WO2003065487A1 - Dispositif semi-conducteur dote d'une pile a combustible et procede de fabrication associe - Google Patents

Dispositif semi-conducteur dote d'une pile a combustible et procede de fabrication associe Download PDF

Info

Publication number
WO2003065487A1
WO2003065487A1 PCT/JP2003/000618 JP0300618W WO03065487A1 WO 2003065487 A1 WO2003065487 A1 WO 2003065487A1 JP 0300618 W JP0300618 W JP 0300618W WO 03065487 A1 WO03065487 A1 WO 03065487A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
fuel cell
semiconductor device
semiconductor
insulating layer
Prior art date
Application number
PCT/JP2003/000618
Other languages
English (en)
French (fr)
Inventor
Kiyoshi Morimoto
Kiyoyuki Morita
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP03703040A priority Critical patent/EP1471588B1/en
Priority to JP2003564966A priority patent/JP3700979B2/ja
Priority to DE60322342T priority patent/DE60322342D1/de
Publication of WO2003065487A1 publication Critical patent/WO2003065487A1/ja
Priority to US10/696,347 priority patent/US6933570B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a semiconductor device having a fuel cell and a method for manufacturing the same.
  • semiconductor devices which are devices provided with semiconductor elements, are widely used in various fields such as electronic equipment, and their applications are continuing to expand.
  • microscopic semiconductor devices represented by micromachines have attracted attention.
  • a semiconductor device itself includes a power supply (ie, a semiconductor device including a power supply), a semiconductor device having more versatility can be obtained.
  • a commonly used secondary battery such as a lithium battery can be used as a power source.
  • current secondary battery technology requires a power supply that is considerably larger than semiconductor devices in terms of output characteristics. For this reason, there is a limit to miniaturization of a semiconductor device including a power supply.
  • the batteries when exhausted, they need to be charged or replaced, which poses a problem in terms of versatility.
  • the recycling of secondary batteries is expected to be a serious social problem in the future. Under such circumstances, there is a demand for a more compact and versatile semiconductor device having a power supply. Disclosure of the invention
  • the present invention provides a compact and highly versatile fuel cell as a power source.
  • a semiconductor device including the fuel cell of the present invention includes a fuel cell and a semiconductor element,
  • the fuel cell includes an anode separator having a fuel flow channel formed therein, a force sword separator having an oxidizing agent flow channel formed therein, and a membrane electrode junction sandwiched between the anode separator and the cathode separator.
  • the semiconductor element is formed on a main surface of one separator selected from the anode separator and the force source separator, and the semiconductor element and the one separator are electrically connected to each other.
  • the connected semiconductor device includes a second and a second semiconductor element,
  • the first semiconductor element is formed on one main surface of the anode separator
  • the second semiconductor element may be formed on a main surface of the force sword separator.
  • the one separator may be formed of a semiconductor substrate.
  • the semiconductor substrate may be a semiconductor substrate made of crystalline silicon.
  • the semiconductor substrate may be a semiconductor substrate made of a compound semiconductor containing a nib group element and a Vb group element.
  • the semiconductor substrate may be a semiconductor substrate made of a compound semiconductor containing a group lb element and a group VIb element.
  • the anode separator is formed of an n-type semiconductor substrate, and the force sword separator is! Shaped semiconductor substrate I
  • a contact layer that reduces contact resistance between the one separator and the membrane electrode assembly may be disposed between the one separator and the membrane electrode assembly.
  • an insulating layer may be formed between the semiconductor element and the one separator.
  • the semiconductor device and the one separator the good the semiconductor device be electrically connected via the electrode formed on the insulating layer, the insulating layer, S io 2 It may be an insulating layer made of.
  • the specific resistance of the insulating layer may be 1 0 5 ⁇ ⁇ cm or more.
  • the thickness of the insulating layer may be in a range of 10 ⁇ to 1 ⁇ .
  • the one separator may be a separator made of a metal.
  • the insulating layer may be an insulating layer made of an oxide film of the metal.
  • the semiconductor element includes a first electrode and a second electrode
  • the first electrode and the anode separator may be electrically connected, and the second electrode and the cathode separator may be electrically connected.
  • the semiconductor element may be an n-channel MOS transistor.
  • a source electrode and a substrate electrode of the n-channel MOS transistor are electrically connected to the anode separator, and a drain electrode and a gate electrode are electrically connected to the cathode separator. Is also good.
  • the semiconductor element is a p-channel MOS transistor;
  • the source electrode and the gate electrode of the channel MOS transistor may be electrically connected to the anode separator, and the drain electrode and the substrate electrode may be electrically connected to the force source separator.
  • the fuel cell may include a plurality of cells including the anode separator, the sword separator, and the membrane electrode assembly.
  • a method for manufacturing a semiconductor device including a fuel cell is a method for manufacturing a semiconductor device including a fuel cell, including a structure in which a membrane electrode assembly is sandwiched by a pair of separators.
  • the semiconductor substrate may include an insulating layer between the one surface and the opposite surface.
  • the step (i) may include:
  • the semiconductor element and the semiconductor substrate are formed in the insulating layer Forming a semiconductor element on the insulating layer so as to be electrically connected via the electrode.
  • Another method for manufacturing a semiconductor device including a fuel cell according to the present invention is a method for manufacturing a semiconductor device including a fuel cell, including a structure in which a membrane electrode assembly is sandwiched by a pair of separators.
  • (I I) a step of forming a semiconductor element on the other surface of the semiconductor substrate opposite to the surface on which the flow path is formed;
  • the semiconductor substrate is one separator selected from the pair of separators, and the membrane electrode assembly is formed on the semiconductor substrate such that the surface on which the flow path is formed is in contact with the membrane electrode assembly. And a step of laminating.
  • the semiconductor substrate may include an insulating layer between the one surface and the other surface.
  • (A) a step of forming the semiconductor element on the insulating layer so that the semiconductor element and the semiconductor substrate are electrically connected to each other via an electrode formed in the insulating layer.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of a semiconductor device including a fuel cell according to the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another example of a semiconductor device including a fuel cell according to the present invention.
  • FIG. 3 shows another example of a semiconductor device having a fuel cell according to the present invention.
  • FIG. 4A is a schematic cross-sectional view showing one example of a fuel cell in a semiconductor device provided with the fuel cell of the present invention.
  • FIG. 4B is a schematic view of the fuel cell shown in FIG. 4A as viewed from another angle.
  • FIG. 4C is an enlarged schematic view of a part of the fuel cell shown in FIG. 4B.
  • FIG. 5 is a schematic cross-sectional view showing one example of a fuel cell in a semiconductor device including the fuel cell of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing one example of a fuel cell in a semiconductor device including the fuel cell of the present invention.
  • FIGS. 7A to 7H are process cross-sectional views illustrating an example of a method for manufacturing a semiconductor device including a fuel cell according to the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an example of a semiconductor device including a fuel cell (hereinafter, also referred to as a semiconductor device) according to the present invention.
  • the semiconductor device shown in FIG. 1 includes a fuel cell 1 and a semiconductor element 2.
  • the fuel cell 1 includes an anode separator 12 having a fuel passage 11 formed therein, a cathode separator 14 having an oxidant passage 13 formed therein, an anode separator 12 and a force separator. And a membrane electrode assembly (MEA) 15 sandwiched by 14.
  • the semiconductor element 2 is formed on the main surface of one of the separators selected from the anode separator 12 and the cathode separator 14 (in the example shown in FIG. 1, one main surface of the anode separator 12 is formed).
  • the semiconductor element 2 is electrically connected to the one separator (that is, the anode separator 12 in FIG. 1).
  • the fuel cell and the semiconductor element are integrated, and the fuel cell as a power supply has a high energy density (for example, a lithium secondary battery, which is a typical secondary battery, and a fuel cell).
  • a high energy density for example, a lithium secondary battery, which is a typical secondary battery, and a fuel cell.
  • Characteristics can be increased by one order of magnitude or more
  • power generation can be started as soon as fuel is supplied. can do.
  • power can be generated as long as refueling is performed, so the problem of recycling can be reduced compared to rechargeable batteries.
  • the semiconductor element 2 is formed on the insulating layer 3 disposed on one main surface of the anode separator 12 which is one of the above-mentioned separators (that is, the semiconductor element 2 An insulating layer 3 is formed between the one separator, and the semiconductor element 2 is electrically connected to the one separator via an electrode 4 formed in the insulating layer 3. .
  • the insulating layer 3 between the semiconductor element 2 and the one separator (in the example shown in FIG. 1, the semiconductor element 2 is formed on the insulating layer 3), the area of the semiconductor element is reduced. By reducing the size, the degree of integration of the semiconductor element can be increased.
  • SOI Silicon On Insulator
  • Such SOI transistors have already been commercialized and commercialized in watches and the like, but operate at 1 V or less, so they can be driven even when the fuel cell 1 is a single cell (Single Cell) It is.
  • the power consumption of the semiconductor element 2 can be reduced, the circuit can be operated for a longer time, and a more compact and versatile semiconductor device can be obtained. You.
  • the insulating layer generally has a low thermal conductivity, the heat generated in the fuel cell 1 can be suppressed from conducting to the semiconductor element 2.
  • the fuel cell 1 has a structure in which MEA 15 is sandwiched between an anode separator 12 and a cathode separator 14.
  • a fuel flow path 11 is formed in the anode separator 12, and an oxidant flow path 13 is formed in the force sword separator 14.
  • the MEA 15 may be in contact with the surface of each separator on which the above-mentioned flow channel is formed. Electric power is generated by supplying the fuel and oxidizer to the MEA 15 via the flow channels 11 and 13. Further, the anode separator 12 and the force sword separator 14 also play a role as a current collector of the electric power generated in the MEA 15.
  • the structure, material, size, shape, and the like of ME A 15 are not particularly limited as long as power can be generated by supplying fuel and oxidant. It may be set arbitrarily according to the type of fuel or oxidant used for power generation, the temperature range in which power is generated, the required power generation characteristics, and the like.
  • the structure of the MEA 15 may be, for example, a structure in which an anode electrode 152 and a force sword electrode 1553 are applied or printed on both surfaces of a polymer electrolyte membrane 151.
  • an optional layer such as a diffusion layer may be added to the MEA as needed.
  • the fuel cell 1 is a so-called PEFC (Poly Electrolyte Fuel Cell), Power can be generated in a relatively low temperature range (for example, in the range of 0 ° C to 10 ° C). If the power generation temperature is set to, for example, 80 ° C. or lower, the influence of heat on the semiconductor element 2 can be minimized.
  • PEFC Poly Electrolyte Fuel Cell
  • Power can be generated in a relatively low temperature range (for example, in the range of 0 ° C to 10 ° C). If the power generation temperature is set to, for example, 80 ° C. or lower, the influence of heat on the semiconductor element 2 can be minimized.
  • PEFC has a particularly high energy density among fuel cells and can obtain necessary power with a smaller fuel cell, so that a more compact and versatile semiconductor device can be obtained.
  • the fuel and oxidant supplied to the fuel cell 1 are not particularly limited as long as the fuel cell 1 can generate electricity. It may be arbitrarily set according to the temperature range in which power is generated, the required power generation characteristics, and the like.
  • As the oxidizing agent for example, air may be used.
  • As the fuel for example, not only a gas such as hydrogen but also a liquid such as methanol may be used.
  • the fuel cell 1 is a DMFC (Direcct Methan a C e l C e l l) which is a kind of PEFC. In this case, the fuel can be supplied more easily than when a gas such as hydrogen is used as the fuel.
  • the method of supplying the fuel and the oxidant to the fuel cell 1 is not particularly limited.
  • the flow path of the force sword separator may be open to the atmosphere. An example in which the flow path is open to the atmosphere will be described later in a third embodiment.
  • the material used for the anode separator 12 functions as a current collector (that is, has a certain degree of conductivity), and has an insulating layer 3 on one main surface thereof.
  • a material having a specific resistance of, for example, 100 ⁇ ⁇ cm or less may be used.
  • a substrate made of carbon such as graphite, Anode separator using any metal substrate, semiconductor substrate, etc. 1
  • the material used for the cathode separator 14 is not particularly limited as long as it functions as a current collector (that is, as long as it has a certain degree of conductivity as described above).
  • the force sword separator 14 may be formed using a substrate made of carbon such as graphite, a substrate made of metal such as stainless steel, or a semiconductor substrate.
  • the materials used for the anode separator 12 and the cathode separator 14 may be the same or different.
  • a semiconductor substrate made of crystalline silicon may be used as the semiconductor substrate used for the separator.
  • a semiconductor substrate whose conductivity is increased by doping an impurity such as an ib group element, an ill group element, a Vb group element, or a VIb element may be used. Note that the doping of the impurity may be performed on the entire semiconductor substrate or may be performed only on necessary portions.
  • the separator may be either p-type or n-type, regardless of the conductivity type.
  • the conductivity types of the anode separator and the cathode separator may be the same conductivity type or different conductivity types.
  • the anode separator 12 is formed of an n-type semiconductor substrate and the force separator 14 is formed of a p-type semiconductor substrate.
  • the flow of electrons from the anode to the power source can be made smoother, so that the characteristics of the fuel cell 1 can be further improved. Can be. Therefore, a semiconductor device with more excellent versatility can be obtained.
  • a semiconductor substrate for example, a compound containing a group IIIb element and a group Vb element such as GAN, GAP, GASA, etc.
  • a substrate made of a semiconductor may be used.
  • a substrate made of a compound semiconductor containing a lib group element and a VIb group element such as ZnS and ZnSe may be used.
  • the flow path can be finely processed by applying a semiconductor processing process.
  • a semiconductor processing process For example, a thin type with an overall thickness of less than 1.5 mm can be used. It is also possible to form a fuel cell.
  • the semiconductor substrate is chemically stable, and the corrosion of the separator can be suppressed to a minimum even in a fuel flow path which is considered to be in a strongly acidic atmosphere in PEFC.
  • fuel does not pass through the semiconductor substrate, even when a fine separator is formed, fuel leakage through the separator can be suppressed to a minimum.
  • the existing semiconductor processing process can be used for manufacturing, the semiconductor device can be formed integrally with a semiconductor element, and a semiconductor device can be manufactured with higher productivity.
  • crystalline silicon has various advantages, such as the fact that silicon as a raw material is abundant as a global resource, harmless to humans, and inexpensive. Furthermore, a semiconductor substrate made of crystalline silicon is excellent in thickness uniformity and surface flatness, and can be extremely precisely processed in combination with silicon microfabrication technology. If large-diameter silicon wafers are processed collectively on a semiconductor process line, a large number of separators can be formed simultaneously on the same wafer, so that separators can be manufactured at lower cost.
  • the separator formed of the crystalline silicon substrate can sufficiently function as a current collector of a fuel cell.
  • the resistance over-voltage in the separator is about 6. 5 mV
  • the fuel cell output voltage for example, when using hydrogen in the fuel, the open circuit voltage (OCV ) Is about 1. IV).
  • the thicknesses of the anode separator 12 and the cathode separator 14 are not particularly limited as long as a flow path for the fuel and oxidizing agent can be formed.
  • the separator is formed of a semiconductor substrate, for example, 10 ⁇ ! It is in the range of ⁇ 1 mm.
  • the thickness of the separator is about 65 ⁇ m.
  • the size and shape of the fuel and oxidant flow paths, the ratio of the flow path to the area of the separator, and the like are not particularly limited as long as the fuel and oxidant can be supplied to the MEA.
  • the thickness may be arbitrarily set according to the thickness of the separator itself, required power generation characteristics, and the like. For example, in the example shown in FIG. 1, 13 channels are formed per separator, but the number of channels can be freely set.
  • the flow path may be formed by folding one flow path.When the separator is formed by a semiconductor substrate, for example, the width is in a range of 10 m to 200 m, and the depth is 10 ⁇ m to 5 m.
  • a rectangular flow path having a range of 100 ⁇ m and an interval (pitch) between the flow paths in a range of 10 im to 100 ⁇ m may be used.
  • the respective separators are formed and arranged so that the direction of the fuel flow path and the direction of the oxidant flow path are parallel to each other. It is not limited to this structure.
  • the channels may face each other at an arbitrary relative angle.
  • the separators may be formed and arranged such that the channels are orthogonal to each other.
  • a contact layer 16 for reducing the contact resistance between the anode separator 12 and the MEA 15 is disposed between the anode separator 12 and the MEA 15 which are the above-mentioned one separator. It may be done.
  • the contact layer may be disposed between the force sword separator 14 and the MEA 15.
  • the thickness of the contact layer is, for example, in the range of 0.01 ⁇ m to 10 ⁇ m, preferably 0.01 ⁇ ! ⁇ 0.5 ⁇ m.
  • the contact layer does not need to be arranged on the entire surface of the separator, and the area where the contact layer is arranged can be set arbitrarily.
  • the contact layer 16 is not particularly limited as long as the contact resistance between the separator and the MEA can be reduced.
  • a degenerated impurity diffusion layer having the same conductivity type as that of the semiconductor substrate may be formed on the semiconductor substrate to serve as a contact layer.
  • phosphorus (P), arsenic (A s), boron (B), or the like is used as an impurity in a crystalline silicon substrate in a dose range of 10 14 / cm 2 or more. It may be implanted or diffused into a semiconductor substrate such as. Further, a metal silicide layer is further stacked on the impurity diffusion layer.
  • a layer may be formed, and a stacked film of an impurity diffusion layer and a metal silicide layer may be used as a contact layer. Further, the laminate may further include another layer as necessary.
  • the metal silicide layer may be a layer made of, for example, platinum silicide, cono-noreto silicide, molybdenum silicide, nickel silicide, or the like. An example of a specific method for forming such a contact layer will be described later in a sixth embodiment.
  • the material used for the insulating layer 3 is not particularly limited as long as it can be formed between the semiconductor element 2 and the anode separator 12.
  • Si 2 , glass, a metal oxide film, or the like may be used.
  • Resistivity of the material used is, for example, may be in the range of more than 1 0 5 ⁇ ⁇ cm.
  • the insulating layer 3 may be formed, for example, by bonding the above material to the anode separator.
  • the insulating layer 3 may be an insulating layer made of SiO 2 .
  • the anode separator 12, the insulating layer 3, and the semiconductor element 2 can be formed by processing a commercially available SOI (Silicon On Insulator) substrate, which is more stable and versatile. Semiconductor device. Further, a semiconductor device can be manufactured with higher productivity.
  • SOI Silicon On Insulator
  • the insulating layer 3 may be, for example, an insulating layer formed of an oxide film of the metal.
  • the insulating layer 3 can be formed by oxidizing the surface of the substrate made of the above metal, a semiconductor device having more excellent stability and versatility can be obtained. Further, semiconductor devices can be manufactured with higher productivity.
  • the separator itself is metal, iQ'cm A separator having an extremely small specific resistance can be obtained, and the resistance overvoltage as a fuel cell can be further reduced.
  • the insulating layer 3 when the material used for the insulating layer 3 is obtained by oxidizing the material used for the anode separator 12, the insulating layer 3 can be formed by oxidizing the surface of the anode separator 12, Semiconductor devices can be manufactured with higher productivity.
  • the thickness of the insulating layer 3 is not particularly limited as long as the insulating property between the anode separator 12 and the semiconductor element 2 can be maintained. For example, it may be 10 ⁇ m or more.
