JP2012013495A - 加速度センサ - Google Patents

加速度センサ Download PDF

Info

Publication number
JP2012013495A
JP2012013495A JP2010149055A JP2010149055A JP2012013495A JP 2012013495 A JP2012013495 A JP 2012013495A JP 2010149055 A JP2010149055 A JP 2010149055A JP 2010149055 A JP2010149055 A JP 2010149055A JP 2012013495 A JP2012013495 A JP 2012013495A
Authority
JP
Japan
Prior art keywords
acceleration sensor
layer
weight
weight portion
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010149055A
Other languages
English (en)
Inventor
Hiroshi Hamamura
宏 浜村
Kazuhiro Yoshida
和広 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2010149055A priority Critical patent/JP2012013495A/ja
Publication of JP2012013495A publication Critical patent/JP2012013495A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Micromachines (AREA)

Abstract

【課題】衝撃が加わってX方向に過度の加速度が作用した場合でも、梁部が破損するのを防ぐ加速度センサを提供する。
【解決手段】加速度センサ100は、蓋体5と、センサ本体3と、基台4とを備える。センサ本体3は、支持部30と、梁部31と、錘部34とを備える。基台4は、錘部34と対向する部分に凹部41を有する。梁部31は、錘部34の側面の一部が凹部41の壁41A、41Bと所定の間隔dで対向するまで錘部34が凹部41側へ変位するよう反った形状に形成されている。衝撃が加速度センサ100に加わってX方向に過度の加速度が作用した際、この実施形態の加速度センサ100では、錘部34の側面の一部が凹部41の壁41A(又は41B)に当接する。
【選択図】 図5

