WO2019232835A1 - 硅极板及其制备方法、硅在燃料电池的应用、燃料电池电堆结构、燃料电池和应用 - Google Patents

硅极板及其制备方法、硅在燃料电池的应用、燃料电池电堆结构、燃料电池和应用 Download PDF

Info

Publication number
WO2019232835A1
WO2019232835A1 PCT/CN2018/092793 CN2018092793W WO2019232835A1 WO 2019232835 A1 WO2019232835 A1 WO 2019232835A1 CN 2018092793 W CN2018092793 W CN 2018092793W WO 2019232835 A1 WO2019232835 A1 WO 2019232835A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
flow channel
fuel cell
silicon wafer
cooling medium
Prior art date
Application number
PCT/CN2018/092793
Other languages
English (en)
French (fr)
Inventor
朱景兵
施正荣
Original Assignee
上海尚理投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810577210.5A external-priority patent/CN110581288B/zh
Priority claimed from CN201810577211.XA external-priority patent/CN110581290B/zh
Priority claimed from CN201810577217.7A external-priority patent/CN110581291B/zh
Application filed by 上海尚理投资有限公司 filed Critical 上海尚理投资有限公司
Priority to KR1020207029837A priority Critical patent/KR102515639B1/ko
Priority to JP2021508036A priority patent/JP7268136B2/ja
Priority to AU2018426555A priority patent/AU2018426555B2/en
Priority to US17/042,959 priority patent/US11799097B2/en
Priority to EP18922018.9A priority patent/EP3806215A4/en
Publication of WO2019232835A1 publication Critical patent/WO2019232835A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the field of fuel cells, and particularly relates to a silicon electrode plate and a preparation method thereof, and also relates to the application of the silicon electrode plate in a fuel cell, and a fuel cell stack structure, a fuel cell, and an application.
  • Fuel cell is a chemical device that directly converts the chemical energy possessed by fuel into electrical energy. It is also called an electrochemical generator. Because the fuel cell converts the Gibbs free energy in the chemical energy of the fuel into electrical energy through an electrochemical reaction, it is not limited by the Carnot cycle effect, and the energy conversion rate is high; and the reaction product of a fuel cell using hydrogen as a fuel is Water, environmentally friendly, theoretically can achieve zero pollution emissions; In addition, the fuel cell has no mechanical transmission parts, fewer moving parts, and low noise at work; and the fuel cell also has high specific energy, high reliability, wide fuel range, start-up Short time, small size, easy to carry, etc. Therefore, from the perspective of energy conservation and ecological environment protection, fuel cells are currently the most promising power generation technology.
  • fuel cells usually include electrodes, Electrolyte Membrane, and Current Collectors.
  • the electrodes of a fuel cell are electrochemical reaction sites where the fuel undergoes an oxidation reaction and an oxidant undergoes a reduction reaction.
  • a catalyst is usually provided on the electrode.
  • the main function of the electrolyte separator is to separate the oxidant from the reducing agent and conduct ions.
  • the current collector is also called bipolar plate, which is a fuel cell battery. An important performance element in the reactor, the bipolar plate is responsible for distributing fuel and air to the surface of the anode and cathode and the heat dissipation of the battery stack.
  • bipolar plate materials are the core and key factors that determine the industrialization of fuel cells.
  • bipolar plates After research and verification, the characteristics required for bipolar plates are: good gas barrier function; better thermal conductivity; lower bulk resistance and contact resistance; strong corrosion resistance; light weight, high strength, suitable for batch processing, etc. characteristic.
  • the types of bipolar plates in fuel cells are mainly graphite plates or metal plates.
  • graphite plates are mainly obtained by pressing carbon powder or graphite powder mixed with graphitizable resin, which mainly has large volume and low power density. And low strength; metal plates are generally directly processed from stainless steel, titanium alloys, aluminum alloys, etc., which mainly has the disadvantage of being easily corroded, and generally requires various surface modifications, which in turn brings complex manufacturing processes
  • One is the use of multi-layer composite type, which uses thin metal as the separator plate and perforated thin carbon plate as the flow field plate. It is very tedious to produce with extremely thin conductive adhesive.
  • the other is a composite material type, which uses thermoplastic or thermosetting resin mixed with graphite powder and reinforcing fibers to form a preform, which is cured and graphitized. However, its conductive effect is poor. And the cost is high.
