WO2003080774A1 - Metal soap-coated particle, article made with the same, process for production, lubricating coating agent, and lubricating coating film - Google Patents

Metal soap-coated particle, article made with the same, process for production, lubricating coating agent, and lubricating coating film Download PDF

Info

Publication number
WO2003080774A1
WO2003080774A1 PCT/JP2003/003511 JP0303511W WO03080774A1 WO 2003080774 A1 WO2003080774 A1 WO 2003080774A1 JP 0303511 W JP0303511 W JP 0303511W WO 03080774 A1 WO03080774 A1 WO 03080774A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
film
lubricating
salt
water
Prior art date
Application number
PCT/JP2003/003511
Other languages
English (en)
French (fr)
Inventor
Shinobu Komiyama
Masayuki Yoshida
Hidehiro Yamaguchi
Original Assignee
Nihon Parkerizing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co., Ltd. filed Critical Nihon Parkerizing Co., Ltd.
Priority to AU2003236059A priority Critical patent/AU2003236059A1/en
Priority to EP03720889.9A priority patent/EP1491615B1/en
Priority to JP2003578504A priority patent/JP3939700B2/ja
Priority to US10/508,999 priority patent/US20050119133A1/en
Publication of WO2003080774A1 publication Critical patent/WO2003080774A1/ja
Priority to US12/382,215 priority patent/US7879772B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • C10M2201/0623Oxides; Hydroxides; Carbonates or bicarbonates used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/085Phosphorus oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/085Phosphorus oxides, acids or salts
    • C10M2201/0853Phosphorus oxides, acids or salts used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/1203Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/1253Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/061Coated particles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/243Cold working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/08Solids

