WO2003078824A1 - Kraftstoffeinspritzventil für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil für brennkraftmaschinen Download PDF

Info

Publication number
WO2003078824A1
WO2003078824A1 PCT/DE2003/000447 DE0300447W WO03078824A1 WO 2003078824 A1 WO2003078824 A1 WO 2003078824A1 DE 0300447 W DE0300447 W DE 0300447W WO 03078824 A1 WO03078824 A1 WO 03078824A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
valve
fuel
combustion chamber
channels
Prior art date
Application number
PCT/DE2003/000447
Other languages
English (en)
French (fr)
Inventor
Thomas Kuegler
Predrag Nunic
Detlev Potz
Original Assignee
Robert Bosch Gmbh
SANDER-POTZ, Maike
Potz, Wendelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh, SANDER-POTZ, Maike, Potz, Wendelin filed Critical Robert Bosch Gmbh
Publication of WO2003078824A1 publication Critical patent/WO2003078824A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1813Discharge orifices having different orientations with respect to valve member direction of movement, e.g. orientations being such that fuel jets emerging from discharge orifices collide with each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • F02M45/086Having more than one injection-valve controlling discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/182Discharge orifices being situated in different transversal planes with respect to valve member direction of movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/46Valves, e.g. injectors, with concentric valve bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention is based on a fuel injection valve according to the preamble of claim 1.
  • a fuel injection valve is known for example from DE-OS 27 11 390.
  • the fuel injection valve shown there has a valve body in which a bore is formed.
  • the valve body protrudes with its end toward the combustion chamber into the combustion chamber of the internal combustion engine, a valve seat being formed in the bore at this end.
  • outer injection channels and at least inner injection channels are formed, which open into the combustion chamber of the internal combustion engine.
  • the inlet openings of the injection channels are arranged in the region of the valve seat, the inlet openings of the inner injection channels and the outer injection channels being axially spaced from one another, as seen in the longitudinal direction of the bore.
  • an outer valve needle which is designed as a hollow needle and has a valve sealing surface at its end on the combustion chamber side.
  • the valve sealing surface of the outer valve needle interacts with the valve seat and thus controls the fuel flow through the outer injection channels.
  • an inner valve needle is arranged to be longitudinally displaceable. if necessary has a valve sealing surface with which it interacts with the valve seat.
  • the inner valve needle controls the fuel flow through the inner injection channels, so that either the outer or all injection channels, that is, both the inner and the outer injection channels, change due to the interaction of the two valve needles.
  • the known fuel injection valve has the disadvantage here that the injection of fuel both at partial load, i.e. when fuel is injected into the combustion chamber only through the outer injection channels, and at full load, in which the injection takes place through all injection channels, with the same angle the longitudinal axis of the fuel injector happens. Due to the constant injection angle both at full load and at partial load, an optimal combustion process cannot always be achieved. In addition, you get injection jets that always have the same range within the combustion chamber. This also leads to less than optimal combustion at certain operating points.
  • the fuel injection valve according to the invention with the characterizing features of claim 1 has the advantage over the fact that the combustion in the combustion chamber is optimized and thus runs more quietly and with fewer pollutants.
  • fuel is injected at full and partial load with different injection angles.
  • the injection jets from at least one outer injection channel and from at least one inner injection channel combine in the combustion chamber to form a resulting injection jet.
  • the two injection jets meet, they influence one another in such a way that a resulting injection angle is established which is between the injections injection angles of the individual injection jets.
  • the injection takes place in another area of the combustion chamber and thus influences the combustion in a favorable manner.
  • an inner injection channel is assigned to each outer injection channel, the injection jet of which at least partially overlaps the injection jet of the outer injection channel.
  • the outer injection channel and the inner injection channel assigned to it are arranged in a plane in which the longitudinal axis also extends.
  • This arrangement gives a rotationally symmetrical injection pattern, and the alignment of the injection channels corresponds to the arrangement known from the prior art.
  • the outer injection channel forms a smaller angle with the longitudinal axis than the inner injection channel.
  • both injection jets meet within the combustion chamber before they hit a wall of the combustion chamber or the piston of the internal combustion engine.
  • the outer injection channel and the inner injection channel assigned to it enclose an angle, the size of which allows the degree of atomization or the deflection of the injection jet to be adjusted from full to partial load.
  • the outer injection channel and the inner injection channel assigned to it form an angle when viewed in the direction of the longitudinal axis of the bore.
  • this also results in a change in the injection angle in the tangential direction with respect to the tangential direction of the longitudinal axis.
  • a fuel injection valve according to the invention and its installation position in an internal combustion engine are shown in the drawing. It shows
  • FIG. 2 shows the end region of the fuel injection valve on the combustion chamber side in the installed position in the combustion chamber
  • FIG. 3 shows a section through FIG. 2 of a further exemplary embodiment along the line III-III, the fuel injection valve injecting part load here, and
  • Figure 4 shows the same view as Figure 3, with here
  • Full load is injected, i.e. through all injection channels.
  • a fuel injection valve 1 is shown in longitudinal section.
  • the fuel injection valve 1 has a valve body 3 and a valve holding body 5, which are pressed against one another by a device not shown in the drawing.
  • a bore 8 is formed in the valve body 3 and is delimited by a valve seat 20 at the end of the valve body 3 on the combustion chamber side.
  • An outer valve needle 10 is arranged in the bore 8 and is sealingly guided in the bore 8 in a section facing away from the combustion chamber.
  • the outer valve needle 10 tapers towards the valve seat 20 to form a pressure shoulder 16 and merges into a conical outer valve sealing surface 13 at its end on the combustion chamber side.
  • the outer valve sealing surface 13 and the valve seat 20 have at least approximately the same opening angle.
  • a pressure chamber 15 is formed between the outer valve needle 10 and the wall of the bore 8, which is expanded radially at the pressure shoulder 16.
