WO2015146848A1 - 耐食性及び加工性に優れた潤滑皮膜を有する鋼線材 - Google Patents

耐食性及び加工性に優れた潤滑皮膜を有する鋼線材 Download PDF

Info

Publication number
WO2015146848A1
WO2015146848A1 PCT/JP2015/058556 JP2015058556W WO2015146848A1 WO 2015146848 A1 WO2015146848 A1 WO 2015146848A1 JP 2015058556 W JP2015058556 W JP 2015058556W WO 2015146848 A1 WO2015146848 A1 WO 2015146848A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
film
soluble
steel wire
tungstate
Prior art date
Application number
PCT/JP2015/058556
Other languages
English (en)
French (fr)
Inventor
慶太 椎橋
柳澤 佳寿美
弘高 伊藤
敬祐 小澤
小見山 忍
豪 畠山
Original Assignee
株式会社神戸製鋼所
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所, 日本パーカライジング株式会社 filed Critical 株式会社神戸製鋼所
Priority to US15/129,321 priority Critical patent/US20170175021A1/en
Priority to KR1020167026470A priority patent/KR101817456B1/ko
Priority to MX2016012520A priority patent/MX2016012520A/es
Priority to CN201580016363.7A priority patent/CN106133192A/zh
Publication of WO2015146848A1 publication Critical patent/WO2015146848A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/06Metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C9/00Cooling, heating or lubricating drawing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C9/00Cooling, heating or lubricating drawing material
    • B21C9/02Selection of compositions therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/10Metal oxides, hydroxides, carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/22Compounds containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/26Compounds containing silicon or boron, e.g. silica, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/38Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms
    • C10M129/40Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/16Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/38Heterocyclic nitrogen compounds
    • C10M133/40Six-membered ring containing nitrogen and carbon only
    • C10M133/42Triazines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/02Polyethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol, aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/40Polysaccharides, e.g. cellulose
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M147/00Lubricating compositions characterised by the additive being a macromolecular compound containing halogen
    • C10M147/02Monomer containing carbon, hydrogen and halogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M149/00Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
    • C10M149/12Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M149/14Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds a condensation reaction being involved
    • C10M149/20Polyureas
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • C10M2201/0623Oxides; Hydroxides; Carbonates or bicarbonates used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/0803Inorganic acids or salts thereof used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • C10M2201/1023Silicates used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • C10M2205/0225Ethene used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/14Synthetic waxes, e.g. polythene waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
    • C10M2209/043Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/086Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/086Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
    • C10M2209/0863Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/12Polysaccharides, e.g. cellulose, biopolymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/045Polyureas; Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/32Wires, ropes or cables lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating

Definitions

  • the present invention relates to a steel wire having a lubricating film containing no phosphorus on its surface.
  • a technique of previously coating a metal material surface with a solid film such as an inorganic film has been generalized.
  • a composite film composed of a zinc phosphate film and a soap layer (hereinafter sometimes referred to as a chemical conversion film) has high processability and corrosion resistance and is widely used.
  • Patent Document 1 discloses a composition in which (A) a water-soluble inorganic salt and (B) wax are dissolved or dispersed in water, and the solid content weight ratio (B) / (A) is in the range of 0.3 to 1.5.
  • An aqueous lubricating film treating agent for plastic working of metal materials and a method for forming the film are disclosed.
  • Patent Document 3 contains an A component: an inorganic solid lubricant, a B component: a wax, and a C component: a water-soluble inorganic metal salt, and a solid content mass ratio between the A component and the B component (A component / B component). ) Is 0.1 to 5, and the solid content mass ratio of the C component to the total amount of the A component, the B component, and the C component (C component / (A component + B component + C component)) is 1 to 30%
  • a water-soluble lubricant for non-phosphorous plastic working is disclosed. This technique is a lubricant that does not contain phosphorus, and is said to be able to realize corrosion resistance equivalent to that of a chemical conversion coating.
  • Patent Document 4 contains a water-soluble inorganic salt (A), one or more lubricants (B) selected from molybdenum disulfide and graphite, and a wax (C), and these are dissolved in water or Aqueous lubrication in which (B) / (A) is 1.0 to 5.0 in terms of solids weight ratio and (C) / (A) is in the range of 0.1 to 1.0 in terms of solids weight ratio A film treatment agent and a method for forming the film are disclosed. This technology is said to be able to realize high workability equivalent to that of a chemical conversion treatment film by blending molybdenum disulfide or graphite with a conventional water-based lubricating film treatment agent.
  • Patent Document 5 discloses silicate (A), polycarboxylate (B), water-compatible polymer and / or water-compatible organic lamellar structure (C), molybdate and / or tungstate. (D) and the film formation agent whose mass ratio of each said component is a predetermined
  • the water-soluble inorganic salt is an essential component in the solid film of the water-based lubricating film treatment agent.
  • a lubricating film composed of a water-soluble inorganic salt has a sufficient film strength, and as described above, it is difficult to cause the lubricating film to break by intervening at the interface between the die and the workpiece even under high surface pressure. This is because direct contact can be avoided. Therefore, in the case of a water-based lubricating film treatment agent, a good lubricating state can be maintained during plastic processing by combining a solid film made of a water-soluble inorganic salt or a water-soluble resin with an appropriate lubricant capable of reducing the friction coefficient.
  • the film formation mechanism of the water-based lubricating film composed of water-soluble components will be described.
  • the water-soluble inorganic salt of the water-soluble component is in a state of being dissolved in water in the lubricant treatment liquid.
  • the solvent water evaporates to form a lubricating film.
  • the water-soluble inorganic salt is deposited as a solid on the surface of the metal material to form a solid film.
  • the solid coating formed in this way has a coating strength that can withstand plastic processing, and exhibits good lubricity during plastic processing by incorporating an appropriate lubricant that reduces the friction coefficient.
  • Patent Documents 1 to 5 are significantly inferior in long-term rust prevention for 2 months or more as compared with the chemical conversion coating described above, and cannot be increased to a practical level. This is because the main component of the film is a water-soluble component, so that moisture in the atmosphere can be easily absorbed or permeated, and the steel material can easily come into contact with moisture.
  • Patent Document 2 although corrosion resistance is improved by suppressing crystallization of the film due to moisture absorption, moisture absorption itself is not suppressed, and sufficient corrosion resistance is not obtained.
  • Water-soluble silicate has a property that it hardly permeates moisture in water-soluble inorganic salt and has very high adhesion to the material. Because of this property, it is a material that can exhibit relatively high corrosion resistance, although not as much as the chemical conversion coating. This is because the water-soluble silicate is crosslinked and forms a network structure in the process of forming a film in which water as a solvent of the lubricant volatilizes. However, because of this network structure, the water-soluble silicate film is too brittle as a lubricating film. For this reason, when a base material is processed, a film
  • the adhesiveness is too high, film removal failure may occur, and various problems may be caused in subsequent processes.
  • film removal failure may occur, and various problems may be caused in subsequent processes.
  • plating is performed in a subsequent process, not only does the film component enter and contaminates the plating solution, but also causes defective plating in the portion where the film component remains.
  • water-soluble tungstate does not easily absorb moisture from the outside air when a film is formed. This is because when the water-soluble tungstate forms a film, it forms particulate crystals. Furthermore, water-soluble tungstate has the property of forming a passive film having a self-repairing function on the surface of the steel material, and it can be expected to form a highly corrosion-resistant film by using it as a film component. Moreover, since water solubility itself is high, it can be easily removed with an aqueous solution. However, since the water-soluble tungstate is crystalline, it has poor adhesion to the material and cannot form a uniform film, so that the expected corrosion resistance and workability cannot be obtained. For example, the adhesion and uniformity of the film can be improved by adding a synthetic resin component to the lubricant, but the corrosion resistance is still inferior to that of the chemical conversion film.
  • the water-based lubricating film treatment agents containing water-soluble inorganic salts described in Patent Documents 1 to 3 have in common poor processability compared to the chemical conversion film. This is particularly noticeable in severe processing where the surface area expansion ratio is several tens of times (hereinafter sometimes referred to as “strong processing”), such as insufficient deformation of the material, reduction in mold life, and seizure. Occur.
  • the water-based lubricating film treating agent described in Patent Document 4 contains molybdenum disulfide and graphite, so that it is possible to obtain a workability equivalent to or higher than that of the chemical conversion film even during strong working.
  • molybdenum disulfide and graphite are liable to settle, and over time, they may harden at the bottom of the treatment tank and become difficult to redisperse, making stable operation difficult.
  • these two components are factors that greatly reduce the corrosion resistance, and the corrosion resistance is inferior to that of the lubricating film of Patent Documents 1 to 3 as well as the chemical conversion coating.
  • Patent Document 5 a coating material containing silicate (A) as a main component and containing too much corrosion-resistant agent (D) or the like has seizure when the extrusion load is high. Since it is inferior, stable work becomes difficult, and long-term rust prevention is not sufficient.
  • the present invention is to provide a steel wire having a lubricating film capable of satisfying both workability such as wire drawability, spike property, ball ironing property, film removal property and corrosion resistance such as long-term rust prevention property. It was raised as an issue.
  • the present inventors have determined a specific ratio of silicate and tungstate, that is, a mass ratio of water-soluble tungstate / water-soluble silicate.
  • a specific ratio of silicate and tungstate that is, a mass ratio of water-soluble tungstate / water-soluble silicate.
  • the present invention is configured as follows to solve the above-mentioned problems.
  • the steel wire of the present invention contains a water-soluble silicate and a water-soluble tungstate, and the water-soluble tungstate / water-soluble silicate mass ratio is in the range of 0.7 to 10 and does not contain phosphorus. It has a gist in that it has a lubricating film on its surface.
  • the lubricating coating is formed by using a composition in which a water-soluble tungstate / water-soluble silicate is mixed so that the mass ratio of water-soluble tungstate / water-soluble silicate is in the range of 0.7 to 10. It is preferable that
  • the lubricating film contains a resin, and the mass ratio of resin / (water-soluble silicate + water-soluble tungstate) is preferably 0.01 to 1.5.
  • the resin is preferably at least one selected from vinyl resins, acrylic resins, epoxy resins, urethane resins, phenol resins, cellulose derivatives, polymaleic acid, and polyester resins.
  • the lubricant film contains a lubricant, and the mass ratio of lubricant / (water-soluble silicate + water-soluble tungstate) is preferably 0.01 to 1.5.
  • the lubricant is preferably at least one selected from wax, polytetrafluoroethylene, fatty acid soap, fatty acid metal soap, fatty acid amide, molybdenum disulfide, tungsten disulfide, graphite, and melamine cyanurate.
  • the film mass per unit area of the lubricating film is preferably 1.0 to 20 g / m 2 .
  • the steel wire rod of the present invention since the lubricating film is configured as described above, the steel wire rod has excellent corrosion resistance such as wire drawability, spike property, ball ironing property, workability such as film removal property, and long-term rust prevention property. Is obtained. Moreover, the point that all of these performances are equivalent to or better than that of a steel wire having a chemical conversion coating is a great advantage compared to conventional water-based lubricating coatings.
  • FIG. 1 shows evaluation criteria for seizure when evaluating the ball ironing property.
  • the present invention provides a lubricating film containing a water-soluble silicate and a water-soluble tungstate, wherein the mass ratio of water-soluble tungstate / water-soluble silicate is in the range of 0.7 to 10, and does not contain phosphorus.
  • the present invention relates to a steel wire characterized by having on the surface.
  • the steel used for the steel wire includes carbon steel, alloy steel, special steel and the like.
  • carbon steel having a carbon content of 0.2% by mass or less (excluding 0% by mass) to carbon steel having a carbon content of more than 0.2% by mass and not more than 1.5% by mass, and uses of mild steel or carbon steel
  • alloy steel or special steel containing at least one selected from silicon, manganese, phosphorus, sulfur, nickel, chromium, copper, aluminum, molybdenum, vanadium, cobalt, titanium, zircon and the like can be mentioned.
  • the steel wire generally refers to steel processed into a wire by hot working.
  • the steel wire material of the present invention includes a steel wire. With steel wire, steel wire was further processed, such as steel wire drawn to specified size (wire diameter, roundness, etc.), steel wire or drawn steel wire plated Say things.
  • the steel wire of the present invention is not particularly limited as long as it has a lubricating film described later and has excellent corrosion resistance and workability, but a further film, that is, a base film is formed between the surface of the steel wire and the lubricating film. May be. Any of these films may be a single layer or two or more layers.
  • the lubricating film and the base film do not contain phosphorus, and the lubricating film treating agent used for forming the film does not contain a component containing phosphorus.
  • the steel wire material of the present invention includes a water-soluble silicate and a water-soluble tungstate, and a lubricating film having a water-soluble tungstate / water-soluble silicate mass ratio in the range of 0.7 to 10 on the surface.
  • a lubricating film having a water-soluble tungstate / water-soluble silicate mass ratio in the range of 0.7 to 10 on the surface.
  • a film can be formed.
  • the water-soluble tungstate is incorporated into the network structure formed by the water-soluble silicate.
  • the disadvantage of water-soluble tungstate is largely due to the formation of a crystalline film, but by incorporating it into the network structure of water-soluble silicate, water-soluble tungstate is present uniformly and finely. Will be able to.
  • the properties of the water-soluble silicate that hardly permeate moisture and the passive film having the self-healing function of the water-soluble tungstate are compatible, and the corrosion resistance is remarkably improved.
  • water-soluble tungstates on water-soluble silicates include improved processability and film removal.
  • the reason why water-soluble silicates are inferior in processability and film removal is due to the formation of a strong continuous film by polymerizing water-soluble silicates.
  • the ratio of the amount of water-soluble silicate to the amount of water-soluble tungstate is important for the above performance.
  • the mass ratio of water-soluble tungstate / water-soluble silicate is 0.7 or more, preferably 0.9 or more, more preferably 1.1 or more.
  • the mass ratio is 10 or less, preferably 6.0 or less, and more preferably 3.0 or less.
  • a lubricating film treating agent containing a water-soluble silicate and a water-soluble tungstate may be prepared and applied to the surface of the steel wire.
  • the mass ratio of the water-soluble tungstate / water-soluble silicate in the lubricating film after applying the lubricating film treating agent is the water-soluble tungstate / It is the same as the mass ratio of the water-soluble silicate.
  • the lubricating coating is a composition comprising a water-soluble silicate and a water-soluble tungstate so that the mass ratio of water-soluble tungstate / water-soluble silicate is in the range of 0.7 to 10. It may be formed using.
  • the mass ratio of tungsten / silicon is preferably 1.3 or more, more preferably 1.8 or more, and further preferably 2.0 or more.
  • the mass ratio is preferably 18 or less, more preferably 10 or less, and still more preferably 5.4 or less.
  • the mass ratio of tungsten / silicon is less than 1.3, sufficient corrosion resistance and workability cannot be obtained, and a film having poor film removal properties is obtained. This is because the amount of the tungstate is relatively reduced, the passive film is not sufficiently formed, and the amount of the silicate is relatively increased to form a strong network structure. To do.
  • the mass ratio of tungsten / silicon exceeds 18, a film in which sufficient corrosion resistance and workability cannot be obtained.
  • the mass ratio of tungsten / silicon is based on the ratio of the tungsten element derived from the water-soluble tungstate and the silicon element derived from the water-soluble silicate in the film, for example, inductively coupled plasma. Alternatively, it can be calculated using fluorescent X-ray analysis.
  • water-soluble silicate used in the lubricant film treating agent examples include lithium silicate, sodium silicate, and potassium silicate. These may be used alone or in combination of two or more.
  • water-soluble tungstate used for the lubricant film treating agent examples include lithium tungstate, sodium tungstate, potassium tungstate, and ammonium tungstate. These may be used alone or in combination of two or more.
  • the resin is blended in the film for the purpose of binder action, improvement of adhesion between the substrate and the film, leveling by thickening action, and stabilization of the dispersed component.
  • resins having such functions and properties include vinyl resins, acrylic resins, epoxy resins, urethane resins, phenol resins, cellulose derivatives, polymaleic acid, and polyester resins. These may be used alone or in combination of two or more.
  • the lubricating film contains a resin, and the mass ratio of resin / (water-soluble silicate + water-soluble tungstate) is preferably 0.01 or more, more preferably 0.05 or more. . Moreover, it is preferable that the said mass ratio is 1.5 or less, More preferably, it is 1.0 or less. When the mass ratio is less than 0.01, the above-mentioned action is not sufficiently exhibited. When the mass ratio exceeds 1.5, the amount of the water-soluble silicate and the water-soluble tungstate is relatively small and sufficient. Processability and corrosion resistance cannot be realized.
  • the lubricant itself is slippery and has a function of reducing the frictional force. Generally, when the frictional force increases during plastic processing, processing energy increases, heat generation, seizure, etc. occur, but if lubricant is included in the lubricant coating agent used in the present invention, it exists in a solid form in the lubricant coating. Thus, an increase in frictional force is suppressed.
  • the lubricant having such functions and properties include wax, polytetrafluoroethylene, fatty acid soap, fatty acid metal soap, fatty acid amide, molybdenum disulfide, tungsten disulfide, graphite, and melamine cyanurate. These may be used alone or in combination of two or more.
  • the wax include polyethylene wax, paraffin wax, microcrystalline wax, polypropylene wax, and carnauba wax.
  • Specific examples of the fatty acid soap include sodium myristate, potassium myristate, sodium palmitate, potassium palmitate, sodium stearate, and potassium stearate.
