 12 in FIG. 19 (b).
  • the piezo resistors R 11 and R 12 are connected in series, and the terminal P 4 is connected to the terminals P 6 and P 5 via the piezo resistors R 11 and R 12, respectively. Then, by applying the voltage E between the terminals P5 and P6 and detecting the voltage VI between the terminals P4 and P6, the oblique angle around the Y axis can be obtained.
  • Fig. 22 (a) is a perspective view showing the operation when the tilt angle sensor of Fig. 19 is tilted around the X axis, and Fig. 22 (b) is cut along the line E2-E2 in Fig. 19 (b).
  • FIG. 22 (c) is a sectional view taken along line E3-E3 in FIG. 19 (b).
  • the tensile stress on the piezoresistor R13 and the compressive stress on the piezoresistor R14 decrease, and the tensile stress on the piezoresistor R15 and the compressive stress on the piezoresistor R16 Increases. Therefore, the resistances of the piezoresistors R13 to R16 increase or decrease according to the fluctuations of these stresses.
  • FIG. 23 is a circuit diagram showing a connection configuration of the piezo resistors R13 to R16 in FIG. 19 (b).
  • the piezoresistors R13 to R16 form a bridge circuit. That is, a piezo resistor R 14 is connected between the terminals P 1 and P 2, a piezo resistor R 13 is connected between the terminals P 2 and P 3, and a piezo resistor R 15 is connected between the terminals P 7 and P 8.
  • a piezoresistor R16 is connected between terminals P8 and P9, terminals Pl and P9 are short-circuited, and terminals P3 and P7 are short-circuited.
  • the voltage E is applied between the terminals P2 and P8, and the voltage V2 between the terminals Pl and P3 is detected, whereby the tilt angle around the X axis can be obtained.
  • FIGS. 24 to 26 are views showing a tilt angle sensor according to a seventh embodiment of the present invention.
  • FIG. 24 (a) is a cross-sectional view taken along line FF of FIG. 24 (b)
  • FIG. 24 (b) is a configuration of a silicon substrate surface of a tilt angle sensor according to a seventh embodiment of the present invention.
  • FIG. in the seventh embodiment a single-sided silicon substrate having a uniform thickness is used to constitute a bi-axial, biaxial tilt angle sensor.
  • piezoresistors R21 to R28 and terminals P11 to P22 are formed on the surface of a silicon substrate 161 and piezoresistors R21 to R28 are connected to terminals PI1 to P22.
  • the roosters B ⁇ L2 and L3 are formed, and the back surface of the silicon substrate 161 is uniformly ground to a thickness that allows the silicon substrate 161 to bend.
  • Support member joining regions J 11 and J 12 are provided at both ends of the silicon substrate 161 in the longitudinal direction.
  • a pedestal joining region J 13 is provided at the center of the silicon substrate 161 in the longitudinal direction.
  • a support member 162 is joined to the first and J12 via a convex portion 162a, and a weight member 164 is joined to a pedestal joint region J13 via a pedestal 163.
  • the support member 162 is disposed on the back surface of the silicon substrate 161 and the weight member 16 4 is arranged on the surface of the silicon substrate 161.
  • the piezoresistors R21, R23, R25, and R27 are arranged in the vicinity of the pedestal contact area J13, and the piezoresistors R22, R24, R26, and R28 are connected to the support member contact area J11, It is located near J12.
  • the piezoresistors R21, R22, R27, and R28 are arranged along a central line set in the longitudinal direction, and the piezoresistors R23 to R26 are respectively arranged along parallel lines on both sides of the central line. Two pieces are arranged at equal intervals.
  • the support member 162 When the support member 162 is tilted around the Y-axis with the weight member] .64 hanging, the deflection of the silicon substrate 161 changes. Then, by measuring the amount of change in the resistance values of the piezoresistors R21, R22, R27, and R28 at this time, the tilt angle around the Y axis can be obtained.
  • the support member 162 is tilted around the X axis while the weight member 164 is hanging, the silicon substrate 161 is twisted. Then, by measuring the amount of change in the resistance values of the piezoresistors R23 to R26 at this time, the inclination angle around the X axis can be obtained.
  • FIG. 25 is a circuit diagram showing a connection configuration of the piezo resistors R21, R22, R27, and R28 of FIG. 24 (b).
  • the piezoresistors R21, R22, R27, and R28 form a bridge circuit. That is, a piezo resistor R 22 is connected between the terminals P 14 and P 15, a piezo resistor R 21 is connected between the terminals P 14 and P 16, and a piezo resistor R 28 is connected between the terminals P 20 and P 21.
  • the piezoresistor R27 is connected between the terminals P20 and P22, the terminals P15 and P21 are short-circuited, and the terminals P16 and P22 are short-circuited.
  • FIG. 26 is a circuit diagram showing a connection configuration of the piezoresistors R23 to R26 in FIG. 24 (b).
  • the piezoresistors R 23 -R 26 constitute a bridge circuit. That is, a piezo resistor R 24 is connected between the terminals P 11 and P 12, a piezo resistor R 23 is connected between the terminals P 12 and P 13, and the terminals P 18 and P 19 A piezo resistor R 26 is connected between them, a piezo resistor R 25 is connected between terminals P 17 and P 18, terminals P 11 and P 19 are short-circuited, and terminals P 13 , P17 are short-circuited. Then, by applying mjlE between the terminals P 12 and P 18 and detecting the voltage V 4 between the terminals P 11 and P 13, the inclination angle around the X axis can be obtained.
  • FIG. 27 to FIG. 39 are views showing an eighth embodiment of a method for manufacturing a tilt angle sensor and a peripheral tilt angle sensor according to the present invention.
  • FIG. 27 (a) is a plan view showing a configuration of an inclination angle sensor according to an eighth embodiment of the present invention
  • FIG. 27 (b) is a line A1-A1 in FIG. 27 (a). It is sectional drawing cut
  • piezoresistors R1, R2 and A1 pads P1 to P3 are formed, and the piezoresistors R1, 2 and one pad P1 to P1 are formed. Rooster fi ⁇ H l connecting 3 is formed.
  • solder bumps 4 are formed on the front surface of the silicon substrate 2 through the A1 pad 3, and the back surface of the silicon substrate 2 is uniformly ground to a thickness that can be radiused.
  • a constriction 2a is formed corresponding to the area where the resistors Rl and R2 are arranged.
  • a support member 1 having a recess 1a is provided on the back surface of the silicon substrate 2, and one end of the silicon substrate 2 is supported from the back surface, and the support member 1 has piezoresistors Rl, R2 Is formed near the edge of the concave portion 1a, and the solder bump 4 is disposed on the concave portion 1a.
  • FIGS. 28 (a) and 28 (b) are cross-sectional views showing the operation of the tilt angle sensor according to the eighth embodiment of the present invention, and FIG. 28 (c) is the piezo resistance Rl of FIG. 27 (a).
  • FIG. 3 is a circuit diagram showing a connection configuration of R 2 and R 2.
  • the stress applied to the piezoresistors Rl and R2 fluctuates, and the resistance values of the piezoresistors R1 and R2 increase or decrease according to the fluctuation of the stress.
  • the piezoresistors Rl and R2 are connected in series, and the terminal P2 is connected to the terminals P1 and P3 via the piezoresistors Rl and R2, respectively. I have.
  • the voltage E is applied between the terminals P] and P3, and the voltage VI between the terminals P2 and P3 is detected, whereby the tilt angle around the Y axis can be obtained.
  • FIGS. 29 (a) to 35 (a) show an inclination angle sensor according to the eighth embodiment of the present invention.
  • FIGS. 29 (h) to 35 (b) and FIG. 36 are cross-sectional views showing the manufacturing process of the tilt angle sensor according to the eighth embodiment of the present invention. It is.
  • a silicon substrate 2 having a thickness of about 550 / m and a diameter of 5 inches is prepared.
  • an impurity such as boron is selectively ion-implanted into the silicon substrate 2 to form piezoresistors R 1 and R 2 in each chip region on the silicon substrate 2.
  • an A1 film is formed on the entire surface of the silicon substrate 2 by sputtering or vapor deposition, and the chip area on the silicon substrate 2 is formed by patterning the A1 film using a photolithography technique and an etching technique.
  • the width W 1 of each chip region of the silicon substrate 2 can be, for example, 1.4 mm, and the length L 1 can be, for example, 2.8 mm. It is possible to obtain about 30000 tilt angle sensor chips from the silicon substrate 2 of FIG.
  • a protective film such as an occupying sheet is attached on the silicon substrate 2, and the entire back surface of the silicon substrate 2 is ground until the thickness of the silicon substrate 2 becomes T1.
  • CMP chemical mechanical polishing
  • etching can be used as a method of grinding the silicon substrate 2.
  • the thickness T1 of the silicon substrate 2 can be set to, for example, 100 m, whereby the silicon substrate 2 can be bent while maintaining the strength that the silicon substrate 2 does not break. Can be.
  • the glass substrate 1 having the concave portion 1 a is bonded to the back surface of the silicon substrate 2.
  • the concave portion la is directed to the silicon substrate 2 side.
  • the glass substrate 1 is arranged so that the formation regions of the piezoresistors Rl and R2 are located near the edge of the concave portion 1a, and the solder bump 4 is located on the concave portion 1a.
  • a glass having high ion mobility such as sodium glass can be used as the glass substrate 1, and a high voltage of about 1 KV is applied between the glass substrate 1 and the silicon substrate 2.
  • a strong bonding force can be selectively obtained.
  • the concave portion la may be left in a hollow state, but is filled with an ordinary buried member such as glass or resin that is not anodic bonded, and the surface of the glass substrate 1 is flattened.
  • solder bumps 4 are formed on the A1 pads 3 formed in each chip area on the silicon substrate 2.
  • the size C1 of the solder bump 4 can be, for example, about 0.6 to 1.2 mm, and the height HI of the solder bump 4 is, for example, 0.1 to 0.4 mm. Degree.
  • solder bumps 4 for example, electrolytic plating or screen printing can be used, whereby the solder bumps 4 are collectively formed on all the chips taken out from the silicon substrate 2. And the manufacturing process can be simplified.
  • the specific gravity of the solder bump 4 is more than three times as high as that of glass-silicon, if the same weight effect is obtained, the volume of the solder bump 4 can be reduced to 13 or less, and the size of the solder bump 4 can be reduced. Can be achieved.
  • a constriction 2 a is formed in the silicon substrate 2 by selectively etching the silicon substrate 2 on which the solder bumps 4 are formed by using photolithography technology and etching technology. At the same time, the silicon substrate 2 on the concave portion la is cut off for each chip.
  • etching the silicon substrate 2 for example, wet etching using KOH can be used.
  • the solder bumps 4 are formed on the surface, A silicon substrate 2 whose back surface is supported by a glass substrate 1 is cut out in a chip shape.
  • the silicon substrate 2 having the solder bumps 4 formed on the front surface and the back surface supported by the glass substrate 1 is die-bonded in the package 6.
  • the terminals 7 provided on the package 6 are connected to the A 1 pads P 1 to P 3 formed on the silicon substrate 2 with gold wires 5.
  • the lid 8 is adhered to the package 6 to seal the inclination angle sensor.
  • the shell of the silicon substrate 2 and the glass substrate 1 can be diverted only once, and the back surface of the silicon substrate 2 on which the piezoresistors R 1 and R 2 are formed is not selectively etched, but is bent.
  • a support portion for supporting the piezoresistors R1 and R2 in a possible state can be formed collectively for a plurality of chips.
  • solder bumps 4 having a large specific gravity on the silicon substrate 2 without selectively etching the back surface of the silicon substrate 2 on which the piezo resistors R 1 and R 2 are formed.
  • a constriction 2a can be provided in the area where the piezoresistors Rl and R2 are formed, and the area where the piezoresistors R1 and R2 are formed can be efficiently bent while keeping the thickness of the silicon substrate 2 uniform.
  • the piezoresistors R1, R2, A1 pad 3, P1 to P3 and wiring H1 are formed on the silicon substrate 2, and then the back surface of the silicon substrate 2 is ground.
  • the method of bonding the silicon substrate 2 to the glass substrate 1 having the concave portion 1a has been described, but the silicon substrate 2 before grinding is bonded to the glass substrate 1 having the concave portion 1a, and After the surface of the substrate 2 is ground, the piezoresistors Rl, R2, A1 pad 3, P1 to P3, and cock 1 may be formed on the silicon substrate 2.
  • the force constriction 2a described in the example in which the constriction 2a is provided in order to make the silicon substrate 2 easily bend may not necessarily be provided.
  • the method of etching the silicon substrate 2 in order to separate the silicon substrate 2 around the solder bumps 4 for each chip has been described. The silicon substrate 2 may be separated for each chip.
  • solder bump 4 for each chip has been described, but a plurality of solder bumps 4 may be provided for each chip.
  • FIG. 37 to FIG. 39 are cross-sectional views showing an example of the manufacturing process of the solder bump of the inclination angle sensor according to one embodiment of the present invention.
  • A1 pads 12a and 12b are formed on a silicon substrate 11 by using a photolithography technique and an etching technique.
  • a UBM (Under Bump Metal 1) film 13 is formed on the silicon substrate 11 on which the A1 pads 12a and 12b are formed by sputtering or vapor deposition. I do.
  • a resist 14 is applied on the silicon substrate 11 on which the UBM film 13 is formed, and the opening 14 is formed in a region where a solder bump is to be formed by using photolithography technology.
  • electrolytic copper plating is performed by using the UBM film 13 as a force source electrode to form an electrolytic copper plating layer 15 on the UBM film 13 in which the opening 14a is formed. I do.
  • the electrolytic solder plating is performed on the copper plating plating layer 15 by performing electrolytic solder plating using the UBM film 13 as a force source electrode.
  • an oxygen plasma treatment is performed to remove the resist 14 formed on the silicon substrate 11.
  • the silicon on which the electrolytic solder plating layer 16 is formed is formed.
  • the heat treatment of the solder substrate 11 rounds the electrolytic solder plating layer 16.
  • the UBM film 13 around the electrolytic solder plating layer 16 is removed by dry etching or wet etching.
  • the process can be simplified, the cost of the tilt angle sensor can be reduced, and the weight member can be reduced in size, and the tilt angle sensor can be reduced in size.
  • FIGS. 40 to 48 are views showing a ninth embodiment of a tilt angle sensor and a method of manufacturing the tilt angle sensor according to the present invention.
  • FIG. 40 (a) is a plan view showing the configuration of the tilt angle sensor according to the ninth embodiment of the present invention
  • FIG. 40 (b) is a line B 1 _B 1 in FIG. 40 (a). It is sectional drawing cut
  • a single crystal silicon layer 22 is formed on a silicon substrate 21 via a silicon oxide film 20.
  • A1 pads P21 to P23 are formed, and piezoresistors R21 and R22 are formed.
  • A1 pad A pad line H21 connecting the pads P21 to P23 is formed.
  • a solder bump 24 is formed via an A 1 pad 23, and the single-crystal silicon layer 22 has a piezoresistor R 21,
  • a constriction 22a is formed corresponding to the arrangement region of R22.
  • the silicon oxide film 20 under the single-crystal silicon layer 22 is partially removed corresponding to the arrangement regions of the solder bumps 24 and the piezo resistors R 21 and R 22, and the remaining silicon oxide film is left.
  • the single crystal silicon layer 22 is held in a state where it can be radiused with 20 as a fulcrum.
  • the weight is maintained while the piezo resistors R 21 and R 22 are held in a bendable state.
  • a member can be provided. Also, when supporting the single crystal silicon layer 22 on which the piezo resistors R 21 and R 22 are formed so that stress is applied to the piezo resistors R 21 and R 22, the single crystal silicon layer 22 is thinned. After that, the single-crystal silicon layer 22 does not need to be bonded to the silicon substrate 21.
  • the single crystal silicon layer 22 can be efficiently bent to apply stress to the piezoresistors R21 and R22, and the configuration of the tilt angle sensor is simplified, making it easier to withstand impact. Can be improved.
  • FIGS. 41 (a) to 47 (a) are plan views showing a manufacturing process of the tilt angle sensor according to the ninth embodiment of the present invention
  • FIGS. 41 (b) to 47 (b) and FIG. FIG. 48 is a cross-sectional view showing a manufacturing step of the tilt angle sensor according to the ninth embodiment of the present invention.
  • a 5-inch diameter SII substrate having a single crystal silicon layer 22 formed on a silicon substrate 21 via a silicon oxide film 20 is prepared.
  • the thickness T2 of the single crystal silicon layer 22 can be, for example, about 50 m
  • the thickness T3 of the silicon oxide film 20 can be, for example, about 2 ⁇ .
  • SOI substrate for example, a SIMOX substrate or a laser annealing substrate can be used.
  • an impurity such as boron is selectively ion-implanted into the single-crystal silicon layer 22 using a photolithography technique, so that each chip region on the single-crystal silicon layer 22 has a piezoresistive resistance.
  • R 21 and R 22 are formed.
  • an A1 film is formed on the entire surface of the single-crystal silicon layer 22 by sputtering or vapor deposition, and the A1 film is patterned using photolithography and etching techniques, thereby forming each of the single-crystal silicon layers 22 on the single-crystal silicon layer 22.
  • A1 pad 23, P21 to P23 and rooster H21 are formed in the chip area.
  • the width W2 of each chip region of the single-crystal silicon layer 22 can be, for example, 1. Om m, and the length L2 can be, for example, 2.2 mm. Approximately 5000 tilt angle sensor chips can be obtained from SOI substrate It works.
  • a solder bump 24 is formed on the A1 pad 23 formed in each chip region on the single crystal silicon layer 22.
  • the size C2 of the solder bump 24 can be, for example, about 0.6 to 1.2 mm, and the height H2 of the solder bump 24 is, for example, 0.1 to 0.1 mm. It can be about 4 mm.
  • solder bumps 24 As a method of forming the solder bumps 24, for example, electric plating or screen printing can be used, whereby the solder bumps 24 are collectively applied to all the chips taken out from the SOI substrate. And the manufacturing process can be simplified.
  • the specific gravity of the solder bumps 24 is more than three times higher than that of glass or silicon, if the same weight effect is obtained, the volume of the solder bumps 24 can be reduced to 1 Z 3 or less. It is possible to reduce the size of the bump 24.
  • the single crystal silicon layer 22 on which the solder bumps 24 are formed is selectively etched using photolithography technology and etching technology, thereby forming the single crystal silicon layer 22.
  • a constriction 22a is formed, and the single crystal silicon layer 22 around the solder bump 24 is cut off for each chip.
  • wet etching using KOH can be used as a method for etching the single-crystal silicon layer 22.
  • the SOI substrate on which the constriction 22 a is formed in the single-crystal silicon layer 22 is immersed in a chemical solution such as hydrofluoric acid to selectively remove the single-crystal silicon layer 22.
  • the silicon oxide film 20 is brought into contact with the chemical solution through the portion that has been set.
  • the chemical solution is circulated below the single-crystal silicon layer 22, and the lower portion of the single-crystal silicon layer 22 on which the pads P 21 to P 23 are formed is formed.
  • the silicon oxide film 20 below the single crystal silicon layer 22 on which the solder bumps 24 are formed is removed while leaving the silicon oxide film 20.
  • a gap 20a can be formed below the single crystal silicon layer 22 on which the solder bumps 24 are formed, and the single crystal is formed with the remaining silicon oxide film 20 as a fulcrum.
  • the single crystal silicon layer 22 can be held in a state where the silicon layer 22 can be bent.
  • the SOI substrate having the gap 20a formed below the single-crystal silicon layer 22 is diced along the dicing lines L11 and L12, so that soldering is performed.
  • the bumps 24 are formed on the front surface, and the single-crystal silicon layer 22 whose back surface is supported by the silicon oxide film 20 is cut into chips.
  • the solder bumps 24 are formed on the front surface, and the single crystal silicon layer 22 whose back surface is supported by the silicon oxide film 20 is die-bonded into the package 26. .
  • the terminals 27 provided on the package 26 and the A 1 pads P 21 to P 23 formed on the single-crystal silicon layer 22 are connected with the gold wires 25. .
  • the inclination angle sensor is sealed by bonding a lid 28 to the package 26.
  • solder bump 24 having a large specific gravity can be formed on the single-crystal silicon layer 22 without selectively etching the back surface of the silicon substrate 21 supporting the piezoresistors R 21 and R 22. Thus, it is possible to easily form the solder bump 24 while reducing the size of the solder bump 24.
  • the manufacturing process of the tilt angle sensor can be simplified, the size and cost of the tilt angle sensor can be reduced, and the detection accuracy of the tilt angle sensor can be easily improved.
  • the method of using the SOI substrate to support the single crystal silicon layer 22 with the silicon oxide film 20 has been described.
  • a bonded substrate may be used.
  • the constriction 22a in order to make the single-crystal silicon layer 22 easily bend, although the example in which the constriction 22a is provided has been described, the constriction 22a may not be necessarily provided.
  • the method of etching the single-crystal silicon layer 22 to separate the single-crystal silicon layer 22 around the solder bumps 24 into individual chips has been described.
  • the single crystal silicon layer 22 around the solder bumps 24 may be separated for each chip.
  • solder bump 24 for each chip has been described.
  • a plurality of solder bumps 24 may be provided for each chip.
  • FIG. 49 to FIG. 55 are diagrams showing a tenth embodiment of the tilt angle sensor and the tilt angle measuring method according to the present invention.
  • the tilt angle sensor and the tilt angle measuring method are applied to a case where tilt angles ⁇ and ⁇ in different directions are detected by a plurality of piezoresistors as shown in FIG.
  • FIG. 49 (a) is a plan view showing the configuration of the tilt angle sensor according to the tenth embodiment of the present invention
  • FIG. 49 (b) is a plan view of Al in FIG. 49 (a).
  • FIG. 2 is a cross-sectional view taken along line A1.
  • a support member 101b is formed on the support member 101a, and the support member 101b is provided on the back surface of the end portion 102a of the silicon substrate 102. By bonding, the end portion 102 a of the silicon substrate 102 is supported from the back surface.
  • a weight member 104 is formed on the end 102 b of the silicon substrate 102.
  • a constricted beam portion 102c is formed between the end portion 102a and the end portion 102b of the silicon substrate 102.
  • the bending direction of the silicon substrate 102 is the thickness direction of the silicon substrate 102
  • the twisting direction of the silicon substrate 102 is the center line A 1 -A passing through the middle point of the width of the silicon substrate 102.
  • the rotation direction is around 1 axis.
  • the silicon substrate 102 is an n-type silicon substrate, and is formed to be thin until the weight member 104 can be bent and twisted by a change in the direction of gravity.
  • the crystal plane (100) is formed as a surface, and the ⁇ 110> direction is formed so as to coincide with the longitudinal direction of the silicon substrate 102.
  • the weight member 104 is formed by forming a metal lump such as Au or solder on the surface of the silicon substrate 102 using a bump mounting technique.
  • the piezoresistors R] .1, R12, R13, R14, R21, R22, R23 and R24 are formed on the beam 102c.
  • the piezoresistors R11, R12, R13, R14, R21, R22, R23 and R24 are formed by diffusing p-type impurities such as boron or injecting ions into the surface of the silicon substrate 102. ing.
  • the piezoresistors R11 and R14 are arranged at symmetrical positions with respect to the center line A1-1A1 of the beam portion 102c passing through the midpoint in the short direction of the silicon substrate 102.
  • the piezoresistors R21 and R24 are arranged at positions symmetrical with respect to the center line A1-A1, and are closer to the centerline A1-A1 than the piezoresistors R11 and R14. Are located.
  • the piezoresistors R12 and R13 are arranged at symmetrical positions with respect to the center line A1-A1, and the positions of the piezoresistors R11 and R14 and the silicon substrate 102 in the short direction are the same. It is disposed closer to the weight member 104 than the piezoresistors R11 and R14.
  • the piezoresistors R22 and R23 are arranged at symmetrical positions with respect to the center line A1—A1, and the piezoresistors R21 and R24 and the silicon substrate 2 have the same piezoresistor in the lateral direction. It is arranged closer to the weight member 104 than the resistors R21 and R24.
  • the configuration and the manufacturing process of the tilt angle sensor can be simplified, the size and cost of the tilt angle sensor can be reduced, and the resistance to impact can be improved.
  • FIG. 50 (a) is a diagram defining the coordinate system of the tilt angle sensor when the silicon substrate 102 is viewed from a cross section cut in the longitudinal direction
  • FIG. 50 (b) is a diagram in which the silicon substrate 102 is moved in the lateral direction
  • FIG. 3 is a diagram defining a coordinate system of an inclination angle sensor when viewed from a cut section.
  • the longitudinal direction of the silicon substrate 102 is defined as the X axis
  • the short axis of the silicon substrate 102 is defined as the y axis
  • the axes perpendicular to the X axis and the y axis are defined as the z axis.
  • the X-axis component of the gravity W of the weight member 104 is defined as GX
  • the z-axis component of the gravity W of the weight member 104 is defined as Gz.
  • the angle between the horizontal plane and the X axis is defined as the tilt angle ⁇ (tilt angle around the y axis).
  • FIG. 50 (b) the y-axis component of the gravity W of the weight member 104 is defined as G y, and the angle between the horizontal plane L and the y-axis is defined as an inclination angle ⁇ (the inclination angle around the X-axis).
  • FIG. 51 (a) is a circuit diagram showing the connection configuration of the piezo resistors R11, R12, R13 and R14
  • FIG. 51 (b) is the piezo resistors R21, R22, R23 and R14.
  • 24 is a circuit diagram showing a connection configuration of 24.
  • piezoresistors R11, R12, R13 and R14 constitute a full bridge circuit C1.
  • one end of the piezoresistor R11 is connected to one end of the piezoresistor R13, and piezoresistors R11 and R13 are connected in series.
  • One end of the piezoresistor R12 is connected to the piezoresistor R
  • the piezoresistors R12 and R14 are connected in series by connecting one end of 14.
  • the other end of the piezo resistor R 11 and the other end of the piezo resistor R 14 are connected to the positive potential side of the power supply V i, and the other end of the piezo resistor R 12 and the other end of the piezo resistor R 13 are connected to the power supply V. Connected to the negative potential side of i.
  • the potential difference between one end of the piezoresistor R11 (R13) and one end of the piezoresistor R12 (R14) is defined as the output Vo1 of the full bridge circuit C1.
  • the piezo resistors R 21 and R 22 and the length 23 and 11 24 constitute a full bridge circuit C2.
  • the full-bridge circuit C2 one end of the piezoresistor R21 and one end of the piezoresistor R23 are connected, and the piezoresistors R21 and R23 are connected in series.
  • One end of the resistor R24 is connected, and the piezoresistors R22 and R24 are connected in series.
  • the other end of the piezo resistor R 21 and the other end of the piezo resistor R 24 are connected to the positive potential side of the power supply V i, and the other end of the piezo resistor R 22 and the other end of the piezo resistor R 23 are connected.
  • the potential difference between one end of the piezo resistor R 21 (R 23) and one end of the piezo resistor R 22 (R 24) is defined as the output 3 ⁇ 4EV o 2 of the full bridge circuit C 2.
  • a bending moment occurs in the beam portion 102c due to the ⁇ axial component G ⁇ of the gravity W of the weight member 104, and the beam portion 102b bends, but the tilt angle sensor is rotated around the X axis or y.
  • the direction of W changes and Gz changes, and the amount of deflection also changes.
  • the stress ⁇ X 1 in the X-axis direction on the beam section 102 c due to the bending moment is proportional to G z, and since G z satisfies the relationship of the following equation (1), it is expressed as the following equation (2) Can be.
  • G x generates a bending moment in the beam portion 102 c, it is negligible because it is smaller than the bending moment due to G z.
  • the piezo resistance is p-type Si, and the crystal plane (100) of the silicon substrate 102 is the surface.
  • 3 of the piezoresistance can be expressed by the following equation (5).
  • ⁇ 44 is what is called a piezoresistance coefficient, and is a ⁇ -type Si with an impurity concentration of 10 18 [cm 3 ]. In this case, it is about 1.3 X 1 O Pa- 1 ].
  • Hi 1 is a vertical stress applied to the piezoresistance, and ⁇ t is a horizontal stress applied to the piezoresistance.
  • ⁇ 1 When the piezoresistor is oriented in the X-axis direction, ⁇ 1 can be expressed by the following equation (6).
  • a and B are proportional constants.
  • the resistance change rate of each of the piezoresistors R11, R12, R13, R14, R21, R22, R23 and R24] 311,] 312,] 313, ⁇ 14,] 321,] 322, ⁇ 23 and 324 can be represented by the following equations (8) to (15).
  • Vo l is straightforward in proportion to S in and Vo 2 is straight in proportion to cos ⁇ i> cos.
  • the tilt angle sensor has a tilt angle calculation unit that calculates the tilt angles ⁇ based on the output voltages Vo l and V o2.
  • the inclination angle calculation unit When measuring the inclination angle ⁇ , the inclination angle calculation unit first performs step S100.
  • step S100 El, ⁇ 2 are calculated.
  • Step SI00 may be performed, for example, at the time of factory shipment, and the calculation result may be stored in the nonvolatile memory.
  • step S102 where Vo 1 and Vo 2 are calculated
  • step S104 the inclination angle ⁇ is calculated by the following equation (22)
  • step S106 the process proceeds to step S106.
  • the inclination angle ⁇ is calculated by the equation (23), and a series of processing is completed to return to the original processing.
  • FIG. 52 is a diagram showing dimensional conditions of the silicon substrate 102 and the piezoresistor.
  • the length of the end 102a in the longitudinal direction is 800 [ ⁇ ]
  • the length of the end 102a in the short direction is 200. [ ⁇ ].
  • the length of the beam 102c in the longitudinal direction is 800 [itn]
  • the length of the beam 102c in the short direction is 200. [/ im].
  • the thickness of the silicon substrate 102 is 20 [ ⁇ ].
  • the length of the weight member 104 in the longitudinal direction is 600 [/ im]
  • the length of 04 in the lateral direction is 500 [/ itn]
  • the thickness of the weight member 104 is 30 [ ⁇ ].
  • the material of the weight 104 is gold.
  • the piezo resistors R 11, R 21, R 24 and R 14 are arranged 150 [ ⁇ ] apart from the end 102 a in the longitudinal direction of the silicon substrate 102, and the piezo resistors R 12, R 22 , 1 ⁇ 23 and 113 are arranged at a distance of 200 [/ xm] in the longitudinal direction of the silicon substrate 102 from the piezoresistors R11, R21, R24 and R14.
  • the piezoresistors R24 and R23 are arranged 60 m away from the piezoresistors 14 and R13 in the lateral direction of the silicon substrate 102.
  • the piezoresistors R21 and R22 are Piezo resistance R 24 and R 23?
  • the piezoresistors R11 and R12 are arranged 60 [ ⁇ ] away from the piezoresistors R21 and R22 in the lateral direction of the silicon substrate 102.
  • each piezoresistor R11, R12, R13, R14, R21, R22, R23 and R24 are 50 [ ⁇ m] and 10 [ ⁇ , respectively. ], 10 18 [cm 3 ] and 0.45 [ ⁇ ].
  • FIG. 53 (a) is a circuit diagram showing the connection configuration of the piezo resistors R11, R12, R13 and R14
  • FIG. 53 (b) is the piezo resistors R21, R22, R23 and R14
  • 24 is a circuit diagram showing a connection configuration of 24.
  • connection structure is the same as in FIG. However, the power supply voltage Vi was set to 5 [V] for both the full bridge circuits C1 and C2.
  • Fig. 54 (a) is a graph showing the change of the output ff Vol when the inclination angle ⁇ is changed while keeping the inclination angle constant
  • Fig. 54 (b) is a graph showing the inclination angle ⁇ constant and the inclination angle 6 is a graph showing a change in output IffV o 1 when ⁇ is changed.
  • Fig. 55 (a) is a graph showing the change in the output ff Vo 2 when the inclination angle ⁇ is changed while keeping the inclination angle ⁇ constant.
  • Fig. 55 (b) shows the inclination when the inclination angle ⁇ is constant.
  • 9 is a graph showing a change in output ffVo2 when the angle ⁇ is changed.
  • the silicon substrate 102 having the piezoresistor formed on the surface and the support for supporting the silicon substrate 102 at one end of the silicon substrate 102 are provided.