  • an inlet channel 17 runs in the valve body 3 and in the valve holding body 5, through which the pressure chamber 15 can be filled with fuel under high pressure.
  • the outer valve needle 10 is designed as a hollow needle and has a longitudinal bore 9 in which an inner valve needle 12 is arranged to be longitudinally displaceable. At its end on the combustion chamber side, the inner valve needle 12 merges into a likewise essentially conical valve sealing surface 14, which has at least approximately the same opening angle as the valve seat 20.
  • a number of outer injection channels 22 and a number of inner injection channels 24 are formed in the valve body 3, which open into the combustion chamber of the internal combustion engine.
  • the inlet openings 122 of the outer injection channels 22 and the inlet openings 124 of the inner injection channels 24 are arranged in the valve seat 20.
  • the Kraf fuel injection valve 1 is shown in its installed position in the combustion chamber 6 on the internal combustion engine.
  • the outer valve needle 10 and the inner valve needle 12 cooperate with the valve seat 20 in such a way that the fuel flow from the pressure chamber 15 to the outer injection channels 22 and the inner injection channels 24 is controlled, the mode of operation of the fuel injection valve 1 being as follows:
  • the outer valve needle 10 like the inner valve needle 12, is acted upon by a device, which is arranged in the valve holding body 5 and which is not shown in the drawing, by a closing force which presses the valve needle 10, 12 in the direction of the valve seat 20.
  • the fuel pressure prevailing in the pressure chamber 15 results in a ne hydraulic force on the pressure shoulder 16 of the outer valve needle 10, which is opposite to the closing force. If the hydraulic force on the pressure shoulder 16 exceeds the closing force, the valve needle 10 moves away from the valve seat 20 and releases the outer injection channels 22.
  • Fuel can flow from the pressure chamber 15 between the outer valve sealing surface 13 and the valve seat 20 to the outer injection channels 22 and is injected from there in the form of an outer injection jet 30 into the combustion chamber 6 of the internal combustion engine.
  • FIG. 2 This is the so-called partial load operation and is shown in FIG. 2 in the left half of the fuel injection valve 1.
  • the inner valve needle 12 remains in its closed position in partial load operation, ie in contact with the valve seat 20, so that the inner injection channels 24 remain closed. If fuel is also to be injected through the inner injection channels 24, the closing force on the inner valve needle 12 is reduced, so that the hydraulic force on parts of the inner valve sealing surface 14 is sufficient to lift the inner valve needle 12 from the valve seat 20. As a result, the fuel flows from the pressure chamber 15 to the inner injection channels 24 and is injected from there into the combustion chamber 6 in the form of a second injection jet 32.
  • the position of the valve needles 10, 12 in the case of full-load injection is shown in FIG. 2 in the right half of the fuel injection valve 1.
  • the outer injection jet 30 here consists of extremely finely atomized fuel, the outer injection jet 30 taking approximately the shape shown in FIG. 2.
  • the injection angle which the outer injection jet 30 forms with the longitudinal axis 18 is identified here by ⁇ - ⁇ and is dimensioned such that the outer injection jet 30 at the time of injection in the piston bowl 27 of the piston 7 hits.
  • the injection of fuel through the inner injection channels 24 takes place in the same manner, but at an angle ⁇ + ⁇ to the longitudinal axis 18.
  • the outer injection jet 30 of the outer injection channel 22 intersects at a certain distance from the valve body 3 with the inner injection jet 32 and unites with this.
  • a further effect of the overlap of the two injection jets is that the outer injection jet 30 is relatively narrow in its own right and thus penetrates far into the combustion chamber or the combustion bowl of the piston 7.
  • a further atomization takes place due to their mutual influence and thus also a limitation of the range.
  • the fuel is distributed better, which has a favorable effect on the course of combustion when there is a large amount of fuel, such as is injected at full load.
  • the injection Channels 22, 24 are formed straight and lie in a common plane in which the longitudinal axis 18 also lies.
  • FIG. 3 shows a cross section through the fuel injection valve 1 shown in FIG. 2 along the line III-III, FIG. 3 showing a further exemplary embodiment of the fuel injection valve 1 according to the invention.
  • the injection channels 22, 24 no longer lie in one plane with the longitudinal axis 18, but are inclined to one another as viewed in the direction of the longitudinal axis 18.
  • FIG. 3 shows the injection of fuel only through the outer injection channel 22, so that since three outer injection channels 22 are arranged distributed over the circumference of the fuel injection valve 1, three outer injection jets 30 result.
  • the inner injection channels 24 are closed by the inner valve needle 12, which is not shown in FIG. 3 for the sake of clarity.
  • the outer injection channels 22 do not intersect with the longitudinal axis 18 in the imaginary extension opposite the injection jet 30, but instead lead tangentially past it.
  • the outer injection jets 30 can be brought close to the glow plug to achieve better ignition of the fuel-air mixture in part-load operation or when the engine is cold.
  • FIG. 4 shows the same view as FIG. 3, the fuel injection valve 1 injecting here at full load, ie both through the inner injection channels 24 and through the outer injection channels 22.
  • the two injection jets 30, 32 overlap so that they result in a deflection the original direction of the outer injection jet 30 comes, approximately by an angle ⁇ , as indicated in FIG. 4 on one of the injection jets.
  • This full-load injection jet can now be directed past the glow plug, for example, in order to determine the type of ignition. fertilizer and to influence the ignition timing.
  • the injection jets 30, 32 also overlap in the manner shown in FIG. 2, so that in addition to the tangential angle change, an angle change of the injection jet in the longitudinal direction is also achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkörper (3), in dem eine eine Längsachse (18) aufweisende Bohrung (8) ausgebildet ist, an deren brennraumseitigem Ende ein Ventilsitz (20) ausgebildet ist. Vom Ventilsitz (20) gehen wenigstens ein äusserer Einspritzkanal (22) und wenigstens ein innerer Einspritzkanal (24) aus, welche Einspritzkanäle (22; 24) in einen Brennraum (6) der Brennkraftmaschine münden und deren Eintrittsöffnungen (122; 124) zueinander axial beabstandet sind. Der Kraftstofffluss durch die äusseren Einspritzkanäle (22) wird von einer in der Bohrung (8) angeordneten äusseren Ventilnadel (10) gesteuert wird, und der Kraftstofffluss durch die inneren Einspritzkanäle (24) von einer inneren Ventilnadel (12). Die Einspritzstrahlen (30; 32) von wenigstens einem äusseren Einspritzkanal (22) und von wenigstens einem inneren Einspritzkanal (24) vereinen sich im Brennraum (6).