Definitions

  • the present invention can be broadly classified into two. One is an invention relating to an inorganic polyvalent metal compound particle coated with a metallic soap as a basic invention and a general use form thereof, and the other is a captive coated particle as a more practical application form of such a coated particle.
  • the present invention relates to a lubricant for plastic working, which contains:
  • the present invention as a basic invention can be used in a wide range, has excellent seizure resistance, and can prevent tool abrasion and contamination of processing oil at the time of plasticity, metal soap coated particles, powder, suspension Liquid, powder or suspension processes and lubricating coatings.
  • the present invention as a more practical application invention relates to a lubricating film agent, and more specifically, requires cold forming of a metal represented by forging, drawing, drawing, press forming, for example, iron, steel,
  • the present invention relates to a lubricating film agent and a lubricating film that impart excellent workability, that is, lubricity and seizure resistance, to the surface of various metal materials such as stainless steel Takaoka, aluminum, magnesium, tin, and titanium materials. Background art
  • Metal soap which is widely used as a lubricant, plays an important role in the field of cold plasticity of metal materials such as forging, wire drawing, pipe drawing, and press forming. I am carrying it. In these fields, metallic soap has long been used as a lubricating component for the purpose of drastically reducing the processing energy by reducing the friction between the metal and the tool during metal application. It has greatly contributed to the development of the interplastic field. For example, as an example of direct use of metal soap in the field of plastic working, there is technology for using auxiliary lubricants used in wire drawing. .
  • a carrier layer such as a borax film, slaked lime film, or zinc phosphate film is applied to the surface of the wire in advance, and during wire drawing, auxiliary lubrication containing a large amount of metal soap immediately before the material passes through the die.
  • auxiliary lubrication containing a large amount of metal soap immediately before the material passes through the die.
  • This is to add or supplement lubricity by attaching an agent, in which case a large amount of metallic soap powder is used.
  • coating lubricants in which lubricating particles mainly composed of metallic soap are suspended in water or oil in combination with the above-mentioned carrier layer.
  • metal soap there is also a problem in using metal soap.
  • a steel wire for header processing in which a carrier layer such as lime-based coating is applied, an auxiliary lubricant containing a large amount of metallic soap is applied, and skin pass wire drawing is performed to complete a lubricating coating.
  • the lubricating film-coated steel wire is subjected to header processing in processing oil, but at this time the lubricating film residue falls off, and the metal soaps are swelled or finely suspended in the processing oil. This causes the processing oil to be extremely contaminated. This phenomenon is considered to be caused by low adhesion between the carrier layer and the lubricating film layer.
  • the metal soap layer is firmly coated on the phosphate film surface, so that the lubricating component has good workability and is relatively easy to process compared to the case of the above-mentioned "carrier layer + auxiliary lubricant". It is suitable for high-powered mouths, and has the advantage that soap and metallic soap are isolated from the lubricating film residue that falls off during capping, and that the phenomenon of extremely contaminating the processing oil is unlikely to occur.
  • the lubricating film at the time of mixing avoids direct metal contact between the surface of the workpiece and the tool by penetrating between the tool and the tool.
  • the lubricating film is a liquid. Or a solid.
  • liquid lubricants such as oil-based lubricants are strictly plastic! Often not suitable for This is because the lubricating film, which prevents direct contact between the workpiece and the tool, is sheared and burns out due to the breakage of the lubricating film. Therefore, when using a liquid lubricant or when using a lubricating component such as metallic soap that melts and liquefies due to the heat of processing, it should be used in combination with a carrier film such as a phosphate film or borax.
  • the lubricating component enters along with the carrier layer between the material surface and the tool, and is responsible for reducing the processing force and preventing seizure. Strictly speaking, even in this case, since the lubricating film breaks between the carrier layer surface and the tool surface, the tool surface is gradually worn due to the carrier layer having a high frictional number, and the tool life is shortened. It may be shorter and is a subject.
  • Japanese Patent Application Laid-Open No. 2000-6880 discloses (A) a synthetic resin, (B) a water-soluble inorganic resin containing (B) / (A) ( (Solid content weight ratio) is 0.25 Zl to 9 Zl, and synthetic resin Of metallic material characterized by the fact that is dissolved or dispersed! A lubricant composition is disclosed.
  • the present invention includes a lubricant component such as metallic soap dispersed in a film component that can serve as a carrier, and coats it on the surface of the nematic B) material, thereby achieving high processing performance. This is an excellent technology that can easily and labor-saving obtain a lubricating film.
  • Metallic soaps are often used as these lubricating components, but since they are fixed in the skin by inorganic salts and resin components, the skin of the carrier layer + auxiliary lubricant etc. As described above, it is generally considered that there is little concern about detachment during processing without being affected by interlayer adhesion. In addition, the surface area of the lubricant is reduced by fine particles of the lubricant component, etc., as compared with the “phosphate + soap treatment” film, which is a lubricating film of relatively large crystal units having a width of about 200 win. Due to the advantage that it can be adjusted arbitrarily, an excellent one is also being developed for heavy-duty machining with a large increase in surface area, and is a promising technology in terms of lubrication performance. However, even in these cases, the exposed swarf and the number of carrier layers on the skin are still in contact with the tool and the tool life is adversely affected.
  • the lubricating film required in the field of cold plastic molding is a fine particle structure in which the lubricant layer is firmly compounded so as to cover the carrier layer, and has a complicated structure. It is considered to be due to a coating type treatment that does not require a treatment step. As a result, it is possible to realize environmental friendliness and process shortening, reduce the load on tool wear, and reduce contamination of processing oil by lubricating film force. The development of such ideal lubricants is a major issue and is urgently needed.
  • Background Art of the Invention Especially as More Practical Application Invention
  • a lubricating film is formed on the surface of the metal to prevent seizure and galling caused by direct metal contact between the material and the tool.
  • the lubricating film formed on the surface of the material there are two types: a type in which a lubricant is physically attached to the surface of the material to be added; There is a type that uses a lubricant after it is generated.
  • Lubricants that adhere to the surface of the work material are generally used for work because they have poor adhesion compared to those that use a chemical conversion film formed on the impeached material.
  • a lubricating lubricant after forming a conversion coating such as a phosphate coating or oxalate coating that has a role as a carrier on the surface of the material.
  • This type has a two-layer structure consisting of a chemical conversion film as a carrier film and a lubricant, and exhibits extremely high seizure resistance. For this reason, it has been used in a very wide range in plastic working fields such as wire drawing, pipe drawing, and forging. Particularly in the field of severe plastic processing, the method of using a phosphate film / oxalate film as a base and using a lubricant on the base is often used.
  • the method of forming a chemical conversion film on the work material and using a lubricant on it can be broadly classified into two types. One is a method in which a lubricant is physically adhered to the chemical conversion film, and the other is a method in which a lubricant is reacted on the chemical conversion film to form a lubricating film.
  • lubricant mineral oil, vegetable oil, and synthetic oil are used as base oils and an extreme pressure agent is added thereto, or solid lubricants typified by graphite and disulfide molybdenum And a solution prepared by dissolving or dispersing the agent in water together with one component of pinda. These are applied to the surface of the material that has been subjected to the chemical conversion treatment.
  • the oil-based lubricant is used as it is, and the water-based lubricant is used through a drying process.
  • These lubricants have the advantage that there is no restriction on the method of application, they can be easily used by spray coating and dip coating, and that the complicated liquid management required in chemical conversion treatment is almost required. Low level, often used for relatively light machining.
  • a reactive soap is generally used as a lubricant to react with the latter chemical conversion film.
  • This method is a technology that has been used for a long time as the “phosphate + soap treatment”. It is possible to form a chemical conversion coating on the surface of the adjuvant material in advance, and then bring the water-soluble fatty acid salt aqueous solution into warm contact with it. It forms a metallic soap film containing a reactive soap layer.
  • the composite film formed by this method can be applied from mild processing to relatively advanced processing, and is used in a very wide range regardless of the processing form such as forging or drawing pipe.
  • phosphate + soap treatment the workpiece is subjected to a phosphate treatment and a soap treatment through a washing process and a descaling process. Since a single or multi-stage washing step is required between these steps, a space of about 7 to 12 layers is required as the space for the treatment layer.
  • liquid concentration control and temperature control are required for each treatment process.In the phosphate treatment process, the free acidity, total acidity and accelerator concentration in the treatment solution are measured manually by neutralization titration, etc. Minutes are being replenished as appropriate.
  • the present invention relates to an aqueous lubricant for cold forging of metal.
  • the present invention relates to a water-based, non-reactive lubricant, and replaces the conventional three steps of phosphate treatment-washing-one-reaction soap treatment with one step of lubrication. That is, a water-based non-reactive lubricant is brought into contact with the cleaned impeached material by dipping or the like, the surface of the impeached material is covered with a lubricant, and then dried (water is evaporated). , Improve A lubricating film is formed on the surface of the P material. This type of lubricant is called a one-step lubricant.
  • the lubricant according to the invention is unstable for industrial use because the oil component is oxidized, and is cold forged with a large working ratio, or a drawing process in which a continuous heat load is applied to the lubricating film. Demonstrates stable lubrication I have not been able to.
  • Means for solving these problems include, for example, the invention of “lubricant composition for plastic working of metallic materials” in Japanese Patent Application Laid-Open No. 2000-63080, filed by the same applicant.
  • Can be It contains (A) a synthetic resin, (B) a water-soluble inorganic salt and water, and the solid content mass ratio (B) / (A) is 0.25 Zl to 9 / l.
  • the present invention relates to a lubricant composition for plastic working of a metal material, in which a resin is dissolved or dispersed.
  • stable lubricity has not been achieved in the case of a large workability, cold forging, or drawing in which a continuous heat load is applied to a lubricating film.
  • the present invention is intended to solve the problems of the above-mentioned prior art (particularly, the prior art relating to the present invention as a basic invention), and mainly includes seizure resistance as a component used in a coating type lubricating film.
  • New particles that can suppress tool wear during plasticizing due to low friction coefficient of the cap surface and are less likely to cause contamination of machining oil, and when included in the lubricant layer Particles that can be firmly compounded so that the lubricant layer covers the carrier layer, a powder comprising such particles, a suspension containing such particles, a method for producing such a powder or suspension, and the like. It is intended to provide a lubricating coating containing particles.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems (especially, problem 1). As a result, they are hardly soluble or insoluble in water and are alkali metal salts or fatty acids of fatty acids. Particles consisting of particles of an inorganic polyvalent metal compound having a reactivity with ammonium salt or water-soluble '1 "raw estenol, whose surface is coated with a metallic soap film of the polyvalent metal, or Particles obtained by coating the surface of the particles with a film of an alkali metal salt or an ammonium salt of a fatty acid or a water-soluble ester are used as a component mainly used in a coating type lubricating film.
  • the present inventors have found that since the friction coefficient of the surface is low, it is possible to suppress tool wear at the time of plastic rolling, to cause contamination of working oil and to be suitable as a hard-to-reach material, and to complete the present invention.
  • the present invention relates to a method of producing a polymer which is hardly soluble or insoluble in water (need to be raw and has reactivity with an alkali metal salt or an ammonium salt of a fatty acid or a water-soluble ester).
  • the surface of the particle is coated with a film of the metal soap of the polyvalent metal (hereinafter, referred to as a two-layer particle), and the surface of the particle is further treated with an alkali metal salt or an ammonium salt of a fatty acid or an aqueous solution.
  • Sex ester hereinafter,
  • Particles coated with a film of “an alkali metal salt or an ammonium salt of a fatty acid or a water-soluble ester” may be referred to as “alkali soap”.
  • the suspension is 3 0 mass 0/0, a method of manufacturing a force Cal powder or suspension, a lubricating coating containing more than 1% by mass or Such particles.
  • two-layer particles and Z or three-layer particles may be referred to as coated particles. Challenge 2
  • the present invention is to solve the problems of the above-described conventional technology (particularly, the conventional technology of the present invention as a more practical applied invention).
  • simple treatment such as spraying or immersion is possible, eliminating the need for chemical treatment.
  • the resulting film has excellent workability and seizure resistance equivalent to or better than that of the chemical treatment.
  • An object of the present invention is to provide a lubricating film agent that exhibits stable lubricating properties due to a repair effect.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems (especially, problem 2).
  • a simple processing method in which an aqueous solution containing particles and an aqueous inorganic salt and / or an aqueous organic acid salt is applied to an opening material and dried.
  • the processing degree is large, and cold forging can be performed. It has been found that a lubricating film exhibiting good lubricity can be obtained even in a drawing process in which a continuous heat load is applied, and the uniform coating is difficult because the particles have seizure resistance and lubricity. Even in such cases, the present inventors have found that the coating exhibits stable lubricity because the molten components in the coating are introduced into the tool and exhibit a self-repairing effect on the coating defects, thus completing the present invention.
  • the present invention relates to an aqueous solution of an aqueous inorganic salt and Z or an aqueous organic acid salt, which has a property of being uniformly dissolved in water and having a property of forming a strong film when applied to a metal material and dried. It contains a polyvalent metal salt of phosphoric acid that is hardly soluble or insoluble in water (hereinafter referred to as polyvalent metal phosphate) as a core, and its surface is coated with a metal soap film of the polyvalent metal.
  • the present invention relates to a lubricating coating agent in which particles (hereinafter, referred to as coated polyvalent metal phosphate particles) are suspended.
  • coated phosphoric acid polyvalent metal salt particles are included in the “two-layer particles” of the present invention as a basic invention.
  • the inorganic polyvalent metal compound that is soluble or insoluble in water and that is reactive with alkali soap or the like used for producing the coated particles of the present invention is the skin covering of the present invention. It is an important component as a nucleus for immobilizing a metallic soap layer in particles.
  • the inorganic polyvalent metal compound used in the present invention is a granular substance usually supplied in a state of being dispersed in powder or water.
  • Such inorganic polyvalent metal compounds include, but are not particularly limited to, oxides, hydroxides, carbonates, phosphates, oxalates, and the like of polyvalent metals.
  • Preferred specific examples of the inorganic polyvalent metal compound include zinc phosphate, zinc oxide, iron dumbbell, iron phosphate (ferric phosphate, ferric phosphate), iron oxalate, and phosphoric acid.
  • Manganese, nickel phosphate, phosphoric acid phosphate, calcium phosphate, calcium phosphate monocalcium phosphate, calcium oxide, calcium hydroxide and the like can be mentioned.
  • zinc phosphate and zinc oxide are particularly preferably used.
  • the particle size of the inorganic polyvalent metal compound is preferably small in producing the present coated particles for use as a lubricant, and specifically, is preferably 300 // m or less, and is 100 or less. Is more preferred. There is no particular limit for the smaller one, but usually about 0.3 jm due to manufacturing constraints.
  • the average particle size of the inorganic polyvalent metal compound is preferably 20 ⁇ or less, and is 10 / zm or less. That, more preferred. If the average particle size exceeds 20 ⁇ m, it will be difficult to maintain a stable aqueous dispersion.
  • the metallic soap coated with the inorganic polyvalent metal compound is a fatty acid constituting the alkaline soap and the polyvalent metal formed by the reaction between the inorganic polyvalent metal compound and the alkaline soap.
  • the metal soap is preferably a saturated fatty acid or an unsaturated fatty acid having 8 to 22 carbon atoms, more preferably 16 to 20 carbon atoms (for example, amino acid, remitic acid, stearic acid, icosanoic acid, oleic acid and the like).
  • salts with polyvalent metals such as Zn, Fe, Mn, Ni, Co, Ca, Al, and Sn, and typically, stearic acid.
  • the mass ratio of the metallic soap film to the entire coated particles is:! 1-3 and even preferably 0 mass 0/0, and even from 2 to 1 to 5 wt% More preferred.
  • the coated particles of the present invention also include particles obtained by coating the surface of a two-layered particle of the above-mentioned inorganic polyvalent metal compound and the metal soap of the polyvalent metal with a coating such as aluminum soap.
  • a coating such as aluminum soap.
  • the particles composed of the inorganic polyvalent metal compound and the metal soap of the polyvalent metal covering the inorganic polyvalent metal compound in the particles composed of these three layers are the same as those already described.
  • the mass ratio of the skin such as Alkyll soap to the whole particles is determined from the viewpoint of reducing the water-soluble content in order to increase the heat resistance of the particles and maintain stable lubrication performance. , Preferably 0.1 to 5% by mass, more preferably 0.1 to 3% by mass.
  • alkali soap and the like are not only required for producing two-layer particles, but also form the outermost layer of three-layer particles.
  • the alkali soap used in the present invention is an alkali metal salt or an ammonium salt of a fatty acid or a water-soluble ester.
  • octanoic acid, decanoic acid, lauric acid, myristic acid, no, and lumitin are used. Acid, stearic acid, icosanoic acid, oleic acid and the like.
  • the alkali metal sodium, potassium and lithium are preferable.
  • the water-soluble ester include esters obtained by ring-opening polymerization of ethylene oxide at the carboxyl group of the above fatty acid.
  • Preferable specific examples of the sodium soap are palmitic acid, stearic acid, or sodium salt of icosanoic acid or potassium, and among them, sodium stearate is most preferable.
  • the sodium stearate may be pure, or may contain sodium salts of other fatty acids.
  • the latter sodium stearate includes sodium stearate, which is commercially available as C18 soap, and has a composition of 95% or more of sodium stearate, less than 3% of C16 fatty acid, C15 and C1 Fatty acid mixed with 7 is less than 1%.
  • the present invention also relates to a powder comprising the coated particles (ie, the two-layer particles or the three-layer particles).
  • the present invention also provides a suspension in which the two-layer particles are suspended in an aqueous solution such as water or sodium hydroxide soap, wherein the particles of the inorganic polyvalent metal compound have an average particle diameter of 20 ⁇ m or less.
  • the average particle diameter of the particles of the inorganic polyvalent metal compound in the two-layer particles is preferably 10 ⁇ tn or less. If the average particle size exceeds 20 ⁇ m, it will be difficult to maintain a stable water suspension.
  • the mass ratio of the metallic soap film to the entire two-layer particles in this suspension is preferably 1 to 30% by mass, and is 2 to 15% by mass, as in the case of the two-layer particles. Is more preferable! / ,. Further, from the viewpoint of further improving the stability of the dispersoid, various kinds of surfactants, dispersants, water-soluble resins and the like can be added to the suspension.
  • the ratio of the two-layer particles to the entire suspension is not particularly limited as long as the stable suspension of the two-layer particles is maintained. However, it is usually preferably about 1 to 50% by mass, and about 5 to 40% by mass. It is more preferable to be. Next, a method for producing the powder and suspension of the present invention will be described.
  • the powder of the present invention is obtained by suspending the particles of the above-mentioned inorganic polyvalent metal compound in an aqueous solution such as soap of sodium hydroxide and stirring the mixture under heating to form a metal soap film on the surface of the inorganic polyvalent metal compound particles.
  • the suspension can be obtained by drying the suspension.
  • the amount of alkali soap or the like used for the inorganic polyvalent metal compound may be, for example, Al-soap soap or the like so that the mass ratio of the metal soap to the coated particles as described above may be used.
  • the molar ratio of the inorganic polyvalent metal compound to the alkali soap is preferably in the range of 100: 0.05 to 100: 25. If the amount of soap, etc. is less than 100: 0.05, the metal soap coating layer will be extremely small, and the expected effect will not be fully exhibited. Further, even if the ratio exceeds 100: 25, the coating reaction tends to be extremely inefficient and disadvantageous economically.
  • the molar ratio of the inorganic polyvalent metal compound to Alkyll soap is in the range of 100: 0.25 to 100: 15. It is preferable that there is.
  • the amount of Al soap is less than 100: 0.25, it tends to be difficult to obtain sufficient lubricating performance.
  • it exceeds 100: 15 a large amount of unreacted alkali soap is present. Problems such as increased foaming of the suspension tend to occur.
  • the temperature of the suspension is adjusted to 60 ° C or more, particularly 70 to 100 ° C, and the pH is adjusted to 9 or more, particularly 10 to 12.
  • the reaction mechanism is such that a metathesis reaction between the inorganic polyvalent metal compound and the alkali soap occurs on the surface of the inorganic polyvalent metal compound particles, and the inorganic polyvalent metal compound particles serve as nuclei. It is presumed that the metal soap layer covers. Alkali metal hydroxide (sodium hydroxide, potassium hydroxide, etc.), carbonate to adjust pH to the above-mentioned side
  • the suspension is dried into a powder, and the drying method may be a conventional method. For example, a method such as drying the solid content after filtering the suspension or spray-drying the suspension can be used.
  • the powder obtained by the above-described method for producing a powder of the present invention is usually a three-layer particle powder composed of the inorganic polyvalent metal compound, metal soap, alkali soap and the like.
  • alkali soap or the like adhered to the surface of the three-layer particles obtained as described above is washed with hot water, an aqueous solution of anocol, or the like. If you want to wash it away,
  • the suspension of the present invention is obtained by suspending the particles of the inorganic polyvalent metal compound in an aqueous solution of an alkali soap or the like, stirring the mixture under heating, and depositing gold on the surface of the inorganic polyvalent metal compound particles. It can be obtained by forming a genus soap film.
  • the particle diameter of the inorganic polyvalent metal compound particles it is necessary to adjust the particle diameter of the inorganic polyvalent metal compound particles to 20 ⁇ m or less, and 10 m or less. It is preferable to adjust it.
  • various types of surfactants, dispersants, water-soluble resins, and the like may be blended to further stabilize the suspension state.
  • the amount of the sodium hydroxide, etc. used for the inorganic polyvalent metal compound, and the temperature of the suspension and the additive for bringing the pH and pH to the above-mentioned alkali side in order to promote the reaction are the powders of the present invention.
  • the powder and suspension relating to the metal soap of the present invention exhibit excellent performance as a lubricant used in the field of cold plastic working. That is, the skin formed by adhering the powder or suspension of the present invention to the surface of the material subjected to cold plastic 4D shows excellent performance as a lubricating film for cold plastic work. .
  • the present powder or suspension of the present invention may be used alone to form a film.
  • Other general lubricating waxes, solid lubricants, extreme pressure additives, and films It may be used in combination with a forming resin, a viscosity modifier and the like.
  • lubricating oil mainly composed of mineral oil or palm oil, or Olefinx polymer wax that melts and liquefies during processing, etc. Excellent seizure resistance can be provided.
  • the mass ratio of the solid content in the present powder or suspension in the lubricating film should be 1% by mass or more. It is preferable that the content is more than 5% by mass! / ,. If the compounding ratio of the solids in the powder or suspension is less than 1% by mass, sufficient seizure resistance to the lubricating film cannot be provided.
  • the adhesion conditions are not particularly limited, but the dry thickness of the lubricating film is preferably in the range of 0.5 to 50 / m, more preferably in the range of 1.0 to 30 tm. .
  • the film thickness does not reach 0.5 ⁇ , there is a concern that sufficient seizure resistance may not be obtained and processing defects may occur, particularly in the field of heavy working. In addition, even if it adheres over 50 ⁇ , it will be in excess and it will be economically disadvantageous because it will only increase the amount of falling off when introduced into the tool.
  • the method for forming the lubricating film containing the solid content in the powder or suspension of the present invention on the surface of the workpiece is not particularly limited, but may be performed using a conventional method.
  • the aqueous dispersion is applied by dipping, spraying, or roll coating, and then the lubricating film is dried by natural drying or forced hot air drying.
  • a resin component or an inorganic salt component is used to enhance the adhesion of solids in the powder or suspension, and an oil is used to supplement the lubricity of solids in the powder or suspension.
  • Soap, metal soap, wax etc. May be used.
  • the powder of the present invention may be applied by a powder box method, an electrostatic application method, or the like. This is preferable because the lubrication film is simple and a stable lubricating film can be obtained.
  • a low melting point resin component is mixed with the powder component to prevent the powder from falling off the surface of the powder, and the powder is fixed by heating the material to be heated. It is also possible.
  • powders of soap, metal soap, wax, resin, etc. can be mixed and used as a supplement to lubricity.