  • Specific examples of the fatty acid metal soap include calcium stearate, zinc stearate, barium stearate, magnesium stearate, and lithium stearate.
  • the fatty acid amide is, for example, an amide compound having two fatty acids.
  • ethylene bislauric acid amide ethylene bis stearic acid amide, ethylene bisbehenic acid amide, N, N′-distearyl adipic acid amide, ethylene bis oleic acid.
  • Amide ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N, N′-dioleyl adipic acid amide.
  • the mass ratio of lubricant / is preferably 0.01 or more, more preferably 0.05 or more.
  • the mass ratio is preferably 1.5 or less, more preferably 1.0 or less. If the mass ratio of lubricant / (water-soluble silicate + water-soluble tungstate) is less than 0.01, the above performance cannot be exhibited because the amount of lubricant is too small. When the mass ratio exceeds 1.5, the amount of the water-soluble silicate and the water-soluble tungstate becomes relatively small, and the high corrosion resistance and workability that are the characteristics of the present invention cannot be expressed.
  • the lubricating film of the steel wire rod of the present invention is leveled to ensure a uniform application state when a lubricant treatment liquid is applied to a substrate.
  • a viscosity modifier can be blended for the purpose of imparting properties and thixotropy. The blending amount of these is preferably 0.1 to 30% by mass relative to the total solid mass.
  • viscosity modifiers include smectite clay minerals such as montmorillonite, saconite, beidellite, hectorite, nontronite, saponite, iron saponite and stevensite, and inorganic thickening such as finely divided silica, bentonite and kaolin. Agents.
  • the lubricating coating may contain an inorganic salt such as sulfate or borate, or a water-soluble salt such as organic salt in order to improve adhesion and workability.
  • an inorganic salt such as sulfate or borate
  • a water-soluble salt such as organic salt
  • examples of the sulfate include sodium sulfate and potassium sulfate.
  • Examples of the borate include sodium metaborate, potassium metaborate, and ammonium metaborate.
  • Organic salts include formic acid, acetic acid, butyric acid, oxalic acid, succinic acid, lactic acid, ascorbic acid, tartaric acid, citric acid, malic acid, malonic acid, maleic acid, phthalic acid, etc. and alkali metals, alkaline earth metals, etc. Salt.
  • the lubricating film of the steel wire rod of the present invention can provide high corrosion resistance before and after processing, but may further contain other water-soluble rust preventives and inhibitors for the purpose of further improving the corrosion resistance.
  • Specific examples include various organic acids such as oleic acid, dimer acid, tartaric acid and citric acid, various chelating agents such as EDTA, NTA, HEDTA and DTPA, mixed components of alkanolamine such as triethanolamine, and pt-butylbenzoic acid.
  • Known amines such as carboxylic acid amine salts, dibasic acid amine salts, alkenyl succinic acid and water-soluble salts thereof, and aminotetrazole and water-soluble salts thereof can be used. These may be used alone or in combination of two or more. The blending amount of these is preferably 0.1 to 30% by mass relative to the total solid mass.
  • the lubricant film treatment agent contains the water-soluble silicate and the water-soluble tungstate as essential components, and contains the resin, the lubricant, and the water-soluble salt as necessary.
  • the water-soluble silicate is preferably more than 5% by mass in 100% by mass of the lubricant film treatment agent, more preferably 10% by mass or more, still more preferably 15% by mass or more, and 58% by mass or less. It is preferable that it is preferably 52% by mass or less, and more preferably 45% by mass or less.
  • the water-soluble tungstate is preferably 10% by mass or more, more preferably 15% by mass or more, further preferably 20% by mass or more, and 91% by mass or less, in 100% by mass of the lubricant film treatment agent.
  • the content is 85% by mass or less, more preferably 80% by mass or less.
  • the amount of the water-soluble silicate is 5% by mass or less and the amount of the water-soluble tungstate is more than 91% by mass, sufficient long-term rust preventive property cannot be obtained, and wire drawing property and ball ironing property are obtained.
  • the film is inferior. This is due to the fact that the amount of water-soluble silicate is relatively reduced, so that moisture easily permeates, and tungsten crystals are precipitated, resulting in a decrease in the adhesion and uniformity of the film.
  • the amount of the water-soluble silicate is more than 58% by mass and the amount of the water-soluble tungstate is less than 10% by mass, a film with insufficient corrosion resistance and workability cannot be obtained. This is because a relatively thin passive film is not formed due to a relatively small amount of tungsten, and a strong network structure is formed due to a relatively large amount of water-soluble silicate.
  • the lubricating film may be formed as a base lubricating film for a dry lubricant.
  • a dry lubricant By using it as an undercoat of a dry lubricant, the lubricity, seizure resistance, and corrosion resistance can be raised.
  • the type of dry lubricant is not particularly limited, and general lubricating powders and wire drawing powders mainly composed of higher fatty acid soap, borax, lime, molybdenum disulfide, etc. can be used.
  • the liquid medium (solvent, dispersion medium) in the film treatment agent for forming the lubricating film is water.
  • an alcohol having a boiling point lower than that of water may be blended.
  • the lubricant film treatment agent may contain a water-soluble strong alkali component in order to increase the stability of the solution.
  • a water-soluble strong alkali component include lithium hydroxide, sodium hydroxide, and potassium hydroxide. These may be used alone or in combination of two or more. The blending amount of these is preferably 0.01 to 10% by mass relative to the total solid mass.
  • Lubricant treatment agent used in the present invention should be mixed by adding water-soluble silicate and water-soluble tungstate, resin, lubricant, and viscosity modifier if necessary to water which is a liquid medium.
  • the water-soluble silicate and water-soluble tungstate used here are water-soluble, but some resins, lubricants, viscosity modifiers, etc. are insoluble or sparingly soluble in water. Need to be distributed.
  • the dispersing method is carried out by adding a surfactant that can be a dispersing agent to water and sufficiently blending in water, and then stirring is continued until the dispersed state becomes uniform.
  • the stirring method is performed by a general method such as propeller stirring or stirring with a homogenizer.
  • a known surfactant can be used.
  • the method of the present invention includes a steel wire rod cleaning step, a film treatment agent manufacturing step, and a drying step. Hereinafter, each step will be described.
  • ⁇ Cleaning process Before forming the lubricating film on the steel wire, it is preferable to perform at least one type of cleaning treatment selected from the group consisting of shot blasting, sand blasting, wet blasting, peeling, alkali degreasing and acid cleaning.
  • the purpose of cleaning is to remove oxide scales and various types of dirt (oil, etc.) grown by annealing or the like.
  • the process which manufactures a lubricating film to a steel wire is not specifically limited, Application
  • coating such as a dipping method, a flow coat method, a spray method, can be used.
  • the coating is only required to be sufficiently covered with the lubricating film treating agent of the present invention, and the coating time is not particularly limited.
  • the steel wire may be heated to 60 to 80 ° C. and brought into contact with the lubricant coating agent. Further, a lubricating film treating agent heated to 40 to 70 ° C. may be contacted. By these, drying property improves significantly and drying may be attained at normal temperature, and the loss of heat energy can also be reduced.
  • Drying may be performed at room temperature, but may be performed at 60 to 150 ° C. for 1 to 30 minutes.
  • the coating mass of the lubricating coating formed on the steel wire is appropriately controlled depending on the degree of subsequent processing, but the coating mass is preferably 1.0 g / m 2 or more, more preferably 2.0 g. / M 2 or more, preferably 20 g / m 2 or less, more preferably 15 g / m 2 or less.
  • the film mass is small, the workability is insufficient.
  • the coating mass exceeds 20 g / m 2 , there is no problem in workability, however, clogging of the dies and the like are not preferable.
  • the film mass can be calculated from the mass difference and surface area of the steel wire before and after the treatment.
  • solid content mass (concentration) of a lubricating film processing agent is adjusted suitably.
  • a high-concentration lubricant is often diluted with water and used in the treatment liquid.
  • the water to be diluted is not particularly limited. For example, pure water, deionized water, tap water, ground water, industrial water, and the like can be used.
  • the said lubricating film formed with the lubricating film processing agent can be film-removed by being immersed in an aqueous alkaline cleaning agent or spray-cleaning.
  • the alkaline cleaner is a solution in which a general alkali component such as sodium hydroxide or potassium hydroxide is dissolved in water.
  • the lubricant film dissolves in the cleaning solution, so that it can be easily removed.
  • it can be set as the film
  • Lubricant coating treatment agents of Examples 1 to 18 and Comparative Examples 1 to 12 were prepared in the combinations and proportions shown in Table 1 below.
  • Comparative Example 13 is a phosphate / soap treatment.
  • There is no seizure and no metallic luster is observed, but the remaining film is slightly less than ⁇ .
  • Although there is no seizure, the remaining amount of the film is slightly small, and a metallic luster is recognized in part.
  • There is no seizure, but metallic luster is observed in many parts.
  • X Seizure occurred.
  • Table 2 shows the test results.
  • rust was hardly generated over a long period of time, the corrosion resistance was good, and a lot of the lubricating film remained, resulting in good workability.
  • higher corrosion resistance was shown by performing a zirconium chemical conversion treatment as a base treatment.
  • Comparative Example 1 is an example in which the lubricating film used in the examples is not formed, but seizure occurs at the time of wire drawing, rust frequently occurs in both 2 weeks and 2 months, and is not suitable as a practical level. there were.
  • the ratio of the water-soluble silicate to the water-soluble tungstate was set outside the scope of the present invention.
  • Comparative Examples 10 to 12 contain components other than silicates and tungstates as water-soluble inorganic salts, but have poor processability and poor corrosion resistance due to a small amount of film remaining after wire drawing. .
  • the phosphate soap film of Comparative Example 13 treated with a reactive soap exhibits phosphorus with relatively good performance, it contains phosphorus, so that it was immersed in a heat treatment such as quenching and tempering while having a lubricating film on the surface. Since the steel wire may be fragile, it is out of the scope of the present invention.
  • Comparative Examples 9 and 10 are also outside the scope of the present invention because they contain phosphorus.
  • Lubricant coating agents of Examples 19 to 38 and Comparative Examples 14 to 25 were prepared in the combinations and proportions shown in Table 3 below.
  • the comparative example 26 is a phosphate / soap treatment.
  • Test piece for evaluation S45C spheroidized annealing material 25 mm ⁇ ⁇ 30 mm Evaluation standard spike performance: spike height (mm) / working load (kNf) ⁇ 100 The larger the value, the better the spike performance.
  • A Remarkably superior to phosphate / soap coating (0.96 or more)
  • Superior to phosphate / soap coating (0.94 or more and less than 0.96)
  • Equivalent to phosphate / soap coating (0.92 or more and less than 0.94)
  • Inferior to phosphate / soap film (0.90 or more and less than 0.92)
  • X Remarkably inferior to phosphate / soap film (less than 0.90)
  • Test piece for evaluation S10C spheroidized annealing material 14 mm ⁇ ⁇ 32 mm Bearing ball: 10mm ⁇ SUJ2 Evaluation criteria ( ⁇ to ⁇ were evaluated based on the seizure state shown in FIG. 1) It was evaluated how much area burned with respect to the entire area of the ironing surface.
  • Remarkably superior to phosphate / soap coating
  • Equivalent to phosphate / soap coating
  • Inferior to phosphate / soap coating From phosphate / soap coating Markedly inferior
  • Test piece for evaluation S45C spheroidized annealing material 25 mm ⁇ ⁇ 30 mm Alkaline detergent: 2% NaOH aqueous solution film removal conditions: liquid temperature 60 ° C., immersion time 2 minutes
  • Treatment method Measurement of film weight before film removal treatment ⁇ Film removal treatment ⁇ Washing ⁇ Drying ⁇ Film weight measurement after film removal treatment
  • Film remaining rate (%) (film weight after film removal treatment / film weight before film removal treatment) x 100 Evaluation criteria: The lower the film remaining rate, the better the film removal performance ⁇ : The film remaining rate is 0% ⁇ : Film remaining ratio is over 0% to less than 8% ⁇ : Film remaining ratio is 8% to less than 16% ⁇ : Film remaining ratio is 16% to less than 25% ⁇ : Film remaining ratio is 25% or more
  • Test piece SPCC-SD 75mm ⁇ 35mm ⁇ 0.8mm Evaluation criteria: A: Remarkably superior to phosphate / soap coating (rust area 3% or less) ⁇ : Superior to phosphate / soap coating (rust area more than 3% to 10% or less) ⁇ : Equivalent to phosphate / soap coating (rust area over 10% to 20%) ⁇ : Inferior to phosphate / soap coating (rust area over 20% to 30%) X: Remarkably inferior to phosphate / soap film (rust area over 30%)
  • Example 4 The test results are shown in Table 4. As is clear from Table 4, the examples had good workability (spike properties, ball ironing properties, film removal properties) and corrosion resistance (long-term rust prevention properties). Moreover, higher corrosion resistance was shown by performing a zirconium chemical conversion treatment as a base treatment. In Comparative Examples 14 to 21, the ratio of the water-soluble silicate to the water-soluble tungstate was set outside the scope of the present invention, but the results of ball ironing and corrosion resistance tended to be inferior. Comparative Examples 22 to 25 were those containing components other than water-soluble silicate and water-soluble tungstate as water-soluble inorganic salts, but there was a tendency that the results of ball ironing and corrosion resistance were inferior.
  • the phosphate soap film of Comparative Example 26 treated with a reactive soap exhibits relatively excellent performance, it contains phosphorus, so that when the heat treatment such as quenching and tempering is performed with the lubricating film on the surface, phosphorus is immersed. Since there exists a possibility that a steel wire may become weak, it is outside the scope of the present invention. Similarly, Comparative Examples 19 and 22 are also out of the scope of the present invention because they contain phosphorus. Furthermore, even if the lubricating film contains a water-soluble silicate, the film-removing property was not sufficient when it did not contain a water-soluble tungstate.
  • the steel wire rod of the present invention does not contain phosphorus, so it has no phosphorus immersion property during heat treatment, and has high workability and corrosion resistance equivalent to or higher than conventional phosphate and soap treatment materials. It can be compatible. Since the film removal property of the lubricating film after processing with a cleaning agent is also good, it contributes to improving the process efficiency when performing post-processes such as plating after processing to bolts and the like. Therefore, the industrial utility value is extremely large.
  • Aspect 1 It contains a water-soluble silicate and a water-soluble tungstate, has a water-soluble tungstate / water-soluble silicate mass ratio in the range of 0.7 to 10, and has a lubricating film that does not contain phosphorus on the surface.
  • a steel wire characterized by Aspect 2 A steel wire having a lubricating film that does not contain phosphorus, The lubricating film is formed using a composition in which water-soluble silicate and water-soluble tungstate are mixed so that the mass ratio of water-soluble tungstate / water-soluble silicate is in the range of 0.7 to 10. Steel wire characterized by being made.
  • Aspect 3 The steel wire according to embodiment 1 or 2, wherein the lubricating film contains a resin, and a mass ratio of resin / (water-soluble silicate + water-soluble tungstate) is 0.01 to 1.5.
  • Aspect 4 The steel wire according to aspect 3, wherein the resin is at least one selected from vinyl resin, acrylic resin, epoxy resin, urethane resin, phenol resin, cellulose derivative, polymaleic acid, and polyester resin.
  • Aspect 5 The steel wire according to any one of embodiments 1 to 4, wherein the lubricating film contains a lubricant, and a mass ratio of lubricant / (water-soluble silicate + water-soluble tungstate) is 0.01 to 1.5.
  • Aspect 6 The steel wire according to aspect 5, wherein the lubricant is at least one selected from wax, polytetrafluoroethylene, fatty acid soap, fatty acid metal soap, fatty acid amide, molybdenum disulfide, tungsten disulfide, graphite, and melamine cyanurate.
  • Aspect 7 The steel wire according to any one of embodiments 1 to 6, wherein a film mass per unit area of the lubricating film is 1.0 to 20 g / m 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Lubricants (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