Description

Kraftstoffeinspritzventil für Brennkraftmaschinen
Stand der Technik
Die Erfindung geht von einem Kraftstoffeinspritzventil nach der Gattung des Patentanspruchs 1 aus . Ein derartiges Kraft- stoffeinspritzventil ist beispielsweise aus der DE-OS 27 11 390 bekannt. Das dort gezeigte Kraftstoffeinspritzventil weist einen Ventilkörper auf, in dem eine Bohrung ausgebildet ist . Der Ventilkörper ragt hierbei mit seinem brennraumseitigen Ende in den Brennraum der Brennkraftmaschine, wobei an diesem Ende in der Bohrung ein Ventilsitz ausgebildet ist. Am brennraumseitigen Ende des Ventilkörpers sind äußere Einspritzkanäle und wenigstens innere Einspritzkanäle ausgebildet, welche in den Brennraum der Brennkraftmaschine münden. Die Eintrittsöffnungen der Einspritzkanäle sind im Bereich des Ventilsitzes angeordnet, wobei die Eintrittsöffnungen der inneren Einspritzkanäle und der äußeren Einspritzkanäle in Längsrichtung der Bohrung gesehen zueinander axial beabstandet sind. In der Bohrung befindet sich eine äußere Ventilnadel, die als Hohlnadel ausgeführt ist und die an ihrem brennraumseitigen Ende eine Ventildichtfläche aufweist. Die äußere Ventilnadel wirkt mit ihrer Ventildichtfläche mit dem Ventilsitz zusammen und steuert so den Kraftstoffdurchfluss durch die äußeren Einspritzkanäle. In der äußeren Ventilnadel ist eine innere Ventilnadel längsverschiebbar angeordnet, die an ihrem brennraumseitigen Ende e- benfalls eine Ventildichtfläche aufweist, mit der sie mit dem Ventilsitz zusammenwirkt. Hierdurch steuert die innere Ventilnadel den Kraftstoffdurchfluss durch die inneren Einspritzkanäle, so dass sich durch das Zusammenspiel der beiden Ventilnadeln entweder nur die äußeren oder sämtliche Einspritzkanäle, also sowohl die inneren als auch die äußeren Einspritzkanäle.
Das bekannte Kraftstoffeinspritzventil weist hierbei den Nachteil auf, dass die Einspritzung von Kraftstoff sowohl bei Teillast, also wenn nur durch die äußeren Einspritzkanäle Kraftstoff in den Brennraum eingespritzt wird, als auch bei Vollast, bei dem die Einspritzung durch sämtliche Einspritzkanäle erfolgt, mit demselben Winkel bezüglich der Längsachse des Kraftstoffeinspritzventils geschieht. Durch den gleichbleibenden Einspritzwinkel sowohl bei Vollast als auch bei Teillast ist nicht immer ein optimaler Verbrennungsablauf zu erreichen. Darüber hinaus erhält man Einspritzstrahlen, die stets die gleiche Reichweite innerhalb des Brennraums haben. Auch dies führt bei bestimmten Betriebspunkten zu einer nicht optimalen Verbrennung.
Vorteile der Erfindung
Das erfindungsgemäße Kraftstoffeinspritzventil mit den kennzeichnenden Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass die Verbrennung im Brennraum optimiert und damit leiser und Schadstoffärmer abläuft. Hierzu erfolgt die Einspritzung von Kraftstoff bei Voll- und bei Teillast mit unterschiedlichen Einspritzwinkeln. Die Einspritzstrahlen von wenigstens einem äußeren Einspritzkanal und von wenigstens einem inneren Einspritzkanal vereinen sich im Brennraum zu einem resultierenden Einspritzstrahl. Durch das Zusammentreffen der beiden Einspritzstrahlen beeinflussen sich diese gegenseitig so, dass sich ein resultierender Einspritzwinkel einstellt, der zwischen den Ein- spritzwinkeln der einzelnen Einspritzstrahlen liegt. Dadurch erfolgt die Einspritzung in einen anderen Raumbereich des Brennraums und beeinflusst so die Verbrennung in einer günstigen Art und Weise. Darüber hinaus erhält man durch das Zusammentreffen der Einspritzstrahlen eine stärkere Zerstäubung, was sich bei Vollast günstig auf den Verbrennungsverlauf auswirkt. Bei Teillast ist man hingegen meist daran interessiert, wenig Kraftstoff tief in den Brennraum einzubringen, was durch die Verwendung nur der äußeren Einspritzkanäle gewährleistet ist.
Durch die in den Unteransprüchen genannten Maßnahmen sind weitere vorteilhafte Ausbildungen des Gegenstandes der Erfindung möglich.
In einer ersten vorteilhaften Ausgestaltung ist jedem äußeren Einspritzkanal ein innerer Einspritzkanal zugeordnet, mit dessen Einspritzstrahl sich der Einspritzstrahl des äußeren Einspritzkanals zumindest teilweise überschneidet. Dadurch erhält man für den Fall, dass mehrere äußere und mehrere innere Einspritzkanäle vorgesehen sind, eine Veränderung des Einspritzwinkels bei Änderung des Betriebs von Teillast auf Vollast bei allen Einspritzkanälen.
In einer weiteren vorteilhaften Ausgestaltung ist der äußere Einspritzkanal und der ihm zugeordnete innere Einspritzkanal in einer Ebene angeordnet, in der auch die Längsachse verläuft. Durch diese Anordnung bekommt man ein rotationssymmetrisches Einspritzbild, und die Ausrichtung der Einspritzkanäle entspricht der bereits bekannten Anordnung aus dem Stand der Technik. Besonders vorteilhaft ist es hierbei, wenn der äußere Einspritzkanal mit der Längsachse einen kleineren Winkel einschließt als der innere Einspritzkanal . Hierdurch treffen sich beide Einspritzstrahlen innerhalb des Brennraums, noch bevor sie auf eine Wand des Brennraums oder auf den Kolben der Brennkraftmaschine treffen. Auf diese Weise schließen der äußere Einspritzkanal und der ihm zugeordnete innere Einspritzkanal einen Winkel ein, über dessen Größe sich der Grad der Zerstäubung bzw. die Ablenkung des Einspritzstrahls von Voll- zu Teillast einstellen lässt.
