WO2017057385A1 - 耐食性及び加工後の外観に優れた鋼線材 - Google Patents

耐食性及び加工後の外観に優れた鋼線材 Download PDF

Info

Publication number
WO2017057385A1
WO2017057385A1 PCT/JP2016/078500 JP2016078500W WO2017057385A1 WO 2017057385 A1 WO2017057385 A1 WO 2017057385A1 JP 2016078500 W JP2016078500 W JP 2016078500W WO 2017057385 A1 WO2017057385 A1 WO 2017057385A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
steel wire
water
lubricating film
lubricant
Prior art date
Application number
PCT/JP2016/078500
Other languages
English (en)
French (fr)
Inventor
弘高 伊藤
茂洋 山根
ファム バン ドック
豪 畠山
忍 小見山
Original Assignee
株式会社神戸製鋼所
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016121490A external-priority patent/JP6694769B2/ja
Application filed by 株式会社神戸製鋼所, 日本パーカライジング株式会社 filed Critical 株式会社神戸製鋼所
Priority to US15/763,975 priority Critical patent/US20180273869A1/en
Priority to MX2018003548A priority patent/MX2018003548A/es
Priority to CN201680056590.7A priority patent/CN108138327B/zh
Priority to KR1020187008815A priority patent/KR102105304B1/ko
Publication of WO2017057385A1 publication Critical patent/WO2017057385A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/06Metal compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/22Carboxylic acids or their salts
    • C10M105/24Carboxylic acids or their salts having only one carboxyl group bound to an acyclic carbon atom, cycloaliphatic carbon atom or hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/22Compounds containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M127/00Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/38Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms
    • C10M129/40Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/16Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/38Heterocyclic nitrogen compounds
    • C10M133/40Six-membered ring containing nitrogen and carbon only
    • C10M133/42Triazines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an acyloxy radical of a saturated carboxylic or carbonic acid
    • C10M145/08Vinyl esters of a saturated carboxylic or carbonic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/22Polyesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/24Polyethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/40Polysaccharides, e.g. cellulose
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M147/00Lubricating compositions characterised by the additive being a macromolecular compound containing halogen
    • C10M147/02Monomer containing carbon, hydrogen and halogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M149/00Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
    • C10M149/12Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M149/14Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds a condensation reaction being involved
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates

Definitions

  • the present disclosure relates to a steel wire having a lubricating film containing no phosphorus on the surface.
  • a technique of previously coating the surface of a metal material with a solid film is generalized.
  • Such a solid film has a sufficient film strength.
  • a composite film composed of a zinc phosphate film and a soap layer (hereinafter sometimes referred to as a chemical conversion film) has high processability and corrosion resistance and is widely used.
  • Patent Document 1 discloses a composition in which (A) a water-soluble inorganic salt and (B) wax are dissolved or dispersed in water, and the solid content weight ratio (B) / (A) is in the range of 0.3 to 1.5.
  • An aqueous lubricating film treating agent for plastic working of metal materials and a method for forming the film are disclosed.
  • Patent Document 2 discloses an aqueous lubricant film treatment agent containing an alkali metal borate (A), wherein the alkali metal borate (A) contains lithium borate, and the alkali metal borate (A) contains all alkali metals. And the molar ratio (B / M) of boric acid B to alkali metal M in the alkali metal borate (A) is 1.5 to 4 0.0, a water-based lubricating film treating agent for plastic working of metal materials and a method for forming the film are disclosed. This technique is said to be able to form a film having not only workability but also high corrosion resistance by suppressing the crystallization of the film that occurs when the film absorbs moisture.
  • Patent Document 3 contains an A component: an inorganic solid lubricant, a B component: a wax, and a C component: a water-soluble inorganic metal salt, and a solid content dry mass ratio of the A component and the B component (A component / B Component) is 0.1 to 5, and the solid content dry mass ratio of the C component to the total amount of the A component, the B component, and the C component (C component / (A component + B component + C component)) is 1 to 30%
  • a water-soluble lubricant for non-phosphorus plastic processing is disclosed. This technique is a lubricant that does not contain phosphorus, and is said to be able to realize corrosion resistance equivalent to that of a chemical conversion coating.
  • Patent Document 4 contains a water-soluble inorganic salt (A), one or more lubricants (B) selected from molybdenum disulfide and graphite, and a wax (C), and these are dissolved in water or Aqueous lubrication in which (B) / (A) is 1.0 to 5.0 in terms of solids weight ratio and (C) / (A) is in the range of 0.1 to 1.0 in terms of solids weight ratio A film treatment agent and a method for forming the film are disclosed. According to this technique, high workability equivalent to that of a chemical conversion treatment film can be realized by blending molybdenum disulfide and / or graphite with a conventional water-based lubricating film treatment agent.
  • Patent Document 5 discloses silicate (A), polycarboxylate (B), water-compatible polymer and / or water-compatible organic lamellar structure (C), molybdate and / or tungstate. (D) and the film formation agent whose dry mass ratio of each said component is a predetermined ratio is disclosed.
  • the water-soluble inorganic salt is an essential component in the solid film of the water-based lubricating film treatment agent.
  • a lubricating film composed of a water-soluble inorganic salt has a sufficient film strength, and as described above, even under a high surface pressure, it is difficult to cause the lubricating film to break by being interposed at the interface between the die and the workpiece. This is because direct contact between metals can be avoided.
  • a good lubricating state can be maintained during plastic processing by combining a solid film made of a water-soluble inorganic salt and a water-soluble resin with an appropriate lubricant capable of reducing the friction coefficient. .
  • the film formation mechanism of the water-based lubricating film composed of water-soluble components will be described.
  • the water-soluble inorganic salt of the water-soluble component is in a state of being dissolved in water in the lubricant treatment liquid.
  • the solvent water evaporates and a lubricating film is formed.
  • water-soluble inorganic salt precipitates as a solid substance on the metal material surface, and forms a solid membrane
  • the solid film thus formed has a film strength that can withstand plastic processing, and exhibits good lubricity during plastic processing by incorporating an appropriate lubricant that reduces the friction coefficient.
  • Patent Documents 1 to 5 are significantly inferior in long-term rust prevention for 2 months or more as compared with the chemical conversion coating described above, and cannot be increased to a practical level. This is due to the fact that the main component of the film is a water-soluble component, so that moisture in the atmosphere is easily absorbed or permeated, and the contact between the steel material and moisture is easy.
  • Patent Document 2 although corrosion resistance is improved by suppressing crystallization of the film due to moisture absorption, moisture absorption itself is not suppressed, and sufficient corrosion resistance is not obtained.
  • the water-based lubricating film described in Patent Document 3 exhibited a corrosion resistance equivalent to or higher than that of the chemical conversion coating film in a corrosion resistance test in a laboratory in which rusting was accelerated using a thermo-hygrostat.
  • the environment in which the lubricating film is actually used is usually in a state where dust, dust and pickling chemical mist can adhere. In such a harsh environment, the actual condition is that the corrosion resistance is inferior to that of the chemical conversion coating.
  • silicates alkali metal salts of silicates
  • tungstates alkali metal salts of tungstates and / or ammonium salts
  • tungstate ammonium salts
  • These water-soluble inorganic salts are described in Patent Document 1, Patent Document 4 and Patent Document 5. However, they also have a practically inferior corrosion resistance compared to the chemical conversion coating.
  • Water-soluble silicate has a property that it hardly permeates moisture in water-soluble inorganic salts and has very high adhesion to the material. Because of this property, it is a material that can exhibit relatively high corrosion resistance, although not as much as the chemical conversion coating. This is because the water-soluble silicate is cross-linked and forms a network structure in the film formation process in which water as the solvent of the lubricant volatilizes. However, because of this network structure, the water-soluble silicate film is too brittle as a lubricating film. For this reason, when a base material is processed, a film
  • Water-soluble tungstate hardly absorbs moisture from outside air when a film is formed. This is because when the water-soluble tungstate forms a film, a particulate crystal is formed. Furthermore, the water-soluble tungstate has a property of forming a passive film having a self-repairing function on the surface of the steel material, and it can be expected to form a highly corrosion-resistant film by using it as a film component. However, since the water-soluble tungstate is crystalline, it has poor adhesion to the material and cannot form a uniform film, so that it cannot obtain the expected corrosion resistance and workability. For example, the adhesion and uniformity of the film can be improved by adding a synthetic resin component to the lubricant, but the corrosion resistance is still significantly inferior to that of the chemical conversion film.
  • the water-based lubricating film treatment agent disclosed in Patent Document 4 contains molybdenum disulfide and / or graphite, so that the workability equivalent to or better than that of the chemical conversion film can be obtained even during strong processing.
  • the corrosion resistance is inferior to that of the lubricating films of Patent Documents 1 to 3.
  • Patent Document 5 the coating material containing silicate (A) as a main component and containing too much corrosion-resistant agent (D) or the like has poor lubricity due to seizure or the like when the extrusion load is high. Therefore, stable work becomes difficult and long-term rust prevention is not sufficient.
  • indentation of the film occurs at places where the friction is locally high, resulting in poor appearance such as a scale-like pattern.
  • indentation marks are likely to occur in the steel material due to the surface pressure during forging. Since these patterns and indentation marks can be easily confirmed visually, the appearance of the product has been significantly impaired.
  • the water-based lubricant film has high corrosion resistance over a long period of about two months or more, which is comparable to the chemical conversion treatment film even in a practical environment, and can have an excellent appearance at the same time after forging. There wasn't.
  • an object of the embodiment of the present invention is to provide a steel wire having a lubricating film that can achieve both corrosion resistance such as long-term rust prevention and excellent appearance after forging.
  • the inventors have conducted intensive research to solve the above-described problems with respect to steel wires having a lubricating film containing no phosphorus on the surface.
  • the ratio of silicon derived from water-soluble silicates and tungsten derived from water-soluble tungstates that is, a lubricant film in which the dry mass ratio of tungsten / silicon is controlled to a predetermined ratio, is used as a lubricant.
  • the steel wire rod according to the embodiment of the present invention is configured as follows in order to solve the above problems.
  • the steel wire of the embodiment of the present invention includes silicon (A), tungsten (B), and an alkali metal salt of fatty acid (C), and a dry mass ratio of (B) / (A) is in the range of 1.3 to 18.
  • the dry mass ratio of (C) / ⁇ (A) + (B) ⁇ is in the range of 0.14 to 2.0, and has a lubricating film containing no phosphorus on the surface.
  • the silicon is derived from a water-soluble silicate and the tungsten is derived from a water-soluble tungstate.
  • the silicon is derived from at least one selected from the group consisting of lithium silicate, sodium silicate and potassium silicate, and the tungsten is lithium tungstate, sodium tungstate, potassium tungstate and ammonium tungstate. It is preferably derived from at least one selected from the group consisting of:
  • the lubricating coating further contains a lubricant (D) other than the alkali metal salt (C) of the fatty acid, and the dry mass ratio of ⁇ (C) + (D) ⁇ / ⁇ (A) + (B) ⁇ is 0.14. It is preferable that it is -2.0.
  • the lubricant (D) is preferably at least one selected from the group consisting of wax, polytetrafluoroethylene, fatty acid metal soap, fatty acid amide, molybdenum disulfide, tungsten disulfide, graphite, and melamine cyanurate.
  • the lubricating film further contains a resin (E), and the dry mass ratio of (E) / ⁇ (A) + (B) ⁇ is more than 0 and 1.4 or less.
  • the resin (E) is preferably at least one selected from the group consisting of vinyl resin, acrylic resin, epoxy resin, urethane resin, phenol resin, cellulose derivative, polymaleic acid, and polyester resin.
  • the film mass per unit area of the lubricating film is preferably 1.0 to 20 g / m 2.
  • the steel wire of the present disclosure has the lubricating film as described above, a steel wire having excellent corrosion resistance such as long-term rust prevention and excellent appearance after forging is obtained. All of these performances are greatly superior to conventional water-based lubricating coatings in that they are at or above the level of steel wires having a chemical conversion coating.
  • FIG. 1 is a schematic diagram illustrating a procedure of forging in the embodiment.
  • the steel wire of the embodiment of the present invention includes silicon (A), tungsten (B), and an alkali metal salt of fatty acid (C), and a dry mass ratio of (B) / (A) is in the range of 1.3 to 18.
  • the dry mass ratio of (C) / ⁇ (A) + (B) ⁇ is in the range of 0.14 to 2.0, and is characterized in that it has a lubricating film containing no phosphorus on the surface.
  • the steel used for the steel wire of the embodiment of the present invention includes carbon steel, alloy steel, special steel, and the like.
  • steel include mild steel having a carbon content of 0.2% by mass or less (excluding 0% by mass) and carbon steel having a carbon content of more than 0.2% by mass and about 1.5% by mass or less.
  • an alloy steel in which at least one selected from silicon, manganese, phosphorus, sulfur, nickel, chromium, copper, aluminum, molybdenum, vanadium, cobalt, titanium, zirconium and the like is added to mild steel or carbon steel depending on the application. Or special steel etc. are mentioned.
  • the steel wire generally refers to steel processed into a wire by hot working.
  • the steel wire rod of the present disclosure includes a steel wire.
  • the steel wire is obtained by further processing the above steel wire. Examples of the processing include wire drawing processing, forging processing, forging processing, and the like. Specifically, for example, those obtained by drawing the above steel wire to a specified size (wire diameter, roundness, etc.), forging after drawing, and forging the above steel wire, etc. Can be mentioned.
  • the steel wire includes those obtained by further subjecting the processed product to surface treatment such as heat treatment and / or plating treatment. Specifically, for example, after the forging process or forging process, a machine process is performed to obtain a product, and a heat treatment is performed, or a plating process is further performed after the heat treatment.
  • the steel wire according to the embodiment of the present invention is not particularly limited as long as it has a lubricating film to be described later, and is excellent in corrosion resistance and appearance after forging, but further between the surface of the steel wire and the lubricating film.
  • a film, that is, a base film may be formed. Any of these films may be a single layer or two or more layers.
  • both the lubricating film and the base film used in the embodiment of the present invention do not contain phosphorus. Therefore, the lubricating film treating agent used for forming the lubricating film does not contain a component containing phosphorus.
  • a component containing phosphorus is inevitably mixed in the coating on the surface of the steel wire in the operation process or the like. In other words, phosphorus may be contaminated as an inevitable impurity in actual operation.
  • the phosphorus content is about 1% by mass or less, the steel wire is not likely to be brittlely broken by such phosphorus. Can be considered not to happen.
  • the steel wire according to the embodiment of the present invention includes silicon (A), tungsten (B), and an alkali metal salt of fatty acid (C), and a dry mass ratio of (B) / (A) is 1.3 to 18. Within the range, the surface has a lubricating film containing a dry mass ratio of (C) / ⁇ (A) + (B) ⁇ in the range of 0.14 to 2.0.
  • the water-soluble tungstate is incorporated into the network structure formed by the water-soluble silicate.
  • the water-soluble tungstate has the disadvantage of forming a crystalline film.
  • incorporation into the water-soluble silicate network structure allows the water-soluble tungstate to be present uniformly and finely.
  • a passive film having both the property of water-soluble silicate that hardly permeates moisture and the self-healing function of water-soluble tungstate is formed, and the corrosion resistance is remarkably improved.
  • water-soluble tungstate on water-soluble silicate, there is an increase in the amount of film remaining at the processing site accompanying improvement in film followability.
  • the reason why the water-soluble silicate film is inferior is that a strong continuous film is formed by polymerizing the water-soluble silicate.
  • the complex water-soluble tungstate intervenes in the network structure of the water-soluble silicate, thereby appropriately inhibiting the formation of a strong network structure and improving the film followability, thereby reducing the film remaining amount. Can be increased.
  • the dry mass ratio of tungsten (B) / silicon (A) is 1.3 or more, preferably 1.8 or more, more preferably 2.0 or more.
  • the dry mass ratio is 18 or less, preferably 10 or less, more preferably 5.4 or less.
  • the dry mass ratio of B / A is less than 1.3, sufficient corrosion resistance cannot be obtained, and the remaining amount of the film in the processed portion is reduced. This is because a passive film is not sufficiently formed due to a relatively small amount of the tungstate, and a strong network structure is formed due to a relatively large amount of the silicate. to cause.
  • the dry mass ratio of tungsten / silicon exceeds 18, a film in which sufficient corrosion resistance cannot be obtained.
  • the dry mass ratio of tungsten / silicon is based on the ratio of the tungsten element derived from the water-soluble tungstate and the silicon element derived from the water-soluble silicate in the film, It can be calculated as described below.
  • silicon (A) is derived from water-soluble silicate and tungsten (B) is derived from water-soluble tungstate.
  • the dry mass ratio of tungsten (B) / silicon (A) is as follows: the tungsten element derived from the water-soluble tungstate in the lubricating film, and the silicon element derived from the water-soluble silicate in the lubricating film. Based on the dry mass ratio, it can be calculated using, for example, inductively coupled plasma or fluorescent X-ray analysis.
  • the silicon (A) is derived from a water-soluble silicate (a) and the tungsten (B) is derived from a water-soluble tungstate (b)
  • their dry mass ratio (b) / (a) Is 0.7 or more, preferably 0.9 or more, more preferably 1.1 or more.
  • the dry mass ratio is 10 or less, preferably 6.0, and more preferably 3.0 or less.
  • water-soluble silicate examples include lithium silicate, sodium silicate, and potassium silicate. These may be used alone or in combination of two or more.
  • water-soluble tungstate examples include lithium tungstate, sodium tungstate, potassium tungstate, and ammonium tungstate. These may be used alone or in combination of two or more.
  • the alkali metal salt (C) of the fatty acid is blended for reducing friction of the lubricating film and preventing appearance defects after the forging process.
  • the alkali metal salt (C) of the fatty acid is slight, it has water solubility, and the dissolved alkali metal salt (C) of the fatty acid precipitates finely and uniformly during the formation of the lubricating film.
  • the distribution of the lubricant component in the film tends to be sparse, and there is a local difference in the frictional state during the forging process between the area where there is a lot of lubricant and the area where there is little lubricant. Arise.
  • the fatty acid alkali metal salt (C) can be finely and uniformly present in the film, so that a difference in local friction is unlikely to occur, and a good appearance after forging (forging appearance). can get. Further, the blending of the fatty acid alkali metal salt (C) has an effect that the lubricating film is softened and the lubricating film is hardly pushed into the steel wire.
  • the dry mass ratio of silicon (A), tungsten (B) and fatty acid alkali metal salt (C) is (C) / ⁇ ( A) + (B) ⁇ is 0.14 or more, preferably 0.2 or more, and more preferably 0.4 or more.
  • the dry mass ratio is 2.0 or less, preferably 1.5 or less.
  • the dry mass ratio exceeds 2.0, the amounts of silicon (A) and tungsten (B) are relatively reduced, resulting in a decrease in corrosion resistance and a decrease in seizure resistance of the film during forging. This leads to a decrease in mold life.
  • the dry mass ratio (C) / ⁇ (a) + (B) ⁇ is 0.043 or more, preferably 0.062 or more, more preferably 0.09 or more.
  • the dry mass ratio is 0.95 or less, more preferably 0.8 or less.
  • the alkali metal salt (C) of a fatty acid used in the embodiment of the present invention means an alkali metal salt (for example, sodium salt, potassium salt, lithium salt) of a long chain fatty acid (higher fatty acid) having 12 or more carbon atoms.
  • the hydrocarbon group constituting the fatty acid may be linear or branched.
  • the alkali metal salt (C) of the fatty acid is sodium myristate, potassium myristate, lithium myristate, sodium palmitate, potassium palmitate, lithium palmitate, sodium stearate, potassium stearate, lithium stearate, 12-hydroxy Examples include sodium stearate, potassium 12-hydroxystearate, and lithium 12-hydroxystearate. These may be used alone or in combination of two or more.
  • the steel wire of the embodiment of the present invention may further contain a lubricant (D) and / or a resin (E) other than the fatty acid alkali metal salt (C) in the lubricating film.
