WO2003078501A1 - Particules de la composition polytrimethylene terephtalate et leur procede de production - Google Patents

Particules de la composition polytrimethylene terephtalate et leur procede de production Download PDF

Info

Publication number
WO2003078501A1
WO2003078501A1 PCT/JP2003/003118 JP0303118W WO03078501A1 WO 2003078501 A1 WO2003078501 A1 WO 2003078501A1 JP 0303118 W JP0303118 W JP 0303118W WO 03078501 A1 WO03078501 A1 WO 03078501A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
composition particles
less
ptt
polytrimethylene terephthalate
Prior art date
Application number
PCT/JP2003/003118
Other languages
English (en)
French (fr)
Inventor
Jinichiro Kato
Satoru Yoshida
Teruhiko Matsuo
Original Assignee
Asahi Kasei Fibers Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corporation filed Critical Asahi Kasei Fibers Corporation
Priority to JP2003576498A priority Critical patent/JP4053005B2/ja
Priority to US10/507,840 priority patent/US7332561B2/en
Priority to EP03710374A priority patent/EP1486525A4/en
Priority to AU2003221397A priority patent/AU2003221397A1/en
Priority to MXPA04008921A priority patent/MXPA04008921A/es
Priority to KR1020047014633A priority patent/KR100668571B1/ko
Publication of WO2003078501A1 publication Critical patent/WO2003078501A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/80Solid-state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber

Definitions

  • the present invention relates to polytrimethylene terephthalate composition particles and a method for producing the same.
  • PTT Polytrimethylene terephthalate
  • a polycondensate of terephthalic acid and z or a lower alcohol ester of terephthalic acid with 1,3-propanediol also referred to as trimethylene glycol, hereinafter abbreviated as PDO.
  • PTT fibers obtained by melt-spinning PTT have many excellent features such as surprisingly soft texture, drapability, excellent stretchability, low-temperature dyeability, and weather resistance. . These characteristics cannot be obtained with existing synthetic fibers such as conventional polyethylene terephthalate (hereinafter abbreviated as PET) fibers and nylon 6 fibers.
  • PET polyethylene terephthalate
  • a prepolymer obtained by melt polymerization is formed into pellets, and then heated and polymerized in a pellet state without remelting, that is, a combination of melt polymerization and solid state polymerization. Manufacturing methods are known.
  • the elementary reaction that constitutes the polycondensation reaction of PTT is mainly composed of the following two reactions.
  • the positive reaction is a chain growth reaction by removing PDO from two terminal hydroxyl groups (the following formula (a1) ),
  • the negative reaction is a reaction that undergoes decomposition by PDO for which the ester moiety was not discharged (the following formula (a 2): And a thermal decomposition reaction of the ester moiety (the following formula (b)).
  • PTT is more likely to undergo a thermal decomposition reaction than PET or polybutylene terephthalate (hereinafter abbreviated as PBT) having a similar skeleton.
  • PBT polybutylene terephthalate
  • kd in the above formula (b) is larger. For this reason, it is difficult to sufficiently increase the molecular weight only by melt polymerization, and a method of combining solid-state polymerization in which polymerization is performed at a low temperature equal to or lower than the melting point after melt polymerization is usually used.
  • the first problem is that PTT is prone to thermal decomposition during the melt polymerization stage.
  • PTT since kd in the above equation (b) is large, the molecular weight tends to decrease at high temperatures. Furthermore, the carboxyl group and the aryl group generated by the thermal decomposition accelerate the further thermal decomposition, and cause a reduction in the whiteness of the polymer and the oxidation resistance. Therefore, in the melt polymerization stage of PTT, it is an essential requirement to obtain high quality ⁇ ⁇ while suppressing thermal decomposition as much as possible, but the known technical range is still insufficient. Such a problem of thermal decomposition is hardly a problem in ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ .
  • the second problem is that thermal decomposition is suppressed by solid-state polymerization, and high molecular weight PTT can be obtained.However, the polymerization speed is significantly reduced by lowering the polymerization temperature. is there.
  • the solid-phase polymerization time of PTT differs depending on the molecular weight and the reached molecular weight of the prepolymer.
  • a considerably long time is required, a reduction in productivity is inevitable.
  • the temperature is low, if the solid phase polymerization is carried out at a temperature near 200 ° C. for a long time, some degree of thermal decomposition is inevitable.
  • the third problem is that PTT is liable to be broken in the state of pellets, and powder is liable to be generated in the state of rubbing between pellets in the course of transportation, drying, solid-state polymerization and the like.
  • a large amount of cyclic oligomers generated during the melt polymerization process is contained in PTT. If powder is mixed with the pellets, yarn breakage and fluff are likely to occur during the melt molding stage.
  • cyclic oligosaccharides have high sublimability, they precipitate around the spinneret during the melt spinning process, which again causes fluff and yarn breakage.
  • the problems of pellet cracking, generation of powdery materials, and cyclic oligomers are unique to PTT, and are not significant for PET or PBT with similar structures.
  • the cyclic oligomer content in PTT reaches 1.6 to 3.5 wt%.
  • the oligomer content in PET is about lwt%.
  • most of the oligomers of PET are cyclic trimers, whereas those of PTT have a large amount of cyclic dimers and a small molecular weight, and therefore have high sublimability and high solubility in water. Therefore, the problem of cyclic oligomers in the manufacturing process is much more severe with PTT than with PET.
  • Japanese Patent Application Laid-Open No. 8-31177 discloses that solid-state polymerization of a PTT pellet at around 200 ° C. in a vacuum for several hours results in an oligomer content of 1 wt% or less. It is described that it becomes.
  • the above problems other than the oligomer problem are not recognized and there is no description on the solution.
  • Japanese Patent Application Laid-Open No. 2000-1595895 discloses a polymer having a low terminal vinyl group content which is melt-polycondensed using a mixed catalyst of Ti and Mg in a specific state under reduced pressure.
  • a method is disclosed in which solid-state polymerization is performed in an inert gas atmosphere to obtain high-quality PTT.
  • Mg is used as the catalyst, so that the color becomes dull and the L * value is as low as about 60 to 70, resulting in a bad hue.
  • Example 8 of the international patent WO98 / 236362 pan fret describes a method of solid-state polymerization after pelletizing ⁇ ⁇ end-capped with a hindered phenol-based stabilizer. Have been.
  • Example 8 of International Patent No. WO99Z11709 pan fret describes a method of solidifying polymerization after pelletizing ⁇ ⁇ containing a phosphorus-based stabilizer. There. However, there is no mention or suggestion of any problems with formability, cracks, or powders, nor how to solve them. Disclosure of the invention
  • the present inventors have found that the above-mentioned problems unique to ⁇ ⁇ ⁇ ⁇ , namely, a decrease in whiteness due to the thermal decomposition of ⁇ ⁇ ⁇ , a problem related to oxidation resistance, and low production in the solid-state polymerization process Intensive studies were conducted to solve the problem of moldability, and the problem of reduced formability due to powders and cyclic dimers. as a result,
  • ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ differs from ⁇ ⁇ ⁇ and ⁇ ⁇ ⁇ ⁇ ⁇ in that it takes advantage of the phenomenon that it is easy to pulverize specifically, so that it can polymerize at a very high solid-state polymerization rate even at low temperatures. What we can do is to reduce the cyclic dimer content in ⁇ ⁇ ⁇ compared to the case of pellets, and to use only powder of a specific size without using pellets. Thus, they have found that fluff and yarn breakage are less likely to occur in the melt molding process.
  • the problem to be solved by the present invention is to provide PTT composition particles which are excellent in whiteness and oxidation resistance, have few thread breaks and fuzz, and are excellent in moldability. It is an object of the present invention to provide a method for obtaining a high-quality PTT with a low degree of thermal decomposition at a high productivity by forming a reaction product obtained by the condensation reaction into particles and subjecting the reaction product to solid phase polymerization.
  • the present invention is as follows.
  • a PTT composition particle characterized by satisfying the following.
  • the terminal carboxyl group content is not more than 25 milliequivalents g; (c) the cyclic dimer content is not more than 1.5 wt%:
  • More than 8 O wt% of repeating units are trimethylene terephthalate Consisting of units, having an intrinsic viscosity of 0.1 to 0.79 dl / g, and satisfying the following conditions (a) to (c), suitable for solid-phase polymerization PTT composition particles.
  • the amount of terminal carboxyl groups is not more than 35 milliequivalents / kg;
  • a method for producing PTT composition particles comprising at least the following steps (1) to (3). ⁇
  • step (1) (2) a step of forming particles of 1,3-propanediol ester of terephthalic acid and z or a polymer thereof obtained in step (1) above;
  • Polytrimethylene terephthalate composition particles characterized in that the PTT composition particles described in 3 or 4 above are heated in a solid state to increase the intrinsic viscosity by at least 0.1 ldl / g or more. Manufacturing method.
  • the method according to the above item 12, wherein the method of deactivating a part or all of the polycondensation activity of the catalyst is a method of contacting the particles with a polar compound at least 50 ° C or higher.
  • Method for producing PTT composition particles of the present invention 14.
  • PTT constituting the PTT composition particles of the present invention is a polymer in which 80 wt% or more of the repeating units are composed of trimethylene terephthalate units. Therefore, comonomers other than terephthalic acid and PDO may be copolymerized within a range of 20 wt% or less, preferably 10 wt% or less of the repeating unit.
  • comonomers examples include oxalic acid, succinic acid, adipic acid, sebacic acid, dodecanoic acid, dodecandioic acid, cyclohexanedicarboxylic acid, 5-sodium sulfoisophthalic acid, ethylene glycol, and butanediethanol Hexanediene, cyclohexanediene, cyclohexanedimethanole, trimethylenglycolone dimer, polyalkylene glycol having an average molecular weight of 400 to 200, and the like. Species or more combinations can be mentioned.
  • the PTT composition particles of the present invention may contain various additives as required, for example, an anti-glazing agent, a heat stabilizer, a defoaming agent, a color-matching agent, a flame retardant, an antioxidant, an ultraviolet absorber, and an infrared ray.
  • An absorber, a crystal nucleating agent, a fluorescent whitening agent and the like may be copolycondensed or mixed.
  • titanium oxide is preferable, and its content is preferably 0.01 to 3 wt% with respect to the composition particles.
  • a heat stabilizer in order to suppress thermal decomposition during the polymerization process.
  • a phosphorus compound such as phosphoric acid, trimethyl phosphate or triethyl phosphate is preferably used as a phosphorus element for the PTT composition particles, preferably from 2 to It is preferable to contain an amount corresponding to 250 ppm, more preferably 10 to 1 ppm.
  • a hindered phenol-based antioxidant may be used in an amount of 0.01 to 1 wt% based on the PTT composition particles.
  • a hue adjuster such as cobalt acetate, cobalt formate, or a fluorescent whitening agent may be added to the PTT composition particles in an amount of 0.0001 to 0.05 wt%.
  • the intrinsic viscosity of the PTT composition particles of the present invention is 0.8 to 2 dl / g, preferably 0.8 to: L.5 dlZg.
  • the intrinsic viscosity is less than 0.8 dl / g, the degree of polymerization is low, and the strength and durability of the molded article after melt molding are reduced. On the other hand, if the intrinsic viscosity exceeds 2 d 1 / g, the melt viscosity is too high, so that melt spinning becomes difficult.
  • the PTT composition particles of the present invention have a particle size of 3 mm or less and a mass of less than 1 mgZ from the viewpoint of solid-state polymerization rate and moldability.