In einer weiteren vorteilhaften Ausgestaltung schließen der äußere Einspritzkanal und der ihm zugeordnete innere Einspritzkanal in Richtung der Längsachse der Bohrung gesehen einen Winkel ein. Dadurch erhält man neben einer Veränderung des Einspritzwinkels bezüglich der Längsachse der Bohrung auch eine Änderung des Einspritzwinkels in tangentialer Richtung bezogen auf die Tangentialrichtung der Längsachse. So kann man erreichen, dass beispielsweise in Teillast der Einspritzstrahl näher an die Glühstiftkerze heranreicht als bei Vollast, wo durch den zweiten Einspritzstrahl eine entsprechende Ablenkung des ersten Einspritzstrahls erreicht wird. Dadurch kann die Zündwilligkeit des Kraftstoff-Luft- Gemisches, insbesondere bei Kaltstart, günstig beeinflusst werden .
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung und der Zeichnung zu entnehmen.
Zeichnung
In der Zeichnung ist ein erfindungsgemäßes Kraftstoffeinspritzventil und seine Einbaulage in einer Brennkraftmaschine dargestellt. Es zeigt
Figur 1 ein erfindungsgemäßes Kraftstoffeinspritzventil im Längsschnitt,
Figur 2 den brennraumseitigen Endbereich des Kraftstoffeinspritzventils in Einbaulage im Brennraum,
Figur 3 einen Schnitt durch Figur 2 eines weiteren Ausführungsbeispiels entlang der Linie III-III, wobei das Kraftstoffeinspritzventil hier in Teillast einspritzt, und
Figur 4 dieselbe Ansicht wie Figur 3, wobei hier mit
Vollast eingespritzt wird, d.h. durch sämtliche Einspritzkanäle .
Beschreibung der Ausführungsbeispiele
In Figur 1 ist ein Kraftstoffeinspritzventil 1 im Längsschnitt dargestellt. Das Kraftstoffeinspritzventil 1 weist einen Ventilkörper 3 und einen Ventilhaltekörper 5 auf, die durch eine in der Zeichnung nicht dargestellte Vorrichtung gegeneinander gepresst sind. Im Ventilkörper 3 ist eine Bohrung 8 ausgebildet, die am brennraumseitigen Ende des Ventilkörpers 3 von einem Ventilsitz 20 begrenzt ist. In der Bohrung 8 ist eine äußere Ventilnadel 10 angeordnet, die in einem brennraumabgewandten Abschnitt in der Bohrung 8 dichtend geführt ist. Die äußere Ventilnadel 10 verjüngt sich unter Bildung einer Druckschulter 16 dem Ventilsitz 20 zu und geht an ihrem brennraumseitigen Ende in eine konische äußere Ventildichtfläche 13 über. Die äußere Ventildichtfläche 13 und der Ventilsitz 20 weisen hierbei zumindest annä- hernd denselben Öffnungswinkel auf. Zwischen der äußeren Ventilnadel 10 und der Wand der Bohrung 8 ist ein Druckraum 15 ausgebildet, der auf Höhe der Druckschulter 16 radial erweitert ist. In die radiale Erweiterung des Druckraums 15 mündet ein im Ventilkörper 3 und im Ventilhaltekörper 5 verlaufender Zulaufkanal 17, durch den der Druckraum 15 mit Kraftstoff unter hohem Druck befüllbar ist. Die äußere Ventilnadel 10 ist als Hohlnadel ausgeführt und weist eine Längsbohrung 9 auf, in der eine innere Ventilnadel 12 längsverschiebbar angeordnet ist. Die innere Ventilnadel 12 geht an ihrem brennraumseitigen Ende in eine ebenfalls im wesentlichen konische Ventildichtfläche 14 über, die zumindest annähernd denselben Öffnungswinkel wie der Ventilsitz 20 aufweist. Im Bereich des Ventilsitzes 20 sind im Ventilkörper 3 eine Reihe von äußeren Einspritzkanälen 22 und eine Reihe von inneren Einspritzkanälen 24 ausgebildet, die in den Brennraum der Brennkraf maschine münden. Die Eintrittsöffnungen 122 der äußeren Einspritzkanäle 22 und die Eintrittsoffnungen 124 der inneren Einspritzkanäle 24 sind hierbei im Ventilsitz 20 angeordnet.
In Figur 2 ist das Kraf stoffeinspritzventil 1 in seiner Einbaulage im Brennraum 6 an der Brennkraftmaschine dargestellt. Die äußere Ventilnadel 10 und die innere Ventilnadel 12 wirken in der Weise mit dem Ventilsitz 20 zusammen, dass der Kraftstoffzufluss aus dem Druckraum 15 zu den äußeren Einspritzkanälen 22 bzw. den inneren Einspritzkanälen 24 gesteuert wird, wobei die Funktionsweise des Kraftstoffeinspritzventils 1 wie folgt ist:
Die äußere Ventilnadel 10 wird ebenso wie die innere Ventilnadel 12 von einer Vorrichtung, die im Ventilhaltekörper 5 angeordnet ist und die in der Zeichnung nicht dargestellt ist, von einer Schließkraft beaufschlagt, die die Ventilnadel 10, 12 in Richtung des Ventilsitzes 20 drückt. Durch den im Druckraum 15 herrschenden Kraftstoffdruck ergibt sich ei- ne hydraulische Kraft auf die Druckschulter 16 der äußeren Ventilnadel 10, die der Schließkraft entgegengerichtet ist. Übersteigt die hydraulische Kraft auf die Druckschulter 16 die Schließkraft, so bewegt sich die Ventilnadel 10 vom Ventilsitz 20 weg und gibt die äußeren Einspritzkanäle 22 frei. Kraftstoff kann aus dem Druckraum 15 zwischen der äußeren Ventildichtfläche 13 und dem Ventilsitz 20 hindurch zu den äußeren Einspritzkanälen 22 fließen und wird von dort in Form eines äußeren Einspritzstrahls 30 in den Brennraum 6 der Brennkraftmaschine eingespritzt. Dies ist der sogenannte Teillastbetrieb und ist in Figur 2 in der linken Hälfte des Kraftstoffeinspritzventils 1 dargestellt. Die innere Ventilnadel 12 verharrt im Teillastbetrieb in ihrer Schließstellung, d.h. in Anlage am Ventilsitz 20, so dass die inneren Einspritzkanäle 24 verschlossen bleiben. Soll Kraftstoff auch durch die inneren Einspritzkanäle 24 eingespritzt werden, so wird die Schließkraft auf die innere Ventilnadel 12 reduziert, so dass die hydraulische Kraft auf Teile der inneren Ventildichtfläche 14 ausreicht, die innere Ventilnadel 12 vom Ventilsitz 20 abzuheben. Hierdurch fließt der Kraftstoff aus dem Druckraum 15 auch zu den inneren Einspritzkanälen 24 und wird von dort in Form eines zweiten Einspritzstrahls 32 in den Brennraum 6 eingespritzt. Die Stellung der Ventilnadeln 10, 12 im Falle der Vollasteinspritzung sind in der Figur 2 in der rechten Hälfte des Kraftstoffeinspritzventils 1 dargestellt.
