WO2003075689A1 - Procede de regulation de l'humidite de matiere brute et machine a cet effet - Google Patents

Procede de regulation de l'humidite de matiere brute et machine a cet effet Download PDF

Info

Publication number
WO2003075689A1
WO2003075689A1 PCT/JP2003/003019 JP0303019W WO03075689A1 WO 2003075689 A1 WO2003075689 A1 WO 2003075689A1 JP 0303019 W JP0303019 W JP 0303019W WO 03075689 A1 WO03075689 A1 WO 03075689A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
rotary cylinder
inlet
cylinder
humidity
Prior art date
Application number
PCT/JP2003/003019
Other languages
English (en)
French (fr)
Inventor
Koji Sakamoto
Susumu Uchida
Katsuhide Yokota
Takashi Ogawa
Kazuo Yoshimoto
Original Assignee
Japan Tobacco Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc. filed Critical Japan Tobacco Inc.
Priority to JP2003573973A priority Critical patent/JP3925931B2/ja
Priority to AU2003220891A priority patent/AU2003220891A1/en
Priority to EP03712687.7A priority patent/EP1486130B1/en
Priority to CA002478717A priority patent/CA2478717C/en
Publication of WO2003075689A1 publication Critical patent/WO2003075689A1/ja
Priority to US10/923,032 priority patent/US6931758B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • F26B11/028Arrangements for the supply or exhaust of gaseous drying medium for direct heat transfer, e.g. perforated tubes, annular passages, burner arrangements, dust separation, combined direct and indirect heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B3/00Preparing tobacco in the factory
    • A24B3/04Humidifying or drying tobacco bunches or cut tobacco
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • F26B11/04Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis
    • F26B11/044Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis the drum or receptacle having a variable outer or inner diameter in axial direction, e.g. trunconical; the drum or receptacle having a polygonal or non-cylindrical shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2200/00Drying processes and machines for solid materials characterised by the specific requirements of the drying good
    • F26B2200/22Tobacco leaves