  • the powder of the present invention is adhered, by performing mild plastic working such as skin pass, a continuous film-like lubricating film can be obtained by working heat and pressure, and barrier such as lubricating performance and corrosion resistance can be obtained. It is preferred because it gives a film with better performance.
  • the lubricating film completed by the combination of the electrostatic coating method and mild plastic roasting is comparable to the “phosphate + soap film” in all aspects of performance.
  • a film in which this powder and a high molecular weight synthetic wax are mixed in a mass ratio of preferably 1: 9 to 9: 1, more preferably 1: 1 to 9: 1 is used to form a film having lubricity. Excellent in oil resistance.
  • a film in which this powder and a high molecular weight synthetic wax are mixed in a mass ratio of preferably 1: 9 to 9: 1, more preferably 1: 1 to 9: 1 is used to form a film having lubricity. Excellent in oil resistance.
  • Particles obtained by coating the surface of the polyvalent metal phosphate of the present invention as a core with the metal soap of the polyvalent metal that is, the coated polyvalent metal salt particles impart heat resistance and lubricity to the film.
  • the polyvalent metal phosphate selected for this purpose must be sparingly soluble or insoluble in water.
  • Preferable examples of the polyvalent metal in the phosphate polyvalent metal salt include Zn, Fe, Mn, Ni, Co, Ca, Mg, Ba, A1, and Sn. Zn, 6 and & are more preferred.
  • strong phosphate polyvalent metal salts include dumbbell phosphate, iron zinc phosphate, iron phosphate (ferrous phosphate, ferric phosphate), manganese phosphate, nickel phosphate, and phosphorus.
  • Iron, ferric phosphate>, calcium phosphate and calcium hydrogen phosphate are preferable, and these can be used alone or in combination of two or more.
  • the coated phosphate polyvalent metal salt particles are present in a film obtained by applying the lubricating film agent of the present invention to a metal material to be cold-formed, and impart seizure resistance and lubricity to the metal material. It has the function of repairing film defects after being introduced into the die by the film components melted during processing, that is, has the effect of self-repairing the film.
  • the average particle size of the coated phosphate polyvalent metal salt particles is 30 Xm or less in a state where the particles are suspended in water or an aqueous solution such as soap of sodium hydroxide. It is more preferably 30 // ⁇ , and even more preferably 0.5 to 20 // m.
  • the average particle diameter of the phosphoric acid polyvalent metal salt in the coated phosphoric acid polyvalent metal salt particles is preferably 20 ⁇ or less, more preferably 0.2 to 20 ⁇ , and 0.2 ⁇ . 4 ⁇ : More preferably, it is 10 m.
  • the mass ratio of the metallic soap film to the entire coated polyvalent metal phosphate particles is preferably 1 to 30%, and more preferably 2 to 15%. Is more preferred.
  • the coated phosphate polyvalent metal salt particles are particularly included in the “bilayer particles” of the present invention as a basic invention, and can be produced in the same manner as described above.
  • the aqueous inorganic salt is required to impart hardness to the lubricating coating and to fix the coated polyvalent metal salt particles in the coating.
  • the aqueous inorganic salt selected for this purpose must have the property of being uniformly dissolved in water, forming a strong film when applied to a metal material and dried.
  • the aqueous inorganic salt having such properties it is preferable to use at least one selected from the group consisting of alkali metal sulfates, alkali metal silicates, and alkali metal borates. Examples include sodium sulfate, sulfuric acid potassium, sodium silicate, potassium silicate, sodium borate, potassium borate and the like. These may be used alone or in combination of two or more. Is also good.
  • the aqueous organic acid salt is required to impart hardness to the lubricating film and to fix the coated polyvalent metal salt particles in the film.
  • the aqueous organic acid salt selected for this purpose must have the property of being uniformly dissolved in water and forming a strong film when applied to a metal material and dried.
  • the aqueous organic acid salt having such properties use is made of at least one selected from the group consisting of metal salts of alkali metal malate, metal salts of aluminum succinate, metal salts of aluminum citrate and alkali metal tartrate. Is preferred. More specific examples include sodium malate, potassium malate, sodium succinate, potassium succinate, sodium citrate, potassium citrate, sodium tartrate, potassium tartrate and the like.
  • the mixing ratio of the coated phosphoric acid polyvalent metal salt particles (A) and the sum of the aqueous inorganic salt and the aqueous organic acid salt (B) is such that the mass ratio (B) / (A) of the solid content is 0.01 to 20. 0, more preferably 01 to 16.0, and still more preferably 0.01 to 7.5. If the value is less than 0.01, the coated phosphate polyvalent metal salt particles are not fixed in the film, and the aqueous inorganic salt of the lubricating film is not drawn into the tool due to shearing of the film during processing, and the seizure resistance is reduced. It is not preferable because it becomes insufficient. Above 20.0, the proportion of the water-based inorganic salt having a high coefficient of friction existing on the film surface becomes extremely high, so that the coefficient of friction as the film increases, the film is easily broken, and seizure easily occurs. Is not preferred.
  • the lubricating film agent of the present invention may contain a smectite-based clay mineral if necessary, and it is usually preferable that the lubricating film agent is contained.
  • the smectite clay mineral used in the present invention is a clay mineral having the following general formula. (Japan Clay Society ed., "Clay Handbook, Second Edition” Gihodo Publishing Co., Ltd. issued, in 1987, 58 - 6 p.
  • X m (Y 2+, Y 3+) 2 ⁇ 3 Z 4 O 10 (OH ) 2 ⁇ ⁇ 20 (where X is at least one of ⁇ , Na, 1/2 Ca and l / 2 Mg, m is 0.25 to 0.6, and Y 2+ «Mg 2 +, Fe 2+, Mn 2+, N i 2+, ⁇ 11 2+ ⁇ Pi 1 ⁇ + a of least one, ⁇ 3+ eight 1 3+, Fe 3+, Mn 3+ and C at least one of r 3 + A seed, Z is at least one of the S i and A 1, n H 2 O is an interlayer water.
  • ⁇ 2 + and ⁇ 3 + mean ⁇ 2 + and / or ⁇ 3 + .
  • X represents an interlayer
  • represents an octahedron
  • represents a tetrahedral cation.
  • the smectite-based clay mineral used in the present invention needs to have a property of imparting dispersion stability of the coated polyvalent metal salt particles in a liquid and stabilizing the distribution in the film. To this end, it is necessary to form a stable sol in the aqueous phase, and to increase the viscosity as the concentration of the content component rapidly increases during drying.
  • Smectite clay minerals exhibit the above properties when dispersed in the ⁇ phase.
  • Smectite clay minerals exhibiting such properties include hectorite, montmorillonite, paiderite, nontronite, savonite, iron sabonite, stevensite and soconite. Therefore, it is preferable to use at least one selected from the group.
  • Smectite-based clay minerals are naturally produced, but are also obtained as synthetic products, and any of them can be used in the present invention.
  • the compounding amount of the smectite clay mineral is 0.05 to 0.5 as a solid mass ratio (C) / ( ⁇ ) of the coated polyvalent metal phosphate particles ( ⁇ ) and the smectite clay mineral (C).
  • It is preferably 5, more preferably 0.01 to 0.4. If it is less than 0.05, the effect of improving the dispersion stability of the coated polyvalent metal phosphate particles in the liquid and the effect of stabilizing the distribution in the film are not sufficient.
  • the lubricating film agent becomes a paste, making it difficult to use it stably.
  • the lubricating film agent of the present invention may contain an auxiliary lubricant if necessary, and it is usually preferable to include it in the lubricating film agent.
  • the auxiliary lubricant reduces the coefficient of friction of the lubricating film formed by the lubricating film agent of the present invention, and serves as a molten carrier for introducing the coated polyvalent metal phosphate particles between the workpiece and the tool. It is necessary to have an effect to help self-repair effect. Therefore, the auxiliary lubricant is melted by the heat generated during plastic working, imparts the slipperiness of the film, and acts as a molten carrier.It is composed of oil, soap, metal soap, wax and polytetrafluoroethylene.
  • Soap is an alkali metal salt of a fatty acid, for example, a saturated or unsaturated fatty acid having 8 to 22 carbon atoms such as octanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, icosanoic acid, and oleic acid. Examples include sodium salt and potassium salt.
  • Examples of the metal soap include salts of the above fatty acids with polyvalent metals such as calcium, zinc, magnesium, and palladium.
  • Examples of the wax include polyethylene wax, polypropylene wax, carnaupallo, paraffin wax and the like.
  • Examples of polytetrafluoroethylene include polytetrafluoroethylene having a degree of polymerization of, for example, about 1,000 to 10,000.
  • the compounding amount of the auxiliary lubricant is 0.03 to 18.0 as a solid content mass ratio (D) / (A) of the coated phosphate polyvalent metal salt particles (A) and the auxiliary lubricant (D). It is preferably from 0.05 to: 15.0, more preferably from 0.5 to 5.0, and still more preferably from 0.5 to 5.0. If it is less than 0.03, the lubrication and number of this lubricating film will increase, and the effect of acting as a melting carrier will not be sufficient.If it exceeds 18.0, the film will soften and the shearing force on the film during application will increase. It cannot withstand, so the film strength S breaks down.
  • the lubricating film agent of the present invention may contain an organic polymer conjugate as needed.
  • the organic polymer compound is preferably water-soluble or water-dispersible, and preferably has a weight-average molecular weight of from 1,000 to 1,000,000.
  • the organic polymer compound needs to have an action of imparting film strength to the lubricating film formed by the lubricating film agent.
  • the organic polymer compound is not particularly limited as long as it has a skin-forming property.
  • a resin especially an acrylic resin which is a polymer of an ethylene unsaturated monomer, a urethane resin, an epoxy resin, Phenolic resin, hydroxymethylcellulose, carboxymethylcellulose and the like.
  • organic polymer compounds are mixed with multiple components in the form of aqueous solutions, water emulsions and water dispersions. Therefore, it is better to include it in the lubricating film agent.
  • the organic polymer compound is added to the lubricating film agent in an amount of 0.5 to 25% by mass based on the total solid content including itself. so as to to 3 ⁇ 43 ⁇ 43 ⁇ 4 is laid preferred, 1. more preferably added such that the 0-1 5 mass 0/0.
  • a solid lubricant can be added to the lubricant film.
  • a solid lubricant in the case of being strong, a solid lubricant that is stably present in the film and has a function of assisting lubrication under a high load is preferable.
  • Such materials include graphite, molybdenum disulfide, boron nitride, graphite fluoride, mica and the like.
  • extreme pressure additives can be included in the lubricating coating agent. It is preferable that the extreme pressure additive be strong when it exists stably in the film and exerts an extreme pressure effect on the contact surface between the tool and the metal by processing.
  • Mo DTC molybdenum dithiocarbamate
  • Mo DTP molybdenum dithiophosphate
  • Zn DTP Zinc dithiophosphate
  • sulfur-based extreme pressure additives organic molybdenum-based extreme pressure additives, phosphorus-based extreme pressure additives, and chlorine-based extreme pressure additives.
  • a dispersant When a dispersant is required to disperse or rub the above-mentioned coated phosphoric acid polyvalent metal salt particles, auxiliary lubricant, solid lubricant and / or extreme pressure-applied calo agent, , Nonionic surfactants, anionic surfactants' I "raw materials, amphoteric surfactants, P-ionic surfactants, and water-soluble polymer dispersants.
  • the method for producing a lubricating film agent of the present invention is not particularly limited as long as the produced lubricating film agent satisfies the above conditions, for example, an aqueous inorganic salt and an aqueous or organic acid.
  • Aqueous salt solution uses coated polyvalent metal phosphate particles, smectite clay minerals as auxiliary components, auxiliary lubricant, solid lubricant and / or extreme pressure additive, and dispersant and water as needed To form a dispersion or emulsion, then add and stir to produce For solid concentration of.
  • the present lubricant coating agent which may be, although lubricating film agent that is produced such particularly limited as long as satisfying the above conditions, the handling property and lubricating film
  • the solid concentration is :! Preferably 1-8 0 weight 0/0, 1 0-6 and more preferably 0 wt% Re.
  • the lubricating film agent of the present invention may be iron or steel, stainless steel, plating steel (for example, steel treated with plating such as electric zinc plating, molten zinc plating, aluminum zinc plating, aluminum plating, iron zinc plating), aluminum Or, when performing cold plastic working of metal materials such as aluminum alloys, magnesium alloys, tin or tin alloys, titanium or titanium alloys, copper or copper alloys, for example, forging, drawing, drawing, and press forming. It can be used as a lubricant to be used.
  • the shape of the metal material is not particularly limited.
  • the metal material to be processed is pre-treated in the following order: washing (usually using alkaline washing), washing with water, descaling (such as pickling with shot plast or hydrochloric acid), and washing with water. By doing so, it is preferable to clean the surface in order to exhibit good lubricity. If no oxidized scale is adhered or if it is used for applications requiring oxidized scale, descaling ⁇ washing with water may be omitted. These pretreatments may be performed by a conventional method.
  • the lubricating film agent of the present invention is applied to the surface of a metal material by a conventional method such as immersion, spraying, and pouring.
  • the application may be carried out as long as the metal surface is sufficiently covered with the lubricating film agent, and the application time is not particularly limited.
  • the lubricant film must be dried. Drying may be carried out at room temperature, but it is usually preferable to carry out drying at 60 ° C to 150 ° C for 10 minutes to 60 minutes.
  • the coating weight of the lubricating coating agent is preferably 1 g / m 2 or more, and more preferably 3 to 30 g / m 2 .
  • the lubricating film obtained from the lubricating film agent of the present invention can be obtained by coating coated polyvalent metal phosphate particles having good seizure resistance and slipperiness with an aqueous inorganic salt and Z or an aqueous organic acid salt, and a metamethite clay mineral. Stable cold plastic working performance is exhibited by holding the film uniformly with the fixing effect of
  • the auxiliary lubricant component force that melts due to the heat generated during processing S acts as a molten carrier during processing, so that the coated phosphorous polyvalent metal salt particles are drawn into the die and self-repair the coating defects.
  • the lubricating film has stable lubricating properties even in drawing processes such as drawing pipes and wires that are processed in a state where the film such as binding or coil tends to be uneven. Is shown. Example
  • a suspension and powder of metal soap-coated particles were produced according to the production method described below.
  • the manufactured powder or the manufactured suspension is used.
  • the soap in the powder obtained by drying is separated into an alkaline soap that dissolves in an aqueous ethanol solution and a non-dissolvable metallic soap, and the mass of each is measured to determine the metallic soap. Generation was confirmed.
  • the method will be described in more detail below. Stir 1 g of the powder sample in a 50% aqueous ethanol solution for 4 hours, and filter through a filter paper in the next step.
  • Metal soap production rate 78% (This value is equivalent to about 10% as the mass ratio of the metal soap film to the entire two-layer particle)
  • Metal soap production rate 53% (This value is equivalent to about 3% as the mass ratio of the metal soap film to the entire three-layer particles)
  • One of the problems to be solved by the metal soap-coated particles of the present invention is oil pollution resistance. This is intended to solve the problem of metal soap, which is a drawback of metal soap, when used for lubricants as a substitute for conventional metal soap powder.
  • the test method and evaluation criteria are shown below.
  • the above-described metal soap-coated particle powder of the present invention and a commercially available metal soap powder were each added with 1 g of calo in 100 g of commercially available former oil, and allowed to stand at 60 ° C for 1 week under stirring. Thereafter, the stirring was stopped, and the oil-suspended state after 1 hour was evaluated for oil contamination resistance. In addition, it is preferable that the suspended component can be separated by precipitation as quickly as possible.
  • Evaluation criteria A: The dispersion completely settles out, and the transparent layer occupies 95% or more of the volume. B: The dispersion precipitates and a transparent layer of less than 95% of the volume can be confirmed. C: The oil is in a suspended state, and a transparent layer cannot be confirmed.
  • Table 1 shows the evaluation results of the oil contamination resistance tests of Examples I_1 and I-12 and Comparative Examples I-1 and I-12 of the present invention.
  • the metal soap-coated particle powder of the present invention described in the examples was very excellent in oil stain resistance. It is considered that this is because the metal soap layer is fixed on the surface of the inorganic polyvalent metal compound particles, so that it is difficult to desorb into the oil.
  • the calcium stearate powder (B 3) and the zinc stearate powder (B 6) of the comparative examples are metal soap powders having no nucleus, and therefore swell in oil, and are finely dispersed by oil. In the suspension.
  • Examples I-13 to I-9 using the metal soap-coated particle suspension or the metal soap-coated particle powder of the present invention obtained above as a lubricating film material, and the metal soap-coated particles of the present invention.
  • Table 2 shows the composition ratios of the lubricating films of Comparative Examples I-3 to 1-7 in which neither the suspension nor the metal soap-coated particle powder was used.
  • the surface-cleaned test piece is immersed in a lubricating coating solution at room temperature to allow the lubricating coating solution to adhere, and then dried in a hot air drying oven at 10 oC to dry the lubricating coating on the test piece surface.
  • a hot air drying oven at 10 oC to dry the lubricating coating on the test piece surface.
  • the attached mass of the dried film was about 15 g / m 2 .
  • the surface-cleaned test piece was electrostatically coated with a lubricating film-treated powder to form a lubricating skin Smo in a powdery state on the test piece surface.
  • a lubricating film-treated powder As the electrostatic powder device, GX300 manufactured by Japan Puriki Rising Co., Ltd. was used, and the lubricating film treated powder was charged at ⁇ 60 kV.
  • the electrostatic powder coating of the charged lubricating film-treated powder on the test piece surface was performed using an electrostatic coating gun GX116 manufactured by Nippon Parkerizing Co., Ltd. At this time, the air pressure of the powder supply was set at 98 kPa for main and 196 kPa for sub. The coating time was one second, attachment mass of the powder coating was about 1 5 g / m 2 0
  • Spike test processing was performed according to the method disclosed in Japanese Patent Application Laid-Open No. 5-7969, and the lubricity was evaluated based on the spike height of the test specimen after processing. The higher the spike height, the better the lubricity.
  • the material used for the test was a commercially available S 45 C spherical annealed material.
  • the specimen shape was 25 mm in diameter and 3 Omm in height.
  • a Spike height is 13 mm or more
  • DD Cannot be molded by burning in the mold
  • each lubricating film adhered to the steel wire was subjected to pull-out processing (about the first stage: cross-sectional area reduction rate 10.3%), and the cross-sectional area reduction rate was further reduced. 31. A 5% strength drawing process (second stage) was performed.
  • the material used for the test was a commercially available SCr440 material. The specimen shape was 9.5 mm in diameter and lm in length.
  • Example I-1 3 A 1 (1 0 0)
  • the compounding amount of each component is a compounding amount as a solid content.
  • Examples I 13 to 13 using the metal soap composition of the present invention which also has lubrication performance while serving as a seizure-resistant component; In each case, good lubrication performance was exhibited.
  • Comparative Examples I13 to I-17 due to the exposure of the seizure-resistant component having a high friction coefficient, the lubricating film required for high-strength machining could not exhibit sufficient performance, and the load on the tool was reduced. was judged to be high.
  • the coated particles comprising the inorganic polyvalent metal compound of the present invention as a core, a metal soap film or a metal soap film, and a film such as an alkali soap coated on the metal soap film are mainly used.
  • a component that is used in a lubricating coating that can be applied to surfaces it has excellent seizure resistance and a low coefficient of friction on the surface of a brute force, so it can suppress tool wear during plastic rolling and is unlikely to cause processing oil contamination. It is suitable. Therefore, the industrial utility value of the present invention is extremely high.
  • Lubricating coating agents were prepared with the components and ratios shown in Table 4.
  • Preparation of the lubricating film agent was performed so that each component had the ratio shown in Table 1.
  • the preparation procedure is as follows. First, an aqueous inorganic salt was dissolved in water, and then a smectite-based clay mineral was injected and uniformly dispersed. Thereafter, the suspension of the coated polyvalent metal phosphate particles was charged, an auxiliary lubricant was further added, and the mixture was stirred and mixed to prepare the lubricating coating agent of Example 1.
  • the raw materials used in Example 1 were a zinc phosphate (solid) as the polyvalent metal phosphate, a 50% by mass aqueous dispersion of sodium silicate as the aqueous inorganic salt, and a montmorillonite (solid) as the smectite-based clay mineral.
  • Example II-1: 12 and Comparative Example II:!-7 were prepared in the same manner.
  • Comparative Example II-8 is an existing application type lubricant
  • Comparative Example II-19 is a commercially available phosphate + soap treatment.
  • the film forming process was performed in the following steps.
  • Example II ! ⁇ I 1—12, Comparative Examples 1 to 8 1Washing: Commercial degreasing agent (registered trademark Fine Cleaner 43, 60, manufactured by Nippon Parti Rising Co., Ltd.), concentration 20 g / L, temperature 60 ° C, soaking for 10 minutes
  • 5Treatment Treatment agent of Example or Comparative Example, room temperature, immersion for 10 seconds, target adhesion amount of 5 g / m
  • 1Washing Commercial degreasing agent (registered trademark Fine Cleaner 4360, manufactured by Nippon Puriki Rising Co., Ltd.), concentration 20 g / L, temperature 60 ° C, soaking for 10 minutes
  • Chemical conversion treatment Commercially available zinc phosphate chemical conversion treatment agent (registered trademark Palbond 181X, manufactured by Nippon Parkerizing Co., Ltd.), concentration 90 g / L, temperature 80 ° C, immersion for 10 minutes
  • the number of hearings was measured by the most standard Bowden test.
  • Bowden test since a stable period of the friction coefficient exists after the initial adaptation, the friction coefficient of the stable period was used as the friction coefficient of the lubricating film. The measurement conditions are shown below.
  • the forgeability test was performed by a backward drilling test.
  • the backward drilling test is a test in which a punch is driven into a cylindrical test piece by punching it backwards. U3 ⁇ 401 is performed. This is a test to measure. If the seizure resistance is insufficient, the inner surface of the test piece and the punch will be damaged due to seizure. These scratches were visually confirmed, and the maximum test piece height at which no scratches were formed was evaluated as an indicator of the lubricity of the lubricant film agent.
  • the treatment was performed in two ways: a method in which test specimens were treated individually one by one (one treatment) and a method in which treatment was performed collectively using a rotating barrel (barrel treatment). The evaluation criteria are shown below. Note that B or more is practical.
  • the workable specimen height is 4 O mm or more.
  • the workable specimen height is 36 mm or more and less than 40 mm.
  • the workable specimen height is 32 mm or more and less than 36 mm.
  • the workable specimen height is less than 32 mm.
  • the elongation test was performed by elongation under the following conditions, no seizure occurred, and the critical area reduction rate.
  • the marginal area reduction rate was determined by subjecting three pipes to pipe drawing, and all three pipes were set to a pipe-reducible area reduction rate.
  • the processing was performed in two ways: a method of processing one pipe at a time (single processing) and a method of bundling three pipes (binding processing). The evaluation criteria are shown below. Note that B or higher is practical.
  • the critical area reduction rate is 50% or more.
  • the critical area reduction rate is 43% or more and less than 50%.
  • ⁇ C The critical area reduction rate is 38% or more and less than 43%.
  • the critical area reduction rate is less than 38%.
  • the drawability test was performed under the following conditions, and evaluated at the limit drawing speed at which stable drawing was possible.
  • the binding condition of the wire coil is extremely loosened so that the wires do not come into contact with each other (a method of stretching the coil like a spring; single treatment), and the wire coil is bound so as to encourage contact between the wires.
  • the method of processing binding process
  • the critical drawing speed is 10 Om / min or more.
  • the critical drawing speed is not less than 8 OmZ minutes and less than 10 Om / min.
  • the wire drawing speed of P is not less than 6 OmZ minutes and less than 8 OmZ minutes.
  • Table 5 shows the test results.
  • Examples II-1 to 12 which are the lubricating film agents of the present invention show good lubricity irrespective of the form of application, and are more suitable for barrel and bundling treatments which are difficult to achieve uniform treatment. However, it shows stable lubricity.
  • Comparative Examples II-1:!-2 which contain metal soap reactive particles but do not contain aqueous inorganic salts or aqueous organic acid salts, have low lubricity even when applied uniformly.
  • Comparative Examples II-13 and 4 in which the surface of the phosphoric acid polyvalent metal salt was covered with metallic soap, the friction coefficient of the particles was high, and the self-repair effect of the film was not exhibited.
  • Lubricity is stable in barrel processing and binding processing.
  • Comparative Example II- The one using calcium hydroxide or iron oxalate in place of the aqueous inorganic salt or the hepatic organic acid salt shown in 5 to 6 is poor in water solubility and cannot form a continuous film. Low lubricity. Comparative Example I 1 -7-8 does not exhibit the self-repairing effect of the coating without containing coated polyvalent metal salt particles! ⁇ Therefore, lubricity is stable for barrel processing and bundling processing. Comparative Example II- The phosphate and soap treatment shows stable lubricity regardless of the treatment method, but has a large environmental impact, such as industrial waste, wastewater treatment, treatment liquid management, and high energy consumption due to high-temperature treatment. As described above, the lubricating film agent of the present invention contains coated polyvalent metal salt particles of phosphoric acid and an aqueous inorganic salt. Can be prevented, and stable lubricity can be exhibited.
  • the components are (A): polyvalent metal phosphate, (B): aqueous inorganic salt or aqueous organic acid salt.
  • Example 12 a urethane resin (manufactured by Daiichi Kogyo Seiyaku Co., Ltd .; Superflex 110) was used.
  • the phenol resin and the urethane resin were used in an amount of 7.0% by mass and 8.5% by mass, respectively, based on the solid content based on the total of the components (A) to (E).
  • the lubricating film obtained by applying the lubricating film agent of the present invention to the surface of various metal materials imparts excellent cold plastic workability to the metal material, that is, lubricity and seizure resistance.
  • the lubricating film agent of the present invention imparts excellent workability to metal materials even in the case of barrel processing or bundling processing, which was difficult to provide stable workability with conventional coating type lubricants. can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

