WO2016174923A1 - 固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法 - Google Patents

固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法 Download PDF

Info

Publication number
WO2016174923A1
WO2016174923A1 PCT/JP2016/056763 JP2016056763W WO2016174923A1 WO 2016174923 A1 WO2016174923 A1 WO 2016174923A1 JP 2016056763 W JP2016056763 W JP 2016056763W WO 2016174923 A1 WO2016174923 A1 WO 2016174923A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal material
solid lubricant
lubricating
mass
coating agent
Prior art date
Application number
PCT/JP2016/056763
Other languages
English (en)
French (fr)
Inventor
賢一郎 大下
小見山 忍
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to ES16786200T priority Critical patent/ES2927382T3/es
Priority to CN201680024067.6A priority patent/CN107969134B/zh
Priority to EP16786200.2A priority patent/EP3290495B1/en
Priority to US15/569,215 priority patent/US20180355275A1/en
Publication of WO2016174923A1 publication Critical patent/WO2016174923A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/041Mixtures of base-materials and additives the additives being macromolecular compounds only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • C09D5/033Powdery paints characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/04Fatty oil fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/06Metal compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/22Carboxylic acids or their salts
    • C10M105/24Carboxylic acids or their salts having only one carboxyl group bound to an acyclic carbon atom, cycloaliphatic carbon atom or hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/40Esters containing free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/74Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/04Polyethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • C10M107/34Polyoxyalkylenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/02Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a non-macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/26Compounds containing silicon or boron, e.g. silica, sand
    • C10M125/30Clay
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/24Polyethers
    • C10M145/26Polyoxyalkylenes
    • C10M145/38Polyoxyalkylenes esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • C10M2201/0663Molybdenum sulfide used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/085Phosphorus oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • C10M2201/103Clays; Mica; Zeolites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • C10M2201/103Clays; Mica; Zeolites
    • C10M2201/1033Clays; Mica; Zeolites used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/14Inorganic compounds or elements as ingredients in lubricant compositions inorganic compounds surface treated with organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/003Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • C10M2203/1065Naphthenic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/14Synthetic waxes, e.g. polythene waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/14Synthetic waxes, e.g. polythene waxes
    • C10M2205/143Synthetic waxes, e.g. polythene waxes used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/128Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids containing hydroxy groups; Ethers thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/402Castor oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • C10M2209/1045Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/045Polyureas; Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • C10M2223/0415Triaryl phosphates used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/011Cloud point
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/26Waterproofing or water resistance
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/241Manufacturing joint-less pipes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/08Solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2080/00Special pretreatment of the material to be lubricated, e.g. phosphatising or chromatising of a metal