Definitions

  • the present invention relates to a method and an apparatus for controlling the humidity of a raw material suitable for controlling the humidity of a tobacco raw material.
  • a method for controlling the humidity of a raw material comprises transferring a raw material along a predetermined transfer path while stirring the raw material, heating the raw material to a predetermined temperature during the raw material transfer process, and setting a saturated vapor pressure.
  • Humid air having a relative humidity close to the flow path along the transfer path, and bringing the raw material into contact with the humid air stream.
  • the humid air stream has a relative humidity of 80-95%.
  • a humid air stream has a high water content, it does not cause water droplets to adhere to the surface of the raw material. Therefore, the raw material can efficiently absorb the moisture in the humid air flow from the entire surface to the inside without being wetted by the surface. As a result, the entire water content of the raw material becomes uniform in a short time, and a large amount of raw material can be promptly subjected to humidity control.
  • the raw material adsorbs moisture, heat of adsorption is generated, and this heat of adsorption uniformly heats the raw material.
  • the heating temperature of the humid air stream is preferably 40 to 80.
  • the tobacco raw material is not likely to be overheated, and the original aroma of the tobacco raw material is not thermally degraded.
  • the tobacco raw material is quickly and uniformly humidified, even if the tobacco raw material is agitated, crushing of the tobacco raw material is suppressed, and the raw material loss can be reduced.
  • the humid air flow preferably circulates in a transport path, in which case the humid air can be reused.
  • the supply device further comprises a circulation system for circulating the moist air flow through the rotary cylinder, the circulation system extending outside the rotary cylinder and having a circulation line connecting between the air supply port and the exhaust port.
  • the inlet and outlet each include a mouth tally valve, which permits one of the supply and discharge of the raw material to and from the rotating cylinder, and prevents leakage of the humid air flow from the inlet and outlet.
  • the circulation system further includes a blower, a heater, and a humidifier that are sequentially inserted from the discharge port side into the circulation pipeline, wherein the blower generates an airflow toward the rotating cylinder, and the heater generates the airflow. To a predetermined temperature, and the humidifier wets the heated airflow.
  • the circulation system can further include control means for controlling the operation of the blower, the heater and the humidifier, respectively.
  • the moist air flow is supplied from both the air inlet and the intermediate air inlet into the rotating cylinder, the wet air flow required for the humidity control of the raw material can be easily secured, A moist air stream is created in the rotating cylinder that is suitable for conditioning the raw material.
  • the intermediate air supply port is positioned on the axis of the rotary cylinder, or has an annular shape extending along the peripheral wall of the rotary cylinder.
  • the ring-shaped intermediate air supply port can be easily obtained by a divided rotary cylinder.
  • the split type rotary cylinder has an upstream cylinder portion provided with an inlet, and a downstream cylinder portion provided with an outlet and having a larger diameter than the upstream cylinder.
  • the intermediate air supply port is defined between the outer peripheral surface of the upstream cylinder portion and the inner peripheral surface of the downstream cylinder portion.
  • FIG. 1 is a diagram schematically showing an entire humidity controller of one embodiment
  • FIG. 2 is a partially cutaway view of the rotary cylinder of FIG. 1,
  • FIG. 3 is a cross-sectional view of the rotary cylinder of FIG. 2,
  • FIG. 4 is a front view showing the intermediate air supply port of FIG. 3,
  • Fig. 5 is a graph showing the measurement results of the crushing ratio of the raw materials for the raw materials conditioned by the humidity control methods A, B, and C, respectively.
  • Fig. 6 is a graph showing the measurement results of the volume density of the raw materials for the raw materials conditioned by the humidity control methods A, B, and C, respectively.
  • FIG. 7 is a view showing a rotary cylinder of a modified example.
  • FIG. 8 is an enlarged sectional view showing a part of the rotary cylinder shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • Fig. 1 shows a humidity controller applied to tobacco raw materials.
  • Tobacco raw materials include tobacco leaves, tobacco leaf bones, sheet-shaped regenerated tobacco, and one or two or more types of cut tobacco obtained by cutting each of these and tobacco processed tobacco. Contains mixtures.
  • tobacco raw materials are simply referred to as raw materials.
  • the humidifier is equipped with a conveyor 2 that supplies a constant amount of raw materials.
  • a hollow rotary cylinder 6 is arranged below the conveyor 2, and has a raw material inlet 4 at one end and an outlet 8 at the other end.
  • Conveyor 2 transports the raw material toward rotary cylinder 6 and passes through inlet 4 into rotary cylinder 6 Supply.
  • the rotary cylinder 6 is rotated in one direction. With this rotation, the raw material in the rotary cylinder 6 is transported from one end to the other end in the axial direction of the rotary cylinder 6, and the outlet 8 From the discharge conveyor 10.
  • a circulating pipe 12 for wet air extends from one end of the rotary cylinder 6, and the circulating pipe 12 is connected to the other end of the rotary cylinder 6.
  • the circulation pipe 12 and the cylinder chamber of the rotating cylinder 6 define a circulation path of the wet air.
  • a humidifier 14, a steam heater 16, an electric blower 18 equipped with an impeller and a collecting tank 20 are sequentially inserted into the circulation pipe 12 from the inlet 4 side of the rotary cylinder 6.
  • a plurality of water supply nozzles 22 and a plurality of steam nozzles 24 are arranged together with the stirring blade and the steam trap.
  • the water supply nozzle 22 is connected to a water supply source through a water supply pipe 26, and an on-off valve 28 is inserted in the water supply pipe 26.
  • an on-off valve 28 is inserted in the water supply pipe 26.
  • FIG. 1 only one water supply nozzle 22 and two steam nozzles 24 are shown.
  • Branch pipes 30 are connected to the steam nozzles 24, respectively, and these branch pipes 30 are connected to the steam pipe 32.
  • Each branch pipe 30 is provided with an electromagnetically actuated flow control valve 34.
  • the steam pipe 32 is connected to a main steam source via a pressure reducing valve 36, and a flow meter 38 is inserted in the steam pipe 32.
  • the steam heater 16 incorporates two heat exchangers 40a and 4Ob.
  • Branch pipes 42 extend from the heat exchangers 40, respectively, and are connected to the branch pipes 42 and the steam pipes 44.
  • An electromagnetically actuated flow control valve 46 is inserted into each branch pipe 42.
  • the steam pipe 44 is connected to a sub-steam source via a pressure reducing valve 48.
  • Each heat exchanger 40 is connected to a recovery path via a pipeline.
  • the circulation line 12 is provided with an inlet thermometer 50, an inlet hygrometer 52 and an inlet current meter 54 between the rotary cylinder 6 and the humidifier 14 respectively.These thermometers 50 and humidity are provided. The total temperature 52 and the flow meter 54 are the inlet temperature T! Of the humid air flowing into the rotary cylinder 6. , Inlet humidity and inlet flow velocity V are detected respectively.
  • the circulation line 12 is provided with an intermediate thermometer 56, an intermediate humidity meter 58 and an intermediate flow meter 60 between the humidifier 14 and the steam heater 16, respectively. 6, hygrometer 5 8 and a flow rate meter 6 0 detects intermediate temperature T 2 of the moist air flowing into the humidifier 1 4, intermediate moisture Eta 2 and intermediate flow speed V 2, respectively.
  • the circulation line 12 is provided with an outlet thermometer 62, an outlet hygrometer 64, and an outlet speed meter 66 between the collection tank 20 and the rotary cylinder 6, respectively.
  • six 2 hygrometer 6 4 and a speedometer 6 6 detects the outlet temperature T 3 of the moist air flow that has passed through the rotating cylinder 6, the outlet humidity Eta 3 and outlet flow rate V 3, respectively.
  • a drain pipe 68 extends from the collection tank 20, and an open / close valve 70 is inserted in the drain pipe 68.
  • the air flow passes through the steam heater 16, the air flow is heated to a predetermined temperature by the steam flowing through the heat exchanger 40. Thereafter, when the heated air stream passes through the humidifier 14, the heated air stream contacts the steam sprayed from the steam nozzle 24, and a humid air stream is generated in the humidifier 14. You.
  • This humid air flow is supplied from the humidifier 14 to the rotary cylinder 6, and as a result, the humid air flow circulates in the circulation path including the rotary cylinder 6.
  • the temperature and relative humidity of the humidified air flow supplied to the rotary cylinder 6 are in the range of 40 to 80 ° C and 80 to 95% close to the saturated vapor pressure. Is preferred.
  • the time required for the raw material to pass through the rotary cylinder 6, that is, when the residence time of the raw material is set to 3 to 5 min the wind speed of the wet air flow passing through the rotary cylinder 6 is It is selected from the range of 0.1 to 0.3 m / s according to the supply amount of the raw material.
  • thermometers 50, 56, 62, the hygrometers 52, 58, 64 and the flowmeters 54, 60, 66 described above were used. Is electrically connected to the controller 72, and the controller 72 can receive detection signals from the thermometer, the hygrometer, and the current meter. Further, the controller 72 is also electrically connected to the blower 18 and the flow control valves 34 and 46 described above. Therefore, the controller 72 can control the rotation speed of the blower 18, whereby the wind speed of the humid air flow is adjusted. Further, the controller 72 controls the opening of at least one of the flow control valves 46 based on the inlet temperature 1 of the humid air flow from the inlet thermometer 50, whereby the temperature of the humid air flow is adjusted. You.
  • the controller 42 controls the flow of the other flow control valve 46. Only the opening can be controlled based on the inlet temperature T.
  • the controller 7 2 intermediate temperature T 2 from the inlet flow rate intermediate thermometer 5 6 from the inlet humidity Eta ,, inlet velocity meter 5 4 from the inlet temperature T entrance hygrometer 5 2 from the inlet thermometer 5 0, intermediate humidity
  • the intermediate humidity ⁇ 2 from the total 58 and the intermediate speed V 2 from the intermediate speedometer 60 are received, the amount of steam sprayed from the steam nozzle 24 in the humidifier 14 is calculated based on these data. Calculate.
  • controller 72 controls the opening degree of each flow control valve 34 based on the calculated amount of steam, whereby the relative humidity of the humid air flow is adjusted.
  • the maximum opening degrees of the two flow control valves 34 are different from each other.
  • the controller 72 independently controls the opening of each flow control valve 34, and as a result, the relative humidity of the humid air flow is finely adjusted.
  • the circulation path of the humid air flow is provided with an outside air introduction device (not shown) for ventilation.
  • the rotating cylinder 6 is inclined so that the other end faces downward, and the inclination angle of the rotating cylinder 6 with respect to the horizontal plane is indicated by in FIG.
  • the rotary cylinder 6 is rotatably supported, and is rotated in one direction around its axis.
  • the inlet 4 of the rotary cylinder 6 has a hollow cone-shaped end cover 74, and the end cover 74 has a small diameter end and a large diameter end.
  • the large-diameter end of the end cover 74 is air-tightly connected to one end of the rotary cylinder 6 while allowing the rotation of the rotary cylinder 6.
  • the upstream portion of the circulation line 12 described above is inserted into the end cover 74 from the small-diameter end in a gas-tight manner, and the insertion portion 88 of the circulation line 12 is connected to one end of the rotary cylinder 6. It has an air supply port 90 opened at the center of the. Therefore, wet air is blown out from the air supply port 90 of the circulation pipe 12 toward the other end of the rotary cylinder 6.
  • the end cover 74 has a feed pipe 76, and the feed pipe 76 enters the inside of the end cover 74 from above the end cover 74.
  • the lower end of the feed pipe 76 opens toward one end of the rotary cylinder 6.
  • a rotary valve 78 is connected to an upper end of the feed pipe 76, and the rotary valve 78 has an inlet hopper 79.
  • the inlet hopper 79 is disposed immediately below the end of the conveyor 2.