  • a member 101b, a weight member 104 disposed at an end 102b of the silicon substrate 102, and a tilt angle calculation unit for calculating the tilt angles ⁇ and ⁇ ; 1 and R 14, piezoresistors R 21 and R 24, piezoresistors R 12 and R 13, and piezo resistors R 22 and R 23 are symmetrical about the center line A 1-A 1
  • the piezoresistors R11, R12, R13, and R14 constitute the full-bridge circuit C1, and the piezoresistors R21, R22, R23, and R
  • the full-bridge circuit C 2 is constituted by 24, and the inclination angle calculation unit calculates the inclination angle ⁇ based on the output voltage V o 1 of the full bridge circuit C 1, and the output voltage V o of the full bridge circuit C 2
  • the inclination angle ⁇ is calculated
  • the weight member 104 As a result, by using a gold bump having a large specific gravity as the weight member 104, it is possible to reduce the size of the weight member 104 and easily obtain compatibility with existing flip-chip mounting technology. The size and cost of the angle sensor can be reduced, and the resistance to impact can be improved. Further, even when a silicon substrate 102 having a uniform thickness is used, the inclination angles ⁇ and ⁇ in different directions can be detected by one inclination angle sensor. Further, since the bridge circuits C1 and C2 are constituted by a plurality of piezoresistors, the detection accuracy of the inclination angles ⁇ and ⁇ can be relatively improved.
  • the piezo resistors R 11, R 12, R 13, and R 14 correspond to the first piezo resistor group described in claims 23 or 26.
  • the piezoresistors R21, R22, R23 and R24 correspond to the second piezoresistor group described in claims 23 or 26, and the full bridge circuit C1
  • the range corresponds to the first full bridge circuit described in the item 23 or 26.
  • the full bridge circuit C 2 corresponds to the second full bridge circuit according to claim 23 or 26, and the inclination angle calculation unit includes the first inclination angle according to claim 23.
  • the calculation by the tilt angle calculating unit corresponds to the calculating means or the second tilt angle calculating means according to claim 23, and the first tilt angle calculating step according to claim 26, or
  • the range corresponds to the second inclination angle calculation step described in the item 26.
  • FIG. 61 is a diagram showing a first embodiment of a tilt angle sensor and a tilt angle measuring method according to the present invention.
  • FIG. 56 is a plan view showing the configuration of the tilt angle sensor according to the eleventh embodiment of the present invention.
  • piezoresistors R31, R32, R33, R34, R41 and R42 are formed on the beam portion 102c.
  • the piezoresistors R31 and R34 are arranged at positions symmetrical about the center line A1-A1.
  • the piezoresistor R41 is located on the center line A1-A1.
  • the piezoresistors R32 and R33 are arranged at symmetrical positions about the center line A1-A1, and the positions of the piezoresistors R31 and R34 and the silicon substrate 102 in the short direction are the same. It is arranged closer to the weight member 104 than the piezoresistors R31 and R34.
  • the piezoresistor R42 is disposed on the center line A1-A1, and is disposed closer to the weight member 104 than the piezoresistor R41.
  • the silicon substrate 102 can be supported in a bendable and twistable state without selectively etching the back surface of the silicon substrate 102 on which the piezoresistors R31, R32, R33, R34, R41, and R42 are formed.
  • the specific gravity of the weight member 104 can be easily increased while maintaining consistency with the existing flip chip mounting technology, and the reduction of the weight member 104 can be achieved. Therefore, the configuration and manufacturing process of the tilt angle sensor can be simplified, the size and cost of the tilt angle sensor can be reduced, and the resistance to impacts can be improved.
  • FIG. 57 (a) is a circuit diagram showing a connection configuration of the piezo resistors R31, R32, R33 and R34
  • FIG. 57 (b) is a circuit diagram showing a connection configuration of the piezo resistors R41 and R42.
  • the piezoresistors R31, R32, R33 and R constitute a full bridge circuit C3.
  • the full bridge circuit C3 one end of the piezoresistor R31 and one end of the piezoresistor R33 are connected to connect the piezoresistors R31 and R33 in series, and one end of the piezoresistor R32 and the piezoresistor R34 are connected.
  • piezoresistors R32 and R34 are connected in series.
  • the other end of the piezo resistor R 31 and the other end of the piezo resistor R 34 are connected to the positive potential side of the power supply V i, and the other end of the piezo resistor R 32 and the other end of the piezo resistor R 33 are connected to the power supply V.
  • Connected to the negative potential side of i Connected to the negative potential side of i.
  • the potential difference between one end of the piezoresistor R31 (R33) and one end of the piezoresistor R32 (R34) is defined as the output ffiVo3 of the full bridge circuit C3.
  • the piezoresistors R41 and R42 constitute a half-bridge circuit C4.
  • the piezo resistor R41 is connected to one end of the piezo resistor R, and the piezo resistors R 41 and R are connected in series.
  • the other end of the piezoresistor R41 is connected to the plus potential side of 3 ⁇ 4Vi, and the other end of the piezoresistor R42 is connected to the minus potential side of the power supply Vi.
  • the potential difference of the piezoresistor R42 is defined as the output voltage Vo4 of the half bridge circuit C4.
  • the resistance change rates of the respective piezoresistors R31, R32, R33, R34, R41 and R42] 331, 032, J333, ⁇ 34,] 341 and 342 are expressed by the following equations (24) to (29). Can be.
  • the following equations (24) to (29) can be derived in the same manner as in the tenth embodiment by using the above equations (1) to (7).
  • Vo 3 is a value proportional to sin rj
  • Vo 4_V iZ2 is a value proportional to cos (f> cos). Therefore, the inclination angle calculation unit is determined by the tenth embodiment.
  • the inclination angles ⁇ and ⁇ can be calculated in the same manner as described above.
  • FIG. 58 is a view showing dimensional conditions of the silicon substrate 102 and the piezoresistor.
  • the length of the end 102a in the longitudinal direction is 800 [ ⁇ ]
  • the length of the end 102a in the short direction is 200. [im].
  • the length of the beam 102c in the longitudinal direction is 800 [/ im]
  • the length of the beam 102c in the short direction is 200 [/ im].
  • the thickness of the silicon substrate 102 is 20 [ ⁇ ].
  • the length of the weight member 104 in the longitudinal direction (the short direction of the silicon substrate 102) is 600 [ ⁇ m ], and the length of the weight member 104 in the short direction (the longitudinal direction of the silicon substrate 102) is 50. 0 [; um], and the thickness of the weight member 104 is 30 [ ⁇ ].
  • the material of the weight member 104 is gold.
  • the piezoresistors R 31, R 41 and R 34 are arranged at a distance of 150 m] in the longitudinal direction of the silicon substrate 102 from the end 102 a, and the piezo resistors R 3 2 , 42 and 133 are arranged at a distance of 500 [/ m] in the longitudinal direction of the silicon substrate 102 from the piezoresistors R 31, R 41 and R 34. .
  • the piezoresistors R41 and R42 are located 80 [ ⁇ m] away from the piezoresistors R34 and R33 in the lateral direction of the silicon substrate 102.
  • the resistors R 31 and R 32 are arranged at a distance of 80 [Aim] in the short direction of the silicon substrate 102 from the piezo resistors R 41 and R 42.
  • each of the piezoresistors R 31, R 32, R 33, R 34, R 41 and R 42 are 50 [/ im], 1 0 [/ im], 10 18 [cm 3 ] and 0.45 [/ xm].
  • FIG. 59 (a) is a circuit diagram showing a connection configuration of the piezo resistors R31, R32, R33 and R34
  • FIG. 59 (b) is a piezo resistor R41 and R34
  • FIG. 4 is a circuit diagram showing a connection configuration of 42.
  • connection structure is the same as in FIG. However, 3 ⁇ 43 ⁇ 43 ⁇ 43 ⁇ 4 ⁇ i was set to 5 [V] for both the full-bridge circuits C 3 and C 4.
  • Figure 60 (a) is a graph showing the change in output 3 ⁇ 4J3E V o 3 when the inclination angle ⁇ is changed while keeping the inclination angle ⁇ constant.
  • Figure 60 (b) is a graph showing that the inclination angle ⁇ is constant.
  • 11 is a graph showing a change in the output ⁇ o 3 when the inclination angle ⁇ is changed in the following manner.
  • Figure 6 1 (a) is a graph showing the change in output 3 ⁇ 41 ⁇ V o 4 when the inclination angle ⁇ is changed while keeping the inclination angle ⁇ constant.
  • a silicon substrate 102 having a piezoresistor formed on the surface, a support member 101 b supporting the silicon substrate 102 at one end of the silicon substrate 102, A weight member 104 disposed at an end 102 b of the silicon substrate 102, and a tilt angle calculation unit for calculating the tilt angles ⁇ and ⁇ are provided, and piezo resistors R 31 and R 34, and Piezoresistors R32 and R33 are placed in line symmetry about centerline A1—A1, and piezoresistors R41 and R42 are placed on centerline A1—A1.
  • the piezoresistors R31, R32, R33 and R34 form a full bridge circuit C3, and the piezoresistors R41 and R42 form a half bridge circuit C4.
  • the inclination angle calculator calculates the inclination angle ⁇ based on the output voltage V o 3 of the full bridge circuit C 3, and outputs the output of the half bridge circuit C 4 And calculates the inclination angle ⁇ on the basis of the pressure V o 4 and the calculated angle of inclination eta.
  • the weight member 104 As a result, by using a gold bump having a large specific gravity as the weight member 104, it becomes possible to easily match the existing flip chip mounting technology while reducing the size of the weight member 104, This makes it possible to reduce the size and cost of the tilt angle sensor and also improve the resistance to impact. Further, even when the silicon substrate 102 having a uniform thickness is used, the inclination angles ⁇ and ⁇ ⁇ ⁇ in different directions can be detected by one inclination angle sensor. Further, since the bridge circuits C3 and C4 are configured by a plurality of piezoresistors, the detection accuracy of the inclination angles ⁇ and ⁇ can be relatively improved. Further, the number of piezoresistors necessary for detection can be reduced as compared with the tenth embodiment.
  • the piezoresistors R31, R32, R33 and R34 correspond to the first piezoresistor group described in claims 24 or 27.
  • the piezoresistors R41 and R42 correspond to the second piezoresistor group described in claims 24 or 27, and the full bridge circuit C3 corresponds to the claims 24th or 2nd. It corresponds to the first full bridge circuit described in paragraph 7.
  • the half-bridge circuit C 4 corresponds to the second half-bridge circuit described in claims 24 or 27, and the inclination angle calculation unit includes a first inclination angle described in claims 24.
  • FIG. 62 or FIG. 69 is a diagram showing a tilt angle sensor and a tilt angle measuring method according to a 12th embodiment of the present invention.
  • FIG. 62 is a plan view showing a configuration of the tilt angle sensor according to the 12th embodiment of the present invention.
  • piezoresistors R51, R52, R53 and R54 are formed on the beam 102c.
  • the piezoresistors R51 and R54 are arranged at positions symmetrical about the center line A1-A1.
  • the piezoresistors R52 and R53 are arranged at positions symmetrical with respect to the center line A1—A1, and the piezoresistors R51 and R54 and the short side of the silicon substrate 102 are arranged.
  • the positions in the hand direction are the same, and they are arranged closer to the weight member 104 than the piezoresistors R51 and R54.
  • the silicon can be bent and twisted without selectively etching the back surface of the silicon substrate 102 on which the piezoresistors R51, R52, R53, and R54 are formed. It is possible to support the substrate 102 and easily increase the specific gravity of the weight member 104 while maintaining consistency with the existing flip-chip mounting technology to reduce the weight member 104 Can be achieved. Therefore, the configuration and the manufacturing process of the tilt angle sensor can be simplified, the size and cost of the tilt angle sensor can be reduced, and the resistance to impact can be improved.
  • FIG. 63 (a) is a circuit diagram showing a connection configuration of the piezo resistors R51, R52, R53 and R54
  • FIG. 63 (b) is a circuit diagram showing another configuration of the piezo resistors R51, R52, R53 and R54
  • FIG. 3 is a circuit diagram illustrating a connection configuration.
  • piezoresistors R51, R52, 13 ⁇ 453 and 13 ⁇ 454 form a full bridge circuit C5.
  • the full bridge circuit C5 one end of the piezoresistor R51 and one end of the piezoresistor R53 are connected to connect the piezoresistors R51 and R53 in series, and one end of the piezoresistor R52 and the piezoresistor R54 are connected. One end is connected, and the piezoresistors R52 and R54 are connected in series.
  • the other end of the piezo resistor R 51 and the other end of the piezo resistor R 54 are connected to the positive potential side of the power supply V i, and the other end of the piezo resistor R 52 and the other end of the piezo resistor R 53 are connected to the power supply V. Connected to the negative potential side of i.
  • the potential difference between one end of the piezo resistor R 51 (R 53) and one end of the piezo resistor R 52 (R 54) is defined as the output ffVo 5 of the full bridge circuit C 5.
  • the piezoresistors R51, R52, and the shaku 53! ⁇ 54 constitute a full bridge circuit C6 which is different in connection from the full bridge circuit C5.
  • the full bridge circuit C6 one end of the piezoresistor R51 and one end of the piezoresistor R53 are connected to connect the piezoresistors R51 and R53 in series, and one end of the piezoresistor R52 and one end of the piezoresistor R54. And piezoresistors R52 and R54 are connected in series.
  • the other end of the piezo resistor R 51 and the other end of the piezo resistor R 52 are connected to the positive potential side of the power supply V i, and the other end of the piezo resistor R 53 and the other end of the piezo resistor R 54 are connected to the minus of the power supply V i. Connected to the potential side.
  • the potential difference between one end of the piezo resistor R 51 (R 53) and one end of the piezo resistor R 52 (R 54) is defined as the output voltage Vo 6 of the full bridge circuit C 6.
  • the full bridge circuit C6 is configured by switching the connection of the full bridge circuit C5 by switching or the like.
  • 351, ⁇ 52, / 353 and] 354 of the respective piezoresistors R51, R52, R53 and R54 can be expressed by the following equations (34) to (37).
  • the following equations (34) to (37) can be derived in the same manner as in the tenth embodiment by using the above equations (1) to (7).
  • E5 and E6 can be expressed by the following equations (40) and (41).
  • the inclination angle calculation unit can calculate the inclination angle ⁇ in the same manner as in the tenth embodiment.
  • FIG. 64 is a diagram showing dimensional conditions of the silicon substrate 102 and the piezoresistor.
  • the length in the longitudinal direction of the end portion 102a (the short direction of the silicon base fe 102) is 800 [/ im]
  • the length in the short direction of the end portion 102a (the longitudinal direction of the silicon substrate 102). Is 200 [/ itn].
  • the length of the beam 102c in the longitudinal direction (longitudinal direction of the silicon substrate 102) is 800 [/ m]
  • the length of the beam 102c in the short direction (short direction of the silicon substrate 102) is 200 [/ im].
  • the thickness of the silicon substrate 102 is 20 [ ⁇ ].
  • the length of the weight member 104 in the longitudinal direction is 600 [ ⁇ m]
  • the length of the weight member 104 in the short direction is 500 [/ im].
  • the thickness of the weight member 104 is 30 [ ⁇ ].
  • the material of the weight member 104 is gold.
  • the piezoresistors R51 and R54 are arranged at a distance of 50 [ ⁇ ] in the longitudinal direction of the silicon substrate 102 from the end 102a, and the piezoresistors R52 and R53 are connected to the piezoresistors R51 and R53. It is arranged at a distance of 200 [/ im] in the longitudinal direction of the silicon substrate 102 from the R 54 force. Further, the piezoresistors R51 and R52 are arranged at positions 160 [ ⁇ ] apart from the piezoresistors R53 and R54 in the lateral direction of the silicon substrate 102.
  • each piezoresistor R51, R52, R53 and R54 are 50 [/ im], 10 [/ im], 10 18 [cm 3 ] and 0.45 [/ zm].
  • Fig. 65 (a) is a circuit diagram showing the connection configuration of the piezo resistors R51, R52, R53 and R54
  • Fig. 65 (b) is the circuit diagram of the piezo resistors R51, R52, R53 and R54.
  • FIG. 9 is a circuit diagram illustrating another connection configuration.
  • connection structure is the same as in FIG. However, source 3EVi was set to 5 [V] for both full-bridge circuits C5 and C6.
  • Fig. 66 (a) shows the output when the tilt angle ⁇ is changed while the tilt angle ⁇ is constant.
  • FIG. 66 (b) is a graph showing the change in the output SffVo5 when the oblique angle ⁇ is changed while the oblique angle is kept constant while the oblique angle is kept constant.
  • Fig. 67 (a) is a rough graph showing the change of the output Sff Vo 6 when the inclination angle ⁇ is changed while keeping the inclination angle ⁇ constant
  • Fig. 67 (b) shows the inclination with the inclination angle ⁇ constant
  • 6 is a graph showing a change in output o 6 when the angle ⁇ is changed.
  • FIG. 68 (a) is a graph showing the change of the output voltage V o 5 for each material when the tilt angle ⁇ is fixed and the tilt angle ⁇ is changed when the material of the weight member 104 is changed.
  • Fig. 68 (b) shows the variation of the output 3 ⁇ 4 £ V o5 when the material of the weight member 104 was changed and the tilt angle ⁇ was changed while the tilt angle ⁇ was constant. It is a graph shown for each material.
  • the output miiv o 5 is almost proportional to s i ⁇ ⁇ as shown in FIG.
  • the weight member 104 is not provided, there is almost no change.
  • the weight member 104 is made of Si, the deformation is slightly larger than when the weight member 104 is not provided.
  • the weight member 104 is formed of solder (Sn 63%, Pb 37%), the change is slightly larger than that of the weight member 104 formed of Si.
  • the weight member 104 is made of Au, the change is slightly larger than when the weight member 104 is made of solder.
  • FIG. 66A shows a case where the weight member 104 is made of Au.
  • FIG. 69 (a) shows the change in the output voltage Vo 6 for each material when the inclination angle ⁇ is fixed and the inclination angle ⁇ is changed when the material of the weight member 104 is changed.
  • FIG. 69 (b) is a graph showing changes in output mj £ Vo 6 when the inclination angle ⁇ is kept constant and the inclination angle ⁇ is varied when the material of the weight member 104 is varied. It is a graph shown for each material.
  • FIG. 69 (a) shows a case where the weight member 104 is made of Au.
  • the silicon substrate 102 having the piezoresistor formed on the surface, the support member 101b supporting the silicon substrate 102 at one end of the silicon substrate 102, and the end 102b of the silicon substrate 102
  • a tilt angle calculator for calculating the tilt angle ⁇ , the piezo resistors R 51 and R 54, and the piezo resistors R 52 and R 53, and the center line A 1 — A 1 It is arranged at a line symmetrical position as an axis, and a full-bridge circuit C5 is composed of piezoresistors R51, R52, R53, and R54, and a full-bridge circuit C5 is composed of piezoresistors R51, R52, R53, and R54.
  • the inclination angle calculation unit calculates an inclination angle ⁇ based on the output voltage Vo 3 of the full bridge circuit C 3, and outputs the output voltage Vo 4 of the half-bridge circuit C 4 and Based on the calculated inclination angle ⁇ Then, the inclination angle ⁇ is calculated.
  • the weight member 104 As a result, by using a gold bump having a large specific gravity as the weight member 104, it is possible to reduce the size of the weight member 104 and easily obtain compatibility with the existing flip-chip mounting technology. 'The cost can be reduced and the impact resistance can be improved. Also, thickness Even when a silicon substrate 102 having a uniform inclination angle is used, inclination angles ⁇ and ⁇ in different directions can be detected by one inclination angle sensor. Further, since the bridge circuits C5 and C6 are constituted by a plurality of piezoresistors, the detection accuracy of the inclination angles ⁇ and ⁇ can be relatively improved. Further, the number of piezoresistors necessary for detection can be reduced as compared with the tenth embodiment. Further, since the offset is not included in the output voltage V o6, the detection accuracy of the inclination angles ⁇ and ⁇ can be improved as compared with the first embodiment.
  • the piezoresistors R 51, R 52, R 53 and R 54 correspond to the first piezoresistor group described in claims 25 or 28.
  • the full-bridge circuit C5 corresponds to the first full-bridge circuit described in claims 25 or 28, and the full-bridge circuit C6 corresponds to the claims 25 or 28.
  • the second full bridge circuit is supported.
  • the inclination angle calculation unit corresponds to the first inclination angle calculation unit described in claim 25 or the second inclination angle calculation unit described in claim 25.
  • the calculation according to the above corresponds to the first inclination angle calculation step described in claim 28 or the second inclination angle calculation step described in claim 28.
  • FIG. 70 is a diagram showing a thirteenth embodiment of the azimuth sensor according to the present invention.
  • FIG. 70 is a block diagram showing the configuration of the azimuth sensor according to the present invention.
  • the azimuth sensors include a three-axis magnetic sensor 101, a magnetic sensor drive power supply unit 102, a chopper unit 103, a magnetic sensor amplifier unit 104, and a magnetic sensor A / D conversion unit 1.
  • Sensitivity 'offset correction unit 106, tilt angle sensor 107, tilt sensor amplifier unit 108, tilt angle sensor AZD conversion unit 109, tilt correction unit 110, and azimuth angle calculation unit 1 1 1 is provided.
  • the three-axis magnetic sensor 101 has an X-axis geomagnetic sensor HE ⁇ ⁇ ⁇ that detects the geomagnetic component in the X-axis direction with the vertical direction of the azimuth sensor as the X-axis, and the y-axis with the horizontal direction of the azimuth sensor as the y-axis.
  • Y-axis geomagnetic sensor HE that detects the geomagnetic component in the direction z
  • z-axis geomagnetic sensor HE that detects the geomagnetic component in the Z- axis direction with the thickness direction of the y and azimuth sensors as the z-axis z is provided.
  • the chopper section 103 switches terminals for driving the X-axis geomagnetic sensor HEx, the y-axis geomagnetic sensor HEy, and the z-axis geomagnetic sensor HEz, respectively.
  • the output drive voltage is applied to the X-axis geomagnetic sensor HE x, the y-axis geomagnetic sensor HE y, and the z-axis geomagnetic sensor HE z, respectively, and the X-axis geomagnetic sensor HEX, the y-axis geomagnetic sensor HE y, and the z-axis geomagnetic sensor
  • the sensor signal output from the HEz is output to the magnetic sensor amplifier 104 in a time-division manner.
  • the magnetic sensor A / D conversion unit 105 converts the sensor signals from the X-axis geomagnetic sensor HE x, the y-axis geomagnetic sensor HE y and the z-axis geomagnetic sensor HE z from analog to digital, and converts the converted digital data, respectively.
  • the data are output to the sensitivity / offset correction unit 106 as X-axis geomagnetic data, y-axis geomagnetic data, and z-axis geomagnetic data.
  • the sensitivity / offset correction unit 106 is based on the X-axis geomagnetic measurement data, y-axis geomagnetism measurement data, and z-axis geomagnetism measurement data from the magnetic sensor A / D conversion unit 105.
  • the offset and sensitivity correction coefficient of HEz are calculated, and the X-axis geomagnetic measurement data, y-axis geomagnetism measurement data, and z-axis geomagnetism measurement data are corrected based on the calculated offset and sensitivity correction coefficient.
  • the tilt angle sensor 107 detects a tilt angle ⁇ with the X axis as the rotation axis and a tilt angle ⁇ with the y axis as the rotation axis, and outputs the output sensor signal to the tilt angle sensor amplifier 108. I'm going to do it.
  • the tilt angle sensor A / D converter 109 receives the sensor signal from the tilt angle sensor 107.
  • the digital data obtained by the AZD conversion is output to the tilt correction unit 110 as tilt angle ⁇ measurement data and tilt angle ⁇ measurement data.
  • the tilt compensator 110 detects the X-axis geomagnetism from the offset compensator 106 based on the tilt angle ⁇ measurement data and the tilt angle ⁇ measurement data from the tilt angle sensor AZD converter 109.
  • the data, y-axis geomagnetism measurement data and z-axis geomagnetism measurement data are corrected.
  • the azimuth calculation unit 111 calculates the azimuth based on the X-axis geomagnetic measurement data, the y-axis geomagnetism measurement data, and the Z- axis geomagnetism measurement data from the tilt correction unit 110. .
  • the geomagnetic component in the X-axis direction, the geomagnetic component in the y-axis direction, and the geomagnetic component in the z-axis direction correspond to the geomagnetic component described in claim 29
  • the magnetic sensor 101 corresponds to the terrestrial magnetism detecting means described in claim 29, and the X-axis terrestrial magnetism measurement data, the y-axis terrestrial magnetism measurement data, and the ⁇ -axis air magnetism measurement data are described in claim 29.
  • the tilt angle sensor 107 corresponds to the tilt angle sensor according to claim 29, and the tilt angle ⁇ measurement data and the tilt angle ⁇ measurement data correspond to
  • the tilt correction unit 110 and the azimuth calculation unit 111 correspond to the azimuth angle data described in the twentieth range.
  • a mobile phone according to the present invention has the azimuth sensor according to the thirteenth embodiment built into a mobile phone.
  • the method of forming a piezo resistor on a silicon substrate has been described.
  • a Ge substrate or an InSb substrate may be used. ,.
  • the tilt angle sensor is, for example, a motion sensor such as an electronic pet, a robot, or a game controller, or a screen operation device based on the tilt of a portable terminal such as a game machine. It can be used for navigation systems for portable terminals, and for monitoring devices such as tilt, vibration, and vibration.
  • the tilt angle sensor Although described, it may be applied to an acceleration sensor.
  • a solder bump has been described as an example of a metal weight member, but a gold bump may be used.
  • the uniaxial tilt angle sensor has been described as an example.
  • the present invention may be applied to a biaxial tilt angle sensor.
  • the force with the direction of the piezoresistors R11, R12, R13, and R14 being the longitudinal direction of the silicon substrate 102 is not limited thereto. If they are the same, the directions may be the short direction of the silicon substrate 102.
  • FIG. 71 is a diagram showing an arrangement of the piezoresistors R11, R12, R13 and R14.
  • the piezoresistors R11 and R14 are arranged in the longitudinal direction of the silicon substrate 102, and the piezoresistors R12 and R13 are oriented in the lateral direction of the silicon substrate 102. It is arranged.
  • the piezoresistors R11, R12, R13 and R14 are all arranged in the short direction of the silicon substrate 102.
  • the directions of the piezoresistors R21, R22, R23 and R24 are set to the longitudinal direction of the silicon substrate 102.
  • the present invention is not limited to this. If they are the same, they may be regarded as the short direction of the silicon substrate 102.
  • FIG. 72 is a diagram showing an arrangement of the piezoresistors R21, R22, R23 and R24.
  • the piezoresistors R21 and R24 are arranged in the longitudinal direction of the silicon substrate 102, and the piezoresistors R22 and R23 are oriented in the lateral direction of the silicon substrate 102. It is arranged.
  • the piezoresistors R21, R22, R23 and R24 are all arranged in the lateral direction of the silicon substrate 102.
  • the direction of the piezoresistors R31, R32, R33, and R34 is set to the longitudinal direction of the silicon substrate 102, but is not limited thereto. If the directions of the piezoresistors forming the pair are the same, the directions may be regarded as the lateral directions of the silicon substrate 102.
  • FIG. 73 is a diagram showing the arrangement of the piezoresistors R31, R32, R33 and R34.
  • the piezoresistors R31 and R34 are arranged in the longitudinal direction of the silicon substrate 102, and the piezoresistors R32 and R33 are oriented in the short direction of the silicon substrate 102. It is arranged.
  • the piezoresistors R31, R32, R33 and R34 are all arranged in the short direction of the silicon substrate 102.
  • the directions of the piezoresistors R41 and R42 are set to the longitudinal direction of the silicon substrate 102.
  • the present invention is not limited to this, and the directions of the piezoresistors forming the pair are the same.
  • those directions may be regarded as short sides of the silicon substrate 102.
  • FIG. 74 is a diagram showing an arrangement of the piezoresistors R41 and R42.
  • the piezoresistors R41 and R42 are both arranged in the short direction of the silicon substrate 102.
  • the force in which the directions of the piezoresistors R51, R52, R53 and R54 are set in the longitudinal direction of the silicon substrate 102 is not limited thereto. If so, those directions may be regarded as the short sides of the silicon substrate 102.
  • FIG. 75 is a diagram showing an arrangement of the piezoresistors R51, R52, R53 and R54.
  • the piezoresistors R51, R52, R53 and R54 are all arranged in the short direction of the silicon substrate 102.
  • the piezoresistors R51 and R54 are arranged in the longitudinal direction of the silicon substrate 102, and the piezoresistors R52 and R53 are oriented in the short direction of the silicon substrate 102. It is arranged.
  • Industrial applicability As described above, according to the method for manufacturing an inclination angle sensor according to claims 1 to 10 or the inclination angle sensor according to claims 11 to 16 according to the present invention, It is not necessary to perform selective etching using photolithography technology in order to form the displacement part, which simplifies the configuration and manufacturing process of the tilt angle sensor and reduces the cost of the tilt angle sensor. At the same time, the effect that the resistance to impact can be improved can be obtained.
  • the tilt angle sensor according to claims 17 to 19 of the present invention or the method of manufacturing the tilt angle sensor according to claims 20 to 22 In order to form the portion, it is not necessary to selectively etch the back surface of the substrate.
  • a metal bump having a large specific gravity as a weight member it is possible to reduce the size of the weight member and easily achieve compatibility with existing flip chip mounting technology. Therefore, it is possible to reduce the size and cost of the tilt angle sensor and to improve the impact resistance.
  • the tilt angle sensor according to claim 23 of the present invention it is not necessary to selectively etch the back surface of the substrate in order to form the displacement portion.
  • a metal bump having a large specific gravity as a weight member, it is possible to reduce the size of the weight member and easily achieve compatibility with existing flip chip mounting technology. Therefore, it is possible to reduce the size and cost of the tilt angle sensor, and to improve the impact resistance.
  • the ridge circuit is constituted by a plurality of piezoresistors, an effect that the accuracy of detecting the tilt angle of the two axes can be relatively improved can be obtained.
  • the tilt angle sensor according to claim 24 of the present invention it is not necessary to selectively etch the back surface of the substrate in order to form the displacement portion.
  • a metal bump having a large specific gravity as a weight member, it is possible to reduce the size of the weight member and easily achieve compatibility with existing flip chip mounting technology. Therefore, if it becomes possible to reduce the size and cost of the tilt angle sensor, In both cases, the effect that the resistance to impact can be improved can be obtained.
  • the bridge circuit is formed by a plurality of piezo resistors, the effect of relatively improving the detection accuracy of the two-axis tilt angle can be obtained.
  • the tilt angle sensor according to claim 25 of the present invention it is not necessary to selectively etch the back surface of the substrate in order to form the displacement portion.
  • a metal bump having a large specific gravity as the weight member, it is possible to easily match the existing flip chip mounting technology while reducing the size of the weight member. Therefore, it is possible to reduce the size and cost of the tilt angle sensor and to improve the impact resistance.
  • the effect that the tilt angle of two axes can be detected by one tilt angle sensor can be obtained.
  • the bridge circuit is formed by a plurality of piezo resistors, the effect of relatively improving the detection accuracy of the two-axis tilt angle can be obtained.
  • the azimuth sensor according to claim 29 of the present invention, according to claims 1 to 10, claim 17 to 19, or claim
  • the azimuth sensor can be prevented from being placed on a horizontal surface while suppressing a large size and cost increase of the azimuth sensor.
  • the azimuth can be measured relatively accurately.
  • the use of the azimuth angle sensor described in claim 29 suppresses a large-sized mobile phone and cost reduction. While keeping the mobile phone level, The azimuth can be measured relatively accurately as it is.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Pressure Sensors (AREA)