Definitions

  • the present invention is a solid lubricant for imparting excellent lubricity to the surface of a metal material such as steel, stainless steel, aluminum, titanium, and a lubricant film containing the same, and a lubricant film formed using them. And related technology. More specifically, the present invention relates to a solid lubricant that can be used for plastic processing such as forging, wire drawing, drawing, and forging, plate material press molding, sliding parts of various devices, and the like, and And a lubricant film containing no black lubricant such as molybdenum disulfide or graphite.
  • the surface of the metal material is used for the purpose of preventing seizure or galling caused by metal contact between the workpiece and the tool and imparting corrosion resistance.
  • a film having lubricity and corrosion resistance is provided.
  • As such a film there is a reactive type in which a chemical film is formed on the surface of a metal material by a chemical reaction, and then a lubricant is further adhered thereon, and a non-contact type in which the lubricant is physically adhered to the surface of the metal material.
  • reaction types There are two types of reaction types.
  • a lubricant such as lime soap, molybdenum disulfide, or oil
  • a two-layered lubricating film with a coating applied, or a three-layered lubricating film (chemical conversion film / metal soap film / hot metal soap film) coated with a reactive soap such as sodium stearate after the chemical film is applied.
  • a three-layered lubricating film can stably exhibit excellent lubricity even in a strong working region.
  • Patent Document 1 discloses at least one water-soluble inorganic salt selected from sodium tetraborate, borax, potassium tetraborate and sodium sulfate, (B) calcium stearate, barium stearate and stearic acid.
  • Metal soap consisting of zinc, at least one solid lubricant selected from mica and PTFE, (C) at least one oil component selected from mineral oil, animal and vegetable oil and ester oil, and (D) oil component uniformly in water
  • the weight ratio (B / A) of the solid lubricant to the water-soluble inorganic salt is 0.05 / 1 to 2/1
  • the weight ratio of oil component to the total amount of water-soluble inorganic salt and solid lubricant (C / (A + B)) is 0.05 / 1 to 1/1
  • Lubricants and oil components are uniformly respectively dispersed and emulsified, cold plastic working aqueous lubricant metal material is disclosed.
  • This lubricant coating agent is a non-reactive coating type lubricant, and does not generate sludge and hardly causes deterioration of the liquid unlike the chemical conversion treatment or reactive soap with chemical reaction.
  • the water-soluble inorganic salt which is the main component of the film, has a problem in that it may absorb moisture in the air and cause deterioration of lubricity. It was necessary to control it low.
  • the lubricant contained in the lubricant film has a problem that, under severe conditions, the followability is not sufficient with respect to the area expansion of the metal surface, and the lubricity is lowered to cause galling.
  • molybdenum disulfide has been used as a solid lubricant for a long time. This is mainly because the lubricating coating containing molybdenum disulfide has low friction and good wear resistance. However, the lubricating coating agent containing molybdenum disulfide is black and contaminates the working environment. Moreover, the fact that molybdenum disulfide is expensive and inferior in economy is also the reason why development of a non-black solid lubricant is required.
  • the present invention is non-black and can reduce industrial waste (environmental conservation), and also has excellent lubricity, moisture absorption resistance, and corrosion resistance in a strong processing region.
  • the main object of the present invention is to provide a solid lubricant that can be produced, and a lubricating film agent containing the same.
  • the present inventors are characterized by comprising carrier particles containing a specific lipophilic lubricating component between particles and / or layers of a specific layered clay mineral.
  • the present inventors have found that the problem can be solved by applying a solid lubricant and a lubricant film agent for a metal material using the solid lubricant, and have completed the present invention.
  • the solid lubricant of the present invention is at least one selected from the group consisting of a smectite group, a vermiculite group, a mica group, a brittle mica group, a pyrophyllite group, a natural product of the kaolinite group, and a synthetic product thereof.
  • a solid lubricant comprising carrier particles containing at least one lipophilic lubricating component selected from oil, extreme pressure agent, soap, and wax between and / or between layers of layered clay mineral It is.
  • the aspect ratio of the layered clay mineral in the cross section is 3 to 150, preferably 5 to 100, more preferably 5 to 30.
  • the solubility parameter (SP value) of the lipophilic lubricating component is preferably 10 or less, more preferably 9 or less.
  • the water contact angle of the layered clay mineral is preferably 40 ° or more, and more preferably 60 ° or more.
  • the average particle diameter of the layered clay mineral is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the inclusion amount of the lipophilic lubricating component between the particles and / or between the layers is preferably 5% by mass or more, more preferably 8% by mass or more in terms of the mass ratio with respect to the total mass of the carrier particles. It is characterized by being.
  • the Mohs hardness of the layered clay mineral is preferably 2 or less, more preferably 1.
  • the solid lubricant can be suitably used for a lubricating coating agent for plastic working of a metal material, particularly a lubricating coating agent for cold plastic working.
  • the above-mentioned problem can also be solved by a lubricating coating agent for a metal material containing the solid lubricant.
  • the lubricating coating agent for metal materials of the present invention is a lubricating coating agent for water-based metal materials in which a component containing the solid lubricant is dispersed in water, and the concentration of the solid lubricant is the total amount in the lubricating coating agent. It is characterized by being 5 mass% or more in mass ratio with respect to the mass of the solid content.
  • a lubricant film agent for oil-based metal materials in which a component containing the solid lubricant is dispersed in oil.
  • the concentration of the solid lubricant is 5% by mass or more in terms of a mass ratio to the mass of the total solid content in the lubricant film.
  • the above-mentioned problem can be solved by a lubricating coating agent for powder-based metal materials containing a component containing the solid lubricant of the present invention.
  • the concentration of the solid lubricant is 5% by mass or more in terms of a mass ratio to the mass of the total solid content in the lubricant film.
  • the object is also solved by a surface-treated metal material characterized in that the lubricant coating agent for a metal material adheres to the surface of the metal material in an amount of 0.5 g / m 2 or more as a coating amount after drying. Can do.
  • the method for forming the lubricating film and the method for producing the surface-treated metal material it is sufficient if the method includes a contact step of bringing the metal material into contact with the lubricant film for metal material.
  • a more preferable method includes a cleaning step of cleaning the surface of the metal material by at least one cleaning means consisting of a group of shot blasting, sand blasting, alkali degreasing, and acid cleaning before the contacting step.
  • a method for forming a lubricating film of a metal material and a method for producing a surface-treated metal material can be applied.
  • a chemical conversion treatment step of coating the surface of the metal material with a chemical conversion film may be further applied before the contact step.
  • a solid lubricant, a lubricant film for a metal material, a surface-treated metal material, comprising carrier particles containing a lipophilic lubricant component between particles of a layered clay mineral and / or between layers comprising carrier particles containing a lipophilic lubricant component between particles of a layered clay mineral and / or between layers,
  • a method for forming a lubricating film of metal material it is non-black, excellent in environmental conservation, and can stably exhibit excellent lubricity even in a high-working region to prevent seizure and galling. Furthermore, it is excellent in operability such as moisture absorption resistance of the lubricating film, and also in corrosion resistance.
  • Solid lubricants reduce friction, prevent seizures, improve mold life, etc. when two objects move relative to each other. It is a substance that intervenes between objects for the purpose.
  • Solid lubricants Generally used as a component of lubricating film for plastic working, sliding members, press molding, etc. Specifically, layered clay minerals, inorganic salts, polymer materials, soft metals, etc. are applied as solid lubricants .
  • the layered clay mineral and inorganic salts themselves have cleavage properties.
  • Typical examples are molybdenum disulfide and graphite.
  • Cleavage refers to the property that when a load is applied to a solid lubricant, it breaks up and breaks at the crystal plane with the weakest atomic bonding force. Due to this property, in plastic working, the solid lubricant effectively follows the expansion of the area of the machined surface at the time of machining, and imparts slipperiness and at the same time prevents galling.
  • the first feature of the present invention is that, in a lamellar clay mineral having a cleavage property, a lipophilic lubricating component is encapsulated between particles and / or between layers corresponding to the cleavage plane, in addition to the action of the lamellar clay mineral. Further, the solid lubricant is caused to play a role as carrier particles for causing the lipophilic lubricating component to follow the area expansion of the processed surface during processing. More specifically, the layered clay mineral is a particle in which two-dimensional layered crystals are stacked and bonded in parallel. In the present invention, the space between the planes of the layered crystal is defined as an interlayer.
  • the particles in which the layered crystals are stacked and bonded in parallel are defined as primary particles
  • a plurality of primary particles are further agglomerated (aggregated) to form a larger secondary particle (the agglomerated layered clay mineral forming the secondary particles is “aggregated”).
  • the agglomerated layered clay mineral forming the secondary particles is “aggregated”.
  • interparticle It is a lamellar state in which both the layers and the particles are loosely bonded, and is a cleavage plane capable of enclosing the lipophilic lubricating component of the present invention.
  • the processing load is high as in cold plastic processing, even in processing with a high area expansion rate of the processing surface, It is possible to follow the layered clay mineral and the lipophilic lubricating component simultaneously, that is, to play a role as carrier particles, to prevent galling and at the same time to provide slipperiness, and to improve lubricity. .
  • the role of such carrier particles has not been achieved by conventional techniques.
  • the term “encapsulation” used herein means a state in which an oleophilic lubricating component is trapped between particles and / or layers of layered clay mineral.
  • the lipophilic lubricating component is held between the particles and / or between the layers of the layered clay mineral. In the “inclusive” state.
  • the lipophilic lubricating component encapsulated between the particles and / or between the layers of the lamellar clay mineral oozes out into the processing surface, and the exuded lipophilic lubricating component is processed.
  • the layered clay mineral simultaneously to wet the surface.
  • the lubricating film agent using a layered clay mineral that does not contain a lipophilic lubricating component between particles and / or between layers lacks slipperiness, so that the film can follow the area expansion during processing. May cause galling due to poor lubricity. Furthermore, since the molding load becomes high, there may be a problem such as a shortened mold life.
  • the lamellar clay mineral capable of encapsulating the lipophilic lubricating component includes smectite group natural products and synthetic products, vermiculite group natural products and synthetic products, mica group natural products and synthetic products, brittle mica. And natural products and synthetic products of the group, natural products and synthetic products of the pyrophyllite group, and natural products and synthetic products of the kaolinite group. These layered clay minerals may be used alone or in combination of two or more.
  • a material in which an organic substance is supported between layers of the layered clay mineral may be used according to a method described in International Publication No. WO2012 / 085564.
  • the organic material include at least one cationic organic compound (organic group + cationic group) selected from organic ammonium compounds, organic phosphonium compounds, and organic sulfonium compounds.
  • the organic group of the organic compound is not particularly limited, but is a linear, branched or cyclic (having a cyclic group), saturated hydrocarbon group or unsaturated hydrocarbon group having 1 to 30 carbon atoms. A group is preferred.
  • the hydrogen atom bonded to the carbon atom constituting the carbon chain or carbocycle may be substituted with another substituent, and a part of the carbon atoms constituting the carbon chain or carbocycle may be another atom.
  • a part of the carbon atoms constituting the carbon chain or carbocycle may be another atom.
  • another bond for example, an ester bond or an ether bond
  • organic salts used when introducing the organic compound between the layers chloride, bromide, iodide, nitride, fluoride, hydroxide and the like are preferable.
  • Particularly preferred organic salts are quaternary ammonium chlorides (capryltrimethylammonium chloride, lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, dicapryldimethylammonium chloride, dilauryldimethylammonium chloride which are easy to wash away by-product salts with water. Chloride, distearyldimethylammonium chloride, etc.).
  • Clay minerals are the main component minerals that make up clay.
  • Layered silicate minerals (phyllosilicate minerals), calcite, dolomite, feldspars, quartz, zeolites, etc. Those with a chain structure (attapulgite, sepiolite, etc.) and those without a clear crystal structure (allophane) are called clay minerals.
  • layered silicate minerals are used as layered clay. It is called a mineral.
  • Layered clay minerals have two-dimensional layers of positive and negative ions stacked in parallel to form a crystal structure. There are two structural units in this layer structure, one of which is Si 4+ and this. Is composed of a tetrahedron layer composed of O 2 ⁇ surrounding the other, and another is composed of an octahedral layer composed of Al 3+ (or Mg 2+ , Fe 2+, etc.) and (OH) ⁇ surrounding the same.
  • tetrahedron layer O at the four vertices of the tetrahedron and Si located at the center form an Si—O tetrahedron, which is connected to each other at the three vertices to spread two-dimensionally, and Si 4 O A layer lattice having a composition of 10 is formed. Si 4+ is often replaced by Al 3+ .
  • the octahedron layer In the octahedron layer, the octahedron formed by (OH) or O at the six vertices of the octahedron and Al, Mg, Fe, etc. located at the center of the octahedron is connected at each vertex and spreads two-dimensionally.
  • a layer lattice having a composition such as Al 2 (OH) 6 or Mg 3 (OH) 6 is formed.
  • a divalent cation such as Mg 2+
  • a divalent cation enters the lattice point of the cation surrounded by 6 anions, and occupies all of the lattice points.
  • a 2-octahedron type in which trivalent cations (Al 3+, etc.) enter lattice points and occupy 2/3 of the lattice points, and the remaining 1/3 is empty.
  • tetrahedral layers and octahedral layers There are two types of combinations of tetrahedral layers and octahedral layers.
  • the smectite group, vermiculite group, mica group, and pyrophyllite group are layered clay minerals having a 2: 1 type structure
  • the kaolinite group is a layered clay mineral having a 1: 1 structure.
  • the crystal structure of the layered clay mineral is a 1: 1 structure, and an octahedron having a hydrophilic group (OH, etc.) is oriented on the surface. It is thought that it shows hydrophilicity.
  • the crystal structure is a 2: 1 structure, a tetrahedron having a hydrophobic group (SiO) on the surface is oriented, so it is considered that the hydrophilicity tends to be lower than that of the 1: 1 structure. .
  • the layered clay minerals belonging to each group will be described in more detail.
  • Vermiculite tri.
  • Any of these layered clay minerals can be used in the lubricating coating agent for metal materials of the present invention.
  • at least one selected from the two types belonging to the pyrophyllite group is particularly preferable. is there. This is because the layered clay mineral belonging to the pyrophyllite group has low Mohs hardness and excellent lipophilicity.
  • the lipophilic lubricating component included between the particles of the layered clay mineral and / or between the layers is at least one selected from oil, extreme pressure agent, soap, and wax. .
  • the oil at least one selected from the group consisting of mineral oil, animal and vegetable oil, and synthetic oil can be used. More specifically, as the mineral oil, for example, naphthenic mineral oil, machine oil based on paraffinic mineral oil, turbine oil, spindle oil, or the like can be used. Examples of animal and vegetable oils include palm oil, rapeseed oil, coconut oil, castor oil, beef tallow, pork oil, whale oil, fish oil, or those obtained by adding ethylene oxide (for example, polyoxyethylene castor oil (ethylene oxide adduct)) ) Etc. can be used.
  • mineral oil for example, naphthenic mineral oil, machine oil based on paraffinic mineral oil, turbine oil, spindle oil, or the like can be used.
  • animal and vegetable oils include palm oil, rapeseed oil, coconut oil, castor oil, beef tallow, pork oil, whale oil, fish oil, or those obtained by adding ethylene oxide (for example, polyoxyethylene castor oil (ethylene oxide adduct)) ) Etc
  • Synthetic oils include ester oils (eg, esters of polyhydric alcohols such as ethylene glycol and trimethylolpropane and fatty acids such as stearic acid, oleic acid, and linoleic acid (trimethylolpropane trioleic acid ester, etc.)), silicone Oils (eg, polydimethylsiloxane, polydiphenylsiloxane, etc.) can be used.
  • Hydrophobic organic compounds for example, organic ammonium compounds, organic phosphonium compounds, organic sulfonium compounds, and organic amine compounds
  • the synthetic oil as the lipophilic lubricating component of the present invention.
  • Mineral oil is naphthenic mineral oil, animal and vegetable oil is vegetable oil palm oil, castor oil, and those added with ethylene oxide (polyoxyethylene vegetable oil (ethylene oxide adduct)), synthetic oil is ester oil (Trimethylolpropane trimethyloleate) is preferred.
  • extreme pressure agent those that effectively exert extreme pressure action on the friction surface between the metal material and the tool during processing are preferable.
  • extreme pressure agents include sulfurized olefins, sulfurized esters, sulfites, thiocarbides, phosphate esters, phosphite esters, molybdenum dithiocarbamate (MoDTC), molybdenum dithiophosphate (MoDTP), and zinc dithiophosphate (ZnDTP).
  • MoDTC molybdenum dithiocarbamate
  • MoDTP molybdenum dithiophosphate
  • ZnDTP zinc dithiophosphate
  • Tricresyl phosphate and the like, and phosphate (tricresyl phosphate) is preferable.
  • the oil and the extreme pressure agent can be individually encapsulated in the layered clay mineral, but in order to obtain higher lubricity, it is preferable to use the oil and the extreme pressure agent in combination.
  • the ratio of oil to extreme pressure agent is preferably in the range of 1: 0.03 to 1: 1 by mass ratio.
  • the lubricity is further improved by imparting an extreme pressure action.
  • the ratio of oil to extreme pressure agent exceeds 1: 1, the extreme pressure action is almost saturated.
  • Soap includes alkali metal salts of fatty acids having 12 to 26 carbon atoms (such as stearic acid, myristic acid, palmitic acid), or fatty acids having 12 to 26 carbon atoms (such as stearic acid, myristic acid, palmitic acid) and zinc
  • a metal soap obtained by reacting at least one metal selected from calcium, barium, aluminum, and magnesium.
  • the melting point of the soap is preferably 100 to 250 ° C.
  • the soap is more preferably a metal soap (zinc stearate) obtained by reacting an alkali metal salt of stearic acid, a fatty acid having 12 to 26 carbon atoms and zinc.
  • the structure and type of the wax are not particularly specified, but the melting point is preferably 70 to 150 ° C. because it melts by heat generated during processing and expresses lubricity.
  • the wax having a melting point in this range include microcrystalline wax, polyethylene wax, polypropylene wax, and carnauba wax, and polyethylene wax is preferable.
  • a solubility parameter (SP value, unit (cal / cm 3 ) 1/2 ) can be mentioned.
  • SP value unit (cal / cm 3 ) 1/2
  • the solubility parameter is a parameter relating to solubility or compatibility in a two-component system. The closer the solubility parameter values of the components are, the better the solubility and compatibility.
  • Various measurement methods are disclosed.
  • a typical measurement method includes a method of obtaining SP value from solubility in a known solvent, a method such as Fedors method based on theoretical calculation, and turbidity titration method.
  • the SP value measurement method in the present invention is described in K.K.
  • the turbidity titration method devised by WSuh et al. was applied (J. Appl. Polym. Sci., 12, 2359 (1968)).
  • a lipophilic lubricating component is dissolved in a good solvent having a known SP value, and turbidity titration is performed with a poor solvent having an SP value higher than that solvent and a poor solvent having a lower SP value.
  • the SP value of the lubricating component can be obtained.
  • the SP value of water is about 23, and the lower the SP value of the target component, the higher the lipophilicity.
  • the SP value of the lipophilic lubricating component used in the present invention is preferably 10 or less, more preferably 9 or less.
  • the SP value of the oleophilic lubricating component exceeds 10
  • the oleophilic property is lowered, so that the amount of the oleophilic lubricating component encapsulated between the layers of the layered clay mineral is reduced, and the lubricity may be lowered.
  • the hydrophobicity of the lubricating component is lowered, the barrier property against corrosion factors such as water and chlorine is lowered, and the corrosion resistance may be lowered.
  • the lower limit value of the SP value of the oleophilic lubricating component is not particularly specified, but is, for example, 7 or more.
  • lipophilic lubricating component when two or more kinds are mixed and used (for example, oil and extreme pressure agent), if the difference between the SP values is 1.5 or less, the compatibility is excellent and higher. Lubricity can be obtained.
  • the interlayer and surface characteristics of the layered clay mineral are oleophilic.
  • This parameter includes the contact angle with water.
  • the contact angle with water on the surface of the layered clay mineral alone is preferably 40 ° or more, more preferably 60 ° or more.
  • the upper limit value of the water contact angle of the layered clay mineral is not particularly specified, but is, for example, 150 ° or less. When the contact angle with water on the surface of the layered clay mineral is 40 ° or more, lubricity and corrosion resistance are further improved.
  • the layered clay mineral alone has a water contact angle of 40 ° or more and the SP value of the lipophilic lubricating component is 10 or less. . If the contact angle with water of the layered clay mineral alone is 40 ° or more and the SP value of the lipophilic lubrication component is 10 or less, the lipophilic lubrication component is more efficiently lipophilic and highly compatible with each other. Can be included between particles and / or between layers.
  • the inclusion amount of the oleophilic lubricating component is preferably 5% by mass or more, more preferably 8% by mass or more in terms of the mass ratio with respect to the total mass of the carrier particles.
  • the upper limit of the amount of inclusion of the lipophilic lubricating component is not particularly limited, but is, for example, 50% by mass or less.
  • the Mohs hardness of the layered clay mineral used in the solid lubricant of the present invention is preferably 2 or less from the viewpoint of lubricity. A more preferable Mohs hardness is 1. The reason for this is that the solid lubricant is destroyed on the processed surface of plastic working and press working, and follows the area expansion direction. However, the lower the Mohs hardness of the layered clay mineral, the lower the coefficient of friction, and the carrier for the lipophilic lubricating component. This is because the lubricating properties tend to be excellent, and as a result, better lubricating properties can be obtained. “Carrier property” here means that the layered clay mineral becomes easier to follow the area expansion direction as a result of the lower coefficient of friction of the layered clay mineral.
  • the Mohs hardness can be measured with a Mohs hardness meter. That is, 10 types of minerals with different hardness (10 levels of Mohs hardness 1-10, 1 being the softest and 10 being the hardest) are used as standard materials, and whether or not the surface of the target material is scratched. To evaluate. If scratches do not occur, use a reference material with higher hardness and evaluate until scratches occur. If there is a flaw, confirm that the surface of the standard material will be flawed with the target substance, and make it the Mohs hardness of the substance. This is because the same hardness can damage each other.
  • the solid lubricant containing the lipophilic lubricating component of the present invention can be used as a solid lubricant for a lubricating coating agent of any one of a water-based lubricating coating agent, an oil-based lubricating coating agent, and a powder-based lubricating coating agent.
  • the solid lubricant of the present invention may be dispersed in water with a surfactant or the like.
  • the concentration of the solid lubricant is adjusted so as to be 5% by mass or more, more preferably 20% by mass or more by mass ratio with respect to the mass of the total solid content (film component) in the lubricant film agent. Lubricity can be drastically improved by setting the concentration of the solid lubricant to 5% by mass or more, and lubricity can be further improved by setting the concentration to 20% by mass or more.
  • the upper limit of the concentration of the solid lubricant is not particularly limited, but is, for example, 95% by mass or less, and preferably 80% by mass or less.
  • the concentration of the total solid content (film component) including the solid lubricant is that the concentration is appropriately adjusted so that the amount of the film after drying is 0.5 g / m 2 or more. Is. However, depending on the state of the metal surface (roughness, etc.) and the required degree of processing, the appropriate total solid content in the lubricant film may vary, but in general, solid lubrication in the lubricant film
  • the concentration of the total solid content (film component) including the agent is preferably 3% by mass or more when the total mass (including water) of the lubricant film agent is 100% by mass. If the concentration is lower than this, the amount of film after drying decreases, and the expected lubricity may not be obtained.
  • the upper limit of the concentration of the total solid content is not particularly limited, but is, for example, 70% by mass or less, and more preferably 50% by mass or less.