  • Anode separator 1 2 is formed in a semiconductor substrate made of crystalline silicon, if the insulating layer 3 is made of S i ⁇ 2, the thickness of the insulating layer 3 is, for example, in the range of 1 0 nm to 1 mu m . Since the thermal conductivity of the insulating layer 3 is generally small, the heat from the fuel cell 1 can be suppressed from conducting to the semiconductor element 2 by increasing the thickness of the insulating layer 3.
  • the insulating layer 3 has a hole (Via Hole) in which an electrode 4 (the semiconductor element 2 and the anode separator 12 are electrically connected by the electrode 4) is formed. .
  • the size of the hole may be set according to the size of the electrode 4, and is not particularly limited. For example, the sectional area may be in the range of 1 ⁇ m 2 or less. Further, the insulating layer 3 shown in FIG. 1 has only one hole, but the number is not particularly limited. A plurality may be provided as necessary.
  • the material used for the electrode 4 may be, for example, tungsten, aluminum, copper, or the like. It may be integrated with the element wiring 63 of the semiconductor element 2.
  • CMOS inverter device including a transistor 21 and a ⁇ -channel MOS transistor 22 is formed on the crystalline silicon layer 51.
  • the above CMOS inverter is a general CMO S inverter, and includes a p-type contact layer 52, an n-type contact layer 53, a p-type source electrode 54, a p-type drain electrode 55, and an n-type drain electrode 56.
  • the material used for each of the above regions, and the thickness and size of each region are not particularly limited. For example, it may be the same as a general semiconductor element.
  • a CMOS inverter element which is a semiconductor element, is formed on a crystalline silicon layer 51.
  • the insulating layer insulating layer 3 is made of S i 0 2, anode separator 1 2, Ri also der to the insulating layer 3 and the semi-conductive element 2 is formed by machining a commercially available SOI substrate, more A semiconductor device having excellent stability and versatility can be obtained. Further, a semiconductor device can be manufactured with higher productivity.
  • the thickness of the crystalline silicon layer 51 is not particularly limited. For example, the range is from 0.01 ⁇ m to 10 ⁇ m.
  • the specific resistance of the crystalline silicon layer is, for example, ⁇ ⁇ c ⁇ ! 11 k ⁇ ⁇ cm.
  • the semiconductor element in the semiconductor device of the present invention includes a first electrode and a second electrode, wherein the first electrode and the anode separator are electrically connected, and the second electrode and the cathode
  • the separator may be electrically connected.
  • the ground potential electrode (V ss shown in FIG. 1) of the CMOS inverter element which is a semiconductor element, is connected to the anode separator 12 via the electrode 4 formed in the insulating layer 3. Electrically connected. Through this path, the load circuit of the CMOS inverter element Will be supplied with electrons.
  • the power supply electrode (V DD shown in FIG. 1) of the CMOS inverter element is electrically connected to the power source separator 14 via the external wiring 66.
  • the current from the fuel cell 1 flows through the external wiring 66 to the power supply electrode of the CMOS inverter element.
  • the input and output electrodes of the CMO S inverter device is shown in FIG. 1, V i n and V. ut . Further, the electrode 4 and the ground potential electrode V ss may be integrated.
  • the above-mentioned contact layer or metal thin film layer is arranged between the electrode 4 and the anode separator 12. Is also good. The contact resistance between the electrode 4 and the anode separator 12 can be reduced.
  • the cathode separator 14 is formed of a semiconductor substrate, the above-described contact layer / metal thin film layer may be disposed between the external wiring 66 and the cathode separator 14. In such a semiconductor device, electric power generated in the fuel cell 1 is efficiently transmitted to the semiconductor element 2, so that a more compact and versatile semiconductor device can be obtained.
  • the thickness of the contact layer is, for example, in the range of 0.1 to 1.0 / L O / im, and the region where the contact layer is arranged can be set arbitrarily.
  • the type of the semiconductor element in the semiconductor device of the present invention is not particularly limited.
  • a MOS transistor, a bipolar transistor, a light emitting diode, a semiconductor laser, or the like may be formed.
  • the semiconductor element 2 shown in FIG. 1 is a silicon semiconductor element
  • the semiconductor element 2 may be a semiconductor element using another material, for example, a compound semiconductor element formed from GaAsNS. Since such a compound semiconductor element can be used even in a temperature range of 100 ° C. or more, it can be integrated with a fuel cell of a type that operates at a higher temperature than a general PEFC. Also, semiconductor devices are generally What is necessary is just to form using the typical semiconductor element formation method.
  • the semiconductor element 2 is formed on one main surface of the anode separator 12, but the semiconductor device of the present invention is not particularly limited to this configuration.
  • the semiconductor element 2 may be formed on one main surface of the force sword separator 14.
  • the semiconductor device of the present invention the semiconductor device includes first and second semiconductor elements, the first semiconductor element is formed on one main surface of the anode separator, and the second semiconductor element is formed on the main surface of the cathode separator. It may be formed above. That is, the semiconductor element may be formed on one main surface of both the anode separator and the cathode separator. In this case, a more compact and versatile semiconductor device can be obtained. Further, in the example shown in FIG.
  • a semiconductor element may be formed directly on the main surface of the anode separator.
  • the separator may be formed on a semiconductor substrate. Note that the formation of the semiconductor element is not limited to the formation on the anode separator.
  • a semiconductor element may be formed on the main surface of the cathode separator, or a semiconductor element may be formed on one main surface of both the anode separator and the cathode separator.
  • the semiconductor device of the present invention can be used for an electronic circuit device as shown in FIG. 1, a light source, a power supply, a micromachine, a microsensor, and the like.
  • FIG. 2 is a schematic cross-sectional view showing another example of the semiconductor device of the present invention.
  • the semiconductor device shown in FIG. 2 includes a fuel cell 1 and a semiconductor element 2.
  • the fuel cell 1 has a negative node separator 1 2 and a cathode separator 1 4
  • MEA 15 sandwiched between the anode separator 12 and the cathode separator 14.
  • a contact layer 16 is arranged between each separator and the MEA 15, so that the power generated by the MEA 15 can be collected more efficiently.
  • the semiconductor element 2 is formed on an insulating layer 3 disposed on one main surface of the anode separator 12, and the semiconductor element 2 and the anode separator 12 are formed on the electrode 4 formed in the insulating layer 3. It is electrically connected via
  • the semiconductor element 2 is an n-channel MOS transistor element, and includes a p-type contact layer 52, an n-type drain electrode 56, an n-type source electrode 57, a gate insulating film 58, and an n-type gate electrode 59. , An element isolation insulating film 61, an interlayer insulating film 62, an element wiring 63, and a ⁇ -well 64.
  • the source electrode and the substrate electrode of the n-channel MOS transistor element are electrically connected to the anode separator 12 via the electrode 4, and the drain electrode and the gate electrode are connected to the external wiring 66. It is electrically connected to the force sword separator 14 through the sword separator.
  • An external load for supplying electric power generated by the fuel cell 1 is connected in the middle of the external wiring 66.
  • the transistor element when the output voltage of the fuel cell 1 is equal to or higher than the threshold voltage of the n-channel MOS transistor element, the transistor element is always turned on, and power can be supplied to an external load. However, when the output voltage of the fuel cell 1 falls below the threshold voltage, the transistor element is turned off, and the supply of power to the external load stops. For example, if the above threshold is set to the lower limit voltage of the fuel cell (the lowest voltage at which power can be safely generated), malfunctions of electronic devices due to fuel cell traps, etc., and fuel cell voltage caused by excessively low fuel cell voltage Damage can be prevented. Also, set the channel size of the transistor element to an appropriate value.
  • the threshold voltage of the transistor element is
  • FIG. 3 is a schematic sectional view showing another example of the semiconductor device of the present invention.
  • the semiconductor device shown in FIG. 3 is a semiconductor device in which the semiconductor element 2 of the semiconductor device shown in FIG. 2 is changed from an n-channel MOS transistor element to a p-channel MOS transistor element.
  • the semiconductor element 2 shown in FIG. 3 is a p-channel MOS transistor element, and has an n-type contact layer 53, a p-type source electrode 54, a p-type drain electrode 55, a gate insulating film 58, and a p-type gate electrode. 60, an element isolation insulating film 61, an interlayer insulating film 62, an element wiring 63, and an n-well 65.
  • the source electrode and the gate electrode of the ⁇ ⁇ ⁇ ⁇ > channel M ⁇ S transistor element are electrically connected to the anode separator 12 via the electrode 4, and the drain electrode and the substrate electrode are connected to the external wiring. It is electrically connected to the sword separator 14 through 6 6.
  • An external load for supplying electric power generated by the fuel cell 1 is connected in the middle of the external wiring 66. In such a semiconductor device, the same effects as those of the semiconductor device shown in FIG. 2 can be obtained.
  • the output voltage of a single cell in a PEFC is about 1 V or less. Therefore, when a fuel cell is actually used in a semiconductor device, an electrode for matching the operating voltage of the semiconductor element with the output voltage of the fuel cell.
  • An interface circuit such as a DC-DC converter circuit
  • a fuel cell output control circuit such as a voltage limiting circuit or a current limiting circuit
  • the fuel cell and the above-described circuit are included.
  • the material used for each part of the semiconductor device according to the present embodiment, and the thickness and size of each part are the same as those described in the first embodiment.
  • FIG. 4A is a schematic sectional view showing another example of the fuel cell in the semiconductor device of the present invention.
  • the fuel cell 1 shown in FIG. 4A includes an anode separator 12, a force source separator 14, and a MEA 15 sandwiched between the anode separator 12 and the force source separator 14. Further, an opening 17 is provided in the force sword separator 14, and the flow path of the cathode separator 14 is open to the atmosphere.
  • the opening 17 may be formed by a semiconductor processing process.
  • a semiconductor processing process fine molding can be performed, and therefore, for example, as shown in FIGS. 4B and 4C, the openings 17 can be processed in a lattice shape. If the openings 17 are formed in a lattice shape, it is possible to suppress intrusion of dust and dirt from the outside into the flow path of the separator.
  • FIG. 4B and 4C the openings 17 may be processed in a lattice shape. If the openings 17 are formed in a lattice shape, it is possible to suppress intrusion of dust and dirt from the outside into the flow path of the separator.
  • FIG. 4B is a schematic diagram of the fuel cell 1 shown in FIG. 4A as viewed from the X direction in FIG. 4A.
  • FIG. 4C is an enlarged schematic view of a part of the opening 17 shown in FIG. 4B (the circled portion in FIG. 4B). Of the openings 17, the Y part shown in FIG. The air is supplied to the MEA's force sword through the Y section.
  • the width and length of the opening 17, the size of the Y portion shown in FIG. 4C when the opening 17 is formed in a lattice shape, the number of Y portions included in the opening 17 are not particularly limited. . It can be set arbitrarily according to the size of the force sword separator, required battery characteristics, and the like.
  • the area of the opening of the Y portion may be set, for example, in the range of ⁇ ⁇ ⁇ 2 to LOOO / m 2 .
  • the width of the opening 17 is 200 ⁇ m
  • the area of the opening at the top may be set to 100 ⁇ m 2
  • the interval between adjacent Y parts may be set to 5 m.
  • the thickness of the portion to be processed into a lattice shape may be set arbitrarily.
  • FIG. 5 is a schematic cross-sectional view showing another example of the fuel cell in the semiconductor device of the present invention.
  • the fuel cell 1 shown in FIG. 5 is a fuel cell in which a plurality of unit cells including anode separators 12, cathode separators 14, and MEAs 15 are stacked.
  • the anode separator and the cathode separator are integrated as a separator 18 except for the separators at both ends.
  • a flow path 11 for fuel is formed on one main surface of the separator 18, and a flow path 13 for oxidizing agent is formed on a main surface opposite to the one main surface.
  • the separator 18 plays a role of both an anode separator and a cathode separator, and the single cells are connected in series by the separator 18.
  • the output area of the cell remains constant
  • the force voltage can be increased.
  • the output voltage of the fuel cell is about three times that of a single cell.
  • a semiconductor device having more versatility can be obtained.
  • the number of stacked single cells is not limited to the three cells shown in FIG. 5, but can be set arbitrarily according to required battery characteristics.
  • the single cells may be simply stacked.
  • a layer for cooling the fuel cell may be arranged between each unit cell.
  • the materials used for each part of the fuel cell according to the present embodiment, and the thickness and size of each part are the same as those described in the first embodiment.
  • FIG. 6 is a schematic sectional view showing another example of the fuel cell in the semiconductor device of the present invention.
  • the fuel cell 1 shown in FIG. 6 includes an anode separator 12, a force separator 14, and a MEA 15 sandwiched between the anode separator 12 and the force separator 14. Further, a water-repellent treatment layer 19 is formed in the flow path of the oxidizing agent of the force sword separator 14.
  • humidified fuel or oxidant may be supplied to the MEA.
  • liquid water flows through the fuel or oxidant flow path (particularly, the oxidant flow path). May stay (flood). If water accumulates in the flow path, the supply of fuel and oxidant to the MEA will be hindered, and the power generation performance may be reduced.
  • an open-air separator such as that described in Embodiment 3 is used as the force sword separator, air as an oxidizing agent cannot be forcibly supplied. Is more likely to occur.
  • flooding is likely to occur because the amount of generated water increases. As in the fuel cell 1 shown in FIG.
  • the water-repellent treatment layer 19 is not particularly limited as long as it has a water-repellent effect.
  • it may be formed by spin-coating an HMDS (Hexamethyyldiisilanzane) layer on the flow path of the separator.
  • HMDS Hexamethyyldiisilanzane
  • the water-repellent layer may be formed by laser light irradiation, heat treatment in an ultra-high vacuum, or the like. In this case, laser light or the like forms irregularities on the order of several nm on the surface of the crystalline silicon, and a water-repellent effect can be obtained by the irregularities.
  • the water-repellent layer is formed only on the force separator 14, but the water-repellent layer may be formed on the anode separator 12. Further, the materials used for each part of the fuel cell according to the present embodiment and the thickness and size of each part are the same as those described in the first embodiment.
  • the method of manufacturing a semiconductor device includes the steps of: A method of manufacturing a semiconductor device including a fuel cell, including a structure for holding a MEA,
  • the semiconductor substrate may include an insulating layer between the one surface and the opposite surface.
  • the step (i) may include:
  • the manufacturing method described below is a method of manufacturing a semiconductor device in which a semiconductor element is formed on an anode separator, but is a method of manufacturing a semiconductor device in which a semiconductor element is formed on a force sword separator. The same applies to the case.
  • a laminated body in which the semiconductor substrate 7, the insulating layer 3, and the crystalline silicon layer 8 are laminated is formed (FIG. 7A).
  • the above-mentioned laminate deposits each layer Alternatively, for example, a commercially available SOI substrate (for example, a SOI TEC (UNI BOND) substrate, manufactured by SOI TEC) may be used.
  • the thickness of each layer may be set arbitrarily according to the characteristics required for the semiconductor device. Since the semiconductor substrate 7 eventually becomes an anode separator, its material may be the same as the semiconductor substrate used for the anode separator in the first embodiment. Further, a semiconductor element is formed on crystalline silicon layer 8, and finally becomes crystalline silicon layer 51 in the first embodiment.
  • the semiconductor substrate 7 has a conductivity type of n-type, a plane orientation (00 1), an orientation of an orientation flat plane 110>, and a specific resistance of 10 ⁇ .
  • -cm semiconductor substrate with a thickness of 650 ⁇ .
  • Insulating layer 3 is made of S i ⁇ 2, a thickness of 4 0 0 nm.
  • the crystalline silicon layer 8 has a thickness of 200 nm.
  • the semiconductor element 2 is formed on the crystalline silicon layer 8 formed on the insulating layer 3 (FIG. 7B).
  • the CMOS inverter element shown in FIG. Each part of the semiconductor element 2 shown in FIG. 7B is basically the same as the semiconductor element 2 shown in FIG. 1, and the same parts are assigned the same numbers.
  • the semiconductor element 2 shown in FIG. 7B further includes a passivation film 67 made of a plasma nitride film or the like, and an opening 68 for connecting an external wiring later.
  • an electrode 4 for electrically connecting the semiconductor element 2 and the semiconductor substrate 7 is formed on the insulating layer 3, and a contact layer 6 for reducing the contact resistance between the electrode 4 and the semiconductor substrate 7 is provided between the electrode 4 and the semiconductor substrate 7. 9 are located.
  • a general semiconductor element forming step (in the example shown in FIG. 7B, a CMOS inverter element forming step) may be used.
  • each part of the semiconductor element 2 and the contact layer For 69 the material described in Embodiment 1 may be used.
  • the electrode 4 and the element wiring 63 may be formed integrally.
  • the flow path 11 through which the fuel flows is formed by the following procedure.
  • the laminate is immersed in dilute hydrofluoric acid of about 5 wt ° / 0 for about 30 seconds to remove a natural oxide film on the semiconductor substrate 7.
  • the AS atoms are accelerated and ion-implanted (for example, an acceleration voltage of 10 keV to 100 keV, a dose of 10 keV).
  • a s diffusion layer degenerate conductivity type is n-type 70 (FIG. 7C).
  • the thickness of the As diffusion layer 70 is, for example, 0.01 ⁇ ! 110 ⁇ m, preferably 0.01 // m to 0.5 / m.
  • a nickel film is deposited on the As diffusion layer 70 by a sputtering method and a vacuum evaporation method, and further subjected to a rapid heating treatment (for example, 400 ° C., 1 minute, but the heat treatment temperature is set within the semiconductor element 2). (Lower than the melting point of the element wiring 43) to form a nickel silicide film 71 (FIG. 7D).
  • the stacked film of the As diffusion layer 70 and the nickel silicide film 71 becomes the contact layer 16.
  • the composition of the contact layer 16 can be controlled by changing the impurity atoms implanted into the semiconductor substrate 7 and the atoms deposited on the impurity diffusion layer 70.
  • the thickness of the nickel film to be deposited is, for example, in the range of 0.01 ⁇ m to 10 ⁇ m, and preferably in the range of 0.1 ⁇ m to 0.5111. At this time, the thickness is 0.0 1 ⁇ ! Eckenole in the range of ⁇ 10 ⁇ (or in the range of 0.1 ⁇ ⁇ 0.5 ⁇ )
  • a silicide film can be formed.
  • a resist pattern 72 (thickness, for example, 3 ⁇ ⁇ ) is formed on the contact layer 16 (thickness, for example, 3 ⁇ ( ⁇ ) according to the shape of the flow path to be formed (FIG. 7 ⁇ ), and then dry etching is performed. By doing so, a fuel flow path is formed in the semiconductor substrate 7. At this time, the width and depth of the fuel flow path can be controlled by controlling the shape of the resist pattern 72 and the time of the etching process. Then, by removing the resist pattern 72, the insulating layer 3 and the semiconductor element 2 are formed on one main surface, and the fuel flow path 11 1 is formed on the surface opposite to the one main surface. Thus, an anode separator 12 in which is formed can be obtained (FIG. 7F).
  • the force sword separator in which the oxidant flow path 13 and the contact layer 16 are formed using a method similar to the method shown in FIGS. 7C to 7F described above.
  • Form 14 (Fig. 7G).
  • the process may be started from a step of forming an impurity diffusion layer on a single-layer semiconductor substrate.
  • the anode separator 12 prepared as described above, the cathode separator 14 and the separately prepared MEA 15 are brought into contact with the surface on which the flow path of each separator is formed and the MEA 15 Layer (FIG. 7H).
  • pressure and temperature may be applied as necessary, or the whole may be covered with resin or the like.
  • a semiconductor device as shown in FIG. 1 can be obtained.
  • the formation of the semiconductor element and the formation of the fuel flow path may be performed in reverse order (that is, the fuel
  • the semiconductor element may be formed after the formation of the flow path.
  • a semiconductor device including a fuel cell which is compact and excellent in versatility, can be obtained. Further, it is possible to provide a method of manufacturing a semiconductor device having a fuel cell, which can manufacture a semiconductor device having the fuel cell with higher productivity.
  • the semiconductor device of the present invention can be used for electronic circuit devices, power supplies, light sources, micromachines, microsensors, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fuel Cell (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Seeds, Soups, And Other Foods (AREA)