  • the lubricant (D) is slippery in itself and has a function of reducing the frictional force. In general, when the frictional force is increased during plastic processing, processing energy increases, heat is generated, and seizure occurs.
  • the lubricant (D) is contained in the lubricating film of the steel wire rod according to the embodiment of the present invention, the lubricant (D) is present in a solid form in the lubricating film, and an increase in frictional force is suppressed.
  • lubricant (D) having such functions and properties include wax, polytetrafluoroethylene, fatty acid metal soap, fatty acid amide, molybdenum disulfide, tungsten disulfide, graphite, and melamine cyanurate. These may be used alone or in combination of two or more.
  • the wax include polyethylene wax, paraffin wax, microcrystalline wax, polypropylene wax, and carnauba wax.
  • Specific examples of the fatty acid metal soap include calcium stearate, zinc stearate, barium stearate and magnesium stearate.
  • the fatty acid amide is an amide compound having two fatty acids. Specific examples thereof include ethylene bislauric acid amide, ethylene bis stearic acid amide, ethylene bisbehenic acid amide, NN'-distearyl adipic acid amide, ethylene bis olein. Examples include acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, and NN′-dioleyl adipic acid amide.
  • the lubricating film in the embodiment of the present invention further contains a lubricant (D), ⁇ (C) + (D) ⁇ / ⁇ (A) + (B) in order to effectively exhibit the effect of adding the lubricant (D).
  • ) ⁇ Is preferably 0.14 or more, more preferably 0.2 or more, and still more preferably 0.4 or more.
  • the dry mass ratio is preferably 2.0 or less, more preferably 1.5 or less. When the dry mass ratio is less than 0.14, the content of the lubricant (D) is too small, so that the above performance cannot be exhibited. On the other hand, when the said dry mass ratio exceeds 2.0, the quantity of silicon and tungsten will become relatively small, and corrosion resistance will fall.
  • the resin (E) has a binder action, an improvement in adhesion between the substrate and the film, a leveling property imparted by a thickening action, and a stabilizing action of the dispersed component.
  • resins having such functions and properties include vinyl resins, acrylic resins, epoxy resins, urethane resins, phenol resins, cellulose derivatives, polymaleic acid, and polyester resins.
  • the acrylic resin includes methacrylic resin. These resins may be a polymer or a copolymer.
  • copolymer examples include a vinyl-acrylic acid copolymer, a vinyl-epoxy copolymer, a vinyl-urethane copolymer, a vinyl-phenol copolymer, and a vinyl- (maleic anhydride) copolymer.
  • Polymer acrylic acid-epoxy copolymer, acrylic acid-urethane copolymer, acrylic acid-phenol copolymer, acrylic acid- (anhydrous) maleic acid copolymer, epoxy-urethane copolymer , Epoxy-phenol copolymer, epoxy- (anhydride) maleic acid copolymer, urethane-phenolic copolymer, urethane- (anhydride) maleic acid copolymer, phenol- (anhydride) maleic acid copolymer Polymer, olefin-acrylic acid copolymer, olefin-epoxy copolymer, olefin-urethane copolymer, olefin-phenol copolymer Fine olefin - (anhydrous) and a copolymer of maleic acid. These may be used alone or in combination of two or more.
  • the dry mass ratio of (E) / ⁇ (A) + (B) ⁇ is 0. 0 in order to effectively exhibit the effect of adding the resin (E). It is preferably 01 or more, more preferably 0.05 or more.
  • the dry mass ratio is preferably 1.4 or less, and more preferably 0.9 or less. When the dry mass ratio is less than 0.01, the above effects may not be sufficiently exhibited. On the other hand, when the said dry mass ratio exceeds 1.4, the external appearance defect after forging process will generate
  • the lubricating film constituting the embodiment of the present invention includes a viscosity modifier in addition to the above basic components (silicon, tungsten, fatty acid alkali metal salt) and optional components (resin, lubricant other than alkali metal salt of fatty acid). Furthermore, it can mix
  • Such viscosity modifiers include, as specific examples, smectite clay minerals such as montmorillonite, sauconite, beidellite, hectorite, nontronite, saponite, iron saponite and stevensite; and inorganic increases such as finely divided silica, bentonite and kaolin. Examples include a sticky agent.
  • the lubricating film may further contain a water-soluble salt in order to improve adhesion and the like.
  • a water-soluble salt is not particularly limited, and either or both of an inorganic salt and an organic salt can be used.
  • inorganic salts include sulfates such as sodium sulfate and potassium sulfate; borate salts such as sodium metaborate, potassium metaborate and ammonium metaborate.
  • Organic salts include acids such as formic acid, acetic acid, butyric acid, oxalic acid, succinic acid, lactic acid, ascorbic acid, tartaric acid, citric acid, malic acid, malonic acid, maleic acid, phthalic acid, and alkali metals and alkaline earth metals And the like.
  • the lubricating film of the steel wire rod according to the embodiment of the present invention can impart high corrosion resistance before and after wire drawing, it may be blended with other water-soluble rust preventives and inhibitors for the purpose of further improving the corrosion resistance. good.
  • these may be known ones such as various organic acids such as oleic acid, dimer acid, tartaric acid and citric acid; various chelating agents such as EDTA, NTA, HEDTA and DTPA; and alkanolamines such as triethanolamine.
  • Examples include mixed components; amine salts of pt-butylbenzoic acid; carboxylic acid amine salts, dibasic amine salts and alkenyl succinic acid and water-soluble salts thereof; aminotetrazole and water-soluble salts thereof. These may be used alone or in combination of two or more.
  • the lubricating film constituting the steel wire of the embodiment of the present invention includes the above components (water-soluble silicate that is a typical source of silicon, water-soluble tungstate and fatty acid that are typical sources of tungsten)
  • An essential component of the alkali metal salt of the lubricant is added to the liquid medium and mixed to prepare a lubricating film treatment agent. It can be produced by applying to the surface of a steel wire to be processed.
  • the water-soluble silicate is preferably more than 5% by mass in the total amount of 100% by mass in dry mass of component a, component b, component C, component D and component E in the lubricant film treatment agent, More preferably, it is 10 mass% or more, More preferably, it is 15 mass% or more, It is preferable that it is 58 mass% or less, More preferably, it is 52 mass% or less, More preferably, it is 45 mass% or less.
  • the water-soluble tungstate is preferably 10% by mass or more in a total amount of 100% by mass in dry mass of component a, component b, component C, component D and component E in the lubricant film treatment agent. More preferably, it is 15 mass% or more, More preferably, it is 20 mass% or more, It is preferable that it is less than 88 mass%, More preferably, it is 85 mass% or less, More preferably, it is 80 mass% or less.
  • the alkali metal salt of the fatty acid is preferably more than 3% by mass in a total amount of 100% by mass in dry mass of component a, component b, component C, component D and component E in the lubricant film treatment agent, More preferably, it is more than 7% by mass, more preferably 12% by mass or more, particularly preferably 16% by mass or more, and preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably. 30% by mass or less.
  • the amount of the water-soluble silicate when the amount of the water-soluble silicate is 5% by mass or less and the amount of the water-soluble tungstate is 88% by mass or more, sufficient long-term rust prevention property cannot be obtained, and after the forging process Appearance defect occurs. This is due to the fact that the amount of water-soluble silicate becomes relatively small, so that moisture can easily permeate, and the crystals of tungstate precipitate and the adhesion and uniformity of the film are reduced.
  • the amount of the water-soluble silicate when the amount of the water-soluble silicate is more than 58% by mass and the amount of the water-soluble tungstate is less than 10% by mass, sufficient corrosion resistance and good appearance after forging cannot be obtained. This is because the passive film is not sufficiently formed due to the relatively small amount of tungsten, and a strong network structure is formed when the amount of the water-soluble silicate is relatively increased. .
  • the amount of the alkali metal salt of the fatty acid is more than 50% by mass, the amounts of silicon (A) and tungsten (B) are relatively decreased, and the corrosion resistance is lowered.
  • the amount of the alkali metal salt of the fatty acid is 3% by mass or less, poor appearance tends to occur after the forging process.
  • a dry lubricant may be adhered on the lubricating film.
  • the type of dry lubricant is not particularly limited, and for example, general lubricating powder and / or wire drawing powder mainly composed of higher fatty acid soap, borax, lime, molybdenum disulfide and the like can be used.
  • the liquid medium (solvent, dispersion medium) in the lubricant film treatment agent for forming the lubricant film is water.
  • the lubricating film treating agent may contain a water-soluble strong alkali component in order to enhance the stability of the liquid.
  • a water-soluble strong alkali component in order to enhance the stability of the liquid.
  • Specific examples include lithium hydroxide, sodium hydroxide and potassium hydroxide. These may be used alone or in combination of two or more.
  • the manufacturing method includes a cleaning process of a steel wire to be processed, a manufacturing (processing) process of a lubricating film, a drying process, and a processing process. You may further perform processes, such as heat processing and / or surface treatment, as needed after a processing process. Hereinafter, each process will be described.
  • ⁇ Cleaning process Before forming the lubricating film on the steel wire, it is preferable to perform at least one type of cleaning treatment selected from the group consisting of shot blasting, sand blasting, wet blasting, peeling, alkali degreasing and acid cleaning.
  • the purpose of cleaning is to remove oxide scale and various types of dirt (oil, etc.) grown by annealing or the like.
  • the process of manufacturing the lubricating film to the steel wire to be processed is not particularly limited, but application such as dipping, flow coating, and spraying can be used. .
  • the degree of application is not particularly limited as long as the surface is sufficiently covered with the lubricant treatment agent used in the embodiment of the present invention.
  • the steel wire may be heated to 60 to 80 ° C. and then contacted with the lubricating film treating agent. Further, a lubricating film treating agent heated to 40 to 70 ° C. may be brought into contact with the steel wire.
  • Drying may be performed at room temperature, but may be performed at 60 to 150 ° C. for 1 to 30 minutes.
  • the steel wire which has a lubricating film obtained by performing the said lubricating film manufacturing process and a drying process is contained in the range of the steel wire which concerns on embodiment of this invention. Moreover, even if it processed by the steel wire which has a lubricating film by a manufacturing process, if it has a lubricating film, it is contained in the range of the steel wire which concerns on embodiment of this invention. Examples of the processing include wire drawing processing, forging processing, and forging processing as described above.
  • the coating mass per unit area of the lubricating coating formed on the steel wire is appropriately controlled depending on the degree of subsequent processing.
  • the film mass per unit area is preferably 1.0 g / m 2 or more, more preferably 2.0 g / m 2 or more, preferably 20 g / m 2 or less, more preferably 15 g / m 2 or less. is there.
  • membrane mass per unit area can be calculated from the mass difference and surface area of the steel wire before and behind a process. In order to control the film mass range per unit area as described above, the solid content mass (concentration) of the lubricant film treatment agent is appropriately adjusted.
  • a lubricant film treatment agent having a high concentration is often diluted with water and used in the diluted solution.
  • the water to be diluted is not particularly limited, and for example, pure water, deionized water, tap water, ground water, industrial water, and the like can be used.
  • processes such as heat processing; surface treatments, such as a plating process, can further be given to the steel wire rod of embodiment of this invention.
  • the said heat processing is performed in order to harden the steel wire obtained by the process, and to provide intensity
  • the heat treatment method is not particularly limited, and a general method can be employed. Examples thereof include general heat treatment such as quenching and tempering; surface heat treatment such as carburizing and quenching and nitriding.
  • the plating process is performed for the purpose of imparting corrosion resistance, and is mainly performed on the heat-treated product.
  • the method for the plating treatment is not particularly limited, and a general method can be adopted, and examples thereof include electroplating and hot dipping.
  • the type of plating is not particularly limited, and general plating can be performed. Examples thereof include zinc plating, chromium plating, and nickel plating.
  • the said lubricating film formed with the lubricating film processing agent can be film-removed by being immersed in a water-system alkaline cleaning agent, or spray-cleaning.
  • the alkaline cleaning agent is a liquid in which common alkaline components such as sodium hydroxide and potassium hydroxide are dissolved in water.
  • the lubricating film is brought into contact with the alkaline cleaning agent, the lubricating film is dissolved in the cleaning liquid. Therefore, the film can be easily removed.
  • it can be set as the film
  • the film remaining amount of the steel wire after forging and the presence or absence of poor appearance were evaluated as follows.
  • the remaining amount of the film after the forging process was calculated from the weight of the steel wire after the forging process before and after peeling after the film was peeled off (de-filming) by the following method.
  • ⁇ Film remover Commercially available alkaline remover (FC-E6463 manufactured by Nihon Parkerizing Co., Ltd.), 20 g / L -Film removal method: The above-mentioned film remover was heated to a liquid temperature of 60 ° C., the steel wire after the above forging process was immersed for 60 minutes, and then the film was peeled off by rubbing with a sponge. Thereafter, washing with deionized water was performed, and water was completely blown away with compressed air.
  • the remaining film amount was calculated as follows, and the remaining film property was evaluated according to the following criteria. It means that the seizure resistance after the forging process is better as the remaining amount of the film is larger. In this example, the remaining film amount was 0.8 g / m 2 or more as acceptable.
  • Film remaining amount (g / m 2) (weight of test piece before film removal ⁇ weight of test piece after film removal) / surface area of test piece ⁇ : film remaining amount 1.8 g / m 2 or more ⁇ : film remaining amount 0.8 g / M 2 or more, less than 1.8 g / m 2 ⁇ : less than 0.8 g / m 2 remaining film
  • each of Examples 1 to 19 in Table 2 is a steel wire or SPCC-SD having a lubricating film that satisfies the constituent requirements of the present disclosure, has a good appearance after forging, and has high corrosion resistance. Had. In addition, since the remaining amount of the film after forging is large, seizure does not occur and the mold life is excellent.
  • the comparative example that does not satisfy the configuration requirements of the present disclosure has the following problems.
  • Comparative Example 1 is a steel wire or SPCC-SD having a lubricating film that does not contain a water-soluble silicate that is a supply source of silicon (A).
  • Comparative Example 2 is a steel wire or SPCC-SD having a lubricating film that does not contain a water-soluble tungstate that is a source of tungsten (B).
  • Comparative Example 3 is a steel wire or SPCC-SD having a lubricating film having a high dry mass ratio (B) / (A) between A and B above.
  • Comparative Example 4 is a steel wire or SPCC-SD having a lubricating film having a low dry mass ratio (B) / (A) between A and B described above. All of Comparative Examples 1 to 4 were inferior in corrosion resistance.
  • the above-mentioned (C) / ⁇ (A) + (B) ⁇ dry mass ratio is a steel wire or SPCC-SD having a lubricating film that does not satisfy the scope of the present disclosure, or the dry It is a steel wire or SPCC-SD having a lubricating film whose mass ratio does not satisfy the scope of the present disclosure and does not contain an alkali metal salt (C) of a fatty acid.
  • Comparative Example 5 was a steel wire or SPCC-SD that did not contain fatty acid alkali metal salt (C) and had a lubricating film containing only wax (D) as a lubricant, and had a poor forged appearance. From this experimental result, in order to obtain an excellent appearance after forging, it is indispensable that the lubricating film contains an alkali metal salt (C) of a fatty acid, and a wax that is a representative lubricant is added. It can be seen that the desired effect cannot be obtained.
  • Comparative Example 6 is a steel wire or SPCC-SD having a lubricating coating in which the dry mass ratio of (C) / ⁇ (A) + (B) ⁇ is lower than the range of the present disclosure. Since the effect of adding the alkali metal salt (C) of the fatty acid is not effectively exhibited, the forged appearance was inferior.
  • Comparative Example 7 is a steel wire or SPCC-SD having a lubricating film having a dry mass ratio of (C) / ⁇ (A) + (B) ⁇ higher than the range of the present disclosure.
  • the appearance after the pressing process was good due to the effect of addition of the alkali metal salt (C) of the fatty acid, but since the amount of the alkali metal salt of the fatty acid was too large, the remaining amount of the film after the pressing process was reduced, resulting in a fine firing. Appearance occurred.
  • Comparative Example 8 is a steel wire or SPCC-SD (conventional example) having a phosphate coating formed by a reactive soap treatment.
  • heat treatment such as quenching and tempering is performed, there is a possibility that the steel wire becomes brittle due to immersion phosphorus.
  • the steel wire of the present disclosure does not contain phosphorus in the lubricating film, and therefore has no phosphorus immersion property, and has a good long-term equivalent to or better than conventional phosphate and soap treatment materials. It has corrosion resistance and does not cause poor appearance after forging. Therefore, the steel wire rod of the present disclosure has an extremely high industrial utility value.
  • Aspect 1 Silicon (A), tungsten (B) and an alkali metal salt of fatty acid (C), the dry mass ratio of (B) / (A) is in the range of 1.3-18, and (C) / ⁇ (A ) + (B) ⁇ has a dry mass ratio in the range of 0.14 to 2.0, and has a lubricating film containing no phosphorus on the surface.
  • Aspect 2 The steel wire according to aspect 1, wherein the silicon is derived from a water-soluble silicate and the tungsten is derived from a water-soluble tungstate.
  • Aspect 3 The silicon is derived from at least one selected from the group consisting of lithium silicate, sodium silicate, and potassium silicate, and the tungsten is lithium tungstate, sodium tungstate, potassium tungstate, and ammonium tungstate.
  • the steel wire rod according to aspect 1 or 2 derived from at least one selected from the group consisting of:
  • Aspect 4 The lubricating coating further contains a lubricant (D) other than the alkali metal salt (C) of the fatty acid, and the dry mass ratio of ⁇ (C) + (D) ⁇ / ⁇ (A) + (B) ⁇ is 0.14.
  • Aspect 5 The aspect (4) in which the lubricant (D) is at least one selected from the group consisting of wax, polytetrafluoroethylene, fatty acid metal soap, fatty acid amide, molybdenum disulfide, tungsten disulfide, graphite, and melamine cyanurate. Steel wire rod.
  • Aspect 6 The steel wire according to any one of aspects 1 to 5, wherein the lubricating film further contains a resin (E), and the dry mass ratio of (E) / ⁇ (A) + (B) ⁇ is more than 0 and 1.4 or less. .
  • Aspect 7 The steel wire according to aspect 6, wherein the resin (E) is at least one selected from the group consisting of vinyl resin, acrylic resin, epoxy resin, urethane resin, phenol resin, cellulose derivative, polymaleic acid, and polyester resin.
  • Aspect 8 The steel wire according to any one of embodiments 1 to 7, wherein the coating mass per unit area of the lubricating coating is 1.0 to 20 g / m 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Lubricants (AREA)