明 細 書 金属石けん被覆粒子及びそれを用いる物及び製法、 並びに潤滑皮膜剤及び潤滑皮膜 技術分野
本発明は 2つに大別し得る。 一方は基本的な発明としての金属石けんが被覆し た無機多価金属化合物粒子及びその一般的利用形態に関する発明であり、 他方は かかる被覆粒子のより実用的応用形態としての、 カゝかる被覆粒子を含有する塑性 加工用潤滑剤に関する発明である。
基本的な発明としての本発明は広範囲に用いることができ、 耐焼付き性に優れ 、 塑' 1¾¾ェ時の工具摩耗及び加工油の汚染を防ぐことができる、 金属石けん被覆 粒子、 粉末、 懸濁液、 粉末もしくは懸濁液の製法、 及び潤滑皮膜に関する。 より実用的な応用発明としての本発明は潤滑皮膜剤に関し、 さらに詳しくは、 鍛造、 伸線、 伸管、 プレス成形に代表される金属の冷間塑 ェを必要とする、 例えば鉄、 鉄鋼、 ステンレス ί岡、 アルミニウム、 マグネシウム、 スズ、 チタン材 料などの各種金属材料の表面に、 優れた加工性、 すなわち潤滑性と耐焼付き性と を付与する潤滑皮膜剤及び潤滑皮膜に関する。 背景技術
特に基本的な発明としての本発明についての背景技術
各種潤滑剤などとして広範囲に用いられている金属石けんは、 鍛造、 伸線、 パ イブの抽伸加工、 プレス成形加工などに代表される金属材料の冷間塑' 14¾]ェ分野 において重要な役割を担っている。 これらの分野において金属石けんは、 金属加 ェ時における ¾¾]ェ材と工具との摩 »数を下げることで加工エネルギーを飛躍 的に低減化する目的の潤滑成分として古くから使用されており、 冷間塑' ェ分 野の発展に大きく貢献してきた。 例えば、 塑性加工分野での金属石けんの直接的 な使用例としては、 伸線加工時に用いられる補助潤滑剤などへの利用技術がある 。 これは予め線材表面にボラックス皮膜、 消石灰皮膜、 リン酸亜鉛皮膜などのキ ャリア層を施し、 これを伸線加工する際、 被加工材がダイスを通過する直前に金 属石けんを多く含む補助潤滑剤を付着させて潤滑性を付与もしくは補足するもの であり、 金属石けん粉末を多量に用いるケースである。 その他にも、 金属石けん を主成分とした潤滑粒子を水中や油中に懸濁した塗布型潤滑剤なども上記キヤリ ァ層との組み合わせで数多く使用されているなど、 冷間塑' 14¾ロェ分野での金属石 けんの応用技術は多岐に亘つている。
し力、し、 金属石けんを用いる上での問題点もある。 例えば、 石灰系皮膜処理な どのキャリア層を施し、 金属石けんを多く含む補助潤滑剤を付着させ、 スキンパ ス伸線加工を行って潤滑皮膜を完成するヘッダー加工用の鋼線の場合である。 こ の潤滑皮膜被覆鋼線は、 加工油中でヘッダー加工を施されるが、 この時に脱落す る潤滑皮膜カス中の金属石けん類力 S加工油中で膨潤したり微細に懸濁化すること で加工油を極端に汚染してしまうのである。 この現象は、 キャリア層と潤滑皮膜 層との密着性が低!/、ため起こると考えられる。
一方、 直接的に金属石けんを用いる上記技術とは若干異なる力 この分野で金 属石けんを用いる上で非常に興味深く、 冷間塑性加工に非常に適した潤滑皮膜の 形成技術として 「リン酸塩 +石けん処理」 が古くから一般的に用いられている。 この処理は、 予めネ劾 Pェ材表面に反応性化成処理層として強固に密着したリン酸 塩皮膜層を施し、 それに水溶性脂肪酸塩水溶液を加温劍することによつて反応 性石けん層を含む金属石けん皮膜を形成するものである。 この方法によると、 金 属石けん層がリン酸塩皮膜表面に強固に被覆されているため、 上記 「キヤリァ層 +補助潤滑剤」 の場合と比較すると、 潤滑成分の加工追従性が良好で比較的強力口 ェに適し、 カゝっ加工時に脱落する潤滑皮膜カスから石けん及ぴ金属石けんが単離 して極端に加工油を汚染する現象は起こり難いなどの利点がある。
しかし、 リン酸塩処理も、 その上層への金属石けん被覆処理も化学反応による 皮膜形成法であるため、 冷間塑 '14¾0ェ現場での化学反応制御及び管理作業が複雑 であり、 廃水処理や設備投資を含めると多大なコストも必要とされる。 また、 鋼 材種、 鋼材の表面状態などによって形成される皮膜の性能は大きく変動するため 、 安定した品質を維持するための手間は非常に大きく、 さらには産業廃棄物の多 量発生も環境負荷に対する大きな懸念材料となっていることから、 最近では簡便 で環境対応型の皮膜形成方法の開発が積極的に進められている。
塑'! ^口ェ時における潤滑皮膜はネ劾ロ工材と工具との間に入り込むことによって 被加工材表面と工具との直接的な金属接触を避けるものであり、 潤滑皮膜は液体 であっても固体であっても良い。 しかし実際上、 油系潤滑剤などに代表される液 体潤滑剤は厳しい塑'! 4¾!ェに対して適さない場合が多い。 これは、 被加工材とェ 具との間でそれぞれの直接接触を防止している潤滑膜が剪断を受け、 潤滑膜切れ を起こすために焼き付きが発生するためである。 そのために、 液体潤滑剤を使用 する場合や、 加工熱により溶融し液状ィ匕する金属石けんなどの潤滑成分を用いた 場合に関してもリン酸塩皮膜やボラックスなどのキヤリァ皮膜との組み合わせに て用いるのが一般的であり、 これによつて加工時のネ; fe¾!ェ材表面と工具との間に キャリア層とともに潤滑成分が入り込み、 加工力の低減及び焼付き防止を担つて いる。 ただし厳密に言えば、 この場合にも、 キャリア層表面と工具表面との間で は潤滑膜切れは発生するため、 摩聽数が高いキャリア層によって工具表面が少 しずつ摩耗を受け工具寿命が短くなる場合があり 題視されている。
さらに、 最近では、 生産効率を高める目的で冷間塑' (¾¾ェ工程を短縮すること 力 ^—回の加工度が高まっていく傾向があり、 「リン酸塩 +石けん処理」 であつ ても十分な潤滑層を保持したままで表面積拡大に追従することが困難となってき ている。
これらの問題点を解決するために、 冷間塑' ロェ用潤滑皮膜の形成技術として 工程短縮型潤滑皮 β莫剤などが開発されつつある。 この技術は、 ネ劾 Π工材表面に対 して液状の皮膜剤を付着させ、 次レ、で乾燥するだけの簡便な工程によって高度な 冷間塑 ェ性能を付与するものである。 このような発明として、 特開 2 0 0 0 - 6 3 8 8 0号公報には、 (A) 合成樹脂、 (B) 7溶性無機職び水を含有し 、 (B) / (A) (固形分重量比) が 0. 2 5 Z l〜9 Z lであって、 合成樹脂 が溶解又は分散していることを特徴とする金属材料の塑†¾¾!ェ用潤滑剤組成物が 開示されている。 さらに滑剤成分として、 金属石けん、 ワックス、 ポリテトラフ ルォロエチレン及ぴ油よりなる群から選ばれる少なくとも一種を 1〜2 0質量% 含有させるのが好ましく、 前記水溶性無機塩としては、 硫酸塩、 ホウ酸塩、 モリ ブデン酸塩、 バナジン酸塩及びタングステン酸塩よりなる群から選ばれる少なく とも一種が好ましいことも記載されている。 すなわち、 この発明は、 キャリアと なり得る皮膜成分中に金属石けんゃヮッタスなどの潤滑成分を分散した形で含有 し、 これをネ^ )Bェ材表面にコーティングすることで、 高度な加工性能を有する潤 滑皮膜を簡単かつ省力的に得ることができる優れた技術である。 これらの潤滑成 分としても金属石けんを用いている場合が多いが、 無機塩や樹脂成分によって皮 膜中に固定化されているために、 「キャリア層 +補助潤滑剤」 などの皮 «造の ように層間密着性に影響されず、 加工時の単独脱落の心配についても一般的に少 ないとされている。 また、 幅が 2 0 0 w in程度もある比較的大きな結晶単位の潤 滑皮膜である 「リン酸塩 +石けん処理」 の皮膜と比較して、 滑剤成分の微粒子ィ匕 などによって滑剤の表面積を任意に調整できる利点から、 表面積拡大が大きい強 加工についても優れるものが開発されつつあり、 潤滑性能面においても有望な技 術である。 し力 し、 これらに関しても皮 S!i冓造上、 露出されている高摩 罕、数の キヤリァ層が工具との接触を繰り返し工具寿命に悪影響を及ぼすことには変わり ないのである。
これらの現状から、 冷間塑' 14¾1ェ分野で要求されている潤滑皮膜とは、 潤滑剤 層がキヤリァ層を被覆するように強固に複合化した微細な粒子構造であって、 か つ複雑な処理工程を必要としない塗布型処理によるものであると考えられる。 こ れにより、 環境対応及び工程短縮処理の実現、 工具摩耗に対する負荷の低減、 潤 滑皮膜力スによる加工油の汚染低減などを実現できる。 このような理想的潤滑剤 の開発は大きな課題であり急務とされている。 特により実用的な応用発明としての本発明についての背景技術 金属材料の塑 ロェでは、 ¾ロェ材と工具との直接的な金属接触により生ずる 焼付きやかじりを防止する目的で、 ロ工材表面に潤滑皮膜を形成させる。 御口 ェ材表面に形成させる潤滑皮膜としては、 潤滑剤を被加ェ材表面に物理的に付着 させるタイプのものと、 ィ匕学反応により ロェ材表面に化成処理皮膜 (化成皮 Β莫 ) を生成させた後、 潤滑剤を使用するタイプのものがある。
被加工材表面に付着させる潤滑剤はネ劾ロェ材に化成皮膜を生成させて使用する ものに比べて密着性が劣るため、 一般に働!]ェ用として使用される。 ィ匕成皮膜を 使用するタイプのものは ¾¾!ェ材表面にキヤリアとしての役割を有するリン酸塩 皮膜や蓚酸塩皮膜等の化成皮膜を生成させた後、 滑り性のある潤滑剤を使用する 。 このタイプはキャリア皮膜としての化成皮膜と潤滑剤との二層構造を有してお り、 非常に高い耐焼付き性を示す。 そのため伸線、 伸管、 鍛造などの塑性加工分 野において非常に広い範囲で使用されてきた。 特に塑性加工の中でも加工が厳し い分野では、 リン酸塩皮膜ゃシユウ酸塩皮膜を下地にし、 その上に潤滑剤を使用 する方法が多用されている。
被加工材に化成皮膜を生成させ、 その上に潤滑剤を使用する方¾は大きく 2つ に分類することができる。 1つは、 ィヒ成皮膜上に潤滑剤を物理的に付着させる方 法、 もう 1つは化成皮膜上に潤滑剤を反応させて、 潤滑皮膜を生成させる方法で ある。
前者の物理的に付着させる潤滑剤としては、 鉱油、 植物油及び合成油を基油と して、 その中に極圧剤を添加したもの、 又は黒鉛、 二硫ィ匕モリプデンに代表され る固体潤滑剤をパインダ一成分と共に水に溶解もしくは分散させたもの等が挙げ られる。 これらは化成処理を施した ェ材表面に塗布し、 油系の潤滑剤はその まま、 水系の潤滑剤は乾燥工程を経て使用される。 これらの潤滑剤は塗布方法に 制約がなく、 スプレー塗布ゃ浸漬塗布により簡便に使用できることや、 化成処理 にみられる複雑な液管理が殆ど必要なレ、ことなどの利点があるが、 潤滑性が低レ、 ため比較的軽度の加工に用いられることが多レ、。
一方後者の化成皮膜に反応させる潤滑剤としては、 反応型石けんが一般的であ る。 この方法は 「リン酸塩 +石けん処理」 として古くから一般的に用いられてい る技術で、 予め勸ロェ材表面に化成処理皮膜を形成させ、 それに水溶性脂肪酸塩 水溶液を加温接触させることによって反応性石けん層を含む金属石けん皮膜を生 成させるものである。 この方法により形成された複合皮膜は軽度な加工から比較 的高度な加工まで適応することが可能で、 鍛造や伸管などの加工形態に係らず非 常に広い範囲で使用されている。
しかしながら、 反応型の化成処理や反応型石けんについては大きく分類して 2 つの問題が挙げられる。 1つ目は、 ィ匕成処理や反応石けん処理の処理工程が複雑 であること、 処理スペースとして非常に広いスペースが必要であること、 これら の処理は化学反応によるものであるため処理液の濃度や内容成分の管理や反応の 制御を行うための温度管理が必要であることなど、 処理工程管理が非常に複雑な 点である。 2つ目は一般にスラッジと呼ばれる不溶性の塩が反応副生成物として 処理液中に生じるため、 これを定期的に処理液より系外に排出する必要があるこ と、 継続的に使用した場合、 処理液の成分パランスが崩れるため処理液の廃棄及 ぴ更新等が不可欠であることなど、 産業廃棄物や排水が非常に多レ、ことである。 前者について詳しく説明する。 「リン酸塩 +石けん処理」 を例にあげると、 被 加工材は洗浄工程、 脱スケール工程を経てリン酸塩処理及ぴ石けん処理が施され る。 これらの工程間には単独もしくは多段の水洗工程が必要であるため、 処理層 スペースとしておおよそ 7〜: 1 2層分が必要となる。 また処理工程毎の液濃度管 理ゃ温度管理が必要で、 リン酸塩処理工程では処理液中の遊離酸度、 全酸度及ぴ 促進剤濃度を中和滴定法などにより手作業で測定し、 不足分を適宜補給している 。 また温度についても 6 0〜8 0 °Cで処理される工程が複数あり、 蒸気配管等で 加熱してレヽるためエネルギー使用量も多レ、。
後者について詳しく説明する。 鉄鋼材料の被加工材にリン酸塩処理を施す場合 、 卩工材表面はリン酸塩処理液中にてエッチングされ、 処理液中に鉄イオンが 溶出する。 この反応によって電子の授受が発生しリン酸塩皮膜が生成されるが、 反応を促進するためには鉄イオンを不溶性の塩として析出沈殿させる必要がある 。 この不溶性の塩は一般にスラッジと呼ばれている。 スラッジは定期的に系外に 排出する必要がある。 また前記のように化成処理までの前処理や化成処理後の水 洗水は前工程液にて汚染される。 この水洗水は様々な元素を含有するため適切な 廃水処理が必要となる。 通常、 これらの水洗水排水は中和処理及び凝集沈澱処理 などを施して放流されるが、 リン等を含む凝集沈殿汚泥は、 先のスラッジと同様 に産業廃棄物として投棄されている。
近年、 地球環境保全を目的に産業廃棄物の低減が大きな課題として取り組まれ ている中で、 前記のように産業廃棄物の多い化成処理は大きな問題の一つとして 取り上げられ、 これに代わる廃棄物の少ない潤滑剤や処理システムが強く望まれ ている。
このような問題点を解決するため、 「水溶性高分子またはその水性エマルショ ンを基材とし固体潤滑剤と化成皮膜形成剤とを配合した潤滑組成物 (特開昭 5 2 一 2 0 9 6 7号公報) 」 等が示されているが、 ィ匕成皮膜処理に匹敵するようなも のは得られていない。 またこれらの問題点を角牟決する手段として、 例えば、 同一 出願人が係わる特開平 1 0— 8 0 8 5号公報の 「金属材料の冷間組成加工用水系 潤滑剤」 の発明が挙げられる。 これは (A) 水溶性無機塩、 (B) 固体潤滑剤、
(C) 鉱油、 動植物油脂及び合成油から選ばれる少なくとも 1種の油成分、 (D ) 界面活性剤及び (E) 水からなる、 固体潤滑剤及び油が均一に分散及ぴ乳ィ匕し た金属の冷間鍛造加工用水系潤滑剤に関するものである。
この発明は、 水系の非反応型の潤滑剤に関するものであり、 従来のリン酸塩処 理ー水洗一反応型石けん処理の 3工程を、 潤滑処理だけの 1工程にしょうとする ものである。 すなわち清浄化されたネ劾 []ェ材に水系非反応型潤滑剤を浸漬等によ り接触させ、 ネ劾ロ工材表面を潤滑剤にて覆い、 その後、 乾燥 (水分を揮発) させ て、 ネ劾 Pェ材表面に潤滑皮膜を形成させるものである。 このようなタイプの潤滑 剤は一工程潤滑剤を呼ばれている。 しかし前記発明による潤滑剤は油成分を乳ィ匕 していいるため工業的に使用するには不安定であり、 加工度の大きい冷間鍛造や 、 潤滑皮膜に連続的な熱負荷がかかる抽伸加工においては安定的な潤滑性を発揮 するには至っていない。
また、 これらの問題点を解決する手段として、 例えば、 同一出願人が係わる特 開 2 0 0 0— 6 3 8 8 0号公報の 「金属材料の塑性加工用潤滑剤組成物」 の発明 が挙げられる。 これは (A) 合成樹脂、 (B) 水溶性無機塩及び水を含有し、 こ の固形分質量比 (B) / (A) が 0. 2 5 Z l〜9 / lであって、 合成樹脂が溶 解又は分散してレヽる、 金属材料の塑性加工用潤滑剤組成物に関するものである。 しかしこの発明にお ヽても加工度の大きレ、冷間鍛造や、 潤滑皮膜に連続的な熱負 荷がかかる抽伸加工においては安定的な潤滑性を発揮するには至っていない。 ま た、 この発明においては冷間鍛造におけるバレル処理、 伸管加工における結束処 理及ぴ伸線加工におけるコイル処理などの実操業上均一に潤滑剤を塗布すること が困難な場合にっレ、ても安定な潤滑性を発揮するには至っていなレ、。 この問題は 塗布型の潤滑剤を使用するにあたり解決が不可欠であるにもかかわらず効果的な 解決策は依然として発明されていないのが現状である。 発明の開示
課題 1
本発明は上記従来技術 (特に基本的な発明としての本発明についての従来技術 ) の抱える問題を解決するためのものであって、 主に塗布型潤滑皮膜に用いられ る成分として、 耐焼付き性に優れ、 カゝっ表面の摩擦係数が低いために塑 ェ時 における工具摩耗を抑制でき、 加工油の汚染を起こし難いような新規な粒子、 さ らには、 潤滑剤層に含ませた場合潤滑剤層がキヤリァ層を被覆するように強固に 複合ィ匕させることができる粒子、 かかる粒子からなる粉末、 かかる粒子を含有す る懸濁液、 かかる粉末もしくは懸濁液の製法、 及ぴかかる粒子を含有する潤滑皮 膜を提供することを目的とする。
課題 1の解決手段
本発明者らは上記課題 (特に課題 1 ) を解決するために鋭意研究を行ってきた 結果、 水に難溶性もしくは不溶性であって、 脂肪酸のアルカリ金属塩もしくはァ ンモニゥム塩又は水溶 '1 "生エステノレとの反応性を有するの無機多価金属化合物の粒 子を核とし、 その表面を該多価金属の金属石けんの皮膜が被覆してなる粒子、 又 はこの粒子の表面を、 さらに、 脂肪酸のアルカリ金属塩もしくはアンモニゥム塩 又は水溶性エステルの皮膜が被覆してなる粒子が、 主に塗布型潤滑皮膜に用いら れる成分として、 耐焼付き性に優れ、 力つ表面の摩衞系数が低いために塑' ί¾ϋロェ 時における工具摩耗を抑制でき、 加工油の汚染を起こし難レヽ材料として好適であ ることを見出し本発明を完成するに至った。