Description

明 細 書 燃料電池を備える半導体装置およびその製造方法 技術分野
本発明は、 燃料電池を備える半導体装置およびその製造方法に関する
背景技術
現在、 半導体素子を備えるデバイスである半導体装置は、 電子機器な どの様々な分野で広く用いられており、 その用途はますます拡大し続け ている。 また、 近年、 マイクロマシンなどに代表される微小な半導体装 置が注目を集めている。
このような半導体装置自体が電源を備えれば (即ち、 電源を備える半 導体装置であれば) 、 より汎用性に優れる半導体装置とすることができ る。 その場合、 電源としてリチウム電池など一般的に使用されている二 次電池を用いることもできる。 しかし、 現在の二次電池の技術では、 出 力特性上、 半導体素子に比べてかなり大きいサイズの電源が必要である 。 このため、 電源を備える半導体装置の小型化には限界がある。 また、 電池が消耗した場合、 充電または交換する必要があるため、 汎用性の点 でも問題がある。 さらに、 二次電池のリサイクルは、 将来、 大変な社会 問題となることが予想される。 このような状況から、 よりコンパクトで 汎用性に優れた、 電源を備える半導体装置の実現が望まれている。 発明の開示
そこで本発明は、 コンパクトで汎用性に優れた、 電源として燃料電池 W
を備える半導体装置と、 その製造方法とを提供することを目的とする。 上記目的を達成するために、 本発明の燃料電池を備える半導体装置 ( 以下、 単に 「半導体装置」 ともいう) は、 燃料電池と半導体素子とを備 え、
5 前記燃料電池は、 燃料の流路が形成されたアノードセパレータと、 酸 化剤の流路が形成された力ソードセパレータと、 前記ァノードセパレー タおよび前記カソードセパレータに狭持される膜電極接合体とを含み、 前記半導体素子は、 前記ァノードセパレータおよび前記力ソードセパ レータから選ばれる 1つのセパレータのー主面上に形成されており、0 前記半導体素子と前記 1つのセパレータとが電気的に接続されている 上記半導体装置では、 第 および第 2の半導体素子を含み、
前記第 1の半導体素子が、 前記ァノードセパレータの一主面上に形成 されており、
5 前記第 2の半導体素子が、 前記力ソードセパレータのー主面上に形成 されていてもよい。
上記半導体装置では、 前記 1つのセパレータが、 半導体基板で形成さ れていてもよい。
上記半導体装置では、 前記半導体基板が、 結晶シリ コンからなる半導0 体基板であってもよい。
上記半導体装置では、 前記半導体基板が、 n i b族元素および V b族 元素を含む化合物半導体からなる半導体基板であってもよい。
上記半導体装置では、 前記半導体基板が、 l i b族元素おょぴ VI b族元 素を含む化合物半導体からなる半導体基板であってもよい。
5 上記半導体装置では、 前記アノードセパレータが n形半導体基板で形 成されており、 前記力ソードセパレータが!形半導体基板で形成されて い
上記半導体装置では、 前記 1つのセパレータと前記膜電極接合体との 間に、 前記 1つのセパレータと前記膜電極接合体との接触抵抗を低減さ せるコンタク ト層が配置されていてもよい。
上記半導体装置では、 前記半導体素子と、 前記 1つのセパレータとの 間には、 絶縁層が形成されていてもよい。
上記半導体装置では、 前記半導体素子と前記 1つのセパレータとが、 前記絶縁層中に形成された電極を介して電気的に接続されていてもよい 上記半導体装置では、 前記絶縁層が、 S i o 2からなる絶縁層であつ てもよい。
上記半導体装置では、 前記絶縁層の比抵抗が、 1 0 5 Ω · c m以上で あってもよい。
上記半導体装置では、 前記絶縁層の厚さが、 1 0 η πα〜 1 μ ιηの範囲 であってもよい。
上記半導体装置では、 前記 1つのセパレータが、 金属からなるセパレ ータであってもよい。
上記半導体装置では、 前記絶縁層が、 前記金属の酸化膜からなる絶縁 層であってもよい。
上記半導体装置では、 前記半導体素子は、 第 1の電極および第 2の電 極を含み、
前記第 1の電極と前記ァノードセパレータとが電気的に接続しており 前記第 2の電極と前記カソードセパレータとが電気的に接続していて もよい。
上記半導体装置では、 前記半導体素子が、 nチャネル M O S トランジ スタであり、 前記 nチャネル M O S トランジスタのソース電極および基 板電極が前記ァノードセパレータと電気的に接続しており、 ドレイン電 極およぴゲート電極が前記カソードセパレータと電気的に接続していて もよい。
上記半導体装置では、 前記半導体素子が、 pチャネル M O S トランジ スタであり、 前記!)チャネル M O S トランジスタのソース電極およびゲ 一ト電極が前記ァノードセパレータと電気的に接続しており、 ドレイン 電極および基板電極が前記力ソードセパレータと電気的に接続していて もよい。
上記半導体装置では、 前記燃料電池は、 前記アノードセパレータと前 記力ソードセパレータと前記膜電極接合体とを含むセルが複数積層され ていてもよい。
本発明における、 燃料電池を備える半導体装置の製造方法は、 一対の セパレータによって膜電極接合体を狭持する構造を含む、 燃料電池を備 える半導体装置の製造方法であって、
( i ) 半導体基板の一方の面上に半導体素子を形成する工程と、
(i i) 前記半導体基板における前記一方の面とは反対側の面に、 燃料 または酸化剤が流れる流路を形成する工程と、
( i i i ) 前記半導体基板を前記一対のセパレータから選ばれる 1つの セパレータとして、 前記流路が形成された面と前記膜電極接合体とが接 するように前記半導体基板上に前記膜電極接合体を積層する工程とを含 んでいる。
上記製造方法では、 前記半導体基板が、 前記一方の面と前記反対側の 面との間に絶縁層を備えていてもよい。
上記製造方法では、 前記 ( i ) の工程が、
( a ) 前記半導体素子と前記半導体基板とが前記絶縁層中に形成され た電極を介して電気的に接続するように、 前記絶縁層上に前記半導体素 子を形成する工程を含んでいてもよい。
本発明における、 燃料電池を備える半導体装置の別の製造方法は、 一 対のセパレータによつて膜電極接合体を狭持する構造を含む、 燃料電池 を備える半導体装置の製造方法であって、
( I ) 半導体基板の一方の面に、 燃料または酸化剤が流れる流路を形 成する工程と、
(I I) 前記半導体基板における前記流路が形成された面とは反対側の 他方の面上に半導体素子を形成する工程と、
( I I I ) 前記半導体基板を前記一対のセパレータから選ばれる 1つの セパレータとして、 前記流路が形成された面と前記膜電極接合体とが接 するように前記半導体基板上に前記膜電極接合体を積層する工程とを含 んでいる。
上記製造方法では、 前記半導体基板が、 前記一方の面と前記他方の面 との間に絶縁層を備えていてもよい。
上記製造方法では、 前記 (I I) の工程が、
( A ) 前記半導体素子と前記半導体基板とが前記絶縁層中に形成され た電極を介して電気的に接続するように、 前記絶縁層上に前記半導体素 子を形成する工程を含んでいてもよい。 図面の簡単な説明
図 1は、 本発明における、 燃料電池を備える半導体装置の一例を示す 模式断面図である。
図 2は、 本発明における、 燃料電池を備える半導体装置の別の一例を 示す模式断面図である。
図 3は、 本発明における、 燃料電池を備える半導体装置の別の一例を 示す模式断面図である。
図 4 Aは、 本発明の燃料電池を備える半導体装置における、 燃料電池 の一例を示す模式断面図である。
図 4 Bは、 図 4 Aに示す燃料電池を別の角度から見た模式図である。 図 4 Cは、 図 4 Bに示す燃料電池の一部を拡大した模式図である。 図 5は、 本発明の燃料電池を備える半導体装置における、 燃料電池の 一例を示す模式断面図である。
図 6は、 本発明の燃料電池を備える半導体装置における、 燃料電池の 一例を示す模式断面図である。
図 7 A〜図 7 Hは、 本発明における、 燃料電池を備える半導体装置の 製造方法の一例を示す工程断面図である。 発明を実施するための形態
以下、 本発明の実施の形態について説明する。 なお、 以下の実施の形 態において、 同一の部分については同一の符号を付して重複する説明を 省略する場合がある。
(実施の形態 1 )
図 1は、 本発明における、 燃料電池を備える半導体装置 (以下、 半導 体装置、 ともいう) の一例を示す模式断面図である。 図 1に示す半導体 装置は、 燃料電池 1 と半導体素子 2とを備えている。 燃料電池 1は、 燃 料の流路 1 1が形成されたァノードセパレータ 1 2と、 酸化剤の流路 1 3が形成されたカソードセパレータ 1 4と、 ァノードセパレータ 1 2お よび力ソードセパレータ 1 4に狭持される膜電極接合体 (M E A ) 1 5 とを含んでいる。 また、 半導体素子 2は、 アノードセパレータ 1 2およ ぴカソードセパレータ 1 4から選ばれる 1つのセパレータのー主面上に 形成されており (図 1に示す例では、 アノードセパレータ 1 2の一主面 上に形成) 、 半導体素子 2と上記 1つのセパレータ (即ち、 図 1におけ るアノードセパレータ 1 2 ) とが電気的に接続されている。
このような半導体装置では、 燃料電池と半導体素子とが一体化してお り、 また、 電源である燃料電池は、 エネルギー密度が高く (例えば、 代 表的な二次電池であるリチウム二次電池と比べて 1桁以上大きくできる ) 、 消耗に伴う充電、 交換などが不要であり、 燃料を供給すれば速やか に発電を開始できるなどの特徴を有することから、 コンパク トで汎用性 に優れる半導体装置とすることができる。 また、 基本的に、 燃料を補給 する限り発電できるため、 二次電池に比べてリサイクルの問題を小さく することができる。
また、 図 1に示す例では、 半導体素子 2は、 上記 1つのセパレータで あるァノードセパレータ 1 2の一主面上に配置された絶縁層 3上に形成 されており (即ち、 半導体素子 2と上記 1つのセパレータとの間には、 絶縁層 3が形成されており) 、 半導体素子 2と上記 1つのセパレータと 、 絶縁層 3中に形成された電極 4を介して電気的に接続されている。 このように、 半導体素子 2と上記 1つのセパレータとの間に絶縁層 3 を配置する (図 1に示す例では、 半導体素子 2を絶縁層 3上に形成する ) ことによって、 半導体素子の面積を縮小させ、 半導体素子の集積度を より大きくすることができる。 また、 電源電圧が 1 V以下の低電圧領域 でも高速動作が可能な、 いわゆる S O I ( S i l i c o n O n I n s u 1 a t o r ) トランジスタを構成することができる。 このような S O I トランジスタは、 既に、 腕時計などに実用化、 商品化されているが 、 1 V以下で動作することから、 燃料電池 1が単セル (S i n g l e C e l l ) の場合にも駆動が可能である。 また、 半導体素子 2の消費電 力を低減することも可能となるため、 より長時間回路を動作させること ができ、 よりコンパク トで汎用性に優れた半導体装置とすることができ る。 さらに、 絶縁層は一般に熱伝導率が低いため、 燃料電池 1で発生し た熱が、 半導体素子 2に伝導するのを抑制することもできる。
次に、 図 1に示す半導体装置における燃料電池 1について説明する。 燃料電池 1は、 ME A 1 5をアノードセパレータ 1 2およびカソード セパレータ 1 4で狭持した構造を含んでいる。 アノードセパレータ 1 2 には燃料の流路 1 1が、 力ソードセパレータ 1 4には酸化剤の流路 1 3 が形成されている。 MEA 1 5は、 それぞれのセパレータにおける上記 流路が形成された面と接していればよい。 流路 1 1および流路 1 3を介 して燃料おょぴ酸化剤が ME A 1 5に供給されることによって、 発電が 行われる。 また、 アノードセパレータ 1 2および力ソードセパレータ 1 4は、 ME A 1 5において発生した電力の集電体としての役割も担って いる。
ME A 1 5としては、 燃料および酸化剤を供給することによって発電 が可能であれば、 その構造、 材料、 サイズ、 形状などは特に限定されな い。 発電に用いる燃料や酸化剤の種類、 発電を行う温度領域、 必要とす る発電特性などに応じて任意に設定すればよい。 MEA 1 5の構造とし ては、 例えば、 高分子電解質からなる膜 1 5 1の両面に、 アノード電極 1 5 2および力ソード電極 1 5 3を塗付または印刷した構造とすればよ い。 その他、 必要に応じて拡散層など任意の層を ME A中に付加しても よい。
ME A 1 5の材料としては、 例えば、 燃料として水素ガス、 酸化剤と して空気を用いる場合、 膜 1 5 1としてパーフルォロエチレンスルホン 酸系ポリマーなどの水素イオン伝導性を有する高分子電解質を、 ァノー ド電極 1 5 2およびカソード電極 1 5 3として白金の微粒子を含むカー ボン材料などを用いればよい。 この場合、 燃料電池 1はいわゆる P E F C (P o l y E l e c t r o l y t e F u e l C e l l ) であり、 比較的低温の領域 (例えば、 0°C〜 1 0 o°cの範囲) において発電する ことができる。 発電温度を、 例えば、 8 0°C以下に設定すれば半導体素 子 2への熱の影響も最小限に抑制することができる。 また、 P E F Cは 、 燃料電池の中でも特にエネルギー密度が大きく、 必要な電力をより小 型の燃料電池で得ることができるため、 よりコンパク トで汎用性に優れ た半導体装置とすることができる。