Description

明 細 書 傾斜角センサ、 並びに傾斜角センサの製造方法および傾斜角測定方法 技術分野
本発明は、 傾斜角センサおよびその製造方法に係り、 特に、 ピエゾ抵抗が形成 された基板を選択的にェツチングすることなく、 ピエゾ抵抗効果を利用して傾斜 角を測定することが可能な傾斜角センサ、 並びに傾斜角センサの製造方法および 傾斜角測定方法に関する。
^冃景 . 技術
従来の傾斜角センサとしては、 傾斜時の応力に起因するピエゾ抵抗の抵抗変化 に基づいて、 傾斜角を測定する方法があった。
図 76 (a) は、 従来の傾斜角センサの概略構成を示す斜視図、 図 76 (b) は、 従来の傾斜角センサの概略構成を示す断面図、 図 76 (c) は、 従来の傾斜 角センサのピエゾ抵抗の部分を拡大して示す断面図である。
図 76において、 シリコン基板 201上には、 ピエゾ抵抗 Rが形成され、 ピエ ゾ抵抗 Rの配置領域には、 ピエゾ抵抗 Rが応力を受け易くするために、 シリコン 基板 201を裏面からエッチングして形成された変位部 20 1 cが設けられてい る。
また、 シリコン基板 201の周囲には、 変位部 20 1 cを支持するための支持 部 20 1 aが形成されるとともに、 シリコン基板 20 1の中央には、 変位部 20 1 cを変形させるための錘部 20 1 bが形成されている。
ここで、 支持部 20 1 a、 錘部 20 1 bおよび変位部 20 1 cは、 500 μπι 程度の厚みのシリコン基板 201を、 裏面から選択的にエッチングすることによ り形成され、 支持部 20 1 aと錘部 20 1 bとの間が変位部 201 cで架橋され るように構成される。
すると、 錘部 20 1 bにかかる重力によって、 図 76 (c) に示すように、 変 位部 2 O l cが変形し、 ピエゾ抵抗 Rに応力が加わる。 そして、 シリコン基板 2 01が傾くと、 錘部 201 bにかかる重力の方向が変化し、 ピエゾ抵抗 Rに加わ る応力も変化するので、 ピエゾ抵抗 の抵抗値が変化する。
このため、 ピエゾ抵抗 Rの抵抗値の変化を検出することにより、 傾余斗角センサ の傾きを求めることができる。
図 77 (a) は、 従来の傾斜角センサの X、 Y方向への加速時における各ピエ ゾ抵抗の増減を示す図、 図 77 (b) は、 従来の傾斜角センサの Z方向への加速 時における各ピエゾ抵抗の増減を示す図である。
図 77 (a) において、 傾斜角センサが X、 Y方向へ加速されると、 X、 Y方 向への力 FX、 FYが錘部 201 bにかかり、 錘部 201 bが X、 Y方向に移動 しょうとする。 このため、 変位部 201 cが変形し、 ピエゾ抵抗 Rl、 R3には 引張応力、ピエゾ抵抗 R 2、 R 4には圧縮応力が加わり、これらの応力に従って、 ピエゾ抵抗 R 1-R4の抵抗値が増減する。
一方、 図 77 (b) において、 傾斜角センサが Z方向へ加速されると、 Z方向 への力 FZが錘部 201 bに力、力 り、錘部 201 bが Z方向に移動しようとする。 このため、 変位部 201 cが変形し、 ピエゾ抵抗 R 2、 R 3には引張応力、 ピエ ゾ抵抗 R l、 R4には圧縮応力が加わり、 これらの応力に従って、 ピエゾ抵抗 R 1〜R 4の抵抗値が増減する。
従って、 これらのピエゾ抵抗 R 1〜R 4からなるホイートストンブリッジ回路 を形成することにより、 傾斜角センサの傾きを求めることができる。
また、 従来の傾斜角センサとしては、 四隅をシリコンのばねで吊るした可動部 分を持ち、 固定部分との間にコンデンサを形成して、 可動部分の移動による容量 変化を測定する方法もある。
しかしながら、図 76の傾斜角センサでは、変位部 201 cを形成するために、 500 / m程度の厚みのシリコン基板を数 +μ ΐΏ程度にまで選択的にエッチング する必要があり、 製造工程が »ィ匕して、 コストアップになるという問題があつ た。
また、 図 76の傾斜角センサでは、 シリコン基板の裏面を選択的にエッチング して、 支持部 201 a、 錘部 201 bおよび変位部 201 cが形成されるため、 傾斜角センサの構成が複雑化し、 傾斜角センサが衝撃に弱くなるという問題もあ つた。
また、 シリコンのばねを用いる方法では、 ばねおよびコンデンサを 1〜2 μ πι 程度の微細加工で形成する必要があり、 コストアップになるとともに、 衝撃にも 弱くなるという問題もあった。
そこで、 本発明は、 このような従来の技術の有する未解決の課題に着目してな されたものであって、 ピエゾ抵抗が形成された基板を選択的にェッチングするこ となく、ピエゾ抵抗効果を利用して傾斜角を測定することが可能な傾斜角センサ、 並びに傾斜角センサの製造方法およ 頃斜角測定方法を«することを第 1の目 的としている。 また、 ピエゾ抵抗が形成された基板の裏面を選択的にエッチング することなく、 錘部材を形成することが可能な傾斜角センサ、 並びに傾斜角セン サの製造方法およ 頃斜角測定方法を ffittすることを第 2の目的としている。 発明の開示
上記目的を達成するために、 本発明に係る請求の範囲第 1項記載の傾斜角セン サは、 表面にピエゾ抵抗が形成され、 橈み可能な厚みまで裏面全体が均一に研削 された基板と、 前記基板の少なくとも一端で前記基板を支持する支持部材とを備 る。
これにより、 ピエゾ抵抗が形成された基板の裏面全体を単に研削するだけで、 変位部を形成することが可能となり、 変位部を形成するために、 フォトリソダラ フィー技術を用いた選択的なエッチングを行なう必要がなくなる。
このため、 傾斜角センサの構成および製造工程を簡易化して、 傾斜角センサの コストを下げることが可能となるとともに、 衝撃に対する耐性も向上させること が可能となる。
さらに、 本発明に係る請求の範囲第 2項記載の傾斜角センサは、 請求の範囲第 1項記載の傾斜角センサにおいて、 前記ピエゾ抵抗形成面の変位可能領域に配置 された錘部材をさらに備える。
これにより、ピエゾ抵抗が形成された基板を選択的にェツチングすることなく、 ピエゾ抵抗が形成された基板上に錘部材を設けることができ、 傾斜角センサの製 造工程の複雑化を抑制しつつ、 傾斜角センサの検出感度を向上させることができ る。
さらに、 本発明に係る請求の範囲第 3項記載の傾斜角センサは、 請求の範囲第 1および第 2項のいずれかに記載の傾斜角センサにおいて、 前記ピエゾ抵抗は、 前記基板の表面に 2次元的に配置されている。
これにより、 厚みが均一な基板を用いた場合においても、 異なる方向の傾斜角 を 1つの傾斜角センサで検出することや、 ブリツジ回路を構成して検出精度を向 上させることが可能となる。
さらに、 本発明に係る請求の範囲第 4項記載の傾斜角センサは、 請求の範囲第 3項記載の傾斜角センサにおレ、て、 前記ピエゾ抵抗は、 前記基板の橈み量を検出 するよう前記基板の表面に配置されたピエゾ抵抗と、 前記基板の捻れ量を検出す るよう前記基板の表面に配置されたピエゾ抵抗とを備える。
これにより、 厚みが均一ィヒされた基板を用いた場合においても、 同一面上にピ ェゾ抵抗を配置することで、 2軸方向の傾斜角を検出することが可能となり、 2 軸傾斜角センサの構成および製造工程を簡易化して、 2軸傾斜角センサのコスト ダウンを図ることが可能となる。
さらに、 本発明に係る請求の範囲第 5項記載の傾斜角センサは、 変位可能な自 由表面を有する 6面体短冊形弾性体と、 前記 6面体短冊形弾性体の同一面上の長 手方向に少なくとも 2個所以上設けられ、 少なくとも 1つは前記自由表面上に配 置されたピエゾ抵抗と、 前記 6面体短冊形弾性体の長手方向の両端を支持する支 持部材と、 前記 6面体短冊形弾性体の変位可能領域の長手方向のほぼ中央に設け られた錘部材とを備える。
これにより、 6面体短冊形弾性体に支持部材および錘部材を後付けすることで、 傾斜角センサを製造することができ、 ピエゾ抵抗が形成された基板を選択的にェ ツチングする必要がなくなることから、 傾斜角センサの構成および製造工程を簡 易化して、 傾斜角センサのコストを下げることが可能となるとともに、 衝撃に対 する耐性も向上させることが可能となる。
さらに、 本発明に係る請求の範囲第 6項記載の傾斜角センサは、 変位可能な自 由表面を有する 6面体短冊形弾性体と、 前記 6面体短冊形弾性体の同一面上の長 手方向に少なくとも 2個所以上設けられ、 少なくとも 1つは前記自由表面上に配 置されたピエゾ抵抗と、 前記 6面体短冊形弾性体の長手方向の一端を支持する支 持部材と、 前記 6面体短冊形弾性体の長手方向の他端に設けられた錘部材とを備 る。
これにより、 6面体短冊形弾性体に支持部材および錘部材を後付けすることで、 傾斜角センサを製造することが可能となるとともに、 支持部材と錘部材との距離 を大きくして、 検出感度を上げることが可能となり、 傾斜角センサの構成および 製造工程を簡易化して、 傾斜角センサのコストを下げることが可能となるととも に、 傾斜角センサの特性を向上させて、 傾斜角センサの小型化を図ることが可能 となる。
さらに、 本発明に係る請求の範囲第 7項記載の傾斜角センサは、 請求の範囲第 5および第 6項のいずれかに記載の傾斜角センサにおいて、 前記支持部材および 前記錘部材の少なくとも一方は、 前記 6面体短冊形弾性体と長さおよび幅の少な くとも一方が同一である。
これにより、 支持部材または前記錘部材と、 6面体短冊形弾性体とを一括して 切断することが可能となり、 支持部材または前記錘部材と、 6面体短冊形弾性体 とをウェハ状態のまま貼り合わせ、 これらの部材を一体的にペレツト化すること が可能となることから、 傾斜角センサの生産性を向上させて、 傾斜角センサのコ ストを下げることが可能となる。
さらに、 本発明に係る請求の範囲第 8項記載の傾斜角センサは、 請求の範囲第 5ないし第 7項のいずれかに記載の傾斜角センサにおいて、 前記 6面体短冊形弾 性体はシリコン基板であり、 前記ピエゾ抵抗は前記シリコン基板に形成された不 純物拡散層である。
これにより、 ィオン注入を選択的に行なうだけで、 複数のピエゾ抵抗を一括し てシリコン基板に形成することができ、 傾斜角センサの製造工程を簡易化して、 頃斜角センサのコストを下げることが可能となる。
さらに、 本発明に係る請求の範囲第 9項記載の傾斜角センサは、 請求の範囲第 8項記載の傾斜角センサにぉレヽて、 前記 6面体短冊形弾性体はシリコン基板であ り、 前記支持部材は、 凹部が形成され、 前記シリコン基板と陽極接合可能な材料 で構成されたガラス基板と、 前記凹部に埋め込まれ、 前記シリコン基板との陽極 接合を妨げる埋め込み部材とを備える。
これにより、 シリコン基板との間に電圧をかけるだけで、 シリコン基板と支持 部材とを強固に接合することができ、 過酷な環境で使用した場合においても、 支 持部材がシリコン基板から脱落することを防止することが可能となるとともに、 接着剤を用いることなく、 支持部材とシリコン基板とを接合することが可能とな ることから、 接合時に接着剤がはみ出すことを防止して、 高精度の傾斜角センサ を容易に製造することができる。
また、 支持部材の表面を平坦化することができ、 シリコン基板の裏面に空洞が 形成されることを防止することが可能となることから、 シリコン基板上に加重が かかったり、 シリコン基板に衝撃が加わったりした場合においても、 シリコン基 板の裏面全体を支持部材で支えることができる。
このため、 シリコン基板上に錘を設ける際のシリコン基板の割れを防止して、 傾斜角センサの製造コストを低下させることが可能となるとともに、 傾斜角セン サの耐衝撃性を向上させて、 傾斜角センサの使レ、勝手を向上させることが可能と なる。
また、 6面体短冊形弾性体と支持部材とを接合する場合においても、 シリコン 基板との間に ¾Ξをかけるだけで、 シリコン基板と支持部材とを部分的に接合す ることができ、 シリコン基板と支持部材とが埋め込み部材の位置で離れることを 可能とすることができる。
このため、 支持部材の表面を平坦化した場合においても、 傾斜角センサの傾き に応じて、 シリコン基板に応力を発生させることができ、 傾斜角センサとして機 能させることができる。
さらに、 本発明に係る請求の範囲第 1 0項記載の傾斜角センサは、 請求の範囲 第 5ないし第 9項のいずれかに記載の傾斜角センサにおいて、 前記 6面体短冊形 弾性体の同一平面上に、 前記 6面体短冊形弾性体の橈み量を検出するよう配置さ れたピエゾ抵抗と、 前記 6面体短冊形弾性体の捻、れ量を検出するよう配置された ピエゾ抵抗とを備える。
これにより、 6面体短冊形弾性体の 2軸方向の撓み量を検出することが可能と なり、 厚みが均一な基板を用いた場合においても、 2軸方向の傾斜角を検出する ことが可能となるとともに、 ピエゾ抵抗をブリッジ回路構成として、 傾斜角の検 出精度を向上させることが可能となる。
一方、 上記目的を達成するために、 本発明に係る請求の範囲第 1 1項記載の傾 斜角センサの製造方法は、 ウェハ表面上に 2個所以上のピエゾ抵抗を形成するェ 程と、 前記ウェハの裏面全体を均一に研削する工程と、 凹部の形成された支持基 板を、 前記ピエゾ抵抗の形成領域が凹部エッジ近傍で凹部内側になるように、 前 記ウェハの裏面に貼り合わせる工程と、 前記ピエゾ抵抗形成面の変位可能領域が 前記凹部の両側で支えられるように、 前記ウェハおよび前記支持基板を一括して チップ状に切断する工程とを備える。
これにより、ピエゾ抵抗が形成された基板を選択的にエッチングすることなく、 ピエゾ抵抗を支持するための支持部を形成することが可能となるとともに、 支持 基板の貼り合わせを 1回行なうだけで、 ピエゾ抵抗を支持するための支持部を複 数のチップに対して一括して形成することができ、 傾斜角センサの製造工程を簡 易化して、 傾斜角センサのコストを下げることが可能となる。
さらに、 本発明に係る請求の範囲第 1 2項記載の傾斜角センサの製造方法は、 請求の範囲第 1 1項記載の傾斜角センサの製造方法において、 凸部の形成された 錘基板を、 前記凸部が前記ピエゾ抵抗形成面の変位可能領域のほぼ中央に配置さ れるように、 前記ウェハの表面に貼り合わせる工程をさらに備え、 前記錘基板、 前記ウェハおよび前記支持基板は、 チップ状に一括して切断される。
これにより、 錘基板の貼り合わせを 1回行なうだけで、 ピエゾ抵抗を変形させ るための錘を複数のチップに対して一括して形成することができ、 傾斜角センサ の製造工程を簡易化して、 傾斜角センサのコストをより一層下げることが可能と なる。
さらに、 本発明に係る請求の範囲第 1 3項記載の傾斜角センサの製造方法は、 ウェハ表面上に 2個所以上のピエゾ抵抗を形成する工程と、 前記ウェハの裏面全 体を均一に研削する工程と、 凹部の形成された支持基板を、 前記ピエゾ抵抗の形 成領域が凹部ェッジ近傍で凹部内側になるように、 前記ウェハの裏面に貼り合わ せる工程と、 前記ピエゾ抵抗形成面の変位可能領域のほぼ中央に台座を配置する 工程と、 前記ピエゾ抵抗形成面の変位可能領域が前記凹部の両側で支えられるよ うに、 前記台座が配置されたウェハおよび前記支持基板を一括してチップ状に切 断する工程と、 前記台座上に錘部材を配置する工程とを備える。
これにより、ピエゾ抵抗が形成された基板を選択的にェツチングすることなく、 ピエゾ抵抗を支持するための支持部を形成することが可能となるとともに、 支持 基板の貼り合わせを 1回行なうだけで、 ピエゾ抵抗を支持するための支持部を複 数のチップに対して一括して形成することができ、 傾斜角センサの製造工程を簡 易化して、 ィ頃斜角センサのコストを下げることが可能となるとともに、 錘部材を 大きくして検出感度を向上させたり、 各チップごとに錘部材の配置位置を調整す ることが可能となる。
さらに、 本発明に係る請求の範囲第 1 4項記載の傾斜角センサの製造方法は、 ウェハ表面上に 2個所以上のピエゾ抵抗を形成する工程と、 前記ウェハの裏面全 体を均一に研削する工程と、 凹部の形成された支持基板を、 前記凹部の一方の位 置が前記ピエゾ抵抗形成領域のェッジ近傍で前記凹部の内側であり、 前記凹部の 他方が前記ウェハのスクライブラインにかかるように、 前記ウェハの裏面に貼り 合わせる工程と、前記ピエゾ抵抗形成面の変位可能領域に台座を配置する工程と、 前記ピエゾ抵抗形成面が前記凹部の片側で支えられるように、 前記台座が配置さ れたウェハおよび前記支持基板を一括してチップ状に切断する工程と、 前記台座 上に錘部材を配置する工程とを備える。
これにより、ピエゾ抵抗が形成された基板を選択的にェツチングすることなく、 ピエゾ抵抗を支持するための支持部を形成することが可能となるとともに、 支持 基板の貼り合わせを 1回行なうだけで、 ピエゾ抵抗を支持するための支持部を複 数のチップに対して一括して形成することができ、 傾斜角センサの製造工程を簡 易化して、 ί頃斜角センサのコストを下げることが可能となるとともに、 支持基板 と錘部材との間の距離を大きくして、 検出感度を向上させることが可能となる。 さらに、 本発明に係る請求の範囲第 1 5項記載の傾斜角センサの製造方法は、 ウェハ表面上に 2個所以上のピエゾ抵抗を形成する工程と、 前記ウェハの裏面全 体を均一に研削する工程と、 凹部の形成された支持基板を、 前記ピエゾ抵抗の形 成領域が凹部エッジ近傍で凹部内側になるように、 前記ウェハの裏面に貼り合わ せる工程と、 凸凹の形成された錘基板を、 凸部が 2チップ間隔で ンに跨るように、 前記ウェハの表面に貼り合わせる工程と、 前記錘基板の凹部の 一部を前記スクライブラインと平行に切り落とす工程と、 前記ピエゾ抵抗形成面 の一端が前記支持基板の凹部の片側で支えられるとともに、 前記錘基板の凸部が 前記ピエゾ抵抗形成面に配置されるように、 前記錘基板、 前記ゥェハぉよび前記 支持基板を一括してチップ状に切断する工程とを備える。
これにより、 片持ち型の傾斜角センサを製造する場合においても、 ピエゾ抵抗 を支持するための支持部のみならず、 ピエゾ抵抗に応力を加える錘部材も、 複数 のチップに対して一括して形成することができ、 傾斜角センサの検出感度を向上 させつつ、 傾斜角センサの製造工程を簡易化して、 傾斜角センサのコストを下げ ることが可能となる。
さらに、 本発明に係る請求の範囲第 1 6項記載の傾斜角センサの製造方法は、 請求の範囲第 1 1ないし第 1 5項のいずれかに記載の傾斜角センサの製造方法に おいて、 前記研削は、 研磨またはエッチング、 あるいはそれらの組み合わせであ る。
これにより、 研削時間を低減しつつ、 基板の厚み制御を制度良く行なうことが 可能となる。
一方、 上記目的を達成するために、 本発明に係る請求の範囲第 1 7項記載の傾 斜角センサは、 表面にピエゾ抵抗が形成された橈み板と、 前記撓み板の一端で前 記撓み板を支持する支持部材と、 前記橈み板の変位可能領域に配置された金属錘 部材とを備える。
これにより、 ピエゾ抵抗が形成された基板の裏面を選択的にエッチングするこ となく、 撓み可能な状態でピエゾ抵抗を支持することが可能となるとともに、 撓 み板上に錘部材を設けた場合においても、 錘部材の比重が大きくなるので、 錘部 材の体積の増大を抑制しつつ、 既存のフリップチップ実装技術と容易に整合性を とることが可能となる。
このため、 傾斜角センサの構成および製造工程を簡易化して、 傾斜角センサの 小型 ·低コスト化を図ることが可能となるとともに、 衝撃に対する耐性も向上さ せることが可能となる。
さらに、 本発明に係る請求の範囲第 1 8項記載の傾斜角センサは、 絶縁層上に シリコン層が形成された S O I基板と、 前記シリコン層下の絶縁層に形成された 隙間領域と、 前記隙間領域上の前記シリコン層に形成されたピエゾ抵抗と、 前記 隙間領域上の前記シリコン層上に配置された金属錘部材とを備える。
これにより、 ピエゾ抵抗が形成された基板の裏面を選択的にェツチングするこ となく、 錘部材を設けることが可能となるとともに、 ピエゾ抵抗に応力が加わる ように、 ピエゾ抵抗が形成されたシリコン層を支持する場合においても、 シリコ ン層を薄板化した後に、 シリコン層を支持部材に貼り合わせる必要がなくなる。 このため、 支持部材に貼り合わせるための強度を確保するために、 シリコン層 の厚みを厚くする必要がなくなることから、 シリコン層を効率よく撓ませて、 ピ ェゾ抵抗に効率よく応力がかかるようにすることが可能となるとともに、 ί頃斜角 センサの構成を簡易化して、 衝撃に対する耐性も容易に向上させることが可能と なる。
さらに、 シリコン層上に配置される錘部材の比重を大きくすることが可能とな ることから、 錘部材の大きさを小さくして、 傾斜角センサの小型化を図ることが 可能となる。
さらに、 本発明に係る請求の範囲第 1 9項記載の傾斜角センサは、 請求の範囲 第 1 7および第 1 8項のいずれかに記載の傾斜角センサにおいて、 前記撓み板ま たは前記シリコン層は、 前記ピエゾ抵抗の形成領域にかけてくびれている。
これにより、 撓み板の厚みを均一化した場合においても、 橈み板を効率よく撓 ませることが可能となり、 傾斜角センサの小型 ·低コスト化を図りつつ、 傾斜角 センサの検出精度を容易に向上させることが可能となる。
一方、 上記目的を達成するために、 本発明に係る請求の範囲第 2 0項記載の傾 斜角センサの製造方法は、 ウェハ表面上の各チップ領域にピエゾ抵抗を 2箇所以 上形成する工程と、前記ウェハ表面上の各チップ領域にパッドを形成する工程と、 前記ピエゾ抵抗およびパッドが形成されたウェハの裏面全体を均一に研削するェ 程と、 凹部の形成された支持基板を、 前記ピエゾ抵抗の形成領域が前記凹部エツ ジ近傍に位置するとともに、 前記パッドが前記凹部内側に位置するように、 前記 ゥェハの裏面に貼り合わせる工程と、 前記支持基板に貼り合わされた前記ゥェハ の各パッド上に金属錘部材を形成する工程と、 前記ピエゾ抵抗の形成領域がくび れるように、 前記ウェハに開口部を形成する工程と、 前記開口部が形成されたゥ ェハをチップ状に切断する工程とを備える。
これにより、 ピエゾ抵抗が形成されたウェハの裏面を選択的にエッチングする ことなく、 ピエゾ抵抗を支持するための支持部を形成することが可能となるとと もに、 ウェハと支持基板の貼り合わせを 1回行なうだけで、 ピエゾ抵抗を支持す るための支持部を複数のチップに対して一括して形成することができる。
また、 ピエゾ抵抗が形成されたゥェハの裏面を選択的にェッチングすることな く、 比重の大きな錘部材をウェハ上に形成することが可能となるとともに、 ピエ ゾ抵抗の形成領域にくびれを設けることが可能となり、 ウェハの厚みを均一化し たまま、 ピエゾ抵抗の形成領域を効率よく撓ませることが可能となる。
このため、錘部材の小型化を図りつつ、傾斜角センサの製造工程を簡易化して、 傾斜角センサの小型 ·低コスト化を図ることが可能となるとともに、 傾斜角セン サの検出精度を容易に向上させることが可能となる。
さらに、 本発明に係る請求の範囲第 2 1項記載の傾斜角センサの製造方法は、 シリコン酸化膜を介してシリコンウェハ上に形成されたシリコン層上の各チップ 領域にピエゾ抵抗を 2箇所以上形成する工程と、 前記シリコン層上の各チップ領 域にパッドを形成する工程と、 前記シリコン層上に形成された各パッド上に金属 錘部材を形成する工程と、 前記ピエゾ抵抗の形成領域がくびれるように、 前記シ リコン層に開口部を形成する工程と、 前記シリコン層に形成された開口部を介し て前記シリコン酸化膜の一部をェツチングすることにより、 前記ピエゾ抵抗の形 成領域下および前記金属錘部材の形成領域下の前記シリコン酸化膜を除去するェ 程と、 前記シリコン酸ィヒ膜が除去されたウェハをチップ状に切断する工程とを備 える。
これにより、 薄板化されたシリコン層を支持部材に貼り合わせることなく、 薄 板化されたシリ,コン層を支持することが可能となり、 ピエゾ抵抗が形成されたシ リコン層を効率よく撓ませることが可能となる。
また、 ピエゾ抵抗が形成されたゥェハの裏面を選択的にェッチングすることな く、 比重の大きな錘部材をウェハ上に形成することが可能となり、 錘部材の小型 化を図りつつ、 錘部材を容易に形成することが可能となる。 このため、 傾斜角センサの製造工程を簡易化して、 傾斜角センサの小型 '低コ スト化を図ることが可能となるとともに、 傾斜角センサの検出精度を容易に向上 させることが可能となる。
さらに、 本発明に係る請求の範囲第 2 2項記載の傾斜角センサの製造方法は、 請求の範囲第 2 0および第 2 1項のいずれかに記載の傾斜角センサの製造方法に おいて、 前記金属錘部材の形成は、 電解メツキである。
これにより、 錘部材をウェハから剥がれにくくすることができ、 衝撃に対する 耐性を向上させることが可能となる。
また、 比重の大きな錘部材を複数のチップに対して一括して形成することが可 能となり、 傾斜角センサの製造工程を簡易化して、 コストを下げることが可能と なる。
一方、 上記目的を達成するために、 本発明に係る請求の範囲第 2 3項記載の傾 斜角センサは、 表面にピエゾ抵抗が形成された橈み板と、 前記撓み板の一端で前 記撓み板を支持する支持部材と、 前記橈み板の変位可能領域に配置された錘部材 とを備える傾斜角センサであって、 前記ピエゾ抵抗は、 前記撓み板の変位可能領 域のうち前記撓み板の幅の中点を通る中心線を軸として線対称の位置に配置され た 2対のピエゾ抵抗を含む第 1ピエゾ抵抗群と、 前記橈み板の変位可能領域のう ち前記中心線を軸として線対称の位置に配置されかつ前記第 1ピエゾ抵抗群とは 異なる位置に配置された 2対のピエゾ抵抗を含む第 2ピエゾ抵抗群とを有し、 前 記第 1ピエゾ抵抗群により第 1フルブリッジ回路を構成するとともに、 前記第 2 ピエゾ抵抗群により第 2フルブリッジ回路を構成し、 さらに、 前記第 1フルブリ ッジ回路の出力に基づレ、て前記橈み板の長手方向を回転軸とする傾斜角を算出す る第 1傾斜角算出手段と、 前記第 2フルブリッジ回路の出力および前記第 1傾斜 角算出手段で算出した傾斜角に基づレ、て前記撓み板の短手方向を回転軸とする傾 斜角を算出する第 2傾斜角算出手段とを備える。
このような構成であれば、 ピエゾ抵抗が形成された基板の裏面を選択的にェッ チングすることなく、 橈みおよびねじれ可能な状態でピエゾ抵抗を支持すること が可能となるとともに、 撓み板上に錘部材を設けた場合においても、 錘部材の比 重が大きくなるので、 錘部材の体積の増大を抑制しつつ、 既存のフリ 実装技術と容易に整合性をとることが可能となる。 - このため、 傾斜角センサの構成および製造工程を簡易化して、 傾斜角センサの 小型 ·低コスト化を図ることが可能となるとともに、 衝撃に対する耐性も向上さ せることが可能となる。
さらに、 傾斜角センサを橈み板の長手方向回りに傾斜させると、 錘部材の重力 方向が変化して変位可能領域にねじりモーメントが発生し、 橈み板がねじれる。 これにより、 各ピエゾ抵抗の抵抗 が変化し、 これに伴って第 1フルブリッジ回 路の出力も変化する。 第 1フルブリッジ回路の出力は、 ねじれモーメントにより 生じる応力に応じて変化する。 また、 ねじれモーメントにより生じる応力は、 長 手方向を回転軸とする傾斜角の正弦値に比例する。 したがって、 第 1傾斜角算出 手段により、 第 1フルブリッジ回路の出力に基づいて長手方向を回転軸とする傾 斜角を算出することができる。
また、 傾斜角センサを橈み板の長手方向または短手方向回りに傾斜させると、 錘部材の重力方向が変化して変位可能領域に曲げモーメントが発生し、 撓み板が 橈む。 これにより、 各ピエゾ抵抗の抵抗^ Sが変化し、 これに伴って第 2フルブリ ッジ回路の出力も変化する。 第 2フルブリッジ回路の出力は、 曲げモーメントに より生じる応力に応じて変化する。 また、 曲げモーメントにより生じる応力は、 長手方向を回転軸とする傾斜角の余弦値と短手方向を回転軸とする傾斜角の余弦 値の積に比例する。 したがって、 第 2傾斜角算出手段により、 第 2フルブリッジ 回路の出力および算出された長手方向を回転軸とする傾斜角に基づレ、て短手方向 を回転軸とする傾斜角を算出することができる。
さらに、 本発明に係る請求の範囲第 2 4項記載の傾斜角センサは、 表面にピエ ゾ抵抗が形成された撓み板と、 前記橈み板の一端で前記撓み板を支持する支持部 材と、 前記撓み板の変位可能領域に配置された錘部材とを備える傾斜角センサで あって、 前記ピエゾ抵抗は、 前記撓み板の変位可能領域のうち前記撓み板の幅の 中点を通る中心線を軸として線対称の位置に配置された 2対のピエゾ抵抗を含む 第 1ピエゾ抵抗群と、 前記撓み板の変位可能領域のうち前記中心線上に配置され た複数のピエゾ抵抗を含む第 2ピエゾ抵抗群とを有し、 前記第 1ピエゾ抵抗群に より第 1フルブリッジ回路を構成するとともに、 前記第 2ピエゾ抵抗群により第 2ハーフブリッジ回路を構成し、 さらに、 前記第 1フルブリッジ回路の出力に基 づいて前記撓み板の長手方向を回転軸とする傾斜角を算出する第 1傾斜角算出手 段と、 前記第 2ハーフブリッジ回路の出力および前記第 1傾斜角算出手段で算出 した傾斜角に基づいて前記撓み板の短手方向を回転軸とする傾斜角を算出する第 2傾斜角算出手段とを備える。
このような構成であれば、 ピエゾ抵抗が形成された基板の裏面を選択的にェッ チングすることなく、 撓みおよびねじれ可能な状態でピエゾ抵抗を支持すること が可能となるとともに、 橈み板上に錘部材を設けた場合においても、 錘部材の比 重が大きくなるので、 錘部材の体積の増大を抑制しつつ、 既存のフリップチップ 実装技術と容易に整合性をとることが可能となる。
このため、 傾斜角センサの構成および製造工程を簡易化して、 傾斜角センサの 小型 ·低コスト化を図ることが可能となるとともに、 衝撃に対する耐性も向上さ せることが可能となる。
さらに、 傾斜角センサを撓み板の長手方向回りに傾斜させると、 錘部材の重力 方向が変化して変位可能領域にねじりモーメントが発生し、 橈み板がねじれる。 これにより、 各ピエゾ抵抗の抵抗^ tが変化し、 これに伴って第 1フルブリッジ回 路の出力も変化する。 索 1フルブリッジ回路の出力は、 ねじれモーメントにより 生じる応力に応じて変化する。 また、 ねじれモーメントにより生じる応力は、 長 手方向を回転軸とする傾斜角の正弦値に比例する。 したがって、 第 1傾斜角算出 手段により、 第 1フルブリッジ回路の出力に基づいて長手方向を回転軸とする傾 斜角を算出することができる。
また、 傾斜角センサを橈み板の長手方向または短手方向回りに傾斜させると、 綞部材の重力方向が変化して変位可能領域に曲げモーメントが発生し、 橈み板が 撓む。 これにより、 各ピエゾ抵抗の抵抗値が変化し、 これに伴って第 2ハーフブ リッジ回路の出力も変化する。 第 2ハーフブリッジ回路の出力は、 曲げモーメン トにより生じる応力に応じて変化する。 また、 曲げモーメントにより生じる応力 は、 長手方向を回転軸とする傾斜角の余弦値と短手方向を回転軸とする傾斜角の 余弦値の積に比例する。 したがって、 第 2傾斜角算出手段により、 第 2ハーフブ リッジ回路の出力および算出された長手方向を回転軸とする傾斜角に基づレ、て短 手方向を回転軸とする傾斜角を算出することができる。
さらに、 本発明に係る請求の範囲第 2 5項記載の傾斜角センサは、 表面にピエ ゾ抵抗が形成された撓み板と、 前記橈み板の一端で前記橈み板を支持する支持部 材と、 前記橈み板の変位可能領域に配置された錘部材とを備える傾斜角センサで あって、 前記ピエゾ抵抗は、 前記撓み板の変位可能領域のうち前記橈み板の幅の 中点を通る中心線を軸として線対称の位置に配置された 2対のピエゾ抵抗を含む 第 1ピエゾ抵抗群を有し、 前記第 1ピエゾ抵抗群により第 1フルブリッジ回路を 構成するとともに、 前記第 1ピエゾ抵抗群により前記第 1フルブリッジ回路とは 接続が異なる第 2フルブリッジ回路を構成し、 さらに、 前記第 1フルブリッジ回 路の出力に基づいて前記撓み板の長手方向を回転軸とする傾斜角を算出する第 1 傾斜角算出手段と、 前記第 2フルブリッジ回路の出力および前記第 1傾斜角算出 手段で算出した傾斜角に基づレヽて前記橈み板の短手方向を回転軸とする傾斜角を 算出する第 2傾斜角算出手段とを備える。
このような構成であれば、 ピエゾ抵抗が形成された基板の裏面を選択的にェッ チングすることなく、 撓みおよびねじれ可能な状態でピエゾ抵抗を支持すること が可能となるとともに、 撓み板上に錘部材を設けた場合においても、 錘部材の比 重が大きくなるので、 錘部材の体積の増大を抑制しつつ、 既存のフリップチップ 実装技術と容易に整合性をとることが可能となる。
このため、 傾斜角センサの構成および製造工程を簡易化して、 傾斜角センサの 小型 ·低コス ト化を図ることが可能となるとともに、 衝撃に対する耐性も向上さ せることが可能となる。
さらに、 傾斜角センサを撓み板の長手方向回りに傾斜させると、 錘部材の重力 方向が変化して変位可能領域にねじりモーメントが発生し、 撓み板がねじれる。 これにより、 各ピエゾ抵抗の抵抗 が変ィヒし、 これに伴って第 1フルブリッジ回 路の出力も変化する。 第 1フルブリッジ回路の出力は、 ねじれモーメントにより 生じる応力に応じて変化する。 また、 ねじれモーメントにより生じる応力は、 長 手方向を回転軸とする傾斜角の正弦値に比例する。 したがって、 第 1傾斜角算出 手段により、 第 1フルブリッジ回路の出力に基づいて長手方向を回転軸とする傾 斜角を算出することができる。 また、 傾斜角センサを撓み板の長手方向または短手方向回りに傾斜させると、 錘部材の重力方向が変化して変位可能領域に曲げモーメントが発生し、 撓み板が 撓む。 これにより、 各ピエゾ抵抗の抵抗値が変化し、 これに伴って第 2フルブリ ッジ回路の出力も変化する。 第 2フ Λ ^ブリッジ回路の出力は、 曲げモーメントに より生じる応力に応じて変化する。 また、 曲げモーメントにより生じる応力は、 長手方向を回転軸とする傾斜角の余弦値と短手方向を回転軸とする傾斜角の余弦 値の積に比例する。 したがって、 第 2傾斜角算出手段により、 第 2フルブリッジ 回路の出力および算出された長手方向を回転軸とする傾斜角に基づレ、て短手方向 を回転軸とする傾斜角を算出することができる。
一方、 上記目的を達成するために、 本発明に係る請求の範囲第 2 6項記載の傾 斜角測定方法は、 表面にピエゾ抵抗が形成された撓み板と、 前記橈み板の一端で 前記橈み板を支持する支持部材と、 前記撓み板の変位可能領域に配置された錘部 材とを備え、 前記ピエゾ抵抗は、 前記撓み板の変位可能領域のうち前記橈み板の 幅の中点を通る中心線を軸として線対称の位置に配置された 2対のピエゾ抵抗を 含む第 1ピエゾ抵抗群と、 前記撓み板の変位可能領域のうち前記中心線を軸とし て線対称の位置に配置されかつ前記第 1ピエゾ抵抗群とは異なる位置に配置され た 2対のピエゾ抵抗を含む第 2ピエゾ抵抗群とを有する傾斜角センサを用いて傾 斜角を測定する方法であって、 前記第 1ピエゾ抵抗群により第 1フルブリッジ回 路を構成し出力する第 1プリッジ回路出力ステップと、 前記第 2ピエゾ抵抗群に より第 2フルブリッジ回路を構成し出力する第 2プリッジ回路出力ステップと、 前記第 1フルブリッジ回路の出力に基づいて前記撓み板の長手方向を回転軸とす る傾斜角を算出する第].傾斜角算出ステップと、 前記第 2フルブリッジ回路の出 力および前記第 1傾斜角算出ステップで算出した傾斜角に基づレ、て前記橈み板の 短手方向を回転軸とする傾斜角を算出する第 2傾斜角算出ステップとを含む。 さらに、 本発明に係る請求の範囲第 2 7項記載の傾斜角測定方法は、 表面にピ ェゾ抵抗が形成された撓み板と、 前記撓み板の一端で前記撓み板を支持する支持 部材と、 前記撓み板の変位可能領域に配置された錘部材とを備え、 前記ピエゾ抵 抗は、 前記撓み板の変位可能領域のうち前記橈み板の幅の中点を通る中心線を軸 として線対称の位置に配置された 2対のピエゾ抵抗を含む第 1ピエゾ抵抗群と、 前記撓み板の変位可能領域のうち前記中心線上に配置された複数のピエゾ抵抗を 含む第 2ピエゾ抵抗群とを有する傾斜角センサを用いて傾斜角を測定する方法で あって、 前記第 1ピエゾ抵抗群により第 1フルブリッジ回路を構成し出力する第 1プリッジ回路出力ステップと、 前記第 2ピエゾ抵抗群により第 2ハーフブリッ ジ回路を構成し出力する第 2ブリッジ回路出力ステップと、 前記第 1フルブリツ ジ回路の出力に基づレ、て前記撓み板の長手方向を回転軸とする傾斜角を算出する 第 1ィ頃斜角算出ステップと、 前記第 2ハーフブリッジ回路の出力および前記第 1 傾斜角算出ステップで算出した傾斜角に基づいて前記撓み板の短手方向を回転軸 とする傾斜角を算出する第 2傾斜角算出ステップとを含む。
さらに、 本発明に係る請求の範囲第 2 8項記載の傾斜角測定方法は、 表面にピ ェゾ抵抗が形成された橈み板と、 前記撓み板の一端で前記橈み板を支持する支持 部材と、 前記橈み板の変位可能領域に配置された錘部材とを備え、 前記ピエゾ抵 抗は、 前記橈み板の変位可能領域のうち前記橈み板の幅の中点を通る中心線を軸 として線対称の位置に配置された 2対のピエゾ抵抗を含む第 1ピエゾ抵抗群を有 する傾斜角センサを用いて傾斜角を測定する方法であって、 前記第 1ピエゾ抵抗 群により第 1フルブリッジ回路を構成し出力する第 1プリッジ回路出力ステップ と、 前記第 1ピエゾ抵抗群により前記第 1フルブリッジ回路とは接続が異なる第 2フノレプリッジ回路を構成し出力する第 2プリッジ回路出力ステップと、 前記第 1フルブリッジ回路の出力に基づいて前記橈み板の長手方向を回転軸とする傾斜 角を算出する第 1傾斜角算出ステップと、 前記第 2フルブリッジ回路の出力およ び前記第 1傾斜角算出ステップで算出した傾斜角に基づいて前記撓み板の短手方 向を回転軸とする傾斜角を算出する第 2傾斜角算出ステップとを含む。