Description

この発明は、ピエゾ抵抗を用いて外部応力を検出する加速度センサに関する。
近年、エアバッグやカメラの手振れ防止などにおいて加速度を検出するために、加速度センサが用いられている。この種の加速度センサとして、例えばシリコンウエハを薄く加工して梁を形成すると共に、この梁の上にピエゾ抵抗を形成したものが知られている(例えば、特許文献1参照)。以下、特許文献1に開示されている加速度センサについて図1を基に説明する。
図1(A)は、特許文献1に示されている加速度センサ1のセンサ本体を示す平面図であり、図1(B)は、図1(A)のA−A線における断面図である。加速度センサ1は、支持部10と、梁部11と、錘部14とを備える。
支持部10は、加速度センサ1の外周側に位置して例えば略四角形の枠状に形成されている。また、支持部10の内側には、図1中の横方向の左側から右側に向けて梁部11が突出して設けられている。
梁部11は、基端側が支持部10に繋がり、先端側が錘部14に繋がっている。また、梁部11は断面がT字形に形成されている。
錘部14は、梁部11の先端に繋がっており、支持部10の内側に位置する。また、錘部14と支持部10との間には、錘部14を取囲む略C字状の溝13が設けられている。これにより、錘部14と支持部10との間には隙間が形成され、錘部14は、梁部11によってX方向に変位可能に支持されている。
以上の構成において、加速度センサ1にX方向の加速度が作用すると、錘部14に作用する慣性力(外部応力)によって梁部11を中心として錘部14が水平面内で揺動して梁部11が歪み変形し、梁部11上のピエゾ抵抗Rに応力が加わる。これにより、加速度による外部応力に応じてピエゾ抵抗Rの抵抗値が変化するため、ピエゾ抵抗Rに流れる電流も抵抗値に応じて変化する。このため、ピエゾ抵抗Rに流れる電流を検出信号として用いてピエゾ抵抗Rの抵抗値を求めることができるため、これらの抵抗値を用いてピエゾ抵抗Rに作用した加速度(慣性力)を検出することができる。
特開平8−160066号公報
しかしながら、上記特許文献1に示されている加速度センサ1は、衝撃が加わってX方向の加速度が作用した際に、梁部11に応力が集中し易い構造となっている。そのため、加速度センサ1では、衝撃が加わってX方向に過度の加速度が作用した際に、梁部11が錘部14の揺動により大幅に変形して破損するおそれがあった。
したがって、本発明の目的は、衝撃が加わってX方向に過度の加速度が作用した場合でも、梁部が破損するのを防ぐ加速度センサを提供することにある。
本発明の加速度センサは、前記課題を解決するために以下の構成を備えている。
(1)錘部と、支持部と、前記錘部の後端部を前記支持部に連結するとともに外部応力に応じて歪み変形が生じる梁部と、前記梁部に形成され前記外部応力を検出するピエゾ抵抗と、前記支持部および前記梁部に形成され前記ピエゾ抵抗による検出信号を伝達する配線部と、を有するセンサ本体と、
前記支持部の前記配線部側の面に接合される蓋体と、
前記支持部の前記配線部側の面に対向する裏面に接合される基台と、を備える加速度センサにおいて、
前記基台は、前記錘部と対向する部分に凹部が形成され、
前記梁部および前記錘部の少なくとも一方は、前記錘部の側面の一部が前記凹部の壁と所定の間隔で対向するまで前記錘部が前記凹部側へ変位するよう反った形状に形成された。
この構成において、衝撃が加速度センサに加わってX方向に過度の加速度が作用した場合、錘部の側面の一部は凹部の壁に当接する。そのため、過度の加速度が加速度センサに加わっても、錘部は所定の間隔を超える揺れ幅で揺動することがない。この所定の間隔は、梁部が破損しないでX方向へ変形することができる変形幅を考慮して予め設定する。
従って、この構成の加速度センサによれば、衝撃が加速度センサに加わってX方向に過度の加速度が作用しても、梁部が破損するのを防ぐことができる。
(2)前記錘部と前記支持部と前記梁部とは、複数の層からなり、
前記梁部および前記錘部の少なくとも一方は、複数の層の内、少なくとも互いに線膨張係数の異なる第1の層と第2の層とを用いて前記反った形状に形成された。
(3)前記複数の層は、半導体薄膜層と絶縁体薄膜層とを含み、
前記第1の層は、前記半導体薄膜層であり、
前記第2の層は、前記絶縁体薄膜層である。
(4)前記第2の層は、前記第1の層より前記蓋体側に形成された。
(5)前記基台は、前記錘部に対向する前記凹部の底面を絶縁基板で形成し、前記凹部の壁を前記絶縁基板上の樹脂で形成した。
(6)前記錘部は、先端部の両側部位が当該両側部位の間に位置する中央部位より突出した形状に形成され、
前記基台の前記凹部の壁は、前記錘部の前記両側部位の内側面の一部と前記所定の間隔で対向する。
この構成において、衝撃が加速度センサに加わってX方向に過度の加速度が作用した場合、錘部の両側部位の内側面の一部は凹部の壁に当接する。そのため、過度の加速度が加速度センサに加わっても、錘部は所定の間隔を超える揺れ幅で揺動することがない。
従って、この構成の加速度センサによれば、上記(1)と同様の効果を奏する。
この発明によれば、衝撃が加わってX方向に過度の加速度が作用した場合でも、梁部が破損するのを防ぐことができる。
図1(A)は、特許文献1に示されている加速度センサ1のセンサ本体を示す平面図である。図1(B)は、図1(A)のA−A線における断面図である。 第1の実施形態に係る加速度センサ100を示す分解斜視図である。 図2に示すセンサ本体3の検出回路7の回路図である。 図2に示すセンサ本体3と基台4の接合体の平面図である。 図4のS−S線における断面図である。 第2の実施形態に係る加速度センサ200における図4のS−S線における断面図である。 第3の実施形態に係る加速度センサ300のセンサ本体303と基台304の接合体の平面図である。 第3の実施形態に係る加速度センサ300の基台304の平面図である。 図7のT−T線における断面図である。 第4の実施形態に係る加速度センサ400における図7のT−T線における断面図である。 第5の実施形態に係る加速度センサ500における図4のS−S線における断面図である。
本発明の第1の実施形態に係る加速度センサについて、図を参照して説明する。加速度センサは、例えばエアバッグやカメラの手振れ防止などにおいて加速状態を検出するために用いられている。
図2は、第1の実施形態に係る加速度センサ100を示す分解斜視図である。図3は、図2に示すセンサ本体3の検出回路7の回路図である。図4は、図2に示すセンサ本体3と基台4の接合体の平面図である。
加速度センサ100は、図2に示すように、蓋体5と、センサ本体3と、基台4とを備える。センサ本体3は、支持部30と、梁部31と、錘部34とを備える。支持部30及び梁部31には、図3に示す検出回路7が形成されている。蓋体5は、支持部30の検出回路7側の面に接合される。基台4は、支持部30の検出回路7側の面に対向する裏面に接合される。