燃料電池 1に供給する燃料および酸化剤については、 燃料電池 1が発 電できる限り、 特に限定されない。 発電を行う温度領域、 必要とする発 電特性などに応じて任意に設定すればよい。 酸化剤としては、 例えば、 空気を用いればよい。 燃料としては、 例えば、 水素などの気体だけでは なく、 メタノールなどの液体を用いてもよい。 燃料としてメタノールを 用いた場合、 燃料電池 1は、 P E F Cの 1種である DMF C (D i r e c t Me t h a n o l F u e l C e l l ) となる。 この場合、 燃 料として水素などの気体を用いる場合に比べて、 燃料の供給をより容易 に行うことができる。
また、 燃料電池 1に対する燃料および酸化剤の供給方法としては、 特 に限定されない。 例えば、 それぞれのセパレータの流路にポンプなどの デバイスを用いて供給すればよい。 また、 酸化剤として空気を用いる場 合、 力ソードセパレータの流路を大気開放としてもよい。 上記流路を大 気開放とした場合の例については、 実施の形態 3に後述する。
図 1に示す半導体装置において、 ァノードセパレータ 1 2に用いる材 料としては、 集電体として機能し (即ち、 ある程度以上の導電性を有し ) 、 かつ、 その一主面上に絶縁層 3を形成することができる限り、 特に 限定されない。 なお、 集電体として機能するためには、 比抵抗にして、 例えば、 1 0 0 Ω . c m以下の範囲の材料を用いればよい。 具体的には 、 例えば、 グラフアイ トなどのカーボンからなる基板や、 ステンレスな どの金属からなる基板、 半導体基板などを用いてアノードセパレータ 1
2を形成すればよい。
また、 カソードセパレータ 1 4に用いる材料としては、 集電体として 機能すれば (即ち、 上述のように、 ある程度以上の導電性を有すれば) 、 特に限定されない。 具体的には、 例えば、 グラフアイ トなどのカーボ ンからなる基板や、 ステンレスなどの金属からなる基板、 半導体基板な どを用いて力ソードセパレータ 1 4を形成すればよい。 なお、 アノード セパレータ 1 2およびカソードセパレータ 1 4に用いる材料は、 同一で あってもよいし異なっていてもよい。
ァノードセパレータ 1 2であるか力ソードセパレータ 1 4であるかに 関わらず、 セパレータに用いる半導体基板としては、 例えば、 結晶シリ コンからなる半導体基板を用いればよい。 ただし、 純粋な結晶シリ コン を用いた場合は、 集電体として十分な導電性を有しない場合が考えられ る。 その場合は、 例えば、 l i b族元素、 I ll b族元素、 V b族元素、 VI b族元素などの不純物をドープするなどによって導電性を増加させた半 導体基板とすればよい。 なお、 上記不純物のドープは、 半導体基板全体 に行ってもよいし、 必要な部分のみに行ってもよい。
結晶シリコンに不純物をド一プさせた場合、 不純物の種類によって、 n形または p形の導電型を有する半導体基板となる。 セパレータとして は、 上記導電型に左右されず、 p形、 n形のどちらを用いてもよい。 ァ ノ一ドセパレータおよぴカソ一ドセパレータの導電型は、 同じ導電型で あってもよいし異なる導電型であってもよい。
なかでも、 アノードセパレータ 1 2が n形半導体基板で形成されてお り、 力ソードセパレータ 1 4が p形半導体基板で形成されていることが 好ましい。 この場合、 アノードから力ソードへの電子の流れをよりスム ーズにすることができるため、 燃料電池 1の特性をより向上させること ができる。 よって、 より汎用性に優れた半導体装置とすることができる その他、 半導体基板としては、 例えば、 G a N、 G a P、 G a A sな どの I I I b族元素および V b族元素を含む化合物半導体からなる基板を 用いてもよい。 また、 Z n S、 Z n S eなどの l i b族元素おょぴ VI b族 元素を含む化合物半導体からなる基板を用いてもよい。
セパレータを半導体基板で形成すれば、 半導体加工プロセスを応用す ることによって流路などを微細加工することができるため、 例えば、 全 体の厚さが 1 . 5 m mにも満たないような薄型の燃料電池を形成するこ とも可能である。 また、 半導体基板は化学的にも安定であり、 P E F C において強酸性の雰囲気下にあると考えられる燃料の流路においても、 セパレータの腐食を最小限に抑制することができる。 また、 燃料は半導 体基板を透過しないため、 微細なセパレータを形成した場合でも、 セパ レータを介した燃料のリークを最小限に抑制することができる。 さらに 、 製造にあたっては既存の半導体加工プロセスを利用することができる ため、 半導体素子と一体的に形成することも可能となり、 より生産性よ く半導体装置を製造できる。
また、 なかでも結晶シリ コンは、 原料のシリ コンが地球資源として豊 富であり、 人体に無害、 安価であるなど様々なメリ ッ トを有している。 さらに、 結晶シリ コンからなる半導体基板は、 厚さ均一性および表面平 坦度に優れており、 シリ コン極微細加工技術との組み合わせにより、 極 めて精密に加工することができる。 また、 大口径シリ コンウェハーを半 導体プロセスラインで一括処理すれば、 同一ウェハー上に大量のセパレ ータを同時に形成することも可能であるため、 より低コストでセパレー タを製造できる。
また、 市販されている結晶シリ コン基板には、 例えば、 比抵抗が約 1 0 mQ · c m以下の基板がある。 このような基板でセパレータを形成し た場合、 例えばセパレータの厚さを 6 5 0 mとすると、 単位面積当た りのセパレータの抵抗値は約 6 5 πιΩ/ c m2となる (接触抵抗は考慮 しない) 。 よって、 結晶シリ コン基板で形成されたセパレータは、 燃料 電池の集電体として十分に機能できることがわかる。 例えば、 電流密度 1 0 OmAZc m2の電流を出力する場合、 セパレータにおける抵抗過 電圧は約 6. 5 mVであり、 燃料電池の出力電圧 (例えば、 燃料に水素 を用いた場合、 開放電圧 (OCV) は約 1. I Vである) に比べると十 分に小さいといえる。
図 1に示す半導体装置において、 アノードセパレータ 1 2およびカソ 一ドセパレータ 1 4の厚さとしては、 燃料おょぴ酸化剤の流路を形成す ることができる限り、 特に限定されない。 セパレータを半導体基板で形 成する場合、 例えば、 1 0 π!〜 1 mmの範囲である。 具体的には、 例 えば、 一般的な 6ィンチシリコン基板を用いてセパレータを形成する場 合、 セパレータの厚さは約 6 5 0 μ mとなる。
また、 燃料および酸化剤の流路の大きさ、 形状や、 セパレータの面積 に占める流路の割合などは、 M E Aに燃料およぴ酸化剤を供給できる限 り、 特に限定されない。 セパレータ自体の厚さ、 必要な発電特性などに 応じて任意に設定すればよい。 例えば、 図 1に示す例では、 セパレータ 当たり 1 3本の流路が形成されているが、 流路の本数は自由に設定する ことができる。 1本の流路を折りたたんだ形状で流路を形成してもよい セパレータを半導体基板で形成する場合、 例えば、 幅が 1 0 m〜2 00 mの範囲、 深さが 1 0 μ m〜 5 0 0 μ mの範囲、 流路同士の間隔 (ピッチ) が 1 0 i m〜 1 0 0 μ mの範囲にある矩形状の流路とすれば よい。 なお、 図 1に示す例では、 燃料流路の方向と酸化剤流路の方向とが互 いに平行になるようにそれぞれのセパレータが形成、 配置されているが 、 本発明の半導体装置では特にこの構造に限定されない。 それぞれの流 路は、 任意の相対角度で対向していてもよく、 例えば、 それぞれの流路 が直交するようにセパレータを形成、 配置してもよい。
図 1に示す半導体装置では、 上記 1つのセパレータであるアノードセ パレータ 1 2と M E A 1 5との間に、 ァノードセパレータ 1 2と M E A 1 5との接触抵抗を低減させるコンタク ト層 1 6が配置されていてもよ い。
このような半導体装置では、 燃料電池 1の抵抗過電圧を低減すること ができるため、 燃料電池 1の特性をより向上させることができる。 よつ て、 より汎用性に優れた半導体装置とすることができる。 なお、 図 1に 示すように、 力ソードセパレータ 1 4と M E A 1 5との間に上記コンタ タ ト層が配置されていてもよい。 コンタク ト層の厚さは、 例えば、 0 . 0 1 μ m〜 1 0 μ mの範囲であり、 好ましくは 0 . 0 1 μ π!〜 0 . 5 μ mの範囲である。 また、 コンタク ト層はセパレータの全面に配置されて いる必要はなく、 コンタク ト層を配置する領域は任意に設定することが できる。
コンタク ト層 1 6としては、 セパレータと M E Aとの接触抵抗を低減 させることができれば、 特に限定されない。 例えば、 セパレータを半導 体基板で形成する場合、 上記半導体基板と同じ導電型を有する縮退した 不純物拡散層を半導体基板上に形成し、 コンタク ト層とすればよい。 上 記不純物拡散層を形成する方法としては、 例えば、 不純物としてリン ( P ) 、 砒素 (A s ) 、 ホウ素 (B ) などをドーズ量 1 0 1 4 / c m 2以上 の範囲で結晶シリ コン基板などの半導体基板にイオン注入、 拡散させれ ばよい。 また、 上記不純物拡散層の上にメタルシリサイ ド層をさらに積 層形成し、 不純物拡散層とメタルシリサイ ド層との積層膜をコンタク ト 層と してもよい。 また、 上記積層体は、 必要に応じてさらに別の層を含 んでいてもよい。 メタルシリサイ ド層としては、 例えば、 白金シリサイ ド、 コノ ノレトシリサィ ド、 モリブデンシリサイ ド、 二ッケルシリサイ ド などからなる層とすればよい。 なお、 このようなコンタク ト層を形成す る具体的な方法の一例は、 実施の形態 6に後述する。
次に、 図 1に示す半導体装置における絶縁層 3について説明する。 絶縁層 3に用いる材料としては、 半導体素子 2とァノードセパレータ 1 2との間に形成することができれば、 特に限定されない。 例えば、 S i 〇2、 ガラス、 金属酸化膜などを用いればよい。 用いる材料の比抵抗 は、 例えば、 1 05 Ω · c m以上の範囲であればよい。 絶縁層 3は、 例 えば、 上記の材料をアノードセパレータに貼り合わせることによって形 成してもよい。
ァノードセパレータ 1 2が結晶シリコンからなる半導体基板で形成さ れている場合、 例えば、 絶縁層 3は、 S i 02からなる絶縁層であって もよい。 この場合、 アノードセパレータ 1 2、 絶縁層 3および半導体素 子 2を巿販の S O I (S i l i c o n O n I n s u l a t o r ) 基 板の加工によって形成することも可能であり、 より安定性、 汎用性に優 れた半導体装置とすることができる。 また、 より生産性よく半導体装置 を製造できる。
ァノードセパレータ 1 2が金属からなる基板で形成されている場合、 絶縁層 3は、 例えば、 上記金属の酸化膜からなる絶縁層であってもよい 。 この場合、 絶縁層 3は、 上記金属からなる基板の表面を酸化処理する ことによって形成することができるため、 より安定性、 汎用性に優れた 半導体装置とすることができる。 また、 より生産性よく半導体装置を製 造できる。 さらに、 セパレータ自体は金属であるため、 i Q ' c mォー ダ一の極めて小さい比抵抗を有するセパレータとすることができ、 燃料 電池としての抵抗過電圧をより小さくすることができる。
同様に、 絶縁層 3に用いる材料が、 アノードセパレータ 1 2に用いる 材料を酸化したものである場合、 アノードセパレータ 1 2の表面を酸化 することによつて絶縁層 3を形成することができるため、 より生産性よ く半導体装置を製造できる。
絶縁層 3の厚さとしては、 ァノードセパレータ 1 2と半導体素子 2と の絶縁性を保つことができる限り、 特に限定されない。 例えば、 1 0 η m以上であればよい。 アノードセパレータ 1 2が結晶シリコンからなる 半導体基板で形成されており、 絶縁層 3が S i 〇2からなる場合、 絶縁 層 3の厚さは、 例えば、 1 0 n m〜 1 μ mの範囲である。 なお、 絶縁層 3の熱伝導率は一般的に小さいため、 絶縁層 3の厚さを大きくすること によって、 燃料電池 1からの熱が半導体素子 2に伝導するのを抑制する こともできる。
また、 絶縁層 3は、 内部に電極 4 (電極 4によって、 半導体素子 2と アノードセパレータ 1 2とが電気的に接続されている) が形成された孔 ( V i a H o l e ) を有している。 上記孔の大きさは、 電極 4の大き さによって設定すればよく、 特に限定されない。 例えば、 断面積にして 1 μ m 2以下の範囲であればよい。 また、 図 1に示す絶縁層 3は、 上記 孔を 1つしか有していないが、 その数は特に限定されない。 必要に応じ て複数有していてもよい。 電極 4に用いる材料としては、 例えば、 タン ダステン、 アルミニウム、 銅などを用いればよい。 半導体素子 2の素子 配線 6 3と一体化してもよい。