一方、 本発明に係る請求の範囲第 2 9項記載の方位角センサは、 請求の範囲第 1項ないし第 1 0項、 請求の範囲第 1 7項ないし第 1 9項、 または請求項第 2 3 項ないし第 2 5項記載の傾斜角センサと、 互いに直交する方向の地磁気成分を検 出する 2軸以上の地磁気検出手段と、 前記傾斜角センサで取得した傾斜角データ および前記地磁気検出手段で取得した地磁気データに基づレヽて方位角を算出する 方位角算出手段とを有する。
これにより、 方位角センサの大型化およびコストアップを抑えつつ、 方位角セ ンサを水平面に置くことなく方位角を比較的正確に計測することが可能となる。 一方、 本発明に係る請求の範囲第 3 0項記載の携帯電話は、 請求の範囲第 2 9 項記載の方位角センサを内蔵している。
これにより、 携帯電話の大型化およびコストアップを抑えつつ、 携帯電話を水 平に保つことなくユーザーが普段使う姿勢のままで方位角を比較的正確に計測す ることが可能となる。 図面の簡単な説明
図 1は、本発明の一実施の形態に係る傾斜角センサの動作を示す断面図である。 図 2は、 本発明の第 1の実施の形態に係る傾斜角センサの製造工程を示す断面図 である。 図 3は、 本発明の第 1の実施の形態に係る傾斜角センサの製造工程を示 す断面図である。 図 4 ( a ) は、 本発明の第 1の実施の形態に係るガラスウェハ の構成を示す平面図、 図 4 ( b ) は、 本発明の第 1の実施の形態に係るガラスゥ ェハの構成を示す断面図である。 図 5 ( a ) は、 本発明の第 1の実施の形態に係 る錘ウェハの構成を示す断面図、 図 5 ( b ) は、 本発明の第 1の実施の形態に係 る錘ウェハの構成を示す平面図である。
図 6は、 本発明の第 1の実施の形態に係る傾斜角センサの製造工程を示す断面 図である。 図 7は、 本発明の第 2の実施の形態に係る傾斜角センサの製造工程を 示す断面図である。 図 8は、 本発明の第 3の実施の形態に係る傾斜角センサの製 造工程を示す断面図である。 図 9は、 本発明の第 3の実施の形態に係る ί頃斜角セ ンサの製造工程を示す断面図である。 図 1 0 ( a ) は、 本発明の第 3の実施の形 態に係るガラスウェハの構成を示す平面図、 図 1 0 ( b ) は、 本発明の第 3の実 施の形態に係るガラスウェハの構成を示す断面図である。
図 1 1は、 本発明の第 3の実施の形態に係る傾斜角センサの製造工程を示す断 面図である。 図 1 2は、 本発明の第 3の実施の形態に係る傾斜角センサの製造ェ 程を示す断面図である。 図 1 3は、 本発明の第 4の実施の形態に係る傾斜角セン サの構成を示す断面図である。 図 1 4は、 本発明の第 5の実施の形態に係る傾斜 角センサの製造工程を示す断面図である。 図 1. 5は、 本発明の第 5の実施の形態 に係る傾斜角センサの製造工程を示す断面図である。 図 1 6 ( a ) は、 本発明の 第 5の実施の形態に係るガラスウェハの構成を示す平面図、 図 16 (b) は、 本 発明の第 5の実施の形態に係るガラスウェハの構成を示す断面図である。
図 17 (a) は、 本発明の第 5の実施の形態に係る錘ウェハの構成を示す断面 図、 図 17 (b) は、 本発明の第 5の実施の形態に係る錘ウェハの構成を示す平 面図である。 図 18は、 本発明の第 5の実施の形態に係る傾斜角センサの製造ェ 程を示す断面図である。 図 19 (a) は、 本発明の第 6の実施の形態に係る傾斜 角センサの概略構成を示す斜視図、 図 19 (b) は、 本宪明の第 6の実施の形態 に係る傾斜角センサのシリコン基板表面の構成を示す平面図である。
図 20は、 本発明の第 6の実施の形態に係る傾斜角センサの動作を示す斜視図 である。 図 21は、 図 19 (b) のピエゾ抵抗 R 1 1、 R12の結線構成を示す 回路図である。 図 22 (a) は、 本発明の第 6の実施の形態に係る傾斜角センサ の動作を示す斜視図、 図 22 (b) および図 22 (c) は、 本発明の第 6の実施 の形態に係る傾斜角センサの動作を示す断面図である。 図 23は、 図 19 (b) のピエゾ抵抗 R 23〜R 26の結線構成を示す回路図である。 図 24 (a) は、 本発明の第 7の実施の形態に係る傾斜角センサの概略構成を示す断面図、 図 24 (b) は、 本宪明の第 7の実施の形態に係る傾斜角センサのシリコン基板表面の 構成を示す平面図である。
図 25は、 図 24 (b) のピエゾ抵抗 R 21、 R22、 R27、 R 28の結線 構成を示す回路図である。 図 26は、 図 24 (b) のピエゾ抵抗 R 23〜R 26 の結線構成を示す回路図である。 図 27 (a) は、 本発明の第 8の実施の形態に 係る傾斜角センサの構成を示す平面図、 図 27 (b) は、 図 27 (a) の A1— A 1線で切断した断面図である。 図 28 (a) 、 (b) は、 本発明の第 8の実施 の形態に係る傾斜角センサの動作を示す断面図、 図 28 (c) は、 図 27 (a) のピエゾ抵抗 R 1、 R 2の結線構成を示す回路図である。
図 29 (a) は、 本発明の第 8の実施の形態に係る傾斜角センサの製造工程を 示す平面図、 図 29 (b) は、 図 29 (a) の A 2— A 2線で切断した断面図で ある。 図 30 (a) は、 本発明の第 8の実施の形態に係る傾斜角センサの製造ェ 程を示す平面図、 図 30 (b) は、 図 30 (a) の A 3— A 3線で切断した断面 図である。 図 31 (a) は、 本発明の第 8の実施の形態に係る傾斜角センサの製 造工程を示す平面図、 図 31 (b) , (c) は、 図 31 (a) の A4— A4線で 切断した断面図である。
図 32 (a) は、 本発明の第 8の実施の形態に係る傾斜角センサの製造工程を 示す平面図、 図 32 (b) は、 図 32 (a) の A 5— A 5線で切断した断面図で ある。 図 33 (a) は、 本発明の第 8の実施の形態に係る傾斜角センサの製造ェ 程を示す平面図、 図 33 (b) は、 図 33 (a) の A 6— A 6線で切断した断面 図である。 図 34 (a) は、 本発明の第 8の実施の形態に係る傾斜角センサの製 造工程を示す平面図、 図 34 (b) は、 図 34 (a) の A 7— A 7線で切断した 断面図である。
図 35 (a) は、 本発明の第 8の実施の形態に係る傾斜角センサの製造工程を 示す平面図、 図 35 (b) は、 図 35 (a) の A 8— A 8線で切断した断面図で ある。 図 36は、 本発明の第 8の実施の形態に係る傾斜角センサの製造工程を示 す断面図である。 図 37は、 本発明の一実施の形態に係る傾斜角センサの半田バ ンプの製造工程の一例を示す断面図である。 図 38は、 本発明の一実施の形態に 係る傾斜角センサの半田バンプの製造工程の一例を示す断面図である。
図 39は、 本発明の一実施の形態に係る傾斜角センサの半田バンプの製造工程 の一例を示す断面図である。 図 40 (a) は、 本発明の第 9の実施の形態に係る 傾斜角センサの構成を示す平面図、 図 40 (b) は、 図 40 (a) の B l— B 1 線で切断した断面図である。 図 41 (a) は、 本発明の第 9の実施の形態に係る 傾斜角センサの製造工程を示す平面図、 図 41 (b) は、 図 41 (a) の B2— B 2線で切断した断面図である。 図 42 (a) は、 本発明の第 9の実施の形態に 係る傾斜角センサの製造工程を示す平面図、 図 42 (b) は、 図 42 (a) の B 3 _ B 3線で切断した断面図である。
図 43 (a) は、 本発明の第 9の実施の形態に係る傾斜角センサの製造工程を 示す平面図、 図 43 (b) は、 図 43 (a) の B 4—B 4線で切断した断面図で ある。 図 44 (a) は、 本宪明の第 9の実施の形態に係る傾斜角センサの製造ェ 程を示す平面図、 図 44 (b) は、 図 44 (a) の B 5— B 5線で切断した断面 図である。 図 45 (a) は、 本発明の第 9の実施の形態に係る傾斜角センサの製 造工程を示す平面図、 図 45 (b) は、 図 45 (a) の B 6 _B 6線で切断した 断面図である。
図 46 (a) は、 本発明の第 9の実施の形態に係る傾斜角センサの製造工程を 示す平面図、 図 46 (b) は、 図 4 6 (a) の B 7— B 7線で切断した断面図で ある。 図 4 7 (a) は、 本発明の第 9の実施の形態に係る傾斜角センサの製造ェ 程を示す平面図、 図 4 7 (b) は、 図 47 (a) の B 8— B 8線で切断した断面 図である。 図 48は、 本発明の第 9の実施の形態に係る ί頃斜角センサの製造工程 を示す断面図である。
図 4 9 (a) は、 本発明の第 1 0の実施の形態に係る傾斜角センサの構成を示 す平面図であり、 図 4 9 (b) は、 図 4 9 (a) の A 1—A 1線で切断した断面 図である。 図 50 (a) は、 シリコン基板 1 0 2を長手方向に切断した断面から みたときのィ頃斜角センサの座標系を定義した図であり、 図 50 (b) は、 シリコ ン基板 1 0 2を短手方向に切断した断面からみたときの傾斜角センサの座標系を 定義した図である。
図 5 1 (a) は、 ピエゾ抵抗 R 1 1、 R 1 2、 R 1 3および R 14の結線構成 を示す回路図であり、 図 5 1 (b) は、 ピエゾ抵抗 R 2 1、 R 22、 R 2 3およ び R 24の結線構成を示す回路図である。 図 5 2は、 シリコン基板 1 0 2および ピエゾ抵抗の寸法条件を示す図である。 図 5 3 (a) は、 ピエゾ抵抗 R 1 1、 R 1 2、 R 1 3および R 1 4の結線構成を示す回路図であり、 図 5 3 (b) は、 ピ ェゾ抵抗 R 2 1、 R 2 2、 R 2 3および R 24の結線構成を示す回路図である。 図 54 (a ) は、 傾斜角 ψを一定にして傾斜角 ηを変化させたときの出力 mi£ V o 1の変化を示すグラフであり、 図 54 ( b ) は、 傾斜角 ηを一定にして傾斜 角 Ψを変化させたときの出力 V o 1の変化を示すグラフである。図 5 5 (a) は、 傾斜角 Φを一定にして傾斜角 ηを変化させたときの出力 lEV o 2の変化を 示すグラフであり、 図 5 5 ( b ) は、 傾斜角 ηを一定にして傾斜角 φを変化させ たときの出力電圧 Vo 2の変化を示すグラフである。
図 5 6は、 本発明の第 1 1の実施の形態に係る傾斜角センサの構成を示す平面 図である。 図 5 7 (a) は、 ピエゾ抵抗 R 3 1、 R 3 2、 R 3 3および R 34の 結線構成を示す回路図であり、 図 5 7 ( b ) は、 ピエゾ抵抗 R 4 1および R 42 の結線構成を示す回路図である。 図 5 8は、 シリコン基板 1 0 2およびピエゾ抵 抗の寸法条件を示す図である。
図 5 9 (a ) は、 ピエゾ抵抗 R 3 1、 R 3 2、 R 3 3および R 34の結線構成 を示す回路図であり、 図 5 9 (b) は、 ピエゾ抵抗 R 4 1および R 4 2の結線構 成を示す回路図である。 図 60 (a ) は、 傾斜角 φを一定にして傾斜角 ηを変化 させたときの出力 mEEV o 3の変化を示すグラフであり、 図 60 (b) は、 頃斜 角 ηを一定にして傾斜角 φを変化させたときの出力電圧 V ο 3の変化を示すダラ フである。
図 6 1 (a) は、 傾斜角 φを一定にして傾斜角 ηを変化させたときの出力電圧 V ο 4の変化を示すダラフであり、 図 6 1 ( b ) は、 傾斜角 ηを一定にして傾斜 角 φを変化させたときの出力電圧 V o 4の変化を示すグラフである。 図 6 2は、 本発明の第 1 2の実施の形態に係る傾斜角センサの構成を示す平面図である。 図 6 3 (a ) は、 ピエゾ抵抗 R 5 1、 R 5 2、 R 5 3および R 54の結線構成 を示す回路図であり、 図 6 3 (b) は、 ピエゾ抵抗 R 5 1、 R 5 2、 R 5 3およ び R 54の他の結線構成を示す回路図である。 図 6 4は、 シリコン基板 1 0 2お よびピエゾ抵抗の寸法条件を示す図である。図 6 5 ( a )は、 ピエゾ抵抗 R 5 1、 R 5 2、 R 5 3および R 54の結線構成を示す回路図であり、 図 6 5 (b) は、 ピエゾ抵抗 R 5 1、 R 5 2、 R 5 3および R 54の他の結線構成を示す回路図で ある。
図 6 6 (a ) は、 傾斜角 φを一定にして傾斜角 ηを変化させたときの出力 ¾Ξ Vo 5の変化を示すダラフであり、 図 6 6 ( b ) は、 傾斜角 ηを一定にして傾斜 角 Φを変化させたときの出力電圧 V o 5の変化を示すグラフである。図 6 7 (a) は、 傾斜角 Φを一定にして傾斜角 ηを変化させたときの出力電圧 V ο 6の変化を 示すグラフであり、 図 6 7 ( b ) は、 傾斜角 ηを一定にして傾斜角 φを変化させ たときの出力電圧 V o 6の変化を示すグラフである。
図 6 8 ( a ) は、 錘部材 1 04の材質を変化させた場合において傾斜角 φを一 定にして傾斜角 ηを変化させたときの出力電圧 V ο 5の変化を各材質ごとに示す グラフであり、 図 6 8 ( b ) は、 錘部材 1 04の材質を変化させた場合にぉレ、て 傾斜角 を一定にして傾斜角 φを変化させたときの出力電圧 V o 5の変化を各材 質ごとに示すグラフである。 図 6 9 (a ) は、 錘部材 1 04の材質を変化させた 場合において傾斜角 φを一定にして傾斜角 ηを変化させたときの出力電圧 V Ο 6 の変化を各材質ごとに示すグラフであり、 図 69 (b) は、 錘部材 104の材質 を変化させた場合において傾斜角 を一定にして傾斜角 φを変化させたときの出 力電圧 Vo 6の変化を各材質ごとに示すグラフである。
図 70は、 本発明に係る方位角センサの構成を示すプロック図であり、 図 71 は、 ピエゾ抵抗 R 11、 R 12、 R 13および R 14の配置を示す図であり、 図 72は、ピエゾ抵抗 R 21、 R 22、 R 23および R 24の配置を示す図である。 図 73は、 ピエゾ抵抗 R 31、 R32、 R33および R34の配置を示す図であ り、図 74は、ピエゾ抵抗 R 41および R 42の配置を示す図であり、図 75は、 ピエゾ抵抗 R 51、 R52、 R 53および R 54の配置を示す図である。
図 76 (a) は、 従来の傾斜角センサの概略構成を示す斜視図、 図 76 (b) は、 従来の傾斜角センサの概略構成を示す断面図、 図 76 (c) は、 従来の傾斜 角センサのピエゾ抵抗の部分を拡大して示す断面図である。 図 77 (a) は、 従 来の傾斜角センサの X、 Y方向への加速時における各ピエゾ抵抗の増減を示す図、 図 77 (b) は、 従来の傾斜角センサの Z方向への加速時における各ピエゾ抵抗 の増減を示す図である。 発明を実施するための最良の形態
〔第 1の実施の形態〕
以下、 本発明の第 1の実施の形態を図面を参照しながら説明する。 図 1ないし 図 6は、 本発明に係る傾斜角センサおよび傾斜角センサの製造方法の第 1の実施 の形態を示す図である。
図 1は、本発明の一実施の形態に係る傾斜角センサの動作を示す断面図である。 なお、 図 1の実施の形態では、 両持ち型の傾斜角センサであって、 シリコン基板 1上にピエゾ抵抗 R 1〜R 4を 4個設けた構成を示す。
図 1において、 シリコン基板 1の表面上には、 ピエゾ抵抗 R 1〜R 4が形成さ れるとともに、 撓み可能な厚みまで裏面が均一に研削され、 シリコン基板 1の中 央には、 凸部 3 aを介して錘部材 3が設けられている。
また、 シリコン基板 1の裏面には、 凹部 2 aを有する支持部材 2が設けられ、 支持部材 2によりシリコン基板 1の両端が支持されている。
これにより、 ピエゾ抵抗 R 1〜R 4の形成面の変位可能領域が形成される。 そして、 図 1 ( a ) において、 傾斜角センサが Z方向への重力の分力を受ける と、 Z方向への力 F Zが錘部材 3にかかり、 錘部材 3が Z方向に移動しようとす る。
ここで、 シリコン基板 1は、 橈み可能な厚みまで裏面が均一に研削され、 シリ コン基板 1の裏面には凹部 2 aが設けられているので、シリコン基板 1が変形し、 ピエゾ抵抗 R 1、 R 4には圧縮応力、 ピエゾ抵抗 R 2、 R 3には引張応力が加わ る。そして、これらの応力に従って、 ピエゾ抵抗 R 1〜R 4の抵抗値が増減する。 また、図 1 ( b )において、傾斜角センサが X方向への重力の分力を受けると、 X方向への力 F Xが錘部材 3にかかり、 錘部材 3が X方向に移動しょうとする。 このため、 シリコン基板 1が変形し、 ピエゾ抵抗 R l、 R 3には圧縮応力、 ピエ ゾ抵抗 R 2、 R 4には引張応力が加わり、 これらの応力に従って、 ピエゾ抵抗 R 1〜R 4の抵抗値が増減する。
—方、 図 1 ( c ) において、 傾斜角センサが傾くと、 錘部材 3は鉛直方向に重 力 Wで引っ張られるため、 シリコン基板 1の平行方向に力成分 WXがかかり、 シ リコン基板 1の垂直方向に力成分 W Zがかかる。 このため、 シリコン基板 1が変 形し、 ピエゾ抵抗 R 2、 R 4には引張応力、 ピエゾ抵抗 R 1、 R 3には圧縮応力 が加わり、 これらの応力に従って、 ピエゾ抵抗 R 1〜R 4の抵抗値が増減する。 従って、 これらのピエゾ抵抗 R 1〜R 4からなるホイートストンブリッジ回路 を形成することにより、 傾斜角センサの傾きを求めることができる。
このように、 裏面を橈み可能な厚みまで均一に研削し、 凹部 2 aを有する支持 部材 2によりシリコン基板 1の両端を支えることにより、 傾斜角センサの構成お よび製造工程を簡易化して、 傾斜角センサのコストを下げることが可能となると ともに、 衝撃に対する耐性も向上させることが可能となる。
なお、 シリコン基板 1は 6面体短冊形状を有し、 シリコン基板 ].の長さと幅の 比率が 4倍以上 4 0倍以下で、 厚さが 2 0 m以上 2 0 0 以下であることが 好ましい。
これにより、 シリコン基板 1を変位部としてそのまま用いた場合においても、 必要な検出感度を得ることが可能となるとともに、 支持部材 2および錘部材 3を シリコン基板 1に結合させるために必要な強度を確保することができる。
図 2、 3、 6は、 本発明の第 1の実施の形態に係る傾斜角センサの製造工程を 示す断面図である。 なお、 第 1の実施の形態は、 両持ち型の傾斜角センサの製造 工程を示す。
図 2 ( a ) において、 例えば、 厚みが 5 5 0 /i m程度で 6ィンチ径のシリコン ウェハ 1 1を用意する。
次に、 図 2 ( b ) に示すように、 フォトリソグラフィー技術を用いて、 不純物 を選択的にイオン注入することにより、 シリコンウェハ 1 1上にピエゾ抵抗 1 2 (ピエゾ抵抗形成領域) を形成する。 なお、 ピエゾ抵抗 1 2は、 実際には、 主に 2個以上のピエゾ抵抗素子から構成するようにしてもよい。
そして、 スパッタまたは蒸着などにより導電層をシリコンウェハ 1 1全面に形 成し、 フォトリソグラフィー技術およびエッチング技術を用いて導電層のパター ユングを行なうことにより、 酉線やボンディングパットなどの回路パターン 1 3 を形成する。
次に、 図 2 ( c ) に示すように、 C V D (化学気相成長法) またはスパッタな どにより、 窒化珪素膜または酸化珪素膜などの保護膜 1 4を形成する。
次に、 図 2 ( d ) に示すように、 保護膜 1 4が形成されたシリコンウェハ 1 1 上に保護フィルム 1 5を貝占り付ける。なお、保護フィルム 1 5としては、例えば、 占着シートなどを用いることができる。
次に、 図 2 ( e ) に示すように、 シリコンウェハ 1 1の裏面全体を研削する。 ここで、 研削方法としては、 研磨やエッチングを用いることができ、 例えば、 最 初 5 5 0 μ πιの厚みがあったシリコンウェハ 1 1を 1 5 0 mの残厚まで研磨し、 さらに、 シリコンウェハ 1 1が 5 0 μ πιの残厚になるまでエッチングにより研削 してもよレヽ。
また、 CM P (化学的機械的研磨) により、 シリコンウェハ 1 1の裏面を研削 するようにしてもよい。
次に、 図 3 ( a ) に示すように、 溝 2 1 aが形成されたガラスウェハ 2 1をシ リコンウェハ 1 1の裏面に貼り合わせる。 ここで、 ガラスウェハ 2 1をシリコン ウェハ 1 1に貼り合わせる場合、 溝 2 1 aがシリコンウェハ 1 1側に向くととも に、 溝 2 1 aの位置がピエゾ抵抗 1 2の形成領域に対応するように配置する。 この際、 ガラスウェハ 2 1として、 ナトリウムガラスのようなイオン移動度に 高いガラスを用い、 シリコンウェハ 1 1との間に 1 K V程度の高電圧を加える陽 極接合を行なうことによって、 選択的に強い接合力を得ることができる。
従って、 溝 2 l aは、 空洞のままの状態でもよいが、 陽極接合しない通常のガ ラスや樹脂などの埋め込み部材 2 2を充填し、 ガラスウェハ 2 1の表面を平坦化 してもよレ、。
なお、 溶剤などによって選択的に除去可能な樹脂などの材料を充填した場合に は、 シリコンウェハ 1 1をチップ状に切断した後に、 溝 2 1 aを空洞にすること もできる。
図 4 ( a ) は、 本発明の第 1の実施の形態に係るガラスウェハの構成を示す平 面図、 図 4 ( b ) は、 本発明の第 1の実施の形態に係るガラスウェハの構成を示 す断面図である。
図 4において、 ガラスウェハ 2 1には、 シリコンウェハ 1 1から切り出される チッフ。 E列に対応した溝 2 1 aが形成され、 溝 2 1 aの幅は、 1チップ分のピエ ゾ抵抗 1 2の形成領域の大きさに対応するように設定される。 例えば、 傾斜角セ ンサの 1チップ分の長さが 3 mmであるとすると、 溝 2 1 aの幅は 2 mmに設定 される。
なお、 D 1〜D 6はダイシングラインであり、 シリコンウェハ 1 1に貼り合わ されたガラスウェハ 2 1は、 ダイシングライン D 1〜D 6に沿ってチップ状に切 断される。このため、例えば、ダイシングライン D 1〜D 3で囲まれた領域から、 1個分の ί頃斜角センサを切り出すことができる。
ここで、 縦方向のダイシングライン D 1、 D 2を溝 2 1 aの間の中央に設定す ることにより、 各チップに対して溝 2 1 aの両側に支持部材を残すことが可能と なり、 両持ち型の傾斜角センサを構成することができる。
次に、 図 3 ( b ) に示すように、 ガラスウェハ 2 1がシリコンウェハ 1 1に貼 り合わされると、 シリコンウェハ 1 1上に貼り付けられていた保護フィルム 1 5 を剥がす。 次に、 図 3 ( c ) に示すように、 凸部 3 1 aの設けられた錘ウェハ 3 1をシリ コンウェハ 1 1上に接着する。 ここで、 凸部 3 l aは、 シリコンウェハ 1 1から 切り出される各チップに対応して設けられている。 そして、 錘ウェハ 3 1をシリ コンウェハ 1 1上に接着する場合、 凸部 3 1 aがシリコンウェハ 1 1側を向くと ともに、 凸部 3 1 aが各チップの長手方向中央に位置するように、 錘ウェハ 3 1 を配置する。
図 5 ( a )は、本発明の第 1の実施の形態に係る錘ウェハの構成を示す断面図、 図 5 ( b ) は、 本発明の第 1の実施の形態に係る錘ウェハの構成を示す平面図で ある。
図 5において、 錘ウェハ 3 1には、 シリコンウェハ 1 1から切り出されるチッ :7¾己列に対応した凸部 3 1 aが形成され、 各凸部 3 1 aの間には、 開口部 3 1 b が形成されている。
なお、 D 1〜D 8はダイシングラインであり、 シリコンウェハ 1 1に貼り合わ された錘ウェハ 3 1は、 シリコンウェハ 1 1に貼り合わされたガラスウェハ 2 1 とともに、 ダイシングライン D 1〜D 8に沿ってチップ状に切断される。
ここで、錘ウェハ 3 1に開口部 3 1 bを設け、縦方向のダイシングライン D 1、 D 2を開口部 3 1 bの中央に設定することにより、 錘ウェハ 3 1で覆われていな レ、領域を各チップの両側に設けることが可能となり、 各チップに対してワイャボ ンディングを容易に行なうことが可能となる。
次に、 図 3 ( d ) に示すように、 ガラスウェハ 2 1および錘ウェハ 3 1が貼り 合わされたシリコンウェハ 1 1をダイシングすることにより、 シリコン基板 1 1, を支持部材 2 1 ' および錘部材 3 1 ' とともに、 チップ状に一体的に切り出 す。 ここで、 1チップ分の長さは、 例えば、 3 mmとすることができる。
次に、 図 6 ( a ) に示すように、 支持部材 2 1 ' 内に充填されている埋め込み 部材 2 2を除去することにより、 シリコン基板 1 1 ' の両端が支持部材 2 1 ' で 支えられるようにして、 シリコン基板 1 1. ' と支持部材 2 1 ' との間に隙間を形 成し、 シリコン基板 1 1 ' が支持部材 2 1 ' の間で撓み可能とする。
次に、 図 6 ( b ) に示すように、 支持部材 2 Γ および錘部材 3 1 ' とともに 切り出されたシリコン基板 1 1 ' を、 リードフレーム 4 1上にダイボンドする。 次に、 図 6 (c) に示すように、 シリコン基板 1 1 ' にワイヤボンディングを 行なうことにより、 シリコン基板 1 1 ' とリードフレーム 4 1とをワイヤ 42 a、 42 bで接続する。
ここで、 錘ウェハ 3 1には開口部 3 1 bが設けられ、 錘ウェハ 3 1から切り出 された錘部材 3 1 ' の長さは、 シリコン基板 1 1 ' の長さよりも短くなる。 この ため、 シリコン基板 1 1' の両端を錘部材 3 1 ' から露出させることができ、 錘 部材 3 1 ' が邪魔になってシリコン基板 1 1 ' 上にワイヤボンディングができな くなることを防止することができる。
このように、 第 1の実施の形態によれば、 シリコン基板 1 1 ' 自体に凹凸を設 けることなく、 両持ち型の傾斜角センサを製造することが可能となるとともに、 支持部材 2 1 ' および錘部材 3 1 ' を複数のチップに一括形成することを可能と して、 支持部材 21 ' および錘部材 3 1 ' を各チップごとに配置する必要がなく なる。
このため、 傾斜角センサの構成および製造工程を簡易化して、 傾斜角センサの コストを下げることが可能となるとともに、 衝撃に対する耐性も向上させること が可能となる。 .
〔第 2の実施の形態〕
次に、 本発明の第 2の実施の形態を図面を参照しながら説明する。 図 7は、 本 発明に係る傾斜角センサおよび傾斜角センサの製造方法の第 2の実施の形態を示 す図である。
図 7は、 本発明の第 2の実施の形態に係る傾斜角センサの製造工程を示す断面 図である。なお、第 2の実施の形態は、両持ち型の傾斜角センサの錘部材 33を、 台座 32を介して配置するようにしたものである。
図 7 (a) において、 図 2 (a) 〜図 3 (b) の工程が終わると、 台座 32を シリコンウェハ 1 1上に接着する。 ここで、 台座 3 2は、 シリコンウェハ 1 1力、 ら切り出される各チップごとに設けられ、 各チップの長手方向中央に位置するよ うに配置する。
また、 台座 32の高さは、 台座 32の表面が、 ワイヤ 42 a、 42 bのアーチ の頂点よりも高レ、位置にくるように設定する。 次に、図 7 (b)に示すように、ガラスウェハ 2 1が貼り合わされるとともに、 台座 32が接着されたシリコンウェハ 1 1をダイシングすることにより、 台座 3 2が接着されたシリコン基板 1 1 ' を支持部材 2 1 ' とともに、 チップ状に一体 的に切り出す。
次に、 図 7 (c) に示すように、 支持部材 2 1 ' および台座 32が設けられた シリコン基板 1 1 ' を、 リードフレーム 4 1上にダイボンドする。
次に、 図 7 (d) に示すように、 シリコン基板 1 1 ' にワイヤボンディングを 行なうことにより、 シリコン基板 1 1 ' とリードフレーム 4 1とをワイヤ 42 a、 42 bで接続する。
次に、 図 7 (e) に示すように、 台座 32上に錘部材 33を接着する。
このように、 第 2の実施の形態によれば、 シリコン基板 1 1 ' のワイヤボンデ イングを行なった後に、 台座 32上に錘部材 33を接着することにより、 ワイヤ ボンディングを行なう際に、錘部材 33が邪魔になることを防止することができ、 錘部材 33を大きくして、 傾斜角センサの検出感度を向上させることができる。 また、 錘部材 33を各チップごとに個々に配置することができ、 錘部材 33が チップからはみ出すことを可能として、 锤部材 33の配置の自由度を向上させる ことが可能となる。
〔第 3の実施の形態〕
次に、 本発明の第 3の実施の形態を図面を参照しながら説明する。 図 8ないし 図 1 2は、 本発明に係る傾斜角センサおよび傾斜角センサの製造方法の第 3の実 施の形態を示す図である。
図 8〜 1 2は、 本発明の第 3の実施の形態に係る傾斜角センサの製造工程を示 す断面図である。 なお、 第 3の実施の形態は、 片持ち型の傾斜角センサの製造ェ 程を示す。
図 8 (a) において、 例えば、 厚みが 5 50 ^ιη程度で 6インチ径のシリコン ウェハ 5 1を用意する。
次に、 図 8 (b) に示すように、 フォトリソグラフィー技術を用いて、 不純物 を選択的にイオン注入することにより、 シリコンウェハ 5 1上にピエゾ抵抗 52 を形成する。 なお、 ピエゾ抵抗 52は、 実際には、 主に 2個以上のピエゾ抵抗素 子から構成するようにしてもよい。
そして、 スパッタまたは蒸着などにより導電層をシリコンウェハ 5 1全面に形 成し、 フォトリソグラフィ一技術およびェッチング技術を用レ、て導電層のパタ一 ニングを行なうことにより、 酉 B/镍ゃボンディングパットなどの回路パターン 5 3 を形成する。
次に、 図 8 ( c ) に示すように、 C V D (化学気相成長法) またはスパッタな どにより、 窒化珪素膜または酸化珪素膜などの保護膜 5 4を形成する。
次に、 図 8 ( d ) に示すように、 保護膜 5 4が形成されたシリコンウェハ 5 1 上に保護フィルム 5 5を貼り付ける。なお、保護フィルム 5 5としては、例えば、 粘着シートなどを用いることができる。
次に、 図 8 ( e ) に示すように、 シリコンウェハ 5 1の裏面全体を研削する。 ここで、 研削方法としては、 研磨やエッチングを用いることができ、 例えば、 最 初 5 5 0 μ πιの厚みがあったシリコンウェハ 5 1を 1 5 0 // mの残厚まで研磨し、 さらに、 シリコンウェハ 5 1力 5 0 / mの残厚になるまでエッチングにより研削 してもよレ、。
また、 CM P (化学的機械的研磨) により、 シリコンウェハ 5 1の裏面を研削 するようにしてもよい。
次に、 図 9 ( a ) に示すように、 溝 6 1 aが形成されたガラスウェハ 6 1をシ リコンウェハ 5 1の裏面に貼り合わせる。 ここで、 ガラスウェハ 6 1をシリコン ウェハ 5 1に貼り合わせる場合、 溝 6 1 a力、 シリコンウェハ 5 1側に向くとと もに、 ピエゾ抵抗 5 2の形成領域およびスクライブラインにかかるように、 ガラ スウェハ 6 1をシリコンウェハ 5 1の裏面に配置する。
この際、 ガラスウェハ 6 1として、 ナトリウムガラスのようなイオン移動度に 高いガラスを用い、 シリコンウェハ 5 1との間に 1 K V程度の高電圧を加える陽 極接合を行なうことによって、 選択的に強い接合力を得ることができる。
従って、 溝 6 l aは、 空洞のままの状態でもよいが、 陽極接合しない通常のガ ラスや樹脂などの埋め込み部材 6 2を充填し、 ガラスウェハ 6 1の表面を平坦ィ匕 してもよレ、。
なお、 溶剤などによって選択的に除去可能な樹脂などの材料を充填した場合に は、 シリコンウェハ 5 1をチップ状に切断した後に、 溝 6 1 aを空洞にすること もできる。
図 10 (a) は、 本発明の第 3の実施の形態に係るガラスウェハの構成を示す 平面図、 図 1 0 (b) は、 本発明の第 3の実施の形態に係るガラスウェハの構成 を示す断面図である。
図 10において、 ガラスウェハ 6 1には、 シリコンウェハ 5 1から切り出され るチップ配列に対応した溝 6 1 aが形成され、 溝 6 1 aが 1チップ分のピエゾ抵 抗 52の形成領域およびスクライブラインにかかるように、 溝 6 1 aの幅が設定 される。 例えば、 傾斜角センサの 1チップ分の長さが 3 mmであるとすると、 溝 2 l aの幅は 2. 5 mmに設定される。
なお、 D 1 1〜D 1 7はダイシングラインであり、 シリコンウェハ 5 1に貼り 合わされたガラスウェハ 6 1は、 ダイシングライン D l 1〜D 1 7に沿つでチッ プ状に切断される。 このため、 例えば、 ダイシングライン D l 1〜D 1 2〜D 1 5で囲まれた領域から、 1個分の傾斜角センサを切り出すことができる。
ここで、 ガラスウェハ 6 1の溝 6 1 aがシリコンウェハ 5 1の縦方向のスクラ イブラインにかかるように配置するとともに、 縦方向のダイシングライン D 1 1 〜D 1 3を溝 6 1 aの端に設定することにより、 各チップに対して溝 6 1 aの片 側に支持部材を残すことが可能となり、 片持ち型の傾斜角センサを構成すること ができる。
次に、 図 9 (b) に示すように、 ガラスウェハ 6 1がシリコンウェハ 5 1に貼 り合わされると、 シリコンウェハ 5 1上に貼り付けられていた保護フィルム 55 を剥がす。
次に、 図 9 (c) に示すように、 シリコンウェハ 5 1から切り出される各チッ プごとに、 台座 7 1を接着する。 ここで、 台座 7 1の配置位置は、 各チップがガ ラスウェハ 6 1で支えられる位置に対して、 長手方向反対側になるように設定す る。
次に、図 9 (d)に示すように、ガラスウェハ 6 1が貼り合わされるとともに、 台座 7 ].が接着されたシリコンウェハ 5 1をダイシングすることにより、 台座 7 1が接着されたシリコン基板 5 1 ' を支持部材 6 1 ' とともに、 チップ状に一体 的に切り出す。 ここで、 1チップ分の長さは、 例えば、 3 mmとすることができ る。
次に、 図 1 1 (a) に示すように、 台座 7 1上に錘部材 7 2を接着する。 次に、 図 1 1 (b) に示すように、 支持部材 6 1 ' 内に充填されている埋め込 み部材 62を除去することにより、 シリコン基板 5 1 ' の片側が支持部材 6 1 ' で支えられるようにして、 シリコン基板 5 1 ' と支持部材 6 1 ' との間に隙間を 形成し、 シリコン基板 5 1 ' が支持部材 6 1 ' を支点として撓み可能とする。 次に、 図 1 1 (c) に示すように、 支持部材 6 1 ' および錘部材 72が設けら れたシリコン基板 5 を、 リードフレーム 8 1上にダイボンドする。
次に、 図 1 2に示すように、 シリコン基板 5 1' にワイヤボンディングを行な うことにより、 シリコン基板 5 1' とリードフレーム 8 1とをワイヤ 82で接続 する。
なお、 第 3の実施の形態では、 台座 7 1上に錘部材 72を接着した後、 シリコ ン基板 5 1 ' のワイヤボンディングを行なう方法について説明したが、 シリコン 基板 5 1, のワイヤボンディングを行なった後に、 台座 7 1上に錘部材 72を接 着するようにしてもよく、 これにより、 ワイヤボンディングを行なう際に、 錘部 材 72が邪魔になることを防止することができる。
このように、 第 3の実施の形態によれば、 製造工程を «化させることなく、 片持ち型の傾斜角センサを製造することができ、 シリコン基板 5 が支持部材 6 1 ' で支えられる位置と、 錘部材 72がシリコン基板 5 1 ' で支えられる位置 との距離を大きくして、 シリコン基板 5 をより効率よく撓ませることができ る。
このため、 傾斜角センサの長手方向の長さを大きくすることなく、 傾斜角セン ザの検出感度を向上させることができ、 ィ頃斜角センサの小型化を図ることが可能 となる。
〔第 4の実施の形態〕
次に、 本発明の第 4の実施の形態を図面を参照しながら説明する。 図 1 3は、 本発明に係る傾斜角センサおよび傾斜角センサの製造方法の第 4の実施の形態を 示す図である。 図 1 3は、 本発明の第 4の実施の形態に係る傾斜角センサの構成を示す断面図 である。