 本発明は、伸線性、スパイク性、ボールしごき性、脱膜性等の加工性と、長期防錆性等の耐食性とを両立することができる潤滑皮膜を有する鋼線材を提供する。 水溶性ケイ酸塩と水溶性タングステン酸塩を含み、水溶性タングステン酸塩/水溶性ケイ酸塩の質量比が0.7~10の範囲であり、リンを含まない潤滑皮膜を表面に有することを特徴とする鋼線材。

Description

耐食性及び加工性に優れた潤滑皮膜を有する鋼線材
 本発明は、リンを含まない潤滑皮膜を表面に有する鋼線材に関する。
 鋼線および鋼線材の塑性加工において、金属表面同士(特にダイスと被加工材)が激しく擦れ合う際に生じる摩擦は、加工エネルギーの増大、発熱、焼付き現象などの原因となるため摩擦力低減を目指した様々な潤滑剤が用いられてきた。潤滑剤としては、古くから油や石けん類などが用いられ、摩擦面に供給することで流体潤滑膜として摩擦力を低減してきたが、表面積拡大による大きな発熱を伴い高面圧下で摺動する塑性加工では潤滑性不足や、潤滑膜切れなどにより焼付き現象が発生し易くなる。そのため充分な皮膜強度を有し、高面圧下でもダイスと被加工材の界面に介在することで潤滑膜切れを起こしにくく金属同士の直接接触を回避できるホウ酸塩皮膜、リン酸塩結晶皮膜等の無機皮膜等の固体皮膜で予め金属材料表面を被覆しておく技術が一般化されている。特にリン酸亜鉛皮膜と石鹸層からなる複合皮膜(以下、化成処理皮膜と呼ぶ場合がある)は高い加工性と耐食性を有しており、広く用いられている。
 一方、近年、加工エネルギーの更なる低減化や強加工度化、難加工材への対応、皮膜プロセスの環境保全性(例えばリン酸塩処理はスラッジ等の産業廃棄物を多量に生じさせるので環境保全上問題がある)、ボルト等の浸リン(高強度ボルトのヘッダー加工後に皮膜成分のリンが残存すると熱処理時にリンが鋼中に進入し脆性破壊の起因となる)対策など、固体皮膜への要求は多岐に亘り急速に高まりつつあり、これらの要求に対して環境保全を考慮する一方、高度な潤滑性を有する固体皮膜が開発されつつある。この技術は被加工材の表面に水系の塑性加工潤滑剤を塗布し乾燥するだけの簡便な工程によって高度な潤滑性を有する皮膜を形成させるものである。
 特許文献1には(A)水溶性無機塩と(B)ワックスを水に溶解または分散させた組成物で、固形分重量比(B)/(A)が0.3~1.5の範囲内にあることを特徴とする金属材料塑性加工用水系潤滑皮膜処理剤とその皮膜形成方法が開示されている。
 特許文献2にはアルカリ金属ホウ酸塩(A)を含有する水系潤滑皮膜処理剤において、アルカリ金属ホウ酸塩(A)にホウ酸リチウムを含み、アルカリ金属ホウ酸塩(A)における全アルカリ金属に対するリチウムのモル比率が0.1~1.0であって、かつ、アルカリ金属ホウ酸塩(A)のホウ酸Bとアルカリ金属Mとのモル比率(B/M)が1.5~4.0であることを特徴とする金属材料塑性加工用水系潤滑皮膜処理剤とその皮膜形成方法が開示されている。この技術は皮膜が吸湿することによって発生する皮膜の結晶化を抑制することで加工性のみならず、高い耐食性を有する皮膜を形成することができるとされている。
 特許文献3にはA成分:無機系固体潤滑剤と、B成分:ワックスと、C成分:水溶性無機金属塩とを含有し、A成分とB成分の固形分質量比(A成分/B成分)が0.1~5であり、A成分、B成分、およびC成分の合計量に対するC成分の固形分質量比率(C成分/(A成分+B成分+C成分))が1~30%であることを特徴とする非リン系塑性加工用水溶性潤滑剤が開示されている。この技術はリンを含有しない潤滑剤であり、且つ化成処理皮膜と同等の耐食性が実現できるとされている。
 特許文献4には、水溶性無機塩(A)と、二硫化モリブデン、およびグラファイトから選ばれる1種以上の滑剤(B)と、ワックス(C)とを含有し、かつこれらを水に溶解または分散しており、(B)/(A)が固形分重量比で1.0~5.0、(C)/(A)が固形分重量比で0.1~1.0である水系潤滑皮膜処理剤とその皮膜形成方法が開示されている。この技術は従来の水系潤滑皮膜処理剤に二硫化モリブデンやグラファイトを配合することで、化成処理皮膜と同等レベルの高い加工性を実現できるとされている。
 特許文献5には、珪酸塩(A)と、ポリカルボン酸塩(B)と、水親和性ポリマー及び/又は水親和性有機ラメラ構造体(C)と、モリブデン酸塩及び/又はタングステン酸塩(D)とを含有し、前記各成分の質量比が所定の比率である皮膜形成剤が開示されている。
 特許文献1~5にも記載されるように水溶性無機塩は水系潤滑皮膜処理剤の固体皮膜における必須成分である。その理由は水溶性無機塩で構成される潤滑皮膜は充分な皮膜強度を有し、前述のように高面圧下でもダイスと被加工材の界面に介在して潤滑膜切れを起こしにくく金属同士の直接接触を回避することができるためである。よって水系潤滑皮膜処理剤では水溶性無機塩や水溶性樹脂から成る固体皮膜に摩擦係数を低減可能な適切な滑剤を組み合わせることで塑性加工時に良好な潤滑状態を維持することができる。
 水溶性成分で構成される水系潤滑皮膜の皮膜形成メカニズムについて説明する。水溶性成分の水溶性無機塩は潤滑剤処理液中で水に溶解した状態であって金属材料表面に潤滑剤を塗布して乾燥させると溶媒の水が蒸発して潤滑皮膜が形成される。その際に水溶性無機塩は金属材料表面で固形物として析出して固体皮膜を形成する。このように形成された固体皮膜は塑性加工に耐え得る皮膜強度を備えており、摩擦係数を低減させる適当な滑剤を配合させることで塑性加工時に良好な潤滑性を示す。
国際公開第02/012420号 特開2011-246684号公報 特開2013-209625号公報 国際公開第02/012419号 特開2002-363593号公報
 しかし、特許文献1~5の潤滑皮膜では上記の化成処理皮膜と比較して2ヶ月以上の長期防錆性が著しく劣っており、実用レベルまで高めることができていない。これは皮膜の主成分が水溶性成分であるため、大気中の水分を容易に吸収あるいは透過し、鋼材と水分の接触が容易であることが原因となっている。特許文献2では吸湿による皮膜の結晶化を抑制することで耐食性が向上しているが、吸湿そのものを抑制している訳ではなく、十分な耐食性が得られていない。また、特許文献3に記載されている水系潤滑皮膜は、恒温恒湿器を用いて発錆を促進したラボでの耐食性試験において、化成処理皮膜と同等以上の耐食性を示したと記載されている。しかし、実際に潤滑皮膜を使用する環境はホコリや粉塵、酸洗薬剤のミストが付着し得るような状態にあるのが普通であり、そのような過酷な環境においては化成処理皮膜よりも耐食性が劣っているのが実状である。このように、リンを含有していない水系潤滑皮膜において、化成処理皮膜と同等以上の防錆性を有するものは過去に存在しなかった。
 比較的高い耐食性が得られる水溶性無機塩としては、ケイ酸塩のアルカリ金属塩(以下、ケイ酸塩と記載する場合がある)とタングステン酸塩のアルカリ金属塩および/またはアンモニウム塩(以下、タングステン酸塩と記載する場合がある)が挙げられる。これら水溶性無機塩は特許文献1や特許文献4や特許文献5にも記載されている。しかし、それらも実用上の耐食性は、化成処理皮膜と比較すると大きく劣るものである。
 水溶性ケイ酸塩は水溶性無機塩の中では水分を透過しにくく、且つ素材との密着性が非常に高い性質がある。この性質のため、化成処理皮膜ほどではないが、比較的高い耐食性を発現することができる材料である。これは潤滑剤の溶媒である水が揮発する皮膜生成過程において水溶性ケイ酸塩が架橋し、ネットワーク構造をとるためである。しかし、このネットワーク構造であるが故に、水溶性ケイ酸塩の皮膜は潤滑皮膜としては脆すぎる。このため基材が加工された際には皮膜が割れて、十分に追従できない場合がある。加えて、ネットワーク構造により密着性が高すぎて、脱膜不良が起き、後工程での様々な不具合を引き起こす場合がある。例えば、後工程でメッキを行う場合では皮膜成分が混入してメッキ液を汚染するだけでなく皮膜成分が残存する部分ではメッキ不良を引き起こす。
 また、水溶性タングステン酸塩は皮膜を形成させた際に外気の水分を吸収しにくい。これは水溶性タングステン酸塩が皮膜を形成する際、粒子状の結晶を形成するためである。さらに水溶性タングステン酸塩は鋼材表面に自己修復機能を有する不動態膜を形成させる性質があり、皮膜成分として用いることで高耐食性の皮膜形成が期待できる。また、水溶性自体は高いため、水系の液で容易に脱膜することができる。しかし、水溶性タングステン酸塩は結晶質であるが故に素材との密着性が乏しい上、均一な皮膜を形成することができないため、期待通りの耐食性や加工性を得ることができない。例えば潤滑剤中に合成樹脂成分を加えることで皮膜の密着性、均一性を高めることができるが、それでも耐食性は化成処理皮膜と比較して著しく劣るものである。
 また、特許文献1~3に掲載された水溶性無機塩を含有した水系潤滑皮膜処理剤は、共通して化成処理皮膜と比べて加工性が劣っていた。特に表面積拡大率が数十倍以上となるような厳しい加工(以下、強加工と記載する場合がある)においては顕著であり、素材の変形不足、金型寿命の低下、焼付きの発生などが起こる。
 特許文献4に掲載された水系潤滑皮膜処理剤は、二硫化モリブデンやグラファイトを含有することで、強加工時も化成処理皮膜と同等以上の加工性を得ることができる。しかし、これらの成分を配合すると、潤滑液の色が黒くなり、装置やその周辺、作業者を著しく汚染する。また、二硫化モリブデンやグラファイトは沈降しやすく、時間が経つと処理槽の底で固まって再分散が困難になる場合があり、安定した操業が難しい。さらに、これら2成分は耐食性を大きく低減させる要因となっており、化成処理皮膜はおろか、特許文献1~3の潤滑皮膜と比較しても耐食性が劣るものである。
 特許文献5では、珪酸塩(A)を主成分として含有し、耐食剤(D)などが多すぎたりする皮膜処理材では、押出荷重が高い場合、焼付が発生する等して、潤滑性が劣るため安定した作業が困難となり、また、長期防錆性も十分ではない。
 このように水系潤滑皮膜は実用環境でも化成処理皮膜に匹敵するような、約2ヶ月以上の長期間にわたる高い耐食性と、強加工時の加工性を同時に兼ね備えた皮膜の形成ができなかった。また、水系潤滑皮膜処理剤中にケイ酸塩が含まれる場合、脱膜不良が問題となる。
 そこで、本発明は、伸線性、スパイク性、ボールしごき性、脱膜性等の加工性と、長期防錆性等の耐食性とを両立することができる潤滑皮膜を有する鋼線材を提供することを課題として掲げた。
 本発明者らは上記課題を解決するために鋭意研究を行ってきた結果、ケイ酸塩とタングステン酸塩をある特定の比率、すなわち水溶性タングステン酸塩/水溶性ケイ酸塩の質量比を所定比率とし、複合した潤滑皮膜を形成することにより、それら成分単体では決して成しえなかった高い耐食性と加工性および十分な密着性と脱膜性が得られることを見出し、本発明を完成するに至った。
 本発明は、前記課題を解決するために、以下のように構成したものである。
 本発明の鋼線材は、水溶性ケイ酸塩と水溶性タングステン酸塩を含み、水溶性タングステン酸塩/水溶性ケイ酸塩の質量比は0.7~10の範囲であり、リンを含まない潤滑皮膜を表面に有するところに要旨を有する。
 前記潤滑皮膜は、水溶性タングステン酸塩/水溶性ケイ酸塩の質量比が0.7~10の範囲となるよう水溶性ケイ酸塩と水溶性タングステン酸塩を配合した組成物を用いて形成されていることが好ましい。
 前記潤滑皮膜は樹脂を含み、樹脂/(水溶性ケイ酸塩+水溶性タングステン酸塩)の質量比は0.01~1.5であることが好ましい。
 前記樹脂はビニル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、フェノール樹脂、セルロース誘導体、ポリマレイン酸、及びポリエステル樹脂から選ばれる少なくとも1種以上であることが好ましい。
 前記潤滑皮膜は滑剤を含み、滑剤/(水溶性ケイ酸塩+水溶性タングステン酸塩)の質量比は0.01~1.5であることが好ましい。