Bei der Einspritzung durch die äußeren Einspritzkanäle 22 wird der Kraftstoff in Form eines äußeren Einspritzstrahls 30 in den Brennraum 6 eingespritzt. Der äußere Einspritzstrahl 30 besteht hierbei aus äußerst fein zerstäubtem Kraftstoff, wobei der äußere Einspritzstrahl 30 in etwa die in der Figur 2 gezeigte Form annimmt. Der Einspritzwinkel, den der äußere Einspritzstrahl 30 mit der Längsachse 18 bildet, ist hier mit α-ß gekennzeichnet und ist so bemessen, dass der äußere Einspritzstrahl 30 zum Einspritzzeitpunkt in der Kolbenmulde 27 des Kolbens 7 auftrifft. Die Einspritzung von Kraftstoff durch die inneren Einspritzkanäle 24 erfolgt in gleicher Art und Weise, jedoch mit einem Winkel α+ß zur Längsachse 18. Der äußere Einspritzstrahl 30 des äußeren Einspritzkanals 22 schneidet sich in einem gewissen Abstand vom Ventilkörper 3 mit dem inneren Einspritzstrahl 32 und vereinigt sich mit diesem. Da der Winkel α+ß, den der innere Einspritzstrahl 32 mit der Längsachse 18 einschließt, größer ist als der Winkel α-ß, den der äußere Einspritzstrahl 30 mit der Längsachse 18 einschließt, ergibt sich durch Überlappung der beiden Einspritzstrahlen 30, 32 ein resultierender Einspritzstrahl, der zumindest näherungsweise einen Winkel α mit der Längsachse 18 einschließt. Der Auftreffpunkt dieses resultierenden Einspritzstrahls auf die Kolbenmulde 27 ist gegenüber dem äußeren Einspritzstrahl 30 etwas in Richtung des Einspritzventils 1 verschoben. Bei Vollastbetrieb des Kraftstoffeinspritzventils 1 verändert sich also der Winkel des Einspritzstrahls zur Längsachse 18, so dass sich auch die Verbrennungsbedingungen im Brennraum 6 ändern, was zu einer verbesserten Verbrennung führt. Die Einspritzung des Kraftstoffs findet hierbei in etwa im oberen Umkehrpunkt des Kolbens 7 statt, in dem der Kolben 7 in Figur 2 auch dargestellt ist.
Neben einer Veränderung des Einspritzwinkels der Einspritzstrahlen 30, 32 ist ein weiterer Effekt der Überlappung der beiden Einspritzstrahlen, dass der äußere Einspritzstrahl 30 für sich allein genommen relativ eng begrenzt ist und damit weit in den Brennraum bzw. die Brennmulde des Kolbens 7 eindringt. Bei Einspritzung unter Vollast, bei der sich die Einspritzstrahlen 30, 32 überschneiden, findet durch deren gegenseitige Beeinflussung eine weitere Zerstäubung statt und damit auch eine Begrenzung der Reichweite. Der Kraftstoff wird dadurch besser verteilt, was sich bei einer großen Kraftstoffmenge, wie sie in Vollast eingespritzt wird, günstig auf den Verbrennungsverlauf auswirkt. Die Einspritz- kanäle 22, 24 sind hierbei gerade ausgebildet und liegen in einer gemeinsamen Ebene, in der auch die Längsachse 18 liegt.
In Figur 3 ist ein Querschnitt durch das in Figur 2 gezeigte Kraftstoffeinspritzventil 1 entlang der Linie III-III gezeigt, wobei Figur 3 ein weiteres Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils 1 zeigt. Die Einspritzkanäle 22, 24 liegen hierbei nicht mehr mit der Längsachse 18 in einer Ebene, sondern sie sind in Richtung der Längsachse 18 gesehen zueinander geneigt. Figur 3 zeigt die Einspritzung von Kraftstoff nur durch den äußeren Einspritzkanal 22, so dass sich, da hier drei äußere Einspritzkanäle 22 über den Umfang des Kraftstoffeinspritzventils 1 verteilt angeordnet sind, drei äußere Einspritzstrahlen 30 ergeben. Die inneren Einspritzkanäle 24 werden von der inneren Ventilnadel 12, die in der Figur 3 der Übersichtlichkeit halber nicht dargestellt ist, verschlossen. Die äußeren Einspritzkanäle 22 schneiden sich in der dem Einspritzstrahl 30 entgegengesetzten, gedachten Verlängerung somit nicht mit der Längsachse 18, sondern führen tangential an dieser vorbei. So können die äußeren Einspritzstrahlen 30 beispielsweise nahe an die Glühstiftkerze herangeführt werden, um im Teillastbetrieb oder bei kaltem Motor eine bessere Zündung des Kraf stoff-Luft-Gemisches zu erreichen.
Figur 4 zeigt dieselbe Ansicht wie Figur 3 , wobei hier das Kraftstoffeinspritzventil 1 in Vollast einspritzt, d.h. sowohl durch die inneren Einspritzkanäle 24 als auch durch die äußeren Einspritzkanäle 22. Die beiden Einspritzstrahlen 30, 32 überschneiden sich, so dass es resultierend zu einer Ablenkung aus der ursprünglichen Richtung des äußeren Einspritzstrahls 30 kommt, und zwar etwa um einen Winkel ß, wie er in Figur 4 an einem der Einspritzstrahlen angedeutet ist. Dieser Vollast-Einspritzstrahl kann nun zum Beispiel an der Glühstiftkerze vorbeigeleitet werden, um so die Art der Zün- düng und den Zündzeitpunkt zu beeinflussen. Gleichzeitig ü- berschneiden sich die Einspritzstrahlen 30, 32 auch in der in Figur 2 gezeigten Art und Weise, so dass neben der tan- gentialen Winkeländerung auch eine Winkeländerung des Ein- spritzstrahls in Längsrichtung erreicht wird.