  • the size of the particles exceeds 3 mm, the solid-state polymerization rate will be low, and powder will be generated by drying, transport, solid-state polymerization, etc., which will cause a reduction in moldability.
  • the lower limit of general powdering technology The lower limit is about 0.01 ⁇ m.
  • the preferred particle size is 2.7 mm to 1 ⁇ , and most preferably 2 mm to 25 m, from the viewpoint of ease of particle formation and post-treatment with a polar substance.
  • the particle size refers to the longest part of the PTT composition particles.
  • the particle size is a diameter when the particle is substantially circular, and a major axis when the particle is substantially elliptical.
  • the PTT composition particles of the present invention preferably have a filter passing amount of 10 mesh of 95% or more, and a filter passing amount of 500 mesh of 5% or less, particularly preferably.
  • the passing amount of the filter in the 100 mesh is 97% or more
  • the passing amount of the 500 mesh in the filter is 3% or less.
  • PTT composition particles of uniform quality can be obtained in terms of degree of polymerization, whiteness, amount of cyclic dimer, and the like. If the particles have such a uniform and uniform particle size and the particle shape is fine, the heat transfer effect is high, the drying time can be shortened, and the extrusion temperature can be lowered. The effects such as suppression are remarkable.
  • the mass of the PTT composition particles is less than 1 mg / piece, preferably 0.5 mg / piece or less, more preferably 0.3 mg / Z or less from the viewpoint of moldability. If the mass is too low, the particles are likely to agglomerate. Therefore, the lower limit is preferably 0.0001 mg or more from the viewpoint of suppressing agglomeration.
  • the amount of carboxyl groups derived from the PTT molecule terminals is not more than 25 milliequivalents per kg of the PTT composition particles, preferably not more than 15 milliequivalents / kg, Preferably it is 12 milliequivalent Zkg or less. If the terminal lipoxyl group content exceeds 25 milliequivalents (Zkg), coloring occurs during heating, and the oxidation resistance decreases.
  • the PTT composition particles of the present invention have a cyclic dimer content of PTT It is at most 1.5 wt%, preferably at most 1.3 wt%, more preferably at most 1 wt%, based on the weight of the composition particles. When the content of the cyclic dimer is in this range, no problem occurs due to the cyclic dimer in the spinning process or the processing stage.
  • the content of the cyclic dimer is preferably as small as possible, and most preferably zero.
  • the cyclic dimer is a substance having a structure represented by the following formula (1).
  • the PTT composition particles of the present invention have a cyclic dimer content of 2 after being kept in a molten state at 260 ° C. for 30 minutes. It is preferably at most wt%, more preferably at most 1.8 wt%, even more preferably at most 1.5 wt%, particularly preferably at most 1.1 wt%. If the content is less than 2 wt%, the PTT composition particles are re-melted, and the amount of cyclic dimer is significantly reduced in the melt-forming processes such as melt-spinning, melt-forming, injection molding, extrusion molding, and blow molding. be able to. The lower limit is not limited and is preferably as small as possible, and most preferably zero.
  • the PTT composition particles of the present invention preferably have an L * value of 75 or more, and a b * value of _2 to 5.
  • the L * value is 75 or more or the b * value is 5 or less, for example, when colored by dyeing or using a pigment, the product is excellent in color and clarity.
  • the L * value is preferably 80 or more, more preferably 85 or more, and the b * value is preferably 11 to 5, more preferably Haichi :! ⁇ 4.
  • L * and b * values are expressed as CIE—L * a * b * (CIE 1 9 7 6) It is an index of the color tone indicated by the color system.
  • the L * value represents 'brightness', and the larger the value, the brighter.
  • b * The value indicates yellowness, and the larger the value, the more yellowish.
  • the PTT composition particles of the present invention are obtained by reacting (1) terephthalic acid and / or a lower alcohol ester of terephthalic acid with PDO to form bis (3-hydroxypropyl) terephthalate and / or a polymer thereof. (2) a step of forming the obtained bis (3-hydroxypropyl) terephthalate and / or a polymer thereof into particles, and (3) a step of solid-state polymerization of the obtained particles. Manufactured.
  • the polymer of bis (3-hydroxypropyl) terephthalate is a polymer in which trimethylene terephthalate units are connected, and the degree of polymerization is preferably 2 or more, and more. More preferably, it is 3 to 100, and a hydroxyl group, a carboxyl group, an aryl group and the like may be present at the molecular terminal.
  • the charge ratio of pDO to terephthalic acid and / or a lower alcohol ester of terephthalic acid is preferably from 1 to 3 in terms of molar ratio, more preferably from 1.4 to 2.5, More preferably, it is 1.5 to 2.3.
  • the charge ratio is in this range, the esterification reaction proceeds smoothly, and a polymer having a high melting point and excellent whiteness can be obtained.
  • a lower alcohol ester of terephthalic acid is preferred because the obtained PTT composition particles have good hue.
  • a catalyst it is preferable to use a catalyst to make the reaction proceed smoothly.
  • the catalyst include titanium tetrabutoxide and titanium tetrasol.
  • Metal oxides such as titanium alkoxide represented by propoxide, amorphous titanium oxide precipitate, amorphous titanium oxide Z silica co-precipitate, amorphous zirconia precipitate, calcium acetate, manganese acetate, Using metal carboxylates such as cobalt acetate and antimony acetate, germanium compounds such as germanium dioxide, etc. in an amount of 0.01-1. It is preferable from the point of view.
  • the reaction temperature is preferably about 200 to 250 ° C., and the reaction can be performed while distilling off by-produced water and alcohol such as methanol.
  • the reaction time is usually 2 to 10 hours, preferably 2 to 4 hours.
  • the reaction product thus obtained is bis (3-hydroxypropyl) terephthalate and / or its oligomer, but the polycondensation reaction may be further advanced in a molten state.
  • the purpose of the polycondensation reaction is to obtain a molecular weight that is solid at a solid-state polymerization temperature of 190 to 22 ° C, that is, to increase the melting point above 190 ° C. It is not necessary to increase the molecular weight extremely.
  • titanium tetrabutoxide, titanium tetrisop, and titanium alkoxide represented by mouth poxide, if necessary
  • Metal oxides such as amorphous titanium oxide precipitates, amorphous titanium oxide / silica co-precipitates, amorphous zirconia precipitates, and germanium compounds such as germanium dioxide, etc. 0.
  • the polycondensation reaction can be performed according to a known method by adding 0.1 to 0.2 wt%.
  • the polycondensation reaction is preferably performed at 240 to 270 ° C., more preferably at 250 to 265 ° C., and the degree of vacuum is preferably 0.001 to lkPa, and While evaluating the amount of terminal carboxylic acid, the optimal polymerization time, usually within 3 hours, preferably less than 35 milliequivalents / kg 0.3 Perform for 2 to 2 hours.
  • the thermal decomposition reaction is superior to the polycondensation reaction, and the amount of terminal carboxylic acid generated by the thermal decomposition increases. It is.
  • the above-mentioned phosphorus compound-hindered phenol-based antioxidant and hue adjuster can be added.
  • the intrinsic viscosity of the reaction product obtained through the polycondensation reaction is usually 0.1 to 0.79 dl / g, and preferably 0.1 to 0.5 dl / g to suppress thermal decomposition. g. It usually contains 1.6 to 3.5 wt% of cyclic dimer.
  • the particle forming step (2) is performed.
  • 1,3-propanediol ester of terephthalic acid that is, bis (3-hydroxypropyl) terephthalate
  • Z or a polymer thereof from the polycondensation reaction tank.
  • a method of extruding the ester and / or its polymer in a molten state preferably after cooling and solidifying, and then cutting finely, After spraying, the particles are cooled and turned into fine particles, or solidified and then crashed (crushed).
  • a known method can be used as a method for crashing, and a Henschel mixer, a ball mill, a crusher, or the like can be used.
  • the size and mass of the obtained particles are as described above.
  • the thus obtained particulate prepolymer polymer composition is subjected to solid-state polymerization (3), and becomes the PTT composition particles of the present invention.
  • solid-state polymerization is a method in which a solid prepolymer polymer is heated
  • the intrinsic viscosity is increased by at least 0.1 dlZg or more than the intrinsic viscosity of the prepolymer composition.
  • the prepolymer composition is preferably heat-treated at a temperature equal to or lower than the melting point to carry out crystallization. By this crystallization, it is possible to suppress variation in the extraction speed due to fusion of particles in the solid-state polymerization step.
  • the heat treatment conditions are as follows: when the polycondensation reaction is performed, the temperature at which the particles reach a temperature of 190 to 225, preferably in an inert gas atmosphere, and a time at which this temperature is maintained is 5 to 12 It is preferably performed in 0 minutes. Within this temperature range, crystallization proceeds sufficiently and no mottling occurs, and no fusion of particles occurs during solid phase polymerization.
  • heat treatment at 80 to 180 ° C and 5 to 120 minutes is preferably applied before heat treatment for crystallization.
  • a method of gradually increasing the temperature at 100 to 200 ° C. as the crystallization heat treatment is preferable from the viewpoint of avoiding fusion and melting. In this crystallization stage, increase in molecular weight and emission of by-products such as PDO May be performed.
  • the solid-state polymerization temperature is preferably 170 to 25 ° C, more preferably 190 to 2O, in order to suppress the coloring of PTT and increase the solid-state polymerization speed.
  • the temperature is 15 ° C, most preferably 195 to 210 ° C.
  • the solid-state polymerization may be performed in a vacuum or in an inert gas stream.Either is used to efficiently discharge polymerization by-products such as water and PDO from the particle surface. This is an effective method, and it is important to perform it under specific conditions.
  • the solid phase polymerization When the solid phase polymerization is carried out in a vacuum, it is preferably at most 30 kPa, more preferably at most 20 kPa, most preferably at most 20 kPa for efficient discharge of polymerization by-products. 0.01 to 10 kPa.
  • the inert gas is a gas that does not substantially react with the P-cutter at the solid-state polymerization temperature, and includes, for example, nitrogen, argon, and neon.
  • nitrogen gas is used from the viewpoint of cost.
  • oxygen is contained in the inert gas, thermal decomposition is promoted during solid-phase polymerization and coloring occurs, so the oxygen content is preferably 100 ppm or less with respect to the inert gas.
  • Solid phase polymerization is carried out by flowing an inert gas through a solid phase polymerization tank containing particulate PTT.