図]. 3において、 シリコン基板 9 1の表面上には、 ピエゾ抵抗 9 2および回路 パターン 9 3が形成されるとともに、 シリコン基板 9 1の裏面は橈み可能な厚み まで均一に研削されている。
また、 シリコン基板 9 1の裏面には、 凹部 9 5 aを有する支持部材 9 5が設け られ、 支持部材 9 5によりシリコン基板 9 1の一端が支持されるとともに、 シリ コン基板 9 1の表面には、台座 9 6を介して錘部材 9 7が設けられ、台座 9 6は、 シリコン基板 9 1の他端に配置されている。
支持部材 9 5の裏面はリードフレーム 9 8に接着され、 リードフレーム 9 8と 回路パターン 9 3のボンディングパットとは、ワイヤ 9 9により接続されている。 ここで、 台座 9 6の高さは、 台座 9 6の表面が、 ワイヤ 9 9のアーチの頂点よ りも高い位置にくるように設定されるとともに、 台座 9 6は、 錘部材 9 7の端で 錘部材 9 7を保持する。
これにより、 錘部材 9 7平面の大きさをシリコン基板 9 1平面の大きさと同等 にした場合においても、 錘部材 9 7がシリコン基板 9 1からはみ出すことを防止 することが可能となるとともに、 錘部材 9 7がワイヤ 9 9と接触することを防止 することが可能となり、 傾斜角センサの検出感度を向上させつつ、 傾斜角センサ のコンパクト化を図ることが可能となる。
また、 支持部材 9 5は、 ナトリウムガラスのようなイオン移動度に高いガラス により構成され、 支持部材 9 5の凹部 9 5 aには、 陽極接合しない通常のガラス や樹脂などの埋め込み部材 1◦ 0が充填され、 支持部材 9 5の表面が平坦化され ている。
そして、 支持部材 9 5とシリコン基板 9 1とを接合する場合、 シリコン基板 9 1との間に 1 KV程度の高 ffを加える陽極接合を行なう。
これにより、 支持部材 9 5とシリコン基板 9 1とを強固に結合することが可能 となるとともに、 支持部材 9 5とシリコン基板 9 1とが埋め込み部材 1 0 0の位 置で離れることが可能となる。
この結果、 シリコン基板 9 1が支持部材 9 5の下に位置するようなレイアウト をとることにより、 シリコン基板 9 1を水平にした時に、 シリコン基板 9 1は、 重力による錘部材 9 7の静的加重で埋め込み部材 1 0 0から離れる方向に応力を 受けることができる。
このため、 埋め込み部材 1 0 0がシリコン基板 9 1の変位を妨げることを阻止 しつつ、 支持部材 9 5の表面を平坦ィ匕することができ、 傾斜角センサとして水平 から ± 9 0度程度の範囲で十分に機能させることができる。
また、埋め込み部材 1 0 0を支持部材 9 5の凹部 9 5 aに充填することにより、 シリコン基板 9 1上に錘部材 9 7を設ける時に、 シリコン基板 9 1に加重がかか つても、 シリコン基板 9 1を埋め込み部材 1 0 0で支えることができ、 シリコン 基板 9 1の割れを防止して、 傾斜角センサの製造コストを下げることが可能とな る。
さらに、 埋め込み部材 1 0 0を支持部材 9 5の凹部 9 5 aに残したままにする ことにより、 埋め込み部材 1 0 0を除去する工程を不要として、 製造工程を簡略 化することが可能となり、 傾斜角センサの製造コストをより一層下げることが可 能となるとともに、 傾斜角センサの落下時などに、 傾斜角センサに衝撃が加わつ た場合においても、 シリコン基板 9 1を埋め込み部材 1 0 0で支えて、 シリコン 基板 9 1の破壊を防止することが可能となる。
〔第 5の実施の形態〕
次に、 本発明の第 5の実施の形態を図面を参照しながら説明する。 図 1 4ない し図 1 8は、 本発明に係る傾斜角センサおよ Ό«ί頃斜角センサの製造方法の第 5の 実施の形態を示す図である。
図 1 4、 1 5、 1 8は、 本発明の第 5の実施の形態に係る傾斜角センサの製造 工程を示す断面図である。 なお、 第 5の実施の形態は、 片持ち型の傾斜角センサ の製造工程を示す。
図 1 4 ( a ) において、 例えば、 厚みが 5 5 0 μ πι程度で 6インチ径のシリコ ンウェハ 1 1 ].を用意する。
次に、 図 1 4 ( b ) に示すように、 フォトリソグラフィー技術を用いて、 不純 物を選択的にイオン注入することにより、 シリコンウェハ 1 ]. 1上にピエゾ抵抗 1 1 2を形成する。 そして、 スパッタまたは蒸着などにより導電層をシリコンウェハ 1 1 1全面に 形成し、 フォトリソグラフィー技術およびエッチング技術を用いて導電層のパタ 一ユングを行なうことにより、 酉纖やボンディングパットなどの回路パターン 1 1 3を形成する。
次に、 図 14 (c) に示すように、 CVD (化学気相成長法) またはスパッタ などにより、 窒化珪素膜または酸ィヒ珪素膜などの保護膜 1 1 4を形成する。 次に、 図 14 (d) に示すように、 保護膜 1 14が形成されたシリコンウェハ 1 1 1上に保護フィルム 1 1 5を貝占り付ける。 なお、 保護フィルム 1 1 5として は、 例えば、 粘-着シートなどを用いることができる。
次に、 図 14 (e) に示すように、 シリコンウェハ 1 1 1の裏面全体を研削す る。 ここで、研削方法としては、研磨やエッチングを用いることができ、例えば、 最初 550 /imの厚みがあったシリコンウェハ 1 1 1を 1 50 /imの残厚まで研 磨し、 さらに、 シリコンウェハ 1 1 1が 50 /imの残厚になるまでエッチングに より研削してもよい。
また、 CMP (化学的機械的研磨) により、 シリコンウェハ 1 1 1の裏面を研 削するようにしてもよい。
次に、 図 1 5 (a) に示すように、 溝 1 2 1 a、 1 2 1 bが形成されたガラス ウェハ 1 21をシリコンウェハ 1 1 1の裏面に貼り合わせる。 ここで、 ガラスゥ ェハ 1 21をシリコンウェハ 1 1 1に貼り合わせる場合、 溝 1 2 1 a、 1 21 b がシリコンウェハ 1 1 1側に向くとともに、 各溝 1 21 a、 1 2 l bが各チップ のピエゾ抵抗 1 1 2の形成領域を含むとともに、 各溝 1 2 1 a、 1 2 1 bの一方 のラインがシリコンウェハ 1 1 1のスクライブラインにかかり、 各溝 1 2 1 a、 1 2 1 bの他方のラインがシリコンウェハ 1 1 1のスクライブラインにかからな いように配置する。
この際、 ガラスウェハ 1 2 1として、 ナトリウムガラスのようなイオン移動度 に高いガラスを用いた場合、 シリコンウェハ 1 1 1との間に 1 KV程度の高電圧 を加える陽極接合を行なうことによって、 選択的に強い接合力を得ることができ る。
従って、 溝 1 21 a、 1 2 1 bは、 空洞のままの状態でもよいが、 陽極接合し ない通常のガラスや樹脂などの埋め込み部材 122 a、 122 bを充填し、 ガラ スウェハ 121の表面を平坦ィ匕してもよい。
なお、 溶剤などによつて選択的に除去可能な樹脂などの材料を充填した場合に は、 シリコンウェハ 1 1 1をチップ状に切断した後に、 溝 121 a、 121 bを 空洞にするようにしてもよい。
図 16 (a) は、 本発明の第 5の実施の形態に係るガラスウェハの構成を示す 平面図、 図 16 (b) は、 本発明の第 5の実施の形態に係るガラスウェハの構成 を示す断面図である。
図 16において、 ガラスウェハ 121には、 シリコンウェハ 1 1 1から切り出 されるチップ配列に対応した溝 121 a、 121 bが形成され、 溝 121 a、 1 21 bの幅は、 各溝 121 a、 121 b力 S、 1チップ分のピエゾ抵抗 1 12の形 成領域を含むとともに、 各溝 121 a、 121 bの一方のラインがシリコンゥェ ノヽ 1 11のスクライブラインにかかり、 各溝 121 a、 121 bの他方のライン がシリコンウェハ 1 1 1のスクライブラインにかからないように設定される。 なお、 D21〜D28および D31〜D34はダイシングラインであり、 シリ コンウェハ 1 1 1に貼り合わされたガラスウェハ 1 21は、 ダイシングライン D 21 ~D 28および D 31〜D 34に沿ってチップ状に切断される。 このため、 例えば、ダイシングライン1321、 025、 031、 032で囲まれた領域から、 1個分の ί頃斜角センサを切り出すことができる。
ここで、 縦方向のダイシングライン D 21、 D 22をガラスウェハ 121の凸 部の中央に設定するとともに、 縦方向のダイシングライン D 23〜D 28を各溝 121 a, 121 bの端にかかるように設定することにより、 各チップに対して 溝 121 a、 121 bの片側に支持部材を残すことが可能となり、 片持ち型の傾 斜角センサを構成することができる。
次に、 図 15 (b) に示すように、 ガラスウェハ 121がシリコンウェハ 1 1 1に貼り合わされると、 シリコンウェハ 1 1 1上に貼り付けられていた保護フィ ルム 1 15を剥がす。
次に、 図 15 (c) に示すように、 凸部 131 aの設けられた錘ウェハ 131 をシリコンウェハ 1 1 1上に接着する。 ここで、 凸部 131 aは、 シリコンゥェ ノヽ 1 1 1から切り出される 2列分のチップに対応して設けられている。 そして、 錘ウエノ、 1 3 1をシリコンウェハ 1 1 1上に接着する場合、 凸部 1 3 1 aがシリ コンウェハ 1 1 1側を向くとともに、凸部 1 3 1 aがスクライブラインを跨いで、 その両側のチップの端部にかかるように、 錘ウェハ 1 3 1を酉己置する。
図 1 7 ( a ) は、 本発明の第 5の実施の形態に係る錘ウェハの構成を示す断面 図、 図 1 7 ( b ) は、 本発明の第 5の実施の形態に係る錘ウェハの構成を示す平 面図である。
図 1 7において、 錘ウェハ 1 3 1には、 シリコンウェハ 1 1 1から切り出され る 2列分のチッ 7¾己列に対応した凸部 1 3 1 aが形成されている。
なお、 D 2 1〜D 2 8および D 3 1〜D 3 4はダイシングラインであり、 シリ コンウェハ 1 1 1に貼り合わされた錘ウェハ 1 3 1は、 シリコンウェハ 1 1 1に 貼り合わされたガラスウェハ 1 2 1とともに、 D 2 1〜D 2 8および D 3 1〜D 3 4に沿ってチップ状に切断される。
また、 H 1〜H 4はハーフダイシングラインであり、 錘ウェハ 1 3 1は、 シリ コンウェハ 1 1 1に貼り合わされた状態で、 ハーフダイシングライン H 1〜H 4 に沿ってハーフダイシングされることにより、 錘ウェハ 1 3 1の各凸部 1 3 1 a 間の凹部の中央部分が切り落とされる。
ここで、 錘ウエノ、 1 3 1のハーフダイシングを行なうことにより、 錘ウェハ 1 3 1がシリコンウェハ 1 1 1に貼り合わされた状態で、 錘ウエノ、 1 3 1で覆われ ていない領域を各チップの片側に設けることが可能となり、 各チップに対してヮ ィャボンディングを容易に行なうことが可能となる。
また、 凸部 1 3 1 a力 \ シリコンウェハ 1 1 1のスクライブラインを跨ぐよう に錘ウェハ 1 3 1を配置することにより、 錘ウェハ 1 3 1およびシリコンウェハ 1 1 1を凸部 1 3 1 aの位置で切断するだけで、 各チップの端部に錘部材 1 3 1 ' ' を設けることが可能となる。
次に、 図 1 5 ( d ) に示すように、 シリコンウェハ 1 1 1に貼り合わされた状 態で、 ハーフダイシングライン H 1〜H 4に沿って、 錘ウェハ 1 3 1のハーフダ イシングを行なうことにより、 錘ウェハ 1 3 1の各凸部 1 3 1 a間の凹部の中央 部分を切り落とす。 このため、 錘バー 131' が 2列分のチップごとに形成される。
次に、 図 18 (a) に示すように、 ガラスウェハ 121および錘バー 131 ' が貼り合わされたシリコンウェハ] 11を、 ダイシングライン D 21〜D 28お よび D 31〜D 34に沿ってダイシングすることにより、 シリコン基板 111' を支持部材 121' および錘部材 131' ' とともに、 チップ状に一体的に切り 出す。 ここで、 1チップ分の長さは、 例えば、 3 mmとすることができる。
次に、 図 18 (b) に示すように、 支持部材 121' 内に充填されている埋め 込み部材 122 a、 122bを除去することにより、 シリコン基板 11 1' の一 端が支持部材 121' で支えられるようにして、 シリコン基板 111' と支持部 材 121 ' との間に隙間を形成し、 シリコン基板 111' が支持部材 121 ' を 支点として橈み可能とする。
次に、 図 18 (c) に示すように、 支持部材 121' および錘部材 131' ' とともに切り出されたシリコン基板 11 を、 リードフレーム 141上にダイ ボンドする。
次に、 図 18 (d) に示すように、 シリコン基板 111' にワイヤボンディン グを行なうことにより、 シリコン基板 111' とリードフレーム 141とをワイ ャ 142で接続する。
ここで、 錘ウエノ、 131のハーブダイシングを行なうことにより、 シリコン基 板 111' の片端を錘部材 131' ' から露出させることができ、 錘部材 13 1' ' が邪魔になってシリコン基板 111 ' 上にワイヤボンディングができなく なることを防止することができる。
このように、 第 5の実施の形態によれば、 シリコン基板 111 ' 自体に凹凸を 設けることなく、片持ち型の傾斜角センサを製造することが可能となるとともに、 支持部材 121' および錘部材 131, ' を複数のチップに一括形成することを 可能として、 支持部材 121' および鍾部材 131' ' を各チップごとに配置す る必要がなくなる。
このため、 傾斜角センサの検出感度を向上させつつ、 傾斜角センサの構成およ び製造工程を簡易化して、 傾斜角センサのコストを下げることが可能となる。 なお、 第 5の実施の形態では、 各溝 121. a、 121 bが各チッ 7¾S列ごとに 分離する方法について説明したが、 2本の溝 121 a、 12 l bが互いに繋がる ようにして、 1本の溝で 2列分のチッフ ¾己列を受け持つようにしてもよく、 これ により、 ダイシング時に無駄な廃材 (例えば、 ダイシングライン D 23とダイシ ングライン D 24との間の部分) が出ることを防止して、 1枚のウェハから採れ る傾斜角センサの個数を増やすことができる。
〔第 6の実施の形態〕
次に、 本発明の第 6の実施の形態を図面を参照しながら説明する。 図 19ない し図 23は、 本発明に係る傾斜角センサの第 6の実施の形態を示す図である。 図 19 (a) は、 本発明の第 6の実施の形態に係る傾斜角センサの概略構成を 示す斜視図、 図 19 (b) は、 本発明の第 6の実施の形態に係る傾斜角センサの シリコン基板表面の構成を示す平面図である。 なお、 第 6の実施の形態は、 厚み が均一な一枚のシリコン基板を用いて、 2軸の傾斜角センサを構成するようにし たものである。
図 19において、 シリコン基板 151の表面 151 a上には、 ピエゾ抵抗 R 1 1〜R 16および端子 P 1〜P 9が形成されるとともに、 ピエゾ抵抗 R 11〜R 16と端子 P 1〜P 9とを接続する配線 L 1が形成され、 さらに、 シリコン基板 15 1の裏面 151 bは、 シリコン基板 151が橈み可能な厚みまで均一に研削 されてレ、る。
また、 シリコン基板 151の長手方向の一端には支持部材接合領域 J 1が設け られ、 シリコン基板 151の長手方向の他端には台座接^ 域 J 2が設けられ、 支持部材接合領域 J 1には、 凸部 152 aを介して支持部材 152が接合され、 台座接 域 J 2には、 台座 153を介して錘部材 154が接合されている。 なお、 支持部材 152は、 シリコン基板 151の裏面に配置され、 錘部材 15 4は、 シリコン基板 151の表面に配置される。
ここで、 ピエゾ抵抗 R 1 1、 R 13、 R 15は、 台座接合領域 J 2の近傍に配 置され、 ピエゾ抵抗 R 12、 R 14、 R 16は、 支持部材接合領域 J 1の近傍に 配置される。
また、 ピエゾ抵抗 R l ].、 R 12は、 長手方向に設定される中央ラインに沿つ て配置され、 ピエゾ抵抗 R 13〜R 16は、 中央ラインの両側の平行ラインに沿 つて、 それぞれ 2個づっ等間隔で配置される。
そして、 シリコン基板 151の表面 151 aを下に向けた状態では、 錘部材 1 54が重力 Wで下向きに引っ張られるが、 支持部材 152を水平に保つと、 重力 Wは、 錘部材 154にかかる Z軸方向成分の力 F z =Wと一致する。
このため、 シリコン基板 151の端部には、 台座 153を介して Z軸方向成分 の力 F z=Wがかかり、 シリコン基板 151は Z軸方向に橈んだ状態になる。 図 20は、 図 19の傾斜角センサが Y軸回りに傾いた場合の動作を示す斜視図 である。
図 20において、 支持部材 152が Y軸回りに傾くと、 錘部材 154にかかる Z軸方向成分の力 F zが減少する一方で、 X軸方向成分の力 F Xが生じ、 結果と して、 支持部材 152とシリコン基板 151との間の間隔がより広がることにな り、 シリコン基板 151の Z軸方向の撓み量が大きくなる。
この結果、 ピエゾ抵抗 R 1 1の引張応力、 ピエゾ抵抗 R 12の圧縮応力がそれ ぞれ増加し、 これらの応力の変動に従って、 ピエゾ抵抗 R 1 1、 R 12の抵抗ィ直 が増減する。
図 21は、 図 19 ( b ) のピエゾ抵抗 R 1 1、 R 12の結線構成を示す回路図 である。
図 21において、 ピエゾ抵抗 R 1 1、 R 12は直列接続され、 端子 P4は、 ピ ェゾ抵抗 R l l、 R 12をそれぞれ介して端子 P 6、 P 5に接続されている。 そして、 端子 P 5、 P 6間に電圧 Eを印加し、 端子 P 4、 P6間の電圧 VIを 検出することにより、 Y軸回り ί頃斜角を求めることができる。
図 22 (a) は、 図 19の傾斜角センサが X軸回りに傾いた場合の動作を示す 斜視図、 図 22 (b) は、 図 19 (b) の E 2— E 2線で切断した断面図、 図 2 2 (c) は、 図 19 (b) の E 3— E 3線で切断した断面図である。
図 22において、 持部材 152が X軸回りに傾くと、 錘部材 154には Y方向 成分の力 Fyが生じるため、 シリコン基板 151が X軸回りに捻られる。
この結果、 ピエゾ抵抗 R 13にかかっている引張応力およびピエゾ抵抗 R 14 にかかっている圧縮応力は減少し、 ピエゾ抵抗 R 15にかかっている引張応力お よびピエゾ抵抗 R 16にかかっている圧縮応力は増加する。 このため、 これらの応力の変動に従って、 ピエゾ抵抗 R 13〜R 16の抵抗ィ直 が増減する。
図 23は、 図 19 (b) のピエゾ抵抗 R 13〜R 16の結線構成を示す回路図 である。
図 23において、 ピエゾ抵抗 R 13〜R 16はブリッジ回路を構成している。 すなわち、 端子 P 1、 P 2間にはピエゾ抵抗 R 14が接続され、 端子 P 2、 P 3 間にはピエゾ抵抗 R 13が接続され、 端子 P 7、 P 8間にはピエゾ抵抗 R 15が 接続され、 端子 P8、 P 9間にはピエゾ抵抗 R 16が接続され、 端子 P l、 P 9 間は短絡され、 端子 P3、 P 7間は短絡されている。
そして、 端子 P 2、 P 8間に電圧 Eを印加し、 端子 P l、 P 3間の電圧 V 2を 検出することにより、 X軸回りの傾斜角を求めることができる。
〔第 7の実施の形態〕
次に、 本発明の第 7の実施の形態を図面を参照しながら説明する。 図 24ない し図 26は、 本発明に係る傾斜角センサの第 7の実施の形態を示す図である。 図 24 (a) は、 図 24 (b) の F— F線で切断した断面図、 図 24 (b) は、 本発明の第 7の実施の形態に係る傾斜角センサのシリコン基板表面の構成を示す 平面図である。 なお、 第 7の実施の形態は、 厚みが均一な一枚のシリコン基板を 用いて、 両持型の 2軸の傾斜角センサを構成するようにしたものである。
図 24において、 シリコン基板 161の表面上には、 ピエゾ抵抗 R21~R2 8および端子 P 1 1〜P 22が形成されるとともに、 ピエゾ抵抗 R 21〜R 28 と端子 P I 1〜P 22とを接続する酉 B^L 2、 L3が形成され、 さらに、 シリコ ン基板 161の裏面は、 シリコン基板 161が撓み可能な厚みまで均一に研削さ れている。
また、 シリコン基板 161の長手方向の両端には支持部材接合領域 J 1 1、 J 12が設けられ、 シリコン基板 161の長手方向の中央には台座接合領域 J 13 が設けられ、 支持部材接合領域 J 1 1、 J 1 2には、 凸部 162 aを介して支持 部材 162が接合され、 台座接合領域 J 13には、 台座 163を介して錘部材 1 64が接合されている。
なお、 支持部材 162は、 シリコン基板 161の裏面に配置され、 錘部材 16 4は、 シリコン基板 161の表面に配置される。
ここで、 ピエゾ抵抗 R 21、 R23、 R25、 R27は、 台座接^ 域 J 13 の近傍に配置され、 ピエゾ抵抗 R 22、 R24、 R26、 R 28は、 支持部材接 ^ l域 J 1 1、 J 12の近傍に配置される。
また、 ピエゾ抵抗 R 21、 R22、 R27、 R 28は、 長手方向に設定される 中央ラインに沿って配置され、 ピエゾ抵抗 R 23〜R 26は、 中央ラインの両側 の平行ラインに沿って、 それぞれ 2個づっ等間隔で配置される。
そして、 錘部材].64がぶら下がった状態で、 支持部材 162を Y軸回りに傾 けると、 シリコン基板 161の撓みが変化する。 そして、 この時のピエゾ抵抗 R 21、 R22、 R27、 R28の抵抗値の変化量を計測することにより、 Y軸回 りの傾斜角を求めることができる。
また、 錘部材 164がぶら下がった状態で、 支持部材 162を X軸回りに傾け ると、 シリコン基板 161に捻れが発生する。 そして、 この時のピエゾ抵抗 R2 3〜 R 26の抵抗値の変化量を計測することにより、 X軸回りの傾斜角を求める ことができる。
図 25は、 図 24 (b) のピエゾ抵抗 R 21、 R22、 R27、 R 28の結線 構成を示す回路図である。
図 25において、 ピエゾ抵抗 R 21、 R22、 R27、 R 28はブリッジ回路 を構成している。 すなわち、 端子 P 14、 P 15間にはピエゾ抵抗 R 22が接続 され、 端子 P 14、 P 16間にはピエゾ抵抗 R 21が接続され、 端子 P 20、 P 21間にはピエゾ抵抗 R 28が接続され、 端子 P 20、 P 22間にはピエゾ抵抗 R 27が接続され、 端子 P 15、 P 21間は短絡され、 端子 P 16、 P 22間は 短絡されている。
そして、 端子 P 14、 P 20間に電圧 Eを印加し、 端子 P 15、 P 16間の電 圧 V 3を検出することにより、 Y軸回りの傾斜角を求めることができる。
なお、 Y軸回りの傾斜角を求める場合、 必ずしも 4個のピエゾ抵抗 R 21、 R 22、 R27、 R 28を設ける必要はなく、 ピエゾ抵抗 R 21、 R 22またはピ ェゾ抵抗 R 27、 R 28を省略し、 図 21のような分圧回路を構成するようにし てもよい。 図 2 6は、 図 2 4 ( b ) のピエゾ抵抗 R 2 3〜 R 2 6の結線構成を示す回路図 である。
図 2 6において、 ピエゾ抵抗 R 2 3 -R 2 6はブリッジ回路を構成している。 すなわち、端子 P 1 1、 P 1 2間にはピエゾ抵抗 R 2 4が接続され、端子 P 1 2、 P 1 3間にはピエゾ抵抗 R 2 3が接続され、 端子 P 1 8、 P 1 9間にはピエゾ抵 抗 R 2 6が接続され、 端子 P 1 7、 P 1 8間にはピエゾ抵抗 R 2 5が接続され、 端子 P 1 1、 P 1 9間は短絡され、 端子 P 1 3、 P 1 7間は短絡されている。 そして、 端子 P 1 2、 P 1 8間に mjlEを印加し、 端子 P 1 1、 P 1 3間の電 圧 V 4を検出することにより、 X軸回りの傾斜角を求めることができる。
〔第 8の実施の形態〕
次に、 本発明の第 8の実施の形態を図面を参照しながら説明する。 図 2 7ない し図 3 9は、 本発明に係る傾斜角センサぉよび ί頃斜角センサの製造方法の第 8の 実施の形態を示す図である。
図 2 7 ( a ) は、 本発明の第 8の実施の形態に係る傾斜角センサの構成を示す 平面図、図 2 7 ( b ) は、 図 2 7 ( a ) の A 1— A 1線で切断した断面図である。 図 2 7において、 シリコン基板 2の表面上には、 ピエゾ抵抗 R l、 R 2および A 1パッド P 1〜P 3が形成されるとともに、 ピエゾ抵抗 R l、 2と 1パッ ド P 1〜P 3を接続する酉 fi^H lが形成されている。
また、 シリコン基板 2の表面上には、 A 1パッド 3を介して半田バンプ 4が形 成されるとともに、 シリコン基板 2は、 橈み可能な厚みまで裏面が均一に研削さ れ、 さらに、 ピエゾ抵抗 R l、 R 2の配置領域に対応して、 くびれ 2 aが形成さ れている。
また、 シリコン基板 2の裏面には、 凹部 1 aが形成された支持部材 1が設けら れ、 シリコン基板 2の一端が裏面から支持されるともに、 支持部材 1は、 ピエゾ 抵抗 R l、 R 2の形成領域が凹部 1 aのエッジ近傍に位置し、 半田バンプ 4が凹 部 1 a上に位置するように配置されている。
これにより、 ピエゾ抵抗 R 1、 R 2が形成されたシリコン基板 2の裏面を選択 的にェツチングすることなく、 撓み可能な状態でシリコン基板 2を支持すること が可能となるとともに、 既存のフリップチップ実装技術との整合性をとりつつ、 錘部材の比重を容易に増大させて、 錘部材の縮小ィヒを図ることが可能となる。 このため、 傾斜角センサの構成および製造工程を簡易化して、 傾斜角センサの 小型 ·低コスト化を図ることが可能となるとともに、 衝撃に対する耐性も向上さ せることが可能となる。
図 28 (a) 、 (b) は、 本発明の第 8の実施の形態に係る傾斜角センサの動' 作を示す断面図、 図 28 (c) は、 図 27 (a) のピエゾ抵抗 Rl、 R 2の結線 構成を示す回路図である。
図 28 (a) において、 図 27のイ頃斜角センサを動作させる場合、 半田バンプ
4が下側に向くように、 傾斜角センサを配置する。
そして、 半田バンプ 4を下に向けた状態では、 半田バンプ 4が重力 Wで下向き に引っ張られる力 支持部材 1を水平に保つと、 重力 Wは、 半田バンプ 4にかか る Z軸方向成分の力 F Zと一致する。
このため、 シリコン基板 2の端部には、 半田バンプ 4を介して Z軸方向成分の 力 F z =Wがかかる。
ここで、 シリコン基板 2は、 橈み可能な厚みまで裏面が均一に研削されている ので、 Z軸方向成分の力 F z=Wがシリコン基板 2の端部にかかると、 シリコン 基板 2は Z軸方向に橈んだ状態で安定する。
次に、 図 28 (b) において、 支持部材 1が Y軸回りに傾くと、 半田バンプ 4 にかかる Z軸方向成分の力 F zが減少する一方で、 X軸方向成分の力 F Xが生じ、 結果として、支持部材 1とシリコン基板 2との間の間隔がより広がることになり、 シリコン基板 2の Z軸方向の橈み量が大きくなる。
この結果、 ピエゾ抵抗 Rl、 R 2にかかる応力が変動し、 この応力の変動に従 つて、 ピエゾ抵抗 R 1、 R 2の抵抗値が増減する。
ここで、 図 28 (c) に示すように、 ピエゾ抵抗 R l、 R 2は直列接続され、 端子 P 2は、 ピエゾ抵抗 Rl、 R 2をそれぞれ介して端子 P 1、 P 3に接続され ている。
そして、 端子 P ].、 P 3間に電圧 Eを印加し、 端子 P 2、 P 3間の電圧 VIを 検出することにより、 Y軸回りの傾斜角を求めることができる。
図 29 (a) 〜図 35 (a) は、 本発明の第 8の実施の形態に係る傾斜角セン サの製造工程を示す平面図、 図 2 9 (ヒ) 〜図3 5 ( b ) および図 3 6は、 本発 明の第 8の実施の形態に係る傾斜角センサの製造工程を示す断面図である。
図 2 9において、 例えば、 厚みが 5 5 0 / m程度で 5ィンチ径のシリコン基板 2を用意する。
そして、 フォトリソグラフィー技術を用いて、 ホウ素などの不純物をシリコン 基板 2に選択的にィオン注入することにより、 シリコン基板 2上の各チップ領域 にピエゾ抵抗 R 1、 R 2を形成する。
そして、 スパッタまたは蒸着などにより、 A 1膜をシリコン基板 2全面に形成 し、 フォトリソグラフィ一技術およびエッチング技術を用いて A 1膜のパター二 ングを行なうことにより、 シリコン基板 2上の各チップ領域に A 1パッド 3、 P 1〜P 3および酉 d^H 1を形成する。
ここで、 シリコン基板 2の各チップ領域の幅 W 1は、 例えば、 1 . 4 mm、 長 さ L 1は、 例えば、 2 . 8 mmとすることができ、 これにより、 5インチ径の 1 枚のシリコン基板 2から、 約 3 0 0 0個の傾斜角センサチップを得ることが可能 となる。
次に、 図 3 0に示すように、 ネ占着シートなどの保護フィルムをシリコン基板 2 上に貼り付け、 シリコン基板 2の厚みが T 1になるまで、 シリコン基板 2の裏面 全体を研削する。 ここで、 シリコン基板 2の研削方法としては、 例えば、 CM P (化学的機械的研磨) やエッチングを用いることができる。 また、 シリコン基板 2の厚み T 1は、 例えば、 1 0 0 mとすることができ、 これにより、 シリコン 基板 2の橈みを可能としつつ、 シリコン基板 2が割れないような強度を維持する ことができる。
次に、 図 3 1に示すように、 凹部 1 aが形成されたガラス基板 1をシリコン基 板 2の裏面に貼り合わせる。 ここで、 ガラス基板 1をシリコン基板 2に貼り合わ せる場合、 凹部 l aを、 シリコン基板 2側に向き合わせる。 そして、 ピエゾ抵抗 R l、 R 2の形成領域が凹部 1 aのエッジ近傍に位置し、 半田バンプ 4が凹部 1 a上に位置するように、 ガラス基板 1を配置する。
この際、 ガラス基板 1として、 ナトリウムガラスのようなイオン移動度に高い ガラスを用いることができ、シリコン基板 2との間に 1 KV程度の高電圧を加え、 ガラス基板 1とシリコン基板 2との陽極接合を行なうことにより、 選択的に強 ヽ 接合力を得ることができる。
このため、 凹部 l aは、 空洞のままの状態でもよいが、 陽極接合されない通常 のガラスや樹脂などの埋め込み部材を充填し、 ガラス基板 1の表面を平坦ィ匕して ちょレヽ。
次に、 図 3 2に示すように、 ガラス基板 1がシリコン基板 2の裏面に貼り合わ されると、 シリコン基板 2上に貼り付けられていた保護フィルムを剥がす。
そして、 シリコン基板 2上の各チップ領域に形成された A 1パッド 3上に半田 バンプ 4を形成する。
ここで、 半田バンプ 4の大きさ C 1は、 例えば、 0 . 6〜1 . 2 mm程度とす ることができ、 半田バンプ 4の高さ H Iは、 例えば、 0 . 1〜0 . 4 mm程度と することができる。
また、 半田バンプ 4の形成方法としては、 例えば、 電解メツキまたはスクリー ン印刷を用いることができ、 これにより、 シリコン基板 2から取り出される全て のチップに対して、 半田バンプ 4を一括して形成することができ、 製造工程を簡 略化することができる。
また、半田バンプ 4の比重は、ガラスゃシリコンに比べて 3倍以上度あるので、 同じ錘効果を得る場合、 半田バンプ 4の体積を 1 3以下にすることができ、 半 田バンプ 4の小型化を図ることが可能となる。
次に、 図 3 3に示すように、 フォトリソグラフィー技術およびエッチング技術 を用いて、 半田バンプ 4が形成されたシリコン基板 2を選択的にエッチングする ことにより、 シリコン基板 2にくびれ 2 aを形成するとともに、 凹部 l a上のシ リコン基板 2が各チップごとに切り離されるようにする。
なお、 シリコン基板 2のエッチング方法としては、 例えば、 KO Hを用いたゥ エツトエッチングを用いることができる。
次に、 図 3 4に示すように、 ガラス基板 1に接合されたシリコン基板 2をダイ シングライン L l、 L 2に沿ってダイシングすることにより、 半田バンプ 4が表 面に形成されるとともに、 ガラス基板 1で裏面が支持されたシリコン基板 2をチ ップ状に切り出す。 次に、 図 3 5に示すように、 半田バンプ 4が表面に形成されるとともに、 ガラ ス基板 1で裏面が支持されたシリコン基板 2を、 パッケージ 6内にダイボンドす る。
そして、 ワイヤボンディングを行なうことにより、 パッケージ 6に設けられた 端子 7とシリコン基板 2上に形成された A 1パッド P 1〜P 3とを金ワイヤ 5で 接続する。
次に、 図 3 6に示すように、 パッケージ 6に蓋 8を接着することにより、 傾斜 角センサを封止する。
これにより、 シリコン基板 2とガラス基板 1との貝占り合わせを 1回行なうだけ で、 ピエゾ抵抗 R 1、 R 2が形成されたシリコン基板 2の裏面を選択的にェツチ ングすることなく、 撓み可能な状態でピエゾ抵抗 R 1、 R 2を支持するための支 持部を複数のチップに対して一括して形成することが可能となる。
また、 ピエゾ抵抗 R 1、 R 2が形成されたシリコン基板 2の裏面を選択的にェ ツチングすることなく、 比重の大きな半田バンプ 4をシリコン基板 2上に形成す ることが可能となるとともに、 ピエゾ抵抗 R l、 R 2の形成領域にくびれ 2 aを 設けることが可能となり、 シリコン基板 2の厚みを均一化したまま、 ピエゾ抵抗 R 1、 R 2の形成領域を効率よく撓ませることが可能となる。
このため、 半田バンプ 4の小型ィ匕を図りつつ、 傾斜角センサの製造工程を簡易 ィ匕して、 傾斜角センサの小型-低コスト化を図ることが可能となるとともに、 傾 斜角センサの検出精度を容易に向上させることが可能となる。
なお、 第 8の実施の形態では、 ピエゾ抵抗 R 1、 R 2、 A 1パッド 3、 P 1〜 P 3および配線 H 1をシリコン基板 2上に形成してから、 シリコン基板 2の裏面 を研削し、 そのシリコン基板 2を凹部 1 aが形成されたガラス基板 1に接合する 方法について説明したが、 研削する前のシリコン基板 2を凹部 1 aが形成された ガラス基板 1に接合し、 そのシリコン基板 2の表面を研削してから、 ピエゾ抵抗 R l、 R 2、 A 1パッド 3、 P 1〜P 3および酉 Η 1をシリコン基板 2上に形 成するようにしてもよい。
これにより、 シリコン基板 2の厚み Τ 1が 1 0 0 / mと薄い状態で、 シリコン 基板 2をガラス基板 1に接合する必要がなくなり、 シリコン基板 2の取り扱いを 容易に行うことが可能となる。
また、 第 8の実施の形態では、 シリコン基板 2が撓みやすくするために、 くび れ 2 aを設けた例について説明した力 くびれ 2 aは必ずしも設けなくてもよレ、。 また、 第 8の実施の形態では、 半田バンプ 4の周囲のシリコン基板 2を各チッ プごとに切り離すために、 シリコン基板 2をエッチングする方法について説明し たが、 ダイシングにより、 半田バンプ 4の周囲のシリコン基板 2を各チップごと に切り離すようにしてもよい。
また、 第 8の実施の形態では、 半田バンプ 4を各チップごとに 1個づっ設ける 方法について説明したが、 半田バンプ 4を各チップごとに複数設けるようにして もよい。
図 37〜図 39は、 本発明の一実施の形態に係る傾斜角センサの半田バンプの 製造工程の一例を示す断面図である。
図 37 (a) において、 フォトリソグラフィー技術およびエッチング技術を用 いることにより、 シリコン基板 1 1上に A 1パッド 12 a、 12 bを形成する。 次に、 図 37 (b) に示すように、 スパッタまたは蒸着により、 A 1パッド 1 2 a、 12 bが形成されたシリコン基板 1 1上に UBM (Un d e r Bump Me t a 1 ) 膜 13を形成する。
次に、 図 37 (c) に示すように、 UBM膜 13が形成されたシリコン基板 1 1上にレジスト 14を塗布し、 フォトリソグラフィー技術を用いることにより、 半田バンプを形成する領域に開口部 14 aを形成する。
次に、 図 37 (d) に示すように、 UBM膜 13を力ソード電極として、 電解 銅メツキを行うことにより、 開口部 14 aが形成された UBM膜 13上に電解銅 メツキ層 15を形成する。
次に、 図 38 (a) に示すように、 UBM膜 13を力ソード電極として、 電解 半田メツキを行うことにより、 解銅メツキ層 15上に電解半田メツキ層 16を形 成する。
