WO2014088021A1 - 加速度センサ - Google Patents

加速度センサ Download PDF

Info

Publication number
WO2014088021A1
WO2014088021A1 PCT/JP2013/082546 JP2013082546W WO2014088021A1 WO 2014088021 A1 WO2014088021 A1 WO 2014088021A1 JP 2013082546 W JP2013082546 W JP 2013082546W WO 2014088021 A1 WO2014088021 A1 WO 2014088021A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration sensor
sensor element
frame
substrate
mounting surface
Prior art date
Application number
PCT/JP2013/082546
Other languages
English (en)
French (fr)
Inventor
永山大地
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014551119A priority Critical patent/JPWO2014088021A1/ja
Publication of WO2014088021A1 publication Critical patent/WO2014088021A1/ja
Priority to US14/715,639 priority patent/US20150253349A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0067Mechanical properties
    • B81B3/0072For controlling internal stress or strain in moving or flexible elements, e.g. stress compensating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0045Packages or encapsulation for reducing stress inside of the package structure
    • B81B7/0048Packages or encapsulation for reducing stress inside of the package structure between the MEMS die and the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00325Processes for packaging MEMS devices for reducing stress inside of the package structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers

Definitions

  • the present invention relates to an acceleration sensor using MEMS technology.
  • an acceleration sensor using MEMS technology detects the acceleration based on a change in the resistance value of the piezoresistive part formed on the beam when the beam receives stress due to the displacement of the weight part.
  • Such a general MEMS acceleration sensor is disclosed in Patent Document 1, for example.
  • a hollow portion is formed in a silicon substrate, and a square weight portion movable in a three-dimensional direction is supported by a beam portion having a bridging structure.
  • a piezoresistive portion is formed.
  • the weight part and its surroundings are structured so that the stress generated in the beam part for detecting the displacement of the weight part is as large as possible. The most easily displaced.
  • a frame-shaped base part surrounding the weight part is provided, and a beam part for supporting the weight part is formed on the base part.
  • the base portion has one main surface (bottom surface) of the frame-shaped portion bonded to the support surface.
  • the substrate is twisted or bent while the acceleration sensor is mounted on the mounting substrate.
  • the support surface is twisted or bent, stress is applied to the beam portion via the base portion.
  • twisting or bending of the support surface gives displacement to the beam, and a noise component (offset bias) that should not be detected originally is superimposed.
  • An object of the present invention is to provide an acceleration sensor that is less susceptible to the effects of twisting and bending of a mounting board and has a low noise component.
  • the acceleration sensor of the present invention includes a weight part, a base part having a plurality of frame sides surrounding the weight part (frame shape), a beam part that supports the weight part with respect to the base part,
  • a strain detection part formed on the beam part
  • the beam portion is formed on a frame side other than the frame side connected to the mounting surface among the frame sides of the base portion.
  • the beam portion is formed on a frame side away from the mounting surface (for example, on the opposite side) among the frame sides of the base portion.
  • the effect of twisting and bending of the mounting substrate is mitigated, and an acceleration sensor with less noise components can be obtained.
  • FIG. 1 is a trihedral view of an acceleration sensor element 100 according to the first embodiment of the present invention.
  • the acceleration sensor element 100 is packaged as will be described later to become an acceleration sensor.
  • the acceleration sensor element 100 includes a weight portion 11, a frame-shaped base portion 12 surrounding the weight portion 11, a beam portion 13 that supports the weight portion 11 with respect to the base portion 12, and a distortion formed in the beam portion 13. And a detector 14.