  • the superficial velocity which is the flow rate of the inert gas at this time, is preferably 2 cm / min or more from the viewpoint of the force S and the solid-state polymerization rate.
  • There is no particular upper limit to the superficial velocity but if it exceeds 400 cmZmin, the efficiency of discharging polymerization by-products will not be improved.
  • 00 cm / min is preferred as the upper limit to avoid wasting the inert gas.
  • the superficial velocity is a value obtained by dividing the gas flow rate (cm 3 Z min) by the cross-sectional area (cm 2 ) of the solid-state polymerization tank through which the waste passes.
  • the particulate prepolymer composition is continuously supplied to one of the solid-state polymerization tanks at a constant speed, and the inert gas is inertized in a direction opposite to the flow of the particulate prepolymer composition.
  • the solid-phase polymerization tank may be any polymerization tank that can apply heat to the particulate prepolymer composition from the inner wall.
  • an inlet for the particulate prepolymer composition is provided above a cylindrical tube, It is preferable to use a bunker-type polymerization tank provided with a mortar-shaped outlet at the bottom, which can supply heat from outside with a heat medium or steam.
  • the residence time of the particulate prepolymer composition in the solid-state polymerization tank is preferably 0.5 to 20 hours, more preferably 0.5 to 10 hours. Continuous solid-state polymerization is more preferable because it has higher productivity than a patch-type system in which solid-state polymerization is performed in fixed amounts.
  • the PTT composition particles of the present invention are excellent in whiteness, oxidation stability, and moldability, but are further treated with a polar compound. Is preferred.
  • the PTT composition particles after solid-phase polymerization contain a catalyst that polycondenses 1,3-propanediol ester polymer of terephthalic acid, but is treated with a polar compound. By doing so, part or all of the polycondensation activity of the catalyst can be deactivated. By deactivating the catalyst, an increase in cyclic dimer during melting in the molding step is suppressed, and more preferable PTT composition particles having excellent light resistance can be obtained.
  • the particles are PTT composition particles and have a large specific surface area, the treatment with the polar compound can be performed more efficiently as compared with the case where pellets are treated.
  • Examples include a method of injecting or introducing a polar compound into the PTT composition particles.
  • the temperature at which the PTT composition particles are treated with the polar compound is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, even more preferably 150 ° C. or higher, and most preferably 18 ° C. or higher. 0 to 220 ° C.
  • the polar compound may be a liquid, gas, or fluid above the critical point.
  • the treatment time is not particularly limited, the longer the treatment time, the more the solvolysis of PTT will occur, and the lower the molecular weight will be. Therefore, the treatment is preferably performed in the shortest possible time. Usually, the time is preferably within 60 minutes, more preferably within 30 minutes, even more preferably within 10 minutes.
  • the polar compound is a compound having a heteroatom such as oxygen, nitrogen, phosphorus, sulfur, and more preferably a compound capable of hydrogen bonding.
  • a heteroatom such as oxygen, nitrogen, phosphorus, sulfur, and more preferably a compound capable of hydrogen bonding.
  • the polar compound is a compound having a heteroatom such as oxygen, nitrogen, phosphorus, sulfur, and more preferably a compound capable of hydrogen bonding.
  • ratio of the polar compound and the PTT composition particles when the particles are brought into contact with each other there is no particular limitation on the ratio of the polar compound and the PTT composition particles when the particles are brought into contact with each other, and it is generally sufficient that the ratio be 100,000 to 1/1 in mass ratio. .
  • the PTT composition particles of the present invention obtained as described above are excellent in whiteness, oxidation resistance stability, and moldability, fibers and films are formed by known melt molding, wet molding, and the like. It can be processed into molded articles such as molded articles.
  • fibers are useful for apparel and materials because of their excellent soft texture, fatigue resistance, and durability.
  • examples of the form of the fiber include multifilament, monofilament, souff, non-woven cloth, and the like.
  • a wide range from 0 dte X to a total fineness of 5 to 300 dtex is possible.
  • the intrinsic viscosity is preferably 0.8 to 2 dl Zg from the viewpoint of fatigue resistance, and the strength is preferably 3 cN / dtex or more, and more preferably Ac NZ dtex.
  • the elongation is 10 to 5 0% is preferred.
  • twisted yarns for example, reinforcing material applications such as tires, belts, and hoses. Particularly, excellent oxidation stability and fatigue resistance It is extremely useful as a tire cord for a piyasta by making use of its properties.
  • twisted yarns include single-twisted yarn, braided yarn, picco-molo twisted yarn, and strongly twisted yarn.
  • the number of twists is not particularly limited, and may be any of one twist, two twists, three twists, four twists, and five twists, and may be six or more twists.
  • the number of twists that can be ply-twisted with fibers other than PTT fiber for example, nylon fiber, PET fiber, aramide fiber, rayon, etc.
  • fibers other than PTT fiber for example, nylon fiber, PET fiber, aramide fiber, rayon, etc.
  • the number of twists may be arbitrarily selected according to the processing conditions and use environment.
  • the twist factor represented by the following formula K (TX m - dte X ° - 5) is also of is twisted in 1 0 0 0-3 0 0 0 0 in the range, development of strength, from the viewpoint of fatigue resistance.
  • Y is the number of twists per meter of twisted cord (TZm)
  • D is the total fineness of the twisted cord (dte X). This total fineness is the sum of the fineness of all the fibers used for the twisted yarn. For example, when three fibers of 1660 dte X are burned together, the total displayed fineness of the twisted yarn is 498 dtex (166 x 3).
  • the twisting factor is calculated using the number of twists added last as the number of twists Y.
  • a resorcinol-formalin-latex (hereinafter abbreviated as RFL) solution of 10 to 30 wt% is adhered to such a twisted cord, and heat is applied at least at 100 ° C to fix. By doing so, it is possible to obtain a processing code having excellent thermal characteristics.
  • the adhesion amount of the RFL resin is preferably 2 to 7 wt% based on the mass of the fiber.
  • the composition of the RFL liquid is not particularly limited, and a conventionally known composition can be used as it is or after being modified.
  • the preferred composition of the RFL solution is 0.1 to 10 wt% for resorcinol, 0.1 to 10 wt% formalin, and l to 28 wt% for latex, which is more preferable.
  • the content of resorcinol is 0.5 to 3 wt% of resorcinol, 0.5 to 3 wt% of honolemarin, and 10 to 25 wt% of latex.
  • the drying temperature in the RFL solution treatment is preferably from 120 to 250 ° C, more preferably from 130 to 200 ° C, for at least 10 seconds, preferably from 20 to 1 ° C. It is desirable to perform a dry heat treatment for 20 seconds. Further, it is desirable that the RFL-adhered code after drying be subjected to a constant-length heat treatment.
  • the treatment temperature is preferably the maximum heat shrinkage temperature of the twisted cord ⁇ 50 ° C, more preferably the maximum heat shrinkage temperature ⁇ 10 ° C, and most preferably the maximum heat shrinkage temperature ⁇ 5 ° C.
  • the heat treatment time is preferably from 10 to 300 seconds, and more preferably from 30 to 120 seconds.
  • the dimensional change of the cord before and after the heat treatment is preferably 3% or less, more preferably 1% or less, and most preferably 0%. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • the intrinsic viscosity was measured using a Ostwald viscometer at 35 ° C and o-chlorophenol at the ratio of specific viscosity s ⁇ to concentration C (g / 100 ml) (7 sp / C ) was calculated to be zero according to the following formula.
  • Amount of lipoxyl group at terminal end (VA-V0) X 20 ... (2)
  • 0.3 g of the sample is combined with 5 ml of clog form and 5 ml of (CF 3 ) 2 C After dissolving in a mixed solution with HOH, 5 ml of a mouth form was further added, and then about 80 ml of acetonitrile was added. The insolubles precipitated at this time were filtered off, and the entire solution was collected. Acetonitrile was added to this solution to make a 200 ml solution.
  • This solution was analyzed using high performance liquid chromatography to determine the amount of cyclic oligomer.
  • the column used was Bond asphere 15 ⁇ C-18-100 A 3.9 x 190 mm (Waters), and water / acetonitrile (volume ratio) was used as the mobile phase. 30/70) was used, and the wavelength of ultraviolet rays was 24 nm as a detector. The temperature was 45 ° C. and the flow rate was 1.5 m 1 / min.
  • the obtained polymer was extruded in a rope shape from the bottom of the polycondensation reaction tank, and cut to obtain a pellet having an intrinsic viscosity of 0.5 d1 Zg and a mass of 25 mg / piece.
  • the obtained pellet is placed in a sample mill SM-1 manufactured by Inuchi Seieido Co., Ltd., and finely pulverized for 1 minute at the maximum speed.
  • the particle size is lmm
  • the mass is 0.95 mgZ
  • the terminal carboxyl is A PTT composition particle prepolymer having a basis weight of 32 milliequivalents Z kg and a cyclic dimer content of 2.7 wt% was obtained.
  • the obtained prepolymer was crystallized by heating at 200 ° C. for 15 minutes, and then subjected to solid-state polymerization at 205 ° C. under a vacuum of 5 Pa.
  • Table 1 shows the time of the solid phase polymerization and the physical properties of the obtained PTT composition particles.
  • the obtained PTT composition particles were excellent in whiteness and oxidation resistance stability, and had a small amount of cyclic dimers.
  • Each of the PTT composition particles obtained in Examples 1 and 2 was dried at 130 ° C, the water content was adjusted to 50 ppm or less, and melted at 260 ° C using a twin-screw extruder. And extruded at a winding speed of 1,600 m / min at intervals of 3 kg to obtain an undrawn yarn. The residence time during melting was about 10 minutes.
  • the drawn undrawn yarn is passed through a hot roll at 55 ° C and a hot plate at 140 ° C, and hot stretched to an elongation of 40%. A 4 dtex / 36 f filament was obtained. 3 days spinning experiment However, there was no winding of undrawn yarn, yarn breakage in the drawing process, and no fluff.
  • nitrogen gas heated to 207 ° C was flowed at a superficial velocity at a flow rate of 100 cm / in (converted to standard conditions), while passing through the outer wall of the solid-state polymerization apparatus at 210 cm / in.
  • a heat treatment at 15 ° C. was applied for 15 minutes to crystallize the prevolimer particles of the PTT composition.
  • the pre-polymerized PTT composition particles are put into a solid-state polymerization apparatus, and nitrogen gas heated to 205 ° C is flowed at a superficial velocity at a flow rate of 100 cmZm in (standard state conversion). Then, solid-state polymerization was carried out while applying heat of 205 ° C. from the outer wall to obtain PTT composition particles.