すなわち、 本発明は、 水に難'溶†生もしくは不溶' (生であって、 脂肪酸のアルカリ 金属塩もしくはァンモニゥム塩又は水溶性エステルとの反応性を有するの無機多 価金属化合物の粒子を核としてその表面を該多価金属の金属石けんの皮膜が被覆 してなる粒子 (以下、 2層粒子という^^がある) 、 この粒子の表面を、 さらに 、 脂肪酸のアルカリ金属塩もしくはアンモユウム塩又は水溶性エステル (以下、
「脂肪酸のアルカリ金属塩もしくはアンモェゥム塩又は水溶性エステル」 を 「ァ ルカリ石けん等」 という場合がある) の皮膜が被覆してなる粒子 (以下、 3層粒 子という場合がある) 、 かかる粒子からなる粉末、 かる粒子が水又はアルカリ 石けん等の水溶液に懸濁してなる懸濁液であつて、 前記無機多価金属化合物の粒 子の平均粒子径が 2 0 μ m以下であり、 粒子全体に対する前記金属石けん皮膜の 質量比が:!〜 3 0質量0 /0である該懸濁液、 力かる粉末又は懸濁液の製造方法、 か カゝる粒子を 1質量%以上含有する潤滑皮膜に関する。 なお、 以下、 2層粒子及び Z又は 3層粒子を被覆粒子という場合がある。 課題 2
また、 本発明は上記従来技術 (特により実用的な応用発明としての本発明につ いての従来の技術) の抱える問題を解決するためのものである。 すなわち地球環 境保全を考慮し、 スプレー法もしくは浸漬法などによる簡便な処理が可能で、 化 成処理を不要とし、 得られる皮膜が化成処理法と同等もしくはそれ以上の優れた 加工性、 耐焼付き性を有し、 前記の均一塗布が困難な場合においても皮膜の自己 補修効果により安定的な潤滑性を示す潤滑皮膜剤を提供することを'目的とする。 課題 2の解決手段
本発明者らは上記課題 (特に課題 2 ) を解決するため鋭意研究を行った結果、 リン酸の多価金属塩を核として、 その表面を該多価金属塩の金属石けん皮膜が被 覆してなる粒子と水性無機塩及び/又は水性有機酸塩とを含有する水溶液を 口 工材に塗布し乾燥する簡便な処理方法で、 加工度の大き 、冷間鍛造加工が可能で 、 加えて皮膜に連続的な熱負荷が力かる抽伸加工においても良好な潤滑性を発揮 する潤滑皮膜が得られることを見出し、 また該粒子が耐焼付き性及び潤滑性を有 しているため前記の均一塗布が困難な場合においても、 皮膜内の溶融成分により 工具内に導入され皮膜欠陥部の自己補修効果を示すため、 皮膜が安定な潤滑性を 示すことを見出し、 本 明を完成するに至った。
すなわち、 本発明は、 また、 水性無機塩及び Z又は水性有機酸塩であって、 水 に均一に溶解し、 金属材料に塗布し乾燥した際に強固な皮膜を形成する性質を有 するものの水溶液中に、 水に難溶性もしくは不溶性の、 リン酸の多価金属塩 (以 下、 リン酸多価金属塩という) を核として、 その表面を該多価金属の金属石けん 皮膜が被覆してなる粒子 (以下、 被覆リン酸多価金属塩粒子という) を懸濁させ てなる潤滑皮膜剤に関する。
なお、 上記被覆リン酸多価金属塩粒子は基本的な発明としての本発明における 上記した 「2層粒子」 に包含される。 発明を実施するための最良の形態
以下、 本発明を詳細に説明するが、 まず特に基本的な発明としての本発明につ いて詳細に説明し、 ついで特に実用的な応用発明としての本発明について詳細に 説明する。
特に基本的な発明としての本発明の詳しい説明
本発明の被覆粒子を製造するのに使用される水に離溶性もしくは不溶性であつ て、 アルカリ石けん等との反応性を有する無機多価金属化合物は、 本発明のネ皮覆 粒子において金属石けん層を固定化する核として重要な成分である。 本発明で用 レヽる無機多価金属化合物は、 通常、 粉体もしくは水に分散化した状態で供給され る粒状物質である。 かかる無機多価金属化合物としては、 特に限定するものでは ないが、 多価金属の酸化物、 水酸化物、 '炭酸塩、 リン酸塩、 シユウ酸塩などが挙 げられ、 前記多価金属としては Z n、 F e、 Mn、 N i 、 C o、 C a、 M g、 B a、 A 1及び S nが工業的なコスト面でも好適であり、 中でも Z nがより好適で ある。 該無機多価金属化合物の好適な具体的例としては、 リン酸亜鉛、 酸化亜鉛 、 リン酸鉄亜鈴、 リン酸鉄 (リン酸第—鉄、 リン酸第二鉄) 、 シユウ酸鉄、 リン 酸マンガン、 リン酸ニッケル、 リン酸コノくルト、 リン酸カルシウム、 リン酸一水 素カルシウム、 酸化カルシウム、 水酸化カルシウムなどが挙げられ、 中でもリン 酸亜鉛、 酸ィ匕亜鉛が特に好適に用いられる。
該無機多価金属化合物の粒子径は、 潤滑剤用途で本被覆粒子を造る上において 小さい方が好ましく、 具体的には 3 0 0 // m以下であるのが好ましく、 1 0 0 以下であるのがより好ましい。 小さい方には特に限界はないが、 製造上の制約か ら通常 0 . 3 j m程度が限度である。 なお、 水に懸濁化した状態での本発明の被 覆粒子を得る場合には無機多価金属化合物の平均粒子径は 2 0 μ πι以下であるこ とが好ましく、 1 0 /z m以下であることがより好ましレ、。 平均粒子径が 2 0 μ mを 超えると水分散状態を安定に保つことが困難になる。
本発明において無機多価金属化合物を被覆する金属石けんは該無機多価金属化 合物とアル力リ石けん等との反応によつて生成する該多価金属とアル力リ石けん 等を構成する脂肪酸との塩である。 前記金属石けんとしては、 好ましくは炭素数 8〜 2 2より好ましくは炭素数 1 6 - 2 0の飽和脂肪酸又は不飽和脂肪酸 (例え ば、 ノ、レミチン酸、 ステアリン酸、 ィコサン酸、 ォレイン酸等) の Z n、 F e、 Mn、 N i 、 C o、 C a、 A l 、 S n等の多価金属との塩が挙げられ、 代表的に はステアリン酸亜釓、が挙げられる。
核表面を十分に被覆するという観点から、 該被覆粒子全体に対する金属石けん 皮膜の質量比は:!〜 3 0質量0 /0であるのが好ましく、 2〜 1 5質量%であるのが より好ましい。
本発明の被覆粒子は上記無機多価金属化合物とそれを被覆する該多価金属の金 属石けんの 2層からなる粒子の表面をアル力リ石けん等の皮膜が被覆してなる粒 子をも包含する。 ここでこの 3層からなる粒子における、 上記無機多価金属化合 物とそれを被覆する該多価金属の金属石けんからなる粒子はすでに記述したもの と同様で良レ、。 この 3層粒子にぉレ、て、 粒子全体に対するアル力リ石けん等の皮 膜の質量比は、 粒子の耐熱性を高め安定な潤滑性能を維持する目的で、 水溶性分 を少なくする観点から、 0 . 1〜 5質量%であるのが好ましく、 0 . 1〜3質量 %であるのがより好ましレ、。
本発明においてアルカリ石けん等は 2層粒子を製造するために必要とされるの みならず、 それ自体が 3層粒子の最外層を形成する。 本発明で用いるアルカリ石 けん等は、 脂肪酸のアル力リ金属塩もしくはアンモニゥム塩又は水溶性エステル である。 脂肪酸としては、 炭素数 8〜2 2、 特に炭素数 1 6〜2 0の飽和脂肪酸 又は不飽和脂肪酸が好ましく、 具体的には、 オクタン酸、 デカン酸、 ラウリン酸 、 ミリスチン酸、 ノ、 °ルミチン酸、 ステアリン酸、 ィコサン酸、 ォレイン酸等が挙 げられる。 アルカリ金属としてはナトリウム、 カリウム、 リチウムが好ましい。 水溶性エステルとしては上記脂肪酸のカルボキシル基にエチレンォキシドが開環 重合して得られるエステルなどが挙げられる。 アル力リ石けん等の好ましい具体 例としては、 パルミチン酸、 ステアリン酸又はィコサン酸のナトリウム塩又は力 リウムが挙げられ、 中でもステアリン酸ナトリウムがもっとも好ましい。 ステア リン酸ナトリゥムとしては、 純粋なものでも良いし、 他の脂肪酸のナトリゥム塩 を含有するものでも良い。 後者のステアリン酸ナトリウムとして C 1 8石けんと して市販されているステアリン酸ナトリウムが挙げられ、 その組成はステアリン 酸ナトリウム 9 5 %以上、 C 1 6脂肪酸が 3 %未満、 C 1 5と C 1 7との混合脂 肪酸が 1 %未満である。
本発明はまた上記被覆粒子 (すなわち上記 2層粒子又は 3層粒子) からなる粉 末に関する。 本発明はまた上記 2層粒子が水又はアル力リ石けん等の水溶液に懸濁してなる 懸濁液であって、 前記無機多価金属化合物の粒子の平均粒子径が 20 μ m以下で ある該懸濁液に関する。 2層粒子中での前記無機多価金属化合物の粒子の平均粒 子径は 1 0 μ tn以下であることが好ましレ、。 この平均粒子径が 20 μ mを超える と水懸濁状態を安定に保つことが困難になる。 また、 この懸濁液における 2層粒 子全体に対する金属石けん皮膜の質量比は、 前記 2層粒子の場合と同様に、 1〜 30質量%であるのが好ましく、 2〜 1 5質量%であるのがより好まし!/、。 また 、 この懸濁液には分散質の安定性をより高める観点から、 各種界面活性剤、 分散 剤、 水溶性樹脂などを配合することができる。 懸濁液全体に対する 2層粒子の割 合は特に 2層粒子の安定な懸濁を保てる限り特に制限はないが、 通常、 1〜50 質量%程度であるのが好ましく、 5〜 40質量%程度であるのがより好ましレ、。 次に、 本発明の上記粉末及び懸濁液の製造法について説明する。
本発明の粉末は、 アル力リ石けん等の水溶液中に前記無機多価金属化合物の粒 子を懸濁させ、 加熱下に撹拌して該無機多価金属化合物粒子の表面に金属石けん 膜を生成させ、 っレヽで該懸濁液を乾燥することにより得ることができる。
前記無機多価金属化合物に対するアルカリ石けん等の使用量については、 前記 したような被覆粒子に対する金属石けんの質量比になるように、 アル力リ石けん 等を用いればよいが、 具体的には、 前記無機多価金属化合物:アルカリ石けん等 のモル比として 1 00 : 0. 05〜 1 00 : 2 5の範囲であることが好ましい。 アル力リ石けん等の量が 1 00 : 0. 05を下回ると金属石けん被覆層が極端に 少なくなり、 期待される効果が十分に発現しない^!向となる。 また、 1 00 : 2 5を超えても被覆反応は極端に効率を落とし経済的に不利となる傾向となる。 さ らに、 本発明の粉末を潤滑剤用途で用いる場合には、 前記無機多価金属化合物: アル力リ石けん等のモル比として 1 00 : 0. 2 5〜 1 00 : 1 5の範囲である ことが好ましレ、。 アル力リ石けん等の量が 1 00 : 0. 25未満では潤滑性に十 分な性能が得られにくい傾向となり、 1 00 : 1 5を超えると未反応アルカリ石 けん等が多く存在するために懸濁液の発泡性が高くなるなどの問題が発生する傾 向となる。
該粉末の製造に伴う反応を促すためには懸濁液の温度を 6 0 °C以上、 特に 7 0 〜1 0 0 °Cとし、 p Hを 9以上、 特に 1 0〜1 2に調整しておくことが好ましい o この反応機構としては、 無機多価金属化合物粒子の表面で該無機多価金属化合 物とアルカリ石けんとの複分解反応が起こり、 該無機多価金属化合物粒子を核と して金属石けん層が被覆するものと推測される。 p Hを上記アル力リ側にするた めにアルカリ金属の水酸化物 (水酸化ナトリウム、 水酸化カリウム等) 、 炭酸塩
(炭酸ナトリウム、 炭酸カリウム等) 、 重炭酸塩 (重炭酸ナトリウム、 重炭酸力 リウム等) 、 アンモニア水などを用いることができるが、 中でも水酸^ f匕ナトリウ ムが好ましい。 好ましい量の金属石けん皮膜を被覆させた後、 該懸濁液を乾燥し て粉末にするが、 乾燥の方法は常法によればよい。 例えば、 該懸濁液を濾過後、 固形分を乾燥する、 該懸獨液を噴霧乾燥するなどの方法を用いることができる。 上記した本発明の粉末の製造方法により得られる粉末は、 通常、 該無機多価金 属化合物と金属石けんとアルカリ石けん等とからなる 3層粒子の粉末である。 該 無機多価金属化合物と金属石けんとからなる 2層粒子の粉末を製造するには、 上 記のようにして得られる 3層粒子の表面に付着したアルカリ石けん等を熱水、 ァ ノレコール水溶液などにより洗レヽ流せばよレヽ。
次に、 本発明の懸濁液は、 アルカリ石けん等の水溶液中に前記無機多価金属化 合物の粒子を懸濁させ、 加熱下に撹拌して該無機多価金属化合物粒子の表面に金 属石けん膜を生成させることにより得ることができる。 この場合には、 該無機多 価金属化合物粒子を安定に懸濁させるために、 該無機多価金属化合物粒子の粒子 径を 2 0 μ m以下に調整することが必要があり、 1 0 m以下に調整することが好 ましい。 また、 懸濁状態をより安定化するために各種界面活性剤、 分散剤、 水溶 性樹脂などを配合してもよい。
無機多価金属化合物に対するアル力リ石けん等の使用量、 及び反応を促すため には懸濁液の温度や p H、 p Hを上記アルカリ側にするための添加物については 、 本発明の粉末の製造の場合と同様にすればよ 、。 ' 本発明の金属石けんに関する、 上記粉末及び懸濁液は、 冷間塑性加工分野など に用いられる潤滑剤として優れた性能を発現する。 すなわち、 本発明の粉末又は 懸濁液を冷間塑†4¾Dェを施す ェ材表面に付着させることによって形成した皮 膜は、 冷間塑' 14¾ロ工用潤滑皮膜としての優れた性能を示す。 本発明の粉末又は懸 濁液を潤滑皮膜に用いる場合には、 本粉末又は懸濁液を単独で皮膜化しても良い 、 他の一般的な潤滑ワックスや固体潤滑剤、 極圧添加剤、 皮膜形成樹脂、 粘性 調製剤などと併用してもよい。 例えば、 鉱油やパーム油などを主成分とする潤滑 油や、 加工時に溶融し液状化するようなォレフィンヮックスゃ高分子系ワックス などと、 本粉末又は懸濁液との併用によって、 これらに優れた耐焼付き性を付与 することができる。
潤滑皮膜に対して本発明の粉末又は懸濁液を配合し耐焼付き性を付与する場合 には、 潤滑皮膜中の本粉末又は懸濁液中の固形分の質量比として、 1質量%以上 であることが好ましく、 5質量%以上の配合がさらに好まし!/、。 本粉末又は懸濁 液中の固形分の配合比が 1質量%に満たない場合には潤滑皮膜に対する十分な耐 焼付き性を付与できない。 また、 付着条件などに関しては特に限定されないが、 潤滑皮膜の乾燥膜厚は 0 . 5〜 5 0 / mの範囲とすることが好ましく、 より好ま しくは 1 . 0〜 3 0 t mの範囲である。 膜厚が 0 . 5 μ πιに至らないと特に強加工 分野では十分な耐焼付き性が得られずに加工不良を起こす懸念がある。 また、 5 0 μ πιを超えて付着させても余剰となり工具への導入時の脱落分が多くなるだけ なので経済的に不利となる傾向になる。
本発明の粉末又は懸濁液中の固形分を含む潤滑皮膜を被加工材表面に形成する 方法としては特に限定されないが、 常法を用いて行えばよレ、。 例えば水分散体の 場合は、 浸漬処理、 スプレーなどの流しかけ処理、 ロールコーター処理などによ り水分散液を付着させ、 次いで自然乾燥、 もしくは強制的な熱風乾燥などによつ て潤滑皮膜を得ることができる。 この際に、 本粉末又は懸濁液中の固形分の付着 性を高めるために樹脂成分や無機塩成分などを、 また本粉末又は懸濁液中の固形 分の潤滑性を補足するために油、 石けん、 金属石けん、 ワックスなどを混合して 用いてもよい。
また、 もっぱら乾燥粉末状態からの皮膜形成方法としては、 パウダーボックス 法、 静電塗布法などによって本発明の粉末を付着させればよく、 特に静電塗布法 は付着性や付着量のコント口ールが簡便であり、 安定力 均一な潤滑皮膜が得ら れることから好ましい。 本粉末を付着させる場合に、 ¾¾Pェ材表面からの脱落を 防止するために低融点の樹脂成分ゃヮックス成分を混合しておき、 被加ェ材を加 熱することにより本粉末を固定化することも可能である。 その他、 潤滑性の補足 として石けん、 金属石けん、 ワックス、 樹脂などの粉末を混合して用いることも できる。 さらに、 本発明の粉末を付着させた後に、 スキンパス程度の軽度な塑性 加工を施すことで、 加工熱と圧力とによって連続フィルム状の潤滑皮膜を得るこ とができ、 潤滑性能や耐食性などのバリァ性能がより優れた皮膜となるため好ま しレヽ。 特に静電塗布法とスキンパス程度の軽度な塑' ロェとの組み合わせで完成 される潤滑皮膜は、 全ての性能面で 「りん酸塩 +石けん皮膜」 に匹敵する。 この 場合は、 本粉末と高分子系の合成ワックスとを、 好ましくは 1 : 9〜9 : 1、 よ り好ましくは 1 : 1〜 9 : 1の質量比の範囲で混合した皮膜が潤滑性ゃ耐油性な どで優れている。 特により実用的な応用発明としての本発明の詳しい説明
以下、 本発明の内容を詳細に説明する。 本発明のリン酸多価金属塩を核として 、 その表面を該多価金属の金属石けんが被覆してなる粒子、 すなわち被覆リン酸 多価金属塩粒子は、 皮膜に耐熱性と潤滑性を付与する。 このために選ばれるリン 酸多価金属塩は水に難溶性もしくは不溶性であることが必要である。 リン酸多価 金属塩における多価金属としては Z n、 F e、 Mn、 N i、 C o、 C a、 M g、 B a、 A 1及ぴ S nが好適なものとして挙げられ、 中でも Z n、 6及び &が より好ましい。 力かるリン酸多価金属塩として具体的には、 リン酸亜鈴、 リン酸 鉄亜鉛、 リン酸鉄 (リン酸第一鉄、 リン酸第二鉄) 、 リン酸マンガン、 リン酸二 ッケル、 リン酸コノ レト、 リン酸カルシウム、 リン酸一水素カルシウム、 リン酸 マグネシウム、 リン酸一水素マグネシウム、 リン酸バリウム、 リン酸一水素バリ ゥム、 リン酸アルミニウム、 リン酸スズ等が挙げられ、 中でもリン酸亜鉛、 リン 酸鉄亜鉛、 リン酸鉄 (リン酸第一鉄、 リン酸第二鉄〉 、 リン酸カルシウム及びリ ン酸一水素力ルシゥムが好ましい。 これらは各単独でもしくは 2種以上組み合わ せて用い得る。