  • membrane component) with respect to the total mass (a water is also included) of a lubricating film agent can be measured with the following method. That is, a specified amount of the lubricating film agent is collected in a Teflon (registered trademark) container, and the collected amount is accurately weighed. Then, it is placed in an oven at 110 ° C. for 2 hours to evaporate volatile components such as water, and accurately measures the amount of residue (nonvolatile components). From each weighed value, the total solid content concentration is calculated by the following formula.
  • the weighed value after drying in the following formula is the “mass of total solid content (film component)” when calculating the concentration of the solid lubricant in the aqueous lubricant film.
  • Total solid content concentration (% by mass) [(weighing value after drying) / (weighing value before drying)] ⁇ 100
  • Components other than the solid lubricant in the water-based lubricant coating agent are a base component and / or a binder component of the lubricant coating. Specifically, at least one selected from water-soluble inorganic salts, water-soluble organic salts, water-based resins, oil-based resins, oils, extreme pressure agents, soaps, and waxes can be applied.
  • the solid lubricant of the present invention can be more firmly attached to the surface of the metal material, and excellent lubricity can be exhibited even in a more severe processing region. .
  • Water-soluble inorganic salts, water-soluble organic salts, and water-based resins are hygroscopic and have a property that lubricity tends to be lowered.
  • the lubricity is greatly contributed by the solid lubricant composed of carrier particles containing a lipophilic lubricating component between layers and / or particles of the layered clay mineral.
  • the moisture absorption of components such as a water-soluble inorganic salt added as a binder component, a water-soluble organic salt, a water-based resin, does not become a problem substantially.
  • the water-soluble inorganic salt is at least one selected from the group consisting of sulfate, silicate, borate, molybdate, vanadate, tungstate, phosphate, and condensed phosphate. It is a seed.
  • the water-soluble organic salt is at least one selected from the group consisting of malate, succinate, citrate, and tartrate.
  • the cation of these salts is at least one selected from the group consisting of sodium ions, potassium ions, lithium ions, ammonium ions, amines (such as ethylamine), and alkanolamines (such as monoethanolamine, diethanolamine).
  • tungstate, borate, and condensed phosphate are particularly excellent as a base component and a binder of the lubricating film, and high lubricity can be obtained.
  • the water-based resin that is, the water-soluble or water-dispersible polymer resin can be selected from at least one polymer resin having a weight average molecular weight of 1,000 to 1,000,000.
  • the average particle size (volume basis) of the water-dispersible polymer resin is preferably 0.5 to 50 ⁇ m.
  • the type of polymer resin is not particularly limited as long as it has film-forming properties and can be stably dissolved or dispersed.
  • acrylic resin, urethane resin, epoxy resin, phenol resin, hydroxyethyl cellulose Polymer resins such as carboxymethyl cellulose and polyvinyl alcohol can be used.
  • the weight average molecular weight of the polymer resin can be measured by a gel permeation chromatography method (GPC method).
  • Oils, extreme pressure agents, soaps and waxes are also lipophilic lubricating components.
  • these components are included between and / or between layers of layered clay minerals, but are also used as the base component of the film. be able to.
  • the oil, extreme pressure agent, soap, and wax that can be used as the base component of the lubricating film or the binder may be the same as those encapsulated between the particles of the layered clay mineral and / or between the layers.
  • the lubricity is better when the oil and the extreme pressure agent are used in combination.
  • the ratio of oil to extreme pressure agent is preferably in the range of 1: 0.03 to 1: 1 by mass ratio.
  • the solid lubricant of the present invention and the surfactant that disperses the oil or extreme pressure agent as a base component in water include nonionic surfactants, anionic surfactants, amphoteric surfactants. Either a surfactant or a cationic surfactant can be used.
  • the nonionic surfactant is not particularly limited.
  • polyoxyethylene alkyl ether polyoxyalkylene (ethylene and / or propylene) alkylphenyl ether, polyethylene glycol (or ethylene oxide) and higher fatty acid (for example, having 12 to 18 carbon atoms)
  • polyoxyethylene sorbitan alkyl esters composed of sorbitan, polyethylene glycol and higher fatty acids (for example, having 12 to 18 carbon atoms).
  • the anionic surfactant is not particularly limited, and examples thereof include fatty acid salts, sulfate ester salts, sulfonate salts, phosphate ester salts, and dithiophosphate ester salts.
  • amphoteric surfactant is not particularly limited, and examples thereof include amino acid type and betaine type carboxylate, sulfate ester salt, sulfonate salt, and phosphate ester salt. Although it does not specifically limit as a cationic surfactant, For example, an aliphatic amine salt, a quaternary ammonium salt, etc. are mentioned. These surfactants can be used alone or in combination of two or more.
  • the concentration of the surfactant is preferably 0.5 to 20% by mass with respect to the mass of the total solid content (film component) in the lubricant film.
  • the proportion of the surfactant exceeds 20% by mass, the dispersibility of the solid lubricant is improved, but the lubricating film becomes brittle and the lubricity may be lowered.
  • the amount is less than 0.5% by mass, the dispersibility of the solid lubricant is deteriorated and a uniform lubricating film cannot be formed.
  • a viscosity index improver may be added to the oil or extreme pressure agent encapsulated in the layered clay mineral or the oil or extreme pressure agent as the base component of the lubricating film in order to obtain higher lubricity.
  • at least one viscosity index improver selected from polymethacrylates, olefin copolymers, and polyisobutylenes can be used.
  • the viscosity index (JIS K2283) is preferably 100 or more, more preferably 200 or more.
  • the concentration of the viscosity index improver is 1 to 10% by mass, more preferably 1 to 5% by mass with respect to the total amount of oil and / or extreme pressure agent.
  • the concentration of the solid lubricant is 5% by mass or more, more preferably 20% by mass or more, and still more preferably 30% by mass or more in terms of mass ratio to the mass of the total solid content in the lubricant film.
  • the concentration of the solid lubricant is increased to 5% by mass or more, 20% by mass or more, and 30% by mass or more, the lubricity can be further improved.
  • the upper limit of the concentration of the solid lubricant is not particularly limited, but is, for example, 95% by mass or less, and preferably 80% by mass or less.
  • the same oils, extreme pressure agents, soaps, waxes, oil-based resins, and viscosity index improvers as the base components can be used as those used for the water-based lubricant film.
  • an oil-based resin that can be dissolved or dispersed in oil may be added as a binder.
  • at least one resin selected from the group consisting of acrylic resin, urethane resin, epoxy resin, phenol resin and the like having a weight average molecular weight of 1,000 to 1,000,000 may be used as the binder. It can.
  • the concentration of addition is not particularly limited, but is preferably in the range of 3 to 50% by mass with respect to the total solid content of the lubricating coating.
  • the concentration of the solid lubricant is 5% by mass or more, more preferably 30% by mass ratio to the total solid content in the lubricant film. It may be used by adjusting to more than%. Lubricity can be drastically improved by setting the concentration of the solid lubricant to 5% by mass or more, and lubricity can be further improved by setting the concentration to 30% by mass or more.
  • the powder-based lubricant coating agent the solid lubricant itself may be directly applied to a metal material by an electrostatic powder coating method or the like (in this case, the concentration of the solid lubricant is 100% by mass).
  • a high molecular resin may be used as a binder for the solid lubricant.
  • the type of such a polymer resin is not particularly limited, but is a powder resin having a weight average molecular weight of 1,000 to 1,000,000 and an average particle size of 0.5 to 30 ⁇ m, an acrylic resin, Urethane resin, epoxy resin, phenol resin, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, and the like can be applied.
  • the surface-treated metal material according to the present invention is characterized in that the above-described lubricating coating agent for a metal material according to the present invention is provided on the surface of the metal material with a coating amount of 0.5 g / m 2 or more as a dry coating amount. It is.
  • the setting of the coating amount may be appropriately determined according to the required processing level. However, if the coating amount is less than 0.5 g / m 2 , the lubricating coating may not be completely covered depending on the roughness of the surface of the metal material, so care must be taken in terms of lubricity and corrosion resistance.
  • the upper limit of the coating amount is not particularly specified, but even if it is formed to exceed 40 g / m 2 , improvement in lubricity corresponding to that can no longer be expected, and it is not economical, and uniform coatability is poor. Problems such as poor adhesion and generation of indentation marks due to the remaining film may occur.
  • the method for forming a lubricant film of a metal material according to the present invention and the method for producing a surface-treated metal material according to the present invention include a contact step of bringing the metal material into contact with the lubricant film for metal material according to the present invention. It is. Specifically, in the case of water-based lubricant coating agents and oil-based lubricant coating agents, immersion method, flow coating method, spray method, brush coating, liquid electrostatic coating method and the like can be applied. The application is not particularly limited as long as the surface is sufficiently covered with the lubricating coating agent of the present invention. In the case of water-based lubricant coating agents, it is necessary to dry after application. Drying may be performed at room temperature, but is preferably performed at 60 to 150 ° C. for 1 to 30 minutes.
  • a water-based lubricating coating agent it is preferable to heat the metal material to 60 to 100 ° C. and bring it into contact with the water-based lubricating coating agent in order to improve the drying property.
  • the metal material may be brought into contact with a water-based lubricating coating agent heated to 50 to 90 ° C.
  • the method for applying the powder-based lubricating coating agent is not particularly limited, but it is preferable to apply the electrostatic powder coating method from the viewpoint of uniform coating properties and ease of control of the coating thickness.
  • cleaning step is intended to remove oxide scales and various types of dirt (oil, etc.) grown by annealing or the like.
  • cleaning is intended to remove oxide scales and various types of dirt (oil, etc.) grown by annealing or the like.
  • reduction of wastewater treatment load is desired due to environmental problems. In this case, zero metal wastewater can be achieved by cleaning the surface of the metal material by shot blasting and then carrying out a contact step using the lubricating coating agent of the present invention.
  • the lubricating coating agent for metal materials of the present invention is a non-reactive type lubricating coating agent that does not involve a chemical conversion reaction. However, after the chemical coating is formed in advance on the surface of the metal material (chemical conversion treatment step), the lubricating coating of the present invention Can also be used.
  • As a component of the chemical conversion film at least one phosphate selected from Zn, Fe, Mn, Ni, Co, Ca, Mg, and Al (metal material: steel, aluminum, magnesium, etc.), iron oxalate ( Metal materials: stainless steel, aluminum fluoride (metal material: aluminum), zirconium oxide (metal materials: steel, aluminum, magnesium, etc.) and the like.
  • the parameters for efficiently including the lipophilic lubricating component between the particles and / or between the layers of the layered clay mineral include (1) the lipophilicity and the hydrophilicity of the layered clay mineral.
  • the SP value of the oil-based lubricating component, (2) the inclusion method, and (3) the average particle diameter and aspect ratio of the layered clay mineral are mentioned.
  • the lipophilicity (contact angle with water) of the layered clay mineral and the SP value of the lipophilic lubricating component are as described above.
  • the encapsulation method in the case of oil or extreme pressure agent that is liquid at room temperature, a method of adding a predetermined amount of oil and extreme pressure agent to the powder of layered clay mineral and encapsulating the mixture while stirring can be mentioned. Also, if you want to encapsulate in a shorter time and want to increase the amount of inclusion, not only simply adding and stirring, but after mixing the lamellar clay mineral and oil, and extreme pressure agent in the decompression tank, return to atmospheric pressure, It is preferable to apply a so-called reduced pressure impregnation treatment method, a method of encapsulating oil in a state where the viscosity is lowered by heating.
  • soap or wax that is solid at room temperature it is made into a liquid state at a temperature higher than the melting point and then mixed with layered clay mineral and encapsulated between layers, or a lubricant is applied to the surface of the metal material. Later, it may be put in an oven maintained at a temperature higher than the melting point and encapsulated between layers during drying.
  • the lipophilic lubricating component can be interposed not only between the layers but also between the particles.
  • the average particle size of the layered clay mineral is preferably 0.5 to 30 ⁇ m, more preferably 1 to 20 ⁇ m, still more preferably 1 to 10 ⁇ m.
  • the average particle size is 30 ⁇ m or less, the oleophilic lubricating component is easily contained between the layers, so that the lubricity and corrosion resistance are improved.
  • the average particle size is as small as 30 ⁇ m or less, 20 ⁇ m or less, and 10 ⁇ m or less, the lubricity is further improved. Even if the average particle size is less than 0.5 ⁇ m, the lubricity and the corrosion resistance are good, and it is selected from the viewpoint of cost (manufacturing cost) and effect (lubricity and corrosion resistance).
  • the range of the aspect ratio in the cross section of the layered clay mineral is preferably 3 to 150, more preferably 5 to 100, and further preferably 5 to 30.
  • the aspect ratio exceeds 150, the amount of the lipophilic lubricating component contained becomes small, and the lubricity and corrosion resistance may decrease. Further, as the aspect ratio is reduced to 150 or less, 100 or less, or 30 or less, the lubricity is further improved.
  • the aspect ratio is less than 3, there is no problem with the amount of the lipophilic lubricating component included, but since the thickness of the layered clay mineral particles is increased, the followability of the lubricating film is reduced and the lubricity is deteriorated. There is a case.
  • the average particle diameter of the water-dispersible polymer resin and the layered clay mineral can be measured by a laser diffraction method (volume basis).
  • the average particle size of the layered clay mineral in the present invention is intended for primary particles. In order to minimize the influence of secondary particles, which are aggregates of primary particles, 3 minutes to 5 minutes in advance. The particle size is measured after redispersion by ultrasonic waves (dissolving secondary particles in which primary particles are aggregated and separating them again into primary particles). This eliminates the influence of secondary particles, which are aggregates of primary particles, as much as possible, and allows the average particle diameter of the primary particles to be measured. Therefore, the average particle diameter of the layered clay mineral in the present invention is an average value based on volume of the particle diameter of primary particles of the layered clay mineral.
  • the aspect ratio in the present invention is defined as the aspect ratio in the cross section of the layered clay mineral, and is determined by the following formula. That is, the layered clay mineral used in the present invention is a plate-like or scaly particle in which two-dimensional layered crystals are stacked and bonded in parallel as described above, but the thickness of the particle (perpendicular to the cleavage plane).
  • the ratio of the length of the plane portion (ie, the crystal plane parallel to the cleavage plane) to the length in the direction corresponds to the aspect ratio in the cross section of the layered clay mineral.
  • the thickness of the layered clay mineral particles and the length of the planar portion can be measured by magnifying them by about 3000 times with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the thickness of the layered clay mineral particles is a thickness that can be observed when observing about 3000 times with an SEM, and does not necessarily mean a thickness in a unit cell.
  • Aspect ratio length of flat part of particle / thickness
  • the inclusion amount of the lipophilic lubricating component in the layered clay mineral is determined by setting the SP value of the lipophilic and lipophilic lubricating component of the layered clay mineral and the average particle diameter and aspect ratio of the layered clay mineral within a specific range. It is possible to more reliably realize the content of 5% by mass or more.
  • the above-described reduced pressure impregnation method a method of mixing soap or wax in a liquid state at a temperature equal to or higher than the melting point with layered clay mineral and encapsulating between particles or between layers, or after applying a lubricant to the surface of a metal material It is possible to further increase the amount of the lipophilic lubricating component included by using a method such as putting in an oven maintained at a temperature equal to or higher than the melting point and encapsulating between particles or layers during drying.
  • the layered viscosity mineral was magnified 3000 times with a scanning electron microscope, and the particle thickness (length in a direction perpendicular to the cleavage plane) and the plane portion (that is, with respect to the cleavage plane). It was calculated from the length of the parallel crystal plane.
  • the organic treatment of the layered clay mineral was carried out according to the method described in International Publication No. WO2012 / 085564.
  • the contact angle with water was measured with a layered clay mineral powder spread between two copper plates (50 ⁇ 50 mm), pressed with a tightening force of 100 kgf to form a film.
  • an automatic contact angle meter DM-501 manufactured by Kyowa Interface Science Co., Ltd. was used.
  • Kaolinite average particle diameter 3 ⁇ m, water contact angle 20 °, Mohs hardness 2 Aspect ratio 20 A-2 Organically treated kaolinite: average particle size 3 ⁇ m, contact angle with water 40 °, Mohs hardness 2 Aspect ratio 20 Distearyldimethylammonium chloride is converted into cation exchange capacity (C (EC value) is organically treated in an amount corresponding to 0.2 mol.
  • C cation exchange capacity
  • A-3 Organically treated kaolinite average particle size 3 ⁇ m, contact angle with water 60 °, Mohs hardness 2
  • Aspect ratio 20 Distearyldimethylammonium chloride is converted into cation exchange capacity (C EC treatment) with an organic treatment in an amount equivalent to 0.4 mol.
  • A-4 Organically treated kaolinite average particle diameter of 3 ⁇ m, contact angle with water of 110 °, Mohs hardness of 2
  • Aspect ratio 20 Distearyldimethylammonium chloride is converted into cation exchange capacity (C EC treated with an amount equivalent to 1.0 molar amount.
  • the lipophilic lubricating component is shown below.
  • the said turbidity titration method was applied for the measuring method of a solubility parameter (SP value).
  • SP value solubility parameter
  • B-1 Vegetable oil Palm oil
  • B-2 Vegetable oil Castor oil
  • B-3 Vegetable oil Polyoxyethylene castor oil (ethylene oxide 0.5 Mole addition product)
  • B-4 Vegetable oil Polyoxyethylene castor oil (1 mol of ethylene oxide added product) SP value 11.6
  • Mineral oil Naphthenic mineral oil
  • Synthetic oil Trimethylolpropane trioleate
  • B-8 Zinc stearate melting point 120 ° C
  • B-9 Polyethylene wax, melting point 110 ° C.
  • the base component of the lubricating film and the binder used in the test are shown below.
  • ⁇ Base component and binder> C-1 Sodium tungstate C-2 Potassium tetraborate C-3 No. 3 sodium silicate C-4 Sodium tripolyphosphate C-5 Sodium tartrate C-6 Potassium stearate C-7
  • the surfactant used for the test is shown below. ⁇ Surfactant> D-1 Tetraoleic acid polyoxyethylene sorbitol (60 mol of ethylene oxide added)
  • the lubricating component is liquefied at a temperature equal to or higher than the melting point and added to the layered clay mineral (mass ratio of 1: 1), By mixing until the whole became uniform with a mortar, the lubricating component was included between the particles and / or between the layers. Then, after removing the wax (or zinc stearate) adhering to the surface of the particles by immersing in an oil bath heated above the melting point of the wax (or zinc stearate) for 10 minutes, further for 10 minutes in boiling water After removing the oil on the particle surface by dipping, it was left to dry at room temperature for 24 hours.
  • the amount of the lipophilic lubricating component contained was measured using a total organic carbon meter (TOC-5000 / SSM-5000A manufactured by Shimadzu Corporation) with a solid sample combustion device attached. Details of the measurement method are described below. First, a lipophilic lubricating component alone (lipophilic lubricating component itself) to be included is completely burned at a furnace temperature of 700 ° C., and a calibration curve of carbon strength-lubricating component amount is prepared.
  • a lubricant film for metal material (see Table 3) in which a lubricant was dispersed was applied.
  • Drying The test piece after the lubrication treatment was dried at 150 ° C. for 3 minutes.
  • Degreasing A test piece (metal material) was immersed for 10 minutes in a commercially available degreasing agent (registered trademark Fine Cleaner E6400, manufactured by Nihon Parkerizing Co., Ltd., concentration 20 g / L) heated to 60 ° C.
  • Water washing The test piece after degreasing was immersed in tap water at room temperature for 30 seconds.
  • Chemical conversion treatment step A commercially available phosphate treatment solution heated to 80 ° C. (registered trademark Palbond 181X, manufactured by Nihon Parkerizing Co., Ltd., concentration 90 g / L), and a test piece after washing with water Was immersed for 10 minutes.
  • Washing with water The test piece after the chemical conversion treatment was immersed in tap water heated to 60 ° C. for 30 seconds.
  • Lubrication treatment (contact process) The test piece after washing with water was immersed in a lubricant film for metal material (see Table 1) heated to 60 ° C. for 30 seconds.
  • Drying The test piece after the lubrication treatment was dried at 80 ° C. for 3 minutes.
  • Table 1 shows the test level of the lubricating coating agent for water-based metal materials.
  • Table 2 shows the test levels of the lubricating coating agent for oil-based metal materials.
  • Table 3 shows the test levels of lubricant coatings for powder metal materials.
  • Test material S45C spheroidizing annealing material (25 mm ⁇ ⁇ 30 mm)
  • Test method Executed according to the invention of Japanese Patent No. 3227721. The evaluation was performed by visual observation of the lubricating film followed by the test piece protrusion. In this test, in order to confirm the presence or absence of lubrication deterioration due to re-absorption of the lubricant film, the lubricant film was completely dried at 80 ° C. for 3 minutes, and after complete drying at 30 ° C., relative humidity 80%, 5 hours. The lubricity was compared with the case where the lubricant film was absorbed under the above conditions. The evaluation criteria are shown below.
  • Evaluation criteria S: The film sufficiently follows the tip of the protrusion (a state in which there is almost no metallic luster). A: The film follows the tip of the protrusion. B: The film follows up to the top of the protrusion. C: The film follows up to the center of the protrusion. D: The film follows to the bottom of the protrusion.
  • Test material S45C, ⁇ 3.0mm, length 50000mm
  • Test method Using an R die, the wire was drawn under the condition of a surface reduction rate of 5 to 20%. The evaluation was performed in accordance with the following evaluation criteria, with a limit area reduction rate that allows stable wire drawing without scratches and chatter. B and above are practical levels. Evaluation criteria: S: The limit area reduction rate is 23% or more. A: The limit area reduction is 20% or more and less than 23%. B: The limit area reduction rate is 15% or more and less than 20%. C: The limit area reduction rate is 10% or more and less than 15%. D: The limit area reduction rate is less than 10%.
  • Test material STKM17A, ⁇ 25.4 mm ⁇ 2.5 mmt, length 2000 mm
  • Test method Using a drawing machine (drawbench), an R die and a cylindrical plug were used and the drawing speed was 20 m / min.
  • the evaluation was performed in accordance with the following evaluation criteria, with a limit area reduction rate that can be stably expanded without scratches or chatter.
  • the level B or higher is a practical level.
  • A The limit area reduction is 50% or more and less than 53%.
  • B The limit area reduction is 45% or more and less than 50%.
  • C The limit area reduction is 40% or more and less than 45%.
  • D The limit area reduction rate is less than 40%.
  • Test material SPCC-SD, 70 mm x 150 mm x 0.8 mmt Test method: In the corrosion resistance test, a flat plate test piece on which a lubricating film was formed was left in a factory in the Hiratsuka area for one month, and the rusting area ratio was evaluated. The average temperature inside the factory was 27.6 ° C. and the average humidity was 75%. In the evaluation criteria shown below, B or higher is a practical level. Evaluation criteria: A: Rust area ratio is less than 1%. B: Rust area ratio is 1% or more and less than 10%. C: Rust area ratio is 10% or more and less than 30%. D: Rust area ratio is 30% or more and less than 80%.
  • Table 4 shows the evaluation results of the lubricating coating agent for water-based metal materials.
  • Table 5 shows the evaluation results of the lubricating coating agent for oil-based metal materials.
  • Table 6 shows the evaluation results of the lubricating coating agent for powder metal materials.
  • Table 7 shows the evaluation results of the comparative examples.
  • the lubricating coating agent for metallic materials according to the examples of the present invention has a performance of a practical level (B evaluation or higher) or higher in all evaluation tests.
  • the lubricity was a practical level, but the environmental performance was C evaluation.
  • Comparative Example 2 the corrosion resistance, environmental properties, and appearance were practical levels, but the lubricity in the hygroscopic state was C evaluation.
  • Comparative Examples 3 to 5 are lubricants that do not contain the solid lubricant of the present invention, but all the lubricity tests and corrosion resistance were C evaluation or less, and were not at a practical level.
  • Comparative Example 6 was excellent in lubricity, corrosion resistance, and environmental properties, but the film appearance was black and was C evaluation. From the above results, it can be said that the present invention has a higher industrial utility value than the prior art.