  • the solid-state polymerization time is as shown in Table 1.
  • the obtained PTT composition particles were excellent in whiteness and oxidation stability, and had a small amount of cyclic dimer.
  • Each of the obtained PTT composition particles is dried at 130 ° C., the moisture content is adjusted to 5 O ppm or less, and the mixture is melted and extruded at 260 ° C. using a twin-screw extruder. At a speed of 1,600 m / min, the yarn was wound every 3 kg to obtain an undrawn yarn. The residence time during melting was about 10 minutes.
  • the drawn undrawn yarn was hot drawn so as to have an elongation of 40% while passing through a hot roll at 55 ° C and a hot plate at 140 ° C. A filament of 36 i was obtained.
  • the spinning experiment was performed for 3 days, but no undrawn yarn was wound up, no yarn breakage occurred during the drawing process, and no fluff was generated. '
  • Example 6 Dimethyl terephthalate 134 g (6.7 mol), PDO114 g (15 mol), titanium butoxide 0.78 g, 3 liters with plate-like blades The mixture was charged in an autoclave, and transesterification was performed at 220 ° C. while distilling off methanol. The transesterification rate was 95%. After completion of the transesterification, the obtained reaction product was atomized by applying a nitrogen pressure of 0.5 MPa to form particles. The obtained particles had a size of 0.3 mm, a mass of 0.3 mg / piece, a terminal carboxyl group content of 30 milliequivalents Z kg, and a cyclic dimer content of 2.7 wt%.
  • the obtained particles were crystallized in a vacuum of 5 Pa while the temperature was raised from 70 ° C. to 200 ° C. over 1 hour. At this time, the molecular weight increased.
  • solid phase polymerization was carried out at 205 ° C. under a vacuum of 5 Pa to obtain PTT composition particles.
  • Table 1 shows the solid-state polymerization time and the physical properties of the obtained PTT composition particles.
  • the obtained PTT composition particles were excellent in whiteness and oxidation stability, and had a small amount of cyclic dimer.
  • Example 2 The same procedure as in Example 1 was carried out using the same moles of terephthalenoic acid in place of dimethyl terephthalate and distilling off water.
  • the particulate prevolimer had a size of 1.0 mm, a mass of 0.95 mg / piece, a terminal lipoxyl group content of 34 milliequivalents Z kg, and a cyclic dimer content of 2.6 wt%. .
  • the obtained PTT composition particles were excellent in whiteness and oxidation stability, and had a small amount of cyclic dimer.
  • the PTT composition particles obtained in Example 1 were allowed to stand in steam at 205 ° C. for 1 hour, and then dried. Although there was no significant change in the physical properties of the obtained PTT composition particles, the annular die after the 260 ° C melting test was performed. The amount of the mer was as low as 1.0 wt%. Further, when a light resistance test was conducted at 83 ° C for 100 hours using a fade meter, almost no yellowish color was found.
  • Example 1 when the PTT composition particles obtained in Example 1 were subjected to a re-melting test at 260 ° (30 minutes without steam treatment), the PTT composition in the re-melted PTT composition was found.
  • the amount of the cyclic dimer contained was 1.8 wt%, and a 100-hour light fastness test was carried out at 83 ° C. using a fade meter.
  • the PTT composition particles obtained in Example 1 were left at 130 ° C. for 1 hour in a 1 wt% phosphoric acid aqueous solution, and then dried. Although there was no significant change in the physical properties of the obtained PTT composition particles, the amount of cyclic dimer after the melt test at 260 ° C. was as small as 0.9 wt%. Further, when a light fastness test was carried out at 83 for 100 hours using a ferrite meter, it was almost yellowish.
  • the PTT composition particles treated with the phosphoric acid aqueous solution were further subjected to solid-state polymerization at 205 ° C. for 1 hour under a vacuum of 5 MPa, and no increase in the intrinsic viscosity was observed. This indicates that the catalyst was deactivated by the phosphoric acid aqueous solution treatment.
  • the procedure was performed in the same manner as in Example 1 except that the melt polycondensation was performed at a polycondensation temperature of 280 ° C.
  • the obtained prepolymer pellet has a solid viscosity of 0.7 dl / g, L * force of 74, b * force of S7.0, and a terminal carbohydrate.
  • the amount of xyl groups was 40 milliequivalents / kg, the amount of cyclic dimers was 2.9 wt%, and the pellet was strongly yellowish and had a dull color.
  • the pellet was pulverized into particles in the same manner as in Example 1 and solid state polymerization was performed. As a result, the solid state polymerization rate was low. In addition, the obtained PTT composition particles had a large amount of terminal lipoxyl groups, so that they were strongly colored, and were also strongly colored during drying heat treatment.
  • Example 25 Performed in the same manner as in Example 1 except that solid-state polymerization was performed without crushing 25 mg / piece prepolymer pellet (cylindrical shape having a diameter of 2.4 mm and a height of 4.0 mm).
  • the resulting PTT composition particles had an intrinsic viscosity of ⁇ .61 dl / g.
  • the PTT composition particles obtained in Example 3 were dried in a nitrogen stream at 130 ° C. to a water content of 10 ppm, then charged into an extruder, and melted at 29 ° C. It was extruded through 0.23 mm X 250 mm round spinning holes. There was no fluctuation in the screw pressure in the extruder, and spinning was possible smoothly.
  • the extruded filament group was blown with cold air at 20 ° C and a relative humidity of 90% at a speed of 0.4 m / sec to be cooled and solidified.
  • the finishing agent was adhered to the solidified filament group, and was wound at 1,600 m / min to obtain an undrawn yarn.
  • the obtained undrawn yarn was drawn through a hot roll at 55 ° C and a hot plate at 140 ° C so as to have an elongation of approximately 40%.
  • / 250 f drawn yarn was obtained.
  • the obtained drawn yarn had a strength of 5.3 cN / dtex and an elastic modulus of 25 cN / dtex.
  • composition particles of Example 1 3 hours with the composition particles of Example 1 and 15 hours with the polymer pellet of Comparative Example 2 to reach a water content of 50 ppm or less when kept in dry air at 160 ° C. Met.
  • the composition particles of Example 1 had no change in b *, but the polymer pellets of Comparative Example 2 had an increase of b * force s 0.4.
  • Polymer pellets 2 were melted using an extruder.
  • the composition particles of Example 1 could be discharged stably even at 247 ° C., but the polymer pellets of Comparative Example 2 were insufficiently dissolved and the pressure fluctuated greatly.
  • table 1
  • Solid-state polymerization C Particle passing amount Terminal cyclic L ⁇ b * Oxidation resistance time Time (dl / g) Size ri 10 mesh 500 mesh carboxy'xyl
  • Example 1 205 3 0.92 1.0.0 0.96 96 1 23 0.99 88 1 18
  • Example 2 205 5 1.30 1.0.0 0.96 95 3 20 0.88 89 219
  • Example 3 205 10 1.67 1. 0 0.96 97 1 20 0.6 90 2 19
  • Example 4 207 3 0.95 1.0 0.96 95 3 15 0.8.89 1 18
  • Example 5 207 5 1.32 1. 0 0.96 95 2 13 0.7 90 2 19
  • Example 6 205 3 1.05 0.30.15 98 2 8 0.6.91 015
  • Example 7 205 5 1.40 0.3 0.15 99 2 9 0.5 91 0 15
  • Example 8 205 3 0.91 1.0 0.96 95 2 25 0.7.90 1 19
  • Example 9 205 3 0.92 1. 0 0.95 97 1 22 0.99 89 1 17
  • Example 10 205 3 0.93 1.0.0 0.95 96 2 25 0.99 90 1 16
  • Comparative Example 1 205 3 0.79 1.100 . 94 95 1 30 2.6 83 7 26
  • Comparative Example 2 205 3 0.61 4.0 25.5 1 0 25 1.2 88 3 21
  • the PTT composition particles of the present invention have high whiteness, oxidation resistance stability, moldability, and high homogeneity, are excellent in moldability, and have a fine and uniform particle shape. It has a high heat transfer effect, and has at least one or more excellent effects, such as a short drying time and suppression of thermal degradation due to a low extrusion temperature. Therefore, by using the PTT composition particles of the present invention as a raw material, it is possible to produce high-quality fibers or films without spinning during spinning with high productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書 ポリ ト リ メチレンテ レフタ レー ト組成物粒子及びその製造方法 技術分野
本発明は、 ポリ ト リ メチレンテレフタレー ト組成物粒子及びその 製造方法に関する。 背景技術
ポリ ト リ メチレンテレフタレー ト (以下、 P T Tと略記する) は
、 テ レフタル酸及び z又はテ レフタル酸の低級アルコールエステル と、 1, 3 —プロパンジオール ( ト リ メ チレングリ コールと もレヽ ぅ : 以下、 P D Oと略記する) との重縮合体である。
P T Tを溶融紡糸して得られる P T T繊維は、 驚くべきほどのソ フ トな風合いやドレープ性、 優れたス ト レッチ性、 低温染色性、 耐 候性など、 多くの優れた特徴を兼ね備えている。 これらの特徴は、 従来のポリ エチレンテレフタレー ト (以下、 P E Tと略記する) 繊 維やナイ 口ン 6繊維等の既存の合成繊維では得られないものである
P T Tの製造方法としては、 溶融重合で得たプレボリマーをー且 ペレツ ト化した後、 再溶融させることなくペレッ トの状態で加熱し て重合する方法、 即ち、 溶融重合と固相重合の組み合わせによって 製造する方法が知られている。
P T Tの重..縮合反応を構成する素反応は、 主に、 以下の 2種の反 応から構成され、 正 '反応は 2つの末端水酸基の脱 P D Oによる連鎖 成長反応 (下記式 ( a 1 ) ) 、 負反応は、 エステル部分が排出され なかった P D Oによつて分解を受ける反応 (下記式 ( a 2 ) : 即ち 、 式 ( a 1 ) の逆反応) とエステル部分の熱分解反応 (下記式 ( b ) ) である。
kl
2 卜 C00CH2CH2CH20H〕 → C00CH2 CH2 CH200C'
+ H0CH2CH2CH20H ……式 (al)
k2
2 (:〜 C00CH 22CH2CH20H j〕 - C u0»0JC jHug2 C uH22 ^ ClHL 2.00C
+ H0CH2CH2CH20H ……式 (a2)
kd
~C00CH 29CH,CH900C~ → > 一C00H + CH9一 = CHC 00C
……式 ( b )
P T Tは、 類似骨格を有する P E Tやポリ ブチレンテレフタ レー ト (以下、 P B Tと略記する) よ り も熱分解反応が起こ りやすい、 換言すれば、 上記式 ( b ) における kdが大きい。 そのため、 溶融重 合のみで分子量を十分に高めることは難しく、 溶融重合後に、 融点 以下の低温で重合を行う固相重合を組み合わせる方法が通常用いら れる。
しかしながら、 P T Tの製造においては、 ポリマーの性状に起因 する様々な問題がある。
第一の問題は、 P T Tは溶融重合段階で熱分解を生じやすいこと である。 P T Tでは、 上記式 ( b ) における kdが大きいので、 高温 では分子量の低下が起こ りやすい。 更に、 熱分解で生じたカルボキ シル基ゃァリ ル基は、 更なる熱分解を加速し、 ポリマーの白度ゃ耐 酸化安定性の低下の原因ともなる。 従って、 P T Tの溶融重合段階では、 できるだけ熱分解を抑制す ることが、 高品質の Ρ Τ Τを得る必須要件となるが、 公知の技術範 囲ではまだ不十分である。 このような熱分解の問題は、 Ρ Ε Τ Ρ Β Τではほとんど問題とならない。 Ρ Ε Τや Ρ Β Τでは、 kdに相当 する熱分解速度定数が P T Tに比べて遙かに小さく、 熱分解が起こ りにく いので、 溶融重合のみでも高品質のポリマーを製造すること ができるため、 固相重合を組み合わせなく とも十分な高分子量ポリ マーを得ることができる。 従って、 この第一の問題は、 P T Tに極 めて特有の問題であり、 ? £丁ゃ? 8丁に関する公知の情報を用ぃ ても、 この問題を解決することは困難である。
'第二の問題は、 固相重合を行う ことによ り熱分解は抑制され、 高 分子量の P T Tを得ることができるが、 重合温度の低温化によ り重 合速度が著しく遅くなることである。 公知の技術では、 P T Tの固 相重合時間は、 プレポリマーの分子量や到達分子量によっても異な るが、 かなりの長時間が必要となるために、 生産性の低下は避けら れない。 また、 低温とはいえ、 2 0 0 °C近傍の温度で長時間固相重 合すると、 ある程度の熱分解は避けられない。
第三の問題は、 P T Tは、 ペレッ トの状態では割れやすく、 輸送 、 乾燥、 固相重合等の過程でペレッ ト同士が擦れ合う状態では、 粉 状物が発生しやすい。 また、 溶融重合過程で生成する環状オリ ゴマ 一が P T Tに大量に含まれることである。 ペレッ トに粉状物が混合 すると、 溶融成形段階で糸切れや毛羽が発生しやすくなる。 また、 環状ォリ ゴマ一は昇華性が高いので、 溶融紡糸段階で紡口周辺に析 出し'、 やはりそれが毛羽や糸切れの原因となる。
ペレツ トの割れ、 粉状物の発生及び環状オリ ゴマーの問題につい ては、 P T Tに特有の問題であり、 類似構造を有する P E Tや P B Tではほとんど問題にならない。 溶融重合のみで製造した場合、 P T T中の環状オリ ゴマー含有量 は 1. 6〜 3. 5 w t %にも達する。 これに対し、 P E T中のオリ ゴマー含有量は約 l w t %程度である。 更に、 P E Tのオリ ゴマー は環状 3量体が大部分であるが、 P T Tの環状オリ ゴマ一は環状ダ ィマーが大部分であつて分子量が小さいため、 昇華性や水への溶解 性が大きい。 従って、 製造工程における環状オリ ゴマーの問題は、 P E Tの場合に比べて、 P T Tの場合の方が、 問題の程度がはるか に深刻である。
P T Tを、 溶融重合と固相重合を組み合わせて製造方法する方法 はいくつか知られているが、 以上の問題を同時に解決する方法につ いては未だ知られていない。
例えば、 特開平 8— 3 1 1 1 7 7号公報には、 P T Tのペレッ ト を 2 0 0 °C近傍で、 真空中で数時間固相重合すると、 オリ ゴマーの 含有量は 1 w t %以下になることが記載されている。 しかしながら 、 オリ ゴマーの問題以外の上記の問題については、 認識されておら ず、 その解決方法に関する記載はない。
米国特許第 s o o i zo o s e i ? ?号 A 1明細書には、 1 0〜
1 5 m gの P T Tペレツ トを固相重合する方法が記載されている。 しかしながら、 粉状物の発生や環状オリ ゴマーの問題については、 全く認識されておらず、 その解決方法に関する示唆はない。