被覆リン酸多価金属塩粒子は、 本発明の潤滑皮膜剤を冷間塑' ェする金属材 料に塗布して得られる皮膜中に存在し、 この金属材料に耐焼付き性及び潤滑性を 付与するものであって、 加工時に溶融した皮膜成分によりダイス内に導入された 後、 皮膜欠陥を補修する作用、 すなわち皮膜の自己補修作用を有する。 このため には水又はアル力リ石けん等の水溶液に懸濁している状態でにおいて、 被覆リン 酸多価金属塩粒子の平均粒子径は 3 0 X m以下であることが好ましく、 0 . 3〜 3 0 // πιであることがより好ましく、 0 . 5〜2 0 // mであることがより一層好 ましい。 被覆リン酸多価金属塩粒子中でのリン酸多価金属塩の平均粒子径は 2 0 μ πι以下であることが好ましく、 0 . 2〜2 0 μ ιηであることがより好ましく、 0 . 4〜: 1 0 mであることがより一層好ましレ、。 また、 十分な潤滑性を付与す るために、 この被覆リン酸多価金属塩粒子全体に対する金属石けん皮膜の質量比 は 1〜3 0 %であることが好ましく、 2〜1 5 %であることがより好ましい。 被覆リン酸多価金属塩粒子は特に基本的な発明としての本発明における 「2層 粒子」 に包含され、 既述したのと同様にして製造することができる。
次に水性無機塩は、 本潤滑皮膜に硬さを付与するとともに、 被覆リン酸多価金 属塩粒子を皮膜中に固定化する性質が必要である。 そのために選ばれる水性無機 塩は水に均一に溶解し、 金属材料に塗布し乾燥した際に強固な皮膜を形成する性 質を有する必要がある。 そのような性質の水性無機塩として、 硫酸アル力リ金属 塩、 ケィ酸アルカリ金属塩、 ホウ酸アルカリ金属塩からなる群から選ばれる少な くとも一種を使用することが好ましい。 一例として、 硫酸ナトリウム、 硫酸力リ ゥム、 ケィ酸ナトリウム、 ケィ酸カリウム、 ホウ酸ナトリウム、 ホウ酸カリウム 等が挙げられる。 これらは単独で用いてもよいし、 2種以上組み合わせて用いて もよい。
次に水性有機酸塩は、 本潤滑皮膜に硬さを付与すると共に、 被覆リン酸多価金 属塩粒子を皮膜中に固定化する性質が必要である。 そのために選ばれる水性有機 酸塩は水に均一に溶解し、 金属材料に塗布し乾燥した際に強固な皮膜を形成する 性質を有する必要がある。 そのような性質を有する水性有機酸塩として、 リンゴ 酸アル力リ金属塩、 コハク酸アル力リ金属塩、 クェン酸アル力リ金属塩及び酒石 酸アルカリ金属塩から選ばれる少なくとも一種を使用することが好ましい。 より 具体的例示として、 リンゴ酸ナトリウム、 リンゴ酸カリウム、 コハク酸ナトリウ ム、 コハク酸カリウム、 クェン酸ナトリウム、 クェン酸カリウム、 酒石酸ナトリ ゥム、 酒石酸カリウム等が挙げられる。
被覆リン酸多価金属塩粒子 (A) と水性無機塩及び水性有機酸塩の合計 (B) との配合割合は、 固形分での質量比 (B) / (A) が 0. 01〜20. 0である ことが好ましく、 ◦. 01〜16. 0であることがより好ましく、 0. 01〜7 . 5であることがより一層好ましい。 0. 01未満では、 被覆リン酸多価金属塩 粒子が皮膜中に固定化されず、 加工時の皮膜に対する剪断に対して本潤滑皮膜の 水性無機塩が工具内に引き込まれず、 耐焼付き性が不十分になるため好ましくな い。 また 20. 0以上では、 高摩擦係数である水性無機塩が皮膜表面に存在する 割合が極めて高くなるため、 皮膜としての摩擦係数が高くなり、 皮膜が破断しや すくなり、 焼付きが生じやすくなるため好ましくない。
本発明の潤滑皮膜剤は、 必要に応じてスメクタイト系粘土鉱物を含有していて もよく、 通常、 潤滑皮膜剤に含有させるのが好ましい。 本発明において用いられ るスメクタイト粘度鉱物は以下の一般式を有する粘土鉱物である。 (日本粘土学 会編 「粘土ハンドブック第二版」 技報堂出版 (株) 発行、 1987年、 58— 6 6頁) : Xm (Y2+, Y3+) 23Z4O10 (OH) 2 · ηΗ20 (式中、 Xは Κ, Na, 1/2 C a及ぴ l/2Mgの少なくとも一種であり、 mは 0. 25〜0. 6であり、 Y2+«Mg2+、 Fe2+、 Mn2+、 N i 2+、 ∑ 112+及ぴ1^+の少な くとも一種であり、 丫3+は八13+、 Fe3+、 Mn3+及び C r 3 +の少なくとも一 種であり、 Zは S i及び A 1の少なくとも一種であり、 n H 2 Oは層間水である 。 ) なお、 (Υ2 +, Υ3 +) において Υ 2 +, Υ 3 +は Υ 2 +及び/又は Υ 3 +の意であ る。 また、 上記では Xは層間、 Υは八面体、 ζは四面体の陽イオンを表す。 本発明にぉレヽて用いられるスメクタイト系粘土鉱物は被覆リン酸多価金属塩粒 子の液中分散安定性を付与し、 皮膜中分布を安定化する性質を有する必要がある 。 そのためには水相で安定的なゾルを形成するとともに、 乾燥時の急激な内容成 分濃度の増加に伴う粘性増加が必要となる。 スメクタイト粘土鉱物は、 τΚ相に分 散させると前記の性質を示し、 このような性質を示すスメクタイト粘土鉱物とし てへクトライト、 モンモリロナイト、 パイデライト、 ノントロナイト、 サボナイ ト、 鉄サボナイト、 スチブンサイト及ぴソーコナイトなるから群から選ばれる少 なくとも一種を使用することが好ましい。 スメクタイト系粘土鉱物は天然にも産 するが、 合成品としても得られ、 本発明ではそのいずれも用いることができる。 スメクタイト系粘土鉱物の配合量は、 被覆リン酸多価金属塩粒子 (Α) とスメ クタイト粘土鉱物 (C) との固形分質量比 (C) / (Α) として 0. 0 0 5〜0 . 5であるのが好ましく、 0. 0 1〜0. 4であるのがより好ましい。 0. 0 0 5未満では、 液中での被覆リン酸多価金属塩粒子の分散安定性を向上させる効果 や皮膜中分布を安定ィ匕させる効果が十分でなく、 0. 5を超えると本潤滑皮膜剤 がペースト状になり、 安定的な使用が困難になる。
本発明の潤滑皮膜剤は、 必要に応じて補助潤滑剤を含有していてもよく、 通常 、 潤滑皮膜剤に含有させるのが好ましい。 補助潤滑剤は本発明の潤滑皮膜剤によ つて形成した潤滑皮膜の摩擦係数を低下させるとともに、 被覆リン酸多価金属塩 粒子を被加工材と工具の間に導入させる溶融キヤリアとして、 皮膜の自己補修効 果を助ける作用を有する必要がある。 そのため捕助潤滑剤は、 塑性加工時に発生 する熱により溶融し皮膜の滑り性を付与し、 溶融キヤリアとして作用するものと して、 油、 石けん、 金属石けん、 ワックス及びポリテトラフルォロエチレンから なる群から選ばれる少なくとも一種であることが好ましい。 油としては植物油、 合成油、 鉱物油等を使用でき、 例えばパーム油、 ひまし油、 菜種油、 マシン油、 タービン油、 スピンドノレ油、 エステノレ油、 シリコーン油等を挙げることができる 。 石けんは脂肪酸のアルカリ金属塩であり、 例えばオクタン酸、 デカン酸、 ラウ リン酸、 ミリスチン酸、 パルミチン酸、 ステアリン酸、 ィコサン酸、 ォレイン酸 等の炭素数 8〜 2 2の飽和もしくは不飽和脂肪酸のナトリゥム塩、 力リゥム塩な どが挙げられる。 金属石けんとしては、 カルシウム、 亜鉛、 マグネシウム、 パリ ゥムなどの多価金属と上記脂肪酸との塩などが挙げられる。 ワックスとしては、 ポリエチレンワックス、 ポリプロピレンワックス、 カルナウパロゥ、 パラフィン ワックス等が挙げられる。 ポリテトラフルォロエチレンとしては、 重合度例えば 1 0 0万〜 1, 0 0 0万程度のポリテトラフルォロエチレンを挙げることができ る。 これらの補助潤滑成分は水エマルションゃ水ディスパージョンの形態で多成 分と混合することによって本潤滑皮膜剤中に含有させるのがよい。 補助潤滑成分 は本発明潤滑皮膜剤中で通常分散又は乳化している。
前記補助潤滑剤の配合量は、 被覆リン酸多価金属塩粒子 (A) と補助潤滑剤 ( D) との固形分質量比 (D) / (A) として 0 . 0 3〜1 8 . 0であるのが好ま しく、 0 . 0 5〜: 1 5 . 0であるのがより好ましく、 0 . 5〜5 . 0であるのが より一層好ましい。 0 . 0 3未満では本潤滑皮膜の摩 罕、数を増加させ、 また溶 融キャリアとして働く効果が十分でなく、 1 8 . 0を超えると皮膜が軟化し、 加 ェ時の皮膜に対する剪断力に耐えられなレ、ため皮膜力 S破断しゃすくなる。
本発明の潤滑皮膜剤は、 必要に応じて有機高分子ィ匕合物を含有してレヽてもよい 。 有機高分子化合物は水溶性もしくは水分散性で、 重量平均分子量は 1 , 0 0 0 〜1, 0 0 0, 0 0 0であることが好ましい。 有機高分子化合物は当該潤滑皮膜 剤にて形成された潤滑皮膜に皮膜強さを付与する作用を持つ必要がある。 かかる 有機高分子化合物としては、 皮) 成性を有するものであれば特に制限はなく、 例えば、 エチレン†生不飽和モノマーの重合体である樹脂 (特にアクリル系樹脂) 、 ウレタン樹脂、 エポキシ樹脂、 フエノール樹脂、 ヒドロキシメチルセルロース 、 カルボキシメチルセルロースなどが挙げられる。 これらの有機高分子化合物は 水溶液、 水エマルションゃ水ディスパージョンの形態で多成分と混合することに よつて本潤滑皮膜剤中に含有させるのがよレヽ。 有機高分子化合物は該潤滑皮膜剤 にて形成される皮膜の皮膜強さを向上させる観点から、 潤滑皮膜剤中に、 自身も 含めた全固形分を基準として 0 . 5〜 2 5質量%になるように ¾¾¾するのが好ま しく、 1 . 0〜1 5質量0 /0になるように添加するのがより好ましい。
加工が厳しい塑†4¾ロェでは、 本潤滑皮膜剤中にさらに固体潤滑剤を含有させる ことができる。 力かる場合の固体潤滑剤としては、 皮膜中に安定に存在し、 高い 荷重での潤滑を補助する働きのあるものが好ましい。 そのようなものとして、 黒 鉛、 二硫化モリブデン、 窒化ホウ素、 フッ化黒鉛、 雲母等が挙げられる。
加工がさらに厳しい塑†4Aロェでは本潤滑皮膜剤中に極圧添加剤を含有させるこ とができる。 力かる場合の極圧添加剤としては、 皮膜中に安定に存在し、 加工に より工具と金属の接触面で極圧効果を発揮するものが好ましい。 そのようなもの として、 硫化ォレフィン、 硫化エステル、 サルファイト、 チォカーボネート、 塩 素化脂肪酸、 リン酸エステル、 亜リン酸エステル、 モリブデンジチォカーバメー ト (M o D T C) 、 モリブデンジチォホスフェート (M o D T P) 、 亜鉛ジチォ ホスフェート (Z n D T P) 等の硫黄系極圧添加剤、 有機モリブデン系極圧添加 剤、 リン系極圧添加剤及び塩素系極圧添加剤を挙げることができる。
前記の被覆リン酸多価金属塩粒子、 補助潤滑剤、 '固体潤滑剤及び/又は極圧添 カロ剤を分散又は乳ィ匕させるために分散剤が必要な場合、 カゝかる分散剤としては、 非イオン'性界面活性剤、 陰イオン性界面活' I"生剤、 両性界面活性剤、 P易イオン性界 面活性剤、 水溶性高分子分散剤などから選ばれる分散剤を用いることができる。 本発明の潤滑皮膜剤の製造方法にっレヽては、 製造された潤滑皮膜剤が上記の条 件を満足していれば特に制限されない。 例えば、 水性無機塩及ひブ又は水性有機 酸塩の水溶液に被覆リン酸多価金属塩粒子、 及 壬意成分としてのスメクタイト 系粘土鉱物、 補助潤滑剤、 固体潤滑剤及び/又は極圧添加剤を、 必要に応じて分 散剤及び水を用いて分散液又は乳化液とした後、 添加し攪拌することにより製造 することができる。 本潤滑皮膜剤の固形分濃度については、 製造された潤滑皮膜 剤が上記の条件を満足していれば特に制限されなが、 ハンドリング性や潤滑皮膜 剤の安定性から固形分濃度は:!〜 8 0質量0 /0であることが好ましく、 1 0〜6 0 質量%であることがより好ましレ、。
本発明の潤滑皮膜剤は、 鉄もしくは鉄鋼、 ステンレス鋼、 メツキ鋼 (例えば、 電気亜鉛メツキ、 溶融亜鉛メツキ、 アルミ亜鉛メツキ、 アルミメツキ、 鉄亜鉛メ ツキなどのメツキ処理が施された鋼) 、 アルミニウムもしくはアルミニウム合金 、 マグネシウム合金、 スズもしくはスズ合金、 チタンもしくはチタン合金、 銅も しくは銅合金等の金属材料の金属材料を冷間塑性加工、 例えば鍛造、 伸線、 伸管 、 プレス成形する際に使用する潤滑剤として用いることができる。 金属材料の形 状については特に限定されない。
本発明の潤滑皮膜剤を塗布するに先立って、 加工する金属材料を洗浄 (通常ァ ルカリ洗 を使用) 、 水洗、 脱スケール (ショットプラストもしくは塩酸等に よる酸洗など) 、 水洗の順に前処理することによって、 表面を清浄にすることが 良好な潤滑性を発揮するために好ましい。 酸化スケールが付着していない場合や 酸ィ匕スケールが必要な用途に用いる場合は、 脱スケール→水洗は省いても構わな レ、。 これらの前処理は常法により行えばよい。
本発明の潤滑皮膜剤は、 浸漬、 スプレー、 流しかけ等の常法により金属材料表 面に塗布する。 塗布は金属表面が該潤滑皮膜剤で十分に覆われればよく、 塗布す る時間に特に制限はない。 塗布後、 該潤滑皮膜剤は乾燥する必要がある。 乾燥は 常温放置でも構わないが、 通常 6 0 °C〜1 5 0 °Cで 1 0分〜 6 0分行うのが好適 である。 潤滑皮膜剤の皮膜質量は焼付きを防ぐ観点から 1 g /m2以上であるの が好ましく、 3〜3 0 g /m 2であるのがさらに好ましい。
本発明の潤滑皮膜剤から得られる潤滑皮膜は、 良好な耐焼付き性及び滑り性を 有する被覆リン酸多価金属塩粒子を水性無機塩及び Z又は水性有機酸塩、 及ぴス メタタイト系粘土鉱物による固定化効果により皮膜內に均一に保持させることに より、 安定的な冷間塑性加工性能を示す。 また、 加工による発熱により溶融する 補助潤滑剤成分力 S加工時には溶融キヤリアとして作用すること等により、 被覆リ ン酸多価金属塩粒子がダイス内に引き込まれ、 皮膜欠陥部に対する自己補修作用 を発揮するため、 通常、 結束状やコイル状などの皮膜が不均一になりやすい状態 で処理を行う伸管や伸線などの抽伸加工にっレ、ても、 該潤滑皮膜は安定な潤滑性 を示す。 実施例
本発明の実施例を比較例と共に挙げることによって、 本発明をその効果と共に さらに具体的に説明する。
I . 基本的な発明としての本発明についての実施例、 比較例
1 . 金属石けん被覆粒子の懸濁液及び粉末の製造
下記に示す製造方法に沿って、 金属石けん被覆粒子の懸濁液及び粉末を製造し た。 なお、 目的とする、 前記無機多価金属化合物の核を金属石けん膜が被覆して レヽる被覆粒子が製造されていることを確認するため、 製造された粉末又は製造さ れた懸濁液を乾燥して得られた粉末中の石けん分をエタノール水溶液中に溶解す るアル力リ石けん分と、 溶解しなレヽ金属石けん分とに分離し、 それぞれの質量を 測定することによって金属石けん分の生成を確認した。 以下に、 より詳しく方法 を述ぺる。 1 gの粉末試料を 5 0 %ェタノール水溶液中で 4時間撹拌し、 次!/、で 濾紙により濾過する。 その後、 濾過水と残渣とをそれぞれ 1 N塩酸中にて加熱す ることにより含まれる石けん分を脂肪酸に分解した。 これをジェチルエーテルに て抽出し、 金属石けん生成率 = ( [ (金属石けんからの脂肪酸) / (アルカリ石 けんからの脂肪酸 +金属石けんからの脂肪酸) ] X I 0 0 ) を求めた。 金属石 けん生成率が 5 0 %以上である場合に、 核表面に十分な金属石けん層が被覆して いるものとした。
(A 1 )
平均粒径 1 μ mで 1 Lの水に分散化したリン酸亜鉛粒子 1 0 0 gに対して、 ス テアリン酸ナトリウムを 1 0 g、 水酸化ナトリウムを 1 gを混合し、 9 0〜9 5 °Cの液温で 3 0分間撹拌混合することにより金属石けん被覆粒子の懸濁液を得た ※金属石けん生成率 = 82 % (この値は 2層粒子全体に対する金属石けん皮膜 の質量比として約 8 %に相当する)
(A2)
リン酸亜鉛粉末 200 gと、 ステアリン酸カリウム 30 gと、 水酸化力リウム l gとを、 700mLの水中に撹拌分散し、 70 °Cの液温で 1時間の撹拌混合を した。 っレヽで、 濾過により固形分を探取し、 これをさらに 50 %ェタノール水溶 液中で 4時間攪拌し、 再度の濾過によって固形分を採取した。 これを 100°Cの オーブンにて乾燥させることによって、 アルカリ石けん層を含まない金属石けん 被覆粒子の乾燥粉末を得た。
※金属石けん生成率 = 78 % (この値は 2層粒子全体に対する金属石けん皮膜 の質量比として約 10 %に相当する)
(A3)
酸化亜鉛粉末 200 gと、 ステアリン酸ナトリウム 10 gと、 水酸化ナトリウ ム 3 gとを、 700mLの水中に撹拌分散し、 90 °Cの液温で 20分間の撹拌混 合をした。 ついで、 濾過により固形分を採取し、 100°Cのオーブンにて乾燥さ せることによつて金属石けん被覆粒子の乾燥粉末を得た。
※金属石けん生成率 = 53 % (この値は 3層粒子全体に対する金属石けん皮膜 の質量比として約 3 %に相当する)
2. 耐油汚染性試験
本発明の金属石けん被覆粒子の粉末が解決しょうとする課題の一つとして耐油 汚染性がある。 これは従来の金属石けん粉末の代用として潤滑剤用途などに用い た場合に、 金属石けんの欠点である加工油の汚染現象を解決しようとするもので ある。 以下にその試験方法と評価基準を示す。 上述した本発明の金属石けん被覆 粒子粉末と、 市販の金属石けん粉末とを、 それぞれ市販のフォーマー油 100 g 中に対して l g添カロし、 60°Cの撹拌状態で 1週間放置した。 その後、 撹拌を止 め、 1時間後の油の懸濁状態で耐油汚染性を評価した。 なお、 懸濁成分は、 でき るだけ速やかに沈殿分離できる方が好ましい。 評価基準: A:分散物が完全に沈殿し、 透明層が容積の 9 5 %以上を占める。 B:分散物が沈殿し、 容積の 9 5 %未満の透明層を確認できる。 C:油が懸濁状 態であり、 透明層が確認、できない。
本発明の実施例 I _ 1及び I一 2、 比較例 I— 1及び I一 2についての耐油汚 染性試験の評価結果を表 1に示す。 実施例に記載された本発明の金属石けん被覆 粒子粉末は非常に耐油汚染性に優れて!、た。 これは無機多価金属化合物粒子表面 に金属石けん層が固定ィ匕されていることにより油中に脱離し難くなつているから であると考えられる。 一方、 比較例のステアリン酸カルシウム粉末 (B 3 ) 及び ステアリン酸亜鉛粉末 (B 6 ) は、 核を有さない金属石けん粉末であるために、 油中では膨潤状態となり、 微細な分散ィ匕によって油に懸濁し続けた。