Abstract

【課題】非黒色でかつ産業廃棄物が低減でき(環境保全性)、さらに、強加工領域での優れた潤滑性、耐吸湿性、及び耐食性が両立できる固体潤滑剤、ならびにそれを含む潤滑皮膜剤の提供。 【解決手段】スメクタイト群、バーミキュライト群、雲母群、脆雲母群、パイロフィライト群、カオリナイト群の天然品、及びこれらの合成品からなる群から選ばれる少なくとも1種の層状粘土鉱物の粒子間、及び/又は層間に、油、極圧剤、石けん、及びワックスから選ばれる少なくとも1種である親油性潤滑成分を内包するキャリア粒子からなることを特徴とする、固体潤滑剤。

Description

固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法
 本発明は、鉄鋼、ステンレス、アルミニウム、チタンなどの金属材料の表面に、優れた潤滑性を付与させるための固体潤滑剤、及びそれを含む潤滑皮膜剤と、それらを用いて形成した潤滑皮膜、並びにこれに関連した技術に関する。さらに詳しくは、本発明は、前記金属材料を鍛造、伸線、伸管、圧造のような塑性加工、板材のプレス成形、各種装置の摺動部などに用いることができる固体潤滑剤、及びそれを含む潤滑皮膜剤であって、さらには、二硫化モリブデンやグラファイトのような黒色系潤滑剤を含まないものである。
 一般に、鉄鋼やステンレスなどの金属材料を塑性加工する際には、被加工材と工具との金属接触により生じる焼付きやかじりを防止すること及び耐食性を付与することを目的に、金属材料表面に潤滑性及び耐食性を有する皮膜を設けている。このような皮膜としては、金属材料表面に化学反応により化成皮膜を形成させた後、その上にさらに潤滑剤を付着させる反応型のタイプと、潤滑剤を金属材料表面に物理的に付着させる非反応型のタイプの2種類のものがある。
 前者の反応型のタイプでは、金属材料表面にキャリアとしての役割を有するリン酸塩皮膜やシュウ酸塩皮膜などの化成皮膜を形成させた後、さらに石灰石けんや二硫化モリブデン、油などの潤滑剤を塗布した2層構造の潤滑皮膜や、化成皮膜を施した後、ステアリン酸ナトリウムなどの反応型石けんを反応塗布した3層構造の潤滑皮膜(化成皮膜/金属石けん皮膜/湯溶石けん皮膜)が広く用いられている。特に後者の3層構造の潤滑皮膜は、強加工領域においても安定して優れた潤滑性を発揮することができることが知られている。
 しかしながら、化学反応を伴う化成処理や反応型石けんでは、液の管理や化学反応を制御するための温度管理、反応副生成物であるスラッジの除去と廃棄、液の劣化による廃棄更新が必要になる。近年の地球環境保全を目的に、産業廃棄物の低減は大きな課題となっている。そのために、廃棄物が生じない潤滑皮膜剤や処理方法が望まれている。
 前記課題を解決する潤滑皮膜剤として、特許文献1に四ほう酸ナトリウム、硼砂、四ほう酸カリウム及び硫酸ナトリウムから選ばれる少なくとも1種の水溶性無機塩、(B)ステアリン酸カルシウム、ステアリン酸バリウム及びステアリン酸亜鉛からなる金属石けん、雲母及びPTFEから選ばれる少なくとも1種の固体潤滑剤、(C)鉱油、動植物油脂及びエステル油から選ばれる少なくとも1種の油成分、(D)油成分を水中に均一に乳化させると共に、固体潤滑剤を水中に均一に分散させるための界面活性剤、及び(E)水からなり、固体潤滑剤と水溶性無機塩との重量比(B/A)が0.05/1~2/1であり、水溶性無機塩と固体潤滑剤の合計量に対する油成分の重量比(C/(A+B))が0.05/1~1/1である、固体潤滑剤及び油成分が均一にそれぞれ分散及び乳化した、金属材料の冷間塑性加工用水系潤滑剤が開示されている。この潤滑皮膜剤は非反応型の塗布型潤滑剤であり、前記化学反応を伴う化成処理や反応型石けんのようにスラッジの発生がなく、液の劣化もほとんど起こらないものである。しかしながら、皮膜の主成分である水溶性無機塩は、大気中の水蒸気を吸湿して潤滑性の劣化を引き起こすことがあるという問題があったため、加工前に再乾燥したり、工場内の湿度を低くコントロールする必要があった。
 さらに、潤滑皮膜中に含まれる滑剤は、加工度の厳しい条件では金属表面の面積拡大に対して追従性が十分ではなく、潤滑性が低下してかじりを生じるなどの問題があった。
 また、冷間塑性加工や摺動皮膜の分野では、古くより固体潤滑剤として二硫化モリブデンが使用されてきた。これは、二硫化モリブデンを含む潤滑皮膜が低摩擦で、耐摩耗性が良好であることが主な理由である。しかしながら、二硫化モリブデンを含有する潤滑皮膜剤は黒色で、作業環境を汚染することが問題としてあった。また、二硫化モリブデンが高価で、経済性が劣ることも、非黒色系の固体潤滑剤の開発が求められる理由であった。
特許第3517522号公報
 前記従来技術の課題及び問題に対し、本発明は、非黒色でかつ産業廃棄物が低減でき(環境保全性)、さらに、強加工領域での優れた潤滑性、耐吸湿性、及び耐食性が両立できる固体潤滑剤、ならびにそれを含む潤滑皮膜剤を提供することを主目的とするものである。
 本発明者らは前記課題を解決するために鋭意検討した結果、特定の層状粘土鉱物の粒子間、及び/又は層間に、特定の親油性潤滑成分を内包するキャリア粒子からなることを特徴とする固体潤滑剤、及びそれを用いた金属材料用潤滑皮膜剤を適用することで解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明の固体潤滑剤は、スメクタイト群、バーミキュライト群、雲母群、脆雲母群、パイロフィライト群、カオリナイト群の天然品、及びこれらの合成品からなる群から選ばれる少なくとも1種の層状粘土鉱物の粒子間、及び/又は層間に、油、極圧剤、石けん、及びワックスから選ばれる少なくとも1種である親油性潤滑成分を内包するキャリア粒子からなることを特徴とする固体潤滑剤である。
 さらに、前記層状粘土鉱物の断面におけるアスペクト比は3~150で、好ましくは5~100、さらに好ましくは5~30である。
 前記親油性潤滑成分の溶解性パラメータ(SP値)は好ましくは10以下であり、さらに好ましくは9以下である。
 さらに、前記層状粘土鉱物の対水接触角は好ましくは40°以上であり、さらに好ましくは60°以上である。
 さらに、前記層状粘土鉱物の平均粒径は好ましくは30μm以下であり、より好ましくは20μm以下であり、さらに好ましくは10μm以下である。
 前記固体潤滑剤において、粒子間、及び/又は層間への親油性潤滑成分の内包量は、キャリア粒子の全質量に対する質量比で好ましくは5質量%以上であり、さらに好ましくは8質量%以上であることを特徴とする。
 前記層状粘土鉱物のモース硬度は、好ましくは2以下であり、さらに好ましくは1である。
 前記固体潤滑剤は、金属材料の塑性加工用の潤滑皮膜剤、特に、冷間塑性加工用の潤滑皮膜剤に好適に用いることができる。
 前記課題は、前記固体潤滑剤を含有することを特徴とする金属材料用潤滑皮膜剤によっても、解決することができる。
 本発明の金属材料用潤滑皮膜剤は、前記固体潤滑剤を含む成分を水に分散してなる水系金属材料用潤滑皮膜剤であって、前記固体潤滑剤の濃度が、潤滑皮膜剤中の全固形分の質量に対する質量比で5質量%以上であることを特徴とするものである。
 また、前記課題は、前記固体潤滑剤を含む成分を油に分散してなる油系金属材料用潤滑皮膜剤によっても解決することができる。この場合、前記固体潤滑剤の濃度は、潤滑皮膜剤中の全固形分の質量に対する質量比で5質量%以上である。
 さらに、前記課題は本発明の固体潤滑剤を含む成分を含有する粉体系金属材料用潤滑皮膜剤によっても解決することができる。この場合、前記固体潤滑剤の濃度は、潤滑皮膜剤中の全固形分の質量に対する質量比で5質量%以上である。
 前記課題は、金属材料表面に前記の金属材料用潤滑皮膜剤が、乾燥後の皮膜量として0.5g/m以上、付着していることを特徴とする表面処理金属材料によっても解決することができる。
 潤滑皮膜の形成方法、及び表面処理金属材料の製造方法としては、前記金属材料用潤滑皮膜剤に金属材料を接触させる接触工程を含んでいればよい。さらに好ましい方法としては、前記接触工程の前に、ショットブラスト、サンドブラスト、アルカリ脱脂、及び酸洗浄の群からなる少なくとも1種の清浄化手段により金属材料の表面を清浄化する清浄化工程を含むことを特徴とする金属材料の潤滑皮膜形成方法、及び表面処理金属材料の製造方法が適用できる。
 前記潤滑皮膜の形成方法、及び表面処理金属材料の製造方法においては、前記接触工程の前に、金属材料の表面に化成皮膜を被覆させる化成処理工程をさらに適用することもできる。
 本発明によれば、層状粘土鉱物の粒子間、及び/又は層間に親油性潤滑成分を内包するキャリア粒子からなることを特徴とする固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法を適用することで、非黒色で、環境保全性に優れ、強加工領域においても安定して優れた潤滑性を発揮して焼きつきやかじりを防止することができ、さらに潤滑皮膜の耐吸湿性などの操業性、さらには耐食性にも優れる。
 本発明をより詳細に説明する。まずはじめに、固体潤滑剤の定義について説明する。固体潤滑ハンドブック((社)日本トライボロジー学会:養賢堂(2009)53)によると、固体潤滑剤とは2つの物体が相対運動をする時、摩擦低減や焼きつき防止、金型寿命の向上などを目的に、物体間に介在させる物質のことである。一般的には塑性加工や摺動部材、プレス成形などの潤滑皮膜の一成分として使用され、具体的には層状粘土鉱物や無機塩類、高分子材料や軟質金属などが固体潤滑剤として適用される。
 これらの固体潤滑剤において、層状粘土鉱物と無機塩類では、それ自身がへき開性を有することが好ましい。二硫化モリブデンやグラファイトはその代表例である。へき開とは固体潤滑剤に荷重が加わった際に、原子の結合力の最も弱い結晶面で分離破壊する性質のことである。この性質によって、塑性加工においては、加工時の加工面の面積拡大に対して固体潤滑剤が効果的に追従し、滑り性を付与すると同時にかじりを防止するのである。
 本発明の特徴の一つ目は、へき開性を有する層状粘土鉱物において、へき開面に相当する粒子間、及び/又は層間に親油性潤滑成分を内包させることで、前記層状粘土鉱物の作用に加え、さらに親油性潤滑成分を加工時の加工面の面積拡大に対して追従させるためのキャリア粒子としての役割を固体潤滑剤に担わせることである。さらに詳細に説明すると、層状粘土鉱物は、二次元的な層状結晶が平行に積み重なって結合した粒子である。本発明においては、この層状結晶の面と面との間を層間と定義する。さらに、前記層状結晶が平行に積み重なって結合した粒子を一次粒子とすると、さらに複数の一次粒子が凝集(集合)してより大きな二次粒子(この二次粒子を形成した層状粘土鉱物を「凝集状層状粘土鉱物」と称する。)となることがあり、この場合の粒子と粒子の間を粒子間と定義する。層間も粒子間もいずれも緩く結合した層状の状態であり、本発明の親油性潤滑成分を内包可能なへき開面である。へき開性を有する層状粘土鉱物の粒子間、及び/又は層間に親油性潤滑成分を内包させることによって、冷間塑性加工のように加工荷重が高く、加工面の面積拡大率の高い加工においても、層状粘土鉱物と親油性潤滑成分を同時に追従させること、すなわち、キャリア粒子としての役割を担わせることが可能となり、かじりを防止すると同時に滑り性を付与でき、潤滑性の向上が可能になるのである。このようなキャリア粒子としての役割を担わせることは、これまでの技術では無かったものである。なお、ここでいう「内包」とは、層状粘土鉱物の粒子間、及び/又は層間に、親油性潤滑成分がトラップされた状態を意味する。すなわち、本発明のキャリア粒子では、層状粘土鉱物がへき開していない場合には、親油性潤滑成分が層状粘土鉱物の粒子間、及び/又は層間に保持されており、このような状態を本発明における「内包」状態とする。一方、加工時に層状粘土鉱物がへき開した場合には、層状粘土鉱物の粒子間、及び/又は層間に内包された親油性潤滑成分が加工面に滲みだし、滲みだした親油性潤滑成分は、加工面を濡らすように層状粘土鉱物と同時に追従する。
 他方、粒子間、及び/又は層間に親油性潤滑成分を内包していない層状粘土鉱物を用いた潤滑皮膜剤では、滑り性が不足するために、加工時の面積拡大に対して皮膜の追従性が悪く、潤滑性が低下してかじりを生じる場合がある。さらに、成形荷重が高くなるために、金型寿命が短くなるなどの不具合を生じることがある。
 本発明において、親油性潤滑成分を内包することが可能な層状粘土鉱物としては、スメクタイト群の天然品及び合成品、バーミキュライト群の天然品及び合成品、雲母群の天然品及び合成品、脆雲母群の天然品及び合成品、パイロフィライト群の天然品及び合成品、カオリナイト群の天然品及び合成品を挙げることができる。これらの層状粘土鉱物は、単独で用いてもよく、複数種を組み合わせて用いてもよい。
 また、前記層状粘土鉱物としては、国際公開特許WO2012/086564号公報に記載の方法によって、層状粘土鉱物の層間に有機物を担持したものを用いてもよい。有機物としては、有機アンモニウム化合物、有機ホスホニウム化合物、有機スルホニウム化合物から選ばれる少なくとも1種の陽イオン性有機化合物(有機基+カチオン性基)を挙げることができる。ここで、当該有機化合物が有する有機基は、特に限定されないが、炭素数1~30の直鎖状、分岐鎖状又は環状の(環式基を有する)、飽和炭化水素基又は不飽和炭化水素基が好適である。また、炭素鎖又は炭素環を構成する炭素原子に結合している水素原子が他の置換基で置換されていてもよく、炭素鎖、又は炭素環を構成する一部の炭素原子が他の原子(例えば、OやSなど)で置換されていてもよく、さらには、C-C鎖間に他の結合(例えば、エステル結合、エーテル結合)を含んでいてもよい。好ましいものとしては、摩擦低減能に有利な脂肪族炭化水素基(好適には炭素数1~30)と、層間での固定能で有利なアンモニウム基で構成される有機アンモニウム化合物である。ここで、当該有機化合物を層間に導入する際に使用される有機塩類としては、塩化物、臭化物、沃化物、硝化物、フッ化物、水酸化物などが好適である。特に好ましい有機塩類としては、副生した塩を水洗除去しやすい四級アンモニウム塩化物(カプリルトリメチルアンモニウム塩化物、ラウリルトリメチルアンモニウム塩化物、ステアリルトリメチルアンモニウム塩化物、ジカプリルジメチルアンモニウム塩化物、ジラウリルジメチルアンモニウム塩化物、ジステアリルジメチルアンモニウム塩化物など)である。層状粘土鉱物の層間にこれらの有機物を担持させることによって層間距離が広がり、さらに、層状粘土鉱物の層間、及び表面が疎水性になるために、親油性潤滑成分をより多く内包させることができるようになり、有利である。
 さらに、層状粘土鉱物について詳細に説明する。粘土鉱物とは粘土を構成する主成分鉱物で、層状珪酸塩鉱物(フィロ珪酸塩鉱物)、方解石(カルサイト)、苦灰石(ドロマイト)、長石類、石英、沸石(ゼオライト)類、その他、鎖状構造を持つもの(アタパルジャイト、セピオライトなど)、はっきりとした結晶構造を持たないもの(アロフェン)などが粘土鉱物と呼ばれているが、一般的にはその中の層状珪酸塩鉱物を層状粘土鉱物と呼んでいる。
 層状粘土鉱物は、正負のイオンの二次元的な層が平行に積み重なって結合し結晶構造を作っており、この層構造の中には2つの構造単位があり、その一つはSi4+とこれを囲んだO2-とから成る四面体層で構成され、他はAl3+(あるいはMg2+、Fe2+など)とこれを囲んだ(OH)とから成る八面体層で構成されている。
 四面体層中では、四面体の4つの頂点にあるOと中心に位置するSiによりSi-Oの四面体が形成され、これが3つの頂点で互いに連結して二次元的に広がり、Si10の組成を有する層格子を形成している。Si4+はしばしばAl3+で置換される。
 八面体層中では、八面体の6つの頂点にある(OH)又はOとその中心に位置するAl、Mg、Feなどにより形成された八面体が、各頂点で連結して二次元的に広がり、Al(OH)あるいはMg(OH)などの組成を有する層格子を形成している。
 八面体層には、6個の陰イオンで囲まれた陽イオンの格子点に2価の陽イオン(Mg2+など)が入り格子点のすべてを占めている3-八面体型、陽イオンの格子点に3価の陽イオン(Al3+など)が入り格子点の2/3を占め、残りの1/3は空所となっている2-八面体型がある。