センサ本体3は、図2に示すように、例えばSOI(Silicon On Insulator)基板90を用いて形成されている。このため、センサ本体3は、表面側に位置する表面層91と、該表面層91の裏面側に設けられた裏面層をなす支持基板層93と、表面層91と支持基板層93との間に位置する中間絶縁層92とを備えている。さらに、センサ本体3は、表面層91の蓋体5側の面に形成された絶縁層94を備えている。このとき、表面層91、支持基板層93はいずれもシリコン材料を用いて形成され、中間絶縁層92、絶縁層94はいずれも二酸化シリコン(SiO2)のような絶縁材料を用いて形成されている。
支持部30は、センサ本体3の外周側に位置して例えば略四角形の枠状に形成されており、表面層91、中間絶縁層92、支持基板層93、及び絶縁層94によって形成されている。また、支持部30の内側には、図2中の横方向(Y方向)の手前側から奥側に向けて梁部31が突出して設けられている。
梁部31は、基端側が支持部30に繋がり、先端側が錘部34に繋がっている。また、梁部31は、平板状に形成されており、表面層91及び絶縁層94のみによって形成されている。このため、梁部31は、図2及び図4に示すX方向に容易に歪み変形する。
錘部34は、梁部31の先端に繋がっており、支持部30の内側に位置する。錘部34は、表面層91、中間絶縁層92、支持基板層93及び絶縁層94によって形成されている。また、錘部34と支持部30との間には、錘部34を取囲む略C字状の溝33が設けられている。これにより、錘部34と支持部30との間には隙間が形成され、錘部34は、梁部31によってX方向に変位可能に支持されている。
検出回路7は、図2〜図4に示すように、4個のピエゾ抵抗R1〜R4と、配線77と、電極P1〜P4とからなる。この検出回路7は、支持部30及び梁部31の表面層91の蓋体5側に設けられ、絶縁層94によって覆われている。
ピエゾ抵抗R1〜R4は、例えば梁部31の表面に対してp型の不純物を拡散(ドープ)させることによって梁部31の表面に形成される。また、ピエゾ抵抗R2,R4は直列接続されると共に、ピエゾ抵抗R1,R3も直列接続されている。また、ピエゾ抵抗R2,R4の直列接続回路とピエゾ抵抗R1,R3の直列接続回路とは互いに並列接続されている。これにより、検出回路7は、図4に示すホイートストンブリッジ回路を構成し、その検出感度を高めている。
また、ピエゾ抵抗R1,R3(R2,R4)の直列接続回路は、一端側(例えば抵抗R1,R2側)が駆動電圧Vddが供給される駆動電極P3に接続され、他端側(例えば抵抗R3,R4側)がグランド(GND)用のグランド電極P4に接続されている。さらに、ピエゾ抵抗R1,R3間の接続点には第1の検出信号Vout1を出力する出力電極P1が接続され、ピエゾ抵抗R2,R4間の接続点には第2の検出信号Vout1を出力する出力電極P2が接続されている。
各電極P1〜P4は、例えば導電性金属材料を用いた電極パッドによって形成され、支持部30の表面に設けられる。
配線部77は、支持部30及び梁部31の表面側に設けられ、ピエゾ抵抗R1〜R4間を接続すると共に、ピエゾ抵抗R1〜R4と各電極P1〜P4との間を接続している。
なお、配線部77は、ブリッジ回路のバランスをとるために、例えば線路長さ寸法を等しく形成し、互いの抵抗値が同じ値になるように形成するのが好ましい。
以上の構成において、加速度センサ300にX方向の加速度が作用すると、錘部34に作用する慣性力(外部応力)によって梁部31を中心として錘部34が水平面内で揺動して梁部31が歪み変形し、梁部31上のピエゾ抵抗R1、R2とR3、R4に応力が加わる。これにより、この慣性力に応じてピエゾ抵抗R1、R2とR3、R4の抵抗値が変化するため、ピエゾ抵抗R1、R2とR3、R4に流れる電流も抵抗値に応じて変化する。このとき、出力電極P1,P2から出力される検出信号Vout1,Vout2を検出することによって、加速度(慣性力)を検出することができる。
図5は、図4のS−S線における断面図である。
基台4は、図2、図4、及び図5に示すように、基板40と、基板40上に形成された枠部42とを有する。基板40及び枠部42は、錘部34と対向する部分に凹部41を形成している。即ち凹部41の底面に相当する基板40の上面が錘部34と対向する。
なお、基台4は、シリコン材料を用いて形成されている。また、蓋体5も、シリコン材料を用いて形成されている。
梁部31は、図5に示すように、錘部34の側面の一部が凹部41の壁41A、41Bと所定の間隔dで対向するまで錘部34が凹部41側へ変位するよう反った形状に形成されている。この凹部41の壁41A、41Bは、枠部42の内側面に相当する。ここで、この梁部31の反り形状は、第1の層である半導体薄膜層からなる表面層91と第2の層である絶縁体薄膜層からなる絶縁層94の線膨張係数の違いを利用して達成する。また、所定の間隔dは、梁部31が破損しないでX方向へ変形することができる変形幅を考慮して設定する。
以上の構成において、衝撃が加速度センサ100に加わってX方向に過度の加速度が作用した場合、この実施形態の加速度センサ100では、錘部34の側面の一部が凹部41の壁41A(又は41B)に当接する。そのため、過度の加速度が加速度センサ100に加わっても、錘部34は所定の間隔dを超える揺れ幅で揺動することがない。
従って、この実施形態における加速度センサ100によれば、衝撃が加速度センサ100に加わってX方向に過度の加速度が作用しても、梁部31が破損するのを防ぐことができる。
なお、この実施形態では、梁部31のみを上記反った形状に形成しているが、実施の際は、梁部31および錘部34の少なくとも一方を上記反った形状に形成しても構わない。
また、この実施形態では、表面層91と絶縁層94の線膨張係数の違いを利用して錘部34を凹部41側へ反らせているが、実施の際は、例えば表面層(第1の層)91と中間絶縁層(第2の層)92の線膨張係数の違いを利用して錘部34を凹部41側へ反らせても構わない。
次に、本発明の第2の実施形態に係る加速度センサについて、図を参照して説明する。
図6は、第2の実施形態に係る加速度センサ200における図4のS−S線における断面図である。この実施形態に係る加速度センサ200の構成は、第1の実施形態に係る加速度センサ100と同じである。この実施形態に係る加速度センサ200が第1の実施形態に係る加速度センサ100と相違する点は、蓋体5′と基台4′の材質である。
詳述すると、蓋体5′を構成する基板50は、ガラス等の絶縁体で形成されている。また、蓋体5′を構成する枠部51は、樹脂製のレジスト膜を基板50上に形成した後、フォトリソグラフィ技術を用いて当該レジスト膜をパターニングすることで形成されている。
また、基台4′を構成する基板40′は、ガラス等の絶縁体で形成されている。また、基台4′を構成する枠部42′は、樹脂製のレジスト膜を基板40′上に形成した後、フォトリソグラフィ技術を用いて当該レジスト膜をパターニングすることで形成されている。
