WO2003072332A1 - Procede de production d'un article moule a haut pouvoir amortissant et article amortissant les vibrations - Google Patents

Procede de production d'un article moule a haut pouvoir amortissant et article amortissant les vibrations Download PDF

Info

Publication number
WO2003072332A1
WO2003072332A1 PCT/JP2002/001749 JP0201749W WO03072332A1 WO 2003072332 A1 WO2003072332 A1 WO 2003072332A1 JP 0201749 W JP0201749 W JP 0201749W WO 03072332 A1 WO03072332 A1 WO 03072332A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded product
vibration
vibration damping
base material
temperature
Prior art date
Application number
PCT/JP2002/001749
Other languages
English (en)
French (fr)
Inventor
Tatsuya Aoki
Takuya Satoh
Original Assignee
Cci Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cci Corporation filed Critical Cci Corporation
Priority to JP2003571063A priority Critical patent/JPWO2003072332A1/ja
Priority to PCT/JP2002/001749 priority patent/WO2003072332A1/ja
Publication of WO2003072332A1 publication Critical patent/WO2003072332A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0091Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof

Definitions

  • the present invention relates to a method of manufacturing a vibration-damping molded product which is applied to an interior material of a car, a house, a building material, or a household electric appliance, and absorbs vibration energy of a vibration source such as a motor, and a vibration-damping molded product. It is. Background art
  • a substance that absorbs vibration energy is formed of a soft vinyl chloride resin obtained by adding a plasticizer to a vinyl chloride resin.
  • the active component is added to the base material made of vinyl chloride resin in order to increase the amount of dipole moment.
  • raw material composition is obtained, et al by mixing the base material and active ingredients.
  • a vibration damping molded product is manufactured.
  • the above-mentioned conventional technology even if a vibration damping molded product is manufactured using the same composition of the raw materials, sufficient absorption of vibration energy cannot be obtained depending on the manufacturing method. Disclosure of the invention
  • An object of the present invention is to provide a method of manufacturing a vibration damping molded article and a vibration damping molded article capable of sufficiently obtaining vibration energy absorption performance.
  • the present invention provides the following method for producing a vibration damping molded product. The method includes heating and pressurizing a raw material composition containing a base material and an active ingredient that increases the amount of dipole moment in the base material.
  • the present invention further provides the following vibration damping molded product.
  • the raw material composition of the vibration damping molded product includes a base material and an active ingredient. The active ingredient increases the amount of dipole moment in the base material.
  • the raw material composition is subjected to heat and pressure treatment.
  • FIG. 1 is a graph showing the relationship between the temperature and the loss tangent at the time of heating and pressurizing treatment in one embodiment of the present invention.
  • the vibration-damping molded product is obtained by heating and pressurizing a raw material composition containing a base material and an active component that increases the amount of dipole moment in the base material.
  • the vibration damping molding absorbs the vibration energy of the vibration part where the vibration is generated in automobiles, interior materials of houses, building materials, home electric appliances and the like.
  • vibration damping performance the absorption performance of vibration energy in the vibration damping molded product. It is known that the larger the value of the loss coefficient) or the loss tangent (tan S) of the damped molded product, the more excellent the vibration damping performance of the vibration damped molded product is.
  • thermoplastic resins include polyvinyl chloride, polyethylene, polypropylene, ethylene / butyl acetate copolymer, polymethyl methacrylate, poly (vinylidene fluoride), polyisoprene, polystyrene, styrene Z-butadiene noacrylonitrile copolymer, Styrene noacrylonitrile copolymer and the like are used.
  • the temperature range of the part where the vibration damping molding is used is Having a glass transition point (Tg).
  • Tg glass transition point
  • the above temperature range is referred to as a use temperature range.
  • the operating temperature range is between 20 and 40 ° C.
  • a plasticizer such as dioctyl phthalate (DOP), dibutyl phthalate (DBP), or di sonoel phthalate (DI NP) must be added to the above polymer material. Is added.
  • the polymer material is used without adding a plasticizer.
  • the active ingredient is blended in order to increase the amount of dipole moment in the base material, thereby improving the vibration damping performance of the molded article.
  • a compound containing a benzothiazyl group for example, a compound containing a benzothiazyl group, a compound containing a benzotriazole group, a compound containing a diphenyl acrylate group and the like are preferable.
  • Compounds containing a benzothiazyl group include, for example, N, N-dicyclohexylbenzothiazyl-2-sulfenamide
  • DCHBSA 2-mercaptobenzothiazonole
  • MCT 2-mercaptobenzothiazonole
  • CBS N-tert-butyl benzothiazinole 1-2-snolefenamide
  • BBS N-tert-butyl benzothiazinole 1-2-snolefenamide
  • OBS N-oxydiethylene benzothiazinole 1-2-snolefenamide
  • DPBS N-diisopropylbenzothiazinole 1-2 —Snolefenamide
  • a benzotriazole having an azole group bonded to a benzene ring as a mother nucleus and a phenyl group bonded thereto is a 2_ ⁇ 2'—hydroxyl-3'— (3 ", 4", 5 ", 6" tetrahydrophthalimidomethyl) 1,5,1-methylphenyl ⁇ —benzotriazole (2H PMMB), 2- ⁇ 2'—hydroxy-1,5,1-methinolepheninole ) 1-benzotriazole (2HMPB), 2— ⁇ 2′—Hydroxoxy 3′—t-butyl-5′-methylphen-nore ⁇ —5-chloro-benzobenzotriazole (2HBMPCB), 2— ⁇ 2 ′ —Noid mouth xy 3 ′, 5 ′ —Gee t __________________________________________________________________ Or benzotriazole
  • the compound containing a diphenyl acrylate group ethyl 2-cyano 3,3-diphenyl acrylate is preferred.
  • these active ingredients are mixed with the base material, only one kind or two or more kinds selected from these active ingredients may be used.
  • those having a similar solubility parameter (SP value) are selected so that the active ingredients are easily compatible with the base material.
  • SP value solubility parameter