Abstract

長期防錆性等の耐食性と、圧造加工後の優れた外観と、を両立することができる潤滑皮膜を有する鋼線材を提供する。 本開示の鋼線材は、ケイ素(A)とタングステン(B)と脂肪酸のアルカリ金属塩(C)を含み、(B)/(A)の乾燥質量比が1.3~18の範囲であり、(C)/{(A)+(B)}の乾燥質量比が0.14~2.0の範囲であり、リンを含まない潤滑皮膜を表面に有するものである。

Description

耐食性及び加工後の外観に優れた鋼線材
 本開示は、リンを含まない潤滑皮膜を表面に有する鋼線材に関する。
 鋼線および鋼線材の塑性加工において、金属表面同士(特にダイスと被加工材)が激しく擦れ合う際に生じる摩擦は、加工エネルギーの増大、発熱及び焼付き現象などの原因となる。そこで、摩擦力低減を目指した様々な潤滑剤が用いられてきた。潤滑剤としては、古くから油及び石けん類などが用いられ、摩擦面に供給することで流体潤滑膜として摩擦力を低減してきた。しかしながら、表面積拡大による大きな発熱を伴いながら高面圧下で摺動する塑性加工では、潤滑性不足及び潤滑膜切れなどにより焼付き現象が発生し易くなる。そのため、高面圧下でも、ダイスと被加工材の界面に介在することで潤滑膜切れを起こしにくく、金属同士の直接接触を回避できる、ホウ酸塩皮膜及びリン酸塩結晶皮膜等の無機皮膜等の固体皮膜で予め金属材料表面を被覆しておく技術が一般化されている。このような固体皮膜は、充分な皮膜強度を有する。特に、リン酸亜鉛皮膜と石鹸層からなる複合皮膜(以下、化成処理皮膜と呼ぶ場合がある)は、高い加工性と耐食性を有しており、広く用いられている。
 一方、近年、加工エネルギーの更なる低減化、強加工度化、難加工材への対応、皮膜プロセスの環境保全性(例えばリン酸塩処理はスラッジ等の産業廃棄物を多量に生じさせるので環境保全上問題がある)、及びボルト等の浸リン(高強度ボルトのヘッダー加工後に皮膜成分のリンが残存すると、熱処理時にリンが鋼中に進入し、脆性破壊の起因となる)対策など、固体皮膜への要求は多岐に亘り、急速に高まりつつある。これらの要求に対して環境保全を考慮する一方、高度な潤滑性を有する固体皮膜が開発されつつある。この技術は、被加工材の表面に水系の塑性加工潤滑剤を塗布し乾燥するだけの簡便な工程によって、高度な潤滑性を有する皮膜を形成させるものである。
 特許文献1には(A)水溶性無機塩と(B)ワックスを水に溶解または分散させた組成物で、固形分重量比(B)/(A)が0.3~1.5の範囲内にあることを特徴とする金属材料塑性加工用水系潤滑皮膜処理剤とその皮膜形成方法が開示されている。
 特許文献2にはアルカリ金属ホウ酸塩(A)を含有する水系潤滑皮膜処理剤において、アルカリ金属ホウ酸塩(A)にホウ酸リチウムを含み、アルカリ金属ホウ酸塩(A)における全アルカリ金属に対するリチウムのモル比率が0.1~1.0であって、かつ、アルカリ金属ホウ酸塩(A)のホウ酸Bとアルカリ金属Mとのモル比率(B/M)が1.5~4.0であることを特徴とする金属材料塑性加工用水系潤滑皮膜処理剤とその皮膜形成方法が開示されている。この技術は皮膜が吸湿することによって発生する皮膜の結晶化を抑制することで加工性のみならず、高い耐食性を有する皮膜を形成することができるとされている。
 特許文献3にはA成分:無機系固体潤滑剤と、B成分:ワックスと、C成分:水溶性無機金属塩とを含有し、A成分とB成分の固形分乾燥質量比(A成分/B成分)が0.1~5であり、A成分、B成分、およびC成分の合計量に対するC成分の固形分乾燥質量比率(C成分/(A成分+B成分+C成分))が1~30%であることを特徴とする非リン系塑性加工用水溶性潤滑剤が開示されている。この技術はリンを含有しない潤滑剤であり、且つ化成処理皮膜と同等の耐食性が実現できるとされている。
 特許文献4には、水溶性無機塩(A)と、二硫化モリブデン、およびグラファイトから選ばれる1種以上の滑剤(B)と、ワックス(C)とを含有し、かつこれらを水に溶解または分散しており、(B)/(A)が固形分重量比で1.0~5.0、(C)/(A)が固形分重量比で0.1~1.0である水系潤滑皮膜処理剤とその皮膜形成方法が開示されている。この技術は従来の水系潤滑皮膜処理剤に二硫化モリブデン及び/又はグラファイトを配合することで、化成処理皮膜と同等レベルの高い加工性を実現できるとされている。
 特許文献5には、珪酸塩(A)と、ポリカルボン酸塩(B)と、水親和性ポリマー及び/又は水親和性有機ラメラ構造体(C)と、モリブデン酸塩及び/又はタングステン酸塩(D)とを含有し、前記各成分の乾燥質量比が所定の比率である皮膜形成剤が開示されている。
 特許文献1~5にも記載されるように、水溶性無機塩は、水系潤滑皮膜処理剤の固体皮膜における必須成分である。その理由は、水溶性無機塩で構成される潤滑皮膜は充分な皮膜強度を有し、前述のように、高面圧下でも、ダイスと被加工材の界面に介在して潤滑膜切れを起こしにくく、金属同士の直接接触を回避することができるためである。よって、水系潤滑皮膜処理剤では、水溶性無機塩及び水溶性樹脂から成る固体皮膜に、摩擦係数を低減可能な適切な滑剤を組み合わせることで、塑性加工時に良好な潤滑状態を維持することができる。
 水溶性成分で構成される水系潤滑皮膜の皮膜形成メカニズムについて説明する。水溶性成分の水溶性無機塩は、潤滑剤処理液中で水に溶解した状態であって金属材料表面に潤滑剤を塗布して乾燥させると、溶媒の水が蒸発して潤滑皮膜が形成される。その際に、水溶性無機塩は、金属材料表面で固形物として析出して、固体皮膜を形成する。このように形成された固体皮膜は、塑性加工に耐え得る皮膜強度を備えており、摩擦係数を低減させる適当な滑剤を配合させることで、塑性加工時に良好な潤滑性を示す。
国際公開第02/012420号 特開2011-246684号公報 特開2013-209625号公報 国際公開第02/012419号 特開2002-363593号公報
 しかし、特許文献1~5の潤滑皮膜では、上記の化成処理皮膜と比較して2ヶ月以上の長期防錆性が著しく劣っており、実用レベルまで高めることができていない。これは、皮膜の主成分が水溶性成分であるため、大気中の水分を容易に吸収あるいは透過し、鋼材と水分の接触が容易であることが、原因となっている。特許文献2では、吸湿による皮膜の結晶化を抑制することで耐食性が向上しているが、吸湿そのものを抑制している訳ではなく、十分な耐食性が得られていない。また、特許文献3に記載されている水系潤滑皮膜は、恒温恒湿器を用いて発錆を促進したラボでの耐食性試験において、化成処理皮膜と同等以上の耐食性を示したと記載されている。しかし、実際に潤滑皮膜を使用する環境は、ホコリ、粉塵及び酸洗薬剤のミストが付着し得るような状態にあるのが普通である。そのような過酷な環境においては、化成処理皮膜よりも耐食性が劣っているのが、実状である。このように、リンを含有していない水系潤滑皮膜において、化成処理皮膜と同等以上の防錆性を有するものは過去に存在しなかった。
 比較的高い耐食性が得られる水溶性無機塩としては、ケイ酸塩のアルカリ金属塩(以下、ケイ酸塩と記載する場合がある)と、タングステン酸塩のアルカリ金属塩および/またはアンモニウム塩(以下、タングステン酸塩と記載する場合がある)とが挙げられる。これら水溶性無機塩は、特許文献1、特許文献4及び特許文献5に記載されている。しかし、それらも実用上の耐食性は、化成処理皮膜と比較すると大きく劣るものである。
 水溶性ケイ酸塩は、水溶性無機塩の中では水分を透過しにくく、且つ素材との密着性が非常に高い性質がある。この性質のため、化成処理皮膜ほどではないが、比較的高い耐食性を発現することができる材料である。これは、潤滑剤の溶媒である水が揮発する皮膜生成過程において、水溶性ケイ酸塩が架橋し、ネットワーク構造をとるためである。しかし、このネットワーク構造であるが故に、水溶性ケイ酸塩の皮膜は潤滑皮膜としては脆すぎる。このため、基材が加工された際には、皮膜が割れて、十分に追従できず、加工部位の皮膜残存量低下につながる場合がある。
 水溶性タングステン酸塩は、皮膜を形成した際に、外気の水分を吸収しにくい。これは、水溶性タングステン酸塩が皮膜を形成する際、粒子状の結晶を形成するためである。さらに、水溶性タングステン酸塩は、鋼材表面に自己修復機能を有する不動態膜を形成させる性質があり、皮膜成分として用いることで高耐食性の皮膜形成が期待できる。しかし、水溶性タングステン酸塩は、結晶質であるが故に、素材との密着性が乏しい上、均一な皮膜を形成することができないため、期待通りの耐食性及び加工性を得ることができない。例えば、潤滑剤中に合成樹脂成分を加えることで、皮膜の密着性及び均一性を高めることができるが、それでも耐食性は化成処理皮膜と比較して著しく劣るものである。
 特許文献4に掲載された水系潤滑皮膜処理剤は、二硫化モリブデン及び/又はグラファイトを含有することで、強加工時も化成処理皮膜と同等以上の加工性を得ることができる。しかし、特許文献1~3の潤滑皮膜と比較して耐食性が劣るものである。
 特許文献5では、珪酸塩(A)を主成分として含有し、耐食剤(D)などが多すぎたりする皮膜処理材では、押出荷重が高い場合、焼付が発生する等して潤滑性が劣るため、安定した作業が困難となり、また、長期防錆性も十分ではない。
 さらに、特許文献1~5に記載の潤滑皮膜を有する鋼材を圧造加工すると、圧造加工の方法及び圧造加工後の形状等によっては、鋼材に対する皮膜の押し込みが発生して、製品の外観不良が発生する。これらの潤滑皮膜は、皮膜中における滑剤成分の分布が疎らになりやすく、滑剤が多い箇所と、滑剤が少ない箇所との間で、圧造加工時に局所的に摩擦状態の差が生まれてしまう。その結果、鋼材を加工した際の変形量が局所的に異なって、所謂スティックスリップ現象と類似する現象が生じる。特に、摩擦が局所的に高くなっている箇所で皮膜の押し込みが発生して、鱗状の模様が生じるなどの外観不良を招く。また、潤滑皮膜中に配合される無機塩は比較的硬質なため、圧造加工時の面圧で鋼材に押し込み痕が発生しやすい。これらの模様や押し込み痕は目視で容易に確認できるため、製品の外観を著しく損ねるものとなっていた。
 このように、水系潤滑皮膜では、実用環境でも化成処理皮膜に匹敵するような、約2ヶ月以上の長期間にわたる高い耐食性を有し、且つ、圧造加工後も優れた外観を同時に兼ね備えることはできなかった。
 そこで、本発明の実施形態の課題は、長期防錆性等の耐食性と、圧造加工後の優れた外観と、を両立することができる潤滑皮膜を有する鋼線材を提供することにある。
 発明者らは、リンを含まない潤滑皮膜を表面に有する鋼線材について、上記課題を解決するために鋭意研究を行ってきた。その結果、水溶性ケイ酸塩などに由来するケイ素と、水溶性タングステン酸塩などに由来するタングステンとの比率、すなわちタングステン/ケイ素の乾燥質量比を所定比率に制御した潤滑皮膜に、滑剤として用いられる種々の化合物のなかでも脂肪酸のアルカリ金属塩を所定の比率で配合することにより、それら成分単体では決して成し得なかった高い耐食性と、ワックスなどの滑剤を配合したときには決して得られなかった圧造加工後の優れた外観が同時に得られることを見出し、本発明の実施形態を完成した。
 本発明の実施形態の鋼線材は、上記課題を解決するために、以下のように構成されている。
 本発明の実施形態の鋼線材は、ケイ素(A)とタングステン(B)と脂肪酸のアルカリ金属塩(C)を含み、(B)/(A)の乾燥質量比が1.3~18の範囲であり、(C)/{(A)+(B)}の乾燥質量比が0.14~2.0の範囲であり、リンを含まない潤滑皮膜を表面に有するものである。
 前記ケイ素が水溶性ケイ酸塩由来であり、且つ、前記タングステンが水溶性タングステン酸塩由来であることが好ましい。
 前記ケイ素が、ケイ酸リチウム、ケイ酸ナトリウム及びケイ酸カリウムよりなる群から選ばれる少なくとも1種以上に由来し、且つ、前記タングステンが、タングステン酸リチウム、タングステン酸ナトリウム、タングステン酸カリウム及びタングステン酸アンモニウムよりなる群から選ばれる少なくとも1種以上に由来することが好ましい。