そのため、この実施形態の加速度センサ200によれば、パターニングを調整することで所定の間隔dを容易に設定できる。また、加速度センサ200の構成は加速度センサ100の構成と同じであるため、この実施形態の加速度センサ200によれば、第1の実施形態の加速度センサ100と同様の効果を奏する。
次に、本発明の第3の実施形態に係る加速度センサについて、図を参照して説明する。
図7は、第3の実施形態に係る加速度センサ300のセンサ本体303と基台304の接合体の平面図である。図8は、同基台304の平面図である。図9は、図7のT−T線における断面図である。
この実施形態に係る加速度センサ300が第1の実施形態に係る加速度センサ100と相違する点は、梁部331及び錘部334と基台304である。その他の構成については、第1の実施形態に係る加速度センサ100と同じである。
詳述すると、基台304は、図7〜図9に示すように、基板40と、基板40上に形成された枠部342とを有する。基板40及び枠部342は、錘部334と対向する部分に凹部341を形成している。即ち凹部341の底面に相当する基板40の上面が錘部334と対向する。
なお、基台304は、シリコン材料を用いて形成されている。また、蓋体5も、シリコン材料を用いて形成されている。
錘部334は、先端部の両側部位334A、334Bが当該両側部位334A、334Bの間に位置する中央部位334Cより突出した形状に形成されている。さらに、錘部334は、図9に示すように、錘部334の両側部位334A、334Bの内側面の一部が凹部341の壁341A、341Bと所定の間隔dで対向するまで錘部334の両側部位334A、334Bが凹部341側へ変位するよう反った形状に形成されている。この凹部341の壁341A、341Bは、枠部342の内側面に相当する。ここで、この錘部334の反り形状は、表面層91と絶縁層94の線膨張係数の違いを利用して達成する。また、所定の間隔dは、梁部331が破損しないでX方向へ変形することができる変形幅を考慮して設定する。
以上の構成において、衝撃が加速度センサ300に加わってX方向に過度の加速度が作用した場合、この実施形態の加速度センサ300では、錘部334の両側部位334A(又は334B)の内側面の一部が凹部341の壁341A(又は341B)に当接する。そのため、過度の加速度が加速度センサ300に加わっても、錘部334は所定の間隔dを超える揺れ幅で揺動することがない。
従って、この実施形態における加速度センサ300によれば、衝撃が加速度センサ300に加わってX方向に過度の加速度が作用しても、梁部331が破損するのを防ぐことができる。
なお、この実施形態では、錘部334のみを上記反った形状に形成しているが、実施の際は、梁部331および錘部334の少なくとも一方を上記反った形状に形成しても構わない。
また、この実施形態では、表面層91と絶縁層94の線膨張係数の違いを利用して錘部334を凹部341側へ反らせているが、実施の際は、例えば表面層91と中間絶縁層92の線膨張係数の違いを利用して錘部334を凹部341側へ反らせても構わない。
次に、本発明の第4の実施形態に係る加速度センサについて、図を参照して説明する。
図10は、第4の実施形態に係る加速度センサ400における図7のT−T線における断面図である。この実施形態に係る加速度センサ400の構成は、第3の実施形態に係る加速度センサ300と同じである。この実施形態に係る加速度センサ400が第3の実施形態に係る加速度センサ300と相違する点は、蓋体5′と基台304′の材質である。
詳述すると、上記第3の実施形態の加速度センサ300では、基台304をシリコンで形成していたが、第4の実施形態の加速度センサ400では、基台304′を第2の実施形態の加速度センサ200と同じように形成している。即ち、基台304′を構成する基板40′をガラス等の絶縁体で形成し、基台304′を構成する枠部342′を樹脂で形成している。当該枠部342′は、樹脂製のレジスト膜を基板40′上に形成した後、フォトリソグラフィ技術を用いて当該レジスト膜をパターニングすることで形成されている。
従って、第4の実施形態の加速度センサ400によれば、第2の実施形態の加速度センサ200と同様の効果を奏する。
次に、本発明の第5の実施形態に係る加速度センサについて、図を参照して説明する。
図11は、第5の実施形態に係る加速度センサ500における図4のS−S線における断面図である。この実施形態に係る加速度センサ500が第1の実施形態に係る加速度センサ100と相違する点は、梁部531と絶縁保護層95である。その他の構成については、第1の実施形態に係る加速度センサ100と同じである。
詳述すると、梁部531は、図4に示す梁部31と同様、平板状に形成されており、基端側が支持部30に繋がり、先端側が錘部34′に繋がっている。しかし、梁部531は、図5に示す梁部31と異なり、表面層91、中間絶縁層92、絶縁層94及び絶縁保護層95によって形成されている。この絶縁保護層95は、表面層91に形成されている検出回路7の配線77を湿気から保護するための層である。この絶縁保護層95は、窒化シリコン(SiNx)のような絶縁材料を用いて絶縁層94の蓋体5側の面に形成されている。
そして、この実施形態における梁部531の反り形状は、少なくとも、第1の層である半導体薄膜層からなる表面層91と第2の層である絶縁体薄膜層からなる絶縁保護層95との線膨張係数の違いを利用して達成している。ここで、表面層91及び絶縁保護層95以外に、中間絶縁層92及び絶縁層94も反りに影響を及ぼす。この反り形状により、錘部34′が凹部41側へ変位する。
従って、第5の実施形態の加速度センサ500によれば、第1の実施形態の加速度センサ100と同様の効果を奏する。
なお、この実施形態では、基台4をシリコンで形成しているが、実施の際は、第2の実施形態の加速度センサ200と同じように、基板40をガラス等の絶縁体で形成し、枠部42を樹脂で形成しても構わない。
なお、上述の各実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1…加速度センサ
10…支持部
11…梁部
13…溝
14…錘部
100、200、300、400、500…加速度センサ
3…センサ本体
4…基台
5…蓋体
30…支持部
31…梁部
33…溝
34…錘部
40…基板
41…凹部
42…枠部
50…基板
51…枠部
90…SOI基板
91…表面層
92…中間絶縁層
93…支持基板層
94…絶縁層
95…絶縁保護層
303…センサ本体
304…基台
331…梁部
334…錘部
341…凹部
342…枠部
531…梁部
7…検出回路
77…配線部
P1,P2…出力電極
P3…駆動電極
P4…グランド電極
R1〜R4…ピエゾ抵抗