 前記滑剤はワックス、ポリテトラフルオロエチレン、脂肪酸石鹸、脂肪酸金属石鹸、脂肪酸アマイド、二硫化モリブデン、二硫化タングステン、グラファイト、及びメラミンシアヌレートから選ばれる少なくとも1種以上であることが好ましい。
 前記潤滑皮膜の単位面積当たりの皮膜質量は1.0~20g/mであることが好ましい。
 本発明の鋼線材において、潤滑皮膜を上記のように構成しているため、伸線性、スパイク性、ボールしごき性、脱膜性等の加工性、長期防錆性等の耐食性に優れた鋼線材が得られる。また、それらの性能は全て化成処理皮膜を有した鋼線材と同等以上の水準である点が従来の水系潤滑皮膜と比べて大きく優れた点である。
図1は、ボールしごき性を評価する際の、焼付きの評価基準を示す。
 本発明は、水溶性ケイ酸塩と水溶性タングステン酸塩を含み、水溶性タングステン酸塩/水溶性ケイ酸塩の質量比が0.7~10の範囲であり、リンを含まない潤滑皮膜を表面に有することを特徴とする鋼線材に関する。
 本発明において、鋼線材に使用される鋼は、炭素鋼、合金鋼、特殊鋼等も含まれる。かかる鋼としては、炭素含有量が0.2質量%以下(0質量%を含まない)の軟鋼から0.2質量%超1.5質量%以下程度の炭素鋼、及び軟鋼もしくは炭素鋼の用途に応じてシリコン、マンガン、リン、硫黄、ニッケル、クロム、銅、アルミニウム、モリブデン、バナジウム、コバルト、チタン、ジルコン等から選ばれる少なくとも1種を含有する合金鋼又は特殊鋼等が挙げられる。また、本発明において、鋼線材とは一般的には鋼を熱間加工により線材に加工したものをいう。本発明の鋼線材には鋼線が含まれる。鋼線とは鋼線材を規定サイズ(線径や真円度等)に伸線加工したもの、鋼線材又は伸線加工した鋼線にメッキ処理を施したもの等、鋼線材をさらに加工処理したものをいう。
 本発明の鋼線材は、後述する潤滑皮膜を有することで耐食性と加工性に優れるものであれば、特に限定されないが、鋼線材の表面と潤滑皮膜との間にさらなる皮膜、すなわち下地皮膜が形成されていてもよい。これらの皮膜は、いずれも一層または二層以上の層であってもよい。
 前記潤滑皮膜及び下地皮膜は、リンを含まないものであり、前記皮膜形成に使用される潤滑皮膜処理剤にはリンを含む成分は含まれない。しかしながら、本発明において、操業過程等でリンを含む成分が鋼線材表面の皮膜に不可避的に混入されることを排除するものではない。すなわち、実際の操業では不可避的不純物としてリンがコンタミする場合があっても、リンが1質量%以下程度で含有されていれば、かかるリンにより鋼線材が脆性破壊される可能性は低く、浸リンは起こらないとみなすことができる。
 以下、本発明に係る鋼線材における潤滑皮膜の各成分、組成等から順に説明することとする。
 本発明の鋼線材は水溶性ケイ酸塩と水溶性タングステン酸塩を含み、水溶性タングステン酸塩/水溶性ケイ酸塩の質量比が0.7~10の範囲内にある潤滑皮膜を表面に有していなければならない。この範囲で含有することで水溶性ケイ酸塩や水溶性タングステン酸塩単独、あるいはその他の水溶性無機塩では成し得なかった高い耐食性、加工性と十分な密着性、脱膜性を有する潤滑皮膜を形成できる。
 例えば後述される水溶性ケイ酸塩と水溶性タングステン酸塩とを複合して潤滑皮膜とした場合、水溶性ケイ酸塩が形成するネットワーク構造の中に水溶性タングステン酸塩が取り込まれることとなる。上述の通り、水溶性タングステン酸塩の欠点は結晶質の皮膜を形成する点によるところが大きいが、水溶性ケイ酸塩のネットワーク構造に取り込まれることにより、水溶性タングステン酸塩が均一且つ微細に存在することができるようになる。これにより、水溶性ケイ酸塩の水分を透過しにくい性質と水溶性タングステン酸塩の自己修復機能を有する不動態膜が両立され、耐食性が著しく向上する。
 また、水溶性タングステン酸塩が水溶性ケイ酸塩に与える影響として加工性と脱膜性の改善が挙げられる。上述の通り、水溶性ケイ酸塩の加工性や脱膜性が劣る原因は水溶性ケイ酸塩の高分子化によって強固な連続皮膜を形成することによるものであるが、複合している水溶性タングステン酸塩が水溶性ケイ酸塩のネットワーク構造中に介在することで強固なネットワーク構造の形成を適度に阻害し、加工性や脱膜性を向上させることができる。
 上記性能の発現には水溶性ケイ酸塩量と水溶性タングステン酸塩量の比率が重要である。水溶性タングステン酸塩/水溶性ケイ酸塩の質量比は0.7以上であり、好ましくは0.9以上、より好ましくは1.1以上である。当該質量比は10以下であり、好ましくは6.0以下、より好ましくは3.0以下である。水溶性タングステン酸塩/水溶性ケイ酸塩の質量比が0.7を下回ると十分な耐食性、加工性が得られない他、脱膜性が劣る皮膜となる。これは相対的にタングステンの量が減ることにより、不動態膜が十分に形成されないこと、ケイ酸塩量が相対的に増えることで強固なネットワーク構造を形成してしまうことに起因する。水溶性タングステン酸塩/水溶性ケイ酸塩の質量比が10を上回ると十分な耐食性、加工性が得られない皮膜となる。これは、相対的に水溶性ケイ酸塩量が少なくなることで水分が透過しやすくなること、タングステンの結晶が析出し、皮膜の密着性、均一性が低下することに起因する。
 このように水溶性ケイ酸塩と水溶性タングステン酸塩を適切な割合で複合することで、その相乗効果により従来では発現できなかった高い加工性と、実用環境における高い耐食性を実現すると同時に、十分な脱膜性を有する前記潤滑皮膜を形成することができる。前記潤滑皮膜を形成する際には、水溶性ケイ酸塩と水溶性タングステン酸塩を含む潤滑皮膜処理剤を調製し、鋼線材の表面に塗布すればよい。なお、潤滑皮膜処理剤を塗布した後(すなわち、潤滑皮膜処理後)の、潤滑皮膜における水溶性タングステン酸塩/水溶性ケイ酸塩の質量比率は、潤滑皮膜処理剤における水溶性タングステン酸塩/水溶性ケイ酸塩の質量比率と同じである。
 本発明において、前記潤滑皮膜は、水溶性タングステン酸塩/水溶性ケイ酸塩の質量比が0.7~10の範囲となるよう水溶性ケイ酸塩と水溶性タングステン酸塩を配合した組成物を用いて形成されていてもよい。
 前記潤滑皮膜において、タングステン/ケイ素の質量比は1.3以上であることが好ましく、より好ましくは1.8以上、さらに好ましくは2.0以上である。当該質量比は18以下であることが好ましく、より好ましくは10以下、さらに好ましくは5.4以下である。
 タングステン/ケイ素の質量比が1.3を下回ると十分な耐食性、加工性が得られない他、脱膜性が劣る皮膜となる。これは相対的に前記タングステン酸塩の量が減ることにより、不動態膜が十分に形成されないこと、前記ケイ酸塩量が相対的に増えることで強固なネットワーク構造を形成してしまうことに起因する。タングステン/ケイ素の質量比が18を上回ると十分な耐食性、加工性が得られない皮膜となる。これは、相対的にケイ酸塩量が少なくなることで水分が透過しやすくなること、前記タングステン酸塩の結晶が析出し、皮膜の密着性、均一性が低下することに起因する。なお、本発明において、タングステン/ケイ素の質量比は、皮膜中の水溶性タングステン酸塩由来のタングステン元素と、水溶性ケイ酸塩由来のケイ素元素との比率に基づくものであり、例えば誘導結合プラズマまたは蛍光X線分析を用いて算出することができる。
 前記潤滑皮膜処理剤で用いられる前記水溶性ケイ酸塩の種類は例えばケイ酸リチウム、ケイ酸ナトリウム、ケイ酸カリウムが挙げられる。これらは、単独で用いてもよいし、二種以上で用いてもよい。
 前記潤滑皮膜処理剤に用いられる前記水溶性タングステン酸塩の種類は、例えばタングステン酸リチウム、タングステン酸ナトリウム、タングステン酸カリウム、タングステン酸アンモニウムが挙げられる。これらは、単独で用いてもよいし、二種以上で用いてもよい。
 次に樹脂について説明する。樹脂はバインダー作用、基材と皮膜の密着性向上、増粘作用によるレベリング性の付与、分散成分の安定化を目的として皮膜中に配合される。そのような機能および性質を有する樹脂はビニル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、フェノール樹脂、セルロース誘導体、ポリマレイン酸、ポリエステル樹脂が挙げられる。これらは単独で用いてもよいし、2種類以上組み合わせてもよい。
 本発明において、前記潤滑皮膜は樹脂を含み、樹脂/(水溶性ケイ酸塩+水溶性タングステン酸塩)の質量比は0.01以上であることが好ましく、より好ましくは0.05以上である。また、前記質量比は1.5以下であることが好ましく、より好ましくは1.0以下である。前記質量比が0.01未満だと上記の作用が十分に発揮されず、1.5を超える場合は水溶性ケイ酸塩と水溶性タングステン酸塩の量が相対的に少なくなってしまい、十分な加工性、耐食性が実現できなくなる。
 次に、滑剤について説明する。滑剤は、それ自体にすべり性があり、摩擦力を低減させる機能を有する。一般に塑性加工時に摩擦力が増大すると加工エネルギーの増大や発熱、焼付き等が発生するが、滑剤を本発明で使用される潤滑皮膜処理剤に含ませると潤滑皮膜中で固体の形で存在して摩擦力の増大が抑制されることになる。そのような機能および性質を有する滑剤は、ワックス、ポリテトラフルオロエチレン、脂肪酸石鹸、脂肪酸金属石鹸、脂肪酸アマイド、二硫化モリブデン、二硫化タングステン、グラファイト、メラミンシアヌレートが挙げられる。これらは単独で用いてもよいし、2種類以上組み合わせてもよい。
 前記ワックスは、具体例としてポリエチレンワックス、パラフィンワックス、マイクロクリスタリンワックス、ポリプロピレンワックス、カルナバワックスが挙げられる。脂肪酸石鹸は具体例としてミリスチン酸ナトリウム、ミリスチン酸カリウム、パルミチン酸ナトリウム、パルミチン酸カリウム、ステアリン酸ナトリウム、ステアリン酸カリウムが挙げられる。脂肪酸金属石鹸は具体例としてステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸リチウムが挙げられる。脂肪酸アマイドは例えば脂肪酸を2つ有するアミド化合物であり、具体例としてエチレンビスラウリン酸アマイド、エチレンビスステアリン酸アマイド、エチレンビスベヘン酸アマイド、N,N’-ジステアリルアジピン酸アマイド、エチレンビスオレイン酸アマイド、エチレンビスエルカ酸アマイド、ヘキサメチレンビスオレイン酸アマイド、N,N’-ジオレイルアジピン酸アマイドが挙げられる。
 前記潤滑皮膜に滑剤を配合する場合、滑剤/(水溶性ケイ酸塩+水溶性タングステン酸塩)の質量比は0.01以上であることが好ましく、より好ましくは0.05以上であり、当該質量比は1.5以下であることが好ましく、より好ましくは1.0以下である。ここで滑剤/(水溶性ケイ酸塩+水溶性タングステン酸塩)の質量比が0.01未満では、滑剤が少なすぎるために、上記の性能を発揮できない。当該質量比が1.5を超える場合は水溶性ケイ酸塩と水溶性タングステン酸塩の量が相対的に少なくなってしまい、本発明の特徴である高い耐食性と加工性が発現できなくなる。
 本発明の鋼線材の潤滑皮膜は水溶性ケイ酸塩、水溶性タングステン酸塩、樹脂、滑剤以外にも、基材に潤滑剤処理液を塗布した際に均一な塗布状態を確保するためにレベリング性とチクソ性を付与する目的で粘度調整剤を配合することができる。なお、これらの配合量は全固形分質量に対して0.1~30質量%が好ましい。そのような粘度調整剤としては具体例としてモンモリロナイト、ソーコナイト、バイデライト、ヘクトライト、ノントロナイト、サポナイト、鉄サポナイト及びスチブンサイト等のスメクタイト系粘土鉱物や微粉シリカ、ベントナイト、カオリン等の無機系の増粘剤が挙げられる。
 前記潤滑皮膜は、密着性や加工性を向上させるため、硫酸塩、ホウ酸塩等の無機塩、有機塩等の水溶性塩を含んでいてもよい。硫酸塩としては、硫酸ナトリウム、硫酸カリウム等が挙げられる。ホウ酸塩としては、メタホウ酸ナトリウム、メタホウ酸カリウム、メタホウ酸アンモニウム等が挙げられる。
 有機塩としては、蟻酸、酢酸、酪酸、シュウ酸、コハク酸、乳酸、アスコルビン酸、酒石酸、クエン酸、リンゴ酸、マロン酸、マレイン酸、フタル酸等とアルカリ金属、アルカリ土類金属等との塩が挙げられる。