特開 2 0 0 0— 1 5 9 8 7 5号公報には、 特定の状態の T i と M g との混合触媒を用いて溶融重縮合した末端ビニル基量の低いポリ マーを、 減圧下または不活性気体雰囲気下で固相重合し、 高品位の P T Tを得る方法が開示されている。 しかし、 この方法では、 触媒 に M gを使用しているため、 くすみのある色相となり、 L *値が 6 0〜 7 0前後と低く、 色相の悪いペレッ ト となる。 また、 上記の問 題についての認識やその解決方法に関する示唆はない。 国際特許 WO 9 7 / 2 3 5 4 3号パンフ レツ トには、 低重合度の 溶融 P T Tをペレッ ト化せずに、 ホッ トプレー ト上に落とし、 6 0 〜 1 9 0 °Cで結晶化させて見掛け微結晶サイズが 1 8 n m以上の固 ' 体状 P T Tを得、 その後に固相重合する方法が記載されている。 し かしながら、 この方法で得られる P T Tは表面の凹 ώが激しく、 互 いに擦り合わせる と容易に粉状物が発生するため、 成形性はよくな いと推定される。 また、 色調、 耐酸化安定性の向上についての記載 はなく、 成形性、 割れ、 粉状物についての問題認識やその解決方法 に関しては記載も示唆もない。
国際特許 WO 9 8 / 2 3 6 6 2号パンフ レツ トの実施例 8には、 ヒンダ一ドフエノール系安定剤で末端封止した Ρ Τ Τをペレッ ト化 した後、 固相重合する方法が記載されている。 国際特許 WO 9 9 Z 1 1 7 0 9号パンフ レッ トの実施例 8には、 リ ン系安定剤を含有し た Ρ Τ Τをペレツ ト化した後、 固相重合する方法が記載されている 。 しかし、 いずれにも、 成形性、 割れ、 粉状物についての問題認識 やその解決方法に関しては記载も示唆もない。 発明の開示
本発明者らは、 上記のような Ρ Τ Τに特有の問題、 即ち、 Ρ Τ Τ の熱分解に起因する白度の低下、 耐酸化安定性に関わる問題、 固相 重合工程での低生産性の問題、 さ らに粉状物や環状ダイマーによる 成形性低下の問題を解決するために鋭意検討を重ねた。 その結果、
Ρ Τ Τは、 Ρ Ε Τや Ρ Β Τとは異なり、 特異的に粉体化しやすいと いう現象をむしろ積極的に活用することにより、 低い温度であって も著しく速い固相重合速度で重合できること、 ペレッ トの場合に比 ベて Ρ Τ Τ中の環状ダイマー含有量を減少させることができること 、 更には、 ペレッ トを用いずに特定サイズの粉体だけにすることに よ り、 溶融成形工程で毛羽や糸切れが発生しにくいことを見出した ものである。
更に、 溶融重縮合工程で高重合度 (高粘度) にする必要がないた め溶融重縮合反応の短時間化が可能で、 固相重合をより低温化して も、 高分子量でかつ熱分解の程度が最小限に抑制された P T Tが得 られることをも見出した。
本発明が解決しょう とする課題は、 白度、 耐酸化安定性に優れ、 糸切れ、 毛羽が少なく成形性に優れた P T T組成物粒子を提供する こ とであり、 具体的には、 溶融重縮合反応によ り得た反応物を粒子 化し、 これを固相重合することによって、 熱分解の程度が少ない高 品質の P T Tを高い生産性で得る方法を提供することである。
すなわち、 本発明は下記の通りである。
1 . 繰返し単位の 8 0 w t %以上が ト リ メチレンテレフタ レー ト 単位からなり、 固有粘度が 0. 8〜 2 d l Z gであって、 かつ、 下 記 ( a ) 〜 ( c ) の条件を満たすこ とを特徴とする P T T組成物粒 子。
( a ) 粒子の大きさが 3 mm以下、 質量が 1 m g 個未満である
( b ) 末端カルボキシル基量が 2 5 ミ リ当量 g以下である ; ( c ) 環状ダイマーの含有量が 1 . 5 w t %以下である :
2. 該粒子を 2 6 0 °Cにて 3 0分間溶融状態で保持した後の環状 ダイマー含有量が 2 w t %以下であることを特徴とする上記 1 に記 載の P T T組成物粒子。
3. 該粒子が、 1 0メ ッシュのフィルター通過量が 9 5 %以上で あり、 かつ、 5 0 0メ ッシュのフィルタ一通過量が 5 %以下である ことを特徴とする上記 1又は 2に記載の P T T組成物粒子。
4. 繰返し単位の 8 O w t %以上が ト リ メチレンテレフタレート 単位からなり、 固有粘度が 0. 1〜0. 7 9 d l / gであって、 力、 つ、 下記 ( a ) 〜 ( c ) の条件を満たすことを特徴とする、 固相重 合に適した P T T組成物粒子。
( a ) 粒子の大きさが 3 mm以下、 質量が 1 m g /個未満である
( b ) 末端カルボキシル基量が 3 5 ミ リ当量/ k g以下である ;
( c ) 環状ダイマーの含有量が 1. 6〜 3. 5 w t %である :
5. 該粒子が、 1 0メ ッシュのフィルタ一通過量が 9 5 %以上で あり、 かつ、 5 0 0メ ッシュのフィルタ一通過量が 5 %以下である ことを特徴とする上記 4に記載の、 固相重合に適した P T T組成物 粒子。
6. 少なく とも下記 ( 1 ) 〜 ( 3 ) の工程を含むことを特徴とす る P T T組成物粒子の製造方法。 ■
( 1 ) テレフタル酸及び/又はテレフタル酸の低級アルコールェ ステル誘導体と 1, 3—プロパンジォ一ルを反応させて、 テレフタ ル酸の 1, 3—プロパンジオールエステル及び Z又はその重合体を 生成させる工程 ;
( 2 ) 上記 ( 1 ) の工程で得られたテレフタル酸の 1, 3—プロ パンジオールエステル及び z又はその重合体を粒子化する工程 ;
( 3 ) 粒子化されたテレフタル酸の 1, 3—プロパンジオールェ ステル及び/又はその重合体を固相状態で加熱して、 固有粘度を少 なく とも 0. 1 d 1 g以上、 上昇させる工程 :
7. テレフタル酸の 1, 3—プロパンジオールエステル及び 又 はその重合体を粒子化する方法が、 下記 ( 1 ) 〜 ( 3 ) の少なく と も 1つであることを特徴とする上記 6に記載の P T T組成物粒子の 製造方法。
( 1 ) 該エステル及び z又はその重合体を溶融状態で押し出した 後、 切断する方法 ;
( 2 ) 該エステル及び/又はその重合体を霧状に噴霧後、 微粒子 化する方法 ;
( 3 ) 該エステル及び/又はその重合体を固化させた後、 クラッ シュする方法 :
8. 該粒子の大きさが 3 mm以下で、 かつ、 質量が l m g Z個未 満あることを特徴とする上記 6又は 7に記載の P T T組成物粒子の 製造方法。
9. 該粒子が、 1 0メ ッシュのフィルタ一通過量が 9 5 %以上で あり、 かつ、 5 0 0メ ッシュのフィルタ一通過量が 5 %以下である ことを特徴とする上記 7に記載の P T T組成物粒子の製造方法。
1 0. テ レフタル酸の 1, 3—プロパンジオールエステルの重合 体の末端カルボキシル基量が 3 5 ミ リ当量/ k g以下であることを 特徴とする上記 6〜 9のいずれかに記載の P T T組成物粒子の製造 方法。
1 1 . 上記 3又は 4に記載の P T T組成物粒子を固相状態で加熱 して、 固有粘度を少なく とも 0. l d l / g以上、 上昇させること を特徴とするポリ ト リ メチレンテレフタレート組成物粒子の製造方 法。
1 2. 固相状態で加熱して、 固有粘度を少なく とも 0. l d l Z g以上、 上昇させた後、 触媒に残存する重縮合活性の一部又は全部 を失活させることを特徴とする上記 6〜 1 1のいずれかに記載の P T T組成物粒子の製造方法。
1 3. 上記触媒の重縮合活性の一部又は全部を失活させる方法が 、 該粒子を少なく とも 5 0 °C以上の極性化合物と接触させる方法で あることを特徴とする上記 1 2に記載の P T T組成物粒子の製造方 法。 1 4 . 上記 1〜 3のいずれかに記載の P T T組成物粒子を、 少な く とも 5 0 °C以上の極性化合物と接触させることを特徴とする P T T組成物粒子の製造方法。
1 5 . 極性化合物が、 水、 メタノール、 リ ン酸、 塩化水素、 硫酸 、 アンモニアから選ばれた少なく とも 1種であることを特徴とする 上記 1 3又は 1 4に記載の P T T組成物粒子の製造方法。
1 6 . 上記 1〜 3のいずれかに記載の P T T組成物粒子を成形し てなる成形体。
1 7 . 上記 1〜 3のいずれかに記載の P T T組成物粒子を成形し てなる繊維。
1 8 . 繰返し単位の 8 0 w t %以上が ト リ メチレンテレフタレー ト単位からなり、 固有粘度が◦ . 8〜2 1 8でぁる?丁 T組成 物粒子を成形してなるタイヤコー ド。
1 9 . 上記 1 8に記载のタィヤコ一ドを用いたタイヤ。
以下、 本発明を詳細に説明する。
本発明の P T T組成物粒子を構成する P T Tは、 繰返し単位の 8 0 w t %以上が ト リ メチレンテレフタレート単位からなるポリマー である。 したがって、 繰返し単位の 2 0 w t %以下、 好ましく は 1 0 w t %以下の範囲で、 テレフタル酸、 P D O以外のコモノマーを 共重合してもよい。
コモノマーの例としては、 シユウ酸、 コハク酸、 アジピン酸、 セ パシン酸、 ドデカン酸、 ドデカン二酸、 シク ロへキサンジカルボン 酸、 5 _ナト リ ウムスルホイソフタル酸、 エチレングリ コール、 ブ タンジ才ーノレ、 へキサンジ才ーノレ、 シク ロへキサンジ才ーノレ、 シク 口 へキサンジメ タ ノ ーノレ、 ト リ メ チレングリ コ ーノレダイマ—、 平均 分子量 4 0 0〜2 0 0 0 0 のポリ アルキレンダリ コ ール等の 1種ま たはそれ以上の組み合わせが挙げられる。 本発明の P T T組成物粒子には、 必要に応じて各種の添加剤、 例 えば、 艷消し剤、 熱安定剤、 消泡剤、 整色剤、 難燃剤、 酸化防止剤 、 紫外線吸収剤、 赤外線吸収剤、 結晶核剤、 蛍光増白剤等が共重縮 合または混合されていてもよい。 艷消剤と しては酸化チタンが好ま しく、 その含有量は Ρ Τ Τ組成物粒子に対して 0. 0 1〜 3 w t % が好ましい。
また、 重合過程での熱分解を抑制するために熱安定剤を使用する ことが好ましい。 熱安定剤と しては、 例えば、 リ ン酸、 リ ン酸ト リ メチル、 リ ン酸ト リェチル等のリ ン化合物を、 P T T組成物粒子に 対しリ ン元素と して、 好ましく は 2 ~ 2 5 0 p p m、 よ り好ましく は 1 0〜 1 ◦ 0 p p mに相当する量を含有させることが好ましい。 また、 熱安定剤と して、 ヒ ンダードフエノール系酸化防止剤を、 P T T組成物粒子に対し 0. 0 1〜 1 w t %用いてもよい。
着色が生じる場合は、 酢酸コバルト、 ギ酸コバルト、 蛍光増白剤 等の色相調整剤を、 P T T組成物粒子に対し 0. 0 0 0 1〜 0. 0 5 w t %添加してもよい。
本発明の P T T組成物粒子の固有粘度は 0. 8〜 2 d l / gであ り、 好ましく は 0. 8〜: L . 5 d l Z gである。
固有粘度が 0. 8 d l / g未満の場合は、 重合度が低いため、 溶 融成形後の成形品の強度、 耐久性が低く なる。 また、 固有粘度が 2 d 1 / gを越えると、 溶融粘度が高すぎるため、 溶融紡糸が困難に なる。
本発明の P T T組成物粒子は、 固相重合速度、 成形性の観点から 、 粒子の大きさが 3 mm以下、 質量が 1 m g Z個未満である。
粒子の大きさが 3 mmを越えると、 固相重合速度が遅く、 また、 乾燥、 輸送、 固相重合等で粉が発生して成形性低下の原因となる。 下限については特に制限はないが、 一般的な粉状化技術による最小 値である 0. 0 1 μ m程度が下限である。
粒子化の容易さ、 極性物質による後処理の点などから、 好ましい 粒子の大きさは 2. 7 mm〜 1 μ πιであり、 最も好ましく は 2 mm 〜 2 5 mであ 。
なお、 粒子の大きさとは、 P T T組成物粒子の最も長い部分を云 い、 例えば、 粒子がほぼ円形であればその直径、 ほぼ楕円形であれ ばその長軸となる。
また、 本発明の P T T組成物粒子は、 1 0メ ッシュのフィルター 通過量が 9 5 %以上であり、 かつ、 5 0 0メ ッシュのフィルタ一通 過量が 5 %以下であることが好ましく、 特に好ましく は、 1 0メ ッ シュのフィルタ一通過量が 9 7 %以上であり、 かつ、 5 0 0メ ッシ ュのフィルタ一通過量が 3 %以下である。 この範囲であると、 重合 度、 白度、 環状ダイマー量等の点で、 均質な品質の P T T組成物粒 子が得られる。 粒子がこのよ う に均質で、 均一な粒径を有し、 粒子 形状が細かいと、 伝熱効果が高く、 乾燥時間の短時間化、 押出温度 の低温化が可能であるため、 熱劣化の抑制等の効果が顕著である。
P T T組成物粒子の質量と しては、 成形性の観点から 1 m g /個 未満であり、 好ましくは 0. 5 m g /個以下、 更に好ましく は 0. 3 m g Z個以下である。 質量が低すぎると粒子が凝集しやすくなる ので、 下限については、 凝集抑制の点から、 0. 0 0 0 1 m gノ個 以上であることが好ましい。
本発明の P T T組成物粒子は、 P T T分子末端に由来のカルボキ シル基量が、 P T T組成物粒子 1 k g当たり 2 5 ミ リ当量以下であ り、 好ましく は 1 5 ミ リ当量/ k g以下、 更に好ましく は 1 2 ミ リ 当量 Zk g以下である。 末端力ルポキシル基量が 2 5 ミ リ 当量 Zk gを越える と、 加熱時に着色したり、 耐酸化安定性が低下する。 本発明の P T T組成物粒子は、 環状ダイマーの含有量が、 P T T 組成物粒子重量に対して 1 . 5 w t %以下であり、 好ましく は 1. 3 w t %以下であり、 更に好ましく は 1 w t %以下である。 環状ダ イマ一の含有量がこの範囲であると、 紡糸過程や加工段階での環状 ダイマーによる問題が生じない。 なお、 環状ダイマーの含有量は少 ないほど好ましく、 ゼロであることが最も好ましい。
環状ダイマーとは、 下記式 ( 1 ) の構造を有する物質である。
Figure imgf000013_0001
( 1 )
O = C - P h - C O O CH9 C H, CH9 O
(式中、 P hはテレフタル酸に由来するベンゼン環である。 ) 本発明の P T T組成物粒子は、 2 6 0 °Cで 3 0分間溶融状態で保 持した後の環状ダイマー含有量が 2 w t %以下であることが好まし く、 よ り好ましく は 1 . 8 w t %以下、 更に好ましくは 1. 5 w t %以下、 特に好ましく は 1 . 1 w t %以下である。 2 w t %以下で あると、 P T T組成物粒子を再溶融して、 溶融紡糸、 溶融製膜、 射 出成形、 押出成形、 ブロー成形等の溶融成形工程で、 環状ダイマー の増加量を著しく低減することができる。 なお、 下限については制 限はなく、 少ないほど好ましく、 ゼロであることが最も好ましい。 本発明の P T T組成物粒子は、 L *値が 7 5以上であることが好 ましく、 b *値は _ 2〜 5であることが好ましい。
L *値が 7 5以上、 あるいは b *値が 5以下であると、 例えば、 染色や顔料を用いて着色させたとき、 製品の色彩、 鮮明性に優れる 。 製品の一層優れた発色、 鮮明性を得るためには、 L *値は好まし くは 8 0以上、 更に好ましくは 8 5以上であり、 b *値は好ましく は一 1〜 5、 よ り好ましく は一:!〜 4である。
なお、 L *値および b *値は、 C I E— L * a * b * (C I E 1 9 7 6 ) 表色系で示される色調の指標である。 L *値は明るさ'を表 し、 この数値が大きい程明るい。 b *値は黄みを表し、 数値が大き い程黄みが強く なる。
本発明の P T T組成物粒子の製造方法につき、 好ましい一例を以 下に述べる。
本発明の P T T組成物粒子は、 ( 1 ) テレフタル酸及び/又はテ レフタル酸の低級アルコールエステルと P D Oを反応させて、 ビス ( 3 — ヒ ドロ キシプロ ピル) テレフタ レー ト及び/又はその重合体 を生成させる縮合工程、 ( 2 ) 得られたビス ( 3 — ヒ ドロキシプロ ピル) テレフタレー ト及び/又はその重合体を粒子化する工程、 ( 3 ) 得られた粒子を固相重合する工程、 によ り製造される。
こ こで、 ビス ( 3 — ヒ ドロキシプロ ピル) テレフタ レー トの重合 体とは、 ト リ メチレンテレフタレー ト単位がつながった重合体であ り、 重合度と しては、 好ましくは 2以上、 よ り好ましくは 3〜 1 0 0であり、 その分子末端には、 水酸基、 カルボキシル基、 ァリ ル基 等があってもよい。
まず、 重縮合工程 ( 1 ) について説明する。
重合原料と して、 テレフタル酸及び 又はテレフタル酸の低級ァ ルコールエステルに対する p D Oの仕込み比率は、 モル比で 1〜 3 であることが好ましく、 より好ましく は 1 . 4〜 2 . 5であり、 更 に好ましく は、 1 . 5〜 2 . 3である。 仕込み比率がこの範囲であ ると、 エステル化反応が円滑に進行し、 また、 融点が高く、 優れた 白度のポリマーが得られる。
また、 原料と しては、 テレフタル酸の低級アルコールエステルが 、 得られる P T T組成物粒子の色相がよい点で好ましい。
反応を円滑に進行させるために触媒を用いることが好ましい。 触 媒と しては、 例えば、 チタンテ トラブトキシド、 チタンテトライ ソ プロポキシドに代表されるチタンアルコキサイ ド、 非晶性酸化チタ ン沈殿物、 非晶性酸化チタン Zシリカ共沈殿物、 非'晶性ジルコニァ 沈殿物等の金属酸化物、 酢酸カルシウム、 酢酸マンガン、 酢酸コパ ルト、 酢酸アンチモン等の金属カルボン酸塩、 二酸化ゲルマニウム 等のゲルマニウム化合物等を、 全力ルボン酸成分モノマーに対して 0. 0 1〜 0. 2 w t %用いることが、 反応速度、 ポリマー白度の 点から好ましい。
反応温度は好ましく は 2 0 0〜 2 5 0 °C程度で、 副生する水、 メ タノール等のアルコールを留去しながら反応を行う ことができる。 反応時間は通常 2〜 1 0時間、 好ましく は 2〜 4時間である。
こう して得られた反応物は、 ビス ( 3—ヒ ドロキシプロ ピル) テ レフタレ一ト及び/又はそのォリ ゴマーであるが、 溶融状態で更に 重縮合反応を進行させてもよい。
重縮合反応の目的は、 1 9 0〜2 2 5 °Cの固相重合温度で固体で あるような分子量にすること、 即ち、 融点を 1 9 0 °Cよ り高くする ことが目的で、 分子量を極端に高める必要はない。
重縮合反応では、 必要に応じて更に、 チタンテ トラブトキシ ド、 チタンテ トライ ソプ.口ポキシドに代表されるチタンアルコキサイ ド
、 非晶性酸化チタ ン沈殿物、 非晶性酸化チタ ン/シリ カ共沈殿物、 非晶性ジルコユア沈殿物等の金属酸化物、 二酸化ゲルマニウム等の ゲルマニウム化合物等を、 全力ルポン酸成分モノマーに対して 0.
0 1〜0. 2 w t %添加し、 公知の方法に従って重縮合反応を行う ことができる。
重縮合反応は、 好ましく は 2 4 0〜2 7 0 °C、 より好ましくは 2 5 0〜2 6 5 °Cで、 真空度は好ましく は 0. 0 0 0 1〜 l k P aで 、 反応物の末端カルボン酸量を評価しながら、 3 5 ミ リ当量/ k g 以下になるように、 最適重合時間、 通常は 3時間以内、 好ましく は 0. 3〜 2時間の範囲で行う。
また、 重縮合反応時の P D Oの留去を効率的に行うためには、 重 合物の表面積を大にすることが大切である。 そのためには、 例えば 、 ヘリカル型撹拌機、 ディスク リ ングリ アクタ等を用い、 反応物を 搔き上げて薄膜ができるよ うに効率的な撹拌を行う と共に、 重縮合 反応槽の容積に対する原料仕込みの比率を 4 0 %以下にすることが 好ましく、 3 5 %以下にすることがよ り好ましい。
更に、 重縮合反応段階の溶融物の粘度が、 時間の経過と共に上昇 する うちに重縮合反応を停止することが好ましい。 重縮合反応の時 間を伸ばしても溶融物の粘度が上がらなかったり、 むしろ下がった りする前に重縮合反応を終えることが大切である。 なぜならば、 時 間を伸ばしても粘度が上がらなかったり、 むしろ下がったりする場 合は、 重縮合反応よ り も熱分解反応が優位になり、 熱分解によって 生成する末端カルボン酸量が増加するからである。
なお、 重縮合反応の任意の段階で、 好ましく は重縮合反応の前に 、 前記のリ ン系化合物ゃヒンダー ドフエノール系酸化防止剤、 色相 調整剤を添加することができる。
重縮合反応を経て得られた反応物の固有粘度は、 通常 0. 1〜 0 . 7 9 d l / gであり、 熱分解を抑制するためには、 好ましく は 0 . 1〜 0. 5 d l / gである。 また、 通常 1 . 6〜 3. 5 w t %の 環状ダイマーを含有する。
重縮合工程が終了したら、 次に粒子化工程 ( 2 ) を行う。
重縮合反応槽から取出した、 テレフタル酸の 1, 3—プロパンジ オールエステル (即ち、 ビス ( 3— ヒ ドロ キシプロ ピル) テレフタ レー ト) 及び Z又はその重合体を粒子化する方法は特に制限はない が、 例えば、 該エステル及び 又はその重合体を溶融状態で押し出 した後に、 好ましく は冷却固化させた後、 細かく切断する方法、 霧 状に噴霧後、 冷却して微粒子化する方法、 固化させた後、 クラッシ ュ (砕く) する方法等が挙げられる。
クラッシュする方法は公知の方法を用いることができ、 ヘンシェ ルミキサー、 ボールミル、 クラッシャー等を用いるこ とができる。 得られた粒子の大きさ、 質量は、 前記の通りである。
こ う して得られた粒子状のプレボリマー組成物は、 固相重合 ( 3 ) を行う ことによって、 本発明の P T T組成物粒子となる。
次に、 粒子状のプレボリマー組成物から本発明の P T T組成物粒 子を製造する方法について説明する。
なお、 固相重合とは、 固体状態のプレボリマー組成物を加熱して
、 固有粘度を、 プレボリマー組成物の固有粘度よ り少なく とも 0 . l d l Z g以上増加させることを言う。
固相重合を行う前に、 プレポリマ一組成物を、 融点以下の温度で 熱処理して結晶化を行う ことが好ましい。 この結晶化によ り、 固相 重合工程で、 粒子同士の融着による抜出し速度のパラツキを抑制す ることができる。
熱処理条件は、 重縮合反応を行った場合は、 好ましくは不活性ガ ス雰囲気下、 粒子の到達温度が 1 9 0 〜 2 2 5 で、 かつ、 この温 度を維持する時間が 5 〜 1 2 0分で行うことが好ましい。 この温度 範囲であると、 結晶化が十分進行して斑が生じず、 固相重合時に粒 子の融着を招く こ とがない。
なお、 急激な熱処理により重合斑を生じる場合には、 結晶化熱処 理の前に 8 0 〜 1 8 0 °C、 5 〜 1 2 0分の熱処理を加えることが好 ましい。
また、 重縮合工程を省略した場合は、 結晶化熱処理と して、 1 0 0 〜 2 0 0 °Cで徐々に昇温する方法が融着ゃ溶融を避ける点で好ま しい。 この結晶化段階では分子量の増加や P D O等の副生物の排出 が行われてもよい。
固相重合においては、 P T Tの着色を抑制し、 かつ、 固相重合速 度を速める上から、 固相重合温度は 1 7 0〜 2 2 5 °Cが好ましく、 より好ましく は 1 9 0〜 2 1 5 °C, 最も好ましく は 1 9 5〜 2 1 0 °Cである。 固相重合温度が上記の範囲であると、 十分な固相重合速 度が得られ、 熱分解が生じず、 また、 粒子同士が固相重合槽の壁面 に融着することがなく、 高重合度化や高結晶化物が生成しないので 、 紡糸時や成型時の溶融安定性が得られる。
固相重合を行う雰囲気と しては、 真空中で行う場合と不活性ガス 気流中で行う場合があり、 いずれも粒子表面からの水や P D O等の 重合副生物の排出を効率的に行うために有効な方法であり、 特定条 件下で行う ことが重要である。
固相重合を真空中で行う場合は、 重合副生物の効率的な排出のた めに、 3 0 k P a以下であることが好ましく、 よ り好ましく は 2 0 k P a以下、 最も好ましく は 0. 0 0 1〜 1 0 k P aである。
固相重合を不活性ガス気流中で行う場合は、 以下に説明する。 不活性ガスとは、 固相重合温度において P丁丁と実質的に反応し ないガスのことであり、 例えば、 窒素、 アルゴン、 ネオン等が挙げ られる。 好ましくは、 コス ト面から窒素ガスを使用するのが好まし い。 不活性ガス中に酸素が含まれると、 固相重合時に熱分解が促進 されて着色が生じるため、 酸素含有量は不活性ガスに対し 1 0 0 p p m以下であることが好ましい。
固相重合は、 粒子状の P T Tを入れた固相重合槽に不活性ガスを 流通させて行う。 この時の不活性ガスの流通量である空塔速度は、 2 c m/m i n以上であること力 S、 固相重合速度の観点から好まし い。 空塔速度の上限については特に制限はないが、 4 0 0 c mZm i nを越えると、 重合副生物の排出効率の向上がなく なるので、 4 0 0 c m / m i nが不活性ガスのむだ使いを避けるための上限値と して好ましい。
なお、 空塔速度は、 ガス流量 ( c m 3 Z m i n ) ¾■、 カスの通過 する固相重合槽の断面積 ( c m 2 ) で割った値である。
不活性ガスの流通方法と しては、 例えば、 固相重合槽の一方に一 定速度で粒子状プレボリマー組成物を連続的に供給し、 粒子状プレ ポリマー組成物の流れと逆方向から不活性ガスを流通させ、 粒子状 プレポリマー組成物の供給速度と同一の速度で連続的に一方から抜 き出す方法、 粒子状プレボリマー靼成物を固相重合槽に入れ、 好ま しくは撹拌し、 上記空塔速度の不活性ガスを流通させる方法等があ る。
固相重合槽としては、 内壁から粒子状プレポリマー組成物に熱を 加えることができる重合槽であればよく、 例えば、 円柱状の筒の上 方に粒子状プレボリマー組成物の入り 口を設け、 下方にすり鉢状の 出口を設けたバンカー型の重合槽で、 外側から熱媒体または蒸気等 で熱を供給できるものが好ましい。
固相重合槽内の粒子状プレボリマー組成物の滞留時間は、 好まし くは 0 . 5〜 2 0時間、 よ り好ましく は 0 . 5〜; 1 0時間である。 連続式固相重合は.、 一定量ずつ固相重合を行うパッチ式に比べ、 生 産性が高いためより好ましい。