次に、 図 38 (b) に示すように、 酸素プラズマ処理を行うことにより、 シリ コン基板 1 1上に形成されたレジスト 14を除去する。
次に、 図 38 (c) に示すように、 電解半田メツキ層 16が形成されたシリコ ン基板 1 1の熱処理を行うことにより、 電解半田メツキ層 1 6を丸める。
次に、 図 3 9に示すように、 ドライエッチングまたはウエットエッチングによ り、 電解半田メツキ層 1 6の周りの U BM膜 1 3を除去する。
これにより、 シリコン基板 1 1の裏面を選択的にエッチングすることなく、 比 重の大きな電解半田メツキ層 1 6を複数のチップに対して一括して形成すること が可能となり、 傾斜角センサの製造工程を簡易化して、 傾斜角センサのコストを 下げることが可能となるとともに、 錘部材を小型ィヒして、 傾斜角センサを小型ィ匕 することが可能となる。
〔第 9の実施の形態〕
次に、 本発明の第 9の実施の形態を図面を参照しながら説明する。 図 4 0ない し図 4 8は、 本発明に係る傾斜角センサおよび傾斜角センサの製造方法の第 9の 実施の形態を示す図である。
図 4 0 ( a ) は、 本発明の第 9の実施の形態に係る傾斜角センサの構成を示す 平面図、 図 4 0 ( b ) は、図 4 0 ( a ) の B 1 _ B 1線で切断した断面図である。 図 4 0において、 シリコン基板 2 1上には、 シリコン酸ィヒ膜 2 0を介して単結 晶シリコン層 2 2が形成されている。
そして単結晶シリコン層 2 2の表面上には、 ピエゾ抵抗 R 2 1、 R 2 2および
A 1パッド P 2 1〜P 2 3が形成されるとともに、 ピエゾ抵抗 R 2 1、 R 2 2と
A 1パッド P 2 1〜P 2 3を接続する酉線 H 2 1が形成されている。
また、 単結晶シリコン層 2 2の表面上には、 A 1パッド 2 3を介して半田バン プ 2 4が形成されるとともに、 単結晶シリコン層 2 2には、 ピエゾ抵抗 R 2 1、
R 2 2の配置領域に対応して、 くびれ 2 2 aが形成されている。
また、半田バンプ 2 4およびピエゾ抵抗 R 2 1、R 2 2の配置領域に対応して、 単結晶シリコン層 2 2下のシリコン酸化膜 2 0が部分的に除去され、 残存するシ リコン酸化膜 2 0を支点として、 単結晶シリコン層 2 2が橈み可能な状態に保持 されている。
これにより、 ピエゾ抵抗 R 2 1、 R 2 2を保持するシリコン基板 2 1の裏面を 選択的にェツチングすることなく、 撓み可能な状態でピエゾ抵抗 R 2 1、 R 2 2 を保持しつつ、 錘部材を設けることが可能となる。 また、 ピエゾ抵抗 R 2 1、 R 22に応力が加わるように、 ピエゾ抵抗 R 2 1、 R 22が形成された単結晶シリコン層 22を支持する場合においても、 単結晶シ リコン層 22を薄く加工した後に、 単結晶シリコン層 22をシリコン基板 2 1に 貼り合わせる必要がなくなる。
このため、 シリコン基板 2 1に貼り合わせるための強度を確保するために、 単 結晶シリコン層 22の厚みを厚くする必要がなくなることから、 単結晶シリコン 層 22の厚みが均一化されている場合においても、 単結晶シリコン層 22を効率 よく橈ませて、 ピエゾ抵抗 R 2 1、 R 22に効率よく応力をかけることが可能と なるとともに、 傾斜角センサの構成を簡易化して、 衝撃に対する耐性も容易に向 上させることが可能となる。
図 41 (a) 〜図 47 (a) は、 本発明の第 9の実施の形態に係る傾斜角セン サの製造工程を示す平面図、 図 4 1 (b) 〜図 47 (b) および図 48は、 本発 明の第 9の実施の形態に係る傾斜角センサの製造工程を示す断面図である。 図 4 1におレ、て、 例えば、 シリコン酸化膜 20を介し単結晶シリコン層 22が シリコン基板 2 1上に形成された 5インチ径の S〇 I基板を用意する。 ここで、 単結晶シリコン層 22の厚み T 2は、 例えば、 50 m程度、 シリコン酸化膜 2 0の厚み T3は、 例えば、 2 μπι程度とすることができる。
なお、 SO I基板としては、 例えば、 S I MOX基板またはレーザァニール基 板などを用いることができる。
次に、 図 42に示すように、 フォトリソグラフィー技術を用いて、 ホウ素など の不純物を単結晶シリコン層 22に選択的にィオン注入することにより、 単結晶 シリコン層 22上の各チップ領域にピエゾ抵抗 R 2 1、 R 2 2を形成する。 そして、 スパッタまたは蒸着などにより、 A 1膜を単結晶シリコン層 22全面 に形成し、 フォトリソグラフィー技術およびエッチング技術を用いて A 1膜のパ ターニングを行なうことにより、 単結晶シリコン層 22上の各チップ領域に A 1 パッド 23、 P 2 1〜P 23および酉 H 2 1を形成する。
ここで、 単結晶シリコン層 22の各チップ領域の幅 W2は、 例えば、 1. Om m、 長さ L2は、 例えば、 2. 2mmとすることができ、 これにより、 5インチ 径の 1枚の S O I基板から、 約 5000個の傾斜角センサチップを得ることが可 能となる。
次に、 図 4 3に示すように、 単結晶シリコン層 2 2上の各チップ領域に形成さ れた A 1パッド 2 3上に半田バンプ 2 4を形成する。
ここで、 半田バンプ 2 4の大きさ C 2は、 例えば、 0 . 6〜1 . 2 mm程度と することができ、 半田バンプ 2 4の高さ H 2は、 例えば、 0 . 1〜0 . 4 mm程 度とすることができる。
また、 半田バンプ 2 4の形成方法としては、 例えば、 電 メツキまたはスクリ ーン印刷を用いることができ、 これにより、 S O I基板から取り出される全てチ ップに対して、 半田バンプ 2 4を一括して形成することができ、 製造工程を簡略 化することができる。
また、 半田バンプ 2 4の比重は、 ガラスやシリコンに比べて 3倍以上度あるの で、 同じ錘効果を得る場合、 半田バンプ 2 4の体積を 1 Z 3以下にすることがで き、 半田バンプ 2 4の小型ィヒを図ることが可能となる。
次に、 図 4に示すように、 フォトリソグラフィー技術およびエッチング技術 を用いて、 半田バンプ 2 4が形成された単結晶シリコン層 2 2を選択的にエッチ ングすることにより、単結晶シリコン層 2 2にくびれ 2 2 aを形成するとともに、 半田バンプ 2 4の周囲の単結晶シリコン層 2 2が各チップごとに切り離されるよ うにする。
なお、 単結晶シリコン層 2 2のエッチング方法としては、 例えば、 K O Hを用 いたゥエツトエッチングを用いることができる。
次に、 図 4 5に示すように、 単結晶シリコン層 2 2にくびれ 2 2 aが形成され た S O I基板を弗酸などの薬液に浸し、 単結晶シリコン層 2 2が選択的に除去さ れた部分を介して、 シリコン酸化膜 2 0を薬液に接触させる。
そして、 薬液によりシリコン酸化膜 2 0をェツチングしながら、 単結晶シリコ ン層 2 2の下方に薬液を回り込ませ、 パット P 2 1〜 P 2 3が形成された単結晶 シリコン層 2 2の下方のシリコン酸化膜 2 0を残しつつ、 半田バンプ 2 4が形成 された単結晶シリコン層 2 2の下方のシリコン酸ィヒ膜 2 0を除去する。
これにより、 半田バンプ 2 4が形成された単結晶シリコン層 2 2の下方に隙間 2 0 aを形成することができ、 残存するシリコン酸化膜 2 0を支点として単結晶 シリコン層 2 2が撓み可能な状態に、 単結晶シリコン層 2 2を保持することがで さる。
次に、 図 4 6に示すように、 単結晶シリコン層 2 2の下方に隙間 2 0 aが形成 された S O I基板をダイシングライン L 1 1、 L 1 2に沿ってダイシングするこ とにより、 半田バンプ 2 4が表面に形成されるとともに、 シリコン酸化膜 2 0で 裏面が支持された単結晶シリコン層 2 2をチップ状に切り出す。
次に、 図 4 7に示すように、 半田バンプ 2 4が表面に形成されるとともに、 シ リコン酸化膜 2 0で裏面が支持された単結晶シリコン層 2 2を、 パッケージ 2 6 内にダイボンドする。
そして、 ワイヤボンディングを行なうことにより、 パッケージ 2 6に設けられ た端子 2 7と単結晶シリコン層 2 2上に形成された A 1パッド P 2 1〜 P 2 3と を金ワイヤ 2 5で接続する。
次に、 図 4 8に示すように、 パッケージ 2 6に蓋 2 8を接着することにより、 傾斜角センサを封止する。
これにより、薄膜ィ匕された単結晶シリコン層 2 2の貼り合わせを行うことなく、 薄膜ィ匕された単結晶シリコン層 2 2を支持することが可能となり、 ピエゾ抵抗 R 2 1、 R 2 2が形成された単結晶シリコン層 2 2を効率よく撓ませることが可能 となる。
また、 ピエゾ抵抗 R 2 1、 R 2 2を支持するシリコン基板 2 1の裏面を選択的 にエッチングすることなく、 比重の大きな半田バンプ 2 4を単結晶シリコン層 2 2上に形成することが可能となり、 半田バンプ 2 4の小型化を図りつつ、 半田バ ンプ 2 4を容易に形成することが可能となる。
このため、 傾斜角センサの製造工程を簡易化して、 傾斜角センサの小型 '低コ スト化を図ることが可能となるとともに、 傾斜角センサの検出精度を容易に向上 させることが可能となる。
なお、 第 9の実施の形態では、 単結晶シリコン層 2 2をシリコン酸化膜 2 0で 支持するために、 S O I基板を用いる方法について説明したが、 貼り合わせ基板 を用いるようにしてもよい。
また、第 9の実施の形態では、単結晶シリコン層 2 2が撓みやすくするために、 くびれ 2 2 aを設けた例について説明したが、 くびれ 2 2 aは必ずしも設けなく てもよい。
また、 第 9の実施の形態では、 半田バンプ 2 4の周囲の単結晶シリコン層 2 2 を各チップごとに切り離すために、 単結晶シリコン層 2 2をエッチングする方法 について説明したが、 ダイシングにより、 半田バンプ 2 4の周囲の単結晶シリコ ン層 2 2を各チップごとに切り離すようにしてもよい。
また、 第 9の実施の形態では、 半田バンプ 2 4を各チップごとに 1個づっ設け る方法について説明したが、 半田バンプ 2 4を各チップごとに複数設けるように してもよレ、。
〔第 1 0の実施の形態〕
次に、 本発明の第 1 0の実施の形態を図面を参照しながら説明する。 図 4 9な いし図 5 5は、 本発明に係る傾斜角センサおよび傾斜角測定方法の第 1 0の実施 の形態を示す図である。
本実施の形態は、傾斜角センサおよび傾斜角測定方法を、図 4 9に示すように、 複数のピエゾ抵抗により異なる方向の傾斜角 η、 φを検出する場合について適用 したものである。
図 4 9 ( a ) は、 本発明の第 1 0の実施の形態に係る傾斜角センサの構成を示 す平面図であり、 図 4 9 ( b ) は、 図 4 9 ( a ) の A l—A 1線で切断した断面 図である。
図 4 9において、 支持部材 1 0 1 aの上には、 支持部材 1 0 1 bが形成されて おり、 支持部材 1 0 1 bがシリコン基板 1 0 2の端部 1 0 2 aの裏面に接合して シリコン基板 1 0 2の端部 1 0 2 aを裏面から支持している。 また、 シリコン基 板 1 0 2の端部 1 0 2 bの上には、 錘部材 1 0 4が形成されている。
シリコン基板 1 0 2の端部 1 0 2 aと端部 1 0 2 bとの間には、 くびれ状の梁 部 1 0 2 cが形成されている。 このように、 支持部材 1 0 1 bで端部 1 0 2 aを 固定し端部 1 0 2 bに錘部材 1 0 4を形成したことにより、 傾斜角センサを傾け た場合、錘部材 1 0 4の重力方向が変化し、梁部 1 0 2 cが橈みまたはねじれる。 したがって、 梁部 1 0 2 cが変位可能領域となるので、 梁部 1 0 2 cの橈み度合 レ、またはねじれ度合いを測定することにより傾斜角センサの傾斜角を測定するこ とができる。 なお、 図 49の場合において、 シリコン基板 102の撓み方向は、 シリコン基板 102の厚さ方向となり、 シリコン基板 102のねじれ方向は、 シ リコン基板 102の幅の中点を通る中心線 A 1 -A 1を軸とする回転方向となる。 シリコン基板 102は、 n型シリコン基板であり、 錘部材 104の重力方向の 変化によって撓みおよびねじれ可能となるまで薄く形成されている。 また、 結晶 面 (100) が表面となり、 < 1 10>方向がシリコン基板 102の長手方向と 一致するように形成されている。
錘部材 104は、 バンプ実装技術を用いて Auまたは半田等の金属塊をシリコ ン基板 102の表面に形成することにより形成されている。
梁部 102 cの上には、 ピエゾ抵抗 R ]. 1、 R 1 2、 R 13、 R 14、 R21、 R22、 R 23および R 24が形成されている。 ピエゾ抵抗 R 1 1、 R 12、 R 13、 R 14、 R21、 R22、 R 23および R 24は、 シリコン基板 102の 表面にボロン等の p型不純物を拡散させまたはィォン注入することにより形成さ れている。
ピエゾ抵抗 R 1 1および R 14は、 梁部 102 cのうちシリコン基板 102の 短手方向の中点を通る中心線 A 1一 A 1を軸として線対称の位置に配置されてい る。 ピエゾ抵抗 R 21および R 24は、 中心線 A 1—A 1を軸として線対称の位 置に配置され、 かつ、 ピエゾ抵抗 R 1 1および R 14よりも中心線 A 1—A 1寄 りに配置されている。
ピエゾ抵抗 R 12および R 13は、 中心線 A 1— A 1を軸として線対称の位置 に配置され、 かつ、 ピエゾ抵抗 R 1 1および R 14とシリコン基板 102の短手 方向の位置が同一でピエゾ抵抗 R 1 1および R 14よりも錘部材 104寄りに配 置されている。 ピエゾ抵抗 R 22および R 23は、 中心線 A 1— A 1を軸として 線対称の位置に配置され、 かつ、 ピエゾ抵抗 R 21および R 24とシリコン基板 2の短手方向の位置が同一でピエゾ抵抗 R21および R24よりも錘部材 104 寄りに配置されている。
これにより、 ピエゾ抵抗 R 1 1、 R 12、 R 13、 R 14、 R21、 R22、 R 23および R 24が形成されたシリコン基板 102の裏面を選択的にエツチン グすることなく、 撓みおよびねじれ可能な状態でシリコン基板 102を支持する ことが可能となるとともに、 既存のフリツプチップ実装技術との整合性をとりつ つ、 錘部材 104の比重を容易に増大させて、 錘部材 104の縮小化を図ること が可能となる。
このため、 傾斜角センサの構成および製造工程を簡易化して、 傾斜角センサの 小型 ·低コスト化を図ることが可能となるとともに、 衝撃に対する耐性も向上さ せることが可能となる。
図 50 (a) は、 シリコン基板 102を長手方向に切断した断面からみたとき の傾斜角センサの座標系を定義した図であり、 図 50 (b) は、 シリコン基板 1 02を短手方向に切断した断面からみたときの傾斜角センサの座標系を定義した 図である。
図 50 (a) において、 シリコン基板 102の長手方向を X軸、 シリコン基板 102の短手方向の軸を y軸、 X軸および y軸に垂直な方向の軸を z軸と定義す る。 また、 錘部材 104の重力 Wの X軸方向成分を G X、 錘部材 104の重力 W の z軸方向成分を G zと定義する。 また、 水平面しと X軸とのなす角度を傾斜角 φ (y軸回りの傾斜角) と定義する。
図 50 ( b )において、錘部材 104の重力 Wの y軸方向成分を G yと定義し、 水平面 Lと y軸とのなす角度を傾斜角 η ( X軸回りの傾斜角) と定義する。 図 51 (a) は、 ピエゾ抵抗 R 1 1、 R 12、 R 13および R 14の結線構成 を示す回路図であり、 図 51 (b) は、 ピエゾ抵抗 R 21、 R22、 R23およ び R 24の結線構成を示す回路図である。
図 51 (a) において、 ピエゾ抵抗 R 1 1、 R12、 R 13および R 14は、 フルブリッジ回路 C 1を構成している。 フルブリッジ回路 C 1では、 ピエゾ抵抗 R 1 1の一端とピエゾ抵抗 R 13の一端を接続してピエゾ抵抗 R 1 1および R 1 3を直列に接続し、 ピエゾ抵抗 R 12の一端とピエゾ抵抗 R 14の一端を接続し てピエゾ抵抗 R 12および R 14を直列に接続している。 また、 ピエゾ抵抗 R 1 1の他端およびピエゾ抵抗 R 14の他端を電源 V iのプラス電位側に接続し、 ピ ェゾ抵抗 R 12の他端およびピエゾ抵抗 R 13の他端を電源 V iのマイナス電位 側に接続している。 ここで、 ピエゾ抵抗 R 1 1 (R 13) の一端とピエゾ抵抗 R 12 (R 14) の一端との電位差をフルブリッジ回路 C 1の出力 Vo 1とす る。
図 5 1 (b ) において、 ピエゾ抵抗 R 2 1、 R 2 2、 尺 2 3ぉょび11 2 4は、 フルブリッジ回路 C 2を構成している。 フルブリッジ回路 C 2では、 ピエゾ抵抗 R 2 1の一端とピエゾ抵抗 R 2 3の一端を接続してピエゾ抵抗 R 2 1および R 2 3を直列に接続し、 ピエゾ抵抗 R 2 2の一端とピエゾ抵抗 R 2 4の一端を接続し てピエゾ抵抗 R 2 2および R 2 4を直列に接続している。 また、 ピエゾ抵抗 R 2 1の他端およびピエゾ抵抗 R 2 4の他端を電源 V iのプラス電位側に接続し、 ピ ェゾ抵抗 R 2 2の他端およびピエゾ抵抗 R 2 3の他端を電源 V iのマイナス電位 側に接続している。 ここで、 ピエゾ抵抗 R 2 1 (R 2 3) の一端とピエゾ抵抗 R 2 2 (R 2 4) の一端との電位差をフルブリッジ回路 C 2の出力 ¾EV o 2とす る。
次に、 傾斜角センサの傾斜角 Φ , ηを測定する場合を説明する。
錘部材 1 0 4の重力 Wの ζ軸方向成分 G ζにより梁部 1 0 2 cに曲げモーメン トが発生し、 梁部 1 0 2 cが撓むが、 傾斜角センサを X軸回りまたは y軸回りに 傾斜させると、 Wの方向が変化するため G zが変化し、 撓み量も変化する。 曲げ モーメントによる梁部 1 0 2 c上の X軸方向の応力 σ X 1は、 G zに比例し、 G zが下式 (1 ) の関係を満たすことから、 下式 (2) として表すことができる。
Figure imgf000058_0001
σχι OCCOS COS77 (2)
次に、 傾斜角センサを X軸回りに傾斜させると、 錘部材 1 0 4の重力方向が変 ィ匕して G yにより梁部 1 0 2 cにねじりモーメントが発生し、 梁部 1 0 2 がね じれる。 ねじりモーメントによる梁部 1 0 2 c上の X軸方向の応力 σ X 2は、 G yに比例し、 G yが下式 (3) の関係を満たすことから、 下式 (4) として表す ことができる。
Gy=Wsin77 …… (3)
Figure imgf000058_0002
なお、 G xは梁部 1 0 2 cに曲げモーメントを発生させるが、 G zによる曲げ モーメントと比較して小さレ、ので無視することができる。
ピエゾ抵抗が p型 S iであり、 シリコン基板 1 0 2の結晶面 (1 0 0) が表面 となり、 かつ、 ピエゾ抵抗の方向がシリコン基板 102の結晶方向く 1 10〉と 平行である場合、 ピエゾ抵抗の抵抗変化率 |3は、 下式 (5) により表すことがで さる。
^ = 7r44(al-at) …… (5) 上式 (5) において、 π 44は、 ピエゾ抵抗係数と呼ばれるもので、 不純物濃 度が 1018[cm3]の ρ型 S iである場合は約 1. 3 X 1 O Pa—1]となる。 また、 ひ 1は、 ピエゾ抵抗にかかる縦方向の応力、 σ tは、 ピエゾ抵抗にかかる横方向の 応力である。
ピエゾ抵抗が X軸方向を向いている場合、 σ 1は、 下式 (6) により表すこと ができる。
σΐ = σχι + σΧ2 (6) また、 a tは、 ピエゾ抵抗にかかる y軸方向の応力になるが、 σ χ 1 + σ χ 2 と比較して小さいので無視することができる。 これにより、 βは、 下式 (7) に より表すことができる。
Figure imgf000059_0001
上式 (7) において、 A, Bは、 比例定数である。
図 49に示すように、 ピエゾ抵抗が中心線 A 1— A 1を軸として線対称の位置 に配置されている場合、 対称の位置にあるピエゾ抵抗の対については、 σ χ ΐは 同一またはほぼ同一の値となり、 σ χ 2は、 絶対ィ直が同一またはほぼ同一となり 符号が逆になる。 したがって、 各ピエゾ抵抗 R 1 1、 R 12、 R 13、 R 14、 R21、 R22、 R 23および R 24の抵抗変化率 ]31 1、 ]312、 ]313、 β 14、 ]321、 ]322、 β 23および324は、 下式 (8) 〜 (15) により表す ことができる。
R11
Figure imgf000059_0002
…… (8)
1¾12の抵抗変化率^12=(:100500)377 +015 77 (9)
R13の抵抗変化率/? 13=C1cos0cos?7— D1sin?? …… (10)
— B1sin?7 …… (11)
Figure imgf000059_0003
+B2sinT? …… (12)
(¾22の抵抗変化率 322=02<:050(:0577 +025 7 …… (13) 1^3の抵抗変化率/523=じ2(:050(:0577—025 7 …… (14)
R24の抵抗変化率^
Figure imgf000060_0001
— B2sin;? …… (15) 上式 (8) 〜 (15) において、 Al、 B l、 C l、 D l、 A2、 B 2、 C2お よび D2は、 比例定数である。
さらに、 σ X 1= σ X 2 = 0における各ピエゾ抵抗 R 1 1、 R12、 R13、 R 14、 R21、 R22、 R 23および R 24の値がすべて等しい場合、 フルブ リッジ回路 C 1の出力電圧 Vo 1およびフルブリッジ回路 C 2の出力電圧 Vo 2 は、 近似的に下式 (16) , (17) により表すことができる。
Vo1=E1sin77 …… (16)
Vo2 = E2cos cos77 …… (17) 上式 (16) , (17) において、 E l、 E2は、 下式 (18) , (19) により表す ことができる。
E1=xVi …-. (18) r A2-C2 、,.
£2= ~ xVi (19)
すなわち、 Vo lは S i n に、 Vo 2は c o s <i> c o s にそれぞれ比例し た ί直となる。
傾斜角センサは、 出力電圧 Vo l、 V o 2に基づいて傾斜角 、 ηを算出する 斜角算出部を有している。
傾斜角算出部は、 傾斜角 < ηを測定するときは、 まず、 ステップ S 100に するようになっている。
ステップ S 100では、 E l、 Ε 2を算出する。 これには、 種々の方法がある 力 例えば、 75 = 90° および η =- 90° における V ο 1をそれぞれ測定して Vo l l、 Vo l 2とし、 また、 η =0° 、 φ = 0。 および η =0° 、 ψ = 18 0° における Vo 2をそれぞれ測定して Vo 21、 Vo 22とすれば、 E l、 E 2は、 下式 (20) , (21) により算出することができる。
E1=Vo11-Vo12 (20) E2 = Vo21-Vo22 …… (21) なお、 ステップ S I 00は、 例えば、 工場出荷時に実施して、 算出結果を不揮 発性メモリに記憶しておけばよい。
次いで、 ステップ S 102に移行して、 Vo 1および Vo 2を算出し、 ステツ プ S 104に移行して、 下式 (22) により傾斜角 ηを算出し、 ステップ S 106 に移行して、 下式 (23) により傾斜角^を算出し、 一連の処理を終了して元の処 理に復帰させる。
Figure imgf000061_0001
0=cos-' (Vo2/(E2xcos77)) …… (23)
[実施例]
次に、 本実施の形態の実施例を説明する。
図 52は、 シリコン基板 102およびピエゾ抵抗の寸法条件を示す図である。 図 52において、 端部 102 aの長手方向 (シリコン基板 102の短手方向) の長さは 800[μηι]、端部 102 aの短手方向(シリコン基板 102の長手方向) の長さは 200 [ ιη]である。 また、梁部 102 cの長手方向 (シリコン基板 10 2の長手方向) の長さは 800[ itn]、梁部 102 cの短手方向 (シリコン基板 1 02の短手方向) の長さは 200 [/im]である。 また、 シリコン基板 102の厚さ は、 20[μπι]である。
錘部材 104の長手方向 (シリコン基板 102の短手方向) の長さは 600 [/im]、
Figure imgf000061_0002
04の短手方向 (シリコン基板 102の長手方向) の長さは 50 0[/itn]であり、 錘部材 104の厚さは 30 [μπι]である。 また、 錘辦才 104の 材質は金である。
ピエゾ抵抗 R 1 1、 R 21、 R 24および R 14は、 端部 102 a力 らシリコ ン基板 102の長手方向に 150[μπι]離れたところに配置されており、ピエゾ抵 抗 R 12、 R22、 1^23ぉょび1 13は、 ピエゾ抵抗 R 1 1、 R21、 R 24 および R 14力 らシリコン基板 102の長手方向に 200 [/xm]離れたところに 配置されている。 また、 ピエゾ抵抗 R 24および R 23は、 ピエゾ抵抗 14およ び R 13からシリコン基板 102の短手方向に 60 m]離れたところに配置さ れており、 ピエゾ抵抗 R 21および R 22は、 ピエゾ抵抗 R 24および R 23か らシリコン基板 102の短手方向に 40 [; um]離れたところに配置されている。ま た、 ピエゾ抵抗 R 11および R 12は、 ピエゾ抵抗 R 21および R 22からシリ コン基板 102の短手方向に 60 [μιπ]離れたところに配置されている。
各ピエゾ抵抗 R 11、 R12、 R 13、 R 14、 R21、 R22、 R23およ び R 24の長さ、幅、表面不純物濃度および拡散深さは、 それぞれ 50 [ μ m]、 1 0[μπι]、 1018[cm3]および 0. 45[μπι]である。
図 53 (a) は、 ピエゾ抵抗 R 1 1、 R 12、 R 13および R 14の結線構成 を示す回路図であり、 図 53 (b) は、 ピエゾ抵抗 R 21、 R22、 R23およ び R 24の結線構成を示す回路図である。
結線構造は、 図 51と同様である。 ただし、 電源電圧 V iは、 フルブリッジ回 路 C l、 C 2ともに 5 [V]に設定した。
図 54 (a) は、 傾斜角 を一定にして傾斜角 ηを変化させたときの出力 ff Vo lの変化を示すダラフであり、 図 54 ( b ) は、 傾斜角 ηを一定にして傾斜 角 φを変化させたときの出力 IffV o 1の変化を示すグラフである。
傾斜角 φ = 0に固定して傾斜角センサを y軸回りに傾斜させると、 出力 «i£V 01は、図54 (a)に示すように、 s i η にほぼ比例していることが分かる。 また、 傾斜角 η =0に固定して傾斜角センサを X軸回りに傾斜させると、 出力電 圧 Vo lは、 図 54 (b) に示すように、 傾斜角 φの増減にかかわらずほぼゼロ となることが分かる。
図 55 ( a ) は、 傾斜角 φを一定にして傾斜角 ηを変化させたときの出力 ff Vo 2の変化を示すグラフであり、 図 55 (b) は、 傾斜角 ηを一定にして傾斜 角 φを変化させたときの出力 ff V o 2の変化を示すグラフである。
傾斜角 Φ = 0に固定して傾斜角センサを y軸回りに傾斜させると、 出力 IU£ V o 2は、図 55 (a)に示すように、 c o s ηにほぼ比例していることが分かる。 また、 傾斜角 =0に固定して傾斜角センサを X軸回りに傾斜させると、 出力電 圧 Vo 2は、 図 55 (b) に示すように、 c o s φにほぼ比例していることが分 かる。
このようにして、 本実施の形態では、 表面にピエゾ抵抗が形成されたシリコン 基板 102と、 シリコン基板 102の一端でシリコン基板 102を支持する支持 部材 1 0 1 bと、 シリコン基板 1 0 2の端部 1 0 2 bに配置された錘部材 1 0 4 と、 傾斜角 Φ、 ηを算出する傾斜角算出部とを備え、 ピエゾ抵抗 R 1 1および R 1 4、 ピエゾ抵抗 R 2 1および R 2 4、 ピエゾ抵抗 R 1 2および R 1 3、 並びに ピエゾ抵抗 R 2 2および R 2 3を、 中心線 A 1— A 1を軸として線対称の位置に 配置し、 ピエゾ抵抗 R 1 1、 R 1 2、 R 1 3および R 1 4によりフルブリッジ回 路 C 1を構成するとともに、 ピエゾ抵抗 R 2 1、 R 2 2、 R 2 3および R 2 4に よりフルブリッジ回路 C 2を構成し、 傾斜角算出部は、 フルブリッジ回路 C 1の 出力電圧 V o 1に基づいて傾斜角 ηを算出し、 フルブリッジ回路 C 2の出力電圧 V o 2および算出した傾斜角 ηに基づいて傾斜角 φを算出するようになっている。 これにより、 比重の大きな金バンプを錘部材 1 0 4として用いることにより、 錘部材 1 0 4の小型化を図りつつ、 既存のフリップチップ実装技術と容易に整合 性をとることが可能となり、 傾斜角センサの小型 '低コスト化を図ることが可能 となるとともに、 衝撃に対する耐性も向上させることが可能となる。 また、 厚み が均一なシリコン基板 1 0 2を用いた場合においても、 異なる方向の傾斜角 η、 φを 1つの傾斜角センサで検出することができる。 また、 複数のピエゾ抵抗によ りブリツジ回路 C 1、 C 2を構成しているので、 傾斜角 η、 φの検出精度を比較 的向上させることができる。
上記第 1 0の実施の形態において、 ピエゾ抵抗 R 1 1、 R 1 2、 R 1 3および R 1 4は、 請求の範囲第 2 3または第 2 6項記載の第 1ピエゾ抵抗群に対応し、 ピエゾ抵抗 R 2 1、 R 2 2、 R 2 3および R 2 4は、 請求の範囲第 2 3または第 2 6項記載の第 2ピエゾ抵抗群に対応し、 フルブリッジ回路 C 1は、 請求の範囲 第 2 3または第 2 6項記載の第 1フルブリッジ回路に対応している。 また、 フル ブリッジ回路 C 2は、 請求の範囲第 2 3または第 2 6項記載の第 2フルブリッジ 回路に対応し、傾斜角算出部は、請求の範囲第 2 3項記載の第 1傾斜角算出手段、 または請求の範囲第 2 3項記載の第 2傾斜角算出手段に対応し、 傾斜角算出部に よる算出は、 請求の範囲第 2 6項記載の第 1傾斜角算出ステップ、 または請求の 範囲第 2 6項記載の第 2傾斜角算出ステップに対応してレ、る。
〔第 1 1の実施の形態〕
次に、 本発明の第 1 1の実施の形態を図面を参照しながら説明する。 図 5 6な いし図 61は、 本発明に係る傾斜角センサおよび傾斜角測定方法の第 1 1の実施 の形態を示す図である。
本実施の形態は、傾斜角センサおよび傾斜角測定方法を、図 56に示すように、 複数のピエゾ抵抗により異なる方向の傾斜角 η、 φを検出する場合について適用 したものであり、 上記第 10の実施の形態と異なるところは、 ピエゾ抵抗の配置 数および配置位置にある。 なお、 以下、 上記第 10の実施の形態と異なる部分に ついてのみ説明し、重複する部分については同一の符号を付して説明を省略する。 図 56は、 本発明の第 11の実施の形態に係る傾斜角センサの構成を示す平面 図である。
図 56において、梁部 102 cの上には、ピエゾ抵抗 R 31、 R32、 R33、 R34、 R 41および R 42が形成されている。
ピエゾ抵抗 R 31および R 34は、 中心線 A 1— A 1を軸として線対称の位置 に配置されている。ピエゾ抵抗 R 41は、中心線 A 1— A 1上に配置されている。 ピエゾ抵抗 R 32および R 33は、 中心線 A 1—A 1を軸として線対称の位置 に配置され、 かつ、 ピエゾ抵抗 R 31および R 34とシリコン基板 102の短手 方向の位置が同一で、 ピエゾ抵抗 R 31および R 34よりも錘部材 104寄りに 配置されている。 ピエゾ抵抗 R 42は、 中心線 A 1— A 1上に配置され、 かつ、 ピエゾ抵抗 R 41よりも錘部材 104寄りに配置されている。
これにより、 ピエゾ抵抗 R 31、 R32、 R33、 R34、 R41および R4 2が形成されたシリコン基板 102の裏面を選択的にェツチングすることなく、 撓みおよびねじれ可能な状態でシリコン基板 102を支持することが可能となる とともに、 既存のフリップチップ実装技術との整合性をとりつつ、 錘部材 104 の比重を容易に増大させて、 錘部材 104の縮小ィ匕を図ることが可能となる。 このため、 傾斜角センサの構成および製造工程を簡易化して、 傾斜角センサの 小型-低コスト化を図ることが可能となるとともに、 衝撃に対する耐性も向上さ せることが可能となる。
図 57 (a) は、 ピエゾ抵抗 R 31、 R32、 R 33および R 34の結線構成 を示す回路図であり、 図 57 ( b ) は、 ピエゾ抵抗 R 41および R 42の結線構 成を示す回路図である。 図 57 (a) において、 ピエゾ抵抗 R 31、 R32、 R 33および R 34は、 フルブリッジ回路 C 3を構成している。 フルブリッジ回路 C 3では、 ピエゾ抵抗 R 31の一端とピエゾ抵抗 R 33の一端を接続してピエゾ抵抗 R 31および R 3 3を直列に接続し、 ピエゾ抵抗 R 32の一端とピエゾ抵抗 R 34の一端を接続し てピエゾ抵抗 R 32および R 34を直列に接続している。 また、 ピエゾ抵抗 R 3 1の他端およびピエゾ抵抗 R 34の他端を電源 V iのプラス電位側に接続し、 ピ ェゾ抵抗 R 32の他端およびピエゾ抵抗 R 33の他端を電源 V iのマイナス電位 側に接続している。 ここで、 ピエゾ抵抗 R 31 (R 33) の一端とピエゾ抵抗 R 32 (R 34) の一端との電位差をフルブリッジ回路 C 3の出力 ffiVo 3とす る。
図 57 (b) において、 ピエゾ抵抗 R 41および R 42は、 ハーフブリッジ回 路 C4を構成している。 ハーフブリッジ回路 C 4では、 ピエゾ抵抗 R41の一端 とピエゾ抵抗 R 42の一端を接続してピエゾ抵抗 R 41および R 42を直列に接 続している。また、ピエゾ抵抗 R 41の他端を ¾ V iのプラス電位側に接続し、 ピエゾ抵抗 R 42の他端を電源 V iのマイナス電位側に接続している。 ここで、 ピエゾ抵抗 R 42の電位差をハーフブリッジ回路 C 4の出力電圧 Vo 4とする。 次に、 傾斜角センサの 斜角 Ψ, ηを測定する場合を説明する。
各ピエゾ抵抗 R 31、 R32、 R33、 R34、 R 41および R 42の抵抗変 化率 ]331、 032、 J333、 β 34、 ]341および342は、下式(24) 〜(29) により表すことができる。 なお、 下式 (24) 〜 (29) は、 上式 (1) 〜 (7) を 用いて上記第 10の実施の形態と同じ要領で導出することができる。
R31の抵抗変化率
Figure imgf000065_0001
+B3sin7? (24)
1^32の抵抗変化率 332 = 030)50(:0577 +035 77 (25)
(¾33の抵抗変化率533 = 03<;050(:0577—035 77 (26)
1^34の抵抗変化率 334=^3(:050(;0577—835 77 (27) 1¾41の抵抗変化率)541= 40)50(:0577 …… (28)
1^2の抵抗変化率;542 =じ4(050(:0377 (29) 上式 (24) 〜 (29) において、 A3、 B3、 C3、 D3、 A 4および C 4は、 比例定数である。 さらに、 σ x 1 =σ x 2 = 0における各ピエゾ抵抗 R3 1、 R 32、 R 33、 R 34、 R 4 1および R 42の値がすべて等しい場合、 フルブリッジ回路 C 3の 出力電圧 Vo 3およびハーフブリッジ回路 C 4の出力電圧 Vo 4は、 近似的に下 式 (30) , (31) により表すことができる。
Vo3 = E3sin?7 (30)
Vi
Vo4 = -γ- + E4cos φ cos 77 1 ) 上式 (30) , (31) において、 E 3、 E4は、 下式 (32) , (33) により表す .とができる。
B3 + D3
E3=—— - ~ xVi '-… (32)
c, A4-C4 、,·
E4= ~ xVi (33) すなわち、 Vo 3は s i n rjに、 Vo 4_V iZ2は c o s (f> c o s にそれ ぞれ比例した値となる。 したがって、 傾斜角算出部は、 上記第 10の実施の形態 と同じ要領で傾斜角 Φ、 ηを算出することができる。