  • the weight part 11, the base part 12, and the beam part 13 are formed by processing of the Si substrate with MEMS technology.
  • the Si substrate has a substantially square plate shape, and the weight portion 11 and the base portion 12 have the same thickness dimension.
  • the base portion 12 includes four frame sides 12Sa, 12Sb, 12Sc, and 12Sd. Piezoresistive elements are formed at four locations on the beam portion 13, and a resistance bridge circuit including four piezoresistive elements is formed outside.
  • FIG. 2 is a diagram showing the relationship between the orientation of the acceleration sensor element 100 and the mounting board.
  • the acceleration sensor is mounted such that the frame side 12Sc of the acceleration sensor element 100 faces the mounting surface MS of the mounting board. That is, the beam portion 13 of the acceleration sensor element 100 is formed on a frame side other than the frame side connected to the mounting surface MS among the four frame sides of the base body portion 12. In this example, it is formed on the frame side 12Sa on the opposite side (upper surface side) away from the mounting surface MS.
  • FIG. 3 is a perspective view of the acceleration sensor 200 according to the embodiment of the present invention mounted on the substrate 20.
  • the acceleration sensor 200 includes an acceleration sensor element 100 therein, and the periphery of the acceleration sensor element 100 is packaged with a mold resin 101.
  • the acceleration sensor element 100 is placed vertically with respect to the mounting surface (bottom surface) of the acceleration sensor 200.
  • the frame side on which the beam portion 13 of the acceleration sensor element 100 is formed is disposed so as to be located on the opposite side (upper surface side) from the mounting surface.
  • the structure described above alleviates the effects of twisting and bending of the mounting board, and an acceleration sensor with less noise component can be obtained.
  • FIG. 5 shows the relationship between the orientation of the acceleration sensor element and the mounting substrate as a comparative example. Since this is a comparative example, the basic configuration of the acceleration sensor element is the same as that shown in the first embodiment.
  • the one main surface (bottom surface) of the base portion 12 is disposed so as to face the mounting surface MS of the mounting substrate.
  • the substrate when the substrate is twisted or bent, stress is applied to the frame side of the base portion 12, but the stress hardly reaches the beam portion.
  • the beam portion 13 is formed on the frame side opposite to the mounting surface (upper surface side) of the frame sides of the base body portion 12, the influence on the beam portion is extremely small. Therefore, an acceleration sensor with a small noise component in the detection signal can be obtained.
  • FIG. 4 is a diagram showing the orientation relationship between the acceleration sensor element 100 and the mounting board according to the second embodiment of the present invention.
  • the acceleration sensor is mounted such that the frame side 12Sd of the acceleration sensor element 100 faces the mounting surface MS of the mounting board. That is, the beam portion 13 of the acceleration sensor element 100 is formed on the frame side 12Sa perpendicular to the mounting surface among the four frame sides of the base body portion 12.
  • the extending direction of the beam portion 13 is horizontal and vertical with respect to the mounting surface MS, but may be inclined. For example, it may be inclined at 45 ° or 135 °.
  • the weight portion 11, the base portion 12, and the beam portion 13 are formed by processing a substantially square plate-like substrate. It is not limited to a square plate shape. For example, a triangular plate shape or a disk shape may be used.
  • a piezoresistive element is formed in the strain detection section and they are bridge-connected, but the present invention is not limited to this.
  • a functional unit that converts mechanical strain into an electrical signal may be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Sensors (AREA)

Abstract

 加速度センサ素子(100)がパッケージングされることにより加速度センサとなる。加速度センサ素子(100)は、錘部(11)と、この錘部(11)を囲む枠形状の基体部(12)と、基体部(12)に対して錘部(11)を支持する梁部(13)と、梁部(13)に形成された歪み検出部(14)とを備えている。基体部(12)は4つの枠辺(12Sa,12Sb,12Sc,12Sd)を備えている。実装先基板の実装面(MS)に加速度センサ素子(100)の枠辺(12Sc)が対向する関係で加速度センサは実装される。すなわち、加速度センサ素子(100)の梁部(13)は実装面とは反対側の枠辺(12Sa)に形成されている。