次に、 図 1に示す半導体装置における半導体素子 2について説明する 図 1に示す半導体装置では、 半導体素子 2として nチャネル M O S ト ランジスタ 2 1および ρチャネル MO S トランジスタ 2 2からなる CM O Sィンバータ素子が結晶シリコン層 5 1に形成されている。 上記 CM O Sィンバータは一般的な CMO Sィンバータであり、 pゥエルコンタ タ ト層 5 2、 nゥェルコンタク ト層 5 3、 p形ソース電極 5 4、 p形ド レイン電極 5 5、 n形ドレイン電極 5 6、 n形ソース電極 5 7、 ゲート 絶縁膜 5 8、 n形ゲート電極 5 9、 p形ゲート電極 6 0、 素子分離絶縁 膜 6 1、 層間絶縁膜 6 2、 素子配線 6 3、 pゥュル 64および nゥエル 6 5を含んでいる。 上記それぞれの領域に用いる材料、 各領域の厚さお よび大きさなどは、 特に限定されない。 例えば、 一般的な半導体素子と 同様であればよい。
図 1に示す例において、 半導体素子である CMO Sインバータ素子は 結晶シリ コン層 5 1に形成されている。 この場合、 絶縁層 3が S i 02 からなる絶縁層であれば、 アノードセパレータ 1 2、 絶縁層 3および半 導体素子 2を市販の S O I基板の加工によって形成することも可能であ り、 より安定性、 汎用性に優れた半導体装置とすることができる。 また 、 より生産性よく半導体装置を製造できる。 結晶シリ コン層 5 1の厚さ としては、 特に限定されない。 例えば、 0. 0 1 μ m〜 1 0 μ mの範囲 である。 また、 結晶シリ コン層の比抵抗としては、 例えば、 Ι πιΩ · c π!〜 1 k Ω ■ c mの範囲である。
本発明の半導体装置における半導体素子は、 第 1の電極および第 2の 電極を含み、 前記第 1の電極と前記アノードセパレータとが電気的に接 続しており、 前記第 2の電極と前記カソードセパレータとが電気的に接 続していてもよい。 例えば、 図 1に示す例において、 半導体素子である CMO Sインバータ素子の接地電位電極 (図 1に示す Vs s) は、 絶縁 層 3中に形成された電極 4を介してァノードセパレータ 1 2に電気的に 接続されている。 この経路を介して CMO Sインバータ素子の負荷回路 に電子が供給されることになる。 また、 CMO Sインバータ素子の電源 供給電極 (図 1に示す VDD) は、 外部配線 6 6を介して力ソードセパ レータ 1 4に電気的に接続されている。 燃料電池 1からの電流は、 外部 配線 6 6を介して CMO Sインバータ素子の電源供給電極に流れ込むこ とになる。 なお、 CMO Sインバータ素子の入力および出力電極は、 図 1に示す、 V i nおよび V。u tである。 また、 電極 4および接地電位電 極 Vs sは、 一体化していてもよい。
図 1に示す半導体装置において、 ァノードセパレータ 1 2が半導体基 板で形成されている場合、 電極 4とァノードセパレータ 1 2との間に上 述したコンタク ト層や金属薄膜層を配置してもよい。 電極 4とアノード セパレータ 1 2との接触抵抗を低減させることができる。 同じく、 カソ 一ドセパレータ 1 4が半導体基板で形成されている場合、 外部配線 6 6 とカソードセパレータ 1 4との間に上述したコンタク ト層ゃ金属薄膜層 を配置してもよい。 このような半導体装置では、 燃料電池 1において発 生した電力が効率よく半導体素子 2に伝わるため、 よりコンパク トで汎 用性に優れる半導体装置とすることができる。 なお、 この場合のコンタ タ ト層の厚さは、 例えば、 0. O l m〜: L O /i mの範囲であり、 コン タク ト層を配置する領域は任意に設定することができる。
本発明の半導体装置における半導体素子の種類は、 特に限定されない 。 例えば、 MO S トランジスタ、 バイポーラ トランジスタ、 発光ダイォ ード、 半導体レーザーなどを形成すればよい。 なお、 図 1に示す半導体 素子 2はシリコン半導体素子であるが、 その他の材料を用いた半導体素 子、 例えば、 G a N S i Cなどから形成される化合物半導体素子であ つてもよい。 このような化合物半導体素子は 1 0 0°C以上の温度領域で も用いることができるため、 一般的な P E F Cよりも高温で動作するタ イブの燃料電池と一体化することもできる。 また、 半導体素子は、 一般 的な半導体素子形成法を用いて形成すればよい。
なお、 図 1に示す例では、 半導体素子 2はアノードセパレータ 1 2の 一主面上に形成されているが、 本発明の半導体装置は特にこの構成に限 定されない。 例えば、 半導体素子 2を力ソードセパレータ 1 4の一主面 上に形成してもよい。 また、 本発明の半導体装置では、 第 1および第 2 の半導体素子を含み、 第 1の半導体素子がァノードセパレータの一主面 上に形成され、 第 2の半導体素子がカソードセパレータのー主面上に形 成されていてもよい。 即ち、 アノードセパレータおよぴカソードセパレ ータの双方の一主面上に半導体素子が形成されていてもよい。 この場合 、 よりコンパク トで汎用性に優れた半導体装置とすることができる。 また、 図 1に示す例では、 燃料電池 1 と半導体素子 2との間に絶縁層 3が配置されているが、 本発明の半導体装置は特にこの構成に限定され ない。 ァノードセパレータのー主面上に半導体素子を直接形成してもよ い。 半導体素子をセパレータ上に直接形成する場合、 上記セパレータを 半導体基板で形成すればよい。 なお、 半導体素子の形成はアノードセパ レータ上に限定されない。 カソードセパレータのー主面上に半導体素子 を形成してもよいし、 ァノードセパレータおよぴカソードセパレータの 双方の一主面上に半導体素子を形成してもよい。
なお、 本発明の半導体装置は、 図 1に示すような電子回路装置や、 光 源、 電源、 マイクロマシン、 マイクロセンサーなどに用いることができ る。
(実施の形態 2 )
図 2は、 本発明の半導体装置における別の例を示す模式断面図である 図 2に示す半導体装置は、 燃料電池 1と半導体素子 2とを備えている 。 燃料電池 1は、 了ノードセパレータ 1 2と、 カソードセパレータ 1 4 と、 アノードセパレータ 1 2およびカソードセパレータ 1 4に狭持され る M E A 1 5とを含んでいる。 また、 それぞれのセパレータと M E A 1 5との間には、 コンタク ト層 1 6が配置されており、 M E A 1 5によつ て発生した電力をより効率よく集電することができる。
また、 半導体素子 2はアノードセパレータ 1 2の一主面上に配置され た絶縁層 3上に形成されており、 半導体素子 2とアノードセパレータ 1 2とが、 絶縁層 3中に形成された電極 4を介して電気的に接続されてい る。
半導体素子 2は、 nチャネル M O S トランジスタ素子であり、 pゥェ ノレコンタク ト層 5 2、 n形ドレイン電極 5 6、 n形ソース電極 5 7、 ゲ ート絶縁膜 5 8、 n形ゲート電極 5 9、 素子分離絶縁膜 6 1、 層間絶縁 膜 6 2、 素子配線 6 3および ρゥエル 6 4を含んでいる。 図 2に示すよ うに、 上記 nチャネル M O S トランジスタ素子のソース電極および基板 電極は電極 4を介してァノードセパレータ 1 2と電気的に接続しており 、 ドレイン電極およびゲート電極は外部配線 6 6を介して力ソードセパ レータ 1 4と電気的に接続している。 外部配線 6 6の途中には、 燃料電 池 1によって発生した電力を供給する外部負荷が接続されている。
このような半導体装置では、 燃料電池 1の出力電圧が nチャネル M O S トランジスタ素子の閾値の電圧以上であるときは、 トランジスタ素子 は常時 O Nとなり、 外部負荷に対して電力を供給することができる。 し かし、 燃料電池 1の出力電圧が上記閾値の電圧以下になった場合、 トラ ンジスタ素子は O F Fとなり外部負荷への電力の供給が停止する。 例え ば、 上記閾値を燃料電池の下限電圧 (安全に発電できる最低電圧) に設 定すれば、 燃料電池のトラプルなどによる電子機器の誤動作や、 燃料電 池の電圧が低下しすぎることによる燃料電池の破損を防止することがで きる。 また、 トランジスタ素子のチャネルサイズを適当な値に設定する ことによって、 燃料電池 1の出力電流リミッタ機能を有する半導体装置
(電源) とすることもできる。 なお、 トランジスタ素子の閾値の電圧は
、 pゥエル 6 4の不純物拡散濃度やゲート絶縁膜 5 8の膜厚、 n形ゲー ト電極 5 9の材質 (仕事関数) を調節することにより制御することがで 含る。
図 3は、 本発明の半導体装置のまた別の例を示す断面模式図である。 図 3に示す半導体装置は、 図 2に示す半導体装置の半導体素子 2を n チャネル M O S トランジスタ素子から pチャネル M O S トランジスタ素 子に変更した半導体装置である。
図 3に示す半導体素子 2は、 pチャネル M O S トランジスタ素子であ り、 nゥエルコンタク ト層 5 3、 p形ソース電極 5 4、 p形ドレイン電 極 5 5、 ゲート絶縁膜 5 8、 p形ゲート電極 6 0、 素子分離絶縁膜 6 1 、 層間絶縁膜 6 2、 素子配線 6 3および nゥエル 6 5を含んでいる。 図 3に示すように、 上記 ί>チャネル M〇 S トランジスタ素子のソース電極 およびゲート電極は電極 4を介してァノードセパレ一タ 1 2と電気的に 接続しており、 ドレイン電極および基板電極は外部配線 6 6を介して力 ソードセパレータ 1 4と電気的に接続している。 外部配線 6 6の途中に は、 燃料電池 1によって発生した電力を供給する外部負荷が接続されて いる。 このような半導体装置では、 図 2に示す半導体装置と同様の効果 を得ることができる。
通常、 P E F Cにおける単セルの出力電圧は 1 V程度以下であるため 、 燃料電池を実際に半導体装置に用いる際には、 半導体素子における使 用電圧と燃料電池の出力電圧とを整合するためのィンターフェース回路 ( D C— D Cコンバータ回路など) や、 燃料電池の出力制御回路 (電圧 制限回路や電流制限回路) などを付加する場合が考えられる。 その際、 本実施の形態における半導体装置のように、 燃料電池と上記回路を含む 半導体素子とを一体化することによって、 よりコンパク トで汎用性に優 れる半導体装置とすることができる。
なお、 本実施の形態における半導体装置の各部分に用いられる材料や 各部分の厚さ、 大きさなどは、 実施の形態 1に示した内容と同様である o
(実施の形態 3 )
図 4 Aは、 本発明の半導体装置における燃料電池の別の例を示す模式 断面図である。
図 4 Aに示す燃料電池 1は、 アノードセパレータ 1 2と、 力ソードセ ノ レータ 1 4と、 アノードセパレータ 1 2および力ソードセパレータ 1 4に狭持される M E A 1 5とを含んでいる。 また、 力ソードセパレータ 1 4には開口部 1 7が設けられており、 カソードセパレータ 1 4の流路 は大気開放されている。
このような燃料電池では、 酸化剤である空気を自然置換によって M E Aに供給しているため、 酸化剤を供給するポンプなどのデバイスを省略 することができる。 そのため、 このような燃料電池を用いることによつ て、 よりコンパク トで汎用性に優れた半導体装置とすることができる。 また、 力ソードセパレータ 1 4が半導体基板で形成されている場合、 開口部 1 7を半導体加工プロセスにより形成してもよい。 半導体加工プ 口セスを用いた場合、 微細な成形を行うことができるため、 例えば、 図 4 Bおよぴ図 4 Cに示すように、 開口部 1 7を格子状に加工することが できる。 開口部 1 7を格子状に形成すれば、 セパレータの流路への外部 からのゴミゃ埃の侵入を抑制することができる。 図 4 Bは、 図 4 Aに示 す燃料電池 1を図 4 A中の X方向から見た模式図である。 図 4 Cは、 図 4 Bにしめす開口部 1 7の一部 (図 4 Bにおける丸印部分) を拡大した 模式図である。 開口部 1 7のうち、 図 4 Cに示す Y部が実際に開口して いる部分に相当し、 上記 Y部を通じて M E Aの力ソードに空気が供給さ れることになる。
開口部 1 7の幅および長さ、 開口部 1 7を格子状とした場合の図 4 C に示す Y部の大きさ、 開口部 1 7に含まれる Y部の数などは特に限定さ れない。 力ソードセパレータの大きさ、 必要な電池特性などに応じて、 任意に設定することができる。 流路への一般的な塵埃の侵入を防ぐため には、 Y部の開口部分の面積を、 例えば、 Ι Ο Ο μ ηι 2〜; L O O O / m 2の範囲に設定すればよい。 例えば、 開口部 1 7の幅が 2 0 0 μ mの場 合、 Υ部の開口部分の面積を 1 0 0 μ m 2、 隣り合う Y部同士の間隔を 5 mに設定すればよい。 また、 格子状に加工する部分の厚さは、 任意 に設定すればよい。
なお、 本実施の形態における燃料電池の各部分に用いられる材料や各 部分の厚さ、 大きさなどは、 実施の形態 1に示した内容と同様である。
(実施の形態 4 )
図 5は、 本発明の半導体装置における燃料電池の別の例を示す断面模 式図である。