 本発明の鋼線材の潤滑皮膜は加工前後における高い耐食性を付与することができるが、さらに耐食性を向上させる目的で他の水溶性防錆剤やインヒビターを配合しても良い。具体例としてオレイン酸、ダイマー酸、酒石酸、クエン酸等の各種有機酸、EDTA、NTA、HEDTA、DTPA等の各種キレート剤、トリエタノールアミンなどのアルカノールアミンの混合成分やp-t-ブチル安息香酸のアミン塩類等、カルボン酸アミン塩、2塩基酸アミン塩、アルケニルコハク酸及びその水溶性塩とアミノテトラゾール及びその水溶性塩の併用等、公知のものを用いることができる。なお、これらは単独で用いてもよいし、2種類以上組み合わせてもよい。これらの配合量は全固形分質量に対して0.1~30質量%が好ましい。
 本発明において、潤滑皮膜処理剤は、前記水溶性ケイ酸塩、前記水溶性タングステン酸塩を必須成分として含み、必要に応じて前記樹脂、前記滑剤、前記水溶性塩を含むものである。
 前記水溶性ケイ酸塩は、潤滑皮膜処理剤100質量%中、5質量%超であることが好ましく、より好ましくは10質量%以上、さらに好ましくは15質量%以上であり、58質量%以下であることが好ましく、より好ましくは52質量%以下、さらに好ましくは45質量%以下である。
 前記水溶性タングステン酸塩は、潤滑皮膜処理剤100質量%中、10質量%以上であることが好ましく、より好ましくは15質量%以上、さらに好ましくは20質量%以上であり、91質量%以下であることが好ましく、より好ましくは85質量%以下、さらに好ましくは80質量%以下である。
 前記水溶性ケイ酸塩の量が5質量%以下、前記水溶性タングステン酸塩の量が91質量%超である場合、十分な長期防錆性が得られない他、伸線性、ボールしごき性が劣る皮膜となる。これは、相対的に水溶性ケイ酸塩量が少なくなることで水分が透過しやすくなること、タングステンの結晶が析出し、皮膜の密着性、均一性が低下することに起因する。前記水溶性ケイ酸塩の量が58質量%超、前記水溶性タングステン酸塩の量が10質量%未満であると十分な耐食性、加工性が得られない皮膜となる。これは相対的にタングステンの量が減ることにより、不動態膜が十分に形成されないこと、水溶性ケイ酸塩量が相対的に増えることで強固なネットワーク構造を形成してしまうことに起因する。
 本発明において、前記潤滑皮膜は乾式潤滑剤用の下地潤滑皮膜として形成されてもよい。乾式潤滑剤の下地皮膜として用いることにより、潤滑性、耐焼付き性、耐食性を底上げすることができる。乾式潤滑剤の種類は特に限定されないが、例えば高級脂肪酸石鹸、ボラックス、石灰、二硫化モリブデン等を主成分とするような一般的な潤滑パウダーや伸線パウダーが使用できる。
 本発明において、潤滑皮膜を形成させるための皮膜処理剤における液体媒体(溶媒、分散媒体)は水である。尚、乾燥工程での潤滑剤の乾燥時間短縮化のために水よりも低沸点のアルコールを配合してもよい。
 前記潤滑皮膜処理剤には液の安定性を高めるため、水溶性の強アルカリ成分を含んでいても良い。具体例として、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが挙げられる。これらは単独で用いてもよいし、2種類以上組み合わせてもよい。これらの配合量は全固形分質量に対して0.01~10質量%が好ましい。
 本発明で使用される潤滑皮膜処理剤は、液体媒体である水に水溶性ケイ酸塩と水溶性タングステン酸塩、さらに樹脂、滑剤、必要であれば粘度調整剤等を添加して混合することにより製造される。ここで用いられる水溶性ケイ酸塩と水溶性タングステン酸塩は水溶性であるが、樹脂や滑剤、粘度調整剤等には水に不溶性もしくは難溶性のものがあり、それらを潤滑皮膜処理剤中で分散させる必要がある。分散方法は必要であれば水に分散剤と成り得る界面活性剤を添加して十分に水に馴染ませた後に分散状態が均一になるまで攪拌を継続する方法で行われる。攪拌方法はプロペラ攪拌、ホモジナイザーでの攪拌等の一般的な方法で行われる。なお、安定した分散状態を得るために公知の界面活性剤を用いることができる。
 次に、本発明に係る鋼線材の製造方法を説明する。本発明方法は、鋼線材の清浄化工程、皮膜処理剤の製造工程及び乾燥工程を含む。以下、各工程を説明することとする。
・清浄化工程(前処理工程)
 鋼線材に潤滑皮膜を形成させる前に、ショットブラスト、サンドブラスト、ウェットブラスト、ピーリング、アルカリ脱脂および酸洗浄よりなる群から選ばれる少なくとも一種類の清浄化処理を行うことが好ましい。ここでの清浄化とは、焼鈍等により成長した酸化スケールや各種の汚れ(油など)を除去することを目的とするものである。
・潤滑皮膜製造工程
 本発明において、潤滑皮膜を鋼線材に製造する工程は、特に限定されるものではないが、浸漬法、フローコート法、スプレー法などの塗布を用いることができる。塗布は表面が充分に本発明の潤滑皮膜処理剤に覆われればよく、塗布する時間にも特に制限は無い。ここで、この際に乾燥性を高めるために鋼線材を60~80℃に加温して潤滑皮膜処理剤と接触させてもよい。また、40~70℃に加温した潤滑皮膜処理剤を接触させてもよい。これらにより、乾燥性が大幅に向上して乾燥が常温で可能になる場合もあり、熱エネルギーのロスを少なくすることもできる。
・乾燥工程
 次に、前記潤滑皮膜処理剤を乾燥する必要がある。乾燥は常温放置でもかまわないが、60~150℃で1~30分行ってもよい。
 ここで、鋼線材に形成される潤滑皮膜の皮膜質量は、その後の加工の程度により適宜コントロールされるが、皮膜質量は1.0g/m以上であることが好ましく、より好ましくは2.0g/m以上であり、20g/m以下であることが好ましく、より好ましくは15g/m以下である。この皮膜質量が少ない場合は加工性が不充分となる。また、皮膜質量が20g/mを超えると加工性は問題ないが、ダイスへのカス詰まり等が生じ好ましくない。なお、皮膜質量は処理前後の鋼線材の質量差および表面積より計算することができる。前述の皮膜質量範囲になるようにコントロールするためには潤滑皮膜処理剤の固形分質量(濃度)を適宜調節する。実際には、高濃度の潤滑剤を水で希釈し、その処理液にて使用する場合が多い。希釈調整する水は、特に限定されないが、例えば純水、脱イオン水、水道水、地下水、工業用水等が使用できる。
・脱膜方法
 本発明において、潤滑皮膜処理剤により形成された前記潤滑皮膜は水系のアルカリ洗浄剤に浸漬するかスプレー洗浄することによって脱膜可能である。アルカリ洗浄剤は水に水酸化ナトリウム、水酸化カリウム等の一般的なアルカリ成分を溶解させた液であり、これに前記潤滑皮膜を接触させると前記潤滑皮膜が洗浄液中に溶解するので容易に脱膜することができる。また、加工後の熱処理によって脱落しやすい皮膜とすることができる。よってアルカリ洗浄や熱処理により、脱膜不良による後工程での汚染やメッキ不良を未然に防ぐことができる。
 以下、鋼線材を対象とした場合について、実施例を比較例と共に挙げることによって、本発明のその効果とともにさらに具体的な説明をする。なお、本発明はこれらの実施例によって制限されるものではない。以下においては、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味する。
(1-1)潤滑皮膜処理剤の調製
 以下に示す各成分を表1に示す組み合わせ及び割合にて実施例1~18及び比較例1~12の潤滑皮膜処理剤を調製した。なお、比較例13はリン酸塩/石けん処理である。
<水溶性ケイ酸塩>
(A-1)メタケイ酸ナトリウム
(A-2)3号ケイ酸ナトリウム(NaO・nSiO n=3)
(A-3)ケイ酸リチウム(LiO・nSiO n=3.5)
<水溶性タングステン酸塩>
(B―1)タングステン酸アンモニウム
(B-2)タングステン酸ナトリウム
(B-3)タングステン酸リチウム
<樹脂>
(C-1)ポリビニルアルコール(平均分子量約50,000)
(C-2)イソブチレン・無水マレイン酸共重合体のナトリウム中和塩(平均分子量約165,000)
<滑剤>
(D-1)アニオン性ポリエチレンワックス(平均粒子径5μm)
(D-2)エチレンビスステアリン酸アマイド
<水溶性塩>
(E-1)メタホウ酸ナトリウム
(E-2)酒石酸ナトリウム
(E-3)硫酸ナトリウム
(E-4)ピロリン酸ナトリウム
<下地皮膜>
(F-1)ジルコニウム化成処理剤(パルシード(登録商標)1500、日本パーカライジング(株)製)
Figure JPOXMLDOC01-appb-T000001
(1-2)潤滑皮膜処理
 各潤滑皮膜処理はφ3.2mmの試料鋼線材(鋼種:S45C)表面を対象に以下の工程で実施した。なお、潤滑皮膜処理を施した後の、試料鋼線材の潤滑皮膜における水溶性タングステン酸塩/水溶性ケイ酸塩の質量比率は、表1に記載の潤滑皮膜処理剤における水溶性タングステン酸塩/水溶性ケイ酸塩の質量比率と同じである。
<実施例1~15及び比較例2~12の前処理及び潤滑皮膜処理>
(a)脱脂:市販の脱脂剤(ファインクリーナー(登録商標)E6400、日本パーカライジング(株)製)濃度20g/L、温度60℃、浸漬10分
(b)水洗:水道水、常温、浸漬20秒
(c)酸洗:17.5%塩酸、常温、浸漬20分
(d)水洗:水道水、常温、浸漬20秒
(e)中和:市販の中和剤(プレパレン(登録商標)27、日本パーカライジング(株)製)
(f)潤滑皮膜処理:(1-1)で調製した潤滑皮膜処理剤 温度60℃、浸漬1分
(g)乾燥:100℃、10分
(h)潤滑皮膜量は処理剤濃度にて適宜調整
<実施例16~18の前処理及び潤滑皮膜処理>
(a)脱脂:市販の脱脂剤(ファインクリーナー(登録商標)6400、日本パーカライジング(株)製)濃度20g/L、温度60℃、浸漬10分
(b)水洗:水道水、常温、浸漬30秒
(c)酸洗:塩酸、濃度17.5%、常温、浸漬10分
(d)水洗:水道水、常温、浸漬30秒
(e)ジルコニウム処理:市販のジルコニウム化成処理剤(パルシード(登録商標)1500、日本パーカライジング(株)製)濃度50g/L、温度45℃、浸漬2分
(f)水洗:水道水、常温、浸漬30秒
(g)潤滑皮膜処理:(1-1)で製造した潤滑皮膜処理剤 温度60℃、浸漬1分
(h)乾燥:100℃、10分
(i)下地皮膜量:ジルコニウム下地50mg/m、潤滑皮膜量は処理剤濃度にて適宜調整
<比較例1の処理>
(a)脱脂:市販の脱脂剤(ファインクリーナー(登録商標)6400、日本パーカライジング(株)製)濃度20g/L、温度60℃、浸漬10分
(b)水洗:水道水、常温、浸漬30秒
(c)酸洗:塩酸、濃度17.5%、常温、浸漬10分
(d)水洗:水道水、常温、浸漬30秒
(e)純水洗:脱イオン水、常温、浸漬30℃
(f)乾燥:100℃ 10分
<比較例13(リン酸塩/石けん処理)の前処理及び皮膜処理>
(a)脱脂:市販の脱脂剤(ファインクリーナー(登録商標)6400、日本パーカライジング(株)製)濃度20g/L、温度60℃、浸漬10分
(b)水洗:水道水、常温、浸漬30秒
(c)酸洗:塩酸、濃度17.5%、常温、浸漬10分
(d)水洗:水道水、常温、浸漬30秒
(e)化成処理:市販のリン酸亜鉛化成処理剤(パルボンド(登録商標)3696X、日本パーカライジング(株)製)濃度75g/L、温度80℃、浸漬10分
(f)水洗:水道水、常温、浸漬30秒
(g)石けん処理:市販の反応石けん潤滑剤(パルーブ(登録商標)235、日本パーカライジング(株)製)濃度70g/L、温度85℃、浸漬3分
(h)乾燥:100℃、10分
(i)皮膜量:10g/m
(1-3)評価試験
(1-3-1)加工性(伸線性)試験
 φ3.2mm×20mの試料線材をφ2.76のダイスを通して引抜くことで伸線加工を行った。乾式潤滑剤として松浦工業(株)のミサイルC40を使用した。材料が引抜かれる直前のダイスボックス内に乾式潤滑剤を入れ、材料に自然付着するようにした。伸線後の試験材の焼付きと潤滑膜の残存量から評価を行った。なお、比較例13のリン酸塩/石けん皮膜の伸線は通常の使用方法に合せ乾式潤滑剤は使用しない。
評価基準
◎:焼付きがなく、金属光沢が認められない。全体的に皮膜が多く残存している。