 前記潤滑皮膜が前記脂肪酸のアルカリ金属塩(C)以外の滑剤(D)を更に含み、{(C)+(D)}/{(A)+(B)}の乾燥質量比が0.14~2.0であることが好ましい。
 前記滑剤(D)がワックス、ポリテトラフルオロエチレン、脂肪酸金属石鹸、脂肪酸アマイド、二硫化モリブデン、二硫化タングステン、グラファイト及びメラミンシアヌレートよりなる群から選ばれる少なくとも1種以上であることが好ましい。
 前記潤滑皮膜が樹脂(E)を更に含み、(E)/{(A)+(B)}の乾燥質量比が0超1.4以下であることが好ましい。
 前記樹脂(E)がビニル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、フェノール樹脂、セルロース誘導体、ポリマレイン酸、及びポリエステル樹脂よりなる群から選ばれる少なくとも1種以上であることが好ましい。
 前記潤滑皮膜の単位面積当たりの皮膜質量が1.0~20g/m2であることが好ましい。
 本開示の鋼線材は、潤滑皮膜が上記のように構成されているため、長期防錆性等の耐食性に優れ、且つ、圧造加工後の外観も良好な鋼線材が得られる。これらの性能は全て、化成処理皮膜を有する鋼線材と同等以上の水準である点が、従来の水系潤滑皮膜と比べて大きく優れている点である。
図1は、実施例における圧造加工の手順を示す概略図である。
 本発明の実施形態の鋼線材は、ケイ素(A)とタングステン(B)と脂肪酸のアルカリ金属塩(C)を含み、(B)/(A)の乾燥質量比が1.3~18の範囲であり、(C)/{(A)+(B)}の乾燥質量比が0.14~2.0の範囲であり、リンを含まない潤滑皮膜を表面に有するところに特徴がある。
 本発明の実施形態の鋼線材に使用される鋼には、炭素鋼、合金鋼、及び特殊鋼等が含まれる。かかる鋼としては、炭素含有量が0.2質量%以下(0質量%を含まない)の軟鋼、及び0.2質量%超1.5質量%以下程度の炭素鋼が挙げられる。さらに、用途に応じて、軟鋼もしくは炭素鋼に、シリコン、マンガン、リン、硫黄、ニッケル、クロム、銅、アルミニウム、モリブデン、バナジウム、コバルト、チタン及びジルコニウム等から選ばれる少なくとも1種を添加した合金鋼又は特殊鋼等が挙げられる。
 本開示において鋼線材とは、一般的には、鋼を熱間加工により線材に加工したものをいう。本開示の鋼線材には鋼線も含まれる。鋼線とは上記の鋼線材をさらに加工処理したものである。上記加工処理には、伸線加工処理、圧造加工処理及び鍛造加工処理等が挙げられる。具体的には例えば、上記の鋼線材を規定サイズ(線径及び真円度等)に伸線加工したもの、伸線加工後に圧造加工したもの、及び上記の鋼線材を鍛造加工したもの等が挙げられる。また、上記鋼線には、上記加工処理後の製品に対して熱処理及び/又はメッキ処理などの表面処理等を更に施したものも含まれる。具体的には例えば、上記圧造加工または鍛造加工の後、機械加工を行なって製品にした後、熱処理を施したもの、又は上記熱処理の後にメッキ処理を更に施したもの等が挙げられる。
 本発明の実施形態の鋼線材は、後述する潤滑皮膜を有することで、耐食性と圧造加工後の外観に優れるものであれば、特に限定されないが、鋼線材の表面と潤滑皮膜との間にさらなる皮膜、すなわち下地皮膜が形成されていてもよい。これらの皮膜は、いずれも一層または二層以上の層であってもよい。
 本発明の実施形態に用いられる上記潤滑皮膜及び下地皮膜はいずれも、リンを含まないものである。よって、潤滑皮膜の形成に使用される潤滑皮膜処理剤には、リンを含む成分は含まれない。しかしながら、本発明の実施形態において、操業過程等でリンを含む成分が鋼線材表面の皮膜に不可避的に混入されることを排除するものではない。すなわち、実際の操業では不可避的不純物としてリンがコンタミする場合があるが、リンの含有量が1質量%以下程度であれば、かかるリンにより鋼線材が脆性破壊される可能性は低く、浸リンは起こらないとみなすことができる。
 以下、本発明の実施形態の鋼線材における潤滑皮膜の各成分、組成等から順に説明する。
 本発明の実施形態の鋼線材は、ケイ素(A)、タングステン(B)、および脂肪酸のアルカリ金属塩(C)を含み、(B)/(A)の乾燥質量比が1.3~18の範囲内にあり、(C)/{(A)+(B)}の乾燥質量比が0.14~2.0の範囲で含有する潤滑皮膜を表面に有する。上記成分を含み、且つ、それらの比率を上記範囲に制御した潤滑皮膜を鋼線材の表面に形成することにより、高い耐食性と圧造加工後の優れた外観を同時に達成することができる。
 例えば、後述される水溶性ケイ酸塩と水溶性タングステン酸塩とを複合して潤滑皮膜とした場合、水溶性ケイ酸塩が形成するネットワーク構造の中に水溶性タングステン酸塩が取り込まれることとなる。上述の通り、水溶性タングステン酸塩は、結晶質の皮膜を形成するという欠点を有する。しかしながら、水溶性ケイ酸塩のネットワーク構造に取り込まれることにより、水溶性タングステン酸塩が均一且つ微細に存在することができるようになる。これにより、水溶性ケイ酸塩の水分を透過しにくい性質と、水溶性タングステン酸塩の自己修復機能とを共に有する不動態膜が形成され、耐食性が著しく向上する。
 また、水溶性タングステン酸塩が水溶性ケイ酸塩に与える影響として、皮膜追従性の改善に伴う、加工部位の皮膜残存量の増加が挙げられる。上述の通り、水溶性ケイ酸塩の皮膜追従性が劣る原因は、水溶性ケイ酸塩の高分子化によって強固な連続皮膜を形成することによるものである。複合している水溶性タングステン酸塩が水溶性ケイ酸塩のネットワーク構造中に介在することで、強固なネットワーク構造の形成を適度に阻害し、皮膜追従性が向上することにより、皮膜残存量を増加させることができる。
 特に、良好な耐食性を確保するため、タングステン(B)/ケイ素(A)の乾燥質量比は1.3以上であり、好ましくは1.8以上、より好ましくは2.0以上である。また、上記乾燥質量比は18以下であり、好ましくは10以下、より好ましくは5.4以下である。B/Aの乾燥質量比が1.3を下回ると十分な耐食性が得られない他、加工部の皮膜残存量が低下する。これは、相対的に前記タングステン酸塩の量が減ることにより不動態膜が十分に形成されないこと、及び前記ケイ酸塩量が相対的に増えることで強固なネットワーク構造を形成してしまうことに起因する。タングステン/ケイ素の乾燥質量比が18を上回ると十分な耐食性が得られない皮膜となる。これは、相対的にケイ酸塩量が少なくなることで水分が透過しやすくなること、前記タングステン酸塩の結晶が析出し、皮膜の密着性、均一性が低下することに起因する。なお、本発明の実施形態において、タングステン/ケイ素の乾燥質量比は、皮膜中の水溶性タングステン酸塩由来のタングステン元素と、水溶性ケイ酸塩由来のケイ素元素との比率に基づくものであり、後述の通りにして算出することができる。
 本発明の実施形態において、ケイ素(A)は水溶性ケイ酸塩由来であり、タングステン(B)は水溶性タングステン酸塩由来であることが好適である。後記する実施例における、タングステン(B)/ケイ素(A)の乾燥質量比は、潤滑皮膜中の水溶性タングステン酸塩由来のタングステン元素と、潤滑皮膜中の水溶性ケイ酸塩由来のケイ素元素との乾燥質量比率に基づくものであり、例えば誘導結合プラズマまたは蛍光X線分析を用いて算出することができる。
 また、上記ケイ素(A)が水溶性ケイ酸塩(a)由来であり、タングステン(B)が水溶性タングステン酸塩(b)由来である場合、それらの乾燥質量比(b)/(a)は0.7以上であり、好ましくは0.9以上、より好ましくは1.1以上である。当該乾燥質量比は10以下であり、好ましくは6.0、より好ましくは3.0以下である。
 前記水溶性ケイ酸塩の種類は、例えば、ケイ酸リチウム、ケイ酸ナトリウム、及びケイ酸カリウムが挙げられる。これらは、単独で用いてもよいし、二種以上組み合わせて用いてもよい。
 前記水溶性タングステン酸塩の種類は、例えば、タングステン酸リチウム、タングステン酸ナトリウム、タングステン酸カリウム、及びタングステン酸アンモニウムが挙げられる。これらは、単独で用いてもよいし、二種以上組み合わせて用いてもよい。
 次に脂肪酸のアルカリ金属塩(C)について説明する。脂肪酸のアルカリ金属塩(C)は、潤滑皮膜の摩擦低減と圧造加工後の外観不良防止のために配合される。脂肪酸のアルカリ金属塩(C)は僅かであるが水溶性を有しており、潤滑皮膜の形成過程において、溶解していた脂肪酸のアルカリ金属塩(C)が微細かつ均一に析出してくる。前述したように、従来の潤滑皮膜は、皮膜中における滑剤成分の分布が疎らになりやすく、滑剤が多い箇所と、滑剤が少ない箇所との間で、圧造加工時に局所的に摩擦状態の差が生じる。脂肪酸のアルカリ金属塩(C)は、他の滑剤成分と異なり、皮膜中に微細かつ均一に存在できるため、局所的な摩擦状態の差が生じにくく、圧造加工後に良好な外観(圧造外観)が得られる。また、脂肪酸のアルカリ金属塩(C)の配合により、潤滑皮膜が軟質化して、鋼線材に潤滑皮膜が押し込まれ難くなるという効果もある。
 上述した脂肪酸のアルカリ金属塩(C)による添加効果を有効に発揮させるため、ケイ素(A)、タングステン(B)及び脂肪酸のアルカリ金属塩(C)の乾燥質量比である(C)/{(A)+(B)}は0.14以上であり、好ましくは0.2以上であり、より好ましくは0.4以上である。上記乾燥質量比は2.0以下であり、好ましくは1.5以下である。上記乾燥質量比が0.14を下回ると良好な圧造外観が得られなくなる。一方、上記乾燥質量比が2.0を超える場合は、ケイ素(A)とタングステン(B)の量が相対的に少なくなってしまい、耐食性の低下及び圧造加工時における皮膜の耐焼付き性の低下、それに伴う金型寿命の低下を招く。
 また、上記ケイ素(A)が水溶性ケイ酸塩(a)由来であり、タングステン(B)が水溶性タングステン酸塩(b)由来である場合、乾燥質量比(C)/{(a)+(b)}は0.043以上であり、好ましくは0.062以上であり、より好ましくは0.09以上である。当該乾燥質量比は0.95以下であり、より好ましくは0.8以下である。
 本発明の実施形態に用いられる脂肪酸のアルカリ金属塩(C)は、炭素数12個以上の長鎖脂肪酸(高級脂肪酸)のアルカリ金属塩(例えばナトリウム塩、カリウム塩、リチウム塩)を意味する。脂肪酸を構成する炭化水素基は、直鎖状でも分岐鎖状でも構わない。上記脂肪酸のアルカリ金属塩(C)は、ミリスチン酸ナトリウム、ミリスチン酸カリウム、ミリスチン酸リチウム、パルミチン酸ナトリウム、パルミチン酸カリウム、パルミチン酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、12-ヒドロキシステアリン酸ナトリウム、12-ヒドロキシステアリン酸カリウム及び12-ヒドロキシステアリン酸リチウムなどが挙げられる。これらは、単独で用いてもよいし、二種以上組み合わせて用いてもよい。
 以上、本発明の実施形態の鋼線材を構成する潤滑皮膜の基本成分について説明した。
 本発明の実施形態の鋼線材は、更に脂肪酸アルカリ金属塩(C)以外の滑剤(D)及び/又は樹脂(E)を潤滑皮膜に含有しても良い。
 これらのうち滑剤(D)は、それ自体にすべり性があり、摩擦力を低減させる機能を有する。一般に、塑性加工時に摩擦力が増大すると、加工エネルギーの増大、発熱、及び焼付き等が発生する。上記滑剤(D)を本発明の実施形態に係る鋼線材の潤滑皮膜中に含有させると、潤滑皮膜中で固体の形で存在して、摩擦力の増大が抑制されることになる。そのような機能および性質を有する滑剤(D)として、ワックス、ポリテトラフルオロエチレン、脂肪酸金属石鹸、脂肪酸アマイド、二硫化モリブデン、二硫化タングステン、グラファイト及びメラミンシアヌレートが挙げられる。これらは単独で用いてもよいし、二種類以上組み合わせて用いてもよい。
 上記ワックスは、具体例としてポリエチレンワックス、パラフィンワックス、マイクロクリスタリンワックス、ポリプロピレンワックス及びカルナバワックスなどが挙げられる。上記脂肪酸金属石鹸は、具体例として、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム及びステアリン酸マグネシウムなどが挙げられる。上記脂肪酸アマイドは脂肪酸を2つ有するアミド化合物であり、具体例として、エチレンビスラウリン酸アマイド、エチレンビスステアリン酸アマイド、エチレンビスベヘン酸アマイド、N-N’-ジステアリルアジピン酸アマイド、エチレンビスオレイン酸アマイド、エチレンビスエルカ酸アマイド、ヘキサメチレンビスオレイン酸アマイド及びN-N’-ジオレイルアジピン酸アマイドが挙げられる。