Claims (6)

  1. 錘部と、支持部と、前記錘部の後端部を前記支持部に連結するとともに外部応力に応じて歪み変形が生じる梁部と、前記梁部に形成され前記外部応力を検出するピエゾ抵抗と、前記支持部および前記梁部に形成され前記ピエゾ抵抗による検出信号を伝達する配線部と、を有するセンサ本体と、
    前記支持部の前記配線部側の面に接合される蓋体と、
    前記支持部の前記配線部側の面に対向する裏面に接合される基台と、を備える加速度センサにおいて、
    前記基台は、前記錘部と対向する部分に凹部が形成され、
    前記梁部および前記錘部の少なくとも一方は、前記錘部の側面の一部が前記凹部の壁と所定の間隔で対向するまで前記錘部が前記凹部側へ変位するよう反った形状に形成された加速度センサ。
  2. 前記錘部と前記支持部と前記梁部とは、複数の層からなり、
    前記梁部および前記錘部の少なくとも一方は、複数の層の内、少なくとも互いに線膨張係数の異なる第1の層と第2の層とを用いて前記反った形状に形成された、請求項1に記載の加速度センサ。
  3. 前記複数の層は、半導体薄膜層と絶縁体薄膜層とを含み、
    前記第1の層は、前記半導体薄膜層であり、
    前記第2の層は、前記絶縁体薄膜層である、請求項2に記載の加速度センサ。
  4. 前記第2の層は、前記第1の層より前記蓋体側に形成された、請求項2または請求項3に記載の加速度センサ。
  5. 前記基台は、前記錘部に対向する前記凹部の底面を絶縁基板で形成し、前記凹部の壁を前記絶縁基板上の樹脂で形成した、請求項1から請求項4のいずれかに記載の加速度センサ。
  6. 前記錘部は、先端部の両側部位が当該両側部位の間に位置する中央部位より突出した形状に形成され、
    前記基台の前記凹部の壁は、前記錘部の前記両側部位の内側面の一部と前記所定の間隔で対向する、請求項1から請求項5のいずれかに記載の加速度センサ。
JP2010149055A 2010-06-30 2010-06-30 加速度センサ Pending JP2012013495A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010149055A JP2012013495A (ja) 2010-06-30 2010-06-30 加速度センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010149055A JP2012013495A (ja) 2010-06-30 2010-06-30 加速度センサ