[実施例]
次に、 本実施の形態の実施例を説明する。
図 58は、 シリコン基板 102およびピエゾ抵抗の寸法条件を示す図である。 図 58において、 端部 102 aの長手方向 (シリコン基板 102の短手方向) の長さは 800[μπι]、端部 102 aの短手方向(シリコン基板 102の長手方向) の長さは 200[ im]である。 また、梁部 102 cの長手方向 (シリコン基板 10 2の長手方向) の長さは 800 [/im]、梁部 102 cの短手方向 (シリコン基板 1 02の短手方向) の長さは 200 [/im]である。 また、 シリコン基板 102の厚さ は、 20 [μπι]である。
錘部材 104の長手方向 (シリコン基板 1 02の短手方向) の長さは 600 [ μ m]、錘部材 104の短手方向 (シリコン基板 102の長手方向) の長さは 50 0 [;um]であり、 錘部材 1 04の厚さは 3 0 [μιη]である。 また、 錘部材 1 04の 材質は金である。
ピエゾ抵抗 R 3 1、 R 4 1および R 3 4は、 端部 1 0 2 aからシリコン基板 1 0 2の長手方向に 1 5 0 m]離れたところに配置されており、ピエゾ抵抗 R 3 2、 4 2ぉょび1 3 3は、 ピエゾ抵抗 R 3 1、 R 4 1および R 3 4からシリコン基 板 1 0 2の長手方向に 5 0 0 [ /m]離れたところに配置されている。また、 ピエゾ 抵抗 R 4 1および R 4 2は、 ピエゾ抵抗 R 3 4および R 3 3力 らシリコン基板 1 0 2の短手方向に 8 0 [ μ m]離れたところに配置されており、ピエゾ抵抗 R 3 1お よび R 3 2は、 ピエゾ抵抗 R 4 1および R 4 2力、らシリコン基板 1 0 2の短手方 向に 8 0 [Aim]離れたところに配置されている。
各ピエゾ抵抗 R 3 1、 R 3 2、 R 3 3、 R 3 4、 R 4 1および R 4 2の長さ、 幅、表面不純物濃度および拡散深さは、それぞれ 5 0 [/im]、 1 0 [/im]、 1 018[cm3] および 0. 4 5 [/xm]である。
図 5 9 (a ) は、 ピエゾ抵抗 R 3 1、 R 3 2、 R 3 3および R 3 4の結線構成 を示す回路図であり、 図 5 9 ( b ) は、 ピエゾ抵抗 R 4 1および R 4 2の結線構 成を示す回路図である。
結線構造は、 図 5 7と同様である。 ただし、 ¾¾¾¾ϊν iは、 フルブリッジ回 路 C 3、 C 4ともに 5 [V]に設定した。
図 6 0 (a ) は、 傾斜角 φを一定にして傾斜角 ηを変化させたときの出力 ¾J3E V o 3の変化を示すダラフであり、 図 6 0 ( b ) は、 傾斜角 ηを一定にして傾斜 角 φを変化させたときの出力 βΐίν o 3の変化を示すグラフである。
傾斜角 Φ = 0に固定して傾斜角センサを y軸回りに傾斜させると、 出力 HffV o 3は、図 6 0 (a)に示すように、 s i η ηにほぼ比例していることが分かる。 また、 傾斜角 η = 0に固定して傾斜角センサを X軸回りに傾斜させると、 出力電 圧 V o 3は、 図 6 0 (b) に示すように、 傾斜角 φの増減にかかわらずほぼゼロ となることが分かる。
図 6 1 (a ) は、 傾斜角 ψを一定にして傾斜角 ηを変化させたときの出力 ¾1Ξ V o 4の変化を示すグラフであり、 図 6 1 (b) は、 傾斜角 ηを一定にして傾斜 角 Φを変化させたときの出力 ffV o 4の変化を示すグラフである。 傾斜角 Φ =。に固定して傾斜角センサを y軸回りに傾斜させると、 出力電圧 V o 4は、 図 6 1 ( a ) に示すように、 V i 2をオフセットとして c o s ηにほ ぼ比例していることが分かる。 また、 ί頃斜角 η = 0に固定して傾斜角センサを X 軸回りに傾斜させると、 出力 ®EV o 4は、 図 6 1 ( b ) に示すように、 V i Z 2をオフセットとして c o s φにほぼ比例していることが分かる。
このようにして、 本実施の形態では、 表面にピエゾ抵抗が形成されたシリコン 基板 1 0 2と、 シリコン基板 1 0 2の一端でシリコン基板 1 0 2を支持する支持 部材 1 0 1 bと、 シリコン基板 1 0 2の端部 1 0 2 bに配置された錘部材 1 0 4 と、 傾斜角 Φ、 ηを算出する傾斜角算出部とを備え、 ピエゾ抵抗 R 3 1および R 3 4、 並びにピエゾ抵抗 R 3 2および R 3 3を、 中心線 A 1— A 1を軸として線 対称の位置に配置し、 ピエゾ抵抗 R 4 1および R 4 2を、 中心線 A 1— A 1上に 配置し、 ピエゾ抵抗 R 3 1 、 R 3 2、 R 3 3および R 3 4によりフルブリッジ回 路 C 3を構成するとともに、 ピエゾ抵抗 R 4 1および R 4 2によりハーフブリッ ジ回路 C 4を構成し、 傾斜角算出部は、 フルブリッジ回路 C 3の出力電圧 V o 3 に基づいて傾斜角 ηを算出し、 ハーフブリッジ回路 C 4の出力電圧 V o 4および 算出した傾斜角 ηに基づいて傾斜角 φを算出するようになっている。
これにより、 比重の大きな金バンプを錘部材 1 0 4として用いることにより、 錘部材 1 0 4の小型ィヒを図りつつ、 既存のフリップチップ実装技術と容易に整合 性をとることが可能となり、 傾斜角センサの小型■低コスト化を図ることが可能 となるとともに、 衝撃に対する耐性も向上させることが可能となる。 また、 厚み が均一なシリコン基板 1 0 2を用いた場合においても、 異なる方向の傾斜角 η 、 ψを 1つの傾斜角センサで検出することができる。 また、 複数のピエゾ抵抗によ りブリッジ回路 C 3、 C 4を構成しているので、 傾斜角 η 、 φの検出精度を比較 的向上させることができる。 また、 上記第 1 0の実施の形態に比して、 検出に必 要なピエゾ抵抗の数を低減することができる。
上記第 1 1の実施の形態において、 ピエゾ抵抗 R 3 1 、 R 3 2、 R 3 3および R 3 4は、 請求の範囲第 2 4または第 2 7項記載の第 1ピエゾ抵抗群に対応し、 ピエゾ抵抗 R 4 1および R 4 2は、 請求の範囲第 2 4または第 2 7項記載の第 2 ピエゾ抵抗群に対応し、 フルブリッジ回路 C 3は、 請求の範囲第 2 4または第 2 7項記載の第 1フルブリッジ回路に対応している。 また、 ハーフブリッジ回路 C 4は、請求の範囲第 2 4または第 2 7項記載の第 2ハーフブリッジ回路に対応し、 傾斜角算出部は、 請求の範囲第 2 4項記載の第 1傾斜角算出手段、 または請求の 範囲第 2 4項記載の第 2傾斜角算出手段に対応し、 傾斜角算出部による算出は、 請求の範囲第 2 7項記載の第 1傾斜角算出ステップ、 または請求の範囲第 2 7項 記載の第 2傾斜角算出ステップに対応している。
〔第 1 2の実施の形態〕
次に、 本発明の第 1 2の実施の形態を図面を参照しながら説明する。 図 6 2な いし図 6 9は、 本発明に係る傾斜角センサおよび傾斜角測定方法の第 1 2の実施 の形態を示す図である。
本実施の形態は、傾斜角センサおよび傾斜角測定方法を、図 6 2に示すように、 複数のピエゾ抵抗により異なる方向の傾斜角 η、 φを検出する場合について適用 したものであり、 上記第 1 0の実施の形態と異なるところは、 ピエゾ抵抗の配置 数および配置位置にある。 なお、 以下、 上記第 1 0の実施の形態と異なる部分に ついてのみ説明し、重複する部分については同一の符号を付して説明を省略する。 図 6 2は、 本発明の第 1 2の実施の形態に係る傾斜角センサの構成を示す平面 図である。
図 6 2において、 梁部 1 0 2 cの上には、 ピエゾ抵抗 R 5 1、 R 5 2、 R 5 3 および R 5 4が形成されている。
ピエゾ抵抗 R 5 1および R 5 4は、 中心線 A 1— A 1を軸として線対称の位置 に配置されている。 ピエゾ抵抗 R 5 2および R 5 3は、 中心線 A 1— A 1を軸と して線対称の位置に配置され、 かつ、 ピエゾ抵抗 R 5 1および R 5 4とシリコン 基板 1 0 2の短手方向の位置が同一でピエゾ抵抗 R 5 1および R 5 4よりも錘部 材 1 0 4寄りに配置されている。
これにより、 ピエゾ抵抗 R 5 1、 R 5 2、 R 5 3および R 5 4が形成されたシ リコン基板 1 0 2の裏面を選択的にエッチングすることなく、 橈みおよびねじれ 可能な状態でシリコン基板 1 0 2を支持することが可能となるとともに、 既存の フリップチップ実装技術との整合性をとりつつ、 錘部材 1 0 4の比重を容易に増 大させて、 錘部材 1 0 4の縮小化を図ることが可能となる。 このため、 傾斜角センサの構成および製造工程を簡易化して、 傾斜角センサの 小型 ·低コスト化を図ることが可能となるとともに、 衝撃に対する耐性も向上さ せることが可能となる。
図 63 (a) は、 ピエゾ抵抗 R 51、 R52、 R53および R54の結線構成 を示す回路図であり、 図 63 (b) は、 ピエゾ抵抗 R 51、 R52、 R53およ び R 54の他の結線構成を示す回路図である。
図 63 (a) において、 ピエゾ抵抗 R 51、 R52、 1¾53ぉょび1¾54は、 フルブリッジ回路 C 5を構成してレ、る。 フルブリッジ回路 C 5では、 ピエゾ抵抗 R 51の一端とピエゾ抵抗 R 53の一端を接続してピエゾ抵抗 R 51および R 5 3を直列に接続し、 ピエゾ抵抗 R 52の一端とピエゾ抵抗 R 54の一端を接続し てピエゾ抵抗 R 52および R 54を直列に接続している。 また、 ピエゾ抵抗 R 5 1の他端およびピエゾ抵抗 R 54の他端を電源 V iのプラス電位側に接続し、 ピ ェゾ抵抗 R 52の他端およびピエゾ抵抗 R 53の他端を電源 V iのマイナス電位 側に接続している。 ここで、 ピエゾ抵抗 R 51 (R 53) の一端とピエゾ抵抗 R 52 (R 54) の一端との電位差をフルブリッジ回路 C 5の出力 ffVo 5とす る。
図 63 (b) において、 ピエゾ抵抗 R 51、 R52、 尺53ぉょび!^54は、 フルブリッジ回路 C 5とは接続が異なるフルブリッジ回路 C 6を構成している。 フルブリッジ回路 C 6では、 ピエゾ抵抗 R 51の一端とピエゾ抵抗 R 53の一端 を接続してピエゾ抵抗 R 51および R 53を直列に接続し、 ピエゾ抵抗 R 52の 一端とピエゾ抵抗 R 54の一端を接続してピエゾ抵抗 R 52および R 54を直列 に接続している。 また、 ピエゾ抵抗 R 51の他端およびピエゾ抵抗 R 52の他端 を電源 V iのプラス電位側に接続し、 ピエゾ抵抗 R 53の他端およびピエゾ抵抗 R 54の他端を電源 V iのマイナス電位側に接続している。 ここで、 ピエゾ抵抗 R 51 (R 53) の一端とピエゾ抵抗 R 52 (R 54) の一端との電位差をフル ブリッジ回路 C 6の出力電圧 Vo 6とする。 なお、 フルブリッジ回路 C6は、 フ ルブリッジ回路 C 5の接続をスィツチング等により切り換えることにより構成す る。
次に、 傾斜角センサの傾斜角 Φ, ηを測定する場合を説明する。 各ピエゾ抵抗 R 51、 R52、 R 53および R 54の抵抗変化率 |351、 β 5 2、 /353および ]354は、下式(34) 〜 (37) により表すことができる。 なお、 下式 (34) 〜 (37) は、 上式 (1) 〜 (7) を用いて上記第 10の実施の形態と 同じ要領で導出することができる。
1^51の抵抗変化率^51= 5(;050(:0377+855 77 …… (34)
1¾52の抵抗変化率 352 = 05(:050(:0577 +0531'1177 …… (35)
1¾53の抵抗変化率^53 =じ50)5?5(:0577—053 77 …… (36)
1^54の抵抗変化率 354 =八5(:030(:0577—855 77 (37) 上式 (34) 〜 (37) において、 A 5、 B 5、 C 5および D 5は、 比例定数であ る。
さらに、 σ X 1 = σ X 2 = 0における各ピエゾ抵抗 R 51、 R52、 R53お よび R 54の値がすべて等しい場合、 フルブリッジ回路 C 5の出力電圧 Vo 5お よびフルブリッジ回路 C 6の出力電圧 Vo 6は、 近似的に下式 (38) , (39) に より表すことができる。
Vo5 = E5sin^ (38)
Figure imgf000071_0001
上式 (38) , (39) において、 E5、 E6は、 下式 (40) , (41) により表す ことができる。
E5=__B5 + D5_xV. … (40)
「。 A5-C5 .
E6= ~ xVi (41)
すなわち、 Vo 5は s ί η ηに、 Vo 6は c o s ^ c o s r]にそれぞれ比例し た値となる。 したがって、 傾斜角算出部は、 上記第 10の実施の形態と同じ要領 で傾斜角 < ηを算出することができる。
[実施例]
次に、 本実施の形態の実施例を説明する。
図 64は、 シリコン基板 102およびピエゾ抵抗の寸法条件を示す図である。 図 64において、 端部 102 aの長手方向 (シリコン基 fe 102の短手方向) の長さは 800 [/im]、端部 102 aの短手方向(シリコン基板 102の長手方向) の長さは 200 [/itn]である。 また、梁部 102 cの長手方向 (シリコン基板 10 2の長手方向) の長さは 800 [ /m]、梁部 102 cの短手方向 (シリコン基板 1 02の短手方向) の長さは 200 [/im]である。 また、 シリコン基板 102の厚さ は、 20[μηι]である。
錘部材 104の長手方向 (シリコン基板 102の短手方向) の長さは 600 [ μ m]、錘部材 104の短手方向 (シリコン基板 102の長手方向) の長さは 50 0 [/im]であり、 錘部材 104の厚さは 30 [μηι]である。 また、 錘部材 104の 材質は金である。
ピエゾ抵抗 R 51および R 54は、 端部 102 aからシリコン基板 102の長 手方向に 50 [μιη]離れたところに配置されており、ピエゾ抵抗 R 52および R 5 3は、 ピエゾ抵抗 R 51および R 54力 らシリコン基板 102の長手方向に 20 0[/im]離れたところに配置されている。また、ピエゾ抵抗 R 51および R52は、 ピエゾ抵抗 R 53および R 54からシリコン基板 102の短手方向に 160 [μηι]ϋれたところに配置されている。
各ピエゾ抵抗 R 51、 R 52、 R 53および R 54の長さ、 幅、 表面不純物濃 度および拡散深さは、 それぞれ 50 [/im]、 10[/im]、 1018[cm3]および 0. 4 5 [/zm]である。
図 65 (a) は、 ピエゾ抵抗 R 51、 R52、 R 53および R 54の結線構成 を示す回路図であり、 図 65 (b) は、 ピエゾ抵抗 R 51、 R52、 R53およ び R 54の他の結線構成を示す回路図である。
結線構造は、 図 63と同様である。 ただし、 源 ¾3EV iは、 フルブリッジ回 路 C5、 C 6ともに 5 [V]に設定した。
図 66 (a) は、 傾斜角 ψを一定にして傾斜角 ηを変化させたときの出力
V o 5の変化を示すダラフであり、 図 66 ( b ) は、 ィ頃斜角 を一定にして ί頃斜 角 φを変化させたときの出力 SffV o 5の変化を示すグラフである。
傾斜角 φ = 0に固定して傾斜角センサを y軸回りに傾斜させると、 出力 ff V o 5は、図 66 (a)に示すように、 s i η にほぼ比例していることが分かる。 また、 傾斜角 η =0に固定して傾斜角センサを x軸回りに傾斜させると、 出力電 圧 Vo 5は、 図 66 (b) に示すように、 傾斜角 の増減にかかわらずほぼゼロ となることが分かる。
図 67 (a) は、 傾斜角 φを一定にして傾斜角 ηを変化させたときの出力 Sff Vo 6の変化を示すダラフであり、 図 67 ( b ) は、 傾斜角 ηを一定にして傾斜 角 φを変化させたときの出力 o 6の変化を示すグラフである。
傾斜角 Φ = 0に固定して傾^ ^角センサを y軸回りに傾斜させると、 出力 v o 6は、図 67 (a)に示すように、 c o s ηにほぼ比例していることが分かる。 また、 傾斜角 η =0に固定して傾斜角センサを X軸回りに傾斜させると、 出力電 圧 Vo 6は、 図 67 (b) に示すように、 c o s φにほぼ比例していることが分 かる。
図 68 (a) は、 錘部材 104の材質を変化させた場合において傾斜角 φを一 定にして傾斜角 ηを変化させたときの出力電圧 V o 5の変化を各材質ごとに示す グラフであり、 図 68 ( b ) は、 錘部材 104の材質を変化させた場合にぉレ、て 傾斜角 ηを一定にして傾斜角 φを変化させたときの出力 ¾£V o 5の変化を各材 質ごとに示すグラフである。
傾斜角 φ = 0に固定して傾斜角センサを y軸回りに傾斜させると、 出力 miiv o 5は、図 68 (a)に示すように、 s i η ηにほぼ比例していることが分かる。 錘部材 104を設けない場合は、 変化がほとんどなレ、。 錘部材 104を S iで構 成した場合は、 錘部材 104を設けない場合に比して変ィ匕がやや大きレヽ。 錘部材 104を半田 ( S n 63 %、 Pb 3 7 %) で構成した場合は、 S iで構成した場 合に比して変化がやや大きレ、。 錘部材 104を A uで構成した場合は、 錘部材 1 04を半田で構成した場合に比して変化がやや大きレ、。 図 66 (a) は、 錘部材 104を A uで構成した場合である。
また、 傾斜角 = 0に固定して傾斜角センサを X軸回りに傾斜させると、 出力 電圧 Vo 5は、 図 68 (b) に示すように、 傾斜角 φの増減および材質にかかわ らずほぼゼロとなることが分かる。
図 69 (a) は、 錘部材 104の材質を変化させた場合において傾斜角 φを一 定にして傾斜角 ηを変化させたときの出力電圧 Vo 6の変化を各材質ごとに示す グラフであり、 図 69 (b) は、 錘部材 104の材質を変ィ匕させた場合において 傾斜角 ηを一定にして傾斜角 Φを変化させたときの出力 mj£V o 6の変化を各材 質ごとに示すグラフである。
傾斜角 φ = 0に固定して傾斜角センサを y軸回りに傾斜させると、 出力 ®3EV o 6は、図 69 (a)に示すように、 c o s ηにほぼ比例していることが分かる。 錘部材 104を設けない場合は、 変化がほとんどなレ、。 錘部材 104を S iで構 成した場合は、 錘部材 104を設けない場合に比して変ィ匕がやや大きレヽ。 錘部材 104を半田 (S n 63 %、 P b 37%) で構成した場合は、 S iで構成した場 合に比して変化がやや大きレ、。 錘部材 104を A uで構成した場合は、 錘部材 1 04を半田で構成した場合に比して変化がやや大きレ、。 図 67 (a) は、 錘部材 104を A uで構成した場合である。
また、 傾斜角 =0に固定して傾斜角センサを X軸回りに傾斜させると、 出力 ¾王 Vo 6は、 図 69 (b) に示すように、 c o s φにほぼ比例していることが 分かる。 各材質ごとの変化については図 69 (a) と同様である。
このようにして、 本実施の形態では、 表面にピエゾ抵抗が形成されたシリコン 基板 102と、 シリコン基板 102の一端でシリコン基板 102を支持する支持 部材 101 bと、 シリコン基板 102の端部 102 bに配置された錘部材 104 と、 傾斜角 Φ、 を算出する傾斜角算出部とを備え、 ピエゾ抵抗 R 51および R 54、 並びにピエゾ抵抗 R 52および R 53を、 中心線 A 1— A 1を軸として線 対称の位置に配置し、 ピエゾ抵抗 R 51、 R52、 R53および R54によりフ ルブリッジ回路 C 5を構成するとともに、 ピエゾ抵抗 R 51、 R52、 R53お よび R 54によりフルブリッジ回路 C 5とは接続が異なるフルブリッジ回路 C 6 を構成し、 傾斜角算出部は、 フルブリッジ回路 C 3の出力電圧 Vo 3に基づいて 傾斜角 ηを算出し、 ハーフブリッジ回路 C 4の出力電圧 Vo 4および算出した傾 斜角 ηに基づいて傾斜角 φを算出するようになっている。
これにより、 比重の大きな金バンプを錘部材 104として用いることにより、 錘部材 104の小型化を図りつつ、 既存のフリップチップ実装技術と容易に整合 性をとることが可能となり、 傾斜角センサの小型 '低コスト化を図ることが可能 となるとともに、 衝撃に対する耐性も向上させることが可能となる。 また、 厚み が均一なシリコン基板 1 0 2を用いた場合においても、 異なる方向の傾斜角 η、 φを 1つの傾斜角センサで検出することができる。 また、 複数のピエゾ抵抗によ りブリッジ回路 C 5、 C 6を構成しているので、 傾斜角 η、 φの検出精度を比較 的向上させることができる。 また、 上記第 1 0の実施の形態に比して、 検出に必 要なピエゾ抵抗の数を低減することができる。 また、 出力電圧 V o 6にオフセッ トを含まないので、 上記第 1 1の実施の形態に比して、 傾斜角 η、 φの検出精度 を向上させることができる。
上記第 1 2の実施の形態において、 ピエゾ抵抗 R 5 1、 R 5 2、 R 5 3および R 5 4は、 請求の範囲第 2 5または第 2 8項記載の第 1ピエゾ抵抗群に対応し、 フルブリッジ回路 C 5は、 請求の範囲第 2 5または第 2 8項記載の第 1フルブリ ッジ回路に対応し、 フルブリッジ回路 C 6は、 請求の範囲第 2 5または第 2 8項 記載の第 2フルブリッジ回路に対応している。 また、 傾斜角算出部は、 請求の範 囲第 2 5項記載の第 1傾斜角算出手段、 または請求の範囲第 2 5項記載の第 2傾 斜角算出手段に対応し、 傾斜角算出部による算出は、 請求の範囲第 2 8項記載の 第 1傾斜角算出ステップ、 または請求の範囲第 2 8項記載の第 2傾斜角算出ステ ップに対応している。
〔第 1 3の実施の形態〕
次に、本発明の第 1 3の実施の形態を図面を参照しながら説明する。図 7 0は、 本発明に係る方位角センサの第 1 3の実施の形態を示す図である。
図 7 0は、 本発明に係る方位角センサの構成を示すプロック図である。
図 7 0において、 方位角センサには、 3軸磁気センサ 1 0 1、 磁気センサ駆動 電源部 1 0 2、 チヨッパ部 1 0 3、 磁気センサ増幅部 1 0 4、 磁気センサ A/D 変換部 1 0 5、 感度 'オフセット補正部 1 0 6、 傾斜角センサ 1 0 7、 傾斜角セ ンサ増幅部 1 0 8、 傾斜角センサ AZD変換部 1 0 9、 傾斜補正部 1 1 0および 方位角計算部 1 1 1が設けられている。
3軸磁気センサ 1 0 1には、 方位角センサの縦方向を X軸として X軸方向の地 磁気成分を検出する X軸地磁気センサ H E χ、 方位角センサの横方向を y軸とし て y軸方向の地磁気成分を検出する y軸地磁気センサ H E yおよび方位角センサ の厚さ方向を z軸として Z軸方向の地磁気成分を検出する z軸地磁気センサ H E zが設けられている。
チヨッパ部 1 0 3は、 X軸地磁気センサ H E x、 y軸地磁気センサ H E yおよ び z軸地磁気センサ H E zをそれぞれ駆動する端子を切り換えるためのもので、 磁気センサ駆動電源部 1 0 2から出力された駆動電圧を、 X軸«気センサ H E x、 y軸地磁気センサ H E yおよび z軸地磁気センサ H E zにそれぞれ印加し、 X軸地磁気センサ H E X、 y軸地磁気センサ H E yおよび z軸地磁気センサ H E zから出力されたセンサ信号を時分割的に磁気センサ増幅部 1 0 4に出力するよ うになっている。
磁気センサ A/D変換部 1 0 5は、 X軸地磁気センサ H E x , y軸地磁気セン サ H E yおよび z軸地磁気センサ H E zからのセンサ信号を A/D変換し、 変換 したデジタルデータをそれぞれ X軸地磁気測定データ、 y軸地磁気測定データお よび z軸地磁気測定データとして感度 ·オフセット補正部 1 0 6に出力するよう になっている。
感度 ·オフセット補正部 1 0 6は、 磁気センサ A/D変換部 1 0 5からの X軸 地磁気測定データ、 y軸地磁気測定データおよび z軸地磁気測定データに基づレヽ て、 X軸地磁気センサ H E x、 y軸地磁気センサ H E yおよび z軸地磁気センサ
H E zのオフセットおよび感度補正係数を算出し、 算出したオフセットおよび感 度補正係数に基づいて、 X軸地磁気測定データ、 y軸地磁気測定データおよび z 軸地磁気測定データを補正するようになっている。
傾斜角センサ 1 0 7は、 X軸を回転軸とする傾斜角 ηおよび y軸を回転軸とす る傾斜角 Ψを検出し、 出力されたセンサ信号を傾斜角センサ増幅部 1 0 8へ出力 するようになつている。
傾斜角センサ A/D変換部 1 0 9は、 傾斜角センサ 1 0 7からのセンサ信号を
AZD変換し、 変換したデジタルデータを傾斜角 η測定データおよび傾斜角 Φ測 定データとして傾斜補正部 1 1 0へ出力するようになっている。
傾斜補正部 1 1 0は、 傾斜角センサ AZD変換部 1 0 9からの傾斜角 η測定デ ータおよび傾斜角 Φ測定データに基づいて、 感度 'オフセット補正部 1 0 6から の X軸地磁気測定データ、 y軸地磁気測定データおよび z軸地磁気測定データを 補正するようになっている。 方位角計算部 1 1 1は、 傾斜補正部 1 1 0からの X軸地磁気測定データ、 y軸 地磁気測定データおよび Z軸地磁気測定データに基づレ、て方位角を算出するよう になっている。
これにより、 方位角センサの大型化およびコストアップを抑えつつ、 方位角セ ンサを水平面に置くことなく方位角を比較的正確に計測することが可能となる。 上記第 1 3の実施の形態において、 X軸方向の地磁気成分、 y軸方向の地磁気 成分および z軸方向の地磁気成分は、 請求の範囲第 2 9項記載の地磁気成分に対 応し、 3軸磁気センサ 1 0 1は、 請求の範囲第 2 9項記載の地磁気検出手段に対 応し、 X軸地磁気測定データ、 y軸地磁気測定データおよび∑軸¾¾気測定デー タは請求の範囲第 2 9項記載の地磁気データに対応し、 傾斜角センサ 1 0 7は、 請求の範囲第 2 9項記載の傾斜角センサに対応し、 傾斜角 η測定データおよ 頃 斜角 Φ測定データは、 請求の範囲第 2 9項記載の傾斜角データに対応し、 傾斜捕 正部 1 1 0および方位角計算部 1 1 1は、 請求の範囲第 2 9項記載の方位角算出 手段に対応している。
〔第 1 4の実施の形態〕
次に、 本発明の第 1 4の実施の形態を説明する。
本発明に係る携帯電話は、 第 1 3の実施の形態における方位角センサを携帯電 話に内蔵したものである。
これにより、 携帯電話の大型ィ匕およびコストアップを抑えつつ、 携帯電話を水 平に保つことなくユーザーが普段使う姿勢のままで方位角を比較的正確に計測す ることが可能となる。
なお、 上記第 1ないし第 1 2の実施の形態においては、 シリコン基板上にピエ ゾ抵抗を形成する方法について説明したが、 G e基板や I n S b基板を用いるよ うにしてもよレ、。
また、上記第 1ないし第 1 2の実施の形態にぉレ、て、傾斜角センサは、例えば、 電子ペット、 ロボット、 ゲームコントローラなどのモーションセンサ、 ゲーム機 などの携帯端末の傾斜による画面操作装置、携帯端末用ナビグ一シヨンシステム、 傾斜 ·振動 ·感振などのモニタ装置などに利用することができる。
また、 上記第 1ないし第 1 2の実施の形態においては、 傾斜角センサについて 説明したが、 加速度センサに適用してもよい。
また、 上記第 8および第 9の実施の形態においては、 金属錘部材として半田バ ンプを例にとつて説明したが、 金バンプを用いるようにしてもよい。
また、 上記第 8および第 9の実施の形態においては、 1軸の傾斜角センサを例 に取って説明したが、 2軸の傾斜角センサに適用するようにしてもよい。
また、 上記第 10の実施の形態においては、 ピエゾ抵抗 R 1 1、 R12、 R 1 3および R 14の向きをシリコン基板 102の長手方向とした力 これに限らず、 対となるピエゾ抵抗の向きが同一であるならば、 それらの向きをシリコン基板 1 02の短手方向としてもよい。
図 71は、 ピエゾ抵抗 R 11、 R 12、 R 13および R 14の配置を示す図で ある。
図 71 (a) において、 ピエゾ抵抗 R 11および R 14は、 シリコン基板 10 2の長手方向を向いて配置されており、 ピエゾ抵抗 R 12および R 13は、 シリ コン基板 102の短手方向を向いて配置されている。
図 71 (b) において、 ピエゾ抵抗 R 11、 R 12、 R 13および R 14はい ずれも、 シリコン基板 102の短手方向を向いて配置されている。
また、 上記第 10の実施の形態においては、 ピエゾ抵抗 R 21、 R22、 R 2 3および R 24の向きをシリコン基板 102の長手方向としたが、これに限らず、 対となるピエゾ抵抗の向きが同一であるならば、 それらの向きをシリコン基板 1 02の短手方向としてもよレ、。
図 72は、 ピエゾ抵抗 R 21、 R22、 R23および R24の配置を示す図で ある。
図 72 (a) において、 ピエゾ抵抗 R 21および R 24は、 シリコン基板 10 2の長手方向を向いて配置されており、 ピエゾ抵抗 R 22および R 23は、 シリ コン基板 102の短手方向を向いて配置されている。
図 72 (b) において、 ピエゾ抵抗 R 21、 R22、 R 23および R 24はい ずれも、 シリコン基板 102の短手方向を向いて配置されている。
また、 上記第 11の実施の形態においては、 ピエゾ抵抗 R 31、 R32、 R3 3および R 34の向きをシリコン基板 102の長手方向としたが、これに限らず、 対となるピエゾ抵抗の向きが同一であるならば、 それらの向きをシリコン基板 1 02の短手方向としてもよレ、。
図 73は、 ピエゾ抵抗 R 31、 R32、 R 33および R 34の配置を示す図で ある。
図 73 (a) において、 ピエゾ抵抗 R 31および R 34は、 シリコン基板 10 2の長手方向を向いて配置されており、 ピエゾ抵抗 R 32および R 33は、 シリ コン基板 102の短手方向を向いて配置されている。
図 73 (b) において、 ピエゾ抵抗 R 31、 R32、 R 33および R 34はい ずれも、 シリコン基板 102の短手方向を向いて配置されている。
また、 上記第 1 1の実施の形態においては、 ピエゾ抵抗 R 41および R 42の 向きをシリコン基板 102の長手方向としたが、 これに限らず、 対となるピエゾ 抵抗の向きが同一であるならば、 それらの向きをシリコン基板 102の短手方向 としてもよレ、。
図 74は、 ピエゾ抵抗 R 41および R 42の配置を示す図である。
図 74において、 ピエゾ抵抗 R 41および R 42はいずれも、 シリコン基板 1 02の短手方向を向いて配置されている。
また、 上記第 12の実施の形態においては、 ピエゾ抵抗 R 51、 R52、 R5 3および R 54の向きをシリコン基板 102の長手方向とした力 これに限らず、 対となるピエゾ抵抗の向きが同一であるならば、 それらの向きをシリコン基板 1 02の短手方向としてもよレ、。
図 75は、 ピエゾ抵抗 R 51、 R52、 R53および R54の配置を示す図で ある。
図 75 (a) において、 ピエゾ抵抗 R 51、 R52、 R 53および R 54はい ずれも、 シリコン基板 102の短手方向を向いて配置されている。
図 75 (b) において、 ピエゾ抵抗 R 51および R 54は、 シリコン基板 10 2の長手方向を向いて配置されており、 ピエゾ抵抗 R 52および R 53は、 シリ コン基板 102の短手方向を向いて配置されている。 産業上の利用可能性 以上説明したように、 本発明に係る請求の範囲第 1ないし第 1 0項記載の傾斜 角センサ、 または請求の範囲第 1 1ないし第 1 6項記載の傾斜角センサの製造方 法によれば、 変位部を形成するために、 フォトリソグラフィー技術を用いた選択 的なェツチングを行なう必要がなくなり、 傾斜角センサの構成および製造工程を 簡易化して、 傾斜角センサのコストを下げることが可能となるとともに、 衝撃に 対する耐性も向上させることが可能となるという効果が得られる。
一方、 本発明に係る請求の範囲第 1 7ないし第 1 9項記載の傾斜角センサ、 ま たは請求の範囲第 2 0ないし第 2 2項記載の傾斜角センサの製造方法によれば、 変位部を形成するために、基板の裏面を選択的にェツチングする必要がなくなる。 また、 比重の大きな金属バンプを錘部材として用いることにより、 錘部材の小型 化を図りつつ、 既存のフリップチップ実装技術と容易に整合性をとることが可能 となる。 したがって、 傾斜角センサの小型'低コスト化を図ることが可能となる とともに、 衝撃に対する耐性も向上させることが可能となるという効果が得られ る。
一方、 本発明に係る請求の範囲第 2 3項記載の傾斜角センサによれば、 変位部 を形成するために、基板の裏面を選択的にエッチングする必要がなくなる。また、 比重の大きな金属バンプを錘部材として用いることにより、 錘部材の小型化を図 りつつ、既存のフリツプチップ実装技術と容易に整合性をとることが可能となる。 したがって、傾斜角センサの小型'低コスト化を図ることが可能となるとともに、 衝撃に対する耐性も向上させることが可能となるという効果が得られる。 また、 厚みが均一な橈み板を用いた場合においても、 2軸の傾斜角を 1つの傾斜角セン サで検出することができるという効果も得られる。 また、 複数のピエゾ抵抗によ りプリッジ回路を構成しているので、 2軸の傾斜角の検出精度を比較的向上させ ることができるという効果も得られる。
さらに、 本発明に係る請求の範囲第 2 4項記載の傾斜角センサによれば、 変位 部を形成するために、 基板の裏面を選択的にエッチングする必要がなくなる。 ま た、 比重の大きな金属バンプを錘部材として用いることにより、 錘部材の小型化 を図りつつ、 既存のフリップチップ実装技術と容易に整合性をとることが可能と なる。 したがって、 傾斜角センサの小型'低コスト化を図ることが可能となると ともに、衝撃に対する耐性も向上させることが可能となるという効果が得られる。 また、 厚みが均一な撓み板を用いた場合においても、 2軸の傾斜角を 1つの傾斜 角センサで検出することができるという効果も得られる。 また、 複数のピエゾ抵 抗によりプリッジ回路を構成しているので、 2軸の傾斜角の検出精度を比較的向 上させることができるという効果も得られる。
さらに、 本発明に係る請求の範囲第 2 5項記載の傾斜角センサによれば、 変位 部を形成するために、 基板の裏面を選択的にエッチングする必要がなくなる。 ま た、 比重の大きな金属バンプを錘部材として用いることにより、 錘部材の小型ィ匕 を図りつつ、 既存のフリップチップ実装技術と容易に整合性をとることが可能と なる。 したがって、 傾斜角センサの小型'低コスト化を図ることが可能となると ともに、衝撃に対する耐性も向上させることが可能となるという効果が得られる。 また、 厚みが均一な橈み板を用いた場合においても、 2軸の傾斜角を 1つの傾斜 角センサで検出することができるという効果も得られる。 また、 複数のピエゾ抵 抗によりプリッジ回路を構成しているので、 2軸の傾斜角の検出精度を比較的向 上させることができるという効果も得られる。
一方、 本発明に係る請求の範囲第 2 6項記載の傾斜角測定方法によれば、 請求 の範囲第 2 3項記載の傾斜角センサと同等の効果が得られる。
さらに、 本発明に係る請求の範囲第 2 7項記載の傾斜角測定方法によれば、 請 求の範囲第 2 4項記載の傾斜角センサと同等の効果が得られる。
さらに、 本発明に係る請求の範囲第 2 8項記載の傾斜角測定方法によれば、 請 求の範囲第 2 5項記載の傾斜角センサと同等の効果が得られる。
一方、 本発明に係る請求の範囲第 2 9項記載の方位角センサによれば、 請求の 範囲第 1項ないし第 1 0項、 請求の範囲第 1 7項ないし第 1 9項、 または請求項 第 2 3項ないし第 2 5項記載の傾斜角センサを用いて地磁気データの傾斜補正を 行うことにより、 方位角センサの大型ィ匕およびコストアップを抑えつつ、 方位角 センサを水平面に置くことなく方位角を比較的正確に計測することが可能となる。 —方、 本発明に係る請求の範囲第 3 0項記載の携帯電話によれば、 請求の範囲 第 2 9項記載の方位角センサを用いることにより、 携帯電話の大型ィ匕およびコス トアツプを抑えつつ、 携帯電話を水平に保つことなくユーザーが普段使う姿勢の ままで方位角を比較的正確に計測することが可能となる。