○:焼付きはなく、金属光沢も認められないが◎より残存皮膜がやや少ない。
△:焼付きはないが、皮膜残存量がやや少なく、一部で金属光沢が認められる。
▲:焼付きはないが、多数の部位で金属光沢が認められる。
×:焼付きが発生した。
(1-3-2)耐食性(長期防錆性)試験
 上記伸線試験を行った線材を夏場に開放雰囲気で屋内に2週間または2ヶ月間曝露して錆の発生具合を観察した。発錆面積が大きいほど耐食性に劣ると判断した。
評価基準
◎:リン酸塩/石けん皮膜より著しく優れる(錆面積3%以下)
○:リン酸塩/石けん皮膜より優れる(錆面積3%超~10%以下)
△:リン酸塩/石けん皮膜と同等(錆面積10%超~20%以下)
▲:リン酸塩/石けん皮膜より劣る(錆面積20%超~30%以下)
×:リン酸塩/石けん皮膜より著しく劣る(錆面積30%超)
 試験結果を表2に示す。実施例はどれも長期に亘って錆が生じにくく耐食性が良好であり、また、潤滑皮膜が多く残っており、加工性が良好な結果となった。また、下地処理としてジルコニウム化成処理を行うことで、さらに高い耐食性を示した。比較例1は実施例で使用される潤滑皮膜を形成していない例であるが、伸線時に焼付きが発生し、2週間及び2ヶ月のいずれでも錆が頻度高く生じ、実用レベルとして不適合であった。比較例2~9は水溶性ケイ酸塩と水溶性タングステン酸塩の比率を本発明の範囲外に設定したものであるが、伸線後の皮膜残存量が少ないため加工性に劣り、耐食性も劣っていた。比較例10~12は水溶性無機塩としてケイ酸塩、タングステン酸塩以外の成分を含有させたものであるが、伸線後の皮膜残存量が少ないため加工性に劣り、耐食性も劣っていた。比較例13のリン酸塩皮膜に反応石けん処理を行ったものは比較的優れた性能を示すもののリンを含むため、潤滑皮膜を表面に有するまま焼入れ焼戻しなどの熱処理を行う際に浸リンを起こし鋼線材が脆弱となる虞があるため本発明の目的外である。同様に比較例9および10もリンを含むため本発明の範囲外である。
Figure JPOXMLDOC01-appb-T000002
 鋼線を対象とした、実施例を比較例と共に挙げることによって、本発明のその効果と共にさらに具体的に説明する。なお、本発明はこれらの実施例によって制限されるものではない。以下においては、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味する。
(2-1)潤滑皮膜処理剤の調製
 以下に示す各成分を表3に示す組み合わせ及び割合にて実施例19~38および比較例14~25の潤滑皮膜処理剤を調製した。なお、比較例26はリン酸塩/石けん処理である。
<水溶性ケイ酸塩>
(A-1)メタケイ酸ナトリウム
(A-2)3号ケイ酸ナトリウム(NaO・nSiO n=3)
(A-3)ケイ酸リチウム(LiO・nSiO n=3.5)
<水溶性タングステン酸塩>
(B―1)タングステン酸アンモニウム
(B-2)タングステン酸ナトリウム
(B-3)タングステン酸リチウム
<樹脂>
(C-1)ポリビニルアルコール(平均分子量約50,000)
(C-2)イソブチレン・無水マレイン酸共重合体のナトリウム中和塩(平均分子量約165,000)
(C-3)カルボキシメチルセルロースナトリウム(平均分子量約30,000)
(C-4)水系ノニオン性ウレタン樹脂エマルジョン
<滑剤>
(D-1)アニオン性ポリエチレンワックス(平均粒子径5μm)
(D-2)エチレンビスステアリン酸アマイド
(D-3)ステアリン酸カルシウム
(D-4)ポリテトラフルオロエチレンディスパージョン(平均粒子径0.2μm)
<水溶性塩>
(E-1)メタホウ酸ナトリウム
(E-2)酒石酸ナトリウム
(E-3)硫酸ナトリウム
(E-4)ピロリン酸ナトリウム
<下地皮膜>
(F-1)ジルコニウム化成処理剤(パルシード(登録商標)1500、日本パーカライジング(株)製)
Figure JPOXMLDOC01-appb-T000003
(2-2)潤滑皮膜処理
 鋼線の加工対象とされるボルト製造工程を想定した評価のため各種試験片に以下の潤滑皮膜処理を行った。なお、潤滑皮膜処理を施した後の、試験片の潤滑皮膜における水溶性タングステン酸塩/水溶性ケイ酸塩の質量比率は、表3に記載の潤滑皮膜処理剤における水溶性タングステン酸塩/水溶性ケイ酸塩の質量比率と同じである。
<実施例19~35及び比較例14~25の前処理及び潤滑皮膜処理>
(a)脱脂:市販の脱脂剤(ファインクリーナー(登録商標)E6400、日本パーカライジング(株)製)濃度20g/L、温度60℃、浸漬10分
(b)水洗:水道水、常温、浸漬20秒
(c)酸洗:17.5%塩酸、常温、浸漬20分
(d)水洗:水道水、常温、浸漬20秒
(e)中和:市販の中和剤(プレパレン(登録商標)27、日本パーカライジング(株)製)
(f)潤滑皮膜処理:(2-1)で製造した潤滑皮膜処理剤 温度60℃、浸漬1分
(g)乾燥:100℃、10分
(h)潤滑皮膜量は処理剤濃度にて適宜調整
<実施例36~38の前処理及び潤滑皮膜処理>
(a)脱脂:市販の脱脂剤(ファインクリーナー(登録商標)6400、日本パーカライジング(株)製)濃度20g/L、温度60℃、浸漬10分
(b)水洗:水道水、常温、浸漬30秒
(c)酸洗:塩酸、濃度17.5%、常温、浸漬10分
(d)水洗:水道水、常温、浸漬30秒
(e)ジルコニウム処理:市販のジルコニウム化成処理剤(パルシード(登録商標)1500、日本パーカライジング(株)製)濃度50g/L、温度45℃、浸漬2分
(f)水洗:水道水、常温、浸漬30秒
(g)潤滑皮膜処理:(2-1)で製造した潤滑皮膜処理剤 温度60℃、浸漬1分
(h)乾燥:100℃、10分
(i)下地皮膜量:ジルコニウム下地50mg/m、潤滑皮膜量は処理剤濃度にて適宜調整
<比較例26(リン酸塩/石けん処理)の前処理及び皮膜処理>
(a)脱脂:市販の脱脂剤(ファインクリーナー(登録商標)6400、日本パーカライジング(株)製)濃度20g/L、温度60℃、浸漬10分
(b)水洗:水道水、常温、浸漬30秒
(c)酸洗:塩酸、濃度17.5%、常温、浸漬10分
(d)水洗:水道水、常温、浸漬30秒
(e)化成処理:市販のリン酸亜鉛化成処理剤(パルボンド(登録商標)3696X、日本パーカライジング(株)製)濃度75g/L、温度80℃、浸漬7分
(f)水洗:水道水、常温、浸漬30秒
(g)石けん処理:市販の反応石けん潤滑剤(パルーブ(登録商標)235、日本パーカライジング(株)製)濃度70g/L、温度85℃、浸漬3分
(h)乾燥:100℃、10分
(i)皮膜量:10g/m
(2-3)評価試験
(2-3-1)加工性(スパイク性)試験
 鋼線をボルトに加工する際の軸絞り加工を想定した試験としてスパイク試験を行った。
スパイク試験は特開平5-7969号の記載に準じて行った。試験後のスパイク高さと成形荷重にて潤滑性を評価した。スパイク高さが高い程、また、成形荷重が低いほど潤滑性に優れる。なお、上記文献によるとスパイク試験における面積拡大率は約10倍とされる。加工時の荷重とスパイク高さを測定することで皮膜の潤滑性を評価した。
評価用試験片:S45C球状化焼鈍材 25mmφ×30mm
評価基準
スパイク性能:スパイク高さ(mm)/加工荷重(kNf)×100
値が大きいほどスパイク性は良好である。
◎:リン酸塩/石けん皮膜より著しく優れる(0.96以上)
○:リン酸塩/石けん皮膜より優れる(0.94以上0.96未満)
△:リン酸塩/石けん皮膜と同等(0.92以上0.94未満)
▲:リン酸塩/石けん皮膜より劣る(0.90以上0.92未満)
×:リン酸塩/石けん皮膜より著しく劣る(0.90未満)
(2-3-2)加工性(据えこみ-ボールしごき性)試験
 鋼線をフランジボルトなどに加工する際のボルト頭部の成形加工を想定した試験として据えこみ-ボールしごき試験を行った。据えこみ-ボールしごき試験は特開2013-215773号の記載に準じて行った。据えこみ-ボールしごき試験における面積拡大率は最大で150倍以上とされ、上記のスパイク試験と比較すると面積拡大率が非常に大きい。そのため、例えばフランジ付き六角ボルトの頭部を形成するような高い加工性が求められる加工を再現できる試験である。しごき加工面に入る焼付きの量を評価することで、皮膜の耐焼付性能を評価した。
評価用試験片:S10C球状化焼鈍材 14mmφ×32mm
ベアリングボール:10mmφ SUJ2
評価基準(図1に示す焼付き状態を基準として◎~×を評価した)
しごき面全体の面積に対して、どれだけの面積が焼きついたかを評価した。
◎:リン酸塩/石けん皮膜より著しく優れる
○:リン酸塩/石けん皮膜より優れる
△:リン酸塩/石けん皮膜と同等
▲:リン酸塩/石けん皮膜より劣る
×:リン酸塩/石けん皮膜より著しく劣る
(2-3-3)脱膜性試験
 脱膜性試験は円柱状試験片を、上下とも平面の金型を使用し、圧縮率50%で据えこみ加工を行い、以下のアルカリ洗浄剤に浸漬して脱膜処理前後の皮膜重量を測定することにより皮膜残存率を算出した。
評価用試験片:S45C球状化焼鈍材 25mmφ×30mm
アルカリ洗浄剤:2%NaOH水溶液
脱膜条件:液温60℃、浸漬時間2分
処理方法:
脱膜処理前の皮膜重量測定→脱膜処理→水洗→乾燥→脱膜処理後の皮膜重量測定
皮膜残存率(%)=(脱膜処理後の皮膜重量/脱膜処理前の皮膜重量)×100
評価基準:
皮膜残存率が低いほど脱膜性良好
◎:皮膜残存率が0%
○:皮膜残存率が0%超~8%未満
△:皮膜残存率が8%以上~16%未満
▲:皮膜残存率が16%以上~25%未満
×:皮膜残存率が25%以上
(2-3-4)耐食性(長期防錆性)評価
 上記皮膜処理を行ったテストピースを夏場に開放雰囲気で屋内に2週間または2ヶ月間曝露して錆の発生具合を観察した。発錆面積が大きいほど耐食性に劣ると判断した。
テストピース: SPCC-SD 75mm×35mm×0.8mm
評価基準:
◎:リン酸塩/石けん皮膜より著しく優れる(錆面積3%以下)
○:リン酸塩/石けん皮膜より優れる(錆面積3%超~10%以下)
△:リン酸塩/石けん皮膜と同等(錆面積10%超~20%以下)
▲:リン酸塩/石けん皮膜より劣る(錆面積20%超~30%以下)
×:リン酸塩/石けん皮膜より著しく劣る(錆面積30%超)
 試験結果を表4に示す。表4から明らかなように実施例は加工性(スパイク性、ボールしごき性、脱膜性)、耐食性(長期防錆性)が良好であった。また、下地処理としてジルコニウム化成処理を行うことで、さらに高い耐食性を示した。比較例14~21は水溶性ケイ酸塩と水溶性タングステン酸塩の比率を本発明の範囲外に設定したものであるが、ボールしごき性と耐食性の結果が劣る傾向があった。比較例22~25は水溶性無機塩として水溶性ケイ酸塩、水溶性タングステン酸塩以外の成分を含有させたものであるが、ボールしごき性と耐食性の結果が劣る傾向があった。比較例26のリン酸塩皮膜に反応石けん処理を行ったものは比較的優れた性能を示すもののリンを含むため、潤滑皮膜を表面に有するまま焼入れ焼戻しなどの熱処理を行う際に浸リンを起こし鋼線が脆弱となる虞があるため本発明の範囲外である。同様に比較例19および22もリンを含むため本発明の範囲外である。
 さらに、潤滑皮膜が水溶性ケイ酸塩を含んでいても、水溶性タングステン酸塩を含まない場合には、脱膜性が十分ではなかった。
Figure JPOXMLDOC01-appb-T000004
 以上の説明から明らかなように本発明の鋼線材は、リンを含まないことから熱処理時の浸リン性がなく、さらに従来のリン酸塩と石けん処理材と同等以上の高い加工性と耐食性を両立することができる。洗浄剤による加工後の潤滑皮膜の脱膜性も良好であることからボルトなどへの加工後にめっきなどの後工程を行う際にそれらの工程効率向上にも貢献する。したがって産業上の利用価値が極めて大きい。
 本発明は、以下の態様を含む。
態様1:
 水溶性ケイ酸塩と水溶性タングステン酸塩を含み、水溶性タングステン酸塩/水溶性ケイ酸塩の質量比が0.7~10の範囲であり、リンを含まない潤滑皮膜を表面に有することを特徴とする鋼線材。
 