Description

加速度センサ
 本発明はMEMS技術を用いた加速度センサに関するものである。
 一般に、MEMS技術を用いた加速度センサは、錘部の変位により梁が応力を受けることで、梁に形成されたピエゾ抵抗部の抵抗値が変動し、この抵抗値変化に基づいて加速度を検出する。このような一般的なMEMS加速度センサは例えば特許文献1に示されている。
 特許文献1に示されている加速度センサは、シリコン基体に空洞部が形成され、その内部に3次元方向に可動な角型の錘部が架橋構造となる梁部で支持され、梁部にはピエゾ抵抗部が形成されている。
特開2004-264053号公報
 従来のMEMS技術を用いた加速度センサにおいて、錘部およびその周辺は、錘部の変位を検出するための梁部に発生する応力が極力大きくなるような構造であるため、加速度センサを構成する要素の中で最も変位し易い。また構造上、錘部を囲む枠形状の基体部を備え、この基体部に対して錘部を支持する梁部が形成されている。そして特許文献1に示されているように、一般的に基体部は枠形状部の一方主面(底面)が支持面に接合される。
 ところが、このように基体部が枠形状部の一方主面(底面)で支持面に接合される構造においては、加速度センサが実装先の基板に実装された状態で、基板の捻れや撓みを受ける。そして支持面に捻れや撓みが生じると、基体部を介して梁部に応力が加わる。その結果、支持面の捻れや撓みが梁に変位を与え、本来は検知すべきではないノイズ成分(オフセットバイアス)が重畳されてしまう。
 本発明の目的は、実装先の基板の捻れや撓みの影響を受けにくくして、ノイズ成分の少ない加速度センサを提供することにある。
(1)本発明の加速度センサは、錘部と、前記錘部を囲む複数の枠辺を有する(枠形状の)基体部と、前記基体部に対して前記錘部を支持する梁部と、前記梁部に形成された歪み検出部とを備えた加速度センサにおいて、
 前記梁部は、前記基体部の前記枠辺のうち、実装面に接続された枠辺以外の枠辺に形成されていることを特徴とする。
(2)前記梁部は、前記基体部の前記枠辺のうち、実装面から離れた(例えば反対側)の枠辺に形成されていることが特に好ましい。
 本発明によれば、実装先の基板の捻れや撓みの影響が緩和されて、ノイズ成分の少ない加速度センサが得られる。
本発明の第1の実施形態である加速度センサ素子100の三面図である。 加速度センサ素子100と実装先基板との向きの関係を示す図である。 本発明の実施形態である加速度センサ200の基板20への実装状態での斜視図である。 本発明の第2の実施形態である加速度センサ素子100と実装先基板との向きの関係を示す図である。 比較例としての加速度センサ素子と実装先基板との向きの関係を示す図である。
《第1の実施形態》
 図1は本発明の第1の実施形態である加速度センサ素子100の三面図である。この加速度センサ素子100が後に示すようにパッケージングされることにより加速度センサとなる。加速度センサ素子100は、錘部11と、この錘部11を囲む枠形状の基体部12と、基体部12に対して錘部11を支持する梁部13と、梁部13に形成された歪み検出部14とを備えている。
 錘部11、基体部12および梁部13はSi基板のMEMS技術による加工によって形成されている。Si基板は概略正方形板状であり、錘部11と基体部12との厚み寸法は等しい。
 基体部12は4つの枠辺12Sa,12Sb,12Sc,12Sdを備えている。梁部13には4箇所にピエゾ抵抗素子が形成されていて、外部で4つのピエゾ抵抗素子による抵抗ブリッジ回路が構成される。