固相重合においては、 P D Oの排出を効率的に行うために、 粒子 状プレボリマー組成物を、 効率的に撹拌あるいは、 流動させるこ と が好ましい。
以上の固相重合工程によって、 高分子量化、 環状ダイマー含有量 の低減が達成される。
こ う して得られた本発明の P T T組成物粒子は、 白度、 耐酸化安 定性、 成形性に優れたものであるが、 更に、 極性化合物で処理する ことが好ましい。 重縮合工程で触媒を用いた場合、 固相重合後の P T T組成物粒子は、 テレフタル酸の 1, 3 —プロパンジオールエス テル重合体を重縮合する触媒を含有しているが、 極性化合物で処理 することによ り、 触媒の重縮合活性の一部又は全部を失活させるこ とができる。 触媒を失活させることによ り、 成形工程で溶融時にお ける環状ダイマーの増加が抑制され、 耐光性に優れた一層好ましい P T T組成物粒子が得られる。
本発明においては、 P T T組成物粒子であって比表面積が大きい ため、 ペレッ トを処理する場合と比較して、 上記の極性化合物によ る処理をよ り効率良く行う ことができる。
P T T組成物粒子と極性化合物を接触させる方法には特に制限は なく、 極性化合物との処理によって、 触媒の部分的あるいは完全な 失活が認められればよい。 例えば、 P T T組成物粒子を極性化合物 雰囲気に入れる方法、 溶融状態、 固体状態、 溶液状態、 分散状態の
P T T組成物粒子の中に極性化合物を注入あるいは投入する方法等 が挙げられる。
P T T組成物粒子を極性化合物で処理するときの温度は、 5 0 °C 以上が好ましく、 よ り好ましくは 7 0 °C以上、 更に好ましく は 1 5 0 °C以上であり、 最も好ましくは 1 8 0〜2 2 0 °Cである。
この処理時に、 極性化合物は、 液体、 気体、 臨界点以上の流体で あってもよい。
処理時間も特に制限はないが、 処理時間が長くなるほど、 P T T の加溶媒分解が起こ り、 分子量の低下が起こるので、 できるだけ短 時間に処理することが好ましい。 通常は 6 0分以内が好ましく、 よ り好ましく は 3 0分、 更に好ましく は 1 0分以内である。
極性化合物としては、 酸素、 窒素、 リ ン、 硫黄等のへテ口原子を 有するものであり、 よ り好ましく は水素結合が可能な化合物である 。 このよ うな化合物の具体例と しては、 水、 メタノール、 エタノー ノレ、 プロノヽ0ノール、 p D O、 1, 4—ブタンジォーノレ、 エチレング リ コール、 グリセリ ン、 エタノールアミ ン等のアルコール、 ト リ メ チノレホス フ ェート、 ト リェチノレホス フ ェート、 ト リプチノレホス フ エ ー ト、 ト リ フヱニルホスフェー ト、 ト リ メチルホスファイ ト、 ト リ ェチルホスファイ ト、 ト リ フエニルホスファイ ト、 リ ン酸、 亜リ ン 酸等のリ ン化合物、 ギ酸、 酢酸、 プロ ピオン酸、 塩化水素、 硫酸等 の酸、 アンモニア、 メチルァミ ン、 ジメチルァミ ン、 エチレンジァ ミ ン、 ト リ ェチルァミ ン、 エチレンィ ミ ン、 ァミ ン等のァミ ンが挙 げられる。 なかでも、 水、 メタノール、 リ ン酸、 塩化水素、 硫酸、 アンモニアが好ましく、 取り扱いの容易さや無毒である点から、 水 が特に好ましい。
極性化合物と P T T組成物粒子を接触させる時の両化合物の比率 と しては、 特に制限はなく、 通常は質量比で 1 0 0 0 0 0 / 1〜 0 . 0 1 / 1であればよい。
以上のようにして得られた本発明の P T T組成物粒子は、 白度、 耐酸化安定性、 成形性に優れているので、 公知の溶融成形、 湿式成 形等によ り、 繊維、 フ ィルム、 成形品等の成形体に加工することが できる。
と りわけ、 繊維は、 ソフ トな風合い、 耐疲労性、 弹性回復性に優 れているので、 衣料、 資材用途として有用である。 例えば、 繊維の 形態と しては、 マルチフィ ラメ ン ト、 モノ フィ ラメ ン ト、 ス フ、 不 織布等が挙げられ、 単糸繊度と しては 0. 0 0 0 1〜 3 0 0 0 0 d t e X、 総繊度としては 5〜 3 0 0 0 0 d t e xまで広範囲が可能 である。 また、 固有粘度と しては、 耐疲労性の観点から 0. 8〜 2 d l Z gが好ましく、 強度と しては 3 c N/ d t e x以上が好まし く、 よ り好ましくは A c NZ d t e x以上、 伸度と しては 1 0〜 5 0 %が好ましい。
繊維の好適な用途の例と しては、 撚糸した撚糸物 (撚糸コード) にして、 例えば、 タイヤ、 ベルト、 ホース等の補強材料用途が挙げ られ、 特に、 優れた耐酸化安定性、 耐疲労性を生かしてパイヤスタ ィャ用タイヤコードとして極めて有用である。 撚糸の種類、 方法、 合撚本数については特に制限はなく、 撚り糸の種類と しては、 例え ば、 片撚り糸、 もろ撚り糸、 ピッコもろ撚り糸、 強撚糸などが挙げ られる。 合撚する本数も特に制限はなく 1本撚り、 2本撚り、 3本 撚り、 4本撚り、 5本撚りのいずれでもよく 6本以上の合撚であつ てもよい。 この時、 P T T繊維以外の繊維、 例えば、 ナイ ロ ン繊維 、 P E T繊維、 ァラミ ド繊維、 レーヨ ン等と合撚することができる 撚り数については特に制限はなく、 単糸繊度や総繊度によって適 宜選択することができ、 加工条件、 使用環境に応じて任意に撚り数 を選定すればよい。 例えば、 単糸繊度が 0. 0 1〜 1 0 d t e x、 総繊度が 3 0〜: l O O O O O d t e xであるマルチフィラメ ント力、 らなる撚糸コー ドの場合には、 下記式で表される撚り係数 K (TX m - d t e X °- 5) が 1 0 0 0〜 3 0 0 0 0の範囲で撚糸されたも のが、 強度の発現、 耐疲労性の観点から好ましい。
K = Y X D0.5
ここで、 Yは撚糸コー ド 1 mあたりの撚り数 (TZm) 、 Dは撚 糸コードの総繊度 ( d t e X ) である。 この総繊度は、 撚糸に用い た全繊維の繊度の和である。 例えば、 1 6 6 0 d t e Xの繊維を 3 本燃り合わせた場合、 撚糸物の総表示繊度は 4 9 8 0 d t e x ( 1 6 6 0 X 3 ) となる。 複数の繊維を撚り合わせ、 下撚り、 上撚り等 の多段の撚り を加えた場合、 最後に加えた撚りの回数を撚り数 Yと して撚り係数を算出する。 このよ う な撚糸コー ドに 1 0〜 3 0 w t %のレゾルシン一ホルマ リ ン一ラテックス (以下、 R F Lと略記する) 液を付着させ、 少な く とも 1 0 0 °Cの熱をかけて固着させることによ り、 熱特性に優れ る処理コー ドを得ることができる。 R F L樹脂の付着量は、 繊維の 質量に対して 2〜 7 w t %が好ましい。
R F L液の組成は特に限定されず、 従来公知の組成のものをその まま、 あるいは変形して使用することができる。 R F L液の好まし い組成と しては、 レゾルシンを 0. 1〜 1 0 w t %、 ホルマリ ンを 0. l〜 1 0 w t %、 ラテックスを l〜 2 8 w t %であり、 より好 ましい糸且成と しては、 レゾルシン 0. 5〜 3 w t %、 ホノレマリ ン 0 . 5〜 3 w t %、 ラテックス 1 0〜 2 5 w t %である。
R F L液処理における乾燥温度は、 好ましくは 1 2 0〜 2 5 0 °C 、 よ り好ましく は 1 3 0〜 2 0 0 °Cであり、 少なく とも 1 0秒、 好 ましくは 2 0〜 1 2 0秒間、 乾燥熱処理することが望ましい。 また 、 乾燥後の R F L付着コー ドは、 引き続き定長熱処理を行う ことが 望ましい。 熱処理条件としては、 処理温度は好ましく は撚糸コー ド の最大熱収縮温度 ± 5 0 °C、 よ り好ましく は最大熱収縮温度 ± 1 0 °C、 最も好ましくは最大熱収縮温度 ± 5 °Cであり、 熱処理時間は好 ましく は 1 0〜 3 0 0秒、 よ り好ましくは 3 0〜 1 2 0秒である。 また、 熱処理の際にはコー ドを定長に維持することが望ましく、 熱 処理前後のコー ドの寸法変化は、 好ましく は 3 %以下、 より好まし くは 1 %以下、 最も好ましく は 0 %である。 発明を実施するための最良の形態
以下、 実施例を挙げて本発明をさ らに説明するが、 本発明は実施 例などによ り何ら限定されるものでないことは言うまでもない。
なお、 測定方法、 評価方法等は以下の通りである。 ( 1 ) 固有粘度
固有粘度 は、 ォス ト ワル ド粘度管を用い、 3 5 °C、 o—ク ロ ロ フヱノールを用いて比粘度 s ρ と濃度 C ( g / 1 0 0 m l ) の比 ( 7 s p / C ) を濃度ゼロに外揷し、 下記式に従って求めた。
L V 1 = 1 i m ( η s p C )
C→ 0
( 2 ) 粒子の大きさ、 質量
ノギスと顕微鏡を用いて、 任意の 5 0個の P T T組成物粒子の粒 の最も長い部分の長さを測定し、 その平均値を粒子の大きさ と した また、 粒子の質量は、 任意の 5 0個の P T T組成物粒子の質量の 平均値を求めた。
( 3 ) 通過量
1 0 メ ッシュ ( J I S Z 8 8 0 1 目開き : 1 . 7 0 m m) 及 び 5 0 0 メ ッシュ ( J I S Z 8 8 0 1 目開き : 2 5 μ πι) のフ ィルターを用い、 Ρ Τ Τ組成物粒子を 5 0 g通過させ、 通過量の比 率を求めた。
( 4) 末端カルボキシル基量
P T T組成物粒子 1 gをベンジルアルコール 2 5 m l に溶解し、 次いで、 ク 口 口ホルム 2 5 m 1 を加えた後、 1 / 5 0 Nの水酸化力 リ ウムベンジルアルコール溶液で滴定した。 得られた滴定量 (VA ) (m l ) と、 P T T組成物粒子無しのブランク滴定での滴定量 ( V 0) よ り、 下記式 ( 2 ) にて、 ペレッ ト l k g当たりの末端カル ポキシル基量 (ミ リ当量/ k g ) を求めた。
末端力ルポキシル基量 = ( VA- V0) X 2 0 …… ( 2 )
( 5 ) 環状ダイマー含有量
試料 0 . 3 g を、 5 m l のク ロ 口ホルム と 5 m l の ( C F 3 ) 2 C H OHとの混合液に溶解させた後、 更にク口 口ホルム 5 m 1 を加え 、 次いでァセ トニ ト リルを約 8 0 m 1加えた。 この時析出した不溶 物をろ別し、 溶液を全て集めた。 この溶液にァセ トニ ト リルを添加 し、 2 0 0 m l の溶液と した。
この溶液を高速液体ク 口マ トグラフィーを用いて分析し、 環状ォ リ ゴマー量を測定した。 カラムは、 Bond asphere 1 5 μ C - 1 8 - 1 0 0 A 3. 9 X 1 9 0 mm (ウォータース社製) を用い 、 移動相と しては水/ァセ トニ ト リル (容積比 3 0 / 7 0 ) を用い 、 検出器と しては紫外線 2 4 2 n mの波長を用いた。 温度は 4 5 °C 、 流量は 1 . 5 m 1 / m i nで行った。
( 6 ) 色調 (L *、 b * )
P T T組成物粒子を、 ガラス製セル (内径 6 l mm X深さ 3 0 m m) に深さの 9〜 1 0割まで満たし、 スガ試験機 (株) 製の色彩色 差計 ( S M— 7 — C H) を用いて、 C I E— L * a * b * ( C I E 1 9 7 6 ) 表色系で L *、 b *を測定した。
( 7 ) 耐酸化安定性
P T T組成物粒子を、 2 2 0 °Cで、 2 4時間、 空気中で加熱した 後、 b *値を測定し、 耐酸化安定性の指標と した。
( 8 ) P T T組成物粒子の 2 6 0 °C溶融テス ト
試料 1 gをガラスアンプルに入れ、 空気を真空除去してから溶封 した後、 ガラスアンプルを 2 6 0 °Cのオイルパスに入れて 3 0分間 加熱した。 その後、 ガラスアンプルを取り出して冷却し、 試料を取 り出して環状ダイマー含有量を測定した。
〔実施例 1 〜 3〕
テレワタル酸ジメ チル 1 3 0 0 g ( 6 . 7モル) 、 P D O 1 1 4 4 g ( 1 5モル) 、 チタンブトキシド 0. 7 8 gを、 板状の羽根を 備えた 3 リ ッ トルのォー トク レープに仕込み、 2 2 0 °Cでメ タノー ルを留去しながらエステル交換反応を行った。 エステル交換反応率 は、 9 5 %であった。 エステル交換反応終了後、 触媒と してチタン テ トラブトキシド 0. 5 2 g、 熱安定剤と して ト リ メチルホスフェ ート 0. 6 5 gを添加し、 3 0分攪拌後、 P D Oを留去しながら、 2 0 P aの真空度で 2 6 0 °C、 2時間重縮合反応を行った。 反応後 、 得られたポリマーを重縮合反応槽底部からロープ状に押出し、 切 断して、 固有粘度が 0. 5 d 1 Z g、 質量が 2 5 m g /個のペレッ トを得た。
得られたペレッ トを井内盛栄堂 (株) 製のサンプルミル SM— 1 に入れ、 最大速度で 1分間細かく粒子化し、 粒子の大きさ l mm、 質量が 0. 9 5 m g Z個、 末端カルボキシル基量が 3 2 ミ リ 当量 Z k g、 環状ダイマー量が 2. 7 w t %の P T T組成物粒子プレポリ マーを得た。
得られたプレボリマーを、 2 0 0 °Cで、 1 5分間加熱して結晶化 した後、 5 P aの真空下、 2 0 5 °Cで固相重合を行った。 固相重合 の時間、 得られた P T T組成物粒子の物性を表 1に示す。 得られた P T T組成物粒子は、 白度、 耐酸化安定性に優れ、 また、 環状ダイ マー量も少なかった。
次に、 紡糸実験を以下のよ うに行った。
実施例 1及び 2で得られた P T T組成物粒子を、 各々 1 3 0 °Cで 乾燥後、 水分率を 5 0 p p m以下と し、 2軸押出機を用いて 2 6 0 °Cで溶融して押出し、 巻取速度 1 6 0 0 m/m i nで 3 k g毎に巻 き取り、 未延伸糸を得た。 なお、 溶融時の滞留時間は約 1 0分であ つた。
卷き取られた未延伸糸を、 5 5 °Cのホ ッ トロール、 1 4 0 °Cのホ ッ トプレートを通しながら、 伸度が 4 0 %になるように熱延伸を行 い、 8 4 d t e x / 3 6 f のフィ ラメ ントを得た。 紡糸実験を 3 日 間行ったが、 未延伸糸の卷き取りや延伸工程での糸切れ、 毛羽の発 生はなかった。
〔実施例 4及び 5 ]
固相重合を以下の条件と した以外は、 実施例 1 と同様にして行つ た。
不活性ガスと して、 2 0 7 °Cに加熱した窒素ガスを空塔速度で 1 0 0 c m/ i n (標準状態換算) の流量で流しながら、 固相重合 装置の外壁からは 2 1 0 °Cの熱を加えて 1 5分間熱処理を行い、 P T T組成物粒子プレボリマーの結晶化を行った。 結晶化処理された P T T組成物粒子プレボリマーを固相重合装置に投入し、 2 0 5 °C に加熱した窒素ガスを空塔速度で l O O c mZm i n (標準状態換 算) の流量で流しつつ、 外壁からは 2 0 5 °Cの熱を加えながら固相 重合を行い、 P T T組成物粒子を得た。 固相重合の時間は表 1 に示 した通りである。
得られた P T T組成物粒子は、 白度、 耐酸化安定性に優れ、 また 環状ダイマー量も少なかった。
次に、 紡糸実験を以下のように行った。
得られた P T T組成物粒子を、 各々 1 3 0 °Cで乾燥後、 水分率を 5 O p p m以下と し、 2軸押出機を用いて 2 6 0 °Cで溶融して押出 し、 卷取速度 1 6 0 0 m/m i nで 3 k g毎に卷き取り、 未延伸糸 を得た。 溶融時の滞留時間は約 1 0分であった。
巻き取られた未延伸糸を 5 5 °Cのホ ッ トロール、 1 4 0 °Cのホ ッ トプレートを通しながら、 伸度が 4 0 %になるように熱延伸を行い 、 8 4 d t e x Z 3 6 iのフィラメ ントを得た。 紡糸実験を 3 日間 行ったが、 未延伸糸の巻き取りや延伸工程での糸切れ、 毛羽の発生 はなかった。 '
〔実施例 6及び 7〕 テレフタル酸ジメチル 1 3 0 0 g ( 6. 7、モル) 、 P DO 1 1 4 4 g ( 1 5モル) 、 チタンブトキシド 0. 7 8 gを、 板状の羽根を 備えた 3 リ ッ トルのオートクレープに仕込み、 2 2 0 °Cでメタノー ルを留去しながらエステル交換反応を行った。 エステル交換反応率 は、 9 5 %であった。 エステル交換反応終了後、 得られた反応物を 0. 5 M P aの窒素圧をかけて霧状に噴霧し、 粒子化した。 得られ た粒子は、 大きさは 0. 3 mm、 質量は 0. 3 m g /個、 末端カル ボキシル基量は 3 0 ミ リ当量 Z k g、 環状ダイマー量は 2. 7 w t %であった。
得られた粒子を、 5 P aの真空中で 7 0 °Cから 2 0 0 °Cまで 1時 間かけて昇温しながら結晶化した。 この時に分子量の増加が起こつ た。 次いで、 5 P aの真空下、 2 0 5 °Cで固相重合を行い、 P T T 組成物粒子を得た。 固相重合の時間、 得られた P T T組成物粒子の 物性を表 1 に示す。 得られた P T T組成物粒子は、 白度、 耐酸化安 定性に優れ、 また環状ダイマー量も少なかった。
〔実施例 8〕
テレフタル酸ジメチルの代わりに、 同じモル数のテレフタノレ酸を 用い、 水を留去させながら、 実施例 1 と同様に行った。
粒子状プレボリマーは、 大きさは 1. 0 mm、 質量は 0. 9 5 m g /個、 末端力ルポキシル基量は 3 4 ミ リ当量 Z k g、 環状ダイマ 一量は 2. 6 w t %であった。
得られた P T T組成物粒子は、 白度、 耐酸化安定性に優れ、 また 環状ダイマー量も少なかった。
〔実施例 9〕
実施例 1 で得られた P T T組成物粒子を、 2 0 5 °Cの水蒸気中で 1時間放置し、 その後乾燥させた。 得られた P T T組成物粒子の物 性に大きな変化はなかったが、 2 6 0 °Cの溶融テス ト後の環状ダイ マー量は 1 . 0 w t %と少なかった。 また、 フェードメーターを用 い、 8 3 °Cで 1 0 0時間の耐光性テス トを行ったところ、 ほとんど 黄色みを帯びていなかった。
これに対し、 実施例 1で得られた P T T組成物粒子を水蒸気処理 せずに、 2 6 0 ° (:、 3 0分の再溶融試験を行ったところ、 再溶融後 の P T T組成物中に含まれる環状ダイマー量は 1. 8 w t %であつ た。 またフェー ドメーターを用い、 8 3 °Cで 1 0 0時間の耐光性テ ス トを行ったところ、 若干黄色みを帯ていた。
なお、 水蒸気処理した P T T組成物粒子を, 更に 5 P aの真空下 、 2 0 5 °Cで 1時間固相重合した結果、 固有粘度の上昇は認められ なかった。 このことは、 水蒸気処理によ り触媒が失活したことを示 すものである。
〔実施例 1 0〕
実施例 1で得られた P T T組成物粒子を、 1 w t %のリ ン酸水溶 液中で、 1 3 0 °C、 1時間放置し、 次いで乾燥させた。 得られた P T T組成物粒子の物性に大きな変化はなかったが、 2 6 0 °Cの溶融 テス ト後の環状ダイマー量は 0. 9 w t %と少なかった。 またフエ 一ドメ一ターを用い、 8 3でで 1 0 0時間の耐光性テス トを行った ところ、 ほとんど黄色みを帯びていなかった。
なお、 リ ン酸水溶液処理した P T T組成物粒子を、 更に 5 MP a の真空下、 2 0 5 °Cで 1時間固相重合した結果、 固有粘度の上昇は 認められなかった。 このことは、 リ ン酸水溶液処理によ り触媒が失 活したことを示すものである。
〔比較例 1〕
重縮合温度を 2 8 0 °Cとして溶融重縮合を行ったこと以外は、 実 施例 1 と同様にして行った。 得られたプレポリマーべレッ トは、 固 有粘度が 0. 7 d l / g、 L *力 7 4、 b *力 S 7 . 0 , 末端カルボ キシル基量が 4 0 ミ リ当量/ k g、 環状ダイマー量が 2 . 9 w t % であり、 黄みが強く、 くすんだ色をしたペレッ トであった。
実施例 1 と同様にして、 このペレッ トを粉砕して粒子化後、 固相 重合を行ったところ、 固相重合速度は遅かった。 また、 得られた P T T組成物粒子は、 末端力ルポキシル基量が多いため、 着色が激し く、 また乾燥熱処理時の着色も激しかった。
〔比較例 2〕
2 5 m g /個のプレポリマーペレッ ト (直径 2 . 4 mm、 高さ 4 . 0 mmの円筒形状) を碎かずに、 そのまま固相重合を行った以外 は、 実施例 1 と同様にして行った。 得られた P T T組成物粒子は、 固有粘度が◦ . 6 1 d l / gであった。
〔実施例 1 1〕
実施例 3 で得られた P T T組成物粒子を、 1 3 0 °Cの窒素気流中 で水分率を 1 0 p p mまで乾燥させた後、 押出機に投入し、 2 9 0 °Cで溶融して口径 0 . 2 3 mm X 2 5 0 0個の丸型紡孔を通して押 出した。 押出機でのスク リ ュー圧の変動も無く、 スムーズに紡糸が できた。
押し出されたフィ ラメ ン ト群に、 2 0 °C、 相対湿度 9 0 %の冷風 を 0 . 4 m / s e cの速度で吹き付け、 冷却固化させた。 固化した フィラメ ント群に仕上げ剤を付着させ、 1 6 0 0 m/m i nで巻き 取って未延伸糸を得た。 次に、 得られた未延伸糸を、 5 5 °Cのホッ トロール、 1 4 0 °Cのホッ トプレー トを通しながら、 伸度がほぼ 4 0 %になるように延伸し、 5 0 0 d t e x / 2 5 0 f の延伸糸を得 た。 得られた延伸糸は、 強度は 5 . 3 c N/ d t e X、 弾性率は 2 5 c N/ d t e xであった。
こ う して得られた P T T繊維を 3本用いて、 下撚、 上撚共に、 3 9 0 TZmで合撚し、 1 5 0 0 d t e x / 7 5 0 f の生コー ドを得 た。 この生コー ドに、 樹脂量 2 0 w t %の R F L液を付着させ、 コ — ドの樹脂付着率が 5 w t %になるよ うにして、 1 3 0 °C、 2 2 5 °Cの乾燥機で処理し、 タイヤコー ドを得た。
得られたタイヤコー ドを用いて、 パイヤスタイヤを作製し、 回転 試験を行った。
1 t の乗用車が、 3 5 °Cのアスファル ト面を S O O k mZ h rで 走行する場合を想定し、 その場合と同じ接圧をかけながら、 同じ速 度で回転させ、 9 6時間の回転試験を行った。
9 6時間の回転試験後、 タイヤからタイヤコードを取り出し、 強 度保持率を測定した結果、 強度低下は殆ど起こっていなかった。
〔実施例 1 2〕
室内に 1 ヶ月放置した実施例 1の組成物粒子と比較例 2のポリマ 一ペレツ トの乾燥テス トを行った。
1 6 0 °Cの乾燥空気中で保持したところ、 5 0 p p m以下の水分 率まで到達するには、 実施例 1の組成物粒子で 3時間、 比較例 2の ポリマーペレッ ト で 1 5時間必要であった。 この時、 実施例 1 の組 成物粒子は b *に変化はなかったが、 比較例 2のポリマーペレツ ト は b *力 s 0. 4上昇した。
水分率を 4 0 p p mまで乾燥した実施例 1の組成物粒子と比較例
2のポリマーペレッ トを、 押出機を用いて溶融させた。 実施例 1の 組成物粒子は 2 4 7 °Cでも安定して吐出できたが、 比較例 2のポリ マーペレツ トは溶解が不十分で圧力が大きく変動した。 表 1
固相重合 C ] 粒子 通過量 末端 環状 L 氺 b * 耐酸化 温度 時間 ( dl/g ) 大きさ 里 10メッシュ 500メッシュ カルホ'キシル ¾ fi タ、、イマ -量 安定性
( °C ) ( hr ) 、mm) (mg/個) (% ) (% ) (ミリ当量/ kg ) (wt% )
実施例 1 205 3 0. 92 1. 0 0. 96 96 1 23 0. 9 88 1 18 実施例 2 205 5 1. 30 1. 0 0. 96 95 3 20 0. 8 89 2 19 実施例 3 205 10 1. 67 1. 0 0. 96 97 1 20 0. 6 90 2 19 実施例 4 207 3 0. 95 1. 0 0. 96 95 3 15 0. 8 89 1 18
00
実施例 5 207 5 1. 32 1. 0 0. 96 95 2 13 0. 7 90 2 19 実施例 6 205 3 1. 05 0. 3 0. 15 98 2 8 0. 6 91 0 15 実施例 7 205 5 1. 40 0. 3 0. 15 99 2 9 0. 5 91 0 15 実施例 8 205 3 0. 91 1. 0 0. 96 95 2 25 0. 7 90 1 19 実施例 9 205 3 0. 92 1. 0 0. 95 97 1 22 0. 9 89 1 17 実施例 10 205 3 0. 93 1. 0 0. 95 96 2 25 0. 9 90 1 16 比較例 1 205 3 0. 79 1. 0 0. 94 95 1 30 2. 6 83 7 26 比較例 2 205 3 0. 61 4. 0 25. 5 1 0 25 1. 2 88 3 21
産業上の利用の可能性
本発明の P T T組成物粒子は、 白度、 耐酸化安定性、 成形性、 更 には、 均質性が高く、 成形性に優れており、 また、 粒子形状が細か く、 均質であるために、 伝熱効果が高く、 乾燥時間の短時間化、 押 出温度の低温化による熱劣化の抑制等の優れた効果を少なく とも 1 つ以上有している。 したがって、 本発明の P T T組成物粒子を原料 とするこ とによ り、 紡糸時の糸切れがなく高品質の繊維、 あるいは フィルム等を高い生産性で製造するこ とができる。