Claims

Ansprüche
1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkörper (3), in dem eine eine Längsachse (18) aufweisende Bohrung (8) ausgebildet ist, an deren brennraumseitigem Ende ein Ventilsitz (20) ausgebildet ist und wenigstens ein äußerer Einspritzkanal (22) und wenigstens ein innerer Einspritzkanal (24) , welche Einspritzkanäle (22; 24) in einen Brennraum (6) der Brennkraftmaschine münden und deren Eintrittsöffnungen (122; 124) im Bereich des Ventilsitzes (20) angeordnet und zueinander axial beabstandet sind, wobei der Kraftstofffluss durch den wenigstens einen äußeren Einspritzkanal (22) von einer in der Bohrung (8) angeordneten und als Hohlnadel ausgeführten äußeren Ventilnadel (10) gesteuert wird, indem diese mit einer äußeren Ventildichtfläche (13) mit dem Ventilsitz (20) zusammenwirkt, und mit einer in der äußeren Ventilnadel (10) längsverschiebbar angeordneten inneren Ventilnadel (12) , die eine innere Ventildichtfläche (14) aufweist und den wenigstens einen inneren Einspritzkanal (24) steuert, indem die Ventildichtfläche (14) mit dem Ventilsitz (20) zusammenwirkt, dadurch gekennzeichnet, dass die Einspritzstrahlen (30; 32) von wenigstens einem äußeren Einspritzkanal (22) und von wenigstens einem inneren Einspritzkanal (24) im Brennraum (6) zueinander konvergent verlaufen und sich in einem gegebenen Abstand von den Austrittsöffnungen der Einspritzkanäle (24) zu einem resultierenden Einspritzstrahl vereinen.
2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass mehrere äußere Einspritzkanäle (22) vorgesehen sind und dass die Eintrittsöffnungen (122) sämtlicher äußerer Einspritzkanäle (22) bezüglich der Längsachse (18) der Bohrung (8) auf derselben Höhe liegen.
3. Kraftstoffeinspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mehrere innere Einspritzkanäle (24) vorgesehen sind und dass die Eintrittsöffnungen (124) sämtlicher innerer Einspritzkanäle (24) bezüglich der Längsachse (18) der Bohrung (8) auf derselben Höhe liegen.
4. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Einspritzkanäle (22; 24) gerade ausgebildet sind.
5. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass jedem äußeren Einspritzkanal (22) ein innerer Einspritzkanal (24) zugeordnet ist, mit dessen Einspritzstrahl (32) sich der Einspritzstrahl (30) des äußeren Einspritzkanals (22) im Brennraum (6) vereint.
6. Kraftstoffeinspritzventil nach Anspruch 5, dadurch gekennzeichnet, dass der äußere Einspritzkanal (22) und der ihm zugeordnete innere Einspritzkanal (24) in einer Ebene angeordnet sind, in der auch die Längsachse (18) verläuft.
7. Kraftstoffeinspritzventil nach Anspruch 6, dadurch gekennzeichnet, dass der äußere Einspritzkanal (22) in dieser Ebene mit der Längsachse (18) einen kleineren Winkel einschließt als der innere Einspritzkanal (24) .
8. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass der äußere Einspritzkanal (22) und der ihm zugeordnete innere Einspritzkanal (24) in Richtung der Längsachse (18) gesehen einen Winkel einschließen.
9. Kraftstoffeinspritzventil nach Anspruch 8, dadurch gekennzeichnet, dass die äußeren Einspritzkanäle (22) und die inneren Einspritzkanäle (24) im Ventilkörper (3) so angeordnet sind, dass deren den jeweiligen Einspritzstrahl (30; 32) entgegengesetzte, gedachte Verlängerung an der Längsachse (18) tangential vorbeiführt.
10.Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass das brennraumseitige Ende des Ventilkörpers (3) in Einbaulage in den Brennraum (6) einer Brennkraftmaschine ragt, wobei sich die gedachte Verlängerung des äußeren Einspritzkanals (22) und des zugeordneten inneren Einspritzkanals (24) innerhalb des Brennraums (6) schneiden.
PCT/DE2003/000447 2002-03-13 2003-02-14 Kraftstoffeinspritzventil für brennkraftmaschinen WO2003078824A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10210976A DE10210976A1 (de) 2002-03-13 2002-03-13 Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10210976.1 2002-03-13