Claims

請 求 の 範 囲
1 . 表面にピエゾ抵抗が形成され、 橈み可能な厚みまで裏面全体が均一に研削 された基板と、
前記基板の少なくとも一端で前記基板を支持する支持部材とを備えることを特 徴とする傾斜角センサ。
2 . 請求の範囲第 1項において、
前記ピエゾ抵抗形成面の変位可能領域に配置された錘部材をさらに備えること を特徴とする傾斜角センサ。
3 . 請求の範囲第 1および第 2項のいずれかにおいて、
前記ピエゾ抵抗は、 前記基板の表面に 2次元的に配置されていることを特徴と する傾斜角センサ。
4 . 請求の範囲第 3項において、
前記ピエゾ抵抗は、 前記基板の撓み量を検出するよう前記基板の表面に配置さ れたピエゾ抵抗と、 前記基板の捻れ量を検出するよう前記基板の表面に配置され たピエゾ抵抗とを備えることを特徴とする傾斜角センサ。
5 . 変位可能な自由表面を有する 6面体短冊形弾性体と、
前記 6面体短冊形弾性体の同一面上の長手方向に少なくとも 2個所以上設けら れ、 少なくとも 1つは前記自由表面上に配置されたピエゾ抵抗と、
前記 6面体短冊形弾性体の長手方向の両端を支持する支持部材と、
前記 6面体短冊形弾性体の変位可能領域の長手方向のほぼ中央に設けられた錘 部材とを備えることを特徴とする傾斜角センサ。
6 . 変位可能な自由表面を有する 6面体短冊形弾性体と、
前記 6面体短冊形弾性体の同一面上の長手方向に少なくとも 2個所以上設けら れ、 少なくとも 1つは前記自由表面上に配置されたピエゾ抵抗と、
前記 6面体短冊形弾性体の長手方向の一端を支持する支持部材と、
前記 6面体短冊形弾性体の長手方向の他端に設けられた錘部材とを備えること を特徴とする傾斜角センサ。
7 . 請求の範囲第 5および第 6項のレ、ずれかにおレ、て、
前記支持部材および前記錘部材の少なくとも一方は、 前記 6面体短冊形弾性体 と長さおよび幅の少なくとも一方が同一であることを特徴とする傾斜角センサ。
8 . 請求の範囲第 5ないし第 Ί項のいずれかにおいて、
前記 6面体短冊形弾性体はシリコン基板であり、 前記ピエゾ抵抗は前記シリコ ン基板に形成された不純物拡散層であることを特徴とする傾斜角センサ。
9 . 請求の範囲第 8項において、
前記 6面体短冊形弾性体はシリコン基板であり、
前記支持部材は、
凹部が形成され、 前記シリコン基板と陽極接合可能な材料で構成されたガラス 基板と、
前記凹部に埋め込まれ、 前記シリコン基板との陽極接合を妨げる埋め込み部材 とを備えることを特徴とする傾斜角センサ。
1 0 . 請求の範囲第 5ないし第 9項のいずれかにおいて、
前記 6面体短冊形弾性体の同一平面上に、 前記 6面体短冊形弾性体の橈み量を 検出するよう配置されたピエゾ抵抗と、 前記 6面体短冊形弾性体の捻れ量を検出 するよう配置されたピエゾ抵抗とを備えることを特徴とする傾斜角センサ。
1 1 . ウェハ表面上に 2個所以上のピエゾ抵抗を形成する工程と、
前記ウェハの裏面全体を均一に研削する工程と、
凹部の形成された支持基板を、 前記ピエゾ抵抗の形成領域が凹部ェッジ近傍で 凹部内側になるように、 前記ウェハの裏面に貼り合わせる工程と、
前記ピエゾ抵抗形成面の変位可能領域が前記凹部の両側で支えられるように、 前記ウェハおよび前記支持基板を一括してチップ状に切断する工程とを備えるこ とを特徴とする傾斜角センサの製造方法。
1 2 . 請求の範囲第 1 1項にぉレヽて、
凸部の形成された錘基板を、 前記凸部が前記ピエゾ抵抗形成面の変位可能領域 のほぼ中央に配置されるように、 前記ウェハの表面に貼り合わせる工程をさらに 備え、
前記錘基板、 前記ウェハおよび前記支持基板は、 チップ状に一括して切断され ることを特徴とする傾斜角センサの製造方法。
1 3 . ウェハ表面上に 2個所以上のピエゾ抵抗を形成する工程と、 前記ゥェハの裏面全体を均一に研削する工程と、
凹部の形成された支持基板を、 前記ピエゾ抵抗の形成領域が凹部ェッジ近傍で 凹部内側になるように、 前記ウェハの裏面に貼り合わせる工程と、
前記ピエゾ抵抗形成面の変位可能領域のほぼ中央に台座を配置する工程と、 前記ピエゾ抵抗形成面の変位可能領域が前記凹部の両側で支えられるように、 前記台座が配置されたウェハおよび前記支持基板を一括してチップ状に切断する 工程と、
前記台座上に錘部材を配置する工程とを備えることを特徴とする傾斜角センサ の製造方法。
1 4 . ウェハ表面上に 2個所以上のピエゾ抵抗を形成する工程と、
前記ウェハの裏面全体を均一に研削する工程と、
凹部の形成された支持基板を、 前記凹部の一方の位置が前記ピエゾ抵抗形成領 域のェッジ近傍で前記凹部の内側であり、 前記凹部の他方が前記ウェハのスクラ イブラインにかかるように、 前記ウェハの裏面に貼り合わせる工程と、
前記ピエゾ抵抗形成面の変位可能領域に台座を配置する工程と、
前記ピエゾ抵抗形成面が前記凹部の片側で支えられるように、 前記台座が配置 されたウェハおよび前記支持基板を一括してチップ状に切断する工程と、 前記台座上に錘部材を配置する工程とを備えることを特徴とする傾斜角センサ の製造方法。
1 5 . ウェハ表面上に 2個所以上のピエゾ抵抗を形成する工程と、
前記ウェハの裏面全体を均一に研削する工程と、
凹部の形成された支持基板を、 前記ピエゾ抵抗の形成領域が凹部エッジ近傍で 凹部内側になるように、 前記ウェハの裏面に貼り合わせる工程と、
凸凹の形成された錘基板を、 凸部が 2チップ間隔でスクライブラインに跨るよ うに、 前記ウェハの表面に貼り合わせる工程と、
前記錘基板の凹部の一部を前記スクライブラインと平行に切り落とす工程と、 前記ピエゾ抵抗形成面の一端が前記支持基板の凹部の片側で支えられるととも に、前記錘基板の凸部が前記ピエゾ抵抗形成面に配置されるように、前記錘基板、 前記ゥェハぉよび前記支持基板を一括してチップ状に切断する工程とを備えるこ とを特徴とする傾斜角センサの製造方法。
1 6 . 請求の範囲第 1 1ないし第 1 5項のいずれかにおいて、
前記研削は、 研磨またはエッチング、 あるいはそれらの組み合わせであること を特徴とする傾斜角センサの製造方法。
1 7 . 表面にピエゾ抵抗が形成された撓み板と、
前記撓み板の一端で前記撓み板を支持する支持部材と、
前記撓み板の変位可能領域に配置された金属錘部材とを備えることを特徴とす る傾斜角センサ。
1 8 . 絶縁層上にシリコン層が形成された S O I基板と、
前記シリコン層下の絶縁層に形成された隙間領域と、
前記隙間領域上の前記シリコン層に形成されたピエゾ抵抗と、
前記隙間領域上の前記シリコン層上に配置された金属錘部材とを備えることを 特徴とする傾斜角センサ。
1 9 . 請求の範囲第 1 7および第 1 8項のいずれかにおいて、
前記橈み板または前記シリコン層は、 前記ピエゾ抵抗の形成領域にかけてくび れていることを特徴とする傾斜角センサ。
2 0 . ウェハ表面上の各チップ領域にピエゾ抵抗を 2箇所以上形成する工程と、 前記ゥェハ表面上の各チップ領域にパッドを形成する工程と、
前記ピエゾ抵抗およびパッドが形成されたウェハの裏面全体を均一に研削する 工程と、
凹部の形成された支持基板を、 前記ピエゾ抵抗の形成領域が前記凹部ェッジ近 傍に位置するとともに、 前記パッドが前記凹部内側に位置するように、 前記ゥェ ハの裏面に貼り合わせる工程と、
前記支持基板に貼り合わされた前記ウェハの各パッド上に金属錘部材を形成す る工程と、
前記ピエゾ抵抗の形成領域がくびれるように、 前記ウェハに開口部を形成する 工程と、
前記開口部が形成されたウェハをチップ状に切断する工程とを備えることを特 徴とする傾斜角センサの製造方法。
2 1 . シリコン酸化膜を介してシリコンウェハ上に形成されたシリコン層上の 各チップ領域にピエゾ抵抗を 2箇所以上形成する工程と、
前記シリコン層上の各チップ領域にパッドを形成する工程と、
前記シリコン層上に形成された各パッド上に金属錘部材を形成する工程と、 前記ピエゾ抵抗の形成領域がくびれるように、 前記シリコン層に開口部を形成 する工程と、
前記シリコン層に形成された開口部を介して前記シリコン酸化膜の一部をエツ チングすることにより、 前記ピエゾ抵抗の形成領域下および前記金属錘部材の形 成領域下の前記シリコン酸化膜を除去する工程と、
前記シリコン酸ィヒ膜が除去されたウェハをチップ状に切断する工程とを備える ことを特徴とする傾斜角センサの製造方法。
2 2 . 請求の範囲第 2 0および第 2 1項のいずれかにおいて、
前記金属錘部材の形成は、 電解メツキであることを特徴とする傾斜角センサの 製造方法。
2 3 . 表面にピエゾ抵抗が形成された橈み板と、
前記橈み板の一端で前記橈み板を支持する支持部材と、
前記橈み板の変位可能領域に配置された錘部材とを備える傾斜角センサであつ て、
前記ピエゾ抵抗は、
前記橈み板の変位可能領域のうち前記橈み板の幅の中点を通る中心線を軸とし て線対称の位置に配置された 2対のピエゾ抵抗を含む第 1ピエゾ抵抗群と、 前記橈み板の変位可能領域のうち前記中心線を軸として線対称の位置に配置さ れかつ前記第 1ピエゾ抵抗群とは異なる位置に配置された 2対のピエゾ抵抗を含 む第 2ピエゾ抵抗群とを有し、
前記第 1ピエゾ抵抗群により第 1フルブリッジ回路を構成するとともに、 前記 第 2ピエゾ抵抗群により第 2フルブリッジ回路を構成し、
さらに、 前記第 1フルプリッジ回路の出力に基づいて前記撓み板の長手方向を 回転軸とする傾斜角を算出する第 1傾斜角算出手段と、
前記第 2フルブリッジ回路の出力および前記第 1傾斜角算出手段で算出した傾 斜角に基づレ、て前記橈み板の短手方向を回転軸とする傾斜角を算出する第 2傾斜 角算出手段とを備えることを特徴とする傾斜角センサ。
2 4 . 表面にピエゾ抵抗が形成された撓み板と、
前記橈み板の一端で前記撓み板を支持する支持部材と、
前記橈み板の変位可能領域に配置された錘部材とを備える傾斜角センサであつ て、
前記ピエゾ抵抗は、
前記橈み板の変位可能領域のうち前記撓み板の幅の中点を通る中心線を軸とし て線対称の位置に配置された 2対のピエゾ抵抗を含む第 1ピエゾ抵抗群と、 前記撓み板の変位可能領域のうち前記中心線上に配置された複数のピエゾ抵抗 を含む第 2ピエゾ抵抗群とを有し、
前記第 1ピエゾ抵抗群により第 1フルブリッジ回路を構成するとともに、 前記 第 2ピエゾ抵抗群により第 2ハーフブリツジ回路を構成し、
さらに、 前記第 1フルブリッジ回路の出力に基づいて前記橈み板の長手方向を 回転軸とする傾斜角を算出する第 1傾斜角算出手段と、
前記第 2ハーフブリッジ回路の出力および前記第 1傾斜角算出手段で算出した 傾斜角に基づレヽて前記橈み板の短手方向を回転軸とする傾斜角を算出する第 2傾 斜角算出手段とを備えることを特徴とする傾斜角センサ。
2 5 . 表面にピエゾ抵抗が形成された撓み板と、
前記橈み板の一端で前記橈み板を支持する支持部材と、
前記橈み板の変位可能領域に配置された錘部材とを備える傾斜角センサであつ て、
前記ピエゾ抵抗は、
前記橈み板の変位可能領域のうち前記橈み板の幅の中点を通る中心線を軸とし て線対称の位置に配置された 2対のピエゾ抵抗を含む第 1ピエゾ抵抗群を有し、 前記第 1ピエゾ抵抗群により第 1フルブリッジ回路を構成するとともに、 前記 第 1ピエゾ抵抗群により前記第 1フルブリッジ回路とは接続が異なる第 2フルブ リッジ回路を構成し、
さらに、 前記第 1フルプリッジ回路の出力に基づいて前記橈み板の長手方向を 回転軸とする傾斜角を算出する第 1傾斜角算出手段と、
前記第 2フルブリッジ回路の出力および前記第 1傾斜角算出手段で算出した傾 斜角に基づいて前記橈み板の短手方向を回転軸とする傾斜角を算出する第 2傾斜 角算出手段とを備えることを特徴とする傾斜角センサ。
2 6 . 表面にピエゾ抵抗が形成された撓み板と、
前記橈み板の一端で前記撓み板を支持する支持部材と、
前記橈み板の変位可能領域に配置された錘部材とを備え、
前記ピエゾ抵抗は、
前記撓み板の変位可能領域のうち前記撓み板の幅の中点を通る中心線を軸とし て線対称の位置に配置された 2対のピエゾ抵抗を含む第 1ピエゾ抵抗群と、 前記橈み板の変位可能領域のうち前記中心線を軸として線対称の位置に配置さ れかつ前記第 1ピエゾ抵抗群とは異なる位置に配置された 2対のピエゾ抵抗を含 む第 2ピエゾ抵抗群とを有する傾斜角センサを用いて傾斜角を測定する方法であ つて、
前記第 1ピエゾ抵抗群により第 1フルブリッジ回路を構成し出力する第 1プリ ッジ回路出力ステップと、
前記第 2ピエゾ抵抗群により第 2フルプリッジ回路を構成し出力する第 2プリ ッジ回路出力ステップと、
前記第 1フルブリッジ回路の出力に基づいて前記橈み板の長手方向を回転軸と する傾斜角を算出する第 1傾斜角算出ステップと、
前記第 2フルブリッジ回路の出力および前記第 1傾斜角算出ステップで算出し た傾斜角に基づレヽて前記撓み板の短手方向を回転軸とする傾斜角を算出する第 2 傾斜角算出ステップとを含むことを特徴とする傾斜角測定方法。
2 7 . 表面にピエゾ抵抗が形成された橈み板と、
前記橈み板の一端で前記橈み板を支持する支持部材と、
前記橈み板の変位可能領域に配置された錘部材とを備え、
前記ピエゾ抵抗は、
前記橈み板の変位可能領域のうち前記橈み板の幅の中点を通る中心線を軸とし て線対称の位置に配置された 2対のピエゾ抵抗を含む第 1ピエゾ抵抗群と、 前記撓み板の変位可能領域のうち前記中心線上に配置された複数のピエゾ抵抗 を含む第 2ピエゾ抵抗群とを有する傾斜角センサを用レ、て傾斜角を測定する方法 であって、
前記第 1ピエゾ抵抗群により第 1フルブリッジ回路を構成し出力する第 1プリ ッジ回路出力ステップと、
前記第 2ピエゾ抵抗群により第 2ハーフブリツジ回路を構成し出力する第 2ブ リッジ回路出力ステップと、
前記第 1フルブリッジ回路の出力に基づいて前記撓み板の長手方向を回転軸と する傾斜角を算出する第 1傾斜角算出ステップと、
前記第 2ハーフブリッジ回路の出力および前記第 1傾斜角算出ステップで算出 した傾斜角に基づレヽて前記橈み板の短手方向を回転軸とする傾斜角を算出する第 2傾斜角算出ステップとを含むことを特徴とする傾斜角測定方法。
2 8 . 表面にピエゾ抵抗が形成された撓み板と、
前記橈み板の一端で前記撓み板を支持する支持部材と、
前記橈み板の変位可能領域に配置された錘部材とを備え、
前記ピエゾ抵抗は、
前記撓み板の変位可能領域のうち前記橈み板の幅の中点を通る中心線を軸とし て線対称の位置に配置された 2対のピエゾ抵抗を含む第 1ピエゾ抵抗群を有する 傾斜角センサを用いて傾斜角を測定する方法であつて、
前記第 1ピエゾ抵抗群により第 1フルブリッジ回路を構成し出力する第 1プリ ッジ回路出力ステップと、
前記第 1ピエゾ抵抗群により前記第 1フルブリッジ回路とは接続が異なる第 2 フルプリッジ回路を構成し出力する第 2プリッジ回路出力ステップと、
前記第 1フルブリッジ回路の出力に基づいて前記橈み板の長手方向を回転軸と する傾斜角を算出する第 1傾斜角算出ステップと、
前記第 2フルブリッジ回路の出力および前記第 1傾斜角算出ステツプで算出し た傾斜角に基づレ、て前記撓み板の短手方向を回転軸とする傾斜角を算出する第 2 傾斜角算出ステップとを含むことを特徴とする傾斜角測定方法。
2 9 . 請求の範囲第 1項ないし第 1 0項、請求の範囲第 1 7項ないし第 1 9項、 または請求項第 2 3項ないし第 2 5項記載の傾斜角センサと、
互いに直交する方向の地磁気成分を検出する 2軸以上の地磁気検出手段と、 前記傾斜角センサで取得した傾斜角データおよび前記地磁気検出手段で取得し た地磁気データに基づいて方位角を算出する方位角算出手段とを有し方位角を検 出することを特徴とする方位角センサ。
3 0 . 請求の範囲第 2 9項記載の方位角センサを内蔵していることを特徴とす る携帯電話。
PCT/JP2003/004235 2002-04-02 2003-04-02 Capteur d'inclinaison, procede de fabrication de ce capteur d'inclinaison et procede permettant de mesurer l'inclinaison WO2003087719A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03746166A EP1491854A4 (en) 2002-04-02 2003-04-02 INCLINATION SENSOR, METHOD FOR MANUFACTURING THE INCLINATION SENSOR, AND METHOD FOR MEASURING THE INCLINATION
JP2003584621A JPWO2003087719A1 (ja) 2002-04-02 2003-04-02 傾斜角センサ、並びに傾斜角センサの製造方法および傾斜角測定方法
US10/509,873 US20050151448A1 (en) 2002-04-02 2003-04-02 Inclination sensor, method of manufacturing inclination sensor, and method of measuring inclination
AU2003236348A AU2003236348A1 (en) 2002-04-02 2003-04-02 Inclination sensor, method of manufacturing inclination sensor, and method of measuring inclination

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002099855 2002-04-02
JP2002-99855 2002-04-02
JP2002214258 2002-07-23
JP2002-214258 2002-07-23

Publications (1)

Publication Number Publication Date
WO2003087719A1 true WO2003087719A1 (fr) 2003-10-23

Family

ID=29253527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004235 WO2003087719A1 (fr) 2002-04-02 2003-04-02 Capteur d'inclinaison, procede de fabrication de ce capteur d'inclinaison et procede permettant de mesurer l'inclinaison

Country Status (5)

Country Link
US (1) US20050151448A1 (ja)
EP (1) EP1491854A4 (ja)
JP (1) JPWO2003087719A1 (ja)
AU (1) AU2003236348A1 (ja)
WO (1) WO2003087719A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248466A (ja) * 2006-03-14 2007-09-27 Commissariat A L'energie Atomique 三軸薄膜加速度計
JP2009079948A (ja) * 2007-09-26 2009-04-16 Oki Semiconductor Co Ltd 半導体加速度センサ及びその製造方法
US7603786B2 (en) * 2007-07-09 2009-10-20 Beijing Information Technology Institute Piezoelectric quartz level sensor

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080129552A1 (en) * 2003-10-31 2008-06-05 Iota Wireless Llc Concurrent data entry for a portable device
CA2531524A1 (en) 2003-10-31 2005-05-12 Iota Wireless Llc Concurrent data entry for a portable device
JP2006012914A (ja) * 2004-06-22 2006-01-12 Canon Inc 集積回路チップの製造方法及び半導体装置
DE102005004329A1 (de) * 2005-01-31 2006-08-03 Robert Bosch Gmbh Mikromechanisches Sensorelement zur Messung einer Beschleunigung und Verfahren zu seiner Herstellung
JP2007076614A (ja) * 2005-09-16 2007-03-29 Denso Corp 車両用盗難防止装置
JP4547346B2 (ja) 2006-03-22 2010-09-22 任天堂株式会社 傾き算出装置および傾き算出プログラムならびにゲーム装置およびゲームプログラム
US7687882B2 (en) 2006-04-14 2010-03-30 Allegro Microsystems, Inc. Methods and apparatus for integrated circuit having multiple dies with at least one on chip capacitor
US7573112B2 (en) * 2006-04-14 2009-08-11 Allegro Microsystems, Inc. Methods and apparatus for sensor having capacitor on chip
US20080013298A1 (en) 2006-07-14 2008-01-17 Nirmal Sharma Methods and apparatus for passive attachment of components for integrated circuits
JP2008046089A (ja) * 2006-08-21 2008-02-28 Rohm Co Ltd 加速度センサおよびその製造方法
US8093670B2 (en) * 2008-07-24 2012-01-10 Allegro Microsystems, Inc. Methods and apparatus for integrated circuit having on chip capacitor with eddy current reductions
US20100052424A1 (en) * 2008-08-26 2010-03-04 Taylor William P Methods and apparatus for integrated circuit having integrated energy storage device
WO2010083256A1 (en) * 2009-01-13 2010-07-22 Nelson Donald M Cargo loading trailer
US20110133732A1 (en) * 2009-12-03 2011-06-09 Allegro Microsystems, Inc. Methods and apparatus for enhanced frequency response of magnetic sensors
US8629539B2 (en) 2012-01-16 2014-01-14 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
WO2014088021A1 (ja) * 2012-12-06 2014-06-12 株式会社村田製作所 加速度センサ
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
WO2015050995A2 (en) 2013-10-01 2015-04-09 Interdigital Patent Holdings, Inc. Enhancements for coordinated orthogonal block-based resource allocation (cobra) in wlan systems
US10411498B2 (en) 2015-10-21 2019-09-10 Allegro Microsystems, Llc Apparatus and methods for extending sensor integrated circuit operation through a power disturbance
JP6993164B2 (ja) * 2017-10-16 2022-01-13 セイコーインスツル株式会社 傾斜計測装置及び傾斜計測システム
US10978897B2 (en) 2018-04-02 2021-04-13 Allegro Microsystems, Llc Systems and methods for suppressing undesirable voltage supply artifacts
JP2020012660A (ja) * 2018-07-13 2020-01-23 日本電産コパル電子株式会社 トルクセンサ
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727785A (ja) * 1993-07-08 1995-01-31 Nitta Ind Corp 加速度センサー
JPH08160067A (ja) * 1994-12-08 1996-06-21 Akebono Brake Ind Co Ltd 加速度センサ
JPH10253656A (ja) * 1997-03-13 1998-09-25 S I I R D Center:Kk 半導体加速度センサ
WO1998055833A1 (en) * 1997-06-03 1998-12-10 Stephen Bide Portable navigation system comprising direction detector, position detector and database
JPH1154478A (ja) * 1997-06-05 1999-02-26 Tokai Rika Co Ltd シリコン基板における陽極化成方法及び表面型の加速度センサの製造方法
JPH11311634A (ja) * 1998-04-28 1999-11-09 Japan Aviation Electronics Ind Ltd 半導体加速度センサの製法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101669A (en) * 1988-07-14 1992-04-07 University Of Hawaii Multidimensional force sensor
DE19606043A1 (de) * 1996-02-19 1997-08-21 Telefunken Microelectron Neigungssensor
JP3752737B2 (ja) * 1996-08-12 2006-03-08 トヨタ自動車株式会社 角速度検出装置
US6018212A (en) * 1996-11-26 2000-01-25 Ngk Insulators, Ltd. Vibrator, vibratory gyroscope, and vibration adjusting method
FI20002841A (fi) * 2000-12-22 2002-06-23 Nokia Corp Menetelmä päätelaitteen näytön ohjaamiseksi
US6634113B1 (en) * 2002-05-17 2003-10-21 Delphi Technologies, Inc. Tilt sensor and method of forming such device
US6992422B2 (en) * 2003-06-11 2006-01-31 Texas Instruments Incorporated Position sensor for a pivoting platform

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727785A (ja) * 1993-07-08 1995-01-31 Nitta Ind Corp 加速度センサー
JPH08160067A (ja) * 1994-12-08 1996-06-21 Akebono Brake Ind Co Ltd 加速度センサ
JPH10253656A (ja) * 1997-03-13 1998-09-25 S I I R D Center:Kk 半導体加速度センサ
WO1998055833A1 (en) * 1997-06-03 1998-12-10 Stephen Bide Portable navigation system comprising direction detector, position detector and database
JPH1154478A (ja) * 1997-06-05 1999-02-26 Tokai Rika Co Ltd シリコン基板における陽極化成方法及び表面型の加速度センサの製造方法
JPH11311634A (ja) * 1998-04-28 1999-11-09 Japan Aviation Electronics Ind Ltd 半導体加速度センサの製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1491854A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248466A (ja) * 2006-03-14 2007-09-27 Commissariat A L'energie Atomique 三軸薄膜加速度計
US7603786B2 (en) * 2007-07-09 2009-10-20 Beijing Information Technology Institute Piezoelectric quartz level sensor
JP2009079948A (ja) * 2007-09-26 2009-04-16 Oki Semiconductor Co Ltd 半導体加速度センサ及びその製造方法

Also Published As

Publication number Publication date
AU2003236348A1 (en) 2003-10-27
EP1491854A4 (en) 2006-11-02
EP1491854A1 (en) 2004-12-29
US20050151448A1 (en) 2005-07-14
JPWO2003087719A1 (ja) 2005-08-18

Similar Documents

Publication Publication Date Title
WO2003087719A1 (fr) Capteur d&#39;inclinaison, procede de fabrication de ce capteur d&#39;inclinaison et procede permettant de mesurer l&#39;inclinaison
CN108827521B (zh) 力传感器装置
TWI719256B (zh) 感測器晶片、應變體以及力量感測器裝置
CN100523821C (zh) 加速度计以及在加速度计中减小偏移的方法
US11137299B2 (en) Multi-axial force sensor including piezoresistive groups, method of manufacturing the multi-axial force sensor, and method for operating the multi-axial force sensor
US20040025591A1 (en) Accleration sensor
CA2666839C (en) Highly sensitive piezoresistive element
TW200813431A (en) Multi-range three-axis acceleration sensor device
JPWO2005062060A1 (ja) 半導体型3軸加速度センサ
US8857258B2 (en) Inertial force sensor
WO2018066557A1 (ja) センサチップ、起歪体、力覚センサ装置
JP2009053180A (ja) 加速度センサー
JP6940037B2 (ja) 力覚センサ装置
WO2004081584A1 (ja) 加速度センサ及び傾斜検出方法
JP4335545B2 (ja) 圧力と加速度との双方を検出するセンサおよびその製造方法
JP4431475B2 (ja) 半導体型3軸加速度センサ
US6763719B2 (en) Acceleration sensor
CN103033647A (zh) 闭环控制式加速度计
JP2006098323A (ja) 半導体型3軸加速度センサ
JP3265641B2 (ja) 半導体加速度センサ
US20140283606A1 (en) Acceleration sensor
JPH07128358A (ja) 加速度センサ
JPH06265569A (ja) 加速度センサユニット
WO2014073631A1 (ja) 角加速度センサおよび加速度センサ
JPWO2007020700A1 (ja) 加速度センサ装置およびセンサ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003584621

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003746166

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10509873

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003746166

Country of ref document: EP