図 5に示す燃料電池 1は、 ァノードセパレータ 1 2とカソードセパレ ータ 1 4と M E A 1 5とを含む単セルが複数積層された燃料電池である 。 また、 図 5に示す燃料電池 1では、 両端のセパレータを除き、 ァノー ドセパレータおよびカソードセパレータはセパレータ 1 8として一体化 されている。 セパレータ 1 8の一主面には燃料の流路 1 1が形成され、 上記一主面とは反対側の主面には酸化剤の流路 1 3が形成されている。 セパレータ 1 8は、 ァノードセパレータとカソードセパレータとの双方 の役割を担っており、 またセパレータ 1 8によって各単セルが直列に接 続されている。
このような燃料電池とすることで、 電池の発電面積は一定のまま、 出 力電圧を大きくすることができる。 例えば、 図 5に示す例では、 3セル を直列に接続しているため、 燃料電池の出力電圧は単セルの約 3倍にな る。 また、 このように単セルを積層した燃料電池を備えることで、 より 汎用性に優れる半導体装置とすることができる。 なお、 単セルの積層数 は、 図 5に示す 3セルに限らず、 必要な電池特性に応じて任意に設定す ることができる。
なお、 単セルを積層する際には、 図 5に示すように、 アノードセパレ 一タとカソードセパレータとを一体化したセパレータ 1 8を用いる必要 はない。 例えば、 単セル同士を単に積層してもよい。 その際に、 各単セ ルの間に燃料電池を冷却するための層を配置してもよい。 また、 本実施 の形態における燃料電池の各部分に用いられる材料や各部分の厚さ、 大 きさなどは、 実施の形態 1に示した内容と同様である。
(実施の形態 5 )
図 6は、 本発明の半導体装置における燃料電池の別の例を示す断面模 式図である。
図 6に示す燃料電池 1は、 アノードセパレータ 1 2と、 力ソードセパ レータ 1 4と、 ァノードセパレータ 1 2および力ソードセパレータ 1 4 に狭持される M E A 1 5とを含んでいる。 また、 力ソードセパレータ 1 4の酸化剤の流路には、 撥水処理層 1 9が形成されている。
P E F Cでは、 加湿した燃料や酸化剤を M E Aに供給する場合があり 、 また、 発電によって水が生成することなどから、 燃料や酸化剤の流路 (特に酸化剤の流路) に液体の水が滞留する (フラッディング) ことが ある。 流路に水が滞留した場合、 M E Aへの燃料や酸化剤の供給が妨げ られ、 発電性能が低下する可能性がある。 特に、 力ソードセパレータと して実施の形態 3で示すような大気開放型のセパレータを用いた場合、 酸化剤である空気を強制的に供給することができないため、 フラッディ ングを起こす可能性が高くなる。 また、 燃料電池を高電流密度で発電す る場合においても、 生成する水の量が増加するためフラッディングが起 きやすくなる。 図 6に示す燃料電池 1のように、 力ソードセパレータ 1 4の酸化剤の流路に撥水処理層 1 9を形成することによって、 酸化剤の 流路から効率よく水を排出することができるため、 より汎用性に優れる 燃料電池とすることができる。 また、 このような燃料電池を備えること で、 より汎用性に優れる半導体装置とすることができる。
撥水処理層 1 9としては、 撥水効果を有する限り、 特に限定されない 。 例えば、 セパレータの流路に HMD S (H e x a m e t h y l d i s i l a z a n e ) 層をスピンコート塗布することによって形成してもよ い。 また、 セパレータが結晶シリ コンからなる半導体基板で形成されて いる場合、 レーザー光の照射や、 超高真空中における熱処理などによつ て撥水処理層を形成してもよい。 この場合、 レーザー光などにより結晶 シリコンの表面に数 nmオーダーの凹凸が形成され、 この凹凸によって 撥水効果を得ることができる。
なお、 図 6に示す燃料電池 1では、 撥水処理層は力ソードセパレータ 1 4にのみ形成されているが、 ァノードセパレータ 1 2に撥水処理層を 形成してもよい。 また、 本実施の形態における燃料電池の各部分に用い られる材料や各部分の厚さ、 大きさなどは、 実施の形態 1に示した内容 と同様である。
(実施の形態 6)
本実施の形態では、 本発明における半導体装置の製造方法について説 明する。 なお、 本実施の形態における半導体装置の各部分に用いられる 材料や各部分の厚さ、 大きさなどは、 実施の形態 1に示した内容と同様 である。
本発明における半導体装置の製造方法は、 一対のセパレータによって M E Aを狭持する構造を含む、 燃料電池を備える半導体装置の製造方法 であって、
( i ) 半導体基板の一方の面上に半導体素子を形成する工程と、
(i i) 前記半導体基板における前記一方の面とは反対側の面に、 燃料 または酸化剤が流れる流路を形成する工程と、
(i i i ) 前記半導体基板を前記一対のセパレータから選ばれる 1つの セパレータとして、 前記流路が形成された面と前記 M E Aとが接するよ うに前記半導体基板上に前記 M E Aを積層する工程とを含んでいる。 このような製造方法は、 半導体加工プロセスを用いて実施することが 可能である。 そのため、 燃料電池と半導体素子とが一体化されたコンパ タ トで汎用性に優れる半導体装置を、 より生産性よく製造できる。 また 、 半導体基板として大口径シリコンウェハーを用いれば、 一度に大量の 半導体装置を製造することも可能であり、 この場合、 より低いコス トで 半導体装置を製造できる。
上記製造方法では、 前記半導体基板が、 前記一方の面と前記反対側の 面との間に絶縁層を備えていてもよい。
また、 上記製造方法では、 前記 ( i ) の工程が、
( a ) 前記半導体素子と前記半導体基板とが前記絶縁層中に形成され た電極を介して電気的に接続するように、 前記絶縁層上に前記半導体素 子を形成する工程を含んでいてもよい。
この製造方法の一例を、 図 7 A〜図 7 Hを用いて説明する。 なお、 以 下に説明する製造方法は、 アノードセパレータ上に半導体素子が形成さ れた半導体装置を製造する方法であるが、 力ソードセパレータ上に半導 体素子が形成された半導体装置を製造する場合も同様である。
最初に、 半導体基板 7、 絶縁層 3、 結晶シリコン層 8が積層された積 層体を形成する (図 7 A ) 。 上記積層体は、 それぞれの層を堆積させる ことによって形成してもよいが、 例えば、 市販の S O I基板 (例えば、 S O I TEC (エスォーアイテック) 社製、 UN I BOND (ュニボン ド) 基板) を用いてもよい。 それぞれの層の厚さは、 半導体装置として 必要な特性に応じて任意に設定すればよい。 半導体基板 7は最終的にァ ノードセパレータとなるため、 その材料としては、 実施の形態 1におけ るァノードセパレータに用いる半導体基板と同様であればよい。 また、 結晶シリコン層 8には半導体素子が形成され、 最終的に実施の形態 1に おける結晶シリコン層 5 1となる。 例えば、 上記市販の U N I B OND 基板の一例では、 半導体基板 7は、 導電型 n形、 面方位 (00 1 ) 、 ォ リエンテーシヨンフラッ ト面の方位く 1 1 0 >、 比抵抗が 1 0 ιηΩ - c mの半導体基板であり、 厚さは 6 5 0 μ πιとすることができる。 絶縁層 3は、 S i 〇 2からなり、 厚さ 4 0 0 nmである。 結晶シリコン層 8は 、 厚さ 20 0 nmである。
次に、 絶縁層 3上に形成された結晶シリコン層 8に半導体素子 2を形 成する (図 7 B) 。 図 7 Bに示す例では、 半導体素子 2として、 図 1に 示す CMO Sインバータ素子が形成されている。 図 7 Bに示す半導体素 子 2の各部分は、 基本的に図 1に示す半導体素子 2と同じであり、 同一 の部分には同一の番号を付している。 ただし、 図 7 Bに示す半導体素子 2は、 プラズマ窒化膜などからなるパッシベーション膜 6 7をさらに含 み、 また、 後に外部配線を接続するための開口部 6 8が設けられている 。 また、 半導体素子 2と半導体基板 7とを電気的に接続する電極 4が絶 縁層 3に形成され、 電極 4と半導体基板 7との間には、 両者の接触抵抗 を低減させるコンタク ト層 6 9が配置されている。
絶縁層 3上に半導体素子 2を形成する工程としては、 一般的な半導体 素子形成工程 (図 7 Bに示す例では、 CMO Sインバータ素子形成工程 ) を用いればよい。 また、 半導体素子 2の各部分、 およびコンタク ト層 6 9には、 実施の形態 1で示した材料を用いればよい。 電極 4と素子配 線 6 3とは一体化して形成してもよい。
次に、 以上のように得た半導体素子 2、 絶縁層 3および半導体基板 7 の積層体に対し、 半導体基板 7における絶縁層 3および半導体素子 2が 形成されている面とは反対側の面に、 燃料が流れる流路 1 1を以下の手 順で形成する。
まず、 上記積層体を 5 w t °/0程度の希弗酸に 3 0秒程度浸漬させ、 半 導体基板 7上の自然酸化膜を除去する。 次に、 半導体基板 7における上 記反対側の面を工程処理面として、 A S原子を加速してイオン注入 (例 えば、 加速電圧 1 0 k e V〜 1 00 k e Vの範囲、 ドーズ量 1 014 c m一2〜 1 016 c m— 2の範囲で注入) し、 さらに急速加熱処理 (例えば 、 200°C、 1分) を行うことによって、 導電型が n形である縮退した A s拡散層 7 0を形成する (図 7 C) 。 A s拡散層 70の厚さは、 例え ば、 0. 0 1 μ π!〜 1 0 μ mの範囲であり、 好ましくは 0. 0 1 // m〜 0. 5 / mの範囲である。
次に、 A s拡散層 70上にスパッタ法ゃ真空蒸着法を用いてニッケル 膜を堆積させ、 さらに、 急速加熱処理 (例えば、 400°C、 1分、 ただ し、 熱処理温度は半導体素子 2内の素子配線 4 3の融点未満) を行うこ とにより、 ニッケルシリサイ ド膜 7 1を形成する (図 7 D) 。 A s拡散 層 70およびニッケルシリサイ ド膜 7 1の積層膜が、 コンタク ト層 1 6 となる。 このとき、 半導体基板 7に注入する不純物原子や、 不純物拡散 層 7 0上に堆積する原子を変更することによって、 コンタク ト層 1 6の 組成を制御することができる。 なお、 堆積させるニッケル膜の厚さは、 例えば、 0. 0 1 ^ m〜 1 0 μ mの範囲であり、 好ましくは 0. Ο ΐ μ m〜0. 5 111の範囲である。 また、 このとき厚さ 0. 0 1 μ π!〜 1 0 μιηの範囲 (あるいは、 0. 0 1 μιη〜0. 5 μΐηの範囲) のエッケノレ シリサイ ド膜を形成することができる。
次に、 コンタク ト層 1 6上に、 形成する流路の形状に合わせたレジス トパターン 7 2 (厚さは、 例えば、 3 θ Αί ΐη) を形成 (図 7 Ε ) した後 、 ドライエッチング処理などを行うことによって、 半導体基板 7に燃料 の流路を形成する。 このとき、 レジス トパターン 7 2の形状や、 エッチ ング処理の時間を制御することによって、 燃料の流路の幅や深さを制御 することができる。 その後、 レジス トパターン 7 2を除去することによ つて、 一主面上に絶縁層 3および半導体素子 2が形成され、 かつ、 上記 一主面とは反対側の面に燃料の流路 1 1が形成されたァノードセパレー タ 1 2を得ることができる (図 7 F ) 。
ァノードセパレータ 1 2の形成とは別に、 上述した図 7 C〜図 7 Fに 示す方法と同様の方法を用い、 酸化剤の流路 1 3およびコンタク ト層 1 6が形成された力ソードセパレータ 1 4を形成する (図 7 G ) 。 ァノー ドセパレータ 1 2の形成とは異なり、 例えば、 単層の半導体基板に不純 物拡散層を形成する工程から始めればよい。
最後に、 上記のようにして準備したアノードセパレータ 1 2と、 カソ ードセパレータ 1 4と、 別に準備した M E A 1 5とを、 それぞれのセパ レータの流路が形成された面と M E A 1 5とが接するように、 積層する (図 7 H ) 。 積層時には、 必要に応じて圧力および温度を加えてもよい し、 全体を樹脂などで被覆してもよい。 その後、 力ソードセパレータ 1 4と半導体素子 2とを外部配線を用いて接続することによって、 図 1に 示すような半導体装置を得ることができる。
なお、 本発明の半導体装置の製造方法では、 上記アノードセパレータ の製造工程において、 半導体素子の形成と、 燃料の流路の形成とを、 順 序を逆にして行っても (即ち、 最初に燃料の流路を形成した後に半導体 素子の形成を行っても) よい。 本発明は、 その意図および本質的な特徴から逸脱しない限り、 他の実 施の形態に適用しうる。 この明細書に開示されている実施の形態は、 あ らゆる点で説明的なものであってこれに限定されない。 本発明の範囲は 、 上記説明ではなく添付したクレームによって示されており、 クレーム と均等な意味および範囲にあるすベての変更はそれに含まれる。 産業上の利用の可能性
以上のように、 本発明によれば、 コンパク トで汎用性に優れる、 燃料 電池を備える半導体装置を得ることができる。 また、 上記燃料電池を備 える半導体装置をより生産性よく製造できる、 燃料電池を備える半導体 装置の製造方法を提供することができる。 本発明の半導体装置は、 電子 回路装置、 電源、 光源、 マイクロマシン、 マイクロセンサーなどに用い ることができる。