Publications (1)

Publication Number Publication Date
WO2003078824A1 true WO2003078824A1 (de) 2003-09-25

Family

ID=27771228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/000447 WO2003078824A1 (de) 2002-03-13 2003-02-14 Kraftstoffeinspritzventil für brennkraftmaschinen

Country Status (2)

Country Link
DE (1) DE10210976A1 (de)
WO (1) WO2003078824A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2888284A3 (fr) * 2005-07-08 2007-01-12 Renault Sas Moteur a combustion interne comprenant un injecteur de carburant adapte pour le demarrage dudit moteur
EP2025919A1 (de) 2007-08-14 2009-02-18 Mazda Motor Corporation Dieselmotor, Kraftstoffeinspritzdüse und Kraftstoffeinspritzverfahren
JP2009062971A (ja) * 2007-08-14 2009-03-26 Mazda Motor Corp ディーゼルエンジンの燃料噴射装置
FR2927664A1 (fr) * 2008-02-15 2009-08-21 Renault Sas Procede de pilotage au demarrage d'un injecteur de carburant et moteur a combustion interne apte a mettre en oeuvre ce procede
WO2013149240A1 (en) * 2012-03-30 2013-10-03 Electro-Motive Diesel, Inc. Nozzle for skewed fuel injection
JPWO2013018135A1 (ja) * 2011-08-03 2015-02-23 日立オートモティブシステムズ株式会社 燃料噴射弁
EP3255268A1 (de) * 2016-06-08 2017-12-13 Toyota Jidosha Kabushiki Kaisha Verbrennungsmotor
FR3071016A1 (fr) * 2017-09-13 2019-03-15 Renault S.A.S Buse d'injection de carburant comprenant une tete d'injection a permeabilite variable
US10900450B1 (en) 2019-08-05 2021-01-26 Caterpillar Inc. Fuel system, fuel injector nozzle assembly, and engine head assembly structured for ducted fuel injection
US11549474B2 (en) 2021-05-24 2023-01-10 Caterpillar Inc. Ducted fuel injector having nested checks with non-rotating outer check and method of operating same
US11852113B2 (en) 2022-02-02 2023-12-26 Caterpillar Inc. Fuel injector having spray ducts sized for optimized soot reduction
US11885290B2 (en) 2020-09-08 2024-01-30 Caterpillar Inc. Fuel injector and nozzle assembly having dual concentric check assembly and ducted spray orifices

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073546A1 (de) * 2004-02-02 2005-08-11 Siemens Aktiengesellschaft Düsenkörper und ventil
DE102004041031A1 (de) * 2004-08-25 2006-03-02 Audi Ag Kraftstoff-Einspritzventil mit Strahldurchdringung
FR2881185A1 (fr) * 2005-01-26 2006-07-28 Magneti Marelli Motopropulsion Injecteur de carburant et moteur comprenant un tel injecteur
JP4549222B2 (ja) * 2005-04-19 2010-09-22 ヤンマー株式会社 直接噴霧式ディーゼル機関
FR2895025B1 (fr) * 2005-12-21 2011-07-22 Renault Sas Procede d'injection de carburant dans une chambre de combustion d'un moteur
CN101375034B (zh) * 2006-01-27 2012-01-18 通用汽车环球科技运作公司 用于火花点火直喷式发动机的方法和设备
JP6439753B2 (ja) * 2016-06-08 2018-12-19 トヨタ自動車株式会社 内燃機関
US10392987B2 (en) * 2017-03-29 2019-08-27 Cummins Emission Solutions Inc. Assembly and methods for NOx reducing reagent dosing with variable spray angle nozzle
JP2020007977A (ja) * 2018-07-09 2020-01-16 トヨタ自動車株式会社 圧縮自着火式内燃機関