 四面体層と八面体層の組み合わせには2種類あり、1つは2枚の四面体層とその間に挟まれた1枚の八面体層の結合を単位とする2:1型構造、他は1枚の四面体層と1枚の八面体層の結合を単位とする1:1型構造がある。前記スメクタイト群、バーミキュライト群、雲母群、及びパイロフィライト群は2:1型構造の層状粘土鉱物であり、カオリナイト群は1:1構造の層状粘土鉱物である。
 この層状粘土鉱物の親水性と結晶構造の関係に関し、例えば、カオリンについては、層状粘土鉱物の結晶構造は1:1構造であり、親水基(OHなど)のある8面体が表面に配向していることで親水性を示すと考えられている。一方、結晶構造が2:1構造の場合には表面に疎水基(SiO)のある4面体が配向しているため、1:1構造よりも親水性が低くなる傾向が強いと考えられている。
 それぞれの群に属する層状粘土鉱物をより詳細に説明すると、スメクタイト群ではモンモリロナイト、バイデライト、ノントロナイト、サポナイト、鉄サポナイト、ヘクトライト、ソーコナイト、スチーブンサイト、バーミキュライト群ではdi.バーミキュライト、tri.バーミキュライト、雲母群では白雲母、パラゴナイト、イライト、フロゴパイト、黒雲母、紅雲母、レピドライト、脆雲母群ではマーガライト、クリントナイト、パイロフィライト群ではパイロフィライト、滑石、カオリナイト群ではカオリナイト、ディッカイト、ナクライト、ハロイサイト、クリソタイル、リザルダイト、アンチゴライトである。これらの層状粘土鉱物は、いずれも本発明の金属材料用潤滑皮膜剤に用いることができるが、この中で特に好ましいものとしては、前記パイロフィライト群に属する2種から選ばれる少なくとも1種である。この理由としては、パイロフィライト群に属する層状粘土鉱物のモース硬度が低く、かつ親油性に優れるためである。
 次に、本発明の固体潤滑剤において、前記層状粘土鉱物の粒子間、及び/又は層間に内包する親油性潤滑成分は、油、極圧剤、石鹸、及びワックスから選ばれる少なくとも1種である。
 油としては、鉱油、動植物油、及び合成油からなる群から選ばれる少なくとも1種を用いることができる。より詳しくは、鉱油としては、例えばナフテン系鉱油、あるいはパラフィン系鉱油をベースとしたマシン油、タービン油、スピンドル油などを使用することができる。動植物油としては、例えばパーム油、菜種油、椰子油、ひまし油、牛脂、豚油、鯨油、魚油、又は、これらの成分にエチレンオキサイドを付加したもの(例えば、ポリオキシエチレンひまし油(エチレンオキサイド付加物))などを使用することができる。合成油としては、エステル油(例えば、エチレングリコール、トリメチロールプロパンなどの多価アルコールと、ステアリン酸、オレイン酸、リノール酸などの脂肪酸とのエステル(トリメチロールプロパントリオレイン酸エステルなど))、シリコーン油(例えばポリジメチルシロキサン、ポリジフェニルシロキサンなど)などを使用することができる。疎水性有機化合物(例えば、有機アンモニウム化合物、有機ホスホニウム化合物、有機スルホニウム化合物、有機アミン化合物)も、本発明の親油性潤滑成分としての合成油として使用することができる。鉱油としてはナフテン系鉱油、動植物油としては、植物油であるパーム油、ひまし油、及び、これらにエチレンオキサイドを付加したもの(ポリオキシエチレン植物油(エチレンオキサイド付加物))、合成油としては、エステル油(トリメチロールプロパントリメチルオレイン酸エステル)が好ましい。
 極圧剤としては、加工時に金属材料と工具との摩擦面で、効果的に極圧作用を発現するものが好ましい。このような極圧剤としては、硫化オレフィン、硫化エステル、サルファイト、チオカーバイド、リン酸エステル、亜リン酸エステル、モリブデンジチオカーバメート(MoDTC)、モリブデンジチオフォスフェート(MoDTP)、亜鉛ジチオフォスフェート(ZnDTP)、トリクレジルフォスフェートなどを挙げることができるが、フォスフェート(トリクレジルフォスフェート)が好ましい。本発明において、油と極圧剤はそれぞれ単独で層状粘土鉱物に内包させることも可能であるが、より高い潤滑性を得るには、油と極圧剤を併用することが好ましい。この場合、油と極圧剤の比率は、質量比で1:0.03~1:1の範囲内であることが好ましい。油と極圧剤の比率が、質量比で1:0.03~1:1であると、潤滑性は極圧作用が付与されることによりさらに向上する。油と極圧剤の比率が1:1を超えると極圧作用はほぼ飽和する。
 石けんとしては、炭素数12~26の脂肪酸(ステアリン酸、ミリスチン酸、パルミチン酸など)のアルカリ金属塩、もしくは、炭素数12~26の脂肪酸(ステアリン酸、ミリスチン酸、パルミチン酸など)と、亜鉛、カルシウム、バリウム、アルミニウム、及びマグネシウムから選ばれる少なくとも1種の金属とを反応させて得られた金属石けんを用いるのが好ましい。また、石けんの融点は、100~250℃であることが好ましい。石けんとしては、ステアリン酸のアルカリ金属塩、炭素数12~26の脂肪酸と、亜鉛とを反応させて得られた金属石けん(ステアリン酸亜鉛)がより好ましい。
 ワックスとしては、特に構造や種類を特定するものではないが、加工時に発生する熱によって溶融し、潤滑性を発現することから、融点が70~150℃であることが好ましい。この範囲の融点を有するワックスとしては、例えば、マイクロクリスタリングワックス、ポリエチレンワックス、ポリプロピレンワックス、カルナウバワックスなどを挙げることができるが、ポリエチレンワックスが好ましい。
 次に、優れた潤滑性を得るには、層状粘土鉱物の粒子間、及び/又は層間に、親油性潤滑成分をより効率的に内包させることが重要である。この内包の効率性に関するパラメータについて説明する。まず、親油性潤滑成分のパラメータとしては、溶解性パラメータ(SP値、単位(cal/cm1/2)が挙げられる。溶解性パラメータとは2成分系における溶解性、もしくは相溶性に関するパラメータである。互いの成分の溶解性パラメータの値が近いほど、溶解性、相溶性に優れるとされる。測定方法は、種々の方法が公開されている。例えば、SP値が既知の溶媒への溶解性から求める方法や、理論計算をベースとしたFedors法、濁度滴定法などの方法が代表的な測定法である。本発明におけるSP値の測定方法は、K.WSuhらが考案した濁度滴定法を適用した(J.Appl.Polym.Sci.,12,2359(1968))。濁度滴定法では、SP値が既知の良溶媒に親油性潤滑成分を溶解し、その溶媒よりも高いSP値の貧溶媒と、低いSP値の貧溶媒で濁度滴定することで、親油性潤滑成分のSP値を求めることができる。水のSP値は約23であり、対象成分のSP値がこの値から低いほど、親油性が高くなる。
 本発明に用いる親油性潤滑成分のSP値は好ましくは10以下であり、さらに好ましくは9以下である。親油性潤滑成分のSP値が10を超えると、親油性が低くなるために、層状粘土鉱物の層間に内包する親油性潤滑成分の量が少なくなり、潤滑性が低下することがある。また、潤滑成分の疎水性が低下するために水や塩素などの腐食因子に対するバリアー性が低下し、耐食性が低下することがある。親油性潤滑成分のSP値の下限値は特に規定するものではないが、例えば、7以上である。
 前記の親油性潤滑成分において、2種類以上を混合して使用する場合は(例えば、油と極圧剤)、それぞれのSP値の差が1.5以下であれば相溶性に優れ、より高い潤滑性を得ることができる。
 さらに、本発明の固体潤滑剤では、層状粘土鉱物の層間、及び表面の特性が親油性であることが好ましい。このパラメータとしては、対水接触角が挙げられる。層状粘土鉱物単体の表面における対水接触角は好ましくは40°以上、さらに好ましくは60°以上であればよい。層状粘土鉱物の対水接触角の上限値は特に規定するものではないが、例えば、150°以下である。層状粘土鉱物単体の表面における対水接触角が40°以上であると、潤滑性や耐食性がより向上する。また、層状粘土鉱物単体と親油性潤滑成分との組合せにおいては、層状粘土鉱物単体の対水接触角が40°以上で、かつ、前記親油性潤滑成分のSP値が10以下であればさらに好ましい。層状粘土鉱物単体の対水接触角が40°以上で、かつ、前記親油性潤滑成分のSP値が10以下であれば、互いに親油性で親和性が高いため、より効率的に親油性潤滑成分を粒子間、及び/又は層間に内包させることができる。
 親油性潤滑成分の内包量は、キャリア粒子の全質量に対する質量比で好ましくは5質量%以上、さらに好ましくは8質量%以上である。内包量が5質量%を下回ると、加工時の潤滑性が低下し、かじりを生じる場合がある。また、耐食性も低下することがある。親油性潤滑成分の内包量の上限値は特に制限されるものでは無いが、例えば、50質量%以下である。
 本発明の固体潤滑剤に用いる層状粘土鉱物のモース硬度は、潤滑性の観点から2以下であることが好ましい。さらに好ましいモース硬度は1である。この理由としては、塑性加工やプレス加工の加工面では固体潤滑剤は破壊され、面積拡大方向に追従するが、層状粘土鉱物のモース硬度が低い方が摩擦係数は低く、親油性潤滑成分に対するキャリア性が優れる傾向があり、その結果、より優れた潤滑性が得られるためである。ここでいう「キャリア性」とは、層状粘土鉱物の摩擦係数が低くなる結果、層状粘土鉱物が面積拡大方向へより追従し易くなるため、親油性潤滑成分が加工面において層状粘土鉱物と共に面積拡大方向に追従し易くなることを意味する。なお、モース硬度はモース硬度計によって測定することができる。すなわち、硬度の異なる10種類(モース硬度1~10の10段階で、1が最も柔らく、10が最も硬い)の鉱物を標準物質とし、これで対象物質の表面にひっかき傷がつくか否かを評価する。傷がつかない場合は、さらに高い硬度の標準物質を用い、傷がつくまで評価する。傷がついた場合は、逆にその対象物質で標準物質の表面に傷がつくことを確認し、その物質のモース硬度とする。これは、同一硬度であれば、互いに傷をつけ合うことができるためである。
 本発明の親油性潤滑成分を内包した固体潤滑剤は、水系潤滑皮膜剤、油系潤滑皮膜剤、及び粉体系潤滑皮膜剤のいずれかの潤滑皮膜剤用固体潤滑剤として使用することができる。
 水系潤滑皮膜剤用の固体潤滑剤として使用する場合は、本発明の固体潤滑剤を、界面活性剤などによって水中に分散させればよい。固体潤滑剤の濃度は、潤滑皮膜剤中の全固形分(皮膜成分)の質量に対する質量比で5質量%以上、より好ましくは20質量%以上になるように調整する。固体潤滑剤の濃度を5質量%以上とすることで潤滑性を飛躍的に高めることができ、20質量%以上とすることで潤滑性をさらに高めることができる。一方、固体潤滑剤の濃度の上限値は特に制限されるものではないが、例えば、95質量%以下であり、好ましくは80質量%以下である。
 また、前記固体潤滑剤を含む全固形分(皮膜成分)の濃度についての基本的な考え方は、乾燥後の皮膜量が0.5g/m以上になるように、その濃度を適宜調整するというものである。ただし、金属表面の状態(粗度など)や要求される加工度により、潤滑皮膜剤における適切な全固形分濃度は変動する可能性があるが、一般的には、潤滑皮膜剤中の固体潤滑剤を含む全固形分(皮膜成分)の濃度は、潤滑皮膜剤の全質量(水も含む)を100質量%とした場合に、3質量%以上であることが好ましい。これよりも低い濃度だと、乾燥後の皮膜量が少なくなり、期待する潤滑性が得られない場合がある。一方、全固形分の濃度の上限値は特に制限されるものではないが、例えば70質量%以下であり、より好ましくは50質量%以下である。
 なお、潤滑皮膜剤の全質量(水も含む)に対する全固形分(皮膜成分)の濃度は、以下の方法によって測定することができる。すなわち、潤滑皮膜剤をテフロン(登録商標)製の容器に規定量採取し、採取量を正確に秤量する。その後、110℃のオーブンに2時間入れ、水などの揮発する成分を蒸発させ、正確に残渣(不揮発成分)量を秤量する。それぞれの秤量値より、下記式により全固形分濃度を計算する。なお、下記式における乾燥後の秤量値が、水系潤滑皮膜剤中の固体潤滑剤の濃度を計算する際の「全固形分(皮膜成分)の質量」となる。
 全固形分濃度(質量%)=[(乾燥後の秤量値)/(乾燥前の秤量値)]×100
 前記水系潤滑皮膜剤の固体潤滑剤以外の成分は、潤滑皮膜のベース成分、及び/又はバインダー成分である。具体的には、水溶性無機塩、水溶性有機塩、水系樹脂、油系樹脂、油、極圧剤、石けん、及びワックスから選ばれる少なくとも1種を適用することができる。これらの成分と本発明の固体潤滑剤を組み合わせることによって、固体潤滑剤をより強固に金属材料表面に付着させることができ、より厳しい加工領域においても優れた潤滑性を発揮させることが可能となる。なお、水溶性無機塩や水溶性有機塩、並びに水系樹脂は吸湿性で、潤滑性が低下しやすい性質である。しかしながら、本発明の潤滑皮膜剤では、潤滑性は、層状粘土鉱物の層間及び/又は粒子間に親油性潤滑成分を内包したキャリア粒子からなる固体潤滑剤による寄与が高く、潤滑皮膜のベース成分、及び/又はバインダー成分として加えた水溶性無機塩、水溶性有機塩、水系樹脂等の成分の吸湿は、実質的に問題にならない。
 具体的には、水溶性無機塩としては硫酸塩、珪酸塩、ホウ酸塩、モリブデン酸塩、バナジン酸塩、タングステン酸塩、リン酸塩、及び縮合リン酸塩からなる群から選ばれる少なくとも1種である。水溶性有機塩としては、リンゴ酸塩、コハク酸塩、クエン酸塩、及び酒石酸塩からなる群から選ばれる少なくとも1種である。これらの塩の陽イオンとしては、ナトリウムイオン、カリウムイオン、リチウムイオン、アンモニウムイオン、アミン(エチルアミンなど)、及びアルカノールアミン(モノエタノールアミン、ジエタノールアミンなど)からなる群から選ばれる少なくとも1種である。この中で、タングステン酸塩、ホウ酸塩、及び縮合リン酸塩は、潤滑皮膜のベース成分、及びバインダーとして特に優れており、高い潤滑性を得ることができる。
 水系樹脂、すなわち、水溶性、もしくは水分散性高分子樹脂としては、重量平均分子量が1,000~1,000,000である高分子樹脂の内、少なくとも1種から選ぶことができる。また、水分散性高分子樹脂の平均粒径(体積基準)は、0.5~50μmであることが好ましい。高分子樹脂の種類としては、皮膜形成性があり、かつ、安定に溶解、あるいは分散可能なものであれば特に限定はしないが、例えば、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、フェノール樹脂、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコールなどの高分子樹脂を用いることができる。なお、高分子樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC法)で測定することができる。
 また、油、極圧剤、石けん、及びワックスは親油性潤滑成分でもあり、本発明では層状粘土鉱物の粒子間、及び/又は層間に内包する成分であるが、皮膜のベース成分としても使用することができる。潤滑皮膜のベース成分、もしくはバインダーとして使用できる油、極圧剤、石けん、及びワックスは、前記の層状粘土鉱物の粒子間、及び/又は層間に内包させるものと同じものを使用すればよい。
 前記の油、及び極圧剤を、本発明の水系潤滑皮膜剤のベース成分として使用する場合には、油と極圧剤を併用した方が潤滑性は優れる。油と極圧剤の比率は、質量比で1:0.03~1:1の範囲内であることが好ましい。
 前記水系潤滑皮膜剤において、本発明の固体潤滑剤や、ベース成分としての油や極圧剤を水中に分散する界面活性剤としては、非イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤、陽イオン性界面活性剤のいずれをも用いることができる。非イオン性界面活性剤は特に限定されないが、例えばポリオキシエチレンアルキルエーテル、ポリオキシアルキレン(エチレン及び/又はプロピレン)アルキルフェニルエーテル、ポリエチレングリコール(もしくはエチレンオキサイド)と高級脂肪酸(例えば炭素数12~18)とから構成されるポリオキシエチレンアルキルエステル、ソルビタンとポリエチレングリコールと高級脂肪酸(例えば炭素数12~18)とから構成されるポリオキシエチレンソルビタンアルキルエステルなどが挙げられる。陰イオン性界面活性剤としては、特に限定されないが、例えば脂肪酸塩、硫酸エステル塩、スルホン酸塩、リン酸エステル塩、ジチオリン酸エステル塩などが挙げられる。両性界面活性剤としては、特に限定されないが、例えばアミノ酸型及びベタイン型のカルボン酸塩、硫酸エステル塩、スルホン酸塩、リン酸エステル塩などが挙げられる。陽イオン性界面活性剤としては、特に限定されないが、例えば脂肪族アミン塩、第四級アンモニウム塩などが挙げられる。これらの界面活性剤は各単独で、又は2種以上組み合わせて使用することができる。