態様2:
 リンを含まない潤滑皮膜を有する鋼線材であって、
 水溶性タングステン酸塩/水溶性ケイ酸塩の質量比が0.7~10の範囲となるよう水溶性ケイ酸塩と水溶性タングステン酸塩を配合した組成物を用いて、前記潤滑皮膜が形成されていることを特徴とする鋼線材。
 
態様3:
 前記潤滑皮膜が樹脂を含み、樹脂/(水溶性ケイ酸塩+水溶性タングステン酸塩)の質量比が0.01~1.5である態様1または2に記載の鋼線材。
 
態様4:
 前記樹脂がビニル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、フェノール樹脂、セルロース誘導体、ポリマレイン酸、及びポリエステル樹脂から選ばれる少なくとも1種以上である態様3に記載の鋼線材。
 
態様5:
 前記潤滑皮膜が滑剤を含み、滑剤/(水溶性ケイ酸塩+水溶性タングステン酸塩)の質量比が0.01~1.5である態様1~4のいずれかに記載の鋼線材。

態様6:
 前記滑剤がワックス、ポリテトラフルオロエチレン、脂肪酸石鹸、脂肪酸金属石鹸、脂肪酸アマイド、二硫化モリブデン、二硫化タングステン、グラファイト、及びメラミンシアヌレートから選ばれる少なくとも1種以上である態様5に記載の鋼線材。
 
態様7:
 前記潤滑皮膜の単位面積当たりの皮膜質量が1.0~20g/mである態様1~6のいずれかに記載の鋼線材。
 本出願は、出願日が2014年3月28日である日本国特許出願、特願第2014-070446号を基礎出願とする優先権主張を伴い、特願第2014-070446号は参照することにより本明細書に取り込まれる。

Claims (7)

  1.  水溶性ケイ酸塩と水溶性タングステン酸塩を含み、水溶性タングステン酸塩/水溶性ケイ酸塩の質量比が0.7~10の範囲であり、リンを含まない潤滑皮膜を表面に有することを特徴とする鋼線材。
  2.  リンを含まない潤滑皮膜を有する鋼線材であって、
     水溶性タングステン酸塩/水溶性ケイ酸塩の質量比が0.7~10の範囲となるよう水溶性ケイ酸塩と水溶性タングステン酸塩を配合した組成物を用いて、前記潤滑皮膜が形成されていることを特徴とする鋼線材。
  3.  前記潤滑皮膜が樹脂を含み、樹脂/(水溶性ケイ酸塩+水溶性タングステン酸塩)の質量比が0.01~1.5である請求項1または2に記載の鋼線材。
  4.  前記樹脂がビニル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、フェノール樹脂、セルロース誘導体、ポリマレイン酸、及びポリエステル樹脂から選ばれる少なくとも1種以上である請求項3に記載の鋼線材。
  5.  前記潤滑皮膜が滑剤を含み、滑剤/(水溶性ケイ酸塩+水溶性タングステン酸塩)の質量比が0.01~1.5である請求項1または2に記載の鋼線材。
  6.  前記滑剤がワックス、ポリテトラフルオロエチレン、脂肪酸石鹸、脂肪酸金属石鹸、脂肪酸アマイド、二硫化モリブデン、二硫化タングステン、グラファイト、及びメラミンシアヌレートから選ばれる少なくとも1種以上である請求項5に記載の鋼線材。
  7.  前記潤滑皮膜の単位面積当たりの皮膜質量が1.0~20g/mである請求項1または2に記載の鋼線材。
PCT/JP2015/058556 2014-03-28 2015-03-20 耐食性及び加工性に優れた潤滑皮膜を有する鋼線材 WO2015146848A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/129,321 US20170175021A1 (en) 2014-03-28 2015-03-20 Steel wire rod having lubricating coating film that has excellent corrosion resistance and workability
KR1020167026470A KR101817456B1 (ko) 2014-03-28 2015-03-20 내식성 및 가공성이 우수한 윤활 피막을 갖는 강선재
MX2016012520A MX2016012520A (es) 2014-03-28 2015-03-20 Barra de alambre de acero que tiene pelicula de recubrimiento que tiene excelente resistencia a la corrosion y capacidad de trabajo.
CN201580016363.7A CN106133192A (zh) 2014-03-28 2015-03-20 具有优异的耐腐蚀性及加工性的润滑皮膜的钢线材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014070446A JP2015189952A (ja) 2014-03-28 2014-03-28 耐食性及び加工性に優れた潤滑皮膜を有する鋼線材
JP2014-070446 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015146848A1 true WO2015146848A1 (ja) 2015-10-01

Family

ID=54195365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058556 WO2015146848A1 (ja) 2014-03-28 2015-03-20 耐食性及び加工性に優れた潤滑皮膜を有する鋼線材

Country Status (6)

Country Link
US (1) US20170175021A1 (ja)
JP (1) JP2015189952A (ja)
KR (1) KR101817456B1 (ja)
CN (1) CN106133192A (ja)
MX (1) MX2016012520A (ja)
WO (1) WO2015146848A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180273869A1 (en) * 2015-09-30 2018-09-27 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel wire with excellent corrosion resistance and appearance after processing
EP3434808A4 (en) * 2016-03-22 2019-03-20 Sumitomo (SEI) Steel Wire Corp. OIL FILM WIRE

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315626B1 (en) * 2015-06-29 2020-12-23 Nippon Steel Corporation Bolt
JP6981888B2 (ja) * 2018-01-26 2021-12-17 トヨタ自動車株式会社 温熱間鍛造用潤滑離型剤
JP7142498B2 (ja) * 2018-06-28 2022-09-27 日本パーカライジング株式会社 金属材料用表面処理剤並びに、表面処理被膜付金属材料及びその製造方法
WO2020031840A1 (ja) * 2018-08-07 2020-02-13 Jfeスチール株式会社 潤滑皮膜を有する鋼板およびその製造方法
CN109930142A (zh) * 2019-04-28 2019-06-25 祝亚琴 一种无铬钝化液
KR102132479B1 (ko) * 2019-06-26 2020-08-06 세븐그램(주) 선재 윤활 코팅제 및 그 제조 방법
JP6839315B1 (ja) * 2020-03-17 2021-03-03 有限会社中川商会 被処理物の表面改質方法
CN113118234B (zh) * 2021-04-16 2022-09-27 江西富鸿金属有限公司 一种医疗设备用镀锡合金线的生产工艺
CN114908303B (zh) * 2022-04-28 2022-11-15 宁波金鼎紧固件有限公司 一种紧固件用复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151592A (ja) * 1994-11-30 1996-06-11 Mitsubishi Heavy Ind Ltd 潤滑皮膜材、潤滑皮膜の製造方法及び潤滑皮膜を施したボルト・ナット
JP2002363593A (ja) * 2001-06-07 2002-12-18 Kobe Steel Ltd 皮膜形成剤及び皮膜
JP2006161126A (ja) * 2004-12-09 2006-06-22 Sumitomo Metal Ind Ltd 化成処理性に優れた潤滑処理鋼板
JP2006272461A (ja) * 2005-03-03 2006-10-12 Kobe Steel Ltd 塑性加工用金属材料およびその製造方法ならびに塑性加工用金属材料の表面処理剤

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682021B2 (ja) * 2010-05-25 2015-03-11 日本パーカライジング株式会社 難結晶性を有し、耐吸湿性、耐食性及び加工性に優れる金属材料塑性加工用水系潤滑剤及びその潤滑皮膜を形成させた金属材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151592A (ja) * 1994-11-30 1996-06-11 Mitsubishi Heavy Ind Ltd 潤滑皮膜材、潤滑皮膜の製造方法及び潤滑皮膜を施したボルト・ナット
JP2002363593A (ja) * 2001-06-07 2002-12-18 Kobe Steel Ltd 皮膜形成剤及び皮膜
JP2006161126A (ja) * 2004-12-09 2006-06-22 Sumitomo Metal Ind Ltd 化成処理性に優れた潤滑処理鋼板
JP2006272461A (ja) * 2005-03-03 2006-10-12 Kobe Steel Ltd 塑性加工用金属材料およびその製造方法ならびに塑性加工用金属材料の表面処理剤

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180273869A1 (en) * 2015-09-30 2018-09-27 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel wire with excellent corrosion resistance and appearance after processing
EP3434808A4 (en) * 2016-03-22 2019-03-20 Sumitomo (SEI) Steel Wire Corp. OIL FILM WIRE
US10760028B2 (en) 2016-03-22 2020-09-01 Sumitomo Electric Industries, Ltd. Oil tempered wires

Also Published As

Publication number Publication date
MX2016012520A (es) 2017-01-09
KR20160125504A (ko) 2016-10-31
US20170175021A1 (en) 2017-06-22
JP2015189952A (ja) 2015-11-02
KR101817456B1 (ko) 2018-01-10
CN106133192A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
WO2015146848A1 (ja) 耐食性及び加工性に優れた潤滑皮膜を有する鋼線材
KR101411199B1 (ko) 내식성이 우수한 소성 가공용 수계 윤활제 및 소성 가공성이 우수한 금속 재료
JP5450892B2 (ja) 塑性加工用潤滑被膜剤とその製造方法
JP5682021B2 (ja) 難結晶性を有し、耐吸湿性、耐食性及び加工性に優れる金属材料塑性加工用水系潤滑剤及びその潤滑皮膜を形成させた金属材料
US10472585B2 (en) Aqueous lubricant for plastic working of metal material and having superior gas clogging resistance and post-moisture absorption workability
JP6243515B2 (ja) 耐食性、加工性に優れた水系潤滑皮膜処理剤及び金属材料
JP3872492B2 (ja) 固体に対する水系潤滑皮膜処理剤
JP6362379B2 (ja) 耐食性及び加工性に優れた皮膜を有する鋼線材及びその製造方法
JP6694769B2 (ja) 耐食性及び加工後の外観に優れた鋼線材
WO2017057385A1 (ja) 耐食性及び加工後の外観に優れた鋼線材
WO2015060121A1 (ja) 塑性加工用非りん化成処理剤、処理液、化成皮膜及び化成皮膜を有する金属材料
EP4174155A1 (en) Boron-free water-based lubricant for plastic working

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769507

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201606305

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20167026470

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15129321

Country of ref document: US

Ref document number: MX/A/2016/012520

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769507

Country of ref document: EP

Kind code of ref document: A1