  • the rotary valve 78 has a rotor (not shown), and a plurality of pockets are formed on the outer peripheral surface of the rotor at equal intervals in the circumferential direction.
  • Each pocket receives the raw material sent from the conveyor 2 through the inlet hopper 7.9 with the rotation of the pocket b, and transfers the received raw material to the feed pipe 76. Thereafter, when the pocket receiving the raw material matches the upper end of the feed pipe 76, the raw material is supplied from the pocket through the feed pipe 76 into the rotary cylinder 6.
  • stirring blades 8 0 As shown in FIG. 3, a large number of stirring blades 8 0 is attached. These stirring blades 80 extend in the axial direction of the rotary cylinder 6 and are arranged at equal intervals in the circumferential direction of the rotary cylinder 6. The tip of each stirring blade 80 is bent in the direction of rotation of the rotary cylinder 6 (see arrow).
  • the raw material in the rotary cylinder 6 is brought up by the stirring blade 80, and is thereby stirred.
  • the raw material is transferred toward the other end of the rotary cylinder 6 according to the inclination of the rotary cylinder 6.
  • the outlet 8 of the rotary cylinder 6 has a hollow cone-shaped end cover 82 similar to the end cover 74 of the inlet 4. Therefore, the large-diameter end of the end cover 82 is air-tightly connected to the other end of the rotary cylinder 6 while allowing the rotation of the rotary cylinder 6, and is connected to the small-diameter end of the end cover 82.
  • the downstream part of the circulation line 12 is connected.
  • An outlet hopper 84 is connected to a lower portion of the end force par 82, and a one-way valve 86 is connected to a lower end of the outlet hopper 84.
  • the rotary valve 86 has the same structure as the rotary valve 78 described above, and has a discharge pipe 87 protruding toward the start end of the discharge conveyor 10.
  • the raw material in the rotary cylinder 6 When the raw material in the rotary cylinder 6 reaches the other end of the rotary cylinder 6, the raw material is supplied to an outlet hopper 84. Then, with the rotation of the rotary valve 86, the raw material in the outlet hopper 8.4 is taken out through the rotary valve 86, and is discharged from the discharge pipe 87 onto the discharge conveyor 10.
  • the inlet 4 and the outlet 8 are provided with rotary pulp 78 and 86, respectively, the cylinder chamber in the rotary cylinder 6 is maintained in a sealed state. Therefore, it is possible to continuously supply and discharge the raw material to and from the rotating cylinder 6 in a state where the infiltration air from the inside of the rotating cylinder 6 is prevented from leaking. As a result, the humidity control processing of the raw material described later is continuously performed. Done.
  • An inner air supply pipe 9 2 is concentrically arranged in a portion of the circulation pipe 12 located at one end side of the rotary cylinder 6, and the inner air supply pipe 9 2 is provided from the insertion portion 8 8 of the circulation pipe 12. Projecting.
  • the inner air supply pipe 92 extends on the axis of the rotary cylinder 6 to a central position of the rotary cylinder 6, and has an intermediate air supply port 94 at the end thereof. Therefore, wet air is also blown into the rotary cylinder 6 from the intermediate air supply port 94 of the inner air supply pipe 92.
  • the inner air supply pipe 92 has an annular air supply port 90 for the inlet portion 88, and a flow straightening plate 96 is attached to the annular air supply port 90 as shown in FIG. .
  • a flow straightening plate 98 is also attached to the intermediate air supply port 94 of the inner air supply pipe 92 as shown in FIG.
  • These rectifying plates 96 and 98 rectify the humid air flow blown out from the air supply port 90 and the intermediate air supply port 94, and as a result, the inside of the rotary cylinder 6 is indicated by the arrow in FIG. As shown, a moist airflow is generated that flows along the axial direction of the rotary cylinder 6.
  • a pair of drive rollers 102 are arranged in a rolling contact state outside the rotary cylinder 6 as shown by a two-dot chain line in FIG. 3, and the rotation of the drive rollers 102 causes the rotary cylinder 102 to rotate. 6 is rotated in one direction.
  • a wet air flow is blown from both the air supply port 90 and the intermediate air supply port 94 into the rotary cylinder 6, and this wet air flow is in the axial direction of the rotary cylinder 6, that is, in the same direction as the material transfer direction. It flows forward and is discharged to the downstream side of the circulation line 12. In this state, when the raw material is supplied into the rotary cylinder 6 through the inlet 4, the raw material is transferred toward the outlet 8 while being stirred by the stirring blade 80 as the rotary cylinder 6 rotates.
  • the raw material comes into contact with the humid air flow in the rotary cylinder 6, and absorbs moisture from the humid air flow.
  • the humid air stream Since the relative humidity of the humid air stream is set in the range described above, the humid air stream does not contain fine water droplets. Therefore, no water droplets adhere to the surface of the raw material. Ma
  • the humid air flow flows in the direction in which the raw material is transferred, and the raw material is agitated, the raw material is substantially exposed to the humid air on the entire surface of the raw material during the raw material transfer process. As a result, the raw material can uniformly absorb the moisture in the humid air from the entire surface. When a raw material absorbs moisture, it generates heat of adsorption, which raises the temperature of the raw material. Therefore, the moisture and temperature of the raw material are uniformly adjusted to the inside. Thereafter, the raw material is discharged from the outlet 8 of the rotary cylinder 6.
  • Figures 5 and 6 show the measurement results for the average crushing ratio and the average volume density of the conditioned raw materials.
  • A shows the measurement results of the raw material conditioned by the method of the above-described embodiment
  • B and C show the measurement results of the raw material conditioned by another method, respectively.
  • Bright tobacco leaves and parlay tobacco leaves were used as raw materials, and the moisture content of the raw materials before moisture conditioning was about 11%.
  • the average crushing ratio indicates the ratio of the crushed pieces of the raw material contained in the raw material after the humidity control, and the crushed pieces indicate those whose vertical and horizontal sizes are smaller than 6.7 strokes.
  • the amount of the raw material supplied and the rotation of the rotary cylinder 6 are set so that the amount of the raw material retained in the rotary cylinder 6 and the residence time are 2 lkgDM (dry weight) and 3 min, respectively.
  • the speed was controlled individually.
  • the rotation speed of the rotary cylinder 6 was 10 rpm.
  • the size of the rotary cylinder 6 is 1.8 m in inner diameter and 1 m in length.
  • the humidity control method B of the comparative example differs from the humidity control method A only in the residence time of the raw material in the rotary cylinder 6. That is, in the humidity control method, the supply amount of the raw material and the rotation speed of the rotary cylinder 6 were controlled so that the residence time of the raw material was 15 min.
  • the humidity control method C of the comparative example water was directly sprayed from the spray nozzle onto the raw material in the rotary cylinder 6 while supplying the humid air flow into the rotary cylinder 6.
  • the residence time of the raw material in the rotating cylinder 6 is 3 min, which is the same as in the case of the humidity control method A.
  • the amount of water supplied to the raw material is the same as in the case of the humidity control method B.
  • the average crushing ratio of the raw materials was lower in the humidity control method A of the example than in the humidity control methods B and C of the comparative examples, regardless of the type of the raw material, either the bright type or the barre type.
  • raw material loss can be reduced. This means that the humidity control of the raw material by the humidity control method A is more uniform than in the humidity control methods B and C.
  • the measurement results in FIG. 6 indicate that the humidity control of the raw material by the humidity control method A is uniformly performed to the inside of the raw material. That is, the average volume density of the raw material in the humidity control method A is almost the same as that in the humidity control method B, but is lower than that in the humidity control method C. This indicates that, according to the humidity control method A, compared to the humidity control method C, the raw material after humidity control absorbs moisture evenly to the inside, and is soft. As a result, the raw material conditioned by the humidity control method A of the embodiment has excellent permeation of the fragrance, and the subsequent flavoring treatment can be effectively performed.
  • the raw material since the raw material does not receive water droplets, the components of the raw material do not elute into the water droplets. Specifically, when the raw material is a tobacco raw material, the tobacco raw material's original fragrance does not elute into the water droplets. it can.
  • the rotary cylinder 6 has an air supply port 90 and an intermediate air supply port 94 therein, and the air supply port 90 and the intermediate air supply port 94 rotate. Since the cylinder 6 is spaced apart in the axial direction of the cylinder 6, a uniform flow of moist air can be easily generated in the rotary cylinder 6.
  • FIG. 7 shows a rotary cylinder 6 of the split type.
  • the rotary cylinder 6 has an upstream cylinder portion 104 and a downstream cylinder portion 106, and the cylinder portions 104 and 106 are rotated in synchronization with each other.
  • the downstream cylinder portion 106 has a larger diameter than the upstream cylinder portion 104, and a fixed ring cover 108 is provided between the upstream and downstream cylinder portions 104, 106. Covered.
  • seals are provided between the ring cover 108 and the upstream cylinder portion 104, and between the ring cover 108 and the downstream cylinder portion 106, respectively. Rings 110, 112 are arranged. Therefore, the ring cover 108 and the outer peripheral surfaces of the upstream and downstream cylinders 104, 106 cooperate with each other to define the chamber 114.
  • a connecting pipe 1 16 extends from the chamber 1 1 4 and is connected to an upstream portion of the circulation pipe 12.
  • an annular intermediate air supply port 116 is formed between the upstream cylinder part 104 and the downstream cylinder part 106, and the intermediate air supply port 111 is formed.
  • Numeral 6 communicates the chamber 114 with the inside of the downstream cylinder portion 106 mutually.
  • a ring-shaped current plate 1 18 is also attached to the intermediate air supply port 1 16.
  • the moist air flow is blown into the rotary cylinder 6 from both the air supply port 90 and the intermediate air supply port 116, and the rotary cylinder 6 has an outlet 4 and an outlet.
  • a humid air flow towards 8 is likewise generated.
  • the air inlet 90 blows out a humid air flow toward the center of the upstream cylinder portion 104, and the intermediate air inlet 116 extends along the outer periphery of the downstream cylinder portion 106. Blow out a stream of moist air.
  • the moist air flow uniformly flows in the cross-sectional area of the rotary cylinder 6, and the effect of controlling the humidity of the raw material is further improved.
  • the upstream and downstream cylinder portions 104 and 106 may overlap each other, or the air inlet of the rotary cylinder 6 Is not limited to two, but may be three or more.
  • the flow direction of the humid air is not limited to the forward direction with respect to the transfer direction of the raw material, but may be the reverse direction with respect to the transfer direction.
  • the rotating cylinder 6 is supplied with a humid air flow adjusted to a predetermined temperature and a predetermined relative humidity, but the controller 72 adjusts the moisture content of the raw material after the humidity adjustment to a target value.
  • the temperature, relative humidity and flow rate of the humid air stream can be controlled.
  • the controller 7 2 the supply amount of the raw material, based on the above-mentioned inlet temperature T inlet humidity and inlet flow velocity V had an outlet temperature T 3 of the moist air flow, outlet humidity Eta 3 and out. Neck velocity V 3, etc. Calculate the moisture content of the raw material after humidity control, and feed back the inlet temperature T P inlet humidity and inlet flow velocity V of the humid air flow supplied to the rotary cylinder 6 so that the calculated moisture content becomes the target value. Control.
  • the humidity control method and apparatus of the present invention can be applied to the humidity control of food materials other than tobacco materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Tobacco Products (AREA)
  • Drying Of Solid Materials (AREA)