表 1
Figure imgf000026_0001
3 . 潤滑皮膜材料としての評価
上記で得られた本発明の金属石けん被覆粒子懸濁液又は金属石けん被覆粒子粉 末を潤滑皮膜材料として用いた実施例 I一 3〜 I— 9の潤滑皮膜、 及び本発明の 金属石けん被覆粒子懸濁液も金属石けん被覆粒子粉末も用いない比較例 I— 3〜 1 - 7の潤滑皮膜の組成比を表 2に示した。
3 . 1 . 潤滑皮膜成分
以下に、 本試験の潤滑皮,料に用いられる各成分を示す。
(A 1 ) 上記で得られた本発明の金属石けん被覆粒子懸濁液
(A 2 ) 上記で得られた本発明の金属石けん被覆粒子粉末
(A 3 ) 上記で得られた本発明の金属石けん被覆粒子粉末 (A 4 ) 平均粒子径が 0. 5 mのりん酸亜鉛粒子の水懸濁液 ( A 5 ) 平均粒子径が 50 μ mの酸化亜鉛粉末
(B 1) 水分散型ポリエ:
(B 2) 7k分散型ォ 1
(B 3) ステアリン酸カルシウム粉末
(B 4) モンタン酸ワックス粉末
(B 5) 酸ィ匕ポリエチレンワックス粉末
(B 6) ステアリン酸亜鈴粉末
(C 1) ポリアクリル酸ナトリウム (分子量 1 0000)
(C 2) ウレタン系樹脂水性ェマルジヨン (ポリエステル系ウレタン樹脂) 3. 2. 処理方法 . 試験材表面に、 本発明の実施例及び比較例の潤滑皮膜を施すために、 以下の各 種処理方法を用いた。
(a) 浸漬処理方法
表面清浄化した試験片を常温の潤滑皮膜処理液中に浸漬することにより潤滑皮 膜処理液を付着させ、 ついで 1 0 o°cの熱風乾燥炉にて乾燥して試験片表面に潤 滑皮膜を形成させた。 なお、 乾燥皮膜の付着質量は約 1 5 g/m2であった。
(b) 静電塗布方法
表面清浄化した試験片に潤滑皮膜処理粉を静電塗布し、 粉状付着状態での潤滑 皮 S莫を試験片表面に形成させた。 静電粉体装置としては日本パー力ライジング株 式会ネ ± の GX 300を用い、 ®±60 kVにて潤滑皮膜処理粉を帯電させた。 また、 試験片表面への、 帯電させた潤滑皮膜処理粉の静電粉体塗装による付着は 、 日本パーカライジング株式会社製の静電塗装ガン GX 1 1 6を用いて行った。 この際の粉体供給のエアー圧力はメイン: 9 8 k P a、 サブ: 1 96 k P aとし て行った。 なお、 塗布時間は 1秒とし、 粉体皮膜の付着質量は約 1 5 g/m2で あった 0
3. 3. 試験方法及び評価基準 3. 3. 1. スパイク試験
特開平 5— 7969号公報に開示された方法に準じたスパイク試験加工を行い 、 加工後試験片のスパイク高さにて潤滑性を評価した。 スパイク高さは高いほど 潤滑性に優れる。
試験片:試験に供した材料は市販の S 45 C球状ィ匕焼鈍材で、 試験片形状は直径 25 mm φで高さが 3 Ommである。
価基準: A スパイク高さが 13 mm以上
B スパイク高さが 12 mm以上 13 mm未満
C スパイク高さが 12 mm未満
DD:金型に焼き付き成型不能
3. 3. 2. 引き抜き試験
市販のドローベンチ引き抜き試験機を用い、 鋼線に付着させた各潤滑皮膜につ いてスキンパス程度の引き抜き加工 (一段目 :断面積減少率 10. 3%) を施し 、 更に、 断面積減少率が 31. 5%の強度な引き抜き加工 (二段目) を行った。 試験片:試験に供した材料は市販の SCr 440材で、 試験片形状は直径 9. 5 mmi>で長さが lmである。
評価基準: A:二段目まで焼き付きや傷の発生無し
B:ニ段目まで焼き付き無し、 若干の傷発生有り
C:一段目まで焼き付きや傷の発生は無いが、 二段目で焼き付きが 発生し引き抜き不可
D:一段目で焼き付きが発生し引き抜き不可
表 2
潤滑皮膜組成
処理方法 耐焼付き成分 ds合量%) 潤滑剤成分 (配合量0 /o) その他 (配合量%)
実施例 I一 3 A 1 (1 0 0)
― 4 A 1 B 1 (45) C 1 (5) .
J
—— 5 A 1 (o n) B 2 (7 0) C 2 ( 1 0) <Χ 一 A 2 ί 10 0 )
J一 A 2 (8 0) B 4 (2 0) υ 一 8 A 3 (5 0) B 5 (5 0) b 一 9 A3 (3 0) B 4 (6 0) C 1 ( 1 0) b 比較例 I一 3 A4 (1 0 0) a
— 4 A4 (5 0) B 1 (4 5) C 1 (5) a 一 5 A 5 ( 1 0 0) b 一 6 A5 (5 0) B 3 (5 0) b 一 7 A 5 (3 0) B 5 (7 0) b
*各成分の配合量は固形分としての配合量である。
表 3
Figure imgf000030_0001
以上の評価結果に示されるように、 耐焼付き成分としての役割を果たす一方で 潤滑性能をも有する本発明の金属石けん組成物を用いた実施例 I一 3〜; [一 9の 潤滑皮膜は、 いずれにおいても良好な潤滑性能を示した。 一方、 比較例 I一 3〜 I一 7では高摩擦係数である耐焼付き成分の露出に伴い、 強度な加工を求められ る潤滑皮膜としては十分な性能を示せず、 工具に対しての負荷に関しても高いも のと判断された。
以上の説明から明かなように、 本発明の無機多価金属化合物を核とし、 これを 金属石けん膜又は金属石けん膜及びその上にさらにアルカリ石けん等の膜が被覆 してなる被覆粒子は、 主に塗布型潤滑皮膜に用いられる成分として、 耐焼付き性 に優れ、 力つ表面の摩擦係数が低レ、ために塑¾¾ロェ時における工具摩耗を抑制で き、 加工油の汚染を起こし難い材料として好適である。 したがって、 本発明の産 業上の利用価値は極めて大きレ、。
I I . 特に実用的な応用発明としての本発明についての実施例、 比較例
実施例 I 卜 1〜 1 2、 比較例 I I—:!〜 9
表 4に示す成分及び割合で潤滑皮膜剤を調製した。
<リン酸多価金属塩の金属石けん被覆〉 実施例 I I -1~12及び比較例 I I一 1、 2、 5及ぴ 6につレヽては、 リン酸 多価金属塩 [成分 (A) ] の金属石けん被覆を行った (表 4) 。 具体的には、 1 Lの水に分散した平均粒子径が 1〜 5 μ mの範囲の各種リン酸多価金属塩粒子 9 0 gに対して、 ステアリン酸ナトリウム 9 g、 7_R酸化力リウム 1 gを混合し、 8 0〜 85 °Cの液温で 30分間攪拌混合することにより被覆リン酸多価金属塩粒子 の懸濁液を得た。
く実施例 I 1-1の潤滑皮膜剤の調製 >
潤滑皮膜剤の調製は、 各成分が表 1の比率になるように行った。 調製手順は以 下の通り。 まず、 水性無機塩を水に溶解させた後、 スメクタイト系粘土鉱物を投 入し、 均一に分散させた。 その後、 上記被覆リン酸多価金属塩粒子懸濁液を投入 し、 さらに補助潤滑剤を加え、 攪拌混合することによって実施例 1の潤滑皮膜剤 の調製を行った。 実施例 1で用いた原料は、 リン酸多価金属塩がリン酸亜鉛 (固 体) 、 水性無機塩がケィ酸ナトリウム 50質量%水分散液、 スメクタイト系粘土 鉱物がモンモリロナイト (固体) である。
以下、 実施例 I I一 2〜: 12、 比較例 I I—:!〜 7も同様にして調製した。 比 較例 I I -8は既存の塗布型潤滑剤、 比較例 I I一 9は市販のリン酸塩 +石けん 処理である。
く試験片>
各評価には以下に示す試験片を使用した。
摩擦係数測;^験: S PCC— SB 15 OmmX 7 OmmX 0. 8mmt ( t 厚さ)
鍛造性評価: S 45 C球状化焼鈍材 3 Omm0X l 8〜4 Omm
伸管性評価: STKM17 A 25. 4mm0 X 2. 5mmt X 200 Omm 伸線性評価: S 45 C焼鈍材 3. 0 mm φ X 50000 mm
く皮膜形成処理 >
以下の工程にて皮膜形成処理を行つた。
実施例 I I一:!〜 I 1— 12、 比較例 1〜 8の場合 ①洗浄:市販の脱脂剤 (登録商標 ファインクリーナー 43、60、 日本パー力 ライジング (株) 製) 、 濃度 20 g/L, 温度 60°C、 浸漬 10分
②水洗:水道水、 室温、 浸漬 30秒
③脱スケール:塩酸洗、 濃度 17. 5%、 室温、 浸漬 10分
④水洗:水道水、 室温、 浸漬 30°C
⑤処理:実施例又は比較例の処理剤、 室温、 浸漬 10秒、 目標付着量 5 g/m
2
⑥乾燥: 80。C、 5分
比較例 I I一 9の場合
①洗浄:市販の脱脂剤 (登録商標 ファインクリーナー 4360、 日本パー力 ライジング (株) 製) 、 濃度 20 g/L、 温度 60°C、 浸漬 10分
②水洗:水道水、 室温、 浸漬 30秒
③脱スケール:塩酸洗、 濃度 17. 5%、 室温、 浸漬 10分
④水洗:水道水、 室温、 浸漬 30°C
⑤化成処理:市販のリン酸亜鉛化成処理剤 (登録商標 パルボンド 181 X、 日本パーカライジング (株) 製) 、 濃度 90 g/L、 温度 80°C、 浸漬 10 分
⑥ 7j洗:水道水、 室温、 浸漬 30秒
⑦石けん処理:市販の反応石けん潤滑剤 (登録商標 ノ、。ループ 235、 日本パ 一力ライジング (株) 製) 、 濃度 70 gZL、 温度 80。C、 浸漬 5分
⑧乾燥: 80°C、 3分
く皮膜性能評価試験〉
摩聽数測;^験は上記皮膜形成処理後に、 摩聽数の測 験として最も標 準的なバウデン試験にて行った。 バウデン試験では、 初期なじみの後に摩擦係数 の安定期が存在することから、 安定期の摩擦係数を本潤滑皮膜の摩擦係数とした 。 測定条件を以下に示す。
摺動形式:往復摺動形式 1 Ο πιιη φ S U J 2鋼球
垂直荷重: 5 O N
摺動速度: 1 0 mm/ s
温度: 6 0 °C
摺動回数: 2 0 0回
鍛造性試験は後方せん孔試験にて行つた。 後方せん孔試験は円筒状の試験片に パンチを打ち込み後方せん? U¾01を行う試験で、 試験片の高さを 1 8 mmから 2 mmずつ 4 O mmまで変ィ匕させ、 加工可能な加工度を測定する試験である。 耐焼 付き性が不足している場合には試験片内面とパンチに焼付きに起因した傷が生じ る。 この傷を目視により確認し、 傷が生じない最高試験片高さをその潤滑皮膜剤 の潤滑性を示すものとして評価した。 処理は試験片を 1つずつ個別に処理する方 法 (1個処理) と回転バレルにてまとめて処理をする方法 (バレル処理) の 2方 式で行った。 評価基準を以下に示す。 なお、 B以上が実用可能である。
A:加工可能な試験片高さが 4 O mm以上である。
B:加工可能な試験片高さが 3 6 mm以上、 4 0 mm未満である。
C:加工可能な試験片高さが 3 2 mm以上、 3 6 mm未満である。
D:加工可能な試験片高さが 3 2 mm未満である。
伸管性試験は下記の条件にて伸管加工を行レ、、 焼付きが生じなレ、限界減面率に て評価した。 限界減面率はパイプ 3本を伸管加工に付し、 3本とも伸管可能な減 面率とした。 処理はパイプを 1本ずつ処理する方法 (1本処理) と 3本を結束さ せて処理を行う方法 (結束処理) の 2方式で行った。 評価基準を以下に示す。 な お、 B以上が実用可能である。
ダイス: Rダイス
ブラグ:円筒ブラグ
伸管速度: 1 5 m/分
A:限界減面率が 5 0 %以上である。
B:限界減面率が 4 3 %以上、 5 0 %未満である。 · C:限界減面率が 38%以上、 43%未満である。
D:限界減面率が 38 %未満である。
伸線性試験は下記の条件にて伸線試験を行い、 安定的に伸線可能な限界伸線速 度にて評価した。 被覆処理は線材が互いに接触しないように線材コイルの結束状 態を極端に緩める方法 (コイルをばね状に引き伸ばす方法; 1本処理) と線材同 士の接触を促すように線材コイルを結束した状態で処理する方法 (結束処理) の
2方式で行った。 評価基準を以下に示す。 なお、 B以上が実用可能である。
ダイス : Rダイス 2. 75mm0
減面率: 15. 0%
伸線速度: 10〜: L 00 mZ分
A:限界伸線速度が 10 Om/分以上である。
B:限界伸線速度が 8 OmZ分以上、 10 Om/分未満である。
C: P艮界伸線速度が 6 OmZ分以上、 8 OmZ分未満である。
D:限界伸線速度が 60 m,分未満である。 '
く試験結果 >
以上の試験結果を表 5に示す。 表 5から明らかなように、 本発明の潤滑皮膜剤 である実施例 I Iー1~12は加ェ形態に関ゎらず良好な潤滑性を示し、 さらに 均一処理の困難なバレル及び結束処理に対しても安定した潤滑性を示すことがわ 力 。 一方、 金属石けん反応粒子は含有するが、 水性無機塩も水性有機酸塩も含 有しない比較例 I I一:!〜 2は均一に塗布した場合でも潤滑性が低い。 また、 リ ン酸多価金属塩の表面を金属石けんで被覆してレ、なレ、比較例 I I一 3〜 4は、 該 粒子の摩擦係数が高く、 皮膜の自己補修効果が発現しないため、 バレル処理や結 束処理では潤滑性が安定しなレヽ。 比較例 I I一 5〜 6に示す水性無機塩もしくは 7性有機酸塩の代わりに水酸化カルシウム又はシュゥ酸鉄を使用したものは、 水 溶性が乏しく連続的な皮膜形成ができなレ、ために潤滑性が低レ、。 被覆リン酸多価 金属塩粒子を含有しなレ、比較例 I 1 -7-8は皮膜の自己補修効果が発現しな!ヽ ため、 バレル処理や結束処理に対して潤滑性が安定しなレ、。 比較例 I I一 9のリ ン酸塩 +石けん処理は、 処理方法に関わらず安定した潤滑性を示すが、 産業廃棄 物、 廃水処理、 処理液管理及び高温処理による高エネルギー消費など環境に対す る負荷が大きい。 このように本発明の潤滑皮膜剤は、 被覆リン酸多価金属塩粒子 と水性無機塩とを含有することにより、 塗布型潤滑剤の最も難解な問題であった 不均一な塗布による潤滑性低下を防止し、 安定な潤滑性を発現できる。
表 4 実施例 I I 2、 比較例 I I一 1 9
成分 (※ 固形分中での質量比
(A) (B) (C) (D) (B) / (A) (C) / (A) (D) / (A)
1 リン酸亜鉛 ケィ酸ナトリゥム 0¾2) モンモリ 口ナイト ― 10. 0 0. 01 ―
2 リン酸亜鉛 ケィ酸力リゥム ( 3) へクトライト ラフィンワックス 2. 0 0. 05 1. 5
3 リン酸亜飴 四ホウ酸力リゥム 0. 02 15. 0
4 リン酸鉄亜鉛 ケィ酸ナトリウム ※ 2) へク卜ライ ステアリン酸ナトリウム 0. 5 0. 25 0. 5
5 リン酸鉄亜鉛 タエン酸ナトリウム マシン油 0. 01 0. 005 1. 0
6 リン酸鉄亜鉛 硫酸ナトリウム ノントロナイト 1. 0 0. 5
実施例 、 ケィ酸ナトリゥム +
7 リン酸鉄 ム油 16. 0 2. 0
(I I) 硫酸カリウム (※
8 ン酸鉄 四ホウ酸ナ ゥム へク 卜 ラフ ンヮックス 0. 5 0. 01 0. 5 硫酸カリゥム +
9 リン酸鉄 ソ ナイ 卜 ラフィンヮ ' クス 3. 5 0. 05 2. 0 ケィ酸力リゥム (※5)
10 リン酸カルシウム ケィ酸ナトリウム ( 2) ノントロナイト ― 10. 0 0. 3
1 1 硫酸力リゥム +
リン酸カノレシゥム 15. 0 0. 05 ケィ酸力リゥム (※ )
12 リン酸カノレシゥム 硫酸ナトリゥム へクトライ 卜 ーム油 7. 5 0. 4 2. 0
1 リン酸亜鉛 ステアリン酸カルシウム 0. 2 2. 5
2 リン酸鉄亜鉛 ノントロナイト 0. 1 12. 0
3 リン酸亜鉛 ぐ※ 6 ) ケィ酸ナトリウム 0¾2) ノントロナイト 0. 1 0. 05
リン酸カルシウム
4 四ホウ酸ナトリウム パーム油 5. 0 5. 0
5 リン酸鉄 水酸化カルシウム 《ラフィンヮックス 2. 0 2. 5 比較例 6 リン酸鉄亜鉛 シユウ酸鉄 ポリエチレンワックス 1. 0 0. 5
(1 I) 7 ケィ酸カリウム (※ァ) グラフアイト ※ 8) ※9
成分の固形分中の割合 (※丄。)
8 既存の塗布型潤滑剤 (B) (D) (E)
35% 50% 15% 付着質量 (κ/m2)
9 リン酸塩 +石けん処理 リン酸塩 金属石けん 未反応石けん
6. 7 2. 3 3. 2
表 4の注
※ェ 成分は (A) : リン酸多価金属塩、 (B) :水性無機塩又は水性有機酸塩
、 (C) スメクタイト系粘土鉱物、 (D) :補助潤滑剤を示す。
※2 S i 02: Na 20= 2 : 1
※3 S i 02: K2〇= 3 : 1 '
※ 硫酸ナトリウム:メタケイ酸ナトリウム =7 : 3
※ 硫酸ナトリウム:ケィ酸カリウム (S i 02: Κ20=3 : 1) =7 : 3 ※ 6 リン酸亜鉛及びリン酸カルシウム表面をこれらの多価金属の金属石けん皮 膜が被覆していないものを使用した。
※ァ S i 02: Κ20=4 : 1
·¾8 補助潤滑剤の代わりに固体潤滑剤としてグラフアイトを使用した。
※9 比較例 7は、 ケィ酸カリウム (S i 02: Κ20 = 4 : 1) :グラフアイ ト =6 : 4で行った。
※ 10 比較例 8は、 成分 Β :四ホウ酸ナトリウム、 成分 D: ステアリン酸カノレ シゥム、 成分 Ε : ウレタン樹脂 (第一工業製薬 (株) 製;スーパーフ レックス 1 10) である。
※ェ 1 さらに成分 (Ε) として、 実施例 9ではフエノール樹脂 (群栄化学 (株
) 製; レジトップ PL— 6020) を、 実施例 12ではウレタン樹脂 (第一工業製薬 (株) 製;スーパーフレックス 1 10) を用いた。 フ ヱノール樹脂及びウレタン樹脂は成分 (A) 〜 (E) の合計に対して 固形分基準でそれぞれ 7. 0質量%及び 8. 5質量%用いた。
Figure imgf000038_0001
本発明の潤滑皮膜剤を各種金属材料表面に塗布して得られる潤滑皮膜は、 金属 材料に優れた冷間塑性加工性、 すなわち潤滑性と耐焼付き性を付与する。 特に、 本発明の潤滑皮膜剤は、 従来の塗布型潤滑剤では安定した加工性を付与すること が困難であったパレル処理や結束処理にぉレ、ても優れた加工性を金属材料に付与 することができる。