 界面活性剤の濃度は、潤滑皮膜剤中の全固形分(皮膜成分)の質量に対する質量比で、0.5~20質量%であることが好ましい。界面活性剤の割合が20質量%を超えると固体潤滑剤の分散性は向上するが、潤滑皮膜が脆弱となり、潤滑性が低下することがある。逆に、0.5質量%を下回ると固体潤滑剤の分散性が悪くなり、均一な潤滑皮膜が形成できなくなる。
 さらに、層状粘土鉱物に内包させる油や極圧剤、あるいは潤滑皮膜のベース成分としての油や極圧剤には、より高い潤滑性を得ることを目的に、粘度指数向上剤を配合してもよい。具体的には、ポリメタクリレート系、オレフィンコポリマー系、ポリイソブチレン系から選ばれる少なくとも1種の粘度指数向上剤を使用することができる。粘度指数(JIS K2283)は100以上が好ましく、より好ましくは200以上のものである。
 粘度指数向上剤の濃度は、油及び/又は極圧剤の総量に対する質量比で1~10質量%、より好ましくは、1~5質量%である。粘度指数向上剤を添加することによって、加工時の温度上昇による油の粘度低下を抑制することができる。これにより、固体潤滑剤とともに追従できる油、及び極圧剤の量が多くなり、潤滑性をさらに向上させることができる。
 次に、本発明の固体潤滑剤を、油系潤滑皮膜剤用に用いる場合には、油単体、極圧剤単体、もしくは油に極圧剤を質量比で1:0.03~1:1で配合したものをベース油として使用すればよい。この場合、前記固体潤滑剤の濃度は、潤滑皮膜剤中の全固形分の質量に対する質量比で5質量%以上、より好ましくは20質量%以上、さらに好ましくは30質量%以上である。固体潤滑剤の濃度を5質量%以上、20質量%以上、30質量%以上と高めていくにつれ、潤滑性をさらに高めることができる。一方、固体潤滑剤の濃度の上限値は特に制限されるものではないが、例えば、95質量%以下であり、好ましくは80質量%以下である。
 この場合、ベース成分としての油、極圧剤、石けん、ワックス、油系樹脂、粘度指数向上剤は、前記の水系潤滑皮膜剤に用いたものと同じものを適用することができる。
 さらに、バインダーとして油中に溶解、もしくは分散可能な油系樹脂を添加してもよい。具体的には、重量平均分子量が1,000~1,000,000で、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、フェノール樹脂などからなる群から選ばれる少なくとも1種の樹脂を、バインダーとして用いることができる。また、添加濃度は特に限定はしないが、潤滑皮膜の全固形分に対する質量比で、3~50質量%の範囲内であることが好ましい。
 本発明の固体潤滑剤を粉体系潤滑皮膜剤として使用する場合には、前記固体潤滑剤の濃度を、潤滑皮膜剤中の全固形分質量に対する質量比で5質量%以上、より好ましくは30質量%以上に調整して使用すればよい。固体潤滑剤の濃度を5質量%以上とすることで潤滑性を飛躍的に高めることができ、30質量%以上とすることで潤滑性をさらに高めることができる。粉体系潤滑皮膜剤としては、静電粉体塗装法などにより、固体潤滑剤自体を直接金属材料に塗布して使用してもよいが(この場合は、固体潤滑剤の濃度は100質量%となる)、固体潤滑剤のバインダーとして高分子樹脂を使用してもよい。このような高分子樹脂の種類については特に限定はしないが、重量平均分子量が1,000~1,000,000で、かつ平均粒径が0.5~30μmの粉体樹脂で、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、フェノール樹脂、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコールなどを適用することができる。
 本発明の表面処理金属材料は、上述した本発明の金属材料用潤滑皮膜剤を、乾燥皮膜量として0.5g/m以上の皮膜量で金属材料表面に設けてなることを特徴とするものである。皮膜量の設定は、要求される加工レベルに応じて、適宜、決定すればよい。ただし、皮膜量が0.5g/mを下回ると、金属材料表面の粗さによっては潤滑皮膜が被覆しきれない場合があるため、潤滑性や耐食性の点で注意が必要である。また、皮膜量の上限値は特に規定しないが、40g/mを超えて形成させても、それに見合うだけの潤滑性向上はもはや期待できず、経済的ではないばかりか、均一塗布性不良や密着性不良、残膜による押し込み痕の発生などの不具合を生じることがある。
 本発明の金属材料の潤滑皮膜形成方法、及び本発明の表面処理金属材料の製造方法は、本発明の金属材料用潤滑皮膜剤に、金属材料を接触させる接触工程を含むことを特徴とするものである。具体的には、水系潤滑皮膜剤、及び油系潤滑皮膜剤の場合では浸漬法、フローコート法、スプレ-法、刷毛塗り、液体静電塗装法などを適用することができる。塗布は表面が充分に本発明の潤滑皮膜剤に覆われれば良く、塗布する時間に特に制限は無い。水系潤滑皮膜剤では塗布後に乾燥する必要がある。乾燥は常温放置でも良いが、60~150℃で1~30分行う方が好ましい。
 水系潤滑皮膜剤の場合、乾燥性を高める為には、金属材料を60~100℃に加温し、これを水系潤滑皮膜剤と接触させることが好ましい。なお、50~90℃に加温した水系潤滑皮膜剤に金属材料を接触させても良い。これらにより、乾燥性が大幅に向上し、乾燥が常温で可能になる場合もあり、熱エネルギーのロスを少なく出来る。
 粉体系潤滑皮膜剤の塗布方法は特に限定はしないが、均一塗布性や皮膜厚さのコントロールの容易さから、静電粉体塗装法を適用することが好ましい。
 さらに、潤滑皮膜の密着性を向上させるためには、潤滑皮膜処理(接触工程)の前に、ショットブラスト、サンドブラスト、アルカリ脱脂及び酸洗浄から成る群から選ばれる少なくとも一種の手法によって、金属材料の清浄化を行っておくのが好ましい(清浄化工程)。ここで、清浄化とは、焼鈍などにより成長した酸化スケールや各種の汚れ(油など)を除去することを目的としたものである。特に、近年、環境問題より、廃水処理負荷の低減が望まれている。この場合には、金属材料表面をショットブラストにより清浄化し、次いで、本発明の潤滑皮膜剤を用いた接触工程を実施すれば廃水ゼロを達成できる。
 本発明の金属材料用潤滑皮膜剤は、化成反応を伴わない非反応型の潤滑皮膜剤であるが、金属材料表面に予め化成皮膜を形成させた(化成処理工程)後に、本発明の潤滑皮膜を形成させて使用することもできる。かかる化成皮膜の成分としては、Zn、Fe、Mn、Ni、Co、Ca、Mg、及びAlから選ばれる少なくとも1種のリン酸塩(金属材料:鉄鋼、アルミニウム、マグネシウムなど)、シュウ酸鉄(金属材料:ステンレス)、フッ化アルミニウム(金属材料:アルミニウム)、酸化ジルコニウム(金属材料:鉄鋼、アルミニウム、マグネシウムなど)などが挙げられる。化成処理を施すことによって潤滑性はさらに向上し、例えば高湿度環境のような劣悪な環境においても、優れた潤滑性を維持することができる。
 本発明の固体潤滑剤の製造方法において、層状粘土鉱物の粒子間、及び/又は層間に親油性潤滑成分を効率的に内包するためのパラメータとしては、(1)層状粘土鉱物の親油性と親油性潤滑成分のSP値、(2)内包方法、及び(3)層状粘土鉱物の平均粒径とアスペクト比の3つが挙げられる。層状粘土鉱物の親油性(対水接触角)と親油性潤滑成分のSP値については前記の通りである。
 内包方法の一例としては、室温で液体である油や極圧剤では、層状粘土鉱物の粉末に所定量の油、及び極圧剤を添加し、撹拌しながら内包させる方法が挙げられる。また、より短時間で内包させ、且つ内包量を増やしたい場合には、単に添加・撹拌するだけなく、層状粘土鉱物と油、及び極圧剤を減圧槽内で混合した後に大気圧に戻す、いわゆる減圧含浸処理方式や、油を加温して粘度を下げた状態で内包させる方法などを適用することが好ましい。一方、室温で固体である石けんやワックスを内包させるには、溶融点以上の温度で液体状態にした後に層状粘土鉱物と混合し、層間に内包させる方法や、潤滑剤を金属材料表面に塗布した後に、溶融点以上の温度に保持したオーブンに入れ、乾燥時に層間に内包させる方法などが挙げられる。いずれの場合も、層間に内包可能な量以上の親油性潤滑成分と混合すれば、層間だけではなく、粒子間にも親油性潤滑成分を介在させることができる。
 層状粘土鉱物の平均粒径は好ましくは0.5~30μmであり、より好ましくは1~20μmであり、さらに好ましくは1~10μmである。平均粒径が30μm以下であると、親油性潤滑成分が層間に内包しやすいので潤滑性と耐食性が向上する。また、平均粒径が30μm以下、20μm以下、10μm以下と小さくなると潤滑性がより向上する。平均粒径が0.5μm未満でも潤滑性と耐食性は良好であり、費用(製造コスト)対効果(潤滑性と耐食性)の観点から選択される。
 さらに、層状粘土鉱物の断面におけるアスペクト比の範囲は好ましくは3~150であり、より好ましくは5~100、さらに好ましくは5~30である。アスペクト比が150を超えると親油性潤滑成分の内包量が少なくなり、潤滑性と耐食性が低下する場合がある。また、アスペクト比が150以下、100以下、30以下と小さくなっていくに従い、潤滑性がより向上する。逆に、アスペクト比が3を下回ると親油性潤滑成分の内包量には問題ないが、層状粘土鉱物粒子の厚さが厚くなることから、潤滑皮膜の追従性が低下して潤滑性が悪くなる場合がある。
 前記の水分散性高分子樹脂、及び層状粘土鉱物の平均粒径は、レーザー回折法(体積基準)によって測定することができる。本発明における層状粘土鉱物の平均粒径は、一次粒子を対象にしたものであるが、一次粒子の凝集体である二次粒子による影響を極力受けないようにするため、予め3分~5分程度、超音波による再分散化(一次粒子が凝集した二次粒子を解き、再び一次粒子に分離させること)を図った後に、粒径測定をするようにする。このことにより、一次粒子の凝集体である二次粒子の影響を極力排除して、ほぼ一次粒子からなるものの平均粒径を測定することができる。したがって、本発明における層状粘土鉱物の平均粒径とは、層状粘土鉱物の一次粒子における粒径の体積基準の平均値である。
 また、本発明におけるアスペクト比は、層状粘土鉱物の断面におけるアスペクト比と定義し、下記の式にて求めることにする。すなわち、本発明で用いる層状粘土鉱物は、前記の如く二次元的な層状結晶が平行に積み重なって結合した板状、もしくは鱗片状の粒子であるが、粒子の厚さ(へき開面に対して垂直方向の長さ)に対する平面部(すなわち、へき開面に対して平行な結晶面)の長さの割合が、前記の層状粘土鉱物の断面におけるアスペクト比に相当する。層状粘土鉱物粒子の厚さや平面部の長さは、走査型電子顕微鏡(SEM)で3000倍程度に拡大すれば測定することができる。なお、層状粘土鉱物粒子の厚さはSEMで3000倍程度に観察した場合に観察できる厚さであり、必ずしも単位格子での厚さを意味するものではない。
 アスペクト比=粒子の平面部の長さ/粒子の厚さ
 このように、層状粘土鉱物の親油性と親油性潤滑成分のSP値、並びに層状粘土鉱物の平均粒子径やアスペクト比を特定範囲とすることで、層状粘土鉱物への親油性潤滑成分の内包量を5質量%以上とすることを、より確実に実現することが可能となる。さらに、上述した減圧含浸処理方式や、溶融点以上の温度で液体状態にした石けんやワックスを層状粘土鉱物と混合し粒子間や層間に内包させる方法や、潤滑剤を金属材料表面に塗布した後に溶融点以上の温度に保持したオーブンに入れ乾燥時に粒子間や層間に内包させる方法などを用いることで、親油性潤滑成分の内包量をさらに増加させることが可能となる。
 本発明の効果を、実施例、及び比較例によって検証する。実施例、及び比較例に用いた金属材料用潤滑皮膜剤を製造するにあたり、各成分の詳細を以下に示す。
[潤滑皮膜剤の製造に使用する原料に関する説明]
 試験に使用した層状粘土鉱物(親油性潤滑成分を内包する前のもの)の詳細を以下に示す。層状粘土鉱物の平均粒径は、層状粘土鉱物を予め水中で3分間、超音波による再分散をさせて、一次粒子の状態にした後に、体積基準によるレーザー回折法で、以下の条件で測定した。
 測定機種名:堀場製作所 LA-920
 データ取り込み回数:10回
 演算回数:30回
 超音波強度:7
 超音波時間:3分
 分散媒循環速度:3
 また、アスペクト比については、層状粘度鉱物を走査型電子顕微鏡で3000倍に拡大観察し、粒子の厚さ(へき開面に対して垂直方向の長さ)と平面部(すなわち、へき開面に対して平行な結晶面)の長さから算出した。層状粘土鉱物の有機処理に関しては、国際公開特許WO2012/086564号公報に記載の方法に従って実施した。対水接触角に関しては、2枚の銅板(50×50mm)の間に敷き詰めた層状粘土鉱物の粉末を、100kgfの締付け力でプレスし、皮膜状にしたもので測定した。測定には協和界面科学(株)製の自動接触角計DM-501を用いた。
[層状粘土鉱物]
<対水接触角別>
A-1 カオリナイト:平均粒径3μm、対水接触角20°、モース硬度2
    アスペクト比20
A-2 有機処理カオリナイト:平均粒径3μm、対水接触角40°、モー
    ス硬度2
    アスペクト比20
    ジステアリルジメチルアンモニウム塩化物を、陽イオン交換能(C
    EC値)に対して0.2モル量相当で有機処理したもの。
A-3 有機処理カオリナイト:平均粒径3μm、対水接触角60°、モー
    ス硬度2
    アスペクト比20
    ジステアリルジメチルアンモニウム塩化物を、陽イオン交換能(C
    EC値)に対して0.4モル量相当で有機処理したもの。
A-4 有機処理カオリナイト:平均粒径3μm、対水接触角110°、モ
    ース硬度2
    アスペクト比20
    ジステアリルジメチルアンモニウム塩化物を、陽イオン交換能(C
    EC値)に対して1.0モル量相当で有機処理したもの。
<モース硬度別>
A-5 滑石:平均粒径3μm、対水接触角110°、モース硬度1
    アスペクト比20
A-6 合成雲母:平均粒径3μm、対水接触角110°、モース硬度3
    アスペクト比20
<平均粒径別>
A-7 滑石:平均粒径0.5μm、対水接触角110°、モース硬度1
    アスペクト比20
A-8 滑石:平均粒径10μm、対水接触角110°、モース硬度1
    アスペクト比20
A-9 滑石:平均粒径20μm、対水接触角110°、モース硬度1
    アスペクト比20
A-10 滑石:平均粒径30μm、対水接触角110°、モース硬度1
    アスペクト比20
A-11 滑石:平均粒径40μm、対水接触角110°、モース硬度1
    アスペクト比20
<アスペクト比別>
A-12 滑石:平均粒径10μm、対水接触角110°、モース硬度1
    アスペクト比2.5
A-13 滑石:平均粒径10μm、対水接触角110°、モース硬度1
    アスペクト比3
A-14 滑石:平均粒径10μm、対水接触角110°、モース硬度1
    アスペクト比5
A-15 滑石:平均粒径10μm、対水接触角110°、モース硬度1
    アスペクト比30
A-16 滑石:平均粒径10μm、対水接触角110°、モース硬度1
    アスペクト比100
A-17 滑石:平均粒径10μm、対水接触角110°、モース硬度1
    アスペクト比150
A-18 滑石:平均粒径10μm、対水接触角110°、モース硬度1
    アスペクト比170
<黒色系>
A-19 二硫化モリブデン:平均粒径3μm、対水接触角120°、モ
    ース硬度1
    アスペクト比20
 親油性潤滑成分を以下に示す。なお、溶解性パラメータ(SP値)の測定方法は、前記の濁度滴定法を適用した。
<油>
B-1 植物油:パーム油、SP値8.5
B-2 植物油:ひまし油、SP値9.0
B-3 植物油:ポリオキシエチレンひまし油(エチレンオキサイド0.5
    モル付加品)
    SP値10.0
B-4 植物油:ポリオキシエチレンひまし油(エチレンオキサイド1モル