Description

明 細 書
原料の調湿方法及び調湿機
技術分野
本発明は、 たばこ原料の調湿に好適した原料の調湿方法及び調湿機に関する。 背景技術
たばこ原料の調湿機は、 例えば特表 200卜 514023号公報や、 国際公開 W0 01/60186A1号公報に開示されている。 これら公知の調湿機は何れも回転シリンダ を備えており、 回転シリンダ内に供給されたたばこ原料は攪拌されながら回転シ リンダ内を移送される。 この移送過程にて、 水がノズルからたばこ原料に向けて 噴霧され、 これにより、 たばこ原料はその湿分が調整される。
しかしながら、 このようなたばこ原料の調湿は、 たばこ原料の表面に水を均一 に散布できない。 従って、 たばこ原料の含水率にばらつきが発生し易い。 このよ うな含水率のばらつき (不均一な調湿) は、 たばこ原料が移送過程にて攪拌され るとき、 たばこ原料の破砕を引き起こす。 この結果、 シガレットの充填材料とし て適しない原料の細かい破砕片を発生させ、 原料ロスを増加させる。
また、 不均一な調湿は、 たばこ原料の本来の芳香を悪化させてしまうばかりで なく、 この後のフレーバリング処理にも悪影響を及ぼす。
一方、 特開平 6- 209751号公報に開示された調湿方法及びその装置は、 たばこ原 料がメッシュベルト上を移送させる過程にて、 たばこ原料に湿潤空気を接触させ る。 ^のような調湿方法によれば、 たばこ原料は攪拌されないので、 たばこ原料 の破砕は防止される。 しかしながら、 前記公報の湿潤空気はたばこ原料の湿分に 対して、 平衡状態に近い相対湿度を有しているため、 たばこ原料の均一な調湿に は多大な時間が必要となり、 多量のたばこ原料を調湿するには好適しない。 発明の開示
本発明の目的は、 多量な原料を処理できるばかりでなく、 原料を均一に調湿で きる調湿方法及び調湿機を提供することにある。
上記の目的を達成するため、 本発明の原料の調湿方法は、 所定の移送経路に沿 い、 原料を攪拌しながら移送し、 原料の移送過程中、 所定の温度に加熱され且つ 飽和蒸気圧に近い相対湿度を有する湿潤空気を移送経路に沿つて流し、 前記原料 を前記湿潤空気流に接触させる。
上述の調湿方法によれば、 原料は撹拌されながら移送されるので、 原料はその 全表面が湿潤空気流に常時接触した状態に維持される。 従って、 原料はその全表 面から湿潤空気流中の水分を効率良く吸収することができる。
好ましくは、 湿潤空気流は 8 0〜9 5 %の相対湿度を有する。 このような湿潤 空気流は高い水分量を有するものの、原料の表面に水滴を付着させることはない。 従って、 原料はその表面が水で濡れることなく、 その全表面から内部に至るまで 湿潤空気流中の水分を効率良く吸収することができる。 この結果、 原料の全体の 含水率は短時間にて均一になり、多量の原料を迅速に調湿処理することができる。 また、 原料が水分を吸着すると、 吸着熱が発生し、 この吸着熱は原料を均一に 加熱する。
原料がたばこ原料である場合、 湿潤空気流の加熱温度は 4 0〜8 0 であるの が好ましい。 このような湿潤空気流であれば、 湿潤空気流がたばこ原料に接触し ても、 たばこ原料が過熱される虞はなく、 たばこ原料の本来の芳香が熱劣化する こともない。 また、 たばこ原料は迅速且つ均一に調湿されるので、 たばこ原料が 撹拌されても、たばこ原料の破砕が抑制され、原料ロスを低減することができる。 湿潤空気流は移送経路を循環して流れるのが好ましく、 この場合、 湿潤空気の 再利用が可能となる。
上述した調湿方法を実施するための調湿機は、 中空の回転シリンダであって、 一端部に原料のインレツト及び他端部に原料のアウトレツトを有し、 インレツト から供給された原料をその回転に伴い攪拌しながらアウトレツトに向けて移送す る回転シリンダと、 回転シリンダ内に所定の温度に加熱され且つ飽和蒸気圧に近 い湿潤空気流を供給する供給装置であって、 回転シリンダの一端部に位置付けら れた送気口と、 回転シリンダの前記他端部に位置付けられた排気口とを有し、 送 気口から排気口に向けて前記湿潤空気流を吹き出す供給装置とを備える。
この場合、 供給装置は、 回転シリンダ内を通じて湿潤空気流を循環させる循環 システムを更に含み、 循環システムは回転シリンダの外側を延び、 送気口と排気 口との間を接続する循環管路を有する。 そして、 インレット及びアウトレットは 口 タリバルブをそれぞれ含み、 口—タリバルブは、 回転シリンダに対する原料 の供給及び排出の一方を許容し、 且つ、 インレット及びアウトレットからの湿潤 空気流の漏出を防止する。
ロータリバルブは湿潤空気の損失を防止するので、 湿潤空気の再利用率が高ま り、 そして、 回転シリンダ内での原料の連続処理が可能となる。
具体的には、循環システムは、循環管路に排出口側から順次介挿された送風機、 ヒータ及び加湿装置を更に含んでおり、 送風機は回転シリンダに向かう空気流を 発生し、 ヒータは空気流を所定温度まで加熱し、 そして、 加湿装置は、 加熱され た空気流を湿潤させる。
この場合、 循環システムは、 送風機、 ヒー夕及び加湿装置の作動をそれぞれ制 御する制御手段を更に含むことができる。
一方、 供給装置は、 回転シリンダ内に湿潤空気流を吹き出す中間送気口を更に 含むことができ、 この中間送気口は回転シリンダの軸線方向でみて、 送気口とァ ゥトレットとの間に位置付けられている。
この場合、 回転シリンダ内には送気口及び中間送気口の双方から湿潤空気流が 供給されるので、 原料の調湿に要求される湿潤空気流量が容易に確保されるばか りでなく、 回転シリンダ内に原料の調湿に適した湿潤空気流れが作り出される。 具体的には、 中間送気口は回転シリンダの軸線上に位置付けられているか、 又 は、 回転シリンダの周壁に沿って延びる環状をなしている。
環状の中間送気口は、 分割型の回転シリンダにより容易に得ることができる。 具体的には、 分割型の回転シリンダは、 インレットを備えた上流側シリンダ部分 と、 アウトレットを備え、 且つ、 上流側シリンダよりも大径の下流側シリンダ部 分とを有しており、 環状の中間送気口は、 上流側シリンダ部分の外周面と下流側 シリンダ部分の内周面との間に規定されている。 図面の簡単な説明
第 1図は、 一実施例の調湿機の全体を概略的に示した図、
第 2図は、 第 1図の回転シリンダを一部破断して示した図、
第 3図は、 第 2図の回転シリンダの横断面図、
第 4図は、 第 3図の中間送気口を示した正面図、
第 5図は、 調湿方法 A, B, Cによりそれぞれ調湿された原料に関して、 原料 における破砕比の測定結果を示すグラフ、
第 6図は、 調湿方法 A, B, Cによりそれぞれ調湿された原料に関して、 原料 の体積密度の測定結果を示すグラフ、
第 7図は、 変形例の回転シリンダを示した図、 及び
第 8図は、 第 7図の回転シリンダの一部を拡大して示した断面図である。 発明を実施するための最良の形態
第 1図は、 たばこ原料に適用した調湿機を示す。
たばこ原料は、 たばこ葉、 たばこ葉の中骨、 シート状の再生たばこ、 これらを それぞれ裁刻して得られた刻たばこ及び膨ィ匕処理された刻たばこの 1つ、 又は、 2種以上の混合物を含む。 以下、 たばこ原料は単に原料と称される。
調湿機は原料の定量供給型のコンベア 2を備えている。 コンベア 2の下方には 中空の回転シリンダ 6が配置され、 この回転シリンダ 6はその一端部に原料のィ ンレット 4を有し、 且つ、 その他端部にアウトレット 8を有する。 コンベア 2は 原料を回転シリンダ 6に向けて移送し、 回転シリンダ 6内にインレツト 4を通じ て供給する。
後述するように回転シリンダ 6は一方向に回転され、 この回転に伴い、 回転シ リンダ 6内の原料は一端部から他端部に向けて回転シリンダ 6の軸線方向に移送 され、 そして、 アウトレット 8から排出コンベア 1 0上に排出される。
回転シリンダ 6の一端部から湿潤空気の循環管路 1 2が延びており、 この循環 管路 1 2は回転シリンダ 6の他端部に接続されている。 循環管路 1 2は回転シリ ンダ 6のシリンダ室とともに湿潤空気の循環経路を規定する。
循環管路 1 2には回転シリンダ 6のインレット 4側から、 加湿装置 1 4、 蒸気 ヒータ 1 6、 ィンパ一夕付きの電動送風機 1 8及び回収夕ンク 2 0が順次介挿さ れている。
加湿装置 1 4内には、 撹拌羽根及び蒸気トラップとともに複数の給水ノズル 2 2及び複数の蒸 ¼ノズル 2 4が配置されている。 給水ノズル 2 2は給水管 2 6を 通じて給水源に接続されており、 給水管 2 6には開閉弁 2 8が介挿されている。 なお、 第 1図中には、 1個の給水ノズル 2 2と 2個の蒸気ノズル 2 4のみが示さ れている。
蒸気ノズル 2 4には分岐管 3 0がそれぞれ接続されており、 これら分岐管 3 0 は蒸気管 3 2に接続されている。 各分岐管 3 0には電磁作動型の流量調整弁 3 4 がそれぞれ介揷されている。 蒸気管 3 2は減圧弁 3 6を介して主蒸気源に接続さ れ、 蒸気管 3 2には流量計 3 8が介挿されている。
蒸気ヒータ 1 6は 2つの熱交換器 4 0 a, 4 O bを内蔵している。 これら熱交 換器 4 0から分岐管 4 2がそれぞれ延び、 これら分岐管 4 2蒸気管 4 4に接続さ れている。 各分岐管 4 2には電磁作動型の流量調整弁 4 6がそれぞれ介挿されて レる。 蒸気管 4 4は減圧弁 4 8を介して副蒸気源に接続されている。 なお、 各熱 交換器 4 0は管路を介して回収経路に接続されている。