 図2は加速度センサ素子100と実装先基板との向きの関係を示す図である。この例では、実装先基板の実装面MSに加速度センサ素子100の枠辺12Scが対向する関係で加速度センサが実装される。すなわち、加速度センサ素子100の梁部13は、基体部12の4つの枠辺のうち、実装面MSに接続された枠辺以外の枠辺に形成されている。この例では実装面MSから離れた反対側(上面側)の枠辺12Saに形成されている。
 図3は本発明の実施形態である加速度センサ200の基板20への実装状態での斜視図である。加速度センサ200は内部に加速度センサ素子100を備えていて、加速度センサ素子100の周囲がモールド樹脂101でパッケージングされている。加速度センサ素子100は加速度センサ200の実装面(底面)に対して縦置きされている。そして、図2に示したように、加速度センサ素子100の梁部13が形成されている枠辺が実装面とは反対側(上面側)に位置するように配置されている。
 以上に示した構造により、実装先の基板の捻れや撓みの影響が緩和されて、ノイズ成分の少ない加速度センサが得られる。
 ここで、比較例としての加速度センサ素子と実装先基板との向きの関係を図5に示す。比較例であるので、この加速度センサ素子の基本構成は第1に示したものと同様である。この例では、基体部12の一方主面(底面)が実装先基板の実装面MSに対向するように配置されている。
 図5に示した配置では、加速度センサが実装先の基板に実装された状態で、基板に捻れや撓みが生じると、基体部12を介して梁部13に応力が加わる。その結果、基板の捻れや撓みが梁に変位を与え、本来は検知すべきではないノイズ成分(オフセットバイアス)が重畳されてしまう。
 これに対し、本発明によれば、基板に捻れや撓みが生じると基体部12の枠辺に応力が掛かるが、その応力は梁部には及びにくい。特に、梁部13が基体部12の枠辺のうち、実装面とは反対側(上面側)の枠辺に形成されていると、梁部に対する影響は極小さなものとなる。したがって、検出信号にノイズ成分の少ない加速度センサが得られる。
《第2の実施形態》
 図4は本発明の第2の実施形態である加速度センサ素子100と実装先基板との向きの関係を示す図である。この例では、実装先基板の実装面MSに加速度センサ素子100の枠辺12Sdが対向する関係で加速度センサが実装される。すなわち、加速度センサ素子100の梁部13は、基体部12の4つの枠辺のうち、実装面に対して垂直な枠辺12Saに形成されている。
 図4に示した配置であっても、梁部13は実装面MSから離れた位置にあるので、基板に生じる捻れや撓みによる応力が梁部には殆ど及ばない。
 なお、図2、図4に示した例では、梁部13の延びる方向が実装面MSに対し水平、垂直の関係であったが、傾斜していてもよい。例えば45°や135°に傾斜していてもよい。
 なお、以上に示した各実施形態では、概略正方形板状の基板を加工することによって、錘部11、基体部12および梁部13を形成する例を示したが、本発明は基板形状は概略正方形板状に限られるものではない。例えば三角形板状や円板状であってもよい。
 また、以上に示した各実施形態では、歪み検出部にピエゾ抵抗素子を形成し、またそれらをブリッジ接続する例を示したが、本発明はこれに限られるものではない。機械的歪みを電気信号に変換する機能部を設ければよい。
MS…実装面
11…錘部
12…基体部
12Sa,12Sb,12Sc,12Sd…枠辺
13…梁部
14…検出部
20…基板
100…加速度センサ素子
101…モールド樹脂
200…加速度センサ