 本発明の実施形態における潤滑皮膜が滑剤(D)を更に含む場合、上記滑剤(D)の添加効果を有効に発揮させるため、{(C)+(D)}/{(A)+(B)}の乾燥質量比は0.14以上であることが好ましく、0.2以上であることがより好ましく、更に好ましくは0.4以上である。上記乾燥質量比は2.0以下であることが好ましく、より好ましくは1.5以下である。上記乾燥質量比が0.14未満では、上記滑剤(D)の含有量が少なすぎるために、上記の性能を発揮できない。一方、上記乾燥質量比が2.0を超える場合は、ケイ素とタングステンの量が相対的に少なくなってしまい、耐食性が低下する。
 また、樹脂(E)はバインダー作用、基材と皮膜の密着性向上、増粘作用によるレベリング性の付与及び分散成分の安定化作用を有する。そのような機能および性質を有する樹脂として、例えば、ビニル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、フェノール樹脂、セルロース誘導体、ポリマレイン酸及びポリエステル樹脂などが挙げられる。なお、アクリル樹脂には、メタクリル樹脂も含まれる。また、これらの樹脂は重合体であっても共重合体であってもよい。共重合体としては、例えば、ビニル-アクリル酸の共重合体、ビニル-エポキシの共重合体、ビニル-ウレタンの共重合体、ビニル-フェノールの共重合体、ビニル-(無水)マレイン酸の共重合体、アクリル酸-エポキシの共重合体、アクリル酸-ウレタンの共重合体、アクリル酸-フェノールの共重合体、アクリル酸-(無水)マレイン酸の共重合体、エポキシ-ウレタンの共重合体、エポキシ-フェノールの共重合体、エポキシ-(無水)マレイン酸の共重合体、ウレタン-フェノールの共重合体、ウレタン-(無水)マレイン酸の共重合体、フェノール-(無水)マレイン酸の共重合体、オレフィン-アクリル酸の共重合体、オレフィン-エポキシの共重合体、オレフィン-ウレタンの共重合体、オレフィン-フェノールの共重合体及びオレフィン-(無水)マレイン酸の共重合体などが挙げられる。これらは単独で用いてもよいし、二種類以上組み合わせて用いてもよい。
 上記潤滑皮膜中に上記樹脂(E)を更に含む場合、上記樹脂(E)の添加効果を有効に発揮させるため、(E)/{(A)+(B)}の乾燥質量比は0.01以上であることが好ましく、より好ましくは0.05以上である。上記乾燥質量比は1.4以下であることが好ましく、より好ましくは0.9以下である。上記乾燥質量比が0.01未満の場合、上記の作用が十分に発揮されない虞がある。一方、上記乾燥質量比が1.4を超える場合、圧造加工後の外観不良が発生しやすくなる。
 更に本発明の実施形態を構成する潤滑皮膜は、上記の基本成分(ケイ素、タングステン、脂肪酸のアルカリ金属塩)および選択成分(樹脂、脂肪酸のアルカリ金属塩以外の滑剤)の他、粘度調整剤を更に配合することができる。これにより、加工処理を施す鋼線材(加工処理を必要とする鋼線材、すなわち、加工処理前の鋼線材を意味する。)に潤滑皮膜処理剤を塗布した際に、レベリング性とチクソ性が付与されて、均一な塗布状態を確保することができる。そのような粘度調整剤は、具体例として、モンモリロナイト、ソーコナイト、バイデライト、ヘクトライト、ノントロナイト、サポナイト、鉄サポナイト及びスチブンサイト等のスメクタイト系粘土鉱物;微粉シリカ、ベントナイト及びカオリン等の無機系の増粘剤などが挙げられる。
 また、上記潤滑皮膜は、密着性などを向上させるため、水溶性塩を更に含んでいてもよい。水溶性塩の種類は特に限定されず、無機塩及び有機塩のいずれか又は両方を用いることができる。無機塩としては、硫酸ナトリウム及び硫酸カリウム等の硫酸塩;メタホウ酸ナトリウム、メタホウ酸カリウム及びメタホウ酸アンモニウム等のホウ酸塩等が挙げられる。有機塩としては、蟻酸、酢酸、酪酸、シュウ酸、コハク酸、乳酸、アスコルビン酸、酒石酸、クエン酸、リンゴ酸、マロン酸、マレイン酸、フタル酸等の酸と、アルカリ金属及びアルカリ土類金属等との塩等が挙げられる。
 本発明の実施形態の鋼線材の潤滑皮膜は、伸線加工前後における高い耐食性を付与することができるが、さらに耐食性を向上させる目的で、他の水溶性防錆剤やインヒビターを配合しても良い。これらは公知のものを用いることができ、例えば、オレイン酸、ダイマー酸、酒石酸及びクエン酸等の各種有機酸;EDTA、NTA、HEDTA及びDTPA等の各種キレート剤;トリエタノールアミンなどのアルカノールアミンの混合成分;p-t-ブチル安息香酸のアミン塩類;カルボン酸アミン塩、2塩基酸アミン塩並びにアルケニルコハク酸及びその水溶性塩;アミノテトラゾール及びその水溶性塩が挙げられる。これらは単独で用いてもよいし、二種類以上組み合わせて用いてもよい。
 本発明の実施形態の鋼線材を構成する上記潤滑皮膜は、上記成分(ケイ素の代表的な供給源である水溶性ケイ酸塩、タングステンの代表的な供給源である水溶性タングステン酸塩及び脂肪酸のアルカリ金属塩の必須成分;必要に応じて脂肪酸のアルカリ金属塩以外の滑剤、樹脂、粘土調整剤及び水溶性塩など)を液体媒体に添加して混合することにより潤滑皮膜処理剤を調製し、加工処理を施す鋼線材の表面に塗布して作製することができる。
 上記水溶性ケイ酸塩は、潤滑皮膜処理剤中のa成分、b成分、C成分、D成分及びE成分の乾燥質量での合計量100質量%中、5質量%超であることが好ましく、より好ましくは10質量%以上、さらに好ましくは15質量%以上であり、58質量%以下であることが好ましく、より好ましくは52質量%以下、さらに好ましくは45質量%以下である。
 上記水溶性タングステン酸塩は、潤滑皮膜処理剤中のa成分、b成分、C成分、D成分及びE成分の乾燥質量での合計量100質量%中、10質量%以上であることが好ましく、より好ましくは15質量%以上、さらに好ましくは20質量%以上であり、88質量%未満であることが好ましく、より好ましくは85質量%以下、さらに好ましくは80質量%以下である。
 上記脂肪酸のアルカリ金属塩は、潤滑皮膜処理剤中のa成分、b成分、C成分、D成分及びE成分の乾燥質量での合計量100質量%中、3質量%超であることが好ましく、7質量%超であることがより好ましく、更に好ましくは12質量%以上、特に好ましくは16質量%以上であり、50質量%以下であることが好ましく、より好ましくは40質量%以下、さらに好ましくは30質量%以下である。
 ここで、上記水溶性ケイ酸塩の量が5質量%以下、上記水溶性タングステン酸塩の量が88質量%以上である場合、十分な長期防錆性が得られない他、圧造加工後の外観不良が生じる。これは、相対的に水溶性ケイ酸塩量が少なくなることで水分が透過しやすくなること、タングステン酸塩の結晶が析出し、皮膜の密着性、均一性が低下することに起因する。一方、上記水溶性ケイ酸塩の量が58質量%超、上記水溶性タングステン酸塩の量が10質量%未満であると、十分な耐食性、圧造加工後の良好な外観が得られない。これは、相対的にタングステンの量が減ることにより不動態膜が十分に形成されないこと、及び水溶性ケイ酸塩量が相対的に増えることで強固なネットワーク構造が形成されてしまうことに起因する。
 また、上記脂肪酸のアルカリ金属塩の量が50質量%超の場合、ケイ素(A)とタングステン(B)の量が相対的に少なくなってしまい、耐食性が低下する。一方、上記脂肪酸のアルカリ金属塩の量が3質量%以下の場合、圧造加工後に外観不良を生じやすくなる。
 上記潤滑皮膜上に、潤滑性、耐焼付き性、及び耐食性等を一層向上させるために、乾式潤滑剤を付着させてもよい。乾式潤滑剤の種類は特に限定されないが、例えば、高級脂肪酸石鹸、ボラックス、石灰及び二硫化モリブデン等を主成分とするような一般的な潤滑パウダー及び/又は伸線パウダーが使用できる。
 本発明の実施形態において、潤滑皮膜を形成させるための潤滑皮膜処理剤における液体媒体(溶媒、分散媒体)は水である。なお、乾燥工程での潤滑皮膜処理剤の乾燥時間短縮化のために、水よりも低沸点のアルコールを配合してもよい。
上記潤滑皮膜処理剤は、その液の安定性を高めるため、水溶性の強アルカリ成分を含んでいても良い。具体例として、水酸化リチウム、水酸化ナトリウム及び水酸化カリウムなどが挙げられる。これらは単独で用いてもよいし、二種類以上組み合わせて用いてもよい。
 次に、本発明の実施形態に係る鋼線材の製造方法を説明する。上記製造方法は、加工処理を施す鋼線材の清浄化工程、潤滑皮膜の製造(処理)工程、乾燥工程、及び加工工程を含む。加工工程の後、必要に応じて熱処理及び/又は表面処理などの工程を更に行なっても良い。以下、各工程を説明する。
・清浄化工程(前処理工程)
 鋼線材に潤滑皮膜を形成させる前に、ショットブラスト、サンドブラスト、ウェットブラスト、ピーリング、アルカリ脱脂および酸洗浄よりなる群から選ばれる少なくとも一種類の清浄化処理を行うことが好ましい。ここでの清浄化は、焼鈍等により成長した酸化スケール及び各種の汚れ(油など)を除去することを目的とするものである。
・潤滑皮膜製造工程
 本発明の実施形態において、潤滑皮膜を、加工処理を施す鋼線材に製造する工程は、特に限定されないが、浸漬法、フローコート法及びスプレー法などの塗布を用いることができる。塗布の程度は、表面が充分に本発明の実施形態に用いられる潤滑皮膜処理剤に覆われればよく、塗布する時間も特に制限されない。ここで、塗布時の乾燥性を高めるために、鋼線材を60~80℃に加温してから、潤滑皮膜処理剤と接触させてもよい。また、40~70℃に加温した潤滑皮膜処理剤を鋼線材と接触させてもよい。これらの方法により、乾燥性が大幅に向上して乾燥が常温で可能になる場合もあり、熱エネルギーのロスを少なくすることもできる。
・乾燥工程
 次に、前記潤滑皮膜処理剤を乾燥する必要がある。乾燥は常温放置でも構わないが、60~150℃で1~30分行ってもよい。
・加工工程
 上記潤滑皮膜製造工程及び乾燥工程を行うことによって得られた、潤滑皮膜を有する鋼線材は、本発明の実施形態に係る鋼線材の範囲に含まれる。また、加工工程によって潤滑皮膜を有する鋼線材に加工処理を施したものであっても、潤滑皮膜を有するものであれば、本発明の実施形態に係る鋼線材の範囲に含まれる。上記加工処理には、前述したように伸線加工処理、圧造加工処理及び鍛造加工処理等が挙げられる。
 ここで、鋼線材に形成される潤滑皮膜の単位面積当たりの皮膜質量は、その後の加工の程度により適宜コントロールされる。単位面積当たりの皮膜質量は、1.0g/m2以上であることが好ましく、より好ましくは2.0g/m2以上であり、20g/m2以下であることが好ましく、より好ましくは15g/m2以下である。なお、単位面積当たりの皮膜質量は、処理前後の鋼線材の質量差および表面積より計算することができる。前述の単位面積当たりの皮膜質量範囲になるようにコントロールするためには、潤滑皮膜処理剤の固形分質量(濃度)を適宜調節する。実際には、高濃度の潤滑皮膜処理剤を水で希釈し、その希釈液にて使用する場合が多い。希釈調整する水は特に限定されないが、例えば、純水、脱イオン水、水道水、地下水及び工業用水等を使用できる。
・加工工程後の工程
 上記加工工程の後、本発明の実施形態の鋼線材に、熱処理;メッキ処理等の表面処理;等の工程を更に施すことができる。上記熱処理は、加工工程によって得られた鋼線材を硬くして、強度及び/又は靭性等を付与する目的で行なわれる。熱処理の方法は特に限定されず、一般的な方法を採用でき、例えば、焼入れ、及び焼戻し等の一般熱処理;浸炭焼入れ、及び窒化等の表面熱処理等が挙げられる。また、メッキ処理は、耐食性を付与する目的で行なわれるものであり、主に熱処理後のものに対して行なわれる。メッキ処理の方法は特に限定されず、一般的な方法を採用でき、例えば、電気メッキ、及び溶融メッキ等が挙げられる。メッキの種類も特に限定されず、一般的なメッキを行なうことができ、例えば、亜鉛メッキ、クロムメッキ及びニッケルメッキ等が挙げられる。