循環管路 1 2は回転シリンダ 6と加湿装置 1 4との間に入口温度計 5 0、 入口 湿度計 5 2及ぴ'入口流速計 5 4をそれぞれ備えており、 これら温度計 5 0 , 湿度 計 5 2及び流速計 5 4は回転シリンダ 6に流入する湿潤空気流の入口温度 T!、 入口湿度 及び入口流速 V をそれぞれ検出する。 また、 循環管路 1 2は、 加湿 装置 1 4と蒸気ヒータ 1 6との間に中間温度計 5 6、 中間湿度計 5 8及び中間流 速計 6 0をそれぞれ備えており、 これら温度計 5 6、 湿度計 5 8及び流速計 6 0 は、 加湿装置 1 4内に流入する湿潤空気の中間温度 T 2、 中間湿度 Η2及び中間流 速 V 2をそれぞれ検出する。 更に、 循環管路 1 2は回収タンク 2 0と回転シリン ダ 6との間にも、 出口温度計 6 2、 出口湿度計 6 4及び出口速度計 6 6をそれぞ れ備えており、 これら温度計 6 2、 湿度計 6 4及び速度計 6 6は回転シリンダ 6 を通過した湿潤空気流の出口温度 T 3、 出口湿度 Η3及び出口流速 V 3をそれぞれ 検出する。 回収夕ンク 2 0からはドレン管 6 8が延び、 このドレン管 6 8には開 閉弁 7 0が介挿されている。
送風機 1 8が駆動されると、 送風機 1 8の吐出口から循環管路 1 2内に空気が 供給され、 循環管路 1 2内に空気の流れが発生される。 この空気流は循環管路 1 2の上流側部分を通じて回転シリンダ 6に向かい、 回転シリンダ 6を通過する。 この後、 空気流は回転シリンダ 6から循環管路 1 2の下流側部分を通じて回収夕 ンク 2 0に戻る。 回収タンク 2 0内の空気は送風機 1 8の吸込口に管路を通じて 吸い込まれる。
空気流が蒸気ヒ一夕 1 6を通過するとき、 空気流は熱交換器 4 0を流れる蒸気 により所定の温度まで加熱される。 この後、 加熱された空気流が加湿装置 1 4を 通過するとき、加熱された空気流は蒸気ノズル 2 4から噴霧された蒸気に接触し、 加湿装置 1 4内にて湿潤空気流が生成される。 この湿潤空気流は加湿装置 1 4か ら回転シリンダ 6内に供給され、 この結果、 湿潤空気流が回転シリンダ 6を含む 循環経路内を循環する。
原料が前述したようなたばこ原料である場合、 回転シリンダ 6に供給される湿 潤空気流の温度及び相対湿度は 4 0〜 8 0 °C及び飽和蒸気圧に近い 8 0〜9 5 % の範囲にあるのが好ましい。 原料が回転シリンダ 6内を通過するのに要する時間、 即ち、 原料の滞留時間が 3〜 5minに設定されている場合、回転シリンダ 6を通過する湿潤空気流の風速は、 回転シリンダ 6内への原料の供給量に応じて、 0 . 1〜0 . 3 m/sの範囲から選択 される。
湿潤空気流の温度、 相対湿度及び風速をそれぞれ制御するため、 前述した温度 計 5 0, 5 6 , 6 2、 湿度計 5 2 , 5 8 , 6 4及び流速計 5 4 , 6 0, 6 6はコ ントローラ 7 2の電気的に接続され、 コントローラ 7 2はこれら温度計、 湿度計 及び流速計からの検出信号を受け取ることができる。 また、 コントローラ 7 2は 前述した送風機 1 8及び流量調整弁 3 4 , 4 6にも電気的に接続されている。 従って、 コントローラ 7 2は送風機 1 8の回転速度を制御可能であり、 これに より、 湿潤空気流の風速が調整される。 また、 コントローラ 7 2は入口温度計 5 0からの湿潤空気流の入口温度 1 に基づいて、少なくとも一方の流量調整弁 4 6 の開度を制御し、 これにより、 湿潤空気流の温度が調整される。
蒸気ヒータ 1 6内の上流側の熱交換器 4 0 aと組をなす一方の流量制御弁 4 6 の開度が一定に維持されている場合、 コントローラ 4 2は他方の流量制御弁 4 6 の開度のみを入口温度 T,に基づいて制御することができる。
コントローラ 7 2は、入口温度計 5 0からの入口温度 T 入口湿度計 5 2から の入口湿度 Η,、 入口流速計 5 4からの入口流速 中間温度計 5 6からの中間 温度 T2、 中間湿度計 5 8からの中間湿度 Η2、 そして、 中間速度計 6 0からの中 間速度 V2を受け取ると、 これらのデータに基づき加湿装置 1 4内の蒸気ノズル 2 4から噴霧すきべ蒸気量を演算する。
この後、 コントローラ 7 2は演算された蒸気量に基づき、 各流量制御弁 3 4の 開度を制御し、 これにより、 湿潤空気流の相対湿度が調整される。
好ましくは、 2つの流量制御弁 3 4の最大開度は互いに異なっている。 この場 合、 コントローラ 7 2は各流量制御弁 3 4の開度を独立して制御し、 この結果、 湿潤空気流の相対湿度はきめ細かく調整される。 なお、付け加えれば、湿潤空気流の循環経路には換気のための外気導入装置(図 示しない) が備えられている。
第 2図から明らかなように回転シリンダ 6はその他端部が下方を向くように傾 斜しており、 回転シリンダ 6の水平面に対する傾斜角は第 2図中に で示されて いる。 回転シリンダ 6は回転自在に支持され、 その軸線の回りを一方向に回転さ れる。
回転シリンダ 6のインレット 4は中空円錐形状のエンドカバ一 7 4を備え、 こ のェンドカバー 7 4は小径端及び大径端を有する。ェンドカバー 7 4の大径端は、 回転シリンダ 6の回転を許容した状態で、 回転シリンダ 6の一端部に気密を存し て接続されている。 エンドカバ一 7 4にはその小径端から前述した循環管路 1 2 の上流側部分が気密を存して挿入されており、 循環管路 1 2の揷入部分 8 8は回 転シリンダ 6における一端の中央にて開口した送気口 9 0を有する。 従って、 循 環管路 1 2の送気口 9 0から回転シリンダ 6の他端部に向けて湿潤空気が吹き出 される。
エンドカバー 7 4はフィード管 7 6を有し、 このフィード管 7 6はエンドカバ 一 7 4の上方からエンドカバー 7 4の内部に進入する。 フィード管 7 6の下端は 回転シリンダ 6の一端部に向けて開口する。 フィード管 7 6の上端にはロータリ バルブ 7 8が接続されており、 このロータリバルブ 7 8は入口ホッパ 7 9を有す る。 入口ホッパ 7 9はコンベア 2における終端の直下に配置されている。
ロータリバルブ 7 8はロータ (図示しない) を有し、 このロータの外周面には その周方向に等間隔を存して複数のポケッ卜が形成されている。 各ポケットはロ 一夕の回転に伴い、 前述したコンベア 2から送出される原料を入口ホッパ 7 .9を 介して受取り、 そして、 受取った原料をフィード管 7 6に向けて移送する。 この 後、 原料を受取ったポケットがフィード管 7 6の上端に合致したとき、 原料はポ ケットからフィード管 7 6を通じて回転シリンダ 6内に供給される。
第 3図に示されるように、 回転シリンダ 6の内周壁には多数の撹拌ブレード 8 0が取り付けられている。 これら撹捽ブレード 8 0は回転シリンダ 6の軸線方向 に延び、 且つ、 回転シリンダ 6の周方向に等間隔を存して配置されている。 各撹 拌ブレード 8 0の先端部は回転シリンダ 6の回転方向 (矢印参照) に向けて折曲 されている。
回転シリンダ 6の回転に伴い、 回転シリンダ 6内の原料は撹拌ブレード 8 0に より接き上げられ、 これにより撹拌される。 そして、 回転シリンダ 6の傾斜に従 レ、 原料は回転シリンダ 6の他端部に向けて移送される。
回転シリンダ 6のアウトレット 8はインレット 4のエンドカバー 7 4と同様な 中空円錐形状のエンドカバー 8 2を備えている。 従って、 エンドカバー 8 2の大 径端は回転シリンダ 6の回転を許容した状態で、 回転シリンダ 6の他端部に気密 を存して接続されており、 そして、 エンドカバー 8 2の小径端に循環管路 1 2の の下流側部分が接続されている。
エンド力パー 8 2の下部には出口ホッパ 8 4が接続されており、 この出口ホッ パ 8 4の下端に口一タリバルブ 8 6が接続されている。 このロータリバルブ 8 6 は前述したロータリバルブ 7 8と同様な構造を有し、 排出コンベア 1 0の始端に 向けて突出した排出管 8 7を有する。
回転シリンダ 6内の原料が回転シリンダ 6の他端に到達すると、 原料は出口ホ ッパ 8 4に供給される。 そして、 ロータリバルブ 8 6の回転に伴い、 出口ホッパ 8.4内の原料はロータリバルブ 8 6を通じて取り出され、 そして、 排出管 8 7か ら排出コンベア 1 0上に排出される。
インレット 4及びアウトレット 8はロータリパルプ 7 8 , 8 6をそれぞれ備え ているので、 回転シリンダ 6内のシリンダ室は密閉状態に維持されている。 従つ て、 回転シリンダ 6内からの浸潤空気の漏れが防止された状態で、 回転シリンダ 6に対する原料の連続的な供給及び排出が可能となり、 この結果、 後述する原料 の調湿処理が連続して行われる。
更に、第 2図に示されるように、循環管路 1 2の上流側部分内、 より詳しくは、 回転シリンダ 6の一端部側に位置する循環管路 1 2の部位内には内側送気管 9 2 が同心的に配置され、 この内側送気管 9 2は循環管路 1 2の挿入部分 8 8から突 出している。 内側送気管 9 2は回転シリンダ 6の軸線上を回転シリンダ 6の中央 位置まで延び、 その先端に中間送気口 9 4を有する。 従って、 回転シリンダ 6内 には内側送気管 9 2の中間送気口 9 4からも湿潤空気が吹き出される。