  • a suitable bipolar plate material is sought as a bipolar plate for a fuel cell, and satisfies the good gas barrier function required by the bipolar plate; better thermal conductivity; lower bulk resistance and contact resistance; corrosion resistance Strong performance; light weight, high strength, suitable for batch processing and other characteristics, is undoubtedly of great significance and core role in promoting the mass industrialization of fuel cells.
  • the purpose of the present invention is to propose a silicon electrode plate and a preparation method thereof, the application of silicon in a fuel cell, a fuel cell stack structure, a fuel cell, and an application, and to propose that a silicon electrode plate is directly used as a bipolar plate of a fuel cell.
  • a silicon electrode plate is directly used as a bipolar plate of a fuel cell.
  • the invention has better advantages in life, cost, efficiency and power density. It is undoubtedly important for the mass industrialization of fuel cells. Of great significance and core advancement.
  • the material silicon has the characteristics of low gas permeability, high thermal conductivity, and easy processing. It is an ideal base material for the production of micro fuel cells, and the surface of silicon is plated with metal (usually a precious metal). , You can get conductive properties and better stability, corrosion resistance.
  • Kelly and Meyers first published related literature on making micro fuel cells based on silicon. Since then, silicon has made great progress in micro fuel cells.
  • Kim used silicon as a substrate to make a micro fuel cell with a flow channel size of 400 microns (width) x 230 microns (depth) and a 500 micron thick heat-resistant glass on the back of the silicon microbipolar plate. The purpose is to strengthen its physical strength and overcome the shortcomings of silicon wafers.
  • the metal layer of the current collects the current generated by the electrode and flows out of the battery in a direction parallel to the surface of the silicon substrate.
  • This structure can only make a fuel cell with a small area because it conducts current along the metal layer film, and cannot Stacked in multiple layers; at the same time, because the silicon substrate structure cannot be provided with a structure to provide a cooling medium flow, these reasons eventually led to the technical solution of using silicon materials as the fuel cell electrode plate substrate for a long time only in micro fuel cells Applications.
  • the Chinese invention patent with authorized bulletin number CN100397687C discloses a cathode flow field plate of a self-breathing miniature proton exchange membrane fuel cell and a manufacturing method thereof, and adopts a new structure processed by MEMS technology. Specifically, the structure characteristics of the flow field plate are proposed.
  • the cathode flow field is processed into a double-layer composite hollow structure on a silicon wafer material with a thickness of about 300-500 microns.
  • the flow field plate is near the air side and processed into a hollow flow channel perpendicular to the direction of the silicon wafer.
  • the flow channel perpendicular to the silicon wafer is processed corresponding to the hollow flow channel near the air side, so that the silicon wafer penetrates;
  • the silicon electrode plate of this method is used as a cathode substrate structure of a micro fuel cell, and it is not only necessary to use silicon
  • a precious metal conductive layer is provided on the substrate to realize the current collecting function required by the structure of the electrode plate. The preparation process is complicated, the material cost is high, and the cooling water flow channel cannot be set. Only a micro fuel cell can be manufactured;
  • the invention patent with authorized bulletin number CN101894954B discloses a micro-sized fuel cell packaging method based on normal temperature bonding technology, and proposes a method for manufacturing cathodes and anode plates, which are cast on silicon wafers with ⁇ 100> crystal orientation on both sides.
  • 50 nm silicon dioxide was grown on both sides as a stress buffer layer by thermal oxidation, and 160 nm silicon nitride was deposited as a masking layer by LPCVD.
  • 20 nm Cr was sputtered on the front side as an adhesion layer, and 0.2 ⁇ m Au was used as a current collection layer.
  • the invention patent with publication number CN101867052A discloses a spoke-type self-breathing micro fuel cell and a preparation method thereof.
  • a silicon wafer is used as a cathode and an anode electrode plate. The specific process is: cleaning the silicon wafer, and applying low-pressure chemical vapor deposition to the silicon wafer.
  • a silicon nitride film as an etching mask is prepared on the surface, and a mask pattern is formed on the film by photolithography to achieve the purpose of selective etching.
  • the silicon wafer is anisotropically etched using a 40% KOH solution, and the reactive ion etching is used.
  • the residual silicon nitride film on the surface of the silicon wafer is removed by an etching method.
  • a laser processing technology is used to form a steep entrance and exit channel on the surface of the silicon wafer.
  • a Ti / Au metal layer is formed on the corroded surface of the silicon wafer by magnetron sputtering.