・脱膜方法
 本発明の実施形態において、潤滑皮膜処理剤により形成された前記潤滑皮膜は、水系のアルカリ洗浄剤に浸漬するかスプレー洗浄することによって脱膜可能である。アルカリ洗浄剤は、水に、水酸化ナトリウム、及び水酸化カリウム等の一般的なアルカリ成分を溶解させた液であり、これに前記潤滑皮膜を接触させると、前記潤滑皮膜が洗浄液中に溶解するので、容易に脱膜することができる。また、加工後の熱処理によって脱落しやすい皮膜とすることができる。よって、上述したアルカリ洗浄及び/又は熱処理により、脱膜不良による後工程での汚染及びメッキ不良を未然に防ぐことができる。
 以下、鋼線材を対象とした場合について、実施例を比較例と共に挙げることによって、本開示の効果とともにさらに具体的な説明をする。なお、本開示はこれらの実施例によって制限されるものではない。
(1-1)水系潤滑皮膜処理剤の調製
 以下に示す各成分を用いて、表1に示す固形分質量比となるように、それぞれを水に混合し、実施例1~19及び比較例1~7の鋼線材あるいは冷間圧延鋼板(SPCC-SD)に浸漬させる各潤滑皮膜処理剤を調製した。なお、各成分を混合した水の量は、形成される潤滑皮膜が表1に示す皮膜質量となるように適宜調整した。また、これらの潤滑皮膜処理剤には、水酸化リチウムを0.5質量%で配合した。また、比較例8(従来例)の鋼線材あるいは冷間圧延鋼板(SPCC-SD)に浸漬させる潤滑皮膜処理剤として、市販の反応石けん潤滑剤を使用した。
<水溶性ケイ酸塩>
(a-1)3号ケイ酸ナトリウム(Na2O・nSiO2 n=3)
(a-2)ケイ酸リチウム(Li2O・nSiO2 n=3.5)
<水溶性タングステン酸塩>
(b-1)タングステン酸ナトリウム
(b-2)タングステン酸カリウム
<脂肪酸のアルカリ金属塩>
(C-1)12-ヒドロキシステアリン酸リチウム
(C-2)イソヘキサデカン酸(分岐パルミチン酸)ナトリウム
<滑剤>
(D-1)アニオン性ポリエチレンワックス(平均粒子径5μm)
(D-2)ステアリン酸カルシウム(平均粒子径8μm)
<樹脂>
(E-1)イソブチレン・無水マレイン酸共重合体(重量平均分子量160,000~170,000)のナトリウム中和塩
Figure JPOXMLDOC01-appb-T000001
(1-2)前処理、潤滑皮膜処理、及び乾燥処理
 前処理、潤滑皮膜処理、及び乾燥処理は、φ12.5mmの鋼線材(鋼種:SCM435)表面を対象に以下の工程で実施した。
<実施例1~19及び比較例1~7の鋼線材あるいは冷間圧延鋼板を製造するための、前処理、潤滑皮膜処理、及び乾燥処理>
(a)脱脂:市販の脱脂剤(ファインクリーナーE6400、日本パーカライジング(株)製)濃度20g/L、温度60℃、浸漬10分
(b)水洗:水道水、常温、浸漬30秒
(c)酸洗:17.5%塩酸、常温、浸漬20分
(d)水洗:水道水、常温、浸漬30秒
(e)中和:市販の中和剤(プレパレン27、日本パーカライジング(株)製)
(f)潤滑皮膜処理:(1-1)で調製した各潤滑皮膜処理剤 温度60℃、浸漬1分
(g)乾燥:100℃、10分
(h)皮膜質量は、処理前後の鋼線材の質量差および表面積より算出
<比較例8の鋼線材あるいは冷間圧延鋼板を製造するための、前処理、潤滑皮膜処理、及び乾燥処理>
(a)脱脂:市販の脱脂剤(ファインクリーナーE6400、日本パーカライジング(株)製)濃度20g/L、温度60℃、浸漬10分
(b)水洗:水道水、常温、浸漬30秒
(c)酸洗:塩酸、濃度17.5%、常温、浸漬20分
(d)水洗:水道水、常温、浸漬30秒
(e)化成処理:市販のリン酸亜鉛化成処理剤(パルボンド3696X、日本パーカライジング(株)製)濃度75g/L、温度80℃、浸漬10分
(f)水洗:水道水、常温、浸漬30秒
(g)石けん処理:市販の反応石けん潤滑剤(パルーブ235、日本パーカライジング(株)製)濃度70g/L、温度85℃、浸漬3分
(h)乾燥:100℃、10分
(i)皮膜量:10g/m2
(1-3)評価試験
(1-3-1)圧造加工試験
上記(1-2)の各処理を行なったφ12.5mm×4mの鋼線材を用い、図1に示す手順で圧造加工を行った。まず、上記鋼線材をφ11.05のダイスに通して引抜くことでφ11.05の鋼線材を作製した。その後、圧造フォーマーにて二段階の圧造加工を実施した。詳細には、まず、図1の左図に示すように鋼線材を適当な長さに切断し、一段目で図1の中央図に示すサイズに加工した後、二段目で図1の右図に示すようにφ7.2mmまで加工した。上記圧造加工試験では、全ての水準で、圧造の直前にフォーマー油(関西油脂興業(株)製のダイヤプレス No.17B)を塗油した。
 圧造加工後の鋼線材の皮膜残存量、および外観不良の有無を以下のようにして評価した。
(圧造加工後の皮膜残存量)
 圧造加工後の皮膜残存量は、下記の方法で皮膜を剥離(脱膜)し、剥離前後の、圧造加工後の鋼線材重量から算出した。
・皮膜剥離剤:市販のアルカリ性剥離剤(日本パーカライジング(株)製のFC-E6463)、20g/L
・脱膜方法:上記皮膜剥離剤を液温60℃に加温して、上記圧造加工後の鋼線材を60分間浸漬した後、スポンジで擦って皮膜を剥離した。その後、脱イオン水による洗浄を行い、圧縮エアで水気を完全に飛ばした。
・評価基準:皮膜残存量を下記のようにして算出し、下記基準で残膜性を評価した。皮膜残存量が多い程、圧造加工後の耐焼付き性が良好であることを意味する。本実施例では皮膜残存量が0.8g/m2以上を合格とした。
皮膜残存量(g/m2)=(脱膜前の試験片重量-脱膜後の試験片重量)/試験片の表面積
〇:皮膜残存量1.8g/m2以上
△:皮膜残存量0.8g/m2以上、1.8g/m2未満
×:皮膜残存量0.8g/m2未満
(圧造加工後の外観不良の評価基準)
○:外観不良が発生しない。
×:圧造加工部の全面に外観不良が発生する。
(1-3-2)耐食性(長期防錆性)試験
 上記圧造加工後の鋼線材では、耐食性試験の評価が困難であることから、各潤滑皮膜処理剤により潤滑皮膜を形成させた鋼材を用いて、耐食性試験を行った。具体的には、パルテック社製のSPCC-SD(75mm×35mm×0.8mm)に上記(1-2)の各処理を施し、夏場に2ヶ月間屋内に曝露して錆を発生させ、錆の発生具合を観察した。発錆面積が大きい程、耐食性(長期防錆性)に劣ると判断した。
(評価基準)
◎:比較例8のSPCC-SDにおける潤滑皮膜の性能より著しく優れる(錆面積3%以下)
○:比較例8のSPCC-SDにおける潤滑皮膜の性能より優れる(錆面積3%超、10%以下)
△:比較例8のSPCC-SDにおける潤滑皮膜の性能と同等(錆面積10%超、20%以下)
×:比較例8のSPCC-SDにおける潤滑皮膜の性能より劣る(錆面積20%超、30%以下)
 これらの試験結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 まず、表2の実施例1~19はいずれも、本開示の構成要件を満足する潤滑皮膜を有する鋼線材又はSPCC-SDであり、圧造加工後の外観が良好であり、且つ、高い耐食性を有していた。また、圧造加工後の皮膜残存量も多いため、焼付きなども発生せず、金型寿命に優れる。
 これに対し、本開示の構成要件を満足しない比較例は以下の不具合を有している。
 まず、比較例1は、ケイ素(A)の供給源である水溶性ケイ酸塩を含まない潤滑皮膜を有する鋼線材又はSPCC-SDである。比較例2は、タングステン(B)の供給源である水溶性タングステン酸塩を含まない潤滑皮膜を有する鋼線材又はSPCC-SDである。比較例3は、上記AとBの乾燥質量比(B)/(A)が高い潤滑皮膜を有する鋼線材又はSPCC-SDである。比較例4は、上記AとBの乾燥質量比(B)/(A)が低い潤滑皮膜を有する鋼線材又はSPCC-SDである。比較例1~4のいずれも、耐食性が劣っていた。
 また、比較例5~7は、上記(C)/{(A)+(B)}の乾燥質量比が本開示の範囲を満足しない潤滑皮膜を有する鋼線材若しくはSPCC-SD、あるいは、該乾燥質量比が本開示の範囲を満足せず、かつ、脂肪酸のアルカリ金属塩(C)を含まない潤滑皮膜を有する鋼線材若しくはSPCC-SDである。
 これらのうち比較例5は、脂肪酸のアルカリ金属塩(C)を含まず、滑剤としてワックス(D)のみを含む潤滑皮膜を有する鋼線材又はSPCC-SDであり、圧造外観が劣っていた。この実験結果より、圧造加工後の優れた外観を得るためには、潤滑皮膜中に脂肪酸のアルカリ金属塩(C)が含まれていることが不可欠であり、代表的な滑剤であるワックスを添加しても所望とする効果が得られないことが分かる。
 また、比較例6は、上記(C)/{(A)+(B)}の乾燥質量比が本開示の範囲より低い潤滑皮膜を有する鋼線材又はSPCC-SDである。脂肪酸のアルカリ金属塩(C)の添加効果が有効に発揮されないため、圧造外観が劣っていた。
 比較例7は、上記(C)/{(A)+(B)}の乾燥質量比が本開示の範囲より高い潤滑皮膜を有する鋼線材又はSPCC-SDである。脂肪酸のアルカリ金属塩(C)の添加効果により圧造加工後の外観は良好であったが、脂肪酸のアルカリ金属塩の量が多すぎるため、圧造加工後の皮膜残存量が低下して微小な焼付きが生じた。
 比較例8は、反応石けん処理を行って形成させたリン酸塩皮膜を有する鋼線材又はSPCC-SD(従来例)である。焼入れ焼戻しなどの熱処理を行う際に浸リンを起こして鋼線材が脆弱となる虞がある。
 以上の説明から明らかなように、本開示の鋼線材は、潤滑皮膜中にリンを含まないため浸リン性がなく、且つ、従来のリン酸塩と石けん処理材と同等以上の良好な長期間耐食性を有し、しかも圧造加工後の外観不良も生じない。よって、本開示の鋼線材は、産業上の利用価値が極めて大きいものである。
 本明細書の開示内容は、以下の態様を含む。
態様1:
 ケイ素(A)とタングステン(B)と脂肪酸のアルカリ金属塩(C)を含み、(B)/(A)の乾燥質量比が1.3~18の範囲であり、(C)/{(A)+(B)}の乾燥質量比が0.14~2.0の範囲であり、リンを含まない潤滑皮膜を表面に有することを特徴とする鋼線材。
態様2:
 前記ケイ素が水溶性ケイ酸塩由来であり、且つ、前記タングステンが水溶性タングステン酸塩由来である態様1に記載の鋼線材。
態様3:
 前記ケイ素がケイ酸リチウム、ケイ酸ナトリウム、及びケイ酸カリウムよりなる群から選ばれる少なくとも1種以上に由来し、且つ、前記タングステンがタングステン酸リチウム、タングステン酸ナトリウム、タングステン酸カリウム、及びタングステン酸アンモニウムよりなる群から選ばれる少なくとも1種以上に由来する態様1または2に記載の鋼線材。
態様4:
 前記潤滑皮膜が前記脂肪酸のアルカリ金属塩(C)以外の滑剤(D)を更に含み、{(C)+(D)}/{(A)+(B)}の乾燥質量比が0.14~2.0である態様1~3のいずれかに記載の鋼線材。
態様5:
 前記滑剤(D)がワックス、ポリテトラフルオロエチレン、脂肪酸金属石鹸、脂肪酸アマイド、二硫化モリブデン、二硫化タングステン、グラファイト、及びメラミンシアヌレートよりなる群から選ばれる少なくとも1種以上である態様4に記載の鋼線材。
態様6:
 前記潤滑皮膜が樹脂(E)を更に含み、(E)/{(A)+(B)}の乾燥質量比が0超1.4以下である態様1~5のいずれかに記載の鋼線材。
態様7:
 前記樹脂(E)がビニル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、フェノール樹脂、セルロース誘導体、ポリマレイン酸、及びポリエステル樹脂よりなる群から選ばれる少なくとも1種以上である態様6に記載の鋼線材。
態様8:
 前記潤滑皮膜の単位面積当たりの皮膜質量が1.0~20g/m2である態様1~7のいずれかに記載の鋼線材。
 本出願は、出願日が2015年9月30日である日本国特許出願、特願第2015-195149号及び出願日が2016年6月20日である日本国特許出願、特願第2016-121490号を基礎出願とする優先権主張を伴う。特願第2015-195149号及び特願第2016-121490号は参照することにより本明細書に取り込まれる。