Claims

請 求 の 範 囲
1 . 燃料電池と半導体素子とを備え、
前記燃料電池は、 燃料の流路が形成されたアノードセパレータと、 酸 化剤の流路が形成された力ソードセパレータと、 前記アノードセパレー タおよび前記カソードセパレータに狭持される膜電極接合体とを含み、 前記半導体素子は、 前記ァノードセパレータおよび前記カソードセパ レータから選ばれる 1つのセパレータのー主面上に形成されており、 前記半導体素子と前記 1つのセパレータとが電気的に接続されている 燃料電池を備える半導体装置。
2 . 第 1および第 2の半導体素子を含み、
前記第 1の半導体素子が、 前記ァノードセパレータのー主面上に形成 されており、
前記第 2の半導体素子が、 前記カソードセパレータのー主面上に形成 されている請求項 1に記載の燃料電池を備える半導体装置。
3 . 前記 1つのセパレータが、 半導体基板で形成されている請求項 1 に記載の燃料電池を備える半導体装置。
4 . 前記半導体基板が、 結晶シリ コンからなる請求項 3に記載の燃料 電池を備える半導体装置。
5 . 前記半導体基板が、 I l l b族元素および V b族元素を含む化合物 半導体からなる請求項 3に記載の燃料電池を備える半導体装置。
6. 前記半導体基板が、 lib族元素おょぴ VIb族元素を含む化合物半 導体からなる請求項 3に記載の燃料電池を備える半導体装置。
7. 前記アノードセパレータが n形半導体基板で形成されており、 前 記カソードセパレータが p形半導体基板で形成されている請求項 3に記 載の燃料電池を備える半導体装置。
8. 前記 1つのセパレータと前記膜電極接合体との間に、 前記 1つの セパレータと前記膜電極接合体との接触抵抗を低減させるコンタク ト層 が配置されている請求項 3に記載の燃料電池を備える半導体装置。
9. 前記半導体素子と、 前記 1つのセパレータとの間には、 絶縁層が 形成されている請求項 1に記載の燃料電池を備える半導体装置。
1 0. 前記半導体素子と前記 1つのセパレータとが、 前記絶縁層中に 形成された電極を介して電気的に接続されている請求項 9に記載の燃料 電池を備える半導体装置。
1 1. 前記絶縁層が、 S i 02からなる請求項 9に記載の燃料電池を 備える半導体装置。
1 2. 前記絶縁層の比抵抗が、 1 05 Ω · c m以上である請求項 9に 記載の燃料電池を備える半導体装置。
1 3. 前記絶縁層の厚さが、 1 0 nm〜: L mの範囲である請求項 9 に記載の燃料電池を備える半導体装置。
1 4. 前記 1つのセパレータが、 金属からなる請求項 9に記載の燃料 電池を備える半導体装置。
1 5. 前記絶縁層が、 前記金属の酸化膜からなる請求項 1 4に記載の 燃料電池を備える半導体装置。
1 6. 前記半導体素子は、 第 1の電極おょぴ第 2の電極を含み、 前記第 1の電極と前記アノードセパレータとが電気的に接続しており 前記第 2の電極と前記カソードセパレータとが電気的に接続している 請求項 1に記載の燃料電池を備える半導体装置。
1 7. 前記半導体素子が、 nチャネル MO S トランジスタであり、 前 記 nチャネル MO トランジスタのソース電極および基板電極が前記ァ ノードセパレータと電気的に接続しており、 ドレイン電極およびゲート 電極が前記カソードセパレータと電気的に接続している請求項 1に記載 の燃料電池を備える半導体装置。
1 8. 前記半導体素子が、 pチャネル MO S トランジスタであり、 前 記 Pチャネル MO S トランジスタのソース電極およびゲート電極が前記 アノードセパレータと電気的に接続しており、 ドレイン電極および基板 電極が前記力ソードセパレータと電気的に接続している請求項 1に記載 の燃料電池を備える半導体装置。
1 9 . 前記燃料電池は、 前記アノードセパレータと前記力ソードセパ レータと前記膜電極接合体とを含むセルが複数積層されている請求項 1 に記載の燃料電池を備える半導体装置。
2 0 . 一対のセパレータによつて膜電極接合体を狭持する構造を含む 、 燃料電池を備える半導体装置の製造方法であって、
( i ) 半導体基板の一方の面上に半導体素子を形成する工程と、
(i i) 前記半導体基板における前記一方の面とは反対側の面に、 燃料 または酸化剤が流れる流路を形成する工程と、
( i i i) 前記半導体基板を前記一対のセパレータから選ばれる 1つの セパレータとして、 前記流路が形成された面と前記膜電極接合体とが接 するように前記半導体基板上に前記膜電極接合体を積層する工程とを含 む、
燃料電池を備える半導体装置の製造方法。
2 1 . 前記半導体基板が、 前記一方の面と前記反対側の面との間に絶 縁層を備えている請求項 2 0に記載の燃料電池を備える半導体装置の製 造方法。
2 2 . 前記 ( i ) の工程が、
( a ) 前記半導体素子と前記半導体基板とが前記絶縁層中に形成され た電極を介して電気的に接続するように、 前記絶縁層上に前記半導体素 子を形成する工程を含む請求項 2 1に記載の燃料電池を備える半導体装 置の製造方法。
2 3 . —対のセパレータによって膜電極接合体を狭持する構造を含む 、 燃料電池を備える半導体装置の製造方法であって、
( I ) 半導体基板の一方の面に、 燃料または酸化剤が流れる流路を形 成する工程と、
(II) 前記半導体基板における前記流路が形成された面とは反対側の 他方の面上に半導体素子を形成する工程と、
(III) 前記半導体基板を前記一対のセパレータから選ばれる 1つの セパレータとして、 前記流路が形成された面と前記膜電極接合体とが接 するように前記半導体基板上に前記膜電極接合体を積層する工程とを含 む、
燃料電池を備える半導体装置の製造方法。
24. 前記半導体基板が、 前記一方の面と前記他方の面との間に絶縁 層を備えている請求項 2 3に記載の燃料電池を備える半導体装置の製造 方法。
2 5. 前記 (II) の工程が、
(A) 前記半導体素子と前記半導体基板とが前記絶縁層中に形成され た電極を介して電気的に接続するように、 前記絶縁層上に前記半導体素 子を形成する工程を含む請求項 24に記載の燃料電池を備える半導体装 置の製造方法。
PCT/JP2003/000618 2002-01-29 2003-01-23 Dispositif semi-conducteur dote d'une pile a combustible et procede de fabrication associe WO2003065487A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03703040A EP1471588B1 (en) 2002-01-29 2003-01-23 Semiconductor device having fuel cell and its manufacturing method
JP2003564966A JP3700979B2 (ja) 2002-01-29 2003-01-23 燃料電池を備える半導体装置およびその製造方法
DE60322342T DE60322342D1 (de) 2002-01-29 2003-01-23 Halbleitervorrichtung mit brennstoffzelle und verfahren zu ihrer herstellung
US10/696,347 US6933570B2 (en) 2002-01-29 2003-10-28 Semiconductor device equipped with fuel cell and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002019659 2002-01-29
JP2002-019659 2002-01-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/696,347 Continuation US6933570B2 (en) 2002-01-29 2003-10-28 Semiconductor device equipped with fuel cell and method for producing the same