  • the amount of the active ingredient is preferably 10 to 90% by weight based on 100% by weight of the base material. If the amount is less than 10% by weight, the effect of increasing the dipole moment in the base material cannot be sufficiently obtained. On the other hand, if the content is more than 90% by weight, there may be a problem that the active ingredient is not sufficiently compatible with the base material.
  • the boiler improves the vibration damping performance of the vibration damping molded product and is compounded as a reinforcing agent, a heat resistant agent, and a bulking agent.
  • the filler for example, carbon black, silica, my scales, glass fragments, glass fiber, carbon fiber, calcium carbonate, barite, precipitated barium sulfate, and the like are used.
  • the raw material composition is prepared by a solvent mixing method in which the base material is dissolved in a solvent and mixed with the active ingredient, a mouth mixing method in which the base material and the active ingredient are mixed by mouth mixing, and the like.
  • the solvent used in the solvent mixing method is not particularly limited as long as the base material can be dissolved.
  • the solvent for example, when the base material is polychlorinated vinyl, an organic solvent such as tetrahydrofuran (THF) is used.
  • a known mixing device such as a stirrer can be used for mixing the base material and the active ingredient by the solvent mixing method.
  • the raw material composition prepared by the solvent mixing method is formed by a solvent casting method.
  • the solvent casting method is a method of evaporating a solvent in a raw material composition prepared by a solvent mixing method and precipitating a base material to obtain a sheet-shaped precursor of a vibration-damping molded product.
  • the raw material composition is placed in a container, cast on a casting roll or the like, and the solvent is forcibly evaporated by, for example, a heating device such as a dryer, or left at normal temperature to evaporate the solvent.
  • a precursor of the vibration-damping molded product is obtained.
  • the precursor is subjected to heat and pressure treatment to obtain a vibration damping molded product.
  • a press working method using a press machine, a roll working method using a nip roll, and the like are used for the heat and pressure treatment.
  • a roll kneading apparatus such as a hot roll, a Banbury mixer, a twin-screw kneader, or an extruder is used.
  • the raw material composition prepared by the roll kneading method is subjected to a heating and pressurizing treatment, and at the same time, the raw material composition is molded to obtain a vibration damping molded product.
  • a press working method using a press machine, an extrusion molding method using an extruder, a T-die or the like is used for the heating and pressure treatment of the raw material composition.
  • a vibration damping molded product can be obtained by molding a raw material composition that has been subjected to heat and pressure treatment by a press working method and an extrusion molding method. Due to the heat and pressure treatment, the molecules of the base material constituting the vibration damping molded product shift from a state of no entanglement to a state of entanglement. As a result, the loss coefficient (loss tangent) indicating the vibration suppression performance can be improved.
  • the temperature of the heat treatment is preferably not lower than the glass transition point of the base material, and more preferably not lower than the glass transition point and not higher than the glass transition point + 10 ° C.
  • the pressure of the pressure treatment is preferably 294 to 21963 kPa. If the pressure of the heat treatment is less than 2942 kPa, sufficient improvement in vibration damping performance cannot be expected. On the other hand, if the pressure exceeds 196 13 kPa, there is a danger that the vibration damping molded product will be damaged.
  • the loss coefficient (loss tangent) indicating the damping performance increases as the temperature in the heat treatment increases.
  • various vibration-damping molded articles having different vibration-damping properties can be obtained by changing the temperature. For example, when it is desired to obtain a vibration damping molded product having a loss tangent of 2.0 by using a solvent casting method, as shown in FIG. 1, the temperature in the heating and pressurizing treatments is set to 140 ° C. Just fine. When it is desired to obtain a damping composition having a loss tangent of 2.5 using the roll kneading method, as shown in FIG. 1, the temperature in the heating and pressurizing treatments is set to 160 ° C. Just fine.
  • the raw material composition is produced by a solvent mixing method
  • a base material, an active ingredient, a solvent and other components are charged into a mixing device such as a stirrer.
  • the raw material composition is manufactured by mixing the respective materials.
  • a roll kneading method first, a base material, an active ingredient and other components are charged into a kneading apparatus such as a twin-screw kneader.
  • the raw material composition is manufactured by heating and kneading the respective materials. At this time, it is considered that the molecules of the base material constituting the raw material composition prepared by the solvent mixing method exist without being entangled.
  • the molecules of the base material constituting the raw material composition adjusted by the roll kneading method exist in a partially entangled state.
  • the raw material composition produced by the solvent mixing method is formed by the solvent casting method, the raw material composition is put in a container or the like, and the solvent in the raw material composition is evaporated.
  • the molecules of the base material constituting the precursor of the vibration damping molded product formed by the solvent casting method exist without being entangled.
  • the vibration damping molded product is hot-pressed by a press machine.
  • vibration damping molded products are selected according to the required vibration damping performance, and are used, for example, by bonding the vibration transmission from the vibration source to a place where insulation or relaxation is desired.
  • vibration damping molded products having different vibration damping performances can be obtained depending on the temperature at the time of the heating and pressure treatment.
  • vibration damping molded article having different vibration damping performance without changing the composition of the raw material composition. Therefore, it is possible to easily manufacture a vibration damping molded product having a required vibration damping performance.
  • the vibration generated from the vibration source is transmitted to the vibration damping molding as vibration energy.
  • Active components are blended in the vibration damping molded product, and the amount of dipole moment in the base material is increased.
  • the active ingredient exerts a binding force between the molecules constituting the matrix as a dipole. For this reason, the active ingredient is stably arranged in the base material. For example, when vibration energy is externally applied to the vibration-suppressed molded product, the dipole is displaced and placed in an unstable state.
  • the raw material composition is composed of a base material and an active ingredient, and the active ingredient increases the amount of dipole moment in the base material.
  • the vibration damping molded product obtained from the raw material composition is heated and heated. Pressure treated.
  • the molecules constituting the base material can be shifted from the unentangled state to the entangled state. Therefore, it is considered that the active component existing as a dipole in the base material easily comes into contact with the molecules constituting the base material, and vibration energy is easily consumed by the contact between the dipole and the molecule. Therefore, sufficient vibration damping performance can be obtained.
  • the pressure in the pressure treatment is kept constant, the loss coefficient (loss tangent) indicating the damping performance increases as the temperature in the heat treatment increases. Therefore, when the heating and the pressure treatment are performed, by changing the temperature, it is possible to obtain a vibration damping molded product having different vibration damping performance.
  • the raw material composition is molded by a solvent casting method
  • the raw material molded product is further subjected to molding, heating and pressure treatment by a press working method.
  • a vibration damping composition having sufficient vibration damping performance can be easily produced from a solvent casting method.
  • the raw material composition is manufactured by the mouth kneading method
  • the raw material composition is further subjected to molding, heat treatment and pressure treatment by a press working method.
  • the precursor of the vibration-damping molded product was set in a press machine and subjected to press working at a pressure of 7845 kPa and a temperature of 100 ° C for 5 minutes to obtain a vibration-damping molded product.
  • Example 2 The precursor of the vibration-damping molded product was set in a press machine and subjected to press working at a pressure of 7845 kPa and a temperature of 100 ° C for 5 minutes to obtain a vibration-damping molded product.
  • the precursor of the vibration-damping molded product obtained in the same manner as in Example 1 was set in a press machine, and subjected to press processing for 5 minutes under the conditions of a pressure of 7845 kPa and a temperature of 120 ° C. I got something.
  • the precursor of the vibration-damping molded product obtained in the same manner as in Example 1 was set in a press machine, and pressed for 5 minutes under the conditions of a pressure of 7845 kPa and a temperature of 140 to obtain a vibration-damping molded product. .
  • the precursor of the vibration-damping molded product obtained in the same manner as in Example 1 was set in a press machine, and subjected to press working for 5 minutes under the conditions of a pressure of 7845 kPa and a temperature of 160 ° C. I got something.
  • the precursor of the vibration damping molded product obtained in the same manner as in Example 1 was set in a press machine, and subjected to press working for 5 minutes at a pressure of 7845 kPa and a temperature of 170 to obtain a vibration damping molded product Was.
  • Example 7 70 parts by weight of polyvinyl chloride, and 30 parts by weight of N, N-dicyclohexylbenzothiazyl 2-sulfenamide (DCHB SA) (Suncellar DZ, manufactured by Sanshin Chemical Industry Co., Ltd.) were put into a roll kneader. The mixture was kneaded at a temperature of 170 ° C. for 10 minutes to prepare a raw material composition. The raw material composition was set in a press machine and subjected to press working under the conditions of a pressure of 7845 kPa and a temperature of 100 ° C. for 5 minutes to obtain a vibration damping molded product. (Example 7)
  • Example 8 The raw material composition obtained in the same manner as in Example 6 was set in a press machine, and was subjected to press working under the conditions of a pressure of 7845 kPa and a temperature of 5 for 5 minutes to obtain a vibration damping molded product. (Example 8)
  • Example 9 The raw material composition obtained in the same manner as in Example 6 was set in a press machine, and was subjected to press working under the conditions of a pressure of 7845 kPa and a temperature of 140 ° C. for 5 minutes to obtain a vibration damping molded product. (Example 9)
  • Example 10 The raw material composition obtained in the same manner as in Example 6 was set in a press machine, and subjected to press working under the conditions of a pressure of 7845 kPa and a temperature of 160 ° C. for 5 minutes to obtain a vibration damping molded product. (Example 10)
  • Example 11 The raw material composition obtained in the same manner as in Example 6 was set in a press machine, and subjected to press working under the conditions of a pressure of 7845 kPa and a temperature of 170 ° C. for 5 minutes to obtain a vibration damping molded product.
  • a raw material composition was prepared in the same manner as in Example 1, and formed into a sheet by a solvent casting method.
  • the vibration-damping molded products obtained in Examples 1 to 11 and Comparative Example 1 were cut into a size of 35 ⁇ 5 mm to obtain test pieces for measuring loss tangent (ta ⁇ ).
  • the loss tangent (tanS) of these test pieces was measured by a viscometer (not shown) (RSAII, manufactured by Rheometrics). In this case, the temperature of the test piece is continuously increased, and the loss tangent (ta ⁇ ⁇ ) is measured while the test piece is vibrated. In the present embodiment, the maximum value of the loss tangent (ta ⁇ ⁇ ) was determined in a temperature range of 30 to 150 t: with the vibration frequency being 10 Hz.
  • Table 1 and FIG. 1 show the measurement results of Examples 1 to 11 and Comparative Example 1.
  • a raw material composition may be prepared by diluting a base material emulsion such as polyvinyl chloride emulsion with a solvent and then mixing with an active ingredient.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Vibration Prevention Devices (AREA)

Description

明細書 制振成形物の製造方法及び制振成形物 技術分野
本発明は、 自動車、 家屋の内装材、 建材、 あるいは家電機器等に適用され、 モ ータ一等の振動発生源の振動エネルギーを吸収する制振成形物の製造方法及び制 振成形物に関するものである。 背景技術
一般に、 振動エネルギーを吸収する物質、 すなわち、 制振組成物は、 塩化ビニ ル系樹脂に可塑剤を添加した軟質の塩ィヒビュル系樹脂により形成されている。 国 際公開 WO 9 7 / 4 2 8 4 4号に開示される 「エネルギー変換組成物」 では、 塩 化ビニル樹脂からなる母材中の双極子モーメント量を増大させるために、 活性成 分を母材に添加して振動エネルギーの吸収性能を向上させている n このような制 振成形物を製造する場合、 まず、 母材及び活性成分を混合して原料組成物が得ら れる。 次に、 原料組成物を成形することによって制振成形物が製造される。 上記従来の技術の場合、 同じ配合の原料組成物を使用して制振成形物を製造し ても、 その製造方法によっては振動エネルギーの吸収性能が十分に得られなかつ た。 発明の開示
本発明の目的は、 振動エネルギーの吸収性能を十分に得ることができる制振成 形物の製造方法及ぴ制振成形物を提供することにある。 上記の問題を解決するために、 本発明は以下の制振成形物の製造方法を提供す る。 該方法は、 母材と前記母材中の双極子モーメント量を増大させる活性成分と を含有する原料組成物を加熱及ぴ加圧処理することを含む。 本発明はさらに、 以下の制振成形物を提供する。 制振成形物の原料組成物は、 母材及び活性成分を備える。 活性成分は母材中の双極子モーメント量を増大させ る。 原料組成物は加熱及び加圧処理される。 図面の簡単な説明
図 1は、 本発明を具体化した一実施形態における加熱及び加圧処理時の温度と 損失正接との関係を示したグラフである。 発明を実施するための最良の形態
以下、 本発明を具体化した一実施形態の制振組成物について図 1に基づいて説 明する。 制振成形物は、 母材と該母材中の双極子モーメント量を増大させる活性成分と を含む原料組成物を加熱及ぴ加圧処理することによつて得られる。 制振成形物は 自動車、 家屋の内装材、 建材、 あるいは家電機器等において、 それらの振動発生 箇所である振動部分の振動エネルギーを吸収する。 以下、 制振成形物における振 動エネルギーの吸収性能を制振性能という。 制振成形物の損失係数 ) 又は損 失正接 (t a n S ) の値が大きいほど、 制振成形物の制振性能は優れることが知 られている。 熱可塑性樹脂、 あるいは、 ゴム類等の高分子材料のうちの少なくとも一種が母 材に用いられる。 熱可塑性樹脂としては、 ポリ塩化ビニル、 ポリエチレン、 ポリ プロピレン、 エチレン/酢酸ビュル共重合体、 ポリメタクリル酸メチル、 ポリフ ッ化ビユリデン、 ポリイソプレン、 ポリスチレン、 スチレン Zブタジエンノアク リロ二トリル共重合体、 スチレンノアクリロニトリル共重合体等が挙使用される。 ゴムとしては、 アクリロニトリル ブタジエン共重合ゴム (N B R) 、 スチレン / /ブタジエン共重合ゴム (S B R ) 、 ブタジエンゴム (B R ) 、 天然ゴム (N R), 、 ィゾプレンゴム ( I R ) 等が使用される。 これらの高分子材料の中でも、 制振性能が十分に発揮されることから、 制振成形物が使用される部分の温度範囲 にガラス転移点 (Tg) を有するものが好ましい。 本実施形態では、 前記温度範 囲を使用温度域と呼ぶ。 具体的には、 使用温度域は一 20〜40°Cの範囲である。 使用温度域にガラス転移点を有する高分子材料を準備するために、 上記の高分子 材料にジォクチルフタレート (DOP) 、 ジブチルフタレート (DBP) 、 ジィ ソノエルフタレート (D I NP) 等の可塑剤が添加される。 なお、 上記の使用温 度域内にガラス転移点を有する上記の高分子材料の場合、 可塑剤は添加されるこ となくそのままの高分子材料が使用される。 活性成分は、 母材中の双極子モーメント量を増大させることによって、 制振成 形物の制振性能を向上させるために配合される。 活性成分としては、 例えばベン ゾチアジル基を含む化合物、 ベンゾトリアゾール基を含む化合物、 ジフヱニルァ クリレート基を含む化合物等が好ましい。 ベンゾチアジル基を含む化合物として は、 例えば N, N—ジシクロへキシルベンゾチアジルー 2—スルフェンアミ ド
(DCHBSA) 、 2—メルカプトべンゾチアゾーノレ (MBT) 、 ジベンゾチア ジノレスノレフィ ド、 N—シク ロへキシノレべンゾチアジノレ一 2—スノレフェンアミ ド
(CBS) 、 N- t e r t _ブチルベンゾチアジノレ一 2—スノレフェンアミ ド (B B S) 、 N—ォキシジエチレンベンゾチアジノレ一 2—スノレフェンアミ ド (OB S) 、 N, N—ジイソプロピルべンゾチアジノレ一 2—スノレフェンアミ ド (DPB S) 等が好ましい。 ベンゾトリアゾール基を含む化合物を含む化合物としては、 例えばベンゼン環 にァゾール基が結合したベンゾトリァゾールを母核とし、 これにフエニル基が,結 合した 2 _ { 2 ' —ハイ ドロキシ一 3 ' — (3" , 4" , 5" , 6" テトラハイ ドロフタリミデメチル) 一 5, 一メチルフエ二ル} —ベンゾトリアゾール (2H PMMB) 、 2 - { 2 ' —ハイ ドロキシ一 5, 一メチノレフエ二ノレ) 一ベンゾトリ ァゾール (2HMPB) 、 2— {2' —ハイ ド口キシ一 3' — t—プチルー 5 ' 一メチルフエ-ノレ } — 5—クロ口べンゾトリアゾール (2HBMPCB) 、 2— { 2 ' —ノヽイ ド口キシー 3' , 5 ' —ジー t _プチノレフエ二ノレ } —5—クロ口べ ンゾトリアゾール (2HDBPCB) 等が好ましい。 ジフエ二ルァクリレート基を含む化合物としては、 ェチルー 2—シァノー 3 , 3—ジ一フエニルアタリレート等が好ましい。 これらの活性成分を母材に配合する場合、 これらの活性成分の中から選ばれる 一種のみ、 または二種以上を用いてもよい。 なお、 活性成分を選択する際には、 活性成分と母材との相溶し易さ、 すなわち溶解度パラメータ (S P値) の値の近 いもの同士が選択される。 活性成分の配合量としては、 母材 1 0 0重量%に対し て、 1 0〜9 0重量%の割合が好ましい。 配合量が 1 0重量%未満であると、 母 材中の双極子モーメント量を増大させる作用が十分に得られない。 一方、 9 0重 量%を超えて配合すると、 活性成分が母材に十分に相溶しない等の不具合が生じ るおそれがある。 母材にはその他の成分として、 フィラー、 腐食防止剤、 着色剤、 酸化防止剤、 制電剤、 安定剤、 湿潤剤等を必要に応じて適宜加えることができる。 ブイラ一は、 制振成形物の制振性能を向上させるとともに、 補強剤、 耐熱剤及 ぴ増量剤として配合される。 フィラーには、 例えば、 カーボンブラック、 シリカ、 マイ力鱗片、 ガラス片、 グラスファイバー、 カーボンファイバー、 炭酸カルシゥ ム、 バライ ト、 沈降硫酸バリウム等が用いられる。 原料組成物は、 母材を溶媒に瑢解して活性成分と混合する溶媒混合法、 母材及 び活性成分を口一ル混練によつて混合する口一ル混練法等によって調製される。 溶媒混合法に用いられる溶媒は、 母材が溶解可能であれば特に限定されない。 該溶媒は、 例えば、 母材がポリ塩化ビュルの場合、 テトラヒ ドロフラン (T H F ) 等の有機溶媒が用いられる。 溶媒混合法による母材と活性成分との混合には、 攪拌機等の公知の混合装置を用いることができる。 溶媒混合法によって調製された原料組成物は、 溶媒キャスト法によって成形さ れる。 溶媒キャス ト法とは、 溶媒混合法によって調製された原料組成物中の溶媒 を蒸発させ、 母材を析出させてシート状をなす制振成形物の前駆体を得る方法で ある。 具体的には、 原料組成物を容器に入れ、 キャスティングロール等にキャス 卜して、 例えばドライヤー等の加熱装置等で溶媒を強制的に蒸発させる、 あるい は、 常温で放置して溶媒を揮発させることによって、 制振成形物の前駆体が得ら れる。 次に、 前駆体に加熱及び加圧処理を施すことによって、 制振成形物が得ら れる。 加熱及び加圧処理には、 プレス機によるプレス加工法、 ニップロールによ るロール加工法等が用いられる。 一方、 ロール混練法による母材と活性成分との溶融混練には、 熱ロール、 バン バリーミキサー、 二軸混練機、 押出機等のロール混練装置が用いられる。 ロール 混練法によって調製された原料組成物に加熱及ぴ加圧処理を施すとともに、 原料 組成物を成形することによって、 制振成形物が得られる。 原料組成物の加熱及び 加圧処理には、 プレス機によるプレス加工法、 押出機、 T—ダイ等による押出成 形法が用いられる。 例えば、 プレス加工法及び押出成形法によって加熱及び加圧 処理が施された原料組成物が成形されることにより制振成形物が得られる。 加熱及び加圧処理によって、 制振成形物を構成する母材の分子が絡み合いのな い状態から絡み合った状態に移行する。 その結果、 制振性能を示す損失係数 (損 失正接) を向上させることができる。 加熱処理の温度は、 母材のガラス転移点以上であることが好ましく、 さらには、 ガラス転移点以上、 ガラス転移点 + 1 0 o °c以下の範囲がより好ましい。 例えば 加熱処理の温度がガラス転移点未満であると、 母材の結晶領域の分子を絡み合つ た状態にすることが困難であり、 制振性能を十分に向上することができない。 一 方、 ガラス転移点 + 1 0 o°cを超えて加熱処理を施しても.、 制振性能のそれ以上 の向上が望めない。 加圧処理の圧力は、 2 9 4 2〜1 9 6 1 3 k P aが好ましレ、。 加熱処理の圧力が 2 9 4 2 k P a未満の場合、 制振性能の十分な向上が望めない。 一方、 該圧力が 1 9 6 1 3 k P aを超える場合、 制振成形物が損傷を受けるおそ れカ Sある。 加圧処理の圧力を一定にした場合、 加熱処理における温度が増大するほど、 制 振性能を示す損失係数 (損失正接) が増大する。 加熱及び加圧処理する際、 温度 を変化させることによって異なる制振性能を有する各種の制振成形物を得ること ができる。 例えば、 溶剤キャスト法を用いて損失正接が 2 . 0である制振成形物 を得たい場合には、 図 1に示すように、 加熱及び加圧処理における温度を 1 4 0 °Cに設定すればよい。 また、 ロール混練法を用いて損失正接が 2 . 5である制 振組成物を得たい場合には、 図 1に示すように、 加熱及び加圧処理における温度 を 1 6 0 °Cに設定すればよい。 原料組成物を溶媒混合法によって製造する場合、 まず、 攪拌機等の混合装置に 母材、 活性成分、 溶剤及ぴその他の成分が投入される。 次に、 各材料を混合する ことによって、 原料組成物が製造される。 また、 原料組成物をロール混練法によ つて製造する場合、 まず、 二軸混練機等の混練装置に母材、 活性成分及びその他 の成分が投入される。 次に、 各材料を加熱混練することによって、 原料組成物が 製造される。 このとき、 溶媒混合法によって調製された原料組成物を構成する母 材の分子同士は、 絡み合いのない状態で存在すると考えられる。 一方、 ロール混 練法によつて調整された原料組成物を構成する母材の分子同士は、 部分的に絡み 合った状態で存在すると考えられる。 次に、 溶媒混合法によって製造された原料組成物を溶媒キャスト法によって成 形する場合、 原料組成物を容器等に入れ、 原料組成物中の溶媒を蒸発させる。 こ のとき、 溶媒キャスト法によって成形された制振成形物の前駆体を構成する母材 の分子は絡み合いのない状態で存在すると考えられる。 続いて、 加熱及び加圧処 理する場合には、 制振成形物をプレス機によって加熱プレスする。 このとき、 制 振成形物を構成する母材の分子同士は絡み合った状態に移行すると考えられる。 —方、 ロール混練法によって製造された原料組成物を成形する場合、 原料組成 物はプレス機で加熱プレスされる。 このとき、 制振成形物を構成する母材の分子 同士は絡み合った状態に移行すると考えられる。 これらの制振成形物は、 要求される制振性能に応じて選択され、 振動発生源か らの振動伝達を絶縁又は緩和したい箇所に例えば張り合わせる等して使用される。 加熱及び加圧処理する際の温度によって、 異なる制振性能を有する各種の制振成 形物を得ることができる。 つまり、 原料組成物の配合を変えることなく、 異なる 制振性能を有する制振成形物を得ることができる。 このため、 要求される制振性 能を有する制振成形物を容易に製造することができる。 振動発生源から発生した振動は振動エネルギーとして制振成形物に伝達される。 制振成形物には活性成分が配合され、 母材中の双極子モ一メント量が増大されて いる。 活性成分は双極子として母材を構成する分子の分子間に束縛力を働かせる。 このため、 活性成分は母材中に安定な状態に配置されている。 例えば、 制振成形 物に外部から振動エネルギーが加わると、 双極子に変位が生じて不安定な状態に 配置される。 次に、 これらの双極子は振動エネルギーが加わる前の安定な状態に 戻ろうとする。 このとき、 エネルギーの消費が生じ、 制振成形物は振動エネルギ 一を吸収できると考えられる。 制振成形物を構成する母材の分子は絡み合つた状態であるため、 双極子が安定 な状態に戻ろうとする際に、 双極子が分子に接触し易くなる。 双極子と分子との 接触によって振動エネルギーが消費され易くなり、 その結果、 制振性能が向上す ると考えられる。 本実施形態は以下の効果を有する。 原料組成物は母材と活性成分とから構成され、 活性成分は母材における双極子 モーメント量を増大させる。 原料組成物から得られる制振成形物は、 加熱及び加 圧処理されている。 この製造方法によると、 母材を構成する分子を絡み合いのな い状態から絡み合った状態に移行することができると考えられる。 従って、 母材 中に双極子として存在する活性成分が母材を構成する分子に接触し易くなり、 双 極子と分子との接触によって振動エネルギーが消費され易くなると考えられる。 従って、 十分な制振性能を得ることができる。 加圧処理による圧力を一定にした場合、 加熱処理における温度が増大するほど、 制振性能を示す損失係数 (損失正接) は増大する。 従って、 加熱及び加圧処理す る際、 温度を変化させることによって、 異なる制振性能を有する制振成形物を得 ることができる。 つまり、 原料組成物の配合を変えることなく、 加熱及び加圧処 理によって異なる制振性能を有する制振成形物を得ることができる。 このため、 要求される制振性能を有する制振成形物を容易に製造することができる。 原料組成物を溶媒キャスト法によって成形した場合、 さらに、 原料成形物に対 しプレス加工法によって成形、 加熱及び加圧処理が施される。 この製造方法によ ると、 溶媒キャスト法から十分な制振性能を有する制振組成物を容易に製造する ことができる。 また、 原料組成物を口一ル混練法によつて製造した場合、 さらに、.原料組成物 に対しプレス加工法によって成形、 加熱処理及び加圧処理が施される。 この製造 方法によると、 ロール混練法によって製造された原料組成物を容易に成形できる とどもに、 ロール混練法から十分な制振性能を有する制振組成物を容易に製造す ることができる。 本実施形態の製造方法によって製造された制振成形物は、 拘束型制振シート、 あるいは非拘束型制振シートとして利用することができる。 次に、 実施例及び比較例を挙げて前記実施形態をさらに具体的に説明する。 (実施例 1 )
ポリ.塩化ビニル 7重量部、 N, N—ジシクロへキシルベンゾチアジルー 2—ス ルフ —ンアミ ド (DCHB SA) (サンセラー DZ、 三新化学工業 (株) 製) 3 重量部、 テトラヒ ドロフラン (THF) 90重量部を攪拌機で混合し、 原料組成 物を調製した。 原料組成物を溶媒キャスト法によってシート状に成形し、 制振成 形物の前駆体を得た。 制振成形物の前駆体をプレス機にセットし、 圧力 7845 k P a、 温度 100°Cの条件で 5分間プレス加工を行い、 制振成形物を得た。 (実施例 2)
実施例 1と同様にして得られた制振成形物の前駆体をプレス機にセットし、 圧 力 7845 k P a、 温度 1 20 °Cの条件で 5分問プレス加工を行い、 制振成形物 を得た。
(実施例 3 )
実施例 1と同様にして得られた制振成形物の前駆体をプレス機にセットし、 圧 力 7845 k P a、 温度 140 の条件で 5分間プレス加工を行い、 制振成形物 を得た。
(実施例 4 )
実施例 1と同様にして得られた制振成形物の前駆体をプレス機にセットし、 圧 力 7845 k P a、 温度 1 60 °Cの条件で 5分問プレス加工を行い、 制振成形物 を得た。
(実施例 5)
実施例 1と同様にして得られた制振成形物の前駆体をプレス機にセットし、 圧 力 7845 k P a、 温度 1 70 の条件で 5分間プレス加工を行い、 制振成形物 を得た。
(実施例 6)
ポリ塩化ビ ル 70重量部、 N, N—ジシクロへキシルベンゾチアジルー 2— スルフェンアミ ド (DCHB SA) (サンセラー DZ、 三新化学工業 (株) 製) 30重量部をロール混練機に投入し、 温度 1 70°Cで 10分間混練し、 原料組成 物を調製した。 原料組成物をプレス機にセットし、 圧力 7845 k P a、 温度 1 00°Cの条件で 5分間プレス加工を行い、 制振成形物を得た。 (実施例 7 )
実施例 6と同様にして得られた原料組成物をプレス機にセットし、 圧力 784 5 k P a、 温度 12 の条件で 5分間プレス加工を行い、 制振成形物を得た。 (実施例 8 )
実施例 6と同様にして得られた原料組成物をプレス機にセットし、 圧力 784 5 k P a、 温度 140°Cの条件で 5分間プレス加工を行い、 制振成形物を得た。 (実施例 9)
実施例 6と同様にして得られた原料組成物をプレス機にセットし、 圧力 784 5 k P a、 温度 160°Cの条件で 5分間プレス加工を行い、 制振成形物を得た。 (実施例 10 )
実施例 6と同様にして得られた原料組成物をプレス機にセットし、 圧力 7845 k P a、 温度 170°Cの条件で 5分間プレス加工を行い、 制振成形物を得た。 (実施例 1 1 )
実施例 6と同様にして得られた原料組成物をプレス機にセットし、 圧力 784 5 k P a、 温度 180°Cの条件で 5分間プレス加工を行い、 制振成形物を得た。 (比較例 1 )
実施例 1と同様に原料組成物を調製し、 溶剤キャスト法でシート状に成形した。 上記実施例 1〜 1 1、 及ぴ比較例 1で得られた制振成形物を 35 X 5 mmの寸 法に切断し、 損失正接 (t a η δ) 測定用の試験片とした。
図示しない粘弹性測定装置 (RSAII、 レオメ トリック社製) によって、 これ らの試験片の損失正接 (t a n S) を測定した。 この場合、 試験片の温度を連続 的に增大させ、 試験片を加振させた状態で損失正接 (t a η δ) が測定される。 本実施形態では、 加振の周波数を 10Hzとして、 一 30〜 1 50 t:の温度範囲 で、 損失正接 ( t a η δ ) の最大値を求めた。
実施例 1〜 1 1、 及ぴ比較例 1の測定結果を表 1及び図 1に示す。
0 【表 1】
Figure imgf000013_0001
表 1から明らかなように、 実施例 1〜実施例 1 1では比較例 1に対し、 損失正 接 ( t a η δ ) が高い値を示し、 制振性能が向上している。
図 1に示すように、 実施例 1〜実施例 5では、 温度が増大するほど、 損失正接 ( t a η δ ) の値は増大する。 また、 実施例 6〜実施例 9においても、 温度が増 大するほど、 損失正接 (t a η δ ) の値は増大する。 なお、 実施形態は次のように実施することもできる。 制振成形物の製造方法において、 例えばポリ塩化ビニルェマルジョン等の母材 のェマルジョンを溶媒で希釈する等してから活性成分と混合して原料組成物を調 製してもよい。

Claims

請求の範囲
1 . 母材と前記母材中の双極子モーメント量を増大させる活性成分とを含有す る原料組成物を加熱及び加圧処理することを特徴とする制振成形物の製造方法。
2 . 加熱処理における温度が増大するほど制振成形物の損失係数 (損失正接) の値が增大する関係が得られるように、 圧力を一定に維持して加熱処理が行われ ることを特徴とする請求項 1に記載の制振成形物の製造方法。
3 . 前記加熱及び加圧処理は、 前記原料組成物を溶媒キャス ト法にて成形した 後に行われることを特徴とする請求項 1又は請求項 2に記載の制振成形物の製造 方法。
4 . 前記加熱及び加圧処理は、 前記原料組成物をロール混練法にて加熱混練し た後に行われることを特徴とする請求項 1又は請求項 2に記載の制振成形物の製 造方法。
5 . 前記加熱処理における温度は前記母材のガラス転移点以上の温度であるこ とを特徴とする請求項 1から請求項 4のいずれか一項に記載の制振成形物の製造 方法。
6 . 前記加熱処理における温度は、 前記母材のガラス転移点以上でかつガラス 転移点に 1 0 加えた温度以下までであることを特徴とする請求項 1から請求 項 4のいずれか一項に記載の制振成形物の製造方法。
7 . 母材と前記母材中の双極子モーメント量を増大させる活性成分とを含有す る原料組成物を加熱及び加圧処理することによって得られる制振成形物。
8 . 加熱処理における温度が増大するほど制振成形物の損失係数 (損失正接) の値が增大する関係が得られるように、 圧力を一定に維持して加熱処理が行われ ることを特徴とする請求項 7に記載の制振成形物。
9 . 前記加熱及ぴ加圧処理は、 前記原料組成物を溶媒キャスト法にて成形した 後に行われることを特徴とする請求 I軍 7又は請求項 8に記載の制振成形物。
1 0 . 前記加熱及ぴ加圧処理は、 前記原料組成物をロール混練法にて加熱混練 した後に行われることを特徴とする請求項 7又は請求項 8に記載の制振成形物。
1 1 . 前記加熱処理における温度は、 前記母材のガラス転移点以上の温度であ ることを特徴とする請求項 7から請求項 1 0のいずれか一項に記載の制振成形物。
1 2 . 前記加熱処理における温度は前記母材のガラス転移点以上で、 かつガラ ス転移点に 1 0 0 °C加えた温度以下であることを特徴とする請求項 7から請求項 1 0のいずれか一項に記載の制振成形物。
3
PCT/JP2002/001749 2002-02-26 2002-02-26 Procede de production d'un article moule a haut pouvoir amortissant et article amortissant les vibrations WO2003072332A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003571063A JPWO2003072332A1 (ja) 2002-02-26 2002-02-26 制振成形物の製造方法及び制振成形物
PCT/JP2002/001749 WO2003072332A1 (fr) 2002-02-26 2002-02-26 Procede de production d'un article moule a haut pouvoir amortissant et article amortissant les vibrations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/001749 WO2003072332A1 (fr) 2002-02-26 2002-02-26 Procede de production d'un article moule a haut pouvoir amortissant et article amortissant les vibrations

Publications (1)

Publication Number Publication Date
WO2003072332A1 true WO2003072332A1 (fr) 2003-09-04

Family

ID=27764173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001749 WO2003072332A1 (fr) 2002-02-26 2002-02-26 Procede de production d'un article moule a haut pouvoir amortissant et article amortissant les vibrations

Country Status (2)

Country Link
JP (1) JPWO2003072332A1 (ja)
WO (1) WO2003072332A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162597A (ja) * 2011-02-03 2012-08-30 Cci Corp 減衰性付与剤及び減衰性材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312191A (ja) * 1997-05-12 1998-11-24 Tokai Rubber Ind Ltd 高減衰材料
EP0897675A1 (en) * 1996-05-10 1999-02-24 Shishiai-Kabushikigaisha Energy conversion composition
JPH11257424A (ja) * 1998-03-13 1999-09-21 Tokai Rubber Ind Ltd 制振シート及び制振構造体
JP2001035457A (ja) * 1999-07-22 2001-02-09 Yuasa Corp ナトリウム−硫黄電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897675A1 (en) * 1996-05-10 1999-02-24 Shishiai-Kabushikigaisha Energy conversion composition
JPH10312191A (ja) * 1997-05-12 1998-11-24 Tokai Rubber Ind Ltd 高減衰材料
JPH11257424A (ja) * 1998-03-13 1999-09-21 Tokai Rubber Ind Ltd 制振シート及び制振構造体
JP2001035457A (ja) * 1999-07-22 2001-02-09 Yuasa Corp ナトリウム−硫黄電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162597A (ja) * 2011-02-03 2012-08-30 Cci Corp 減衰性付与剤及び減衰性材料

Also Published As

Publication number Publication date
JPWO2003072332A1 (ja) 2005-06-16

Similar Documents

Publication Publication Date Title
JP6187795B2 (ja) 組成物及び成形体
Yazıcı et al. Effect of octavinyl-polyhedral oligomeric silsesquioxane on the cross-linking, cure kinetics, and adhesion properties of natural rubber/textile cord composites
JPWO2014061598A1 (ja) 薄片化黒鉛誘導体の製造方法、及び薄片化黒鉛・樹脂複合材料の製造方法
JP4782486B2 (ja) ゴム組成物およびその製造方法
WO2014136642A1 (ja) 樹脂複合材料の製造方法及び樹脂複合材料
WO2003072332A1 (fr) Procede de production d'un article moule a haut pouvoir amortissant et article amortissant les vibrations
JP2007002177A (ja) ゴム組成物
KR101473401B1 (ko) 항균, 탈취성능 및 형상복원력이 우수한 인솔 발포체용 수지 조성물의 제조방법 및 이 제조방법에 의해 제조된 인솔 발포체용 수지 조성물
JPH10138365A (ja) 非拘束型制振材
JP3952192B2 (ja) 減衰組成物
JP3702417B2 (ja) 選択的相溶性を利用した新規な制振材料
JPH1067901A (ja) 熱可塑性重合体組成物
JPH11130896A (ja) シリコーンゴムスポンジの製造方法およびシリコーンゴムスポンジ
JP4090268B2 (ja) ゴム組成物
WO2002053647A1 (fr) Matériau d'amortissement de vibrations
JP2001164015A (ja) 多孔質フィルムとその製造方法、及び樹脂ノート
JP2009091436A (ja) ポリフッ化ビニリデン−窒化ホウ素フィラー系組成物およびその製造方法
JP3045211B2 (ja) 射出成形用ジアリルフタレート樹脂成形材料
US20040157964A1 (en) Vibration-damping composition and process for producing vibration-damping composition
JPH06299070A (ja) ポリアリーレンスルフィド樹脂組成物の製造方法
JP2006057009A5 (ja)
JPS6058465A (ja) 複合樹脂組成物
JP2007002179A (ja) ハイブリッドフィラーと、それを用いたゴム組成物および樹脂組成物
JP2913487B2 (ja) ポリ塩化ビニル系樹脂組成物
JP2000072883A (ja) イソプレン・イソブチレン・ジビニルベンゼン3元共重合体ゴムの混練り方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2003571063

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)