Claims (2)

  1.  錘部と、前記錘部を囲む複数の枠辺を有する基体部と、前記基体部に対して前記錘部を支持する梁部と、前記梁部に形成された歪み検出部とを備えた加速度センサにおいて、
     前記梁部は、前記基体部の前記枠辺のうち、実装面に接続された枠辺以外の枠辺に形成されていることを特徴とする加速度センサ。
  2.  前記梁部は、前記基体部の前記枠辺のうち、実装面から離れた枠辺に形成されている、請求項1に記載の加速度センサ。
PCT/JP2013/082546 2012-12-06 2013-12-04 加速度センサ WO2014088021A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014551119A JPWO2014088021A1 (ja) 2012-12-06 2013-12-04 加速度センサ
US14/715,639 US20150253349A1 (en) 2012-12-06 2015-05-19 Acceleration sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-267346 2012-12-06
JP2012267346 2012-12-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/715,639 Continuation US20150253349A1 (en) 2012-12-06 2015-05-19 Acceleration sensor

Publications (1)

Publication Number Publication Date
WO2014088021A1 true WO2014088021A1 (ja) 2014-06-12

Family

ID=50883439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082546 WO2014088021A1 (ja) 2012-12-06 2013-12-04 加速度センサ

Country Status (3)

Country Link
US (1) US20150253349A1 (ja)
JP (1) JPWO2014088021A1 (ja)
WO (1) WO2014088021A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170004123A (ko) * 2015-07-01 2017-01-11 삼성전기주식회사 센서 소자 및 그 제조 방법
US10340211B1 (en) 2018-03-15 2019-07-02 Nxp B.V. Sensor module with blade insert

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190775A (ja) * 1986-02-18 1987-08-20 Nissan Motor Co Ltd 加速度センサ
JPH0835983A (ja) * 1994-07-22 1996-02-06 Mitsubishi Electric Corp 静電容量式加速度センサ
JPH08320341A (ja) * 1994-06-15 1996-12-03 Nippondenso Co Ltd 力学量検出装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095401A (en) * 1989-01-13 1992-03-10 Kopin Corporation SOI diaphragm sensor
JP3127747B2 (ja) * 1993-12-27 2001-01-29 株式会社日立製作所 加速度センサ
JPH08233848A (ja) * 1995-02-28 1996-09-13 Mitsubishi Electric Corp 半導体センサ
US6086774A (en) * 1997-12-18 2000-07-11 The Board Of Trustees Of The Stanford Leland Junior University Method of making released micromachined structures by directional etching
AU2003236348A1 (en) * 2002-04-02 2003-10-27 Asahi Kasei Emd Corporation Inclination sensor, method of manufacturing inclination sensor, and method of measuring inclination
JP4687736B2 (ja) * 2008-03-25 2011-05-25 株式会社村田製作所 外力検知装置の製造方法および外力検知装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190775A (ja) * 1986-02-18 1987-08-20 Nissan Motor Co Ltd 加速度センサ
JPH08320341A (ja) * 1994-06-15 1996-12-03 Nippondenso Co Ltd 力学量検出装置
JPH0835983A (ja) * 1994-07-22 1996-02-06 Mitsubishi Electric Corp 静電容量式加速度センサ

Also Published As

Publication number Publication date
JPWO2014088021A1 (ja) 2017-01-05
US20150253349A1 (en) 2015-09-10

Similar Documents

Publication Publication Date Title
JP5965457B2 (ja) Memsデバイスのねじり懸垂のための取付けシステム
JP6513519B2 (ja) 物理量センサ
US9903884B2 (en) Parallel plate capacitor and acceleration sensor comprising same
US20190376864A1 (en) Micromechanical pressure sensor
JP6482277B2 (ja) ひずみ非結合センサ
US20120056280A1 (en) MEMS Sensor Package
EP2617677B1 (en) Structure for isolating a microstructure die from packaging stress
WO2014088021A1 (ja) 加速度センサ
US10843917B2 (en) Micromechanical device having a decoupled micromechanical structure
CN110546516B (zh) 用于加速度计的去耦结构
JP2010190636A5 (ja)
JP6545918B1 (ja) 加速度センサコアユニット、加速度センサを載置する基板のたわみを防止する方法
JP5899939B2 (ja) 半導体圧力センサ、及び、その製造方法
JP2010216842A (ja) 力学量検出センサ
JP5929645B2 (ja) 物理量センサ
JP5971349B2 (ja) 角加速度センサ
JP2010216834A (ja) 力学量検出センサ
WO2014080800A1 (ja) 加速度センサ
WO2014030492A1 (ja) 慣性力センサ
JP6020590B2 (ja) 角加速度センサ
JP6044320B2 (ja) 物理量センサ
JP2015114233A (ja) 半導体圧力センサ
JP2006153518A (ja) 加速度センサ
JP2009121878A (ja) 物理量センサとその製造方法
JP2001174479A (ja) 加速度センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551119

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861375

Country of ref document: EP

Kind code of ref document: A1