    付加品)
    SP値11.6
B-5 鉱油:ナフテン系鉱油、SP値8.3
B-6 合成油:トリメチロールプロパントリオレイン酸エステル、SP値
    8.7
<極圧剤>
B-7 トリクレジルフォスフェート、SP値8.9
<石けん>
B-8 ステアリン酸亜鉛、融点120℃、SP値8.7
<ワックス>
B-9 ポリエチレンワックス、融点110℃、SP値8.1
<油と極圧剤の混合物>
B-10 (B-1):(B-7)=1:0.02(質量比)
B-11 (B-1):(B-7)=1:0.03(質量比)
B-12 (B-1):(B-7)=1:0.1(質量比)
B-13 (B-1):(B-7)=1:1(質量比)
B-14 (B-1):(B-7)=1:1.1(質量比)
 試験に使用した潤滑皮膜のベース成分、及びバインダーを以下に示す。
<ベース成分及びバインダー>
C-1 タングステン酸ナトリウム
C-2 四ホウ酸カリウム
C-3 3号珪酸ナトリウム
C-4 トリポリリン酸ナトリウム
C-5 酒石酸ナトリウム
C-6 ステアリン酸カリウム
C-7 アクリル樹脂:メチルメタクリレート、及びn-ブチルアクリレー
    トの共重合物をポリオキシエチレンアルキルフェニルエーテルで
    乳化重合したもの(分子量15万以上)、平均粒径0.5μm、
    固形分濃度40質量%
C-8 ウレタン樹脂(粉体、分子量10万)、平均粒径3μm
 試験に使用した界面活性剤を以下に示す。
<界面活性剤>
D-1 テトラオレイン酸ポリオキシエチレンソルビット(エチレンオキサイド60モル付加)
[層状粘土鉱物の粒子間、及び/又は層間に親油性潤滑成分を内包させる方法]
 室温で液体である油、及び極圧剤に関しては、層状粘土鉱物に油、及び極圧剤を内包可能な量以上の割合(質量比で1:1)で添加し、乳鉢を用いて全体が均一になるまで混合し、粒子間、及び/又は層間に潤滑成分を内包させた。その後、層状粘土鉱物の表面に付着している余剰の油、及び極圧剤を沸騰水中に10分間、浸漬することで除去し、室温で24時間、放置して乾燥させた。また、難溶性で、かつ室温で固体であるステアリン酸亜鉛とワックスの場合は、溶融点以上の温度で潤滑成分を液状化した状態で層状粘土鉱物に添加し(質量比で1:1)、乳鉢で全体が均一になるまで混合することで、粒子間、及び/又は層間に潤滑成分を内包させた。その後、ワックス(又はステアリン酸亜鉛)の溶融点以上に加温した油浴に10分間浸漬して粒子の表面に付着しているワックス(又はステアリン酸亜鉛)を除去した後、さらに沸騰水中10分間、浸漬して粒子表面の油を除去した後に、室温で24時間、放置して乾燥させた。
[親油性潤滑成分の内包量の測定方法]
 親油性潤滑成分の内包量は、固体試料燃焼装置を付属させた全有機炭素計(島津製作所製TOC-5000/SSM-5000A)を用いて測定した。測定方法の詳細を以下に述べる。まずはじめに、内包させる親油性潤滑成分単体(親油性潤滑成分そのもの)を用い、炉温700℃で完全に燃焼させ、炭素強度-潤滑成分量の検量線を作成する。次に、同様の条件で前記の方法によって層状粘土鉱物の粒子間、及び/又は層間に親油性潤滑成分を内包させたキャリア粒子中の炭素強度を測定し、得られた値から潤滑成分量を換算する。
 内包量(%)=(親油性潤滑成分の質量/キャリア粒子の全質量)×100
[潤滑皮膜の皮膜量の測定方法]
 潤滑皮膜を形成させた試験片を、市販の脱脂剤(登録商標ファインクリーナーE6400、日本パーカライジング(株)製)を用い、濃度20g/L、温度60℃の条件で30分間浸漬させて潤滑皮膜を剥離し、浸漬前後の質量差から皮膜量を測定した。
 皮膜量(g/m)=(剥離前の試験片質量-剥離後の試験片質量)/試験片の表面積
[処理方法]
<工程A(水系潤滑皮膜剤)>
 (1)脱脂:60℃に加温した市販の脱脂剤(登録商標ファインクリーナーE6400、日本パーカライジング(株)製、濃度20g/L)中に、試験片(金属材料)を10分浸漬させた。
 (2)水洗:脱脂後の試験片を60℃に加温した水道水中に10秒浸漬させた。
 (3)潤滑処理(接触工程):水洗後の試験片を60℃に加温した金属材料用潤滑皮膜剤(表1を参照)に30秒浸漬させた。
 (4)乾燥:潤滑処理後の試験片を80℃で3分乾燥させた。
<工程B(水系潤滑皮膜剤)>
 (1)ショットブラスト:試験片(金属材料)に対して、φ0.5mmのショット球(SUS製)を用い、5分ショットブラスト処理を行った。
 (2)水洗:ショットブラスト後の試験片を60℃に加温した水道水中に90秒浸漬させた。
 (3)潤滑処理(接触工程):水洗後の試験片を60℃に加温した金属材料用潤滑皮膜剤(表1を参照)に30秒浸漬させた。
 (4)乾燥:潤滑処理後の試験片を常温(送風)で3分乾燥させた。
<工程C(油系潤滑皮膜剤)>
 (1)脱脂:60℃に加温した市販の脱脂剤(登録商標ファインクリーナーE6400、日本パーカライジング(株)製、濃度20g/L)中に、試験片(金属材料)を10分浸漬させた。
 (2)水洗:脱脂後の試験片を60℃に加温した水道水中に10秒浸漬させた。
 (3)乾燥:水洗後の試験片を80℃で3分乾燥させた。
 (4)潤滑処理(接触工程):乾燥後の試験片を室温で金属材料用潤滑皮膜剤(表2を参照)に30秒浸漬させた。
<工程D(粉体系潤滑皮膜剤)>
 (1)ショットブラスト:試験片(金属材料)に対して、φ0.5mmのショット球(SUS製を用い)、5分ショットブラスト処理を行った。
 (2)水洗:ショットブラスト後の試験片を60℃に加温した水道水中に90秒浸漬させた。
 (3)乾燥:水洗後の試験片を80℃で3分乾燥させた。
(4)潤滑処理(接触工程):乾燥後に試験片に、静電粉体塗装用のエアガンを用いて、所定量の皮膜量になるように、バインダーとしてのベース成分(C-8)に固体潤滑剤を分散させた金属材料用潤滑皮膜剤(表3を参照)を塗布した。
 (5)乾燥:潤滑処理後の試験片を150℃で3分乾燥させた。
<工程E(リン酸塩+潤滑)>
 (1)脱脂:60℃に加温した市販の脱脂剤(登録商標ファインクリーナーE6400、日本パーカライジング(株)製、濃度20g/L)中に、試験片(金属材料)を10分浸漬させた。
 (2)水洗:脱脂後の試験片を室温にて水道水中に30秒浸漬させた。
 (3)化成処理(化成処理工程):80℃に加温した市販のリン酸塩処理液(登録商標パルボンド181X、日本パーカライジング(株)製、濃度90g/L)中に、水洗後の試験片を10分浸漬させた。
 (4)水洗:化成処理後の試験片を60℃に加温した水道水中に30秒浸漬させた。
 (5)潤滑処理(接触工程):水洗後の試験片を60℃に加温した金属材料用潤滑皮膜剤(表1を参照)に30秒浸漬させた。
 (6)乾燥:潤滑処理後の試験片を80℃で3分乾燥させた。
 水系金属材料用潤滑皮膜剤の試験水準を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 油系金属材料用潤滑皮膜剤の試験水準を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 粉体系金属材料用潤滑皮膜剤の試験水準を表3に示す。
Figure JPOXMLDOC01-appb-T000003
[比較例1]
<リン酸亜鉛処理+反応型石けん処理>
 (1)脱脂:60℃に加温した市販の脱脂剤(登録商標ファインクリーナーE6400、日本パーカライジング(株)製、濃度20g/L)中に、試験片(金属材料)を10分浸漬させた。
 (2)水洗:脱脂後の試験片を室温にて水道水中に30秒浸漬させた。
 (3)リン酸塩処理:80℃に加温した市販のリン酸塩処理液(登録商標パルボンド181X、日本パーカライジング(株)製、濃度90g/L)中に、水洗後の試験片を10分浸漬させた。
 (4)水洗:リン酸塩処理後の試験片を室温にて水道水中に30秒浸漬させた。
 (5)反応型石けん処理:80℃に加温した市販の反応型石けん処理液(登録商標パルーブ235、日本パーカライジング(株)製、濃度70g/L)中に、水洗後の試験片を5分浸漬させた。
 (6)乾燥:反応型石けん処理後の試験片を80℃で3分乾燥させた。
[比較例2]
 以下に示す水系潤滑剤(特許文献1:特許第3517522号)を作製し、工程Aの方法にて、乾燥後の皮膜量が10g/mになるように試験片に塗布した。
<水系潤滑剤>
四ホウ酸ナトリウム:10.0重量%
ステアリン酸カルシウム:5.0重量%
パーム油:5.0重量%
ポリオキシエチレンアルキルエーテル:1.0重量%
残部:水
[比較例3]
 親油性潤滑成分を内包していない滑石(A-5)を用い、以下の水系潤滑皮膜剤を作製した。工程Aの方法にて、乾燥後の皮膜量が10g/mになるように試験片に塗布した。
<水系潤滑剤>
固体潤滑剤:A-5 100g
ベース成分:C-1 95g
界面活性剤:D-1 5g
水:800g
[比較例4]
 固体潤滑剤を含まない以下の油系潤滑剤を用い、工程Cにて、皮膜量が25g/mになるように試験片に塗布した。
<油系潤滑剤>
ベース成分:B-10 1000g
[比較例5]
 親油性潤滑成分を内包していない滑石(A-5)を用い、以下の粉体系潤滑皮膜剤を作製した。工程Dの方法にて、乾燥後の皮膜量が10g/mになるように試験片に塗布した。
<粉体系潤滑剤>
固体潤滑剤:A-5 700g
ベース成分:C-8 300g
[比較例6]
 二硫化モリブデンを用い、以下の水系潤滑皮膜剤を作製した。工程Aの方法にて、乾燥後の皮膜量が10g/mになるように試験片に塗布した。
<水系潤滑剤>
固体潤滑剤:A-19(二硫化モリブデン) 100g
ベース成分:B-10 95g
界面活性剤:D-1 5g
水:800g
[評価方法]
 本発明の金属材料用潤滑皮膜剤の効果を、以下の評価によって検証した。なお、実施例、及び比較例の中で、潤滑皮膜のベース成分、及びバインダー成分として油、もしくは極圧剤を用いた水準は、摺動塗膜としての用途には不適であるため、摺動性試験(バウデン試験)は実施しないこととした。
(1)潤滑性(鍛造性、伸線性、伸管性、摺動性)
(2)耐食性
(3)環境性
(4)外観
[鍛造性試験]
<スパイク試験>
試験材:S45C球状化焼鈍材(25mmφ×30mm)
試験方法:特許第3227721号の発明に準じて実施した。評価は試験片突起部の追従している潤滑皮膜を、目視によって評価した。この試験では、潤滑皮膜の再吸湿による潤滑性低下の有無を確認するため、潤滑皮膜を80℃、3分の条件で完全乾燥した場合と、完全乾燥後に30℃、相対湿度80%、5時間の条件で潤滑皮膜を吸湿させた場合とで潤滑性を比較した。評価基準を以下に示す。なお、B以上が実用レベルである。
評価基準:
S:突起先端部まで皮膜が十分に追従している(金属光沢がほぼない状態)。
A:突起先端部まで皮膜が追従している。
B:突起上部まで皮膜が追従している。
C:突起中央部まで皮膜が追従している。
D:突起下部まで皮膜が追従している。
[伸線性試験]
試験材:S45C、φ3.0mm、長さ50000mm
試験方法:Rダイスを用い、減面率5~20%の条件で伸線した。評価はキズやビビリがなく、安定的に伸線可能な限界減面率を、以下の評価基準に従って行った。なお、B以上が実用レベルである。
評価基準:
S:限界減面率が23%以上である。
A:限界減面率が20%以上、23%未満である。
B:限界減面率が15%以上、20%未満である。
C:限界減面率が10%以上、15%未満である。
D:限界減面率が10%未満である。
[伸管性試験]
試験材:STKM17A、φ25.4mm×2.5mmt、長さ2000mm
試験方法:抽伸機(ドローベンチ)にて、Rダイス、円筒プラグを用い、伸管速度20m/minの条件で実施した。評価はキズやビビリがなく、安定的に伸管可能な限界減面率を、以下の評価基準に従って行った。なお、Bレベル以上が実用レベルである。
評価基準:
S:限界減面率が53%以上である
A:限界減面率が50%以上、53%未満である。
B:限界減面率が45%以上、50%未満である。
C:限界減面率が40%以上、45%未満である。
D:限界減面率が40%未満である。
[摺動性試験]
<バウデン試験>
試験材:SPCC-SD、70mm×150mm×0.8mmt
試験方法:主に、摺動皮膜(潤滑皮膜のベース成分が水溶性無機塩、水溶性有機塩、水系樹脂の場合)としての性能評価として、バウデン試験を実施した。この試験では潤滑皮膜を形成させた平板試験片と鋼球を一定荷重で接触させて試験片を摺動させ、摩擦係数、及び摺動回数を測定することにより行った。皮膜が破断し、焼付きを生じると摩擦係数が0.25に達することから、摩擦係数が0.25に達するまでの摺動回数で、摺動性を評価した。なお、以下に示す評価基準において、B以上が実用レベルである。
試験条件:
 荷重:50N
 圧子:10mmφSUJ2鋼球
 摺動速度:10mm/s
 試験温度:60℃
評価基準:
S:250回以上である。
A:200回以上、250回未満である。
B:150回以上、200回未満である。
C:100回以上、150回未満である。
D:100回未満
[潤滑性の総合評価]
 鍛造性、伸線性、伸管性、摺動性の各評価結果を以下のように評点化し、その平均値を潤滑性の総合評価結果とした。なお、潤滑性における実用性可否の判断は、各潤滑性評価における性能がすべてB以上(評点3以上)で、かつ、評点の平均値が3.0以上であることとした。
S=5、A=4、B=3、C=2、D=1
[耐食性試験]
試験材:SPCC-SD、70mm×150mm×0.8mmt
試験方法:耐食性試験は、潤滑皮膜を形成させた平板試験片を平塚地区の工場内に1ヶ月間放置し、発錆面積率で評価した。工場内の平均気温は27.6℃、平均湿度は75%であった。なお、以下に示す評価基準において、B以上が実用レベルである。
評価基準:
A:発錆面積率1%未満である。
B:発錆面積率1%以上で、10%未満である。
C:発錆面積率10%以上で、30%未満である。
D:発錆面積率30%以上で、80%未満である。
[環境性評価]
 ラインでの操業性の評価は、処理負荷試験(スラッジ発生試験)で行なった。この試験では潤滑皮膜剤1Lに対し、試験板(SPCC-SD、70mm×150mm×0.8mmt)を0.3mの処理負荷になるまで連続処理し、スラッジ発生の有無によって評価した。なお、以下に示す評価基準において、B以上が実用レベルである。
評価基準:
A:スラッジの発生はない。
B:スラッジが僅かに発生する。(発生量3g/L未満)
C:スラッジが発生する。(発生量3g/L以上)
[外観評価]
 潤滑皮膜を形成させた後の外観評価として、L値を測定した。
試験材:SPCC-SD、70mm×150mm×0.8mmt
測定機器:スガ試験機製カラーコンピューターSM-3
評価基準:評価基準を以下に示す。L値が低いほど黒色度が高く、作業環境が良くないと判断する。B以上が実用レベルである。
A:70以上である。
B:50以上、70未満である。
C:50未満である。
 水系金属材料用潤滑皮膜剤の評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 油系金属材料用潤滑皮膜剤の評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 粉体系金属材料用潤滑皮膜剤の評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 比較例の評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表4~6に示す評価結果から明らかなように、本発明の実施例に係る金属材料用潤滑皮膜剤は、すべての評価試験において、実用レベル(B評価以上)以上の性能が得られている。これに対し、表7の比較例では、比較例1のリン酸塩+反応型石けん処理では、潤滑性は実用レベルであったが、環境性がC評価であった。また、比較例2では、耐食性、環境性、外観は実用レベルであったが、吸湿状態での潤滑性がC評価であった。比較例3~5は、本発明の固体潤滑剤を含まない潤滑剤であるが、すべての潤滑性試験、及び耐食性がC評価以下となり、実用レベルではなかった。比較例6は、潤滑性や耐食性、環境性は優れるが、皮膜外観が黒色で、C評価であった。以上の結果より、本発明は従来技術と比較して、産業上の利用価値がさらに高いものと言える。