Claims (8)

  1.  ケイ素(A)とタングステン(B)と脂肪酸のアルカリ金属塩(C)を含み、(B)/(A)の乾燥質量比が1.3~18の範囲であり、(C)/{(A)+(B)}の乾燥質量比が0.14~2.0の範囲であり、リンを含まない潤滑皮膜を表面に有することを特徴とする鋼線材。
  2.  前記ケイ素が水溶性ケイ酸塩由来であり、且つ、前記タングステンが水溶性タングステン酸塩由来である請求項1に記載の鋼線材。
  3.  前記ケイ素がケイ酸リチウム、ケイ酸ナトリウム、及びケイ酸カリウムよりなる群から選ばれる少なくとも1種以上に由来し、且つ、前記タングステンがタングステン酸リチウム、タングステン酸ナトリウム、タングステン酸カリウム、及びタングステン酸アンモニウムよりなる群から選ばれる少なくとも1種以上に由来する請求項1に記載の鋼線材。
  4.  前記潤滑皮膜が前記脂肪酸のアルカリ金属塩(C)以外の滑剤(D)を更に含み、{(C)+(D)}/{(A)+(B)}の乾燥質量比が0.14~2.0である請求項1に記載の鋼線材。
  5.  前記滑剤(D)がワックス、ポリテトラフルオロエチレン、脂肪酸金属石鹸、脂肪酸アマイド、二硫化モリブデン、二硫化タングステン、グラファイト、及びメラミンシアヌレートよりなる群から選ばれる少なくとも1種以上である請求項4に記載の鋼線材。
  6.  前記潤滑皮膜が樹脂(E)を更に含み、(E)/{(A)+(B)}の乾燥質量比が0超1.4以下である請求項1に記載の鋼線材。
  7.  前記樹脂(E)がビニル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、フェノール樹脂、セルロース誘導体、ポリマレイン酸、及びポリエステル樹脂よりなる群から選ばれる少なくとも1種以上である請求項6に記載の鋼線材。
  8.  前記潤滑皮膜の単位面積当たりの皮膜質量が1.0~20g/m2である請求項1に記載の鋼線材。
PCT/JP2016/078500 2015-09-30 2016-09-27 耐食性及び加工後の外観に優れた鋼線材 WO2017057385A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/763,975 US20180273869A1 (en) 2015-09-30 2016-09-27 Steel wire with excellent corrosion resistance and appearance after processing
MX2018003548A MX2018003548A (es) 2015-09-30 2016-09-27 Alambre de acero con excelente resistencia a la corrosion y apariencia despues del procesamiento.
CN201680056590.7A CN108138327B (zh) 2015-09-30 2016-09-27 耐腐蚀性和加工后的外观优异的钢线材
KR1020187008815A KR102105304B1 (ko) 2015-09-30 2016-09-27 내식성 및 가공 후의 외관이 우수한 강선재

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-195149 2015-09-30
JP2015195149 2015-09-30
JP2016-121490 2016-06-20
JP2016121490A JP6694769B2 (ja) 2015-09-30 2016-06-20 耐食性及び加工後の外観に優れた鋼線材

Publications (1)

Publication Number Publication Date
WO2017057385A1 true WO2017057385A1 (ja) 2017-04-06

Family

ID=58427684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078500 WO2017057385A1 (ja) 2015-09-30 2016-09-27 耐食性及び加工後の外観に優れた鋼線材

Country Status (1)

Country Link
WO (1) WO2017057385A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022049250A (ja) * 2020-09-16 2022-03-29 トヨタ自動車株式会社 ダイカスト用プランジャ潤滑剤及びその塗布方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095972A (ja) * 2003-08-26 2005-04-14 Kobe Steel Ltd 溶接用ソリッドワイヤの製造方法
JP2006161126A (ja) * 2004-12-09 2006-06-22 Sumitomo Metal Ind Ltd 化成処理性に優れた潤滑処理鋼板
JP2006272461A (ja) * 2005-03-03 2006-10-12 Kobe Steel Ltd 塑性加工用金属材料およびその製造方法ならびに塑性加工用金属材料の表面処理剤

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095972A (ja) * 2003-08-26 2005-04-14 Kobe Steel Ltd 溶接用ソリッドワイヤの製造方法
JP2006161126A (ja) * 2004-12-09 2006-06-22 Sumitomo Metal Ind Ltd 化成処理性に優れた潤滑処理鋼板
JP2006272461A (ja) * 2005-03-03 2006-10-12 Kobe Steel Ltd 塑性加工用金属材料およびその製造方法ならびに塑性加工用金属材料の表面処理剤

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022049250A (ja) * 2020-09-16 2022-03-29 トヨタ自動車株式会社 ダイカスト用プランジャ潤滑剤及びその塗布方法
JP7280228B2 (ja) 2020-09-16 2023-05-23 トヨタ自動車株式会社 ダイカスト用プランジャ潤滑剤及びその塗布方法

Similar Documents

Publication Publication Date Title
JP5457452B2 (ja) 耐食性に優れる塑性加工用水系潤滑剤および塑性加工性に優れる金属材料
WO2015146848A1 (ja) 耐食性及び加工性に優れた潤滑皮膜を有する鋼線材
JP5450892B2 (ja) 塑性加工用潤滑被膜剤とその製造方法
JP5682021B2 (ja) 難結晶性を有し、耐吸湿性、耐食性及び加工性に優れる金属材料塑性加工用水系潤滑剤及びその潤滑皮膜を形成させた金属材料
CN105899650B (zh) 耐腐蚀性、加工性优异的水系润滑皮膜处理剂及金属材料
WO2013129268A1 (ja) 塑性加工用水溶性潤滑剤、塑性加工用金属材および金属加工品
WO2015005142A1 (ja) 吸湿後の加工性及び耐カス詰まり性に優れた金属材料塑性加工用水系潤滑剤
WO2002012419A1 (fr) Lubrifiant aqueux pour le travail au plastique d'un materiau metallique et procede d'elaboration d'un film lubrifiant
WO2003080774A1 (en) Metal soap-coated particle, article made with the same, process for production, lubricating coating agent, and lubricating coating film
CN108138327B (zh) 耐腐蚀性和加工后的外观优异的钢线材
JP6362379B2 (ja) 耐食性及び加工性に優れた皮膜を有する鋼線材及びその製造方法
WO2017057385A1 (ja) 耐食性及び加工後の外観に優れた鋼線材
WO2015060121A1 (ja) 塑性加工用非りん化成処理剤、処理液、化成皮膜及び化成皮膜を有する金属材料
JP2002363593A (ja) 皮膜形成剤及び皮膜
WO2023204117A1 (ja) 金属線材の潤滑処理方法
EP4174155A1 (en) Boron-free water-based lubricant for plastic working
WO2011040261A1 (ja) 金属材料塑性加工用水系潤滑皮膜剤および塑性加工性に優れた金属材料
CN118139956A (zh) 塑性加工用无硼水基润滑剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851556

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/003548

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20187008815

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15763975

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851556

Country of ref document: EP

Kind code of ref document: A1