内側送気管 9 2は揷入部分 8 8の送気口 9 0を環状に形成し、 この環状の送気 口 9 0には第 3図に示されるように整流板 9 6が取り付けられている。 また、 内 側送気管 9 2の中間送気口 9 4にも、 第 4図に示されるように整流板 9 8が取り 付けられている。 これら整流板 9 6 , 9 8は、 送気口 9 0及び中間送気口 9 4か ら吹き出される湿潤空気流を整流し、 この結果、 回転シリンダ 6内には第 2図中 の矢印で示されるように回転シリンダ 6の軸線方向に沿って流れる湿潤空気流が 発生される。
なお、 第 3図中に 2点鎖線で示されるように回転シリンダ 6の外側には一対の 駆動ローラ 1 0 2が転接状態で配置されており、 これら駆動ローラ 1 0 2の回転 により回転シリンダ 6は一方向に回転される。
次に、 上述の調湿機を使用した原料の調湿方法について説明する。
回転シリンダ 6内には送気口 9 0及び中間送気口 9 4の双方から湿潤空気流が 吹き出され、 この湿潤空気流は回転シリンダ 6の軸線方向、 即ち、 原料の移送方 向と同一の順方向に流れ、 そして、 循環管路 1 2の下流側部分に排出される。 このような状態にて、 原料がインレット 4を通じて回転シリンダ 6内に供給さ れると、 原料は回転シリンダ 6の回転に伴い、 撹拌ブレード 8 0により撹拌され ながら、 アウトレット 8に向けて移送される。
原料の移送過程にて、 原料は回転シリンダ 6内の湿潤空気流に接触し、 この湿 潤空気流から水分を吸湿する。
湿潤空気流の相対湿度は前述した範囲に設定されているので、 湿潤空気流は微 細な水滴を含んでいない。 それ故、 原料の表面に水滴が付着することはない。 ま た、 湿潤空気流が原料の移送方向に流れ、 且つ、 原料は撹拌されているので、 原 料の移送過程にて、 原料はその全面が湿潤空気に実質的に晒される。 この結果、 原料はその全表面から湿潤空気中の水分を一様に吸収することができる。 原料は 水分を吸収すると、 吸着熱を発生し、 この吸着熱は原料の温度を上昇させる。 従 つて、 原料はその内部まで、 その湿分及び温度が均一に調整される。 この後、 原 料は、 回転シリンダ 6のアウトレット 8から排出される。
第 5図及び第 6図は、 調湿された原料の平均破砕比及び平均体積密度に関して の測定結果を示す。 第 5図及び第 6図中、 Aは上述した実施例の方法により調湿 された原料の測定結果、 B, Cは他の方法により調湿された原料の測定結果をそ れぞれ示す。 原料にはブライト種のたばこ葉及びパーレー種のたばこ葉が使用さ れ、 調湿前の原料の含水率は約 1 1 %であった。
平均破砕比とは、 調湿後の原料中に含まれる原料の破碎片の割合を示し、 破碎 片は縦及び横のサイズが 6 . 7画よりも小さいものを指す。
より詳しくは、 実施例の調湿方法 Aでは、 回転シリンダ 6内での原料の滞留量 及び滞留時間がそれぞれ 2 l kgDM (乾燥重量)及び 3minとなるべく、原料の供給 量及び回転シリンダ 6の回転速度がそれぞれ制御された。 この場合、 回転シリン ダ 6の回転速度は 1 0 rpmであった。なお、回転シリンダ 6のサイズはその内径が 1 . 8 m、 その長さが l mである。
比較例の調湿方法 Bは調湿方法 Aに比べて、 回転シリンダ 6内での原料の滞留 時間のみが異なる。即ち、調湿方法では、原料の滞留時間が 1 5minとなるべく原 料の供給量及び回転シリンダ 6の回転速度がそれぞれ制御された。
比較例の調湿方法 Cでは、 回転シリンダ 6内への湿潤空気流の供給とともに、 回転シリンダ 6内の原料に噴霧ノズルから水が直接噴霧された。 この場合、 回転 シリンダ 6内での原料の滞留時間は調湿方法 Aでの場合と同一の 3minであるが、 しかしながら、 原料への水の供給量は調湿方法 Bでの場合と同一となるように制 御された。 第 5図から明らかなようにブライト種及びバーレ一種の何れの原料にあっても、 実施例の調湿方法 Aは比較例の調湿方法 B , Cに比べて、 原料の平均破碎比が低 く、 原料ロスの低減が図られる。 このことは、 調湿方法 Aによる原料の調湿が調 湿方法 B , Cに比べ 、 より均一になされていることを意味する。
また、 第 6図の測定結果は、 調湿方法 Aによる原料の調湿が原料の内部まで均 一に行われていることを示す。 即ち、 調湿方法 Aによる原料の平均体積密度は、 調湿方法 Bでの場合とほぼ同等であるが、 調湿方法 Cでの場合に比べると低い。 このことは、 調湿方法 Aによれば、 調湿方法 Cに比べて調湿後の原料はその内部 まで水分の吸収が一様に進行し、 ふつくらとしていること.を示している。 この結 果、 実施例の調湿方法 Aにより調湿された原料は香料の浸透性に優れ、 この後の フレーバリング処理を効果的に行えることになる。
更に、 前述したように原料は水滴の付着を受けることがないので、 原料の成分 が水滴に溶出することはない。 具体的には、 原料がたばこ原料である場合、 たば こ原料本来の芳香成分が水滴中に溶出することはないので、 たばこ原料は調湿後 にあっても、 その芳香を維持することができる。
また、 湿潤空気流の温度が前述した範囲内にあるので、 たばこ原料は湿潤空気 流により過熱されることもなく、たばこ原料の芳香が熱劣化を受けることもない。 一方、 前述した調湿機によれば、 回転シリンダ 6はその内部に送気口 9 0及び 中間送気口 9 4を備え、 そして、 これら送気口 9 0及び中間送気口 9 4は回転シ リンダ 6の軸線方向に離間されているので、 回転シリンダ 6内に一様な湿潤空気 の流れを容易に発生させることができる。
また、 回転シリンダ 6のインレット 4及びアウトレツト 8には口一タリバルブ 7 8 , 8 6がそれぞれ設けられているので、 湿潤空気流の漏出が防止され、 湿潤 空気の消費量が低減される。
本発明は、 上述の一実施例に制約されるものではなく、 種々の変形が可能であ る。 例えば、 第 7図は分割型の回転シリンダ 6を示している。 この回転シリンダ 6 は上流側シリンダ部分 1 0 4と、 下流側シリンダ部分 1 0 6とを有し、 これらシ リンダ部分 1 0 4 , 1 0 6は互い同期して回転される。 下流側シリンダ部分 1 0 6は上流側シリンダ部分 1 0 4よりも大きな直径を有し、 これら上流側及び下流 側シリンダ部分 1 0 4, 1 0 6との間は固定のリングカバー 1 0 8により覆われ ている。
第 8図に示されるように、 リングカバー 1 0 8と上流側シリンダ部分 1 0 4と の間、 そして、 リングカバー 1 0 8と下流側シリンダ部分 1 0 6との間にはそれ ぞれシールリング 1 1 0 , 1 1 2が配置されている。 従って、 リングカバー 1 0 8と上流側及び下流側シリンダ 1 0 4 , 1 0 6の外周面とは互いに協働して、 室 1 1 4を規定する。 室 1 1 4からは接続管 1 1 6が延びており、 この接続管 1 1 6は循環管路 1 2の上流側部分に接続されている。
また、 室 1 1 4内にて、 上流側シリンダ部分 1 0 4と下流側シリンダ部分 1 0 6との間には環状の中間送気口 1 1 6が形成され、 この中間送気口 1 1 6は室 1 1 4と下流側シリンダ部分 1 0 6の内部とを相互に連通している。 中間送気口 1 1 6にも環状の整流板 1 1 8が取り付けられている。
この変形例の場合、 前述した内側送気管 9 2は備えていない。 従って、 この場 合、 循環管路 1 2における揷入部分 8 8の送気口 9 0には円形の整流板が取り付 けられる。
上述した分割型の回転シリンダ 6であっても、 送気口 9 0及び中間送気口 1 1 6の双方から回転シリンダ 6内に湿潤空気流が吹き出され、 回転シリンダ 6内に インレツト 4からアウトレツト 8に向かう湿潤空気流が同様に発生される。 また、 送気口 9 0は上流側シリンダ部分 1 0 4の中心部に向けて湿潤空気流を 吹き出し、 そして、 中間送気口 1 1 6は下流側シリンダ部分 1 0 6の外周部に沿 つて湿潤空気流を吹き出す。 この結果、 湿潤空気流は回転シリンダ 6の横断面域 を一様に流れ、 原料の調湿効果が更に向上する。 更に、 第 8図中、 2点鎖線で示されているように上流側及び下流側シリンダ部 分 1 0 4 , 1 0 6は互いにオーバラップしていてもよいし、 回転シリンダ 6の送 気口は 2つに限らず、 3つ以上であってもよい。
また、 湿潤空気の流れ方向は原料の移送方向に対して順方向に限らず、 移送方 向に対して逆方向であってもよい。
一実施例では、 回転シリンダ 6に所定の温度及び所定の相対湿度に調整された 湿潤空気流が供給されているが、 コントローラ 7 2は調湿後の原料の含水率を目 標値に一致させるベく、 湿潤空気流の温度、 相対湿度及び流速を制御することも できる。 具体的には、 コントローラ 7 2は、 原料の供給量、 前述した湿潤空気流 の入口温度 T 入口湿度 及び入口流速 Vい 出口温度 T3、 出口湿度 Η3及び出 .口流速 V3等に基づき、 調湿後の原料の含水率を演算し、 この演算した含水率が 目標値になるように、 回転シリンダ 6に供給される湿潤空気流の入口温度 TP入 口湿度 及び入口流速 V をフィードバック制御する。
また、 本発明の調湿方法及びその装置は、 たばこ原料以外の食品原料の調湿に も適用可能であることは言うまでもない。