Publications (1)

Publication Number Publication Date
JP2012013495A true JP2012013495A (ja) 2012-01-19

Family

ID=45600116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010149055A Pending JP2012013495A (ja) 2010-06-30 2010-06-30 加速度センサ

Country Status (1)

Country Link
JP (1) JP2012013495A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308718A (zh) * 2013-07-02 2013-09-18 中国工程物理研究院电子工程研究所 一种单凸梁式微机械加速度传感器
CN109764954A (zh) * 2019-01-04 2019-05-17 西安交通大学 一种高灵敏度、高频响、抗过载的碳化硅高温振动传感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308718A (zh) * 2013-07-02 2013-09-18 中国工程物理研究院电子工程研究所 一种单凸梁式微机械加速度传感器
CN109764954A (zh) * 2019-01-04 2019-05-17 西安交通大学 一种高灵敏度、高频响、抗过载的碳化硅高温振动传感器

Similar Documents

Publication Publication Date Title
JP4670427B2 (ja) 半導体センサおよびその製造方法
JP2804874B2 (ja) 半導体加速度検出装置
JPH07113647B2 (ja) 半導体加速度センサ
JP2004333133A (ja) 慣性力センサ
JP2012013495A (ja) 加速度センサ
JP2004109114A (ja) 半導体多軸加速度センサ
WO2008038537A1 (fr) Détecteur d'accélération
JP5494803B2 (ja) 加速度センサ
JP2010085143A (ja) 加速度センサー
JP5859133B2 (ja) 半導体装置
JP2009288170A (ja) 半導体圧力センサ
JP2008082952A (ja) 半導体感歪センサ
EP3056865B1 (en) Sensor arrangement
KR101521712B1 (ko) 압저항 감지모듈 및 이를 포함하는 mems 센서
JP2006153519A (ja) 加速度センサ
WO2014088021A1 (ja) 加速度センサ
JP4179070B2 (ja) 半導体加速度センサおよびその製造方法
KR101531088B1 (ko) 관성센서
JP2006295149A (ja) 機械・電気変換器とその製造方法
JP2007171057A (ja) 加速度センサ
JP2008170271A (ja) 外力検知センサ
WO2014030492A1 (ja) 慣性力センサ
JPH08105913A (ja) シリコン加速度計
JP2001124797A (ja) 半導体加速度センサ
JP2006153516A (ja) 加速度センサ