  • the silicon electrode plate of this method is also used as a substrate structure of a micro fuel cell, and it is not only necessary to provide a precious metal conductive layer (Ti / Au) on the silicon substrate to achieve the structure requirements of the electrode plate.
  • the function of collecting current, the preparation process is complicated, the material cost is high, and the cooling water flow channel cannot be set, and only a micro fuel cell can be made;
  • the invention patent with authorized bulletin number CN100483829C discloses a stacked silicon-based micro fuel cell stack and a manufacturing method thereof, which uses a silicon substrate, specifically discloses a method for etching a silicon electrode plate.
  • Silicon dioxide was grown on both sides of the double-sided silicon wafer by thermal oxidation, and LPCVD 0.1 micron silicon nitride was used as a masking layer. After the flow field structure pattern was lithographed, reactive ion etching was used to remove the silicon nitride exposed by photolithography.
  • the photoresist is removed; then the silicon wafer is etched with KOH solution and ultrasonic waves, and when the corroded surfaces on both sides meet, a through hole is formed and the through hole is stopped; similarly, the silicon electrode plate of this method is also used as a lining for a micro fuel cell.
  • the bottom structure requires not only a noble metal conductive layer (Ti / Pt) on the silicon substrate to achieve the current collecting function required by the electrode structure.
  • the preparation process is complicated, the material cost is high, and the cooling water flow channel cannot be set. Only micro fuels can be made. battery;
  • the invention patent with authorization bulletin number CN100369304C discloses a method for preparing a silicon-based miniature direct methanol fuel cell catalytic electrode, and specifically discloses the use of a P-type or N-type crystal orientation with a resistivity of 0.012-0.013 ⁇ .cm as
  • the silicon wafer of ⁇ 100> is oxidized to produce a 1.0-1.5 micron silicon dioxide layer after cleaning.
  • the flow field pattern is formed by photolithography.
  • the channel flow field is etched on the silicon wafer by wet etching technology, and the etching depth is 150. -240 microns; finally, porous silicon is formed on the surface of the silicon wafer by electrochemical methods.
  • the surface of the porous silicon greatly increases the effective reaction area of the catalyst.
  • the silicon wafer as the carrier of the catalytic electrode material of the micro fuel cell is different from the technical problem to be solved and the technical solution adopted by the present invention for making electrode plates using crystalline silicon.
  • Fuel cells and micro fuel cells generally use one and a maximum of two fuel cell units.
  • the output power is generally between milliwatts and tens of watts.
  • the silicon substrate structure cannot be provided with cooling water channels, and the heat dissipation performance cannot be obtained. Guarantee; the applicant finds that so far no technical staff has proposed to apply the concept of this technical solution to non-miniature scale industrial combustion engines. In the battery, after an in-depth analysis by the applicant, it was found that this was due to the fact that these existing technologies proposed the process of using silicon wafers to make silicon substrates.
  • the inspiration was from silicon chip processing technology in the electronics industry, specifically MEMS processing technology. , This MEMS processing technology is applied to micro fuel cells to make silicon substrates or porous silicon electrodes.
  • non-microscale industrial fuel cells have a stack structure with several fuel cell units connected in series, first the silicon substrate cannot be used. In order to provide sufficient mechanical support, secondly, a precious metal needs to be plated on the silicon electrode substrate to realize the current collection function. If MEMS processing technology is used to make non-microscale industrial fuel cells, it will be very cumbersome and the cost will be too high. Metal plates or graphite plates do not have a competitive advantage; more importantly, as mentioned earlier, these technical solutions are to collect the current generated by the electrodes and flow out of the battery in a direction parallel to the silicon substrate. The film conducts current, so it can only be made into a fuel cell with a small area, and it cannot be stacked in multiple layers.
  • the inventor of the present application after understanding of fuel cells and decades of research and analysis of silicon materials, found that silicon materials can be directly used as the silicon electrode plates of fuel cells after specific selection and design.
  • the metal electrode plate, graphite electrode plate or composite material electrode plate, the silicon electrode plate of the present invention obtains surprisingly outstanding technical effects.
  • the main technical solutions are as follows:
  • a silicon electrode plate is made of doped conductive crystalline silicon material, and has an internal cooling medium flow channel, a front reducing agent flow channel and a reverse oxidant flow channel, and the internal cooling medium flow channel and the front surface.
  • the reducing agent flow channel and the reverse oxidant flow channel are respectively provided with a silicon electrode