Claims

請 求 の 範 囲
1 . 原料の調湿方法は、
所定の移送経路に沿い、 原料を攪拌しながら移送し、
前記原料の移送過程中、 所定の温度に加熱され且つ飽和蒸気圧に近い相対湿度 を有する湿潤空気を前記移送経路に沿って流し、 前記原料を前記湿潤空気流に接 触させる。
2 . 請求項 1の調湿方法において、
前記湿潤空気流は、 8 0〜 9 5 %の相対湿度を有する。
3 . 請求項 2の調湿方法において、
前記原料はたばこ原料である。 '
4. 請求項 3の調湿方法において、
前記湿潤空気流の加熱温度は 4 0〜8 0 °Cである。
5 . 請求項 1の調湿方法において、
前記湿潤空気流は前記移送経路を循環して流れる。
6 . 原料の調湿機は、
中空の回転シリンダであって、 一端部に原料のインレツト及び他端部に原料の アウトレツトを有し、 前記インレツトから供給された原料をその回転に伴い攪拌 しながら前記アウトレットに向けて移送する回転シリンダと、
前記回転シリンダ内に所定の温度に加熱され且つ飽和蒸気圧に近い湿潤空気流 を供給する供給装置であって、 前記回転シリンダの前記一端部に位置付けられた 送気口と、 前記回転シリンダの前記他端部に位置付けられた排気口とを有し、 前 記送気口から前記排気口に向けて前記湿潤空気流を吹き出す供給装置と を備える。
7 . 請求項 6の調湿機において、
前記供給装置は、 前記回転シリンダ内を通じて前記湿潤空気流を循環させる循 環システムを更に含み、 前記循環システムは前記回転シリンダの外側を延び、 前 記送気口と前記排気口との間を接続する循環管路を有する、
前記インレツト及び前記ァゥトレツトはロー夕リパルプをそれぞれ含み、 前記ロータリバルブは、 前記回転シリンダに対する前記原料の供給及び排出の 一方を許容し、 且つ、 前記インレット及び前記アウトレットからの前記湿潤空気 流の漏出を防止する。
8 . 請求項 7の調湿機において、
前記循環システムは、前記循環管路に前記排出口側から順次介掙された送風機、 ヒータ及び加湿装置を更に含み、
前記送風機は前記回転シリンダに向かう空気流を発生し、
前記ヒータは前記空気流を所定温度まで加熱し、
前記加湿装置は、 前記加熱された空気流を湿潤させる。
9 . 請求項 8の調湿機において、
前記循環システムは、 前記送風機、 前記ヒー夕及び前記加湿装置の作動をそれ ぞれ制御する制御手段を更に含む。
1 0. 請求項 9の調湿機において、
前記供給装置は、 前記回転シリンダ内に前記湿潤空気を吹き出す中間送気口を 更に含み、
前記中間送気口は前記回転シリンダの軸線方向でみて、 前記送気口と前記ァゥ トレツトとの間に位置付けられている。
1 1 . 請求項 1 0の調湿機において、
前記中間送気口は、 前記回転シリンダの軸線上に位置付けられている。
1 2. 請求項 1 0の調湿機において、
前記中間送気口は前記回転シリンダの周壁に沿って延びる環状をなしている。
1 3 . 請求項 1 2の調湿機において、
前記回転シリンダは、 前記インレットを備えた上流側シリンダ部分と、 前記ァ ゥトレットを備え、 且つ、 前記上流側シリンダよりも大径の下流側シリンダ部分 とを有し、
前記中間送気口は、 前記上流側シリンダ部分の外周面と前記下流側シリンダ部 分の内周面との間に規定されている。
PCT/JP2003/003019 2002-03-14 2003-03-13 Procede de regulation de l'humidite de matiere brute et machine a cet effet WO2003075689A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003573973A JP3925931B2 (ja) 2002-03-14 2003-03-13 原料の調湿方法及び調湿機
AU2003220891A AU2003220891A1 (en) 2002-03-14 2003-03-13 Raw material moisture control method and moisture control machine
EP03712687.7A EP1486130B1 (en) 2002-03-14 2003-03-13 Raw material moisture control method and moisture control machine
CA002478717A CA2478717C (en) 2002-03-14 2003-03-13 Raw material moisture control method and moisture control machine
US10/923,032 US6931758B2 (en) 2002-03-14 2004-08-23 Method of controlling moisture of material and apparatus therefore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002069856 2002-03-14
JP2002-069856 2002-03-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/923,032 Continuation US6931758B2 (en) 2002-03-14 2004-08-23 Method of controlling moisture of material and apparatus therefore

Publications (1)

Publication Number Publication Date
WO2003075689A1 true WO2003075689A1 (fr) 2003-09-18

Family

ID=27800328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003019 WO2003075689A1 (fr) 2002-03-14 2003-03-13 Procede de regulation de l'humidite de matiere brute et machine a cet effet

Country Status (8)

Country Link
US (1) US6931758B2 (ja)
EP (1) EP1486130B1 (ja)
JP (1) JP3925931B2 (ja)
CN (1) CN1305418C (ja)
AU (1) AU2003220891A1 (ja)
CA (1) CA2478717C (ja)
RU (1) RU2283604C2 (ja)
WO (1) WO2003075689A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108378406A (zh) * 2018-04-11 2018-08-10 红塔烟草(集团)有限责任公司 烟片复烤机回潮区温湿度控制方法及其系统

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100569121C (zh) * 2007-03-28 2009-12-16 云南昆船设计研究院 穿流式滚筒热风润叶方法及其装置
DE102009028913A1 (de) * 2009-08-26 2011-03-31 Jt International S.A. Vorrichtung und Verfahren zum Behandeln von Tabak
CN101810366B (zh) * 2010-04-30 2012-06-06 广东中烟工业有限责任公司 一种新型烟丝烘干设备
RU2536395C1 (ru) * 2011-04-28 2014-12-20 Джапан Тобакко Инк. Устройство для обработки табачного сырья
CN102726818B (zh) * 2012-06-08 2014-04-16 安徽中烟机械有限公司 一种烟叶竖式配方的润叶方法
BR102012026521A2 (pt) 2012-10-16 2014-09-30 Souza Cruz Sa Processo de tratamento de tabaco para o desenvolvimento de propriedades organolepticamente diferenciadas, seu uso e produto de fumar
GB2513609A (en) * 2013-05-01 2014-11-05 Dickinson Legg Ltd Drying apparatus
AT514275B1 (de) * 2013-05-07 2015-05-15 Andritz Tech & Asset Man Gmbh Verfahren zur Erzeugung von Salzen mit reduziertem Kristallwassergehalt
CN103504457A (zh) * 2013-09-23 2014-01-15 贵州省烟草科学研究院 一种恒温加压回潮机
DE102013221663A1 (de) * 2013-10-24 2015-04-30 Hauni Maschinenbau Ag Einrichtung und Verfahren zum Lösen von Tabakgut in einer Anlage der Tabak verarbeitenden Industrie
US10302358B2 (en) * 2014-07-11 2019-05-28 Nichirei Foods Inc. Food heating device
CN104770851A (zh) * 2015-03-16 2015-07-15 红云红河烟草(集团)有限责任公司 一种烟丝加香滚筒内部的导流装置
CN106440665B (zh) * 2016-11-01 2022-03-22 中冶焦耐(大连)工程技术有限公司 一种粉料悬浮干燥与助燃装置及工艺
CN106418641B (zh) * 2016-11-25 2018-10-02 天津大学 一种均热式智能烟叶烘烤装置
CN106583005B (zh) * 2017-02-22 2019-09-03 江苏天鹏机电制造有限公司 碎石机制砂生产线
KR20220016143A (ko) * 2019-06-05 2022-02-08 필립모리스 프로덕츠 에스.에이. 경사진 베인들을 갖는 초본 재료용 건조기
KR102525022B1 (ko) * 2020-07-14 2023-04-24 주식회사 케이티앤지 흡연물품용 니코틴 함유물질 및 이를 포함하는 비연소형 흡연물품과 흡연물품용 카트리지
CN112856971A (zh) * 2021-01-25 2021-05-28 太原科技大学 煤泥烘干机变频调速控制系统及控制方法
CN113208143A (zh) * 2021-05-31 2021-08-06 云南中烟工业有限责任公司 一种热风两段式轴向加热的薄板烘丝机及其操作方法
CN113796554B (zh) * 2021-09-22 2022-10-25 山东中烟工业有限责任公司 一种回潮机加水系统总成及其工作方法
CN114343219B (zh) * 2022-01-14 2024-10-18 红云红河烟草(集团)有限责任公司 一种雪茄烟叶快速回潮装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07177870A (ja) * 1993-12-24 1995-07-18 Japan Tobacco Inc 膨化刻みたばこの調湿方法
JPH07289226A (ja) * 1994-04-20 1995-11-07 Sanshu Sangyo Kk 葉たばこの調湿方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL283185A (ja) *
DE84458C (ja) *
DE102355C (ja) *
FR674482A (fr) * 1929-05-02 1930-01-29 Fond Sa Des Séchoir de charbon ou autres matières pouvant également être utilisé comme broyeur auto-sécheur
DE1532063A1 (de) * 1965-07-06 1970-01-08 Hauni Werke Koerber & Co Kg Verfahren und Anlage zum Verballen von Gruenballen
US3906961A (en) * 1972-02-17 1975-09-23 Imasco Ltd Rotary tobacco dryer
US3905123A (en) * 1973-10-15 1975-09-16 Industrial Nucleonics Corp Method and apparatus for controlling a tobacco dryer
US4102349A (en) * 1976-07-15 1978-07-25 Brown & Williamson Tobacco Corporation Method and apparatus for moisturizing tobacco stems
US4528995A (en) * 1983-10-13 1985-07-16 Brown & Williamson Tobacco Corporation Sealed pneumatic tobacco conveying and treating apparatus
GB8803380D0 (en) * 1988-02-13 1988-03-16 Gbe International Plc Rotary drier control by adjustment of air flow/air humidity
US5103842A (en) * 1990-08-14 1992-04-14 Philip Morris Incorporated Conditioning cylinder with flights, backmixing baffles, conditioning nozzles and air recirculation
CH686229A5 (de) * 1992-07-30 1996-02-15 Buehler Ag Geb Verfahren und Vorrichtung zum kontinuierlichen Netzen von Getreide sowie Verwendung der Netzvorrichtung.
TW296974B (ja) 1992-10-30 1997-02-01 Philip Morris Prod
JPH0877870A (ja) * 1994-09-01 1996-03-22 Matsushita Electric Ind Co Ltd 押釦スイッチおよびその押釦スイッチを用いたプリント基板組立
US5964225A (en) 1997-08-29 1999-10-12 Philip Morris Incorporated Tobacco treatment cylinder and method
DE19751525C2 (de) * 1997-11-20 2003-02-13 Bat Cigarettenfab Gmbh Verfahren und Vorrichtung zur Regelung der Ausgangsfeuchte von Tabak
US6286515B1 (en) 2000-02-17 2001-09-11 Philip Morris Incorporated Humidification cylinder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07177870A (ja) * 1993-12-24 1995-07-18 Japan Tobacco Inc 膨化刻みたばこの調湿方法
JPH07289226A (ja) * 1994-04-20 1995-11-07 Sanshu Sangyo Kk 葉たばこの調湿方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108378406A (zh) * 2018-04-11 2018-08-10 红塔烟草(集团)有限责任公司 烟片复烤机回潮区温湿度控制方法及其系统
CN108378406B (zh) * 2018-04-11 2021-02-19 红塔烟草(集团)有限责任公司 烟片复烤机回潮区温湿度控制方法及其系统

Also Published As

Publication number Publication date
EP1486130A4 (en) 2011-03-16
RU2004130462A (ru) 2005-04-10
EP1486130A1 (en) 2004-12-15
CA2478717A1 (en) 2003-09-18
RU2283604C2 (ru) 2006-09-20
JPWO2003075689A1 (ja) 2005-06-30
JP3925931B2 (ja) 2007-06-06
CN1305418C (zh) 2007-03-21
CA2478717C (en) 2008-10-21
AU2003220891A1 (en) 2003-09-22
EP1486130B1 (en) 2013-11-13
US6931758B2 (en) 2005-08-23
US20050034321A1 (en) 2005-02-17
CN1642446A (zh) 2005-07-20

Similar Documents

Publication Publication Date Title
WO2003075689A1 (fr) Procede de regulation de l'humidite de matiere brute et machine a cet effet
FI74536C (fi) Anordning foer kontinuerlig torkning och/eller granulering av massgods.
EP1245919A1 (en) Apparatus for continuously drying unpackaged food products, in particular vegetables
JP2011223934A (ja) 穀物の害虫駆除方法
JP3949527B2 (ja) 乾燥装置および乾燥方法
JP2009082764A (ja) 食品ゴミの乾燥方法及び装置
CN218185160U (zh) 加料机热风控制系统及烟草加工系统
US20070125393A1 (en) Apparatus for conditioning of organic materials
CN107976047A (zh) 一种隧道砖用节能预干燥运输带
JPH07177870A (ja) 膨化刻みたばこの調湿方法
CN208129418U (zh) 一种蒸汽润叶装置
CN115399496B (zh) 加料机热风控制系统、热风控制方法及烟草加工系统
JPH07177869A (ja) 刻みたばこの回転シリンダ型調湿機
CN209415950U (zh) 一种母粒加热机的除湿装置
JP2005048964A (ja) 流動乾燥装置
EP1795843B1 (en) Method and apparatus for conditioning of cellular materials, in particular organic materials
CN216393022U (zh) 一种加料装置
JP2020524505A (ja) スモーク供給部を有するオーブン
CN116105476B (zh) 干燥机及其干燥方法
JP2005089029A (ja) 空気輸送装置
KR900004434Y1 (ko) 가습 세미기
CN207167736U (zh) 一种多级润叶机
JP2002335861A (ja) 静電分別装置
RU22601U1 (ru) Устройство для термической обработки резаного табака в потоке воздуха
CN117502680A (zh) 一种可减少烟草加工过程中水渍叶的加湿滚筒

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10923032

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003712687

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2478717

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003573973

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038060175

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2004130462

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2003712687

Country of ref document: EP