Claims

請 求 の 範 囲
1. 繰返し単位の 8 0 w t %以上が ト リ メチレンテレフタレート 単位からなり、 固有粘度が 0. 8〜 2 d l Zgであって、 かつ、 下 記 ( a ) 〜 ( c ) の条件を満たすことを特徴とするポリ ト リ メチレ ンテフタレー ト組成物粒子。
( a ) 粒子の大きさが 3 mm以下、 質量が 1 m g /個未満である
( b ) 末端カルボキシル基量が 2 5 ミ リ当量/ k g以下である ; ( c ) 環状ダイマーの含有量が 1 . 5 w t %以下である :
2. 該粒子を 2 6 0 °Cにて 3 0分間溶融状態で保持した後の環状 ダイマー含有量が 2 w t %以下であることを特徴とする請求項 1に 記載のポリ ト リ メチレンテレフタレー ト組成物粒子。
3. 該粒子が、 1 0メ ッシュのフィルタ一通過量が 9 5 %以上で あり、 かつ、 5 0 0メ ッシュのフィルタ一通過量が 5 %以下である ことを特徴とする請求項 1又は 2に記载のポリ ト リ メチレンテフタ レー ト組成物粒子。
4. 繰返し単位の 8 0 w t %以上が ト リ メチレンテレフタレート 単位からなり、 固有粘度が 0. 1〜 0. 7 9 d l / gであって、 力、 つ、 下記 ( a ) 〜 ( c ) の条件を満たすことを特徴とする、 固相重 合に適したポリ ト リ メ チレンテ レフタ レー ト組成物粒子。
( a ) 粒子の大きさが 3 mm以下、 質量が 1 m g /個未満である
( b ) 末端力ルポキシル基量が 3 5 ミ リ当量ノ k g以下である ; ( c ) 環状ダイマーの含有量が 1 . 6〜 3. 5 w t %である : 5. 該粒子が、 1 0メ ッシュのフィルタ一通過量が 9 5 %以上で あり、 かつ、
5 0 0メ ッシュのフィルタ一通過量が 5 %以下である ことを特徴とする請求項 4に記載の、 固相重合に適したポリ ト リメ チレンテフタ レー ト組成物粒子。
6. 少なく とも下記 ( 1 ) 〜 ( 3 ) の工程を含むことを特徴とす るポリ ト リ メチレンテ レフタレート組成物粒子の製造方法。
( 1 ) テレフタル酸及び/又はテレフタル酸の低級アルコールェ ステル誘導体と 1, 3—プロパンジオールを反応させて、 テレフタ ル酸の 1, 3—プロパンジオールエステル及び Z又はその重合体を 生成させる工程 ;
( 2 ) 上記 ( 1 ) の工程で得られたテレフタル酸の 1, 3—プロ パンジオールエステル及び/又はその重合体を粒子化する工程 ;
( 3 ) 粒子化されたテレフタル酸の 1, 3—プロパンジオールェ ステル及びノ又はその重合体を固相状態で加熱して、 固有粘度を少 なく とも 0. 1 d 1 Z g以上、 上昇させる工程 :
7. テ レフタル酸の 1, 3 _プロパンジオールエステル友び/又 はその重合体を粒子化する方法が、 下記 ( 1 ) 〜 ( 3 ) の少なく と も 1つであることを特徴とする請求項 6に記载のポリ ト リ メチレン テレフタ レー ト組成物粒子の製造方法。
( 1 ) 該エステル及び/又はその重合体を溶融状態で押し出した 後、 切断する方法 ;
( 2 ) 該エステル及び 又はその重合体を霧状に噴霧後、 微粒子 化する方法 ;
( 3 ) 該エステル及び/又はその重合体を固化させた後、 クラッ シュする方法 :
8. 該粒子の大きさが 3 mm以下で、 かつ、 質量が l m g Z個未 満あるこ とを特徴とする請求項 6又は 7に記載のポリ ト リ メチレン テレフタ レー ト組成物粒子の製造方法。
9. 該粒子が、 1 0メ ッシュのフィルタ一通過量が 9 5 %以上で あり、 かつ、 5 0 0メ ッシュのフィルタ一通過量が 5 %以下である ことを特徴とする請求項 に記載,のポリ ト リ メチレンテフタレート 組成物粒子の製造方法。
1 0 . テレフタル酸の 1, 3 —プロパンジオールエステルの重合 体の末端カルボキシル基量が 3 5 ミ リ当量 Z k g以下であることを 特徴とする請求項 6〜 9のいずれかに記載のポリ ト リ メチレンテレ フタレー ト組成物粒子の製造方法。
1 1 . 請求項 3又は 4に記載のポリ ト リ メチレンテレフタレート 組成物粒子を固相状態で加熱して、 固有粘度を少なく とも 0 . I d
1 / g以上、 上昇させることを特徴とするポリ ト リ メチレンテレフ タレー ト組成物粒子の製造方法。
1 2 . 固相状態で加熱して、 固有粘度を少なく とも 0 . 1 d 1 / g以上、 上昇させた後、 触媒に残存する重縮合活性の一部又は全部 を失活させることを特徴とする請求項 6〜 1 1のいずれかに記載の ポリ ト リ メチレンテ レフタ レート組成物粒子の製造方法。
1 3 . 上記触媒の重縮合活性の一部又は全部を失活させる方法が 、 該粒子を少なく とも 5 0 °C以上の極性化合物と接触させる方法で あることを特徴とする請求項 1 2に記載のポリ ト リ メチレンテレフ タレー ト組成物粒子の製造方法。
1 4 . 請求項 1〜 3のいずれかに記载のポリ ト リ メチレンテレフ タレー ト組成物粒子を、 少なく とも 5 0 °C以上の極性化合物と接触 させるこ とを特徴とするポリ ト リ メチレンテ レフタレート組成物粒 子の製造方法。
1 5 . 極性化合物が、 水、 メタノール、 リ ン酸、 塩化水素、 硫酸 、 アンモニアから選ばれた少なく とも 1種であることを特徴とする 請求項 1 3又は 1 4に記載のポリ ト リ メチレンテ レフタレー ト組成 物粒子の製造方法。
1 6. 請求項 1〜 3のいずれかに記載のポリ ト リ メチレンテレフ タレ一ト組成物粒子を成形してなる成形体。
1 7. 請求項 1〜3のいずれかに記載のポリ ト リ メチレンテレフ タ レ一ト耝成物粒子を成形してなる繊維。
1 8. 繰返し単位の 8 0 w t %以上が ト リ メチレンテレフタレー ト単位からなり、 固有粘度が 0. 8〜2 d l / gであるポリ ト リ メ チレンテレフタ レ一卜組成物粒子を成形してなるタイヤコ一ド。
1 9. 請求項 1 8に記載のタイヤコー ドを用いたタイヤ。
PCT/JP2003/003118 2002-03-18 2003-03-14 Particules de la composition polytrimethylene terephtalate et leur procede de production WO2003078501A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003576498A JP4053005B2 (ja) 2002-03-18 2003-03-14 ポリトリメチレンテレフタレート組成物粒子及びその製造方法
US10/507,840 US7332561B2 (en) 2002-03-18 2003-03-14 Polytrimethylene terephthalate composition particles and process for producing same
EP03710374A EP1486525A4 (en) 2002-03-18 2003-03-14 PARTICLES OF THE POLYTRIMETHYLENE TEREPHTHALATE COMPOSITION AND PROCESS FOR PRODUCING THE SAME
AU2003221397A AU2003221397A1 (en) 2002-03-18 2003-03-14 Polytrimethylene terephthalate composition particles and process for producing the same
MXPA04008921A MXPA04008921A (es) 2002-03-18 2003-03-14 Particulas de composicion de tereftalato de politrimetileno y procedimiento para su produccion.
KR1020047014633A KR100668571B1 (ko) 2002-03-18 2003-03-14 폴리트리메틸렌 테레프탈레이트 조성물 입자 및 그의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-73508 2002-03-18
JP2002073508 2002-03-18

Publications (1)

Publication Number Publication Date
WO2003078501A1 true WO2003078501A1 (fr) 2003-09-25

Family

ID=28035243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003118 WO2003078501A1 (fr) 2002-03-18 2003-03-14 Particules de la composition polytrimethylene terephtalate et leur procede de production

Country Status (8)

Country Link
US (1) US7332561B2 (ja)
EP (1) EP1486525A4 (ja)
JP (1) JP4053005B2 (ja)
KR (1) KR100668571B1 (ja)
CN (1) CN1643032A (ja)
AU (1) AU2003221397A1 (ja)
MX (1) MXPA04008921A (ja)
WO (1) WO2003078501A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100898223B1 (ko) * 2007-11-28 2009-05-18 한국타이어 주식회사 블럭공중합체로 제조된 타이어 보강 벨트 코드 및 이를이용한 래디알 타이어

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100152411A1 (en) * 2008-12-17 2010-06-17 E.I. Du Pont De Nemours And Company Poly(trimethylene terephthalate) with reduced whitening
US20100152412A1 (en) * 2008-12-17 2010-06-17 E. I. Du Pont De Nemours And Company Reduction of whitening of poly(trimethylene terephthalate) parts by solvent exposure
WO2010077905A1 (en) * 2008-12-17 2010-07-08 E. I. Du Pont De Nemours And Company Poly(trimethylene terephthalate) polymer blends that have reduced whitening
EP2403898A1 (en) * 2009-03-03 2012-01-11 E. I. du Pont de Nemours and Company Thermoplastic molded article having a metal layer
CN102341454A (zh) 2009-03-03 2012-02-01 纳幕尔杜邦公司 聚(对苯二甲酸丙二醇酯)模塑树脂和由其制得的模塑制品
WO2010101892A1 (en) 2009-03-03 2010-09-10 E. I. Du Pont De Nemours And Company Process of making a poly(trimethylene terephthalate) resin having low cyclic dimer content, and compositions and articles therefrom
US20100227182A1 (en) 2009-03-03 2010-09-09 E.I. Du Pont De Nemours And Company Thermoplastic molded vehicle light bezel
CA2757247A1 (en) * 2009-04-17 2010-10-21 E. I. Dupont De Nemours And Company Micronized polymer powder and cosmetic composition thereof
US8389604B2 (en) * 2009-11-02 2013-03-05 E I Du Pont De Nemours And Company Method for providing toughened poly(trimethylene terephthalate) molding resins
US20110105644A1 (en) * 2009-11-02 2011-05-05 E. I. Du Pont De Nemours And Company Toughened poly(trimethylene terephthalate) molding resins and molded articles therefrom
CN103068918B (zh) 2010-08-18 2014-11-05 东洋纺株式会社 耐水解性聚酯膜
WO2012133745A1 (ja) 2011-03-31 2012-10-04 株式会社ブリヂストン タイヤ
CN103620109B (zh) * 2011-03-31 2016-01-20 帝人株式会社 橡胶增强用聚酯纤维及其制造方法
CN103214665A (zh) * 2013-04-26 2013-07-24 大连合成纤维研究设计院股份有限公司 用于聚对苯二甲酸丙二醇树脂增粘的一种预处理方法
CN103642013B (zh) * 2013-11-19 2016-01-20 济南开发区星火科学技术研究院 一种聚对苯二甲酸丙二醇酯的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1016741A1 (en) * 1997-09-03 2000-07-05 Asahi Kasei Kogyo Kabushiki Kaisha Polyester fiber and fabrics made by using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990265A (en) * 1997-06-23 1999-11-23 E. I. Du Pont De Nemours And Company Production of poly(trimethylene terephthalate)
ATE244212T1 (de) 1999-04-22 2003-07-15 Perlite Gmbh Verfahren zur herstellung eines baukörpers
DE69905856T2 (de) * 1999-04-22 2003-12-18 Zimmer Ag Verfahren zur Herstellung von Polytrimethylenterephthalat (PTT)
TW558570B (en) * 2000-07-14 2003-10-21 Teijin Ltd Polyester fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1016741A1 (en) * 1997-09-03 2000-07-05 Asahi Kasei Kogyo Kabushiki Kaisha Polyester fiber and fabrics made by using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1486525A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100898223B1 (ko) * 2007-11-28 2009-05-18 한국타이어 주식회사 블럭공중합체로 제조된 타이어 보강 벨트 코드 및 이를이용한 래디알 타이어

Also Published As

Publication number Publication date
JP4053005B2 (ja) 2008-02-27
AU2003221397A1 (en) 2003-09-29
EP1486525A1 (en) 2004-12-15
JPWO2003078501A1 (ja) 2005-07-14
CN1643032A (zh) 2005-07-20
MXPA04008921A (es) 2005-06-17
KR100668571B1 (ko) 2007-01-16
EP1486525A4 (en) 2005-06-08
US7332561B2 (en) 2008-02-19
KR20040099337A (ko) 2004-11-26
US20050104030A1 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
EP1327648B1 (en) Polymerization catalyst for polyester, polyester produced with the same, and process for producing polyester
WO2003078501A1 (fr) Particules de la composition polytrimethylene terephtalate et leur procede de production
TWI304417B (en) Polyester resin, molded article of the same and production method thereof
KR101336581B1 (ko) 기체 차단성이 향상된 투명 단층 용기용 코폴리에스테르수지의 제조 방법
JP2008519903A (ja) 窒化チタン粒子を含むポリエステルポリマー及びコポリマー組成物
KR101334788B1 (ko) 고상 중합 없이 코폴리에스테르 장벽 수지를 제조하는공정, 상기 공정에 의해 제조된 코폴리에스테르 수지, 및상기 코폴리에스테르 수지로 제조된 투명 단층 용기
JP2008519883A (ja) 炭化チタン粒子を含むポリエステルポリマー及びコポリマー組成物
KR101537131B1 (ko) 폴리에틸렌나프탈레이트 섬유 및 그 제조 방법
JP5533898B2 (ja) ポリエステル系樹脂組成物及び成形品
JP2003238673A (ja) ポリエステルの製造方法
WO2009113185A1 (ja) ポリエチレンナフタレート繊維及びその製造方法
TWI684626B (zh) 聚對苯二甲酸丙二酯組成物、聚酯纖維及該等之製造方法
JPH08311177A (ja) 熱可塑性ポリエステル樹脂
KR101825248B1 (ko) 폴리에스테르 수지
JP3970245B2 (ja) ポリトリメチレンテレフタレートのペレットおよびその製造方法
JP5671990B2 (ja) ポリエステル樹脂の製造方法
JP4951951B2 (ja) ポリエステル系樹脂組成物の製造方法
JP2008523213A (ja) 鋼粒子を含むポリエステルポリマー及びコポリマー組成物
WO2004063437A1 (ja) ポリエステル繊維及びそれを含む仮撚加工糸
JP2003342356A (ja) ポリトリメチレンテレフタレート組成物粒子
JPH0670165B2 (ja) ポリエステル組成物
JP3617324B2 (ja) ポリエステル及びそれからなる延伸ブロー成形体
JP3638882B2 (ja) 紡糸性に優れたポリトリメチレンテレフタレートチップ
JP3693602B2 (ja) 結晶化ポリトリメチレンテレフタレートチップ
JP4524572B2 (ja) ポリエステルならびにポリエステルの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003576498

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003710374

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/008921

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 10507840

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047014633

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038065266

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047014633

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003710374

Country of ref document: EP