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1293088A (en) * 1969-06-18 1972-10-18 Ffsa Improvements in or relating to fuel injectors
DE2711390A1 (de) 1977-03-16 1978-09-21 Bosch Gmbh Robert Kraftstoffeinspritzduese
US5540200A (en) * 1993-12-28 1996-07-30 Nissan Motor Co., Ltd. Fuel injection valve
JPH09236067A (ja) * 1996-02-28 1997-09-09 Isuzu Motors Ltd 燃料噴射ノズル
JPH09303234A (ja) * 1996-05-10 1997-11-25 Isuzu Motors Ltd 燃料噴射ノズル
DE19642513A1 (de) * 1996-10-15 1998-04-16 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1045136A1 (de) * 1999-04-13 2000-10-18 DaimlerChrysler AG Verfahren zum Betrieb einer Hubkolbenbrennkraftmaschine und Einspritzdüse zur Durchführung des Verfahrens
EP1059437A1 (de) * 1999-06-09 2000-12-13 Delphi Technologies, Inc. Kraftstoffeinspritzventil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1293088A (en) * 1969-06-18 1972-10-18 Ffsa Improvements in or relating to fuel injectors
DE2711390A1 (de) 1977-03-16 1978-09-21 Bosch Gmbh Robert Kraftstoffeinspritzduese
US5540200A (en) * 1993-12-28 1996-07-30 Nissan Motor Co., Ltd. Fuel injection valve
JPH09236067A (ja) * 1996-02-28 1997-09-09 Isuzu Motors Ltd 燃料噴射ノズル
JPH09303234A (ja) * 1996-05-10 1997-11-25 Isuzu Motors Ltd 燃料噴射ノズル
DE19642513A1 (de) * 1996-10-15 1998-04-16 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1045136A1 (de) * 1999-04-13 2000-10-18 DaimlerChrysler AG Verfahren zum Betrieb einer Hubkolbenbrennkraftmaschine und Einspritzdüse zur Durchführung des Verfahrens
EP1059437A1 (de) * 1999-06-09 2000-12-13 Delphi Technologies, Inc. Kraftstoffeinspritzventil

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 01 30 January 1998 (1998-01-30) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 03 27 February 1998 (1998-02-27) *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2888284A3 (fr) * 2005-07-08 2007-01-12 Renault Sas Moteur a combustion interne comprenant un injecteur de carburant adapte pour le demarrage dudit moteur
EP2025919A1 (de) 2007-08-14 2009-02-18 Mazda Motor Corporation Dieselmotor, Kraftstoffeinspritzdüse und Kraftstoffeinspritzverfahren
JP2009062971A (ja) * 2007-08-14 2009-03-26 Mazda Motor Corp ディーゼルエンジンの燃料噴射装置
US7895986B2 (en) 2007-08-14 2011-03-01 Mazda Motor Corporation Diesel engine and fuel injection nozzle therefor
FR2927664A1 (fr) * 2008-02-15 2009-08-21 Renault Sas Procede de pilotage au demarrage d'un injecteur de carburant et moteur a combustion interne apte a mettre en oeuvre ce procede
JPWO2013018135A1 (ja) * 2011-08-03 2015-02-23 日立オートモティブシステムズ株式会社 燃料噴射弁
WO2013149240A1 (en) * 2012-03-30 2013-10-03 Electro-Motive Diesel, Inc. Nozzle for skewed fuel injection
US9546633B2 (en) 2012-03-30 2017-01-17 Electro-Motive Diesel, Inc. Nozzle for skewed fuel injection
EP3255268A1 (de) * 2016-06-08 2017-12-13 Toyota Jidosha Kabushiki Kaisha Verbrennungsmotor
FR3071016A1 (fr) * 2017-09-13 2019-03-15 Renault S.A.S Buse d'injection de carburant comprenant une tete d'injection a permeabilite variable
US10900450B1 (en) 2019-08-05 2021-01-26 Caterpillar Inc. Fuel system, fuel injector nozzle assembly, and engine head assembly structured for ducted fuel injection
US11885290B2 (en) 2020-09-08 2024-01-30 Caterpillar Inc. Fuel injector and nozzle assembly having dual concentric check assembly and ducted spray orifices
US11549474B2 (en) 2021-05-24 2023-01-10 Caterpillar Inc. Ducted fuel injector having nested checks with non-rotating outer check and method of operating same
US11852113B2 (en) 2022-02-02 2023-12-26 Caterpillar Inc. Fuel injector having spray ducts sized for optimized soot reduction

Also Published As

Publication number Publication date
DE10210976A1 (de) 2003-09-25

Similar Documents

Publication Publication Date Title
WO2003078824A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1045136B1 (de) Verfahren zum Betrieb einer Hubkolbenbrennkraftmaschine und Einspritzdüse zur Durchführung des Verfahrens
DE4039520B4 (de) Kraftstoff-Einspritzventil
DE3606246C2 (de) Kraftstoffeinspritzdüse für Brennkraftmaschinen
EP2480783B1 (de) Kraftstoff-einspritzventil für eine brennkraftmaschine
EP0975870B1 (de) Brennstoffeinspritzventil oder brennstoffeinspritzdüse
DE2710138A1 (de) Mehrloch-einspritzduese
DE10012969B4 (de) Einspritzdüse und ein Verfahren zur Bildung eines Kraftstoff-Luftgemischs
EP0978649B1 (de) Kraftstoffeinspritzdüse
DE19922964A1 (de) Verfahren zum Einspritzen von Kraftstoff
EP1119703B1 (de) Brennstoffeinspritzventil
DE8013729U1 (de) Brennkraftmaschine mit kraftstoffeinspritzung
DE2815672A1 (de) Brennstoffeinspritzvorrichtung
EP1546547B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE19847625A1 (de) Brennstoff-Einspritzventil
DE3245780C1 (de) Fremdgezuendete,Iuftverdichtende Brennkraftmaschine
DE3502642A1 (de) Kraftstoffeinspritzventil fuer eine luftverdichtende einspritzbrennkraftmaschine
DE2814999A1 (de) Kraftstoff-einspritzduese fuer brennkraftmaschinen
DE10012970A1 (de) Verfahren zur Bildung eines zündfähigen Kraftstoff-Luftgemischs
EP1623108A1 (de) Kraftstoffeinspritzventil f r brennkraftmaschinen
DE3412625A1 (de) Verfahren zum steuern des ausflussquerschnittes von einspritzduesen fuer direkt einspritzende brennkraftmaschinen und einspritzduese zur durchfuehrung des verfahrens
WO2002048536A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1518049B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2018103917A1 (de) Kraftstoffinjektor
DE102009041028A1 (de) Düsenbaugruppe für ein Einspritzventil und Einspritzventil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): IN JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP