WO2003071299A1 - Aimant muni d'un element bobine/impedance/capteur electromagnetique - Google Patents

Aimant muni d'un element bobine/impedance/capteur electromagnetique Download PDF

Info

Publication number
WO2003071299A1
WO2003071299A1 PCT/JP2003/001749 JP0301749W WO03071299A1 WO 2003071299 A1 WO2003071299 A1 WO 2003071299A1 JP 0301749 W JP0301749 W JP 0301749W WO 03071299 A1 WO03071299 A1 WO 03071299A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic coil
coil
magnetic
sensor element
impedance sensor
Prior art date
Application number
PCT/JP2003/001749
Other languages
English (en)
French (fr)
Inventor
Yoshinobu Honkura
Michiharu Yamamoto
Masaki Mori
Yoshiaki Koutani
Original Assignee
Aichi Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corporation filed Critical Aichi Steel Corporation
Priority to KR10-2003-7013089A priority Critical patent/KR100522665B1/ko
Priority to AU2003211249A priority patent/AU2003211249A1/en
Priority to JP2003570149A priority patent/JP3693119B2/ja
Priority to US10/501,329 priority patent/US7224161B2/en
Priority to EP03706962.2A priority patent/EP1486792B1/en
Publication of WO2003071299A1 publication Critical patent/WO2003071299A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux

Definitions

  • the present invention relates to a magneto-impedance using an electromagnetic coil used as a magnetic sensor.
  • FIG. 13 shows the structure of a conventional MI device (Japanese Patent Application Laid-Open No. 2000-81471, Japanese Patent Application Laid-Open No. 2000-296127).
  • a magnetic sensing element made of an amorphous wire is fixed on an electrode substrate at the center, and an electromagnetic coil is wound around the electrode substrate.
  • the diameter of the electromagnetic coil was about 1 to 5 mm.
  • the size of the Ml element is generally 3 mm in width, 2 mm in height, and 4 mm in length.
  • the above conventional Ml element can achieve high sensitivity, miniaturization, and low power consumption to some extent when applied as a magnetic sensor, but there is a problem that miniaturization of a high-performance magnetic sensor is not necessarily sufficient.
  • Ml sensors high-performance magnetic sensors
  • the conventional Ml element had a large size because the electromagnetic coil was wound around the electrode substrate from the outside. Therefore, further miniaturization of the MI element has been required.
  • DISCLOSURE OF THE INVENTION Accordingly, the present inventor has conducted intensive studies on miniaturization of MI elements, and as a result, An electromagnetic coil composed of one coil spirally formed in the extending groove in the electrode wiring substrate having the extending groove formed therein and the other coil connecting the upper ends of the one coil.
  • a voltage corresponding to the strength of an external magnetic field generated in the electromagnetic coil when a high frequency or pulse current is applied to a magnetic sensing element inserted in an insulator placed in the extending groove of the electrode wiring board The inventor of the present invention focused on the technical idea of the present invention to output the image, and as a result of further research and development based on the technical idea of the present invention focused on, arrived at the present invention.
  • An object of the present invention is to achieve a reduction in size and thickness, a reduction in volume, a reduction in power consumption, an increase in sensitivity, and an increase in width.
  • the magneto-impedance-sensor element with the electromagnetic coil according to the present invention (the first invention according to claim 1) is:
  • An electromagnetic coil including one coil spirally formed in the extending groove in the electrode wiring board and the other coil connecting each upper end of the one coil;
  • a high-frequency or pulse-current-sensitive magnetic body inserted into the insulator.
  • the magnet with an electromagnetic coil and the impedance sensor element of the present invention (the second invention according to claim 2)
  • the magnetic sensitive body is made of an amorphous conductive magnetic wire.
  • the electromagnetic coil has a winding inner diameter of 200 / zm or less.
  • the magnet with an electromagnetic coil and the impedance sensor element of the present invention (the fourth invention according to claim 4)
  • the electromagnetic coil has a winding interval per turn of 100 ⁇ m / turn or less.
  • the magneto-impedance sensor element with the electromagnetic coil of the present invention (the fifth invention according to claim 5)
  • the magnetic sensing element is set to a length of 3 mm or less
  • the magnet impedance sensor element with the electromagnetic coil of the present invention (the sixth invention according to claim 6) is
  • the magnetic sensing element has an aspect ratio of a length ratio to a wire diameter of 10 to 100.
  • the magneto-impedance sensor element with the electromagnetic coil of the present invention (the seventh invention according to claim 7) is
  • the inner diameter of the winding of the electromagnetic coil is set to 1.005 or 10 times the wire diameter of the magnetic sensitive body.
  • the magneto-impedance sensor element with an electromagnetic coil according to the present invention (the eighth invention according to claim 8)
  • the electromagnetic coil has a winding inner diameter of 100 m or less. 9 things.
  • the magneto-impedance sensor element with an electromagnetic coil according to the present invention (a ninth invention according to claim 9) is
  • the electromagnetic coil has a winding interval of 50 ⁇ m Z turns or less per turn.
  • the magneto-impedance sensor element with an electromagnetic coil according to the first invention having the above-described configuration is characterized in that the magnetic sensing element inserted in the insulator placed in the extending groove of the electrode wiring board is supplied with a high frequency or When a pulse current is applied, the electrode wiring comprises one coil spirally formed in the extending groove formed in the substrate and the other coil connecting each upper end of the one coil. Since a voltage corresponding to the intensity of the external magnetic field generated in the electromagnetic coil is output, it is possible to reduce the size and thickness and to reduce the power consumption.
  • the high sensitivity can be realized because the magnetic sensitive body is made of an amorphous conductive magnetic wire in the first invention. It works.
  • the electromagnetic coil according to the second aspect of the invention has a winding inner diameter of 200 ⁇ am or less. It has the effect of doing.
  • the electromagnetic coil according to the third invention has a winding interval per turn of 100 ⁇ winding or less. An effect of realizing high sensitivity is achieved in order to realize the electromagnetic coil having a high density.
  • the magnetic sensing element is set to a length of 3 mm or less in the second aspect, so that downsizing is realized. This has the effect.
  • a magneto-impedance sensor element with an electromagnetic coil having the above-mentioned structure, wherein in the second aspect, the magneto-sensitive body has a length ratio to a wire diameter. Since the aspect ratio is set to 10 to 150, the measurement magnetic field range that can be measured while maintaining linearity is widened, for example, a wide range that can be applied in the automotive field This has the effect of realizing the system.
  • An electromagnetic coil f-dimension magnetic impedance sensor element having the above-mentioned structure, wherein the inner diameter of the winding of the electromagnetic coil is 1.0 with respect to the diameter of the magnetic sensitive body in the sixth aspect. Since it is set to 0.5 to 10 times, it has the effect of realizing high sensitivity.
  • the magneto-impedance sensor element with an electromagnetic coil according to an eighth aspect of the present invention is characterized in that, in the second aspect, the electromagnetic coil has a winding inner diameter of 100; m or less. It works.
  • FIG. 1 is a front view showing an MI device according to a first embodiment and a first example of the present invention.
  • FIG. 2 is a cross-sectional view of the MI device of the first embodiment and the first example, taken along line AA ′ of FIG.
  • FIG. 3 is a partial perspective view showing an arrangement of coils in a groove in the first embodiment and the first example.
  • FIG. 4 is a partial plan view showing an arrangement of coils in a groove in the first embodiment and the first example.
  • FIG. 5 is a partial plan view showing the arrangement of the coils in the grooves in the first embodiment and the first example.
  • FIG. 6 is a block circuit diagram showing an electronic circuit of the MI sensor according to the first embodiment and the first example.
  • FIG. 5 is a diagram showing characteristics of a sensor output voltage versus an external magnetic field in a ⁇ I sensor using a ⁇ I element in the first embodiment and the first example.
  • FIG. 8 is a diagram showing a relationship between an external magnetic field and an output voltage in the sensor of the first embodiment and a conventional bobbin type sensor.
  • FIG. 9 is a diagram showing a relationship between an external magnetic field and an output voltage in order to compare ranges of amorphous wires of various lengths as a magnetic sensitive body in the III element of the second embodiment of the present invention.
  • FIG. 10 is a diagram showing the relationship between the saturation magnetic field (G) and the total wire length, that is, the aspect ratio, of amorphous wires of various lengths as magnetic sensing elements in the II element of the second embodiment. is there.
  • FIG. 11 is a partial plan view showing an arrangement of coils in a groove in other embodiments and examples of the present invention.
  • FIG. 12 is a partial cross-sectional view showing an example of a groove shape in another embodiment and an example of the present invention.
  • FIG. 13 is a front view showing the III elements of the comparative example and the conventional example. BEST MODE FOR CARRYING OUT THE INVENTION
  • First Embodiment First Embodiment
  • the magneto 'impedance' sensor element with an electromagnetic coil is, as shown in FIG. 1 and FIG. 2, a magnetic sensor 2 for detecting a magnetic field on an electrode wiring board 1 and a magnetic sensor 2 in the I element.
  • the electromagnetic coil 3 having an inner diameter of 200 / zm or less is placed around the magnetic sensing element only with an insulator around the magnetic sensing element without a substrate that fixes the magnetic sensing element 2 'between the magnetic element 2 and the electromagnetic coil 3.
  • the terminals of the magnetic sensitive body 2 and the coil 3 are connected to the respective electrodes 51, 52 on the substrate 1, and a high frequency or pulse current is applied to the magnetic sensitive body 2, and the external magnetic field generated in the electromagnetic coil 3 at that time is It is intended to output a voltage corresponding to the intensity.
  • the inner diameter of the electromagnetic coil 3 can be reduced to 200 / m or less because the electromagnetic coil 3 is installed around the magnetic sensing element 2 via only an insulator, and the MI element can be downsized as a whole. Can be achieved.
  • the magnetosensitive body 2 is a conductive magnetic wire having a diameter of 1 to 150 m
  • the electrode wiring board 1 has a depth of 5 to 200 ⁇ m
  • the electromagnetic coil 3 has one side 31 1 of the electromagnetic coil disposed along the groove surface 1 1 1, and the other side 3 2 of the electromagnetic coil disposed on the lower surface of the upper substrate 12. Are arranged on the upper surface of the groove, and have a two-layer structure of one side 31 of the coil on the groove surface and the other side 32 of the coil on the upper surface of the groove.
  • the magnetic sensing element 2 can have a coil diameter of 200 ⁇ m or less by using a conductive magnetic wire having a diameter of 1 to 150 ⁇ m.
  • the magnetic wire when a magnetic wire is used for the magnetic sensing element 2, the magnetic wire has an excellent magnetic sensing performance, so the output voltage per one turn of the electromagnetic coil increases, and the number of windings can be reduced. Can be shortened.
  • the size can be further reduced as compared with the case where the electromagnetic coil 3 is arranged on the electrode wiring board 1. External contact can also be prevented, and a mechanically stable MI element can be realized.
  • the conductive magnetic wire is made of amorphous.
  • the material of the magnetic wire is specified as amorphus, since the amorphus has an excellent magnetic sensing performance, the output voltage per one turn of the electromagnetic coil increases, and the number of windings can be reduced. Can be shorter.
  • a winding interval per unit length of the electromagnetic coil 3 is set to 100 m / turn or less.
  • the output voltage is increased by reducing the winding interval per turn (per unit length) of the electromagnetic coil 3 and increasing the number of windings per turn (per unit length). Practically, it is preferable to be less than 100 // m / volume. If the same output voltage is sufficient, the length of the MI element can be reduced. Further, in the present embodiment, in the MI element, the size of the electrode wiring board 1 is from 20 m to 1 mm or less, from 2 m to 1 mm or less, and from 200 ⁇ m to 4 m in length. This is an MI element characterized by being equal to or less than mm.
  • the electrode wiring board 1 can be made the above size, and the whole element can be made significantly smaller, thinner and smaller. Can be realized.
  • the magnet 'impedance' sensor element with the electromagnetic coil of the second embodiment will be described below.
  • high-sensitivity magnetic sensors have extremely high sensitivity because the change in detection output is large relative to the change in detection input, but have a narrow detection range because they reach the full scale up to the saturation magnetic field immediately.
  • an aspect ratio which is a ratio of a length to a diameter of the magneto-sensitive element.
  • the conventional high-sensitivity magnetic sensors (MI, FG sensors) with the structure shown in Fig. 13 have a limit in miniaturization, and it is difficult to miniaturize them to achieve a wide range. If the length is shortened, the sensitivity is extremely reduced.
  • the aspect ratio which is the ratio of the length to the diameter of the amorphous wire in the second embodiment, is extremely reduced to achieve a wide range, and a very high density around the amorphous wire.
  • Inductance is improved by winding a small coil, the coil shape is small, and the inductance L is extremely small, so the vibration induced in the coil is high.However, by using an analog switch, the magnetic field signal is not lost without losing the sensitivity. It is to be detected.
  • the length of the amorphous wire is set to 100 0111 to 100 00 m for the amorphous wire diameter of 110 z m to 100 m.
  • the detection range becomes 1.5 to 20 times the conventional value, and when it is set to 10 to 100, the detection range becomes 3 to 2 times the conventional value. It becomes 0 times.
  • the detection range becomes 5 to 20 times the conventional range.
  • the diameter of the electromagnetic coil is set to 10.05 m to 10000 m with respect to the diameter of the amorphous wire 3 ⁇ 46 1 0 ⁇ 111 to 1100 // m, and 1 It is better to set the value to 0.05 to 10 times.
  • a magneto-impedance sensor element with an electromagnetic coil according to the first embodiment will be described below with reference to FIGS.
  • the size of the substrate 1 is 0.5 mm in width, 0.5 mm in height, and 1.5 mm in length.
  • the magnetic sensitive body is an amorphous wire 2 having a diameter of 30 // m or 20 ⁇ a m using a CoFeSiB alloy.
  • the groove 11 on the substrate has a depth of 50 ⁇ m, a width of ⁇ 0 / m, and a length of 1.5 mm.
  • the electromagnetic coil 3 is formed by a two-layer structure of one side 3 1 of the coil formed on the groove surface 1 1 1 and the coil 3 2 on the other side formed on the groove upper surface 1 1 2 (the upper surface 4 1 of the resin 4). It was done. )
  • one side 31 of the coil formed on the groove surface 1 11 is formed on the entire surface of the groove surface 1 1 1 of the groove 11 formed in the longitudinal direction of the electrode wiring board 1 as shown in FIGS.
  • a conductive magnetic metal thin film forming a coil is formed in the vicinity of the groove 11 on the upper surface of the electrode wiring board 1 by vapor deposition, and a conductive portion forming a gap so that the formed metal thin film remains spirally. It is formed by removing the conductive metal thin film by a selective etching technique.
  • the coil portion 311 is formed to extend vertically in the vertical direction, and on the groove bottom surface 110 of the groove 11, the adjacent vertical coil is formed.
  • the coil portion 312 is formed to extend obliquely to the width direction so as to be continuous with the portion.
  • the coil 32 on the other side formed on the groove upper surface 1 1 2 (the upper surface 4 1 of the resin 4) is disposed in the longitudinal direction of the electrode wiring board 1 on the groove upper surface 1 1 2 (the upper surface 4 1 of the resin 4).
  • a conductive magnetic metal thin film forming a coil is formed by vapor deposition over a wider range in a width direction of a portion opposed to the formed groove 11, and the formed conductive magnetic metal thin film is formed at a constant pitch.
  • a magnetic metal thin film portion is formed by a selective etching technique so as to form a gap with a constant pitch so as to remain in a strip shape longer in the width direction than the length of the groove 11 in the width direction.
  • a protective film may be formed on the upper surface of the coil as needed.
  • the winding inside diameter of the electromagnetic coil 3 is a circle-equivalent inside diameter (diameter of a circle having the same area as a groove cross-sectional area formed by height and width) of 66 m.
  • the winding interval per turn (per unit length) of the electromagnetic coil 3 is 50 / z m Z winding.
  • An insulating resin 4 is disposed between the amorphous wire 2 and the electromagnetic coil 3 to maintain the insulation between the conductive magnetic amorphous wire and the electromagnetic coil.
  • Electrodes 5 have a total of four electromagnetic coil terminals 51 and magnetic sensitive terminals 52 baked on the upper surface of the substrate. Both ends of the amorphous wire 2 and both ends of the electromagnetic coil 3 are connected to the electrode 5.
  • the MI element 10 of the present invention has the configuration as described above. Incidentally, the size of the present Ml element is the same as the size of the electrode wiring board. Next, the characteristics of the MI element 10 were evaluated using the MI sensor shown in FIG.
  • the electronic circuit of the MI sensor used for the evaluation includes a signal generator 6, the MI element 10, and a signal processing device 7.
  • the signal is a pulse signal having a strength of 170 mA corresponding to 200 MHz, and the signal interval is 1 ⁇ sec.
  • the pulse signal is input to the amorphous wire 2, and a voltage proportional to the external magnetic field is generated in the electromagnetic coil 3 during the input time.
  • the signal processing circuit 7 extracts the voltage generated in the electromagnetic coil 3 through a synchronous detection 71 that opens and closes in synchronization with the input of the pulse signal, and amplifies the voltage to a predetermined voltage by an amplifier 72.
  • FIG. 7 shows the sensor output from the circuit.
  • the horizontal axis in FIG. 7 is the magnitude of the external magnetic field, and the vertical axis is the sensor output voltage.
  • the sensor output shows excellent linearity between ⁇ 10G. Further, its sensitivity was 20 mV / G . This is a level that can be used as a highly sensitive magnetic sensor.
  • the dimensions of the conventional MI element 9 shown in FIG. 13 as a comparative example are as follows.
  • the size of the substrate 91 for fixing the amorphous wire is 0.7 mm in width, 0.5 mm in height, and 3.5 mm in length.
  • the magnetic susceptor is an amorphous wire 92 having a diameter of 3 ⁇ using a CoFeSiB alloy. Between the amorphous wire 92 and the electromagnetic coil 93, a conductive magnetic amorphous wire and the electromagnetic coil are kept insulated by a winding frame 94 having an insulating property.
  • the core formed by the resin mold of the winding frame 94 has a width of 1 mm, a height of 1 mm, and a length of 3 mm.
  • the inner diameter of the electromagnetic coil 93 is 1.5 mm.
  • the electrode 95 has a winding frame 94 on which a total of four terminals of an electromagnetic coil terminal and a terminal of a magnetic sensitive body are arranged. Both ends of the amorphous wire 92 and both ends of the electromagnetic coil 93 are connected to the electrode 95.
  • the conventional MI element 9 has the configuration as described above. In this case, the dimensions of the MI element 9 are 3 mm in width, 2 mm in height, and 4 mm in length. Conventional MI elements are large and cannot be applied to sensors with limited installation space as described above. On the other hand, since the first embodiment is very small and thin, it can be applied to ultra-small magnetic sensors for small electronic devices such as sensors for mobile phones and sensors for watches.
  • a conductive magnetic metal thin film forming a coil is formed on the groove surface 11 1 of the groove 11 formed in the longitudinal direction of the electrode wiring substrate 1 and the lower surface 1 12 of the upper substrate 12. Is formed by vapor deposition, and the electromagnetic coil is formed by removing the conductive metal thin film portion forming the gap by a selective etching method so that the formed metal thin film remains in a spiral shape. This has the effect of enabling the manufacture of small and thin MI elements with high density.
  • a conventional bobbin-type sensor (wire length 2.5 mm, coil length 2 mm, 40 turns) as a comparative example shown in Fig. 13 and the first embodiment described above were used.
  • Sensor (wire diameter ⁇ 20 // m and length 1.5 mm, coil length 1 mm, Fig. 8 shows the results of comparison of the range at (18 turns).
  • the horizontal axis in FIG. 8 is the external magnetic field, and the vertical axis is the output voltage.
  • the ranges of the conventional bobbin type sensor and the sensor of the above-described first embodiment are almost the same at 3 G, which is the same as that of the conventional bobbin type sensor.
  • the output voltage of the example sensor is slightly over 80%, and the output voltage is low despite the small size and thinness.However, there is a large difference in the number of turns, so the voltage per turn is less than 28%.
  • the sensor of the first embodiment is 53 mV / turn, which is about twice as large as the bobbin tamper, which is suitable for miniaturization.
  • the magnet with magnetic coil, impedance, and sensor element of the second embodiment realizes a wide range that can be applied, for example, in the automotive field, and will be described below with reference to FIGS. 1 to 5.
  • the size of the substrate 1 is 0.67 mm in length
  • the magnetic sensitive body 2 is an amorphous wire 2 having a diameter of 3 using a CoFeSiB alloy.
  • the electromagnetic coil 3 is formed by a two-layer structure of one side 3 1 of the coil formed on the groove surface 1 1 1 and the coil 3 2 on the other side formed on the groove upper surface 1 1 2 (the upper surface 4 1 of the resin 4). It was done.
  • the overall length of the device is 0.67 mm.
  • the diameter of the amorphous wire as the magnetic sensing element 2 is set to ⁇ 30 ⁇ m, and the inner diameter of the winding of the electromagnetic coil 3 is set to 880 m.
  • the longitudinal width of the groove 11 of the coil section 3 11 and the coil section 3 12 shown in FIGS. 3 and 5 and Table 1 is set to 50 m, 10 ⁇ , 25 zm, etc.
  • the width of the gap is also set to 25 m, 5 / m, 25 ⁇ m, etc.Table 1
  • the ratio of the diameter of the amorphous wire to the inner diameter of the winding of the electromagnetic coil 3 is set in the range of 1.005 to 10;
  • the inner diameter of the winding of the electromagnetic coil 3 is set within the range of 1.05 ⁇ m to 100 m, and the diameter of the amorphous wire is In the case of 100 im, the inner diameter of the winding of the electromagnetic coil 3 is 10.5! It is set within the range of ⁇ 100.
  • the winding inner diameter of the electromagnetic coil 3 is 11 m to 70 ⁇ m (1.1 to 7 times), and the diameter of the amorphous wire is ⁇ 1 ⁇ m.
  • the inner diameter of the winding of the electromagnetic coil 3 is 200 im to 300; mm (2 to 3 times).
  • the detection range will be 3 to 20 times the conventional range, and a wide range is required. It can be applied in the automotive field.
  • Fig. 9 shows the results of comparison of each range when driving with a higher driving voltage than the example.
  • the horizontal axis in FIG. 9 is the external magnetic field, and the vertical axis is the output voltage.
  • the 0.6 mm range with the shortest amorphous wire length has the widest range at ⁇ 45 G, and the range becomes narrower with the longer amorphous wire length. It is about 9 times as large as the 1.5 mm one.
  • the prepared amorphous wire as the magnetic sensing element 2 has a length of 0.6 mm, 0
  • the measurement results for the saturation magnetic field (G) that determines the measurable range are plotted on the horizontal axis.
  • the overall length of the wire, that is, the aspect ratio, is plotted on the vertical axis.
  • the diameter of the amorphous wire is 20 ⁇ m and the length of the amorphous wire closest to 0.67 mm, which is the target element total length when the winding inner diameter of the electromagnetic coil 3 is 80 ⁇ , is 0.7 mm, , ⁇ 40 G wide range.
  • the magnet 'impedance' sensor element with the electromagnetic coil of the second embodiment can expand the detection range without deteriorating the sensor sensitivity, and as described above, the element shape is small, so the spatial resolution is improved and Since the total length (L) of the element is small, there is an advantage that the frequency response is improved.
  • the coil portion 312 extends at the groove bottom surface 110 of the groove 11 inclining with respect to the width direction so as to be continuous with the adjacent vertical coil portion. And a coil 32 on one side in the width direction of the electrode wiring substrate 1 orthogonal to the groove 11 formed in the longitudinal direction of the electrode wiring substrate 1 on the lower surface 1 12 of the upper substrate 1 2
  • the present invention is not limited to these.
  • the coil portion 3 As shown in FIG. 11 (A), the coil portion 3
  • the coil portion 3 12 is formed in the width direction orthogonal to the groove 11 formed in the longitudinal direction of the electrode wiring board 1 as shown in FIG.
  • the groove structure in which the rectangular groove 11 is formed in the electrode wiring board 1 as shown in FIG. 2 has been described, but the present invention is not limited thereto.
  • Figure 12 (A) or (C) When the groove 11 is formed by removing the electrode wiring substrate 1 by etching as described above, a U-shape when etched from obliquely above, an inverted trapezoid or V-shape when etched from above, a trapezoid or inverted V An embodiment in which a U-shaped groove is formed can be adopted.
  • a spiral-shaped electromagnetic coil is formed by removing the magnetic metal thin film portion in a spiral shape by a selective etching method, and is cut into a predetermined length later to introduce an amorphous wire.
  • Rukoto can be.
  • INDUSTRIAL APPLICABILITY As described above, since the magneto-impedance sensor element with the electromagnetic coil of the present invention is very small and has high sensitivity, it can be used for small electronic devices such as sensors for mobile phones and sensors for watches. It can be applied to ultra-small magnetic sensors, and can be applied in the automotive field to realize a small size and wide range.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Description

明 細 書 電磁コイル付マグネト · インピーダンス · センサ素子 技術分野 本発明は、 磁気センサとして用いられる電磁コイルを用いるマグネト ·インピ
—ダンス · センサ素子 (以下 M l素子と記す。 ) の小型化、 高感度化および例え ば自動車分野における適用を可能にするワイ ドレンジ化に関する。 背景技術 図 1 3は、 従来の M I素子 (特開 2 0 0 0— 8 1 4 7 1号、 特開 2 0 0 1— 2 9 6 1 2 7号) の構造を示す。
M I素子は、 中心部にアモルファスワイヤからなる感磁体が電極基板上に固定 されており、 その電極基板周辺に電磁コイルが巻きつけられている。 電磁コイル の直径は、 1 m mから 5 m m程度で使用していた。 また、 M l素子の大きさは、 幅 3 m m、 高さ 2 m m、 長さ 4 m mなどが一般的である。
上記従来の M l素子は、 磁気センサとして適用すると高感度、 小型化、 低消費 電力化がある程度達成できたが、 高性能磁気センサにおける小型化に関しては必 ずしも充分ではないという問題があった。
現在、 当分野ではこの M I素子を使用した高性能磁気センサ (以下 M lセンサ と記す。 ) には更なる小型化が必要とされている。 しかし、 従来の M l素子は電 磁コィルが電極基板を外側から巻く構造であったため、 サイズが大きなものにな らざるを得なかった。 そのため更なる M I素子の小型化が求められていた。 発明の開示 そこで本発明者は、 M I素子の小型化を鋭意検討した結果、 ある方向に延在す る延在溝が形成された電極配線基板内の前記延在溝内に螺旋状に形成された一方 のコイルと該一方のコイルの各上端を接続する他方のコイルとから成る電磁コィ ルによって、 前記電極配線基板の前記延在溝内に揷置される絶縁体内に介挿され た感磁体に高周波またはパルス電流が印加されたときの前記電磁コイルに発生す る外部磁界の強度に応じた電圧を出力するという本発明の技術的思想に着眼した 本発明者は、 着眼した本発明の技術的思想に基づき、 更に研究開発を重ねた結 果、 本発明に到達した。
本発明は、 小型薄型化、 小容積化、 低消費電力化、 高感度化およびワイ ドレン ジ化を達成することを目的とする。 本発明 (請求項 1に記載の第 1発明) の電磁コイル付マグネト ·インピーダン ス · センサ素子は、
ある方向に延在する延在溝が形成された電極配線基板と、
該電極配線基板内の前記延在溝内に螺旋状に形成された一方のコイルと該一方 のコイルの各上端を接続する他方のコイルとから成る電磁コイルと、
前記電極配線基板の前記延在溝内に揷置される絶縁体と、
該絶縁体内に介挿され、 高周波またはパルス電流が印加される感磁体とから成 り
高周波またはパルス電流が印加されるたときの前記電磁コイルに発生する外部 磁界の強度に応じた電圧を出力する
ものである。
本発明 (請求項 2に記載の第 2発明) の電磁コイル付マグネ卜 ' インピーダン ス · センサ素子は、
前記第 1発明において、
前記感磁体が、 アモルファスの導電性の磁性ワイヤから成る
ものである。
本発明 (請求項 3に記載の第 3発明) の電磁コイル付マグネト 'インピーダン ス . センサ素子は、 前記第 2発明において、
前記電磁コイルが、 捲線内径が 2 0 0 /z m以下である
ものである。
本発明 (請求項 4に記載の第 4発明) の電磁コイル付マグネ ト ' インピーダン ス · センサ素子は、
前記第 3発明において、
前記電磁コイルが、 1ターン当たりの捲線間隔が 1 0 0 〃m /巻以下である ものである。
本発明 (請求項 5に記載の第 5発明) の電磁コイル付マグネト ' インピーダン ス · センサ素子は、
前記第 2発明において、
前記感磁体が、 3 m m以下の長さに設定されている
ものである。
本発明 (請求項 6に記載の第 6発明) の電磁コイル付マグネ ト · インピーダン ス · センサ素子は、
前記第 2発明において、
前記感磁体が、 ワイヤ径に対する長さの割合のァスぺク ト比を 1 0ないし 1 0 0に設定されている
ものである。
本発明 (請求項 7に記載の第 7発明) の電磁コイル付マグネト 'インピーダン ス · センサ素子は、
前記第 6発明において、
前記電磁コイルの捲線内径が、 前記感磁体のワイヤ径に対して 1 . 0 0 5ない し 1 0倍に設定されている
ものである。
本発明 (請求項 8に記載の第 8発明) の電磁コイル付マグネト · インピーダン ス ·センサ素子は、
前記第 2発明において、
前記電磁コイルが、 捲線内径が 1 0 0 m以下である 9 ものである。
本発明 (請求項 9に記載の第 9発明) の電磁コイル付マグネ卜 ·ィンピ—ダン ス · センサ素子は、
前記第 3発明において、
前記電磁コイルが、 1ターン当たりの捲線間隔が 5 0 μ m Z卷以下である ものである。 上記構成より成る第 1発明の電磁コイル付マグネト ·ィンピ一ダンス ·センサ 素子は、 前記電極配線基板の前記延在溝内に揷置された前記絶縁体内に介挿され た前記感磁体に高周波またはパルス電流が印加された時における、 前記電極配線 基板内に形成された前記延在溝内に螺旋状に形成された一方のコイルと該一方の コイルの各上端を接続する他方のコイルとから成る前記電磁コイルに発生する外 部磁界の強度に応じた電圧を出力するので、 小型薄型化、 低消費電力化を可能に するという効果を奏する。
上記構成より成る第 2発明の電磁コイル付マグネト · インピーダンス · センサ 素子は、 前記第 1発明において、 前記感磁体が、 アモルファスの導電性の磁性ヮ ィャから成るので、 高感度化を実現するという効果を奏する。
上記構成より成る第 3発明の電磁コイル付マグネト · ィンピ一ダンス · センサ 素子は、 前記第 2発明において、 前記電磁コイルが、 捲線内径が 2 0 0 ^a m以下 であるので、 小型薄型化を実現するという効果を奏する。
上記構成より成る第 4発明の電磁コイル付マグネト · ィンピ一ダンス ·センサ 素子は、 前記第 3発明において、 前記電磁コイルが、 1ターン当たりの捲線間隔 が 1 0 0 μ πι 卷以下であるので、 高い密度の前記電磁コイルを実現するため、 高感度化を実現するという効果を奏する。
上記構成より成る第 5発明の電磁コイル付マグネト · ィンピ一ダンス ·センサ 素子は、 前記第 2発明において、 前記感磁体が、 3 m m以下の長さに設定されて いるので、 小型化を実現するという効果を奏する。
上記構成より成る第 6発明の電磁コイル付マグネト ·ィンピ一ダンス · センサ 素子は、 前記第 2発明において、 前記感磁体が、 ワイヤ径に対する長さの割合の ァスぺク ト比を 1 0ないし 1 5 0に設定されているので、 線形性を維持して計測 することが出来る計測磁場範囲が広くなり、 例えば自動車分野における適用を可 能にするワイ ドレンジ化を実現するという効果を奏する。
上記構成より成る第 7発明の電磁コイル f寸マグネト ·インピ一ダンス ·センサ 素子は、 前記第 6発明において、 前記電磁コイルの捲線内径が、 前記感磁体のヮ ィャ径に対して 1 . 0 0 5ないし 1 0倍に設定されているので、 高感度化を実現 するという効果を奏する。
上記構成より成る第 8発明の電磁コイル付マグネト · インピーダンス · センサ 素子は、 前記第 2発明において、 前記電磁コイルが、 捲線内径が 1 0 0 ; m以下 であるので、 小型薄型化を実現するという効果を奏する。
上記構成より成る第 9発明の電磁コイル付マグネト ·ィンピ一ダンス ·センサ 素子は、 前記第 3発明において、 前記電磁コイルが、 1ターン当たりの捲線間隔 が 5 0 / m Z巻以下であるので、 高い密度の前記電磁コイルを実現するため、 高 感度化を実現するという効果を奏する。 図面の簡単な説明 図 1は、 本発明の第 1実施形態および第 1実施例の M I素子を示す正面図であ る。
図 2は、 本第 1実施形態および第 1実施例の M I素子を示す図 1の A - A ' 線 に沿う断面図である。
図 3は、 本第 1実施形態および第 1実施例における溝内のコイルの配設形態を 示す部分斜視図である。
図 4は、 本第 1実施形態および第 1実施例における溝内のコイルの配設形態を 示す部分平面図である。
図 5は、 本第 1実施形態および第 1実施例における溝内のコイルの配設形態を 示す部分平面図である。
図 6は、 本第 1実施形態および第 1実施例における M Iセンサの電子回路を示 すブロック回路図である。 図 Ίは、 本第 1実施形態および第 1実施例における Μ I素子を用いた Μ I セン ザにおけるセンサ出力電圧対外部磁場の特性を示す線図である。
図 8は、 本第 1実施例のセンサと従来のボビンタイプのセンサにおける外部磁 場と出力電圧の関係を示す線図である。
図 9は、 本発明の第 2実施例の Μ I素子における感磁体としての各種長さのァ モルファスワイヤのレンジを比較するために外部磁場と出力電圧の関係を示す線 図である。
図 1 0は、 本第 2実施例の Μ I素子における感磁体としての各種長さのァモル ファスワイヤにおける飽和磁場 (G ) とワイヤ全長すなわちァスぺク 卜比との関 係を示す線図である。
図 1 1は、 本発明のその他の実施形態および実施例における溝内のコイルの配 設形態を示す各部分平面図である。
図 1 2は、 本発明のその他の実施形態および実施例における溝形状の例を示す 部分断面図である。
図 1 3は、 比較例および従来例の Μ I素子を示す正面図である。 発明を実施するための最良の形態 以下本発明の実施の形態につき、 図面を用いて説明する。 (第 1実施形態)
本第 1実施形態の電磁コイル付マグネト ' インピーダンス ' センサ素子は、 図 1および図' 2に示されるように Μ I素子において、 電極配線基板 1上に磁界を検 知する感磁体 2と、 感磁体 2と電磁コイル 3の間には感磁体 2'を固定する基板が 存在しない状態で感磁体の周辺に絶縁物のみを介して内径が 2 0 0 /z m以下の電 磁コイル 3を配置し、 感磁体 2とコイル 3の端子を基板 1上のそれぞれの電極 5 1、 5 2に接続し、 感磁体 2に高周波またはパルス電流を流し、 その時に電磁コ ィル 3に発生する外部磁界の強度に応じた電圧を出力しょうとするものである。 本 M I素子は、 感磁体 2の周辺に絶縁物のみを介して電磁コイル 3を設置する ために、 その内径を 2 0 0 / m以下にすることができ、 全体として M I素子の小 型化が達成できる。
また、 本実施形態は、 前記の M l素子において、 前記感磁体 2は直径 1〜 1 5 0 mの導電性の磁性ワイヤであり、 前記電極配線基板 1は深さ 5〜 2 0 0 β m の溝 1. 1を有し、 前記電磁コイル 3は電磁コイルの片側 3 1が前記溝面 1 1 1に 沿って配置され、 上基板 1 2の下面に配置された電磁コイルの残り片側 3 2が溝 上面に配置され、 溝面のコイルの片側 3 1と溝上面のコイルの残り片側 3 2との 2層構造とする物である。
前記感磁体 2は、 直径 1〜 1 5 0 ^ mの導電性の磁性ワイヤを採用することに より、 コイル径を 2 0 0 μ m以下にすることができる。
さらに、 前記感磁体 2に磁性ワイヤを採用すると、 磁性ワイヤは感磁性能が優 れているため、 電磁コイル 1巻あたりの出力電圧が増加するため、 巻き線数が減 らせるため、 M I素子の長さを短くすることができる。
また、 前記電極配線基板 1に溝 1 1が形成された溝構造を採用することにより 、 電極配線基板 1上に電磁コイル 3を配置するより更なる小型化ができ、 かつ、 電磁コイル 3への外的接触も防ぐことができ機械的に安定した M I素子が実現す ることができる。
更に、 本実施形態は、 前記 M l素子において、 前記導電性の磁性ワイヤがァモ ルファスからなる物である。
磁性ワイヤの材質をァモルファスに特定すると、 ァモルファスは感磁性能が優 れているため、 電磁コイル 1巻あたりの出力電圧が増加するため、 巻き線数が減 らせるため、 M I素子の長さを短くすることができる。
本実施形態は、 前記の M l素子において、 前記電磁コイル 3の単位長さ当たり の捲線間隔が 1 0 0 m /巻以下とする物である。
前記電磁コイル 3の 1ターン当たり (単位長さ当たり) の巻き線間隔を小さく して、 1ターン当たり (単位長さあたり) の巻き線数を増加させることにより、 出力電圧が増加する。 実用的には 1 0 0 // m /巻以下であることが好ましい。 同 じ出力電圧で良い場合は、 M I素子の長さを短くすることができる。 更に、 本実施形態は、 前記の M I素子において前記電極配線基板 1の大きさが 、 幅 2 0 ^ mから 1 m m以下、 厚み 2 mから 1 m m以下、 長さ 2 0 0 μ mか ら 4 m m以下であることを特徵とする M I素子である。
電磁コイル 3の円相当直径の幅、 高さは最大 2 0 O mであるので、 電極配線 基板 1を上記大きさにすることができ、 素子全体の大幅な小型薄型化および小容 積化を実現することができる。
(第 2実施形態)
本第 2実施形態の電磁コイル付マグネ ト ' インピーダンス ' センサ素子につい て、 以下に述べる。
一般的に高感度磁気センサは、 検出入力の変化に対して検出出力の変化が大き いため感度は極めて高いが、 逆に飽和磁場までのフルスケールに直ぐに到達する ため検出レンジが狭いものである。 レンジのワイ ド化を行うには、 感磁素子の径 に対する長さの比であるァスぺク ト比を小さく して、 反磁界を利用する手法があ る。
しかし、 上記従来の図 1 3に示される構造の高感度磁気センサ (M I , F Gセ ンサ) では、 小型化に限界があり、 ワイ ドレンジを実現する程度に小型化するこ とが難しいとともに、 仮に長さを短くすると感度が極端に落ちるという問題点が あった。
そこで本第 2実施形態におけるアモルファスワイヤの径に対する長さの比であ るァスぺク ト比を極端に小さ く し、 広レンジ化を図るとともに、 そのァモルファ スワイヤの周りに微小な超高密度なコイルを巻きつけ、 感度を向上させ、 コイル 形状が小さくィ ンダクタンス Lが極端に小さい為、 コイルに誘起される振動は高 くなるが、 アナログスィツチを用いることで感度を損なうことなく磁場信号を検 出するものである。
すなわち広レンジ化の観点より、 アモルファスワイヤの径 ø 1 0 z m〜 l 0 0 に対しアモルファスワイヤの長さを 1 0 0 〃111〜 1 0 0 0 0 〃mに設定して
、 ァスぺク ト比を 1 0〜 1 5 0に設定すると、 検出レンジは従来の 1 . 5〜 2 0 倍となり、 1 0 ~ 1 0 0に設定すると、 検出レンジは従来の 3〜2 0倍となる。 好ましくは、 ァスぺク ト比を 1 0〜 5 0に設定すると、 検出レンジは、 従来の 5〜 2 0倍となる。
また高感度化の観点より、 アモルファスワイヤの径 ¾6 1 0 ^ 111〜 1 0 0 // mにに 対し電磁コイルの径を 1 0 . 0 5 m ~ 1 0 0 0 mに設定して、 1 . 0 0 5〜 1 0倍に設定するのが良い。
検出方法としては、 アナログスィッチを利用することにより、 感度を損なうこ となく磁場信号の検出を可能にするものである。 以下本発明の実施例につき、 図面を用いて説明する。
(第 1実施例)
本第 1実施例の電磁コイル付マグネト ·ィンピ一ダンス · センサ素子について 、 図 1および図 2を用いて以下に説明する。
基板 1の大きさは、 幅 0 . 5 m m、 高さ 0 . 5 m m、 長さ 1 . 5 m mである。 感磁体は、 C o F e S i B系合金を使った直径 3 0 // mまたは 2 0 ^a mのァモル ファスワイヤ 2である。 基板上の溝 1 1は深さ 5 0 μ mで幅が Ί 0 / mで長さは 1 . 5 m mである。 電磁コイル 3は、 溝面 1 1 1に形成されたコイルの片側 3 1 と、 溝上面 1 1 2 (樹脂 4の上面 4 1 ) に形成された残り片側のコイル 3 2の 2 層構造により形成したものである。 )
前記溝面 1 1 1に形成されるコイルの片側 3 1は、 図 3ないし図 5に示される ように電極配線基板 1の長手方向に形成された溝 1 1の溝面 1 1 1の全面および 電極配線基板 1の上面の前記溝 1 1の近接部にコイルを構成する導電性の磁性金 属薄膜を蒸着により形成し、 形成された金属薄膜が螺旋状に残るように間隙部を 構成する導電性金属薄膜部を選択ェッチング手法により除去することにより形成 される。
すなわち、 前記溝 1 1の溝側面 1 1 3においては上下方向に垂直にコイル部 3 1 1が延在形成され、 前記溝 1 1の溝底面 1 1 0においては隣合う上下方向のコ ィル部に連続するように幅方向に対して傾斜してコイル部 3 1 2が延在形成され ている。 前記溝上面 1 1 2 (樹脂 4の上面 4 1 ) に形成された残り片側のコイル 3 2は 、 前記溝上面 1 1 2 (樹脂 4の上面 4 1 ) の前記電極配線基板 1の長手方向に形 成された溝 1 1に対向する部分の幅方向においてより広い範囲に亘りコイルを構 成する導電性の磁性金属薄膜を蒸着により形成し、 形成された導電性の磁性金属 薄膜が一定ピッチで前記溝 1 1の幅方向の長さより長く幅方向に短冊状に延在す るように残るように一定ピッチの間隙部を形成すベく磁性金属薄膜部を選択ェッ チング手法により除去することにより形成される。 上記コイルの上面は、 必要に 応じて保護膜を形成しても良い。
電磁コイル 3の捲線内径は、 円相当内径 (高さと幅で形成される溝断面積と同 —面積となる円の直径) は、 6 6 mである。 電磁コイル 3の 1ターン当たりの (単位長さ当たり) の捲線間隔が 5 0 /z m Z卷である。
アモルファスワイヤ 2と電磁コイル 3の間には、 絶縁性を持つ樹脂 4が配置さ れ、 導電性磁性ァモルファスワイヤと電磁コイルの絶縁を保って保持している。 電極 5は基板上面に電磁コイル端子 5 1と感磁体の端子 5 2の計 4個が焼付けら れている。 その電極 5に先のァモルファスワイヤ 2の両端と電磁コィル 3の両端 が接続されている。 前記のように構成を有するのが本発明の M I素子 1 0である 。 ちなみに、 本 M l素子の大きさは、 電極配線基板の大きさと同一である。 次に、 前記 M I素子 1 0の特性を図 6に示す M Iセンサを用いて評価した。 評価に用いた M Iセンサの電子回路は、 信号発生器 6と前記 M I素子 1 0と信号 処理装置 7 とからなる。 信号は、 2 0 0 M H zに相当する 1 7 0 m Aの強さのパ ルス信号で、 信号間隔は 1 〃 s e cである。 パルス信号はァモルファスワイヤ 2 に入力され、 その入力時間の間に、 電磁コイル 3には外部磁界に比例した電圧が 発生する。
信号処理回路 7は、 電磁コイル 3に発生したその電圧を、 パルス信号の入力に 連動して開閉する同期検波 7 1を介して取り出し、 増幅器 7 2にて所定の電圧に 増幅する。
前記回路からのセンサ出力を図 7に示す。
図 7の横軸は外部磁場の大きさ、 縦軸はセンサ出力電圧である。 センサの出力 は ± 1 0 Gの間で優れた直線性を示す。 さらにその感度は 2 0 m V / Gであつた 。 これは、 高感度磁気センサとして十分使用できるレベルである。
一方、 比較例である図 1 3に示す従来の M I素子 9の寸法は以下の通りである 。 ァモルファスワイヤを固定する基板 9 1の大きさは、 幅 0. 7 mm、 高さ 0. 5 mm、 長さ 3. 5 mmである。 感磁体は C o F e S i B系合金を使った直径 3 Ο μιηのアモルファスワイヤ 9 2である。 アモルファスワイヤ 9 2 と電磁コイル 9 3の間には、 絶縁性を持つ巻き枠 9 4により、 導電性磁性アモルファスワイヤ と電磁コイルの絶縁を保って保持している。
巻き枠 9 4の樹脂モールドで形成される芯部は幅 1 mm、 高さ 1 mm、 長さ 3 mmである。 このとき、 電磁コイル 9 3は、 内径が 1. 5 mmである。 電極 9 5 は巻き枠 9 4に電磁コイル端子と感磁体の端子の計 4個が配設されている。 その 電極 9 5に先のァモルファスワイヤ 9 2の両端と電磁コイル 9 3の両端が接続さ れている。 前記のように構成を有するのが従来の M I素子 9である。 この場合の M I素子 9の寸法は、 幅 3 mm、 高さ 2 mm、 長さ 4 mmである。 従来の M I素 子は、 上記のように大きく、 設置空間が限られるセンサーには適用できない。 それに対し、 本第 1実施例は非常に小型薄型であるため、 携帯電話用のセンサ や腕時計用センサ等の小型電子機器用超小型磁気センサに適用できる。
本第 1実施例においては、 電極配線基板 1の長手方向に形成された溝 1 1の溝 面 1 1 1および上基板 1 2の下面 1 1 2にコイルを構成する導電性の磁性金属薄 膜を蒸着により形成し、 形成された金属薄膜が螺旋状に残るように間隙部を構成 する導電性金属薄膜部を選択エッチング手法により除去することにより、 電磁コ ィルを形成するものであるため高い密度で小型薄型の M I素子の製造を可能にす るという効果を奏する。
本第 1実施例の M l素子 1 0を使用した結果、 図 3ないし図 5に示すように、 従来の M I素子を使用した M Iセンサに比較し、 約 5 0分の 1 ( 4 8分の 1 ) と いう桁違いに小型化されているにも関わらず、 ± 1 0 Gの磁場領域で優れた直線 性を得ることができた。
さらに比較のために図 1 3に示される比較例としての従来のボビンタイプのセ ンサ (ワイヤ長さ 2. 5 mm、 コイル長さ 2 mm、 4 0ターン) と上述の第 1実 施例のセンサ (ワイヤ径 ø 2 0 //mおよび長さ 1. 5 mm、 コイル長さ 1 mm、 1 8ターン) におけるレンジについて比較した結果を、 図 8に示す。 図 8におけ る横軸は、 外部磁場であり、 縦軸は、 出力電圧である。
図 8から明らかなように従来のボビンタイプのセンサと上述の第 1実施例のセ ンサにおけるレンジについては、 ほぼ士 3 Gで等しく、 従来のボビンタイプのセ ンサに比べて上述の第 1実施例のセンサの出力電圧は、 8割強であり、 小型薄型 化した割りには出力電圧の低下は低いものであるが、 巻数に大きな差があるため 、 ターン当たりの電圧は、 ボビンタンプが 2 8 m V / t u r nに対して、 第 1実 施例のセンサが 5 3 mV/ t u r nであり、 ボビンタンプの約 2倍であり小型化 に適していることになる。
(第 2実施例)
本第 2実施例の電磁コイル付マグネ 卜 · インピーダンス · センサ素子は、 例え ば自動車分野において適用することが出来るワイ ドレンジ化を実現したもので、 図 1ないし図 5を用いて以下に説明する。
基板 1の大きさは、 長さを 0. 6 7 mmとし、 感磁体 2は、 C o F e S i B系 合金を使った直径 3 のアモルファスワイヤ 2である。 電磁コイル 3は、 溝 面 1 1 1に形成されたコイルの片側 3 1 と、 溝上面 1 1 2 (樹脂 4の上面 4 1 ) に形成された残り片側のコイル 3 2の 2層構造により形成したものである。 素子 全体の長さは、 0. 6 7 mmである。
本第 2実施例においては、 感磁体 2 としてのアモルファスワイヤの径を ø 3 0 〃mとし、 電磁コイル 3の捲線内径を ø 8 0 mに設定されている。
図 3および図 5ならびに表 1に示されるコイル部 3 1 1およびコィル部 3 1 2 の前記溝 1 1の長手方向の幅は、 5 0 m、 1 0 μ τη, 2 5 z m等に設定され、 前記間隙部の同幅も、 それぞれ 2 5 m、 5 / m、 2 5 μ m等に設定されている 表 1
Figure imgf000014_0001
電磁コイル 3の捲線内径に対するアモルファスワイヤの径の比は、 1. 0 0 5 ないし 1 0の範囲内に設定され、 ァモルファスワイヤの径が 1 0 ;um〜 1 0 0 ; u mの範囲内において設定されるので、 ァモルファスワイヤの径が ø 1 0 mの 時は電磁コイル 3の捲線内径は 1 0. 0 5 μ m〜 1 0 0 mの範囲内で設定され 、 ァモルファスワイヤの径が 1 0 0 imの時は電磁コイル 3の捲線内径は 1 0 0. 5 !〜 1 0 0 0 の範囲内で設定される。
ァモルファスヮィャの径が ø 1 0 μ mのときは、 電磁コイル 3の捲線内径は 1 1 mないし 7 0 β m ( 1. 1 ~ 7倍) であり、 アモルファスワイヤの径が ø 1 0 0 〃mのときは、 電磁コイル 3の捲線内径は 2 0 0 i mないし 3 0 0 ;«m ( 2 〜 3倍) である。
ァモルファスワイヤの径が ø 1 0 0 〃mに対しァモルファスワイヤの長さを 1 0 0 !〜 1 0 0 0 0 mに設定して、 ァスぺク ト比を 1 0〜: L 0 0に設定する と、 検出レンジは従来の 3〜2 0倍となるので、 ワイ ドレンジが要求される自動 車分野における適用を可能にするものである。
また感磁体 2 としてのアモルファスワイヤの長さが 0. 6 mm、 0. 7 mm、 0. 9 mm、 1. 5 m mの 4種類を用意し、 アモルファスワイヤを図 7に示され る第 1実施例より高い駆動電圧によつて駆動した場合のそれぞれのレンジについ て比較した結果を、 図 9に示す。 図 9における横軸は、 外部磁場であり、 縦軸は 、 出力電圧である。
図 9から明らかなようにァモルファスワイヤの長さが最も短い 0. 6 mmのレ ンジが、 ± 4 5 Gでレンジが最も広く、 ァモルファスワイヤの長さが長くなるに 従いレンジが狭くなり、 1. 5 mmのものに比べて約 9倍の広さがある。
さらに用意した感磁体 2 としてのアモルファスワイヤの長さが 0. 6 mm、 0
. 7 mm、 0. 9 mm、 1. 5 mmの 4種類について、 ワイヤ径を ζ6 3 0 〃πιと した場合、 測定可能範囲を決定する飽和磁場 (G) について、 測定した結果を、 横軸にワイヤ全長すなわちァスぺク ト比をとり、 縦軸に測定可能範囲 (飽和磁場
(G) ) をとり、 図 1 0に示した。 図 1 0から明らかなようにアモルファスヮ ィャの長さが 0. 6 mm、 0. 7 mm、 0. 9 mm、 1. 5 mmの 4種類につい て、 飽和磁場 (G) は、 ワイヤ全長すなわちァスぺク ト比に対して線形関係を示 している。
またアモルファスワイヤの径 2 0 ;u m、 電磁コイル 3の捲線内径を 8 0 β τη の時の目標素子全長である 0 . 6 7 m mに最も近いァモルファスワイヤの長さが 0 . 7 m mについては、 ± 4 0 Gのワイ ドレンジを実現する。
アモルファスワイヤの長さが 0 . 4 m mのものについても、 上述のレンジにつ いて確認したが、 上述の 6 m mのものに比べてさらに広いレンジが測定可能 範囲となる。
本第 2実施例の電磁コイル付マグネト ' インピーダンス 'センサ素子は、 セン サ感度を損なわずに検出レンジを広げることが出来、 上述のように素子形状が小 さいため、 空間分解能が向上するとともに、 素子の全長 (L ) が小さいため周波 数応答性が向上するという利点を有する。 上述の実施形態は、 説明のために例示したもので、 本発明としてはそれらに限 定されるものでは無く、 特許請求の範囲、 発明の詳細な説明および図面の記載か ら当業者が認識することができる本発明の技術的思想に反しない限り、 変更およ び付加が可能である。
上述の第 1実施例においては、 一例として前記溝 1 1の溝底面 1 1 0において は隣合う上下方向のコイル部に連続するように幅方向に対して傾斜してコイル部 3 1 2が延在形成するとともに、 上基板 1 2の下面 1 1 2に前記電極配線基板 1 の長手方向に形成された溝 1 1に直交する前記電極配線基板 1の幅方向に片側の コイル 3 2を形成する例について説明したが、 本発明としてはそれらに限定され るものでは無く、 図 1 1 ( A ) に示されるようにコイル部 3 1 2を傾斜して延在 形成するとともに、 片側のコイル 3 2も傾斜して延在形成する例や、 図 1 1 ( B ) に示されるようにコイル部 3 1 2を前記電極配線基板 1の長手方向に形成され た溝 1 1に直交する幅方向に形成するとともに、 片側のコイル 3 2を傾斜して延 在形成する例を採用することが出来る。
また上述の第 1実施例においては、 一例として図 2に示されるように前記電極 配線基板 1に矩形の溝 1 1が形成された溝構造について説明したが、 本発明とし てはそれらに限定されるものでは無く、 図 1 2 ( A ) ないし (C ) に示されるよ うに前記電極配線基板 1をエッチングによって除去して溝 1 1を形成する場合、 斜め上方よりエツチングした場合の U字状、 上方よりエッチングした場合の逆台 形状または V字状、 台形状または逆 V字状の溝を形成する実施形態を採用するこ とが出来る。
さらに上述の第 1実施例においては、 一例として前記電極配線基板 1に形成さ れた溝 1 1の内側壁面にコイルを配設する例について説明したが、 本発明として はそれらに限定されるものでは無く、 部材の表面に導電性の磁性金属薄膜を蒸着 した後選択ェッチングによって除去して螺旋状の電磁コイルを形成するものであ ればよく、 例えば円形、 矩形または多角形の横断面形状の絶縁材より成る線状部 材の外側壁全面に導電性の磁性金属薄膜を蒸着により形成し、 該線状部材を回転 させて一定速度で送りながら一定ピッチの間隙部を形成すべく外側壁の磁性金属 薄膜部を選択エッチング手法により螺旋状に除去することにより、 螺旋状の電磁 コイルを形成して、 後で所定長さに切って、 アモルファスワイヤを揷入する実施 形態を採用することが出来る。 産業上の利用可能性 以上のように、 本発明の電磁コイル付マグネト ·インピーダンス ·センサ素子 は、 非常に小型で高感度であるため、 携帯電話用のセンサや腕時計用センサ等の 小型電子機器用超小型磁気センサに適用することを可能にするとともに、 小型で ワイ ドレンジ化を実現するため自動車分野における適用を可能にするものである

Claims

請求の範囲
1 . ある方向に延在する延在溝が形成された電極配線基板と、
該電極配線基板内の前記延在溝内に螺旋状に形成された一方のコイルと該一方 のコイルの各上端を接続する他方のコイルとから成る電磁コイルと、
前記電極配線基板の前記延在溝内に揷置される絶縁体と、
該絶縁体内に介揷され、 高周波またはパルス電流が印加される感磁体とから成
Ό
高周波またはパルス電流が印加されるたときの前記電磁コイルに発生する外部 磁界の強度に応じた電圧を出力する
ことを特徴とする電磁コイル付マグネ ト · ィンピ一ダンス · センサ素子。
2 . 前記感磁体が、 アモルファスの導電性の磁性ワイヤから成る
ことを特徴とする請求項 1記載の電磁コイル付のマグネ ト · インピーダンス · セ ンサ素子。
3 . 前記電磁コイルが、 捲線内径が 2 0 0 ; 以下である
ことを特徴とする請求項 2記載の電磁コィル付のマグネ 1、 · インピ一ダンス · セ ンサ素子。
4 . 前記電磁コイルが、 1 ターン当たりの捲線間隔が 1 0 0 m /巻以下であ る
ことを特徴とする請求項 3記載の電磁コイル付のマグネ ト ' イ ンピーダンス · セ ンサ素子。
5 . 前記感磁体が、 3 m m以下の長さに設定されている
ことを特徵とする請求項 2記載の電磁コィル付のマグネ ト ' インピーダンス · セ ンサ素子。
6 . 前記感磁体が、 ワイヤ径に対する長さの割合のアスペク ト比を 1 0ないし 1 0 0に設定されている
ことを特徴とする請求項 2記載の電磁コイル付のマグネ ト · ィンピ一ダンス · セ ンサ素子。
7 . 前記電磁コイルの捲線内径が、 前記感磁体のワイヤ径に対して 1 . 0 0 5 ないし 1 0倍に設定されている
ことを特徴とする請求項 6記載の電磁コィル付のマグネ ト · インピーダンス · セ ンサ素子。
8 . 前記電磁コイルが、 捲線内径が 1 0 0 / m以下である
ことを特徴とする請求項 2記載の電磁コイル付のマグネ ト · ィ ンピーダンス · セ ンサ素子。 '
9 . 前記電磁コイルが、 1 ターン当たりの捲線間隔が 5 0 / m /巻以下である ことを特徴とする請求項 3記載の電磁コイル付のマグネ ト . イ ンピーダンス · セ ンサ素子。
PCT/JP2003/001749 2002-02-19 2003-02-19 Aimant muni d'un element bobine/impedance/capteur electromagnetique WO2003071299A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR10-2003-7013089A KR100522665B1 (ko) 2002-02-19 2003-02-19 전자 코일 부착 자기 임피던스 센서 소자
AU2003211249A AU2003211249A1 (en) 2002-02-19 2003-02-19 Magnet with electromagnetic coil/impedance/sensor element
JP2003570149A JP3693119B2 (ja) 2002-02-19 2003-02-19 電磁コイル付マグネト・インピーダンス・センサ素子
US10/501,329 US7224161B2 (en) 2002-02-19 2003-02-19 Magnet with electromagnetic coil/impedance/sensor element
EP03706962.2A EP1486792B1 (en) 2002-02-19 2003-02-19 Magnet with electromagnetic coil/impedance/sensor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002042325 2002-02-19
JP2002-42325 2002-02-19

Publications (1)

Publication Number Publication Date
WO2003071299A1 true WO2003071299A1 (fr) 2003-08-28

Family

ID=27750494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001749 WO2003071299A1 (fr) 2002-02-19 2003-02-19 Aimant muni d'un element bobine/impedance/capteur electromagnetique

Country Status (8)

Country Link
US (1) US7224161B2 (ja)
EP (1) EP1486792B1 (ja)
JP (1) JP3693119B2 (ja)
KR (1) KR100522665B1 (ja)
CN (1) CN1276265C (ja)
AU (1) AU2003211249A1 (ja)
TW (1) TWI259284B (ja)
WO (1) WO2003071299A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145321B2 (en) 2005-02-25 2006-12-05 Sandquist David A Current sensor with magnetic toroid
WO2009119081A1 (ja) 2008-03-28 2009-10-01 愛知製鋼株式会社 感磁ワイヤ、マグネトインピーダンス素子およびマグネトインピーダンスセンサ
US7604591B2 (en) 2003-10-27 2009-10-20 Olympus Corporation Capsule medical apparatus
WO2010097932A1 (ja) 2009-02-27 2010-09-02 愛知製鋼株式会社 マグネトインピーダンスセンサ素子及びその製造方法
WO2012043160A1 (ja) 2010-10-01 2012-04-05 愛知製鋼株式会社 マグネトインピーダンスセンサ素子及びその製造方法
JP2015124999A (ja) * 2013-12-25 2015-07-06 愛知製鋼株式会社 磁気検出装置および磁性体有無検査装置
JP5839530B1 (ja) * 2015-05-07 2016-01-06 マグネデザイン株式会社 磁性ワイヤ整列装置および磁性ワイヤ整列方法
JP5958548B2 (ja) * 2012-10-04 2016-08-02 愛知製鋼株式会社 マグネトインピーダンス素子およびその製造方法
US9759785B2 (en) 2011-03-07 2017-09-12 National University Corporation Nagoya University Magnetic-field detecting device
JP6302613B1 (ja) * 2017-03-01 2018-03-28 ナノコイル株式会社 ナノコイル型gsrセンサ素子の製造方法
US10509081B2 (en) 2015-04-21 2019-12-17 Aichi Steel Corporation Magneto-sensitive wire for magnetic impedance sensor capable of high-accuracy measurement and method of manufacturing same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100666292B1 (ko) * 2003-08-25 2007-01-11 아이치 세이코우 가부시키가이샤 자기 센서
US8706208B2 (en) * 2007-03-24 2014-04-22 Board Of Regents, The University Of Texas System Passive wireless gastroesophageal sensor
JP4655247B2 (ja) * 2009-04-23 2011-03-23 愛知製鋼株式会社 超高感度マグネトインピーダンスセンサ
DE102010027130A1 (de) * 2010-07-14 2012-01-19 Siemens Aktiengesellschaft Modul und Anordnung zur Messung eines Hochfrequenzstroms durch einen Leiter
WO2014115765A1 (ja) * 2013-01-25 2014-07-31 マグネデザイン株式会社 磁気検出装置
WO2015025606A1 (ja) * 2013-08-20 2015-02-26 マグネデザイン株式会社 電磁コイル付マグネト・インピーダンス・センサ素子および電磁コイル付マグネト・インピーダンス・センサ
CN104849679A (zh) * 2014-02-18 2015-08-19 北京中电嘉泰科技有限公司 磁探头和包括该磁探头的磁场传感器
JP2016057190A (ja) * 2014-09-10 2016-04-21 愛知製鋼株式会社 磁界測定装置
JP5839527B1 (ja) * 2015-02-16 2016-01-06 マグネデザイン株式会社 超高感度マイクロ磁気センサ
TWI545332B (zh) * 2015-09-10 2016-08-11 旺玖科技股份有限公司 電磁阻抗感測元件及其製作方法
TWI578547B (zh) * 2015-09-10 2017-04-11 旺玖科技股份有限公司 電磁阻抗感測元件及其製作方法
JP6506466B1 (ja) * 2018-06-05 2019-04-24 マグネデザイン株式会社 超高感度マイクロ磁気センサ
KR102649010B1 (ko) 2020-03-05 2024-03-20 한국전자통신연구원 Rf 미소 자계 검출 센서 및 그 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133530A (ja) * 1999-11-05 2001-05-18 Aichi Steel Works Ltd 磁気インピーダンスセンサ
JP2001318131A (ja) * 2000-05-10 2001-11-16 Minebea Co Ltd 磁気インピーダンスヘッドモジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296127A (ja) * 2000-04-13 2001-10-26 Aichi Steel Works Ltd 磁場検出装置
EP1336858A3 (en) * 2002-02-19 2005-03-23 Aichi Micro Intelligent Corporation Two-dimensional magnetic sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133530A (ja) * 1999-11-05 2001-05-18 Aichi Steel Works Ltd 磁気インピーダンスセンサ
JP2001318131A (ja) * 2000-05-10 2001-11-16 Minebea Co Ltd 磁気インピーダンスヘッドモジュール

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7604591B2 (en) 2003-10-27 2009-10-20 Olympus Corporation Capsule medical apparatus
US7145321B2 (en) 2005-02-25 2006-12-05 Sandquist David A Current sensor with magnetic toroid
WO2009119081A1 (ja) 2008-03-28 2009-10-01 愛知製鋼株式会社 感磁ワイヤ、マグネトインピーダンス素子およびマグネトインピーダンスセンサ
US8461834B2 (en) 2009-02-27 2013-06-11 Aichi Steel Corporation Magneto-impedance sensor element and method for manufacturing the same
WO2010097932A1 (ja) 2009-02-27 2010-09-02 愛知製鋼株式会社 マグネトインピーダンスセンサ素子及びその製造方法
US8587300B2 (en) 2010-10-01 2013-11-19 Aichi Steel Corporation Magneto-impedance sensor element and method for producing the same
WO2012043160A1 (ja) 2010-10-01 2012-04-05 愛知製鋼株式会社 マグネトインピーダンスセンサ素子及びその製造方法
US9759785B2 (en) 2011-03-07 2017-09-12 National University Corporation Nagoya University Magnetic-field detecting device
JP5958548B2 (ja) * 2012-10-04 2016-08-02 愛知製鋼株式会社 マグネトインピーダンス素子およびその製造方法
JP2015124999A (ja) * 2013-12-25 2015-07-06 愛知製鋼株式会社 磁気検出装置および磁性体有無検査装置
US10509081B2 (en) 2015-04-21 2019-12-17 Aichi Steel Corporation Magneto-sensitive wire for magnetic impedance sensor capable of high-accuracy measurement and method of manufacturing same
JP5839530B1 (ja) * 2015-05-07 2016-01-06 マグネデザイン株式会社 磁性ワイヤ整列装置および磁性ワイヤ整列方法
JP6302613B1 (ja) * 2017-03-01 2018-03-28 ナノコイル株式会社 ナノコイル型gsrセンサ素子の製造方法

Also Published As

Publication number Publication date
CN1276265C (zh) 2006-09-20
TW200305029A (en) 2003-10-16
JP3693119B2 (ja) 2005-09-07
JPWO2003071299A1 (ja) 2005-06-16
US7224161B2 (en) 2007-05-29
CN1533506A (zh) 2004-09-29
KR20030085099A (ko) 2003-11-01
EP1486792A4 (en) 2007-02-28
KR100522665B1 (ko) 2005-10-19
EP1486792B1 (en) 2013-10-02
AU2003211249A1 (en) 2003-09-09
TWI259284B (en) 2006-08-01
EP1486792A1 (en) 2004-12-15
US20050116708A1 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
WO2003071299A1 (fr) Aimant muni d'un element bobine/impedance/capteur electromagnetique
JP4835805B2 (ja) マグネトインピーダンスセンサ素子及びその製造方法
KR940009681A (ko) 역학량센서
US7208947B2 (en) Fluxgate sensor integrated in a semiconductor substrate and method for manufacturing the same
WO2015025606A1 (ja) 電磁コイル付マグネト・インピーダンス・センサ素子および電磁コイル付マグネト・インピーダンス・センサ
US20060179959A1 (en) Magnetostrictive torque sensor
JP2005227297A (ja) 電磁コイル付マグネト・インピーダンス・センサ素子
US20020101683A1 (en) Thin film coil and method of forming the same, thin film magnetic head, thin film inductor and thin film magnetic sensor
JPH05297083A (ja) 磁界感応装置
JP2006196778A (ja) コイル及びそれを用いた電流センサ
JPH11202035A (ja) 磁気センサ素子
JP2009156802A (ja) 電流センサ
JP4244807B2 (ja) 方位センサ
CN112352163B (zh) 电子模块
JP3634281B2 (ja) 磁気インピーダンス効果センサー
JP2011047942A (ja) 磁束検出装置および磁束検出装置の製造方法
JP4460188B2 (ja) 磁気センサー
JP2006279180A (ja) アンテナ装置
JP2005003589A (ja) 電流センサー
JPH10318706A (ja) リニアストロークセンサ
JPH04105071A (ja) 電流検出器
JP2002168884A (ja) 静電容量型電流センサ
JP2003014458A (ja) 方位センサ
KR20040011132A (ko) 평면 바이어스 코일을 이용한 자계센서
JPH06201732A (ja) 電流センサ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2003570149

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037013089

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038007169

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003706962

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003706962

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10501329

Country of ref document: US