Claims (14)

  1.  スメクタイト群、バーミキュライト群、雲母群、脆雲母群、パイロフィライト群、カオリナイト群の天然品、及びこれらの合成品からなる群から選ばれる少なくとも1種の層状粘土鉱物の粒子間、及び/又は層間に、油、極圧剤、石けん、及びワックスから選ばれる少なくとも1種である親油性潤滑成分を内包するキャリア粒子からなることを特徴とする、固体潤滑剤。
  2.  前記層状粘土鉱物の断面におけるアスペクト比が、3~150であることを特徴とする、請求項1に記載の固体潤滑剤。
  3.  前記親油性潤滑成分の溶解性パラメータ(SP値)が、10以下であることを特徴とする、請求項1又は2に記載の固体潤滑剤。
  4.  前記層状粘土鉱物の対水接触角が40°以上であることを特徴とする、請求項1~3のいずれか一項に記載の固体潤滑剤。
  5.  前記層状粘土鉱物の平均粒径が30μm以下であることを特徴とする、請求項1~4のいずれか一項に記載の固体潤滑剤。
  6.  前記親油性潤滑成分の内包量が、前記キャリア粒子の全質量に対する質量比で5質量%以上であることを特徴とする、請求項1~5のいずれか一項に記載の固体潤滑剤。
  7.  前記層状粘土鉱物のモース硬度が2以下であることを特徴とする、請求項1~6のいずれか一項に記載の固体潤滑剤。
  8.  金属材料の塑性加工用の潤滑皮膜剤に用いることを特徴とする、請求項1~7のいずれか一項に記載の固体潤滑剤。
  9.  少なくとも請求項1~8のいずれか一項に記載の固体潤滑剤を含む成分を水に分散してなる水系金属材料用潤滑皮膜剤であって、前記固体潤滑剤の濃度が、潤滑皮膜剤中の全固形分の質量に対する質量比で5質量%以上であることを特徴とする、金属材料用潤滑皮膜剤。
  10.  少なくとも請求項1~8のいずれか一項に記載の固体潤滑剤を含む成分を油に分散してなる油系金属材料用潤滑皮膜剤であって、前記固体潤滑剤の濃度が、潤滑皮膜剤中の全固形分の質量に対する質量比で5質量%以上であることを特徴とする、金属材料用潤滑皮膜剤。
  11.  少なくとも請求項1~8のいずれか一項に記載の固体潤滑剤を含む成分を含有する粉体系金属材料用潤滑皮膜剤であって、前記固体潤滑剤の濃度が、潤滑皮膜剤中の全固形分の質量に対する質量比で5質量%以上であることを特徴とする、金属材料用潤滑皮膜剤。
  12.  金属材料表面に、請求項9~11のいずれか一項に記載の金属材料用潤滑皮膜剤が、乾燥後の皮膜量として0.5g/m以上、付着していることを特徴とする、表面処理金属材料。
  13.  請求項9~11のいずれか一項に記載の金属材料用潤滑皮膜剤に金属材料を接触させる接触工程を含むことを特徴とする、金属材料の潤滑皮膜形成方法。
  14.  前記接触工程の前に、金属材料の表面に化成皮膜を被覆させる化成処理工程をさらに含むことを特徴とする、請求項13に記載の金属材料の潤滑皮膜形成方法。
PCT/JP2016/056763 2015-04-27 2016-03-04 固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法 WO2016174923A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES16786200T ES2927382T3 (es) 2015-04-27 2016-03-04 Lubricante sólido, agente de recubrimiento lubricante para material metálico, material metálico tratado en superficie y método para formar un recubrimiento lubricante para material metálico
CN201680024067.6A CN107969134B (zh) 2015-04-27 2016-03-04 固体润滑剂、金属材料用润滑被膜剂、表面处理金属材料、以及金属材料的润滑被膜形成方法
EP16786200.2A EP3290495B1 (en) 2015-04-27 2016-03-04 Solid lubricant, lubricating coating agent for metal material, surface-treated metal material, and method for forming lubricating coating for metal material
US15/569,215 US20180355275A1 (en) 2015-04-27 2016-03-04 Solid lubricant, lubricating coating agent for metal material, surface-treated metal material, and method for forming lubricating coating for metal material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015090838A JP6757556B2 (ja) 2015-04-27 2015-04-27 固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法
JP2015-090838 2015-04-27

Publications (1)

Publication Number Publication Date
WO2016174923A1 true WO2016174923A1 (ja) 2016-11-03

Family

ID=57199794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056763 WO2016174923A1 (ja) 2015-04-27 2016-03-04 固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法

Country Status (7)

Country Link
US (1) US20180355275A1 (ja)
EP (1) EP3290495B1 (ja)
JP (1) JP6757556B2 (ja)
CN (1) CN107969134B (ja)
ES (1) ES2927382T3 (ja)
TW (1) TW201641681A (ja)
WO (1) WO2016174923A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190132391A (ko) * 2017-03-31 2019-11-27 교에이샤 케미칼 주식회사 신선용 윤활제 및 이것을 이용한 모재의 신선방법
CN108587736A (zh) * 2018-05-30 2018-09-28 郭迎庆 一种无机改性植物基润滑油添加剂的制备方法
CN108949315B (zh) * 2018-06-25 2021-11-12 杰锡工业技术(上海)有限公司 一种环保节能的新型金属冷成型加工方法
DE102019104540B4 (de) * 2019-02-22 2021-08-19 Chemische Fabrik Budenheim Kg Schmierstoff und dessen Verwendung für die Heißumformung von Metallen
CN110064575A (zh) * 2019-04-25 2019-07-30 国家纳米科学中心 一种二维材料固体润滑薄膜及其制备方法
JP2019157141A (ja) * 2019-07-01 2019-09-19 日本パーカライジング株式会社 固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法
WO2021216895A1 (en) * 2020-04-22 2021-10-28 Suman Andrew W Abradable powder coating manufactured with solvent-free liquid polymer resin base coat
CN114106904A (zh) * 2021-11-08 2022-03-01 武汉科技大学 一种具有增强摩擦表面抗磨性能的润滑油及其制备方法
CN114606041B (zh) * 2022-03-16 2023-01-24 四川大学 一种基于改性埃洛石的抗磨润滑剂及其制备方法
WO2023182120A1 (ja) * 2022-03-24 2023-09-28 Dic株式会社 分散体及び潤滑組成物
WO2023188031A1 (ja) * 2022-03-29 2023-10-05 サンユレック株式会社 ポリウレタン樹脂組成物
CN115232660B (zh) * 2022-06-24 2023-08-15 佛山科学技术学院 一种再制造成形层表面加工强化材料及其制备方法和应用
CN115851338A (zh) * 2022-11-25 2023-03-28 中国科学院兰州化学物理研究所 一种固体润滑材料及其制备方法
CN116855306A (zh) * 2023-06-20 2023-10-10 中建八局第四建设有限公司 一种保水型水性脱模剂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127352A (en) * 1977-04-14 1978-11-07 Kyodo Yushi Hot rolling lubricant for steel material
WO2003080774A1 (en) * 2002-03-25 2003-10-02 Nihon Parkerizing Co., Ltd. Metal soap-coated particle, article made with the same, process for production, lubricating coating agent, and lubricating coating film
JP2005314558A (ja) * 2004-04-28 2005-11-10 Idemitsu Kosan Co Ltd 金属加工油組成物
WO2012086564A1 (ja) * 2010-12-20 2012-06-28 日本パーカライジング株式会社 金属材料の塑性加工用潤滑剤
WO2012133455A1 (ja) * 2011-03-28 2012-10-04 日本パーカライジング株式会社 塑性加工用潤滑被膜剤とその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85103612A (zh) * 1985-05-18 1987-01-28 眭星尧 乳浆型玻璃高分子聚脂水剂脱模润滑剂
JPH05156277A (ja) * 1991-11-29 1993-06-22 Goyo Paper Working Co Ltd 固状潤滑剤
JP3467529B2 (ja) * 2000-06-13 2003-11-17 広島大学長 金型鋳造用の粉体離型潤滑剤および金型鋳造法
TW587096B (en) * 2000-08-11 2004-05-11 Nihon Parkerizing Greases component containing in aqueous composition for forming protective membranes
US6983800B2 (en) * 2003-10-29 2006-01-10 Halliburton Energy Services, Inc. Methods, cement compositions and oil suspensions of powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127352A (en) * 1977-04-14 1978-11-07 Kyodo Yushi Hot rolling lubricant for steel material
WO2003080774A1 (en) * 2002-03-25 2003-10-02 Nihon Parkerizing Co., Ltd. Metal soap-coated particle, article made with the same, process for production, lubricating coating agent, and lubricating coating film
JP2005314558A (ja) * 2004-04-28 2005-11-10 Idemitsu Kosan Co Ltd 金属加工油組成物
WO2012086564A1 (ja) * 2010-12-20 2012-06-28 日本パーカライジング株式会社 金属材料の塑性加工用潤滑剤
WO2012133455A1 (ja) * 2011-03-28 2012-10-04 日本パーカライジング株式会社 塑性加工用潤滑被膜剤とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3290495A4 *

Also Published As

Publication number Publication date
JP6757556B2 (ja) 2020-09-23
ES2927382T3 (es) 2022-11-04
US20180355275A1 (en) 2018-12-13
EP3290495A1 (en) 2018-03-07
CN107969134B (zh) 2021-07-23
TW201641681A (zh) 2016-12-01
EP3290495B1 (en) 2022-08-24
JP2016204577A (ja) 2016-12-08
EP3290495A4 (en) 2019-01-23
CN107969134A (zh) 2018-04-27

Similar Documents

Publication Publication Date Title
CN107969134B (zh) 固体润滑剂、金属材料用润滑被膜剂、表面处理金属材料、以及金属材料的润滑被膜形成方法
CN107709610B (zh) 金属材料用水系润滑被膜剂、表面处理金属材料及金属材料的润滑被膜形成方法
WO2016194447A1 (ja) 含水潤滑膜剤、表面処理金属材料、及び、金属材料の含水潤滑膜形成方法
CA2419061C (en) Water-based composition for protective film formation
JP5718944B2 (ja) 金属材料の塑性加工用潤滑剤
US7651556B2 (en) Treating agent for forming a protective coating and metallic materials with a protective coating
ES2928160T3 (es) Agente de recubrimiento lubricante acuoso que tiene resistencia a la corrosión y trabajabilidad excelentes, y material metálico
JP2019157141A (ja) 固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016786200

Country of ref document: EP