Publications (1)

Publication Number Publication Date
WO2003065487A1 true WO2003065487A1 (fr) 2003-08-07

Family

ID=27654272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000618 WO2003065487A1 (fr) 2002-01-29 2003-01-23 Dispositif semi-conducteur dote d'une pile a combustible et procede de fabrication associe

Country Status (7)

Country Link
US (1) US6933570B2 (ja)
EP (1) EP1471588B1 (ja)
JP (1) JP3700979B2 (ja)
CN (1) CN1328811C (ja)
AT (1) ATE402484T1 (ja)
DE (1) DE60322342D1 (ja)
WO (1) WO2003065487A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134879A (ja) * 2004-11-01 2006-05-25 General Motors Corp <Gm> 燃料電池水管理向上方法
KR100645594B1 (ko) 2006-07-12 2006-11-15 한국에너지기술연구원 연료전지 성능 평가용 셀 또는 스택 및 연료전지 성능 평가방법
JP2007227080A (ja) * 2006-02-22 2007-09-06 National Institute Of Advanced Industrial & Technology 燃料電池
JP2009513025A (ja) * 2005-12-05 2009-03-26 インダストリー−アカデミック コーオペレーション ファンデーション キョンサン ナショナル ユニバーシティ ウェーハ裏面に電源供給装置が内蔵した半導体用シリコンウェーハ
JP2010113916A (ja) * 2008-11-05 2010-05-20 Kanagawa Prefecture 燃料電池セルおよびその製造方法
JP2022023896A (ja) * 2010-08-06 2022-02-08 株式会社半導体エネルギー研究所 半導体装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120264024A1 (en) * 1999-04-29 2012-10-18 Pelton Walter E Methods and apparatuses for electrochemical cell system with movable medium and non-conducting substrate
ATE402484T1 (de) * 2002-01-29 2008-08-15 Matsushita Electric Ind Co Ltd Halbleitervorrichtung mit brennstoffzelle und verfahren zu ihrer herstellung
US20080233436A1 (en) * 2003-07-28 2008-09-25 General Motors Corporation Diffusion media tailored to account for variations in operating humidity and devices incorporating the same
US7235315B2 (en) * 2003-12-16 2007-06-26 Ballard Power Systems Inc. Electrochemical fuel cell stack having a plurality of integrated voltage reversal protection diodes
KR101065375B1 (ko) * 2004-06-23 2011-09-16 삼성에스디아이 주식회사 연료 전지용 바이폴라 플레이트, 이의 제조 방법 및 이를포함하는 연료 전지
US8486551B2 (en) * 2005-09-29 2013-07-16 Micro Silitron Inc. Fuel cell unit, fuel cell unit array, fuel cell module and fuel cell system
DE602006018259D1 (de) * 2006-04-06 2010-12-30 St Microelectronics Srl Verfahren und beschaltung für regelung des hochfahrens einer mikrobrennstoffzelles
US20070243452A1 (en) * 2006-04-14 2007-10-18 Applied Materials, Inc. Reliable fuel cell electrode design
US20080093633A1 (en) * 2006-10-18 2008-04-24 United Microelectronics Corp. Complementary metal-oxide-semiconductor (cmos) image sensor and fabricating method thereof
JP2008159447A (ja) * 2006-12-25 2008-07-10 Shinko Electric Ind Co Ltd 固体酸化物型燃料電池発電装置
KR20090119187A (ko) * 2008-05-15 2009-11-19 삼성전자주식회사 연료전지를 포함하는 패키지, 그 제조 방법, 및 패키지를포함하는 카드 및 시스템
KR101693914B1 (ko) 2009-11-20 2017-01-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR102371046B1 (ko) * 2016-07-15 2022-03-07 현대자동차주식회사 연료전지용 엔드셀 히터
WO2019232835A1 (zh) * 2018-06-07 2019-12-12 上海尚理投资有限公司 硅极板及其制备方法、硅在燃料电池的应用、燃料电池电堆结构、燃料电池和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166681A (ja) * 1982-03-29 1983-10-01 Semiconductor Energy Lab Co Ltd 半導体装置
WO2000069007A1 (en) * 1999-05-06 2000-11-16 Sandia Corporation Fuel cell and membrane
JP2002075399A (ja) * 2000-08-30 2002-03-15 Hitachi Ltd 固体高分子電解質型燃料電池用セパレータ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339730B2 (ja) 1992-12-24 2002-10-28 忠弘 大見 半導体装置
JP3401918B2 (ja) 1994-07-04 2003-04-28 株式会社デンソー 半導体装置
JP3503197B2 (ja) * 1994-07-04 2004-03-02 株式会社デンソー 半導体装置
KR100253699B1 (ko) * 1996-06-29 2000-05-01 김영환 Soi소자 및 그 제조방법
EP0895282A3 (en) * 1997-07-30 2000-01-26 Canon Kabushiki Kaisha Method of preparing a SOI substrate by using a bonding process, and SOI substrate produced by the same
JP4623451B2 (ja) 1997-07-30 2011-02-02 忠弘 大見 半導体基板及びその作製方法
US6638654B2 (en) * 1999-02-01 2003-10-28 The Regents Of The University Of California MEMS-based thin-film fuel cells
CN1117882C (zh) * 1999-04-19 2003-08-13 住友金属工业株式会社 固体高分子型燃料电池用不锈钢材
US6312846B1 (en) * 1999-11-24 2001-11-06 Integrated Fuel Cell Technologies, Inc. Fuel cell and power chip technology
CN1427749A (zh) * 2000-04-17 2003-07-02 宾夕法尼亚州研究基金会 淀积的薄膜以及它们在分离层和牺牲层应用中的使用
DE10021907B4 (de) * 2000-05-05 2005-06-02 Ballard Power Systems Ag Brennstoffzellensystem mit einem Brennstoffzellenstapel mit integrierter Verpolschutzdiode
EP1258937A1 (en) * 2001-05-17 2002-11-20 STMicroelectronics S.r.l. Micro silicon fuel cell, method of fabrication and self-powered semiconductor device integrating a micro fuel cell
ATE402484T1 (de) * 2002-01-29 2008-08-15 Matsushita Electric Ind Co Ltd Halbleitervorrichtung mit brennstoffzelle und verfahren zu ihrer herstellung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166681A (ja) * 1982-03-29 1983-10-01 Semiconductor Energy Lab Co Ltd 半導体装置
WO2000069007A1 (en) * 1999-05-06 2000-11-16 Sandia Corporation Fuel cell and membrane
JP2002075399A (ja) * 2000-08-30 2002-03-15 Hitachi Ltd 固体高分子電解質型燃料電池用セパレータ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134879A (ja) * 2004-11-01 2006-05-25 General Motors Corp <Gm> 燃料電池水管理向上方法
JP2009513025A (ja) * 2005-12-05 2009-03-26 インダストリー−アカデミック コーオペレーション ファンデーション キョンサン ナショナル ユニバーシティ ウェーハ裏面に電源供給装置が内蔵した半導体用シリコンウェーハ
JP2007227080A (ja) * 2006-02-22 2007-09-06 National Institute Of Advanced Industrial & Technology 燃料電池
KR100645594B1 (ko) 2006-07-12 2006-11-15 한국에너지기술연구원 연료전지 성능 평가용 셀 또는 스택 및 연료전지 성능 평가방법
JP2010113916A (ja) * 2008-11-05 2010-05-20 Kanagawa Prefecture 燃料電池セルおよびその製造方法
JP2022023896A (ja) * 2010-08-06 2022-02-08 株式会社半導体エネルギー研究所 半導体装置
JP7146046B2 (ja) 2010-08-06 2022-10-03 株式会社半導体エネルギー研究所 半導体装置

Also Published As

Publication number Publication date
EP1471588B1 (en) 2008-07-23
EP1471588A1 (en) 2004-10-27
JP3700979B2 (ja) 2005-09-28
CN1328811C (zh) 2007-07-25
DE60322342D1 (de) 2008-09-04
US20040099907A1 (en) 2004-05-27
CN1625818A (zh) 2005-06-08
EP1471588A4 (en) 2007-01-03
JPWO2003065487A1 (ja) 2005-05-26
ATE402484T1 (de) 2008-08-15
US6933570B2 (en) 2005-08-23

Similar Documents

Publication Publication Date Title
JP3700979B2 (ja) 燃料電池を備える半導体装置およびその製造方法
US12107123B2 (en) Silicon carbide semiconductor device
US8350289B2 (en) Semiconductor device
US7652867B2 (en) Mobile, transportable, electrostatic chuck for wafers made of semiconductor material
TW200947726A (en) Buried insulator isolation for solar cell contacts
WO2007100947A2 (en) Integrated micro fuel cell apparatus
US9698299B2 (en) Integrated circuit combination of a target integrated circuit and a plurality of thin film photovoltaic cells connected thereto using a conductive path
US7915725B2 (en) Silicon wafer for semiconductor with powersupply system on the backside of wafer
GB2596973A (en) Porous silicon membrane material, manufacture thereof and electronic devices incorporating same
TW201114014A (en) Semiconductor device
KR100861385B1 (ko) 방사성동위원소 전지 및 그 제조방법
JP2003282089A (ja) マイクロ燃料電池
US11646451B2 (en) Semiconductor device, manufacturing method thereof, and power generating device
JPH0377382A (ja) 太陽電池セル
TW202209715A (zh) 發電元件、發電裝置、電子機器及發電元件的製造方法
CN114093899A (zh) 一种集成太阳能电池的探测器及其制作方法
JP2011035123A (ja) 光電変換部材
CN105977160A (zh) 一种高可靠的vdmos输入端静电泄露的制造方法
CN106558624A (zh) 一种快速恢复二极管及其制造方法
CN106684182A (zh) 太阳能和锂离子电池一体化器件
CN110148581B (zh) 一种金属-半导体的金属化工艺及方法
US20120025342A1 (en) Integrated circuit combination of a target integrated circuit and a plurality of cells connected thereto using the top conductive layer
Niwa Study on ion transport mechanism in ultrathin electrolyte membrane for low temperature operation of solid oxide fuel cell
JP2010086900A (ja) 集電体、双極型電極、双極型電池、組電池、および車両
Boccard et al. Amorphous Silicon Carbide Passivating Layers to Enable Higher Processing Temperature in Crystalline Silicon Heterojunction Solar Cells

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2003703040

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10696347

Country of ref document: US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: EXCEPT/SAUF US, EP (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL,PT, SE, SI, SK, TR)

WWE Wipo information: entry into national phase

Ref document number: 2003564966

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038029456

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003703040

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003703040

Country of ref document: EP