Claims

請 求 の 範 囲
1 水に難溶性もしくは不溶性であって、 脂肪酸のアル力リ金属塩もしく はァンモニゥム塩又は水溶性エステルとの反応性を有する無機多価金属化合物を 核としてその表面を該多価金属の金属石けんの皮膜が被覆してなる粒子。
2 平均粒子径が 3 0 0 m以下であり、 粒子全体に対する前記金属石け ん皮膜の質量比が 1〜 3 0質量%である請求項 1記載の粒子。
3 前記無機多価金属化合物中の多価金属が Z n、 F e、 Mn、 N i、 C o、 C a、 M g、 B a、 A 1及ぴ S nから選ばれる少なくとも一種である請求項 1又は 2記載の粒子。
4 前記無機多価金属化合物が該多価金属の酸化物、 水酸化物、 炭酸塩又 はリン酸塩である請求項 1〜 3のいずれかに記載の粒子。
5 前記無機多価金属化合物が酸化亜鉛又はリン酸亜鈴である請求項 3又 は 4記載の粒子。
6 請求項 1〜 5のレ、ずれかに記載の粒子の表面をさらに脂肪酸のアル力 リ金属塩もしくはアンモニゥム塩又は水溶性エステルの皮膜が被覆してなる粒子
7 平均粒子径が 3 0 0 μ m以下であり、 粒子全体に対する前記金属石け ん皮膜の質量比が 1.〜3 0質量%であり、 粒子全体に対する前記した脂肪酸のァ ルカリ金属塩もしくはァンモニゥム塩又は水溶性エステルの皮膜の質量比が 0 . 1〜 5質量0 /0である請求項 6記載の粒子。
8 請求項 1〜 Ίのいずれかに記載の粒子からなる粉末。
9 請求項 1〜 5の!/、ずれかに記載の粒子が水又は脂肪酸のアル力リ金属 塩もしくはアンモニゥム塩又は水溶性エステルの水溶液に懸濁してなる懸濁液で あって、 前記無機多価金属化合物の粒子の平均粒子径が 2 0〃 m以下であり、 粒 子全体に対する前記金属石けん皮膜の質量比が:!〜 3 0質量%である該懸濁液。
1 0 水に難溶性もしくは不溶性であって、 脂肪酸のアルカリ金属塩もし くはアンモニゥム塩又は水溶性エステルとの反応性を有するの無機多価金属化合 物と脂肪酸のアルカリ金属塩もしくはアンモニゥム塩又は水溶性エステルとを水 '中で加温下に混合し、 得られる懸濁液を乾燥することを特徴とする請求項 8記載 の粉末の製造方法。
1 1 水に難溶性もしくは不溶性であって、 脂肪酸のアルカリ金属塩もし くはアンモニゥム塩又は水溶性エステルとの反応性を有するの無機多価金属化合 物と脂肪酸のアル力リ金属塩もしくはアンモニゥム塩又は水溶†生エステルとを水 中で加温下に混合することを特徴とする請求項 9記載の懸濁液の製造方法。
1 2 請求項:!〜 7の!/ヽずれかに記載の粒子を 1質量%以上含有する潤滑 皮膜。
1 3 乾燥膜厚が 0 . 5〜 5 0 μ mである請求項 1 2記載の潤滑皮膜。 1 4 水性無機塩及び Z又は水性有機酸塩であって、 水に均一に溶解し、 金属材料に塗布し乾燥した際に強固な皮膜を形成する性質を有するものの水溶液 中に、 水に難溶性もしくは不溶性の、 リン酸の多価金属塩 (以下、 リン酸多価金 属塩という) を核として、 その表面を該多価金属の金属石けん皮膜が被覆してな る粒子 (以下、 被覆リン酸多価金属塩粒子という) を懸濁させてなる潤滑皮膜剤
1 5 リン酸多価金属塩の多価金属が Z n、 F e、 Mn、 N i、 C o、 C a、 A 1及び S nから選ばれる少なくとも一種である請求項 1 4記載の潤滑皮膜 剤。
1 6 リン酸多価金属塩がリン酸亜鈴、 リン酸鉄亜鉛、 リン酸鉄、 リン酸 カルシウム及ぴリン酸一水素カルシウムから選ばれる少なくとも一種である請求 項 1 4記載の潤滑皮膜剤。
1 7 被覆リン酸多価金属塩粒子の平均粒子径が 3 0 μ m以下で、 核であ るリン酸多価金属塩の平均粒子径が 2 0 μ m以下である請求項 1 4〜 1 6のいず れか 1項に記載の潤滑皮膜剤。 .
1 8 被覆リン酸多価金属塩粒子全体に対する金属石けん皮膜の質量比が 1〜 3 0質量0 /oである請求項 1 4〜: I 7のレヽずれか 1項に記載の潤滑皮膜剤。 1 9 水性無機塩が硫酸アル力リ金属塩、 ケィ酸アル力リ金属塩及びホゥ 酸アルカリ金属塩から選ばれる少なくとも一種である請求項 1 4〜1 8のいずれ 力 1項に記載の潤滑皮膜剤。
2 0 水性有機酸塩がリンゴ酸アルカリ金属塩、 コハク酸アルカリ金属塩
、 クェン酸アル力リ金属塩及び酒石酸アル力リ金属塩から選ばれる少なくとも一 種である請求項 1 4〜 1 9のレ、ずれか 1 ¾に記載の潤滑皮膜剤。
2 1 被覆リン酸多価金属塩粒子 (A) と水性無機塩及び水性有機酸塩の 合計 (B ) との固形分質量比 (B) / (A) が 0 . 0 1〜2 0 . 0の範囲内にあ る請求項 1 4〜 2 0のいずれか 1項に記載の潤滑皮膜剤。
2 2 スメクタイト系粘土鉱物を、 被覆リン酸多価金属塩粒子 (A) とス メタタイト系粘土鉱物 (C) との固形分質量比 (C) / (A) として 0 . 0 0 5
〜 0 . 5の範囲内で含有する請求項 1 4〜 2 1のいずれか 1項に記載の潤滑皮膜 剤。
2 3 補助潤滑成分として油、 石けん、 金属石けん、 ワックス及びポリテ トラフルォロエチレンから選ばれる少なくとも一種を、 被覆リン酸多価金属塩粒 子 (A) と補助潤滑成分 (D) との固形分質量比 (D) / (A) として 0 . 0 3 〜 1 8 . 0の範囲内で含有する請求項 1 4〜 2 2のレ、ずれか 1項に記載の潤滑皮 膜剤。
2 4 分子量が 1, 0 0 0〜1, 0 0 0 , 0 0 0である水溶性もしくは水 分散性有機高分子化合物を、 皮膜中の含有量が全乾燥皮膜を基準として 0 . 5〜 2 5質量%になるような量で、 含有する請求項 1 4〜 2 3のいずれか 1項に記載 の潤滑皮膜剤。
2 5 上記請求項 1 4〜 2 4のいずれか 1項に記載の潤滑皮膜剤により形 成される潤滑皮膜。
PCT/JP2003/003511 2002-03-25 2003-03-24 Metal soap-coated particle, article made with the same, process for production, lubricating coating agent, and lubricating coating film WO2003080774A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2003236059A AU2003236059A1 (en) 2002-03-25 2003-03-24 Metal soap-coated particle, article made with the same, process for production, lubricating coating agent, and lubricating coating film
EP03720889.9A EP1491615B1 (en) 2002-03-25 2003-03-24 Metal soap-coated particle, article made with the same, lubricating coating agent, and lubricating coating film
JP2003578504A JP3939700B2 (ja) 2002-03-25 2003-03-24 金属石けん被覆粒子及びそれを用いる物及び製法、並びに潤滑皮膜剤及び潤滑皮膜
US10/508,999 US20050119133A1 (en) 2002-03-25 2003-03-24 Metal soap-coated particle article made with the same process for production lubricating coating agent and lubricating film
US12/382,215 US7879772B2 (en) 2002-03-25 2009-03-11 Process for cold plastic working of metallic materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-83906 2002-03-25
JP2002083906 2002-03-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10508999 A-371-Of-International 2003-03-24
US12/382,215 Division US7879772B2 (en) 2002-03-25 2009-03-11 Process for cold plastic working of metallic materials

Publications (1)

Publication Number Publication Date
WO2003080774A1 true WO2003080774A1 (en) 2003-10-02

Family

ID=28449192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003511 WO2003080774A1 (en) 2002-03-25 2003-03-24 Metal soap-coated particle, article made with the same, process for production, lubricating coating agent, and lubricating coating film

Country Status (6)

Country Link
US (2) US20050119133A1 (ja)
EP (1) EP1491615B1 (ja)
JP (1) JP3939700B2 (ja)
CN (1) CN100510039C (ja)
AU (1) AU2003236059A1 (ja)
WO (1) WO2003080774A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8080321B2 (en) * 2006-04-25 2011-12-20 Togo Seisakusyo Corporation Rust-preventive metallic component part
CN102922243A (zh) * 2012-12-04 2013-02-13 怀特(中国)驱动产品有限公司 整体式定子的加工方法
JP2013209625A (ja) * 2012-02-27 2013-10-10 Kobe Steel Ltd 塑性加工用水溶性潤滑剤、塑性加工用金属材および金属加工品
JP5718944B2 (ja) * 2010-12-20 2015-05-13 日本パーカライジング株式会社 金属材料の塑性加工用潤滑剤
WO2016174923A1 (ja) * 2015-04-27 2016-11-03 日本パーカライジング株式会社 固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法
WO2016194447A1 (ja) * 2015-05-29 2016-12-08 日本パーカライジング株式会社 含水潤滑膜剤、表面処理金属材料、及び、金属材料の含水潤滑膜形成方法
JPWO2015146818A1 (ja) * 2014-03-28 2017-04-13 日本パーカライジング株式会社 耐食性、加工性に優れた水系潤滑皮膜処理剤及び金属材料
CN108795550A (zh) * 2018-05-21 2018-11-13 九江职业技术学院 一种含共轭亚油酸盐的环保型导热切削液及其制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8082767B2 (en) * 2006-03-27 2011-12-27 Sumitomo Metal Industries, Ltd. Lubricant for hot metal working and powder lubricant composition for hot metal working
CN101932686B (zh) * 2007-11-16 2015-03-25 汉高股份及两合公司 干膜抗腐蚀性冷成形润滑剂
CN102280976B (zh) * 2010-06-10 2013-01-23 怀特(中国)驱动产品有限公司 定子的加工工艺方法
CN102152069B (zh) * 2011-01-30 2013-06-05 烟台鑫杰特钢有限公司 一种气阀钢型材生产方法
US9192973B1 (en) 2013-03-13 2015-11-24 Meier Tool & Engineering, Inc. Drawing process for titanium
JP6545520B2 (ja) * 2015-04-27 2019-07-17 日本パーカライジング株式会社 金属材料用水系潤滑皮膜剤、表面処理金属材料及び金属材料の潤滑皮膜形成方法
US11872616B2 (en) * 2019-08-21 2024-01-16 Jin Yuncheng Enterprise Co., Ltd. Method for manufacturing cold-forged, extruded aluminum alloy tube
CN110982604B (zh) * 2019-12-10 2021-01-19 清华大学 水性石墨基高温粘结固体润滑剂及其制备方法和应用
IT202200006158A1 (it) * 2022-03-29 2023-09-29 Condoroil Chemical S R L Processo per produrre un rivestimento per operazioni di deformazione a freddo esente da boro
CN114806234B (zh) * 2022-04-07 2022-11-29 东北大学 金属高温防护润滑涂层及其制法、用法和回收再利用方法
CN116554950B (zh) * 2023-05-19 2024-04-26 中国科学院兰州化学物理研究所 一种宽温域润滑的摩擦配副方法及应用
CN117926238A (zh) * 2024-03-25 2024-04-26 众冶(辽宁)新材料技术研究有限公司 一种冶金粉体表面改性剂组合物、表面改性剂及冶金粉体材料表面改性的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1257172A (ja) 1967-12-28 1971-12-15
JPS5144579A (ja) 1975-03-27 1976-04-16 Juzo Kahanzaka
JPS5659896A (en) 1979-10-23 1981-05-23 Nippon Steel Corp Lubricant for hot rolling of steel material
JPS5815594A (ja) 1981-07-22 1983-01-28 Kyodo Yushi Kk 潤滑組成物
GB2257712A (en) 1991-07-17 1993-01-20 Hanano Corp Lubricants for aluminium alloy forging
JPH06346075A (ja) 1993-06-04 1994-12-20 Hanano Shoji Kk 溶湯鍛造用粉末離型剤
WO1997048783A1 (en) 1996-06-21 1997-12-24 Henkel Corporation Waterborne lubricant for the cold plastic working of metals
WO1999064544A1 (en) 1998-06-09 1999-12-16 Henkel Corporation Composition and process for lubricated plastic working of metals
US6150308A (en) 1990-05-16 2000-11-21 Deruyck; Frank Additive for lubricants containing a metal complex

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039408A (en) * 1986-07-05 1991-08-13 Asahi Kogaku Kogyo K.K. Packing material for liquid chromatography
JPS5220967A (en) 1975-08-12 1977-02-17 Nippon Shii Bii Kemikaru Kk Composite lubrication coating for steel or alloy steel
NL7513232A (nl) * 1975-11-12 1977-05-16 Seikisui Chemical Co Ltd Werkwijze ter bereiding van stabilisatoren voor chloorhoudende harsen.
DE2840820A1 (de) * 1978-09-20 1980-04-03 Hoechst Ag Verfahren zur herstellung phosphorhaltiger korrosionsschutzpigmente
US4461680A (en) * 1983-12-30 1984-07-24 The United States Of America As Represented By The Secretary Of Commerce Process and bath for electroplating nickel-chromium alloys
JPH0647659B2 (ja) * 1985-09-24 1994-06-22 協和化学工業株式会社 防錆塗料組成物
JPH01110567A (ja) * 1987-10-23 1989-04-27 Teikoku Kako Co Ltd 防錆顔料組成物
US5024826A (en) * 1990-03-05 1991-06-18 E. I. Du Pont De Nemours And Company Silica particulate composition
US5480480A (en) * 1990-09-21 1996-01-02 Multicolor Specialties, Inc. Aqueous multicolor paint
US5211833A (en) * 1991-07-24 1993-05-18 Queen's University At Kingston Method for coating implants and surgical devices made of titanium and titanium alloys
US5309408A (en) * 1993-03-01 1994-05-03 Raytheon Company Sonar system
US6001784A (en) * 1993-10-05 1999-12-14 Nalco Chemical Company High melt point solid film prelube emulsion for use on aluminum and other metals
KR0168710B1 (ko) * 1994-08-11 1999-01-15 후지이 히로시 내식성 음극전착도료
US6863984B2 (en) * 1995-01-20 2005-03-08 Engelhard Corporation Catalyst and adsorption compositions having improved adhesion characteristics
US6015855A (en) * 1997-01-31 2000-01-18 Elisha Technologies Co Llc Paint formulations
JP3505633B2 (ja) 1997-09-29 2004-03-08 積水化成品工業株式会社 表面処理した非晶質リン酸カルシウム粒子とその製造方法
JP2000154010A (ja) * 1998-11-18 2000-06-06 Fuji Chem Ind Co Ltd 微粒子リン酸亜鉛及びその製法並びにそれを用いた防錆顔料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1257172A (ja) 1967-12-28 1971-12-15
JPS5144579A (ja) 1975-03-27 1976-04-16 Juzo Kahanzaka
JPS5659896A (en) 1979-10-23 1981-05-23 Nippon Steel Corp Lubricant for hot rolling of steel material
JPS5815594A (ja) 1981-07-22 1983-01-28 Kyodo Yushi Kk 潤滑組成物
US6150308A (en) 1990-05-16 2000-11-21 Deruyck; Frank Additive for lubricants containing a metal complex
GB2257712A (en) 1991-07-17 1993-01-20 Hanano Corp Lubricants for aluminium alloy forging
JPH06346075A (ja) 1993-06-04 1994-12-20 Hanano Shoji Kk 溶湯鍛造用粉末離型剤
WO1997048783A1 (en) 1996-06-21 1997-12-24 Henkel Corporation Waterborne lubricant for the cold plastic working of metals
WO1999064544A1 (en) 1998-06-09 1999-12-16 Henkel Corporation Composition and process for lubricated plastic working of metals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1491615A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8080321B2 (en) * 2006-04-25 2011-12-20 Togo Seisakusyo Corporation Rust-preventive metallic component part
JP5718944B2 (ja) * 2010-12-20 2015-05-13 日本パーカライジング株式会社 金属材料の塑性加工用潤滑剤
JP2013209625A (ja) * 2012-02-27 2013-10-10 Kobe Steel Ltd 塑性加工用水溶性潤滑剤、塑性加工用金属材および金属加工品
CN102922243A (zh) * 2012-12-04 2013-02-13 怀特(中国)驱动产品有限公司 整体式定子的加工方法
JPWO2015146818A1 (ja) * 2014-03-28 2017-04-13 日本パーカライジング株式会社 耐食性、加工性に優れた水系潤滑皮膜処理剤及び金属材料
WO2016174923A1 (ja) * 2015-04-27 2016-11-03 日本パーカライジング株式会社 固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法
JP2016204577A (ja) * 2015-04-27 2016-12-08 日本パーカライジング株式会社 固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法
WO2016194447A1 (ja) * 2015-05-29 2016-12-08 日本パーカライジング株式会社 含水潤滑膜剤、表面処理金属材料、及び、金属材料の含水潤滑膜形成方法
JP2016222793A (ja) * 2015-05-29 2016-12-28 日本パーカライジング株式会社 含水潤滑膜剤、表面処理金属材料、及び、金属材料の含水潤滑膜形成方法
CN108795550A (zh) * 2018-05-21 2018-11-13 九江职业技术学院 一种含共轭亚油酸盐的环保型导热切削液及其制备方法
CN108795550B (zh) * 2018-05-21 2021-08-03 九江职业技术学院 一种含共轭亚油酸盐的环保型导热切削液及其制备方法

Also Published As

Publication number Publication date
AU2003236059A1 (en) 2003-10-08
US7879772B2 (en) 2011-02-01
EP1491615B1 (en) 2016-07-20
CN1643120A (zh) 2005-07-20
US20090178454A1 (en) 2009-07-16
JP3939700B2 (ja) 2007-07-04
EP1491615A8 (en) 2006-03-01
US20050119133A1 (en) 2005-06-02
CN100510039C (zh) 2009-07-08
EP1491615A1 (en) 2004-12-29
EP1491615A4 (en) 2010-03-03
JPWO2003080774A1 (ja) 2005-07-28

Similar Documents

Publication Publication Date Title
WO2003080774A1 (en) Metal soap-coated particle, article made with the same, process for production, lubricating coating agent, and lubricating coating film
JP5450892B2 (ja) 塑性加工用潤滑被膜剤とその製造方法
CA2713541C (en) A process for the coating of metallic surfaces with a phosphate layer and then with a polymeric lubricant layer
JP3684363B2 (ja) 保護皮膜形成用水性組成物
JP5457452B2 (ja) 耐食性に優れる塑性加工用水系潤滑剤および塑性加工性に優れる金属材料
WO2003027188A1 (fr) Agent de traitement servant a former un revetement protecteur et materiau metallique comportant ce revetement protecteur
KR101817456B1 (ko) 내식성 및 가공성이 우수한 윤활 피막을 갖는 강선재
WO2002012419A1 (fr) Lubrifiant aqueux pour le travail au plastique d&#39;un materiau metallique et procede d&#39;elaboration d&#39;un film lubrifiant
WO2002012420A1 (fr) Lubrifiant aqueux pour le travail au plastique d&#39;un materiau metallique et procede d&#39;elaboration d&#39;un film lubrifiant
TW539744B (en) Aqueous lubricant of one process type used for high efficient cold forging
JP6362379B2 (ja) 耐食性及び加工性に優れた皮膜を有する鋼線材及びその製造方法
JP6694769B2 (ja) 耐食性及び加工後の外観に優れた鋼線材
JP4384641B2 (ja) 塑性加工用金属材料
WO2015060121A1 (ja) 塑性加工用非りん化成処理剤、処理液、化成皮膜及び化成皮膜を有する金属材料
WO2017057385A1 (ja) 耐食性及び加工後の外観に優れた鋼線材
JP4004752B2 (ja) 潤滑性に優れる鋼線又は鋼線材

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003578504

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2003720889

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003720889

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038062658

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10508999

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003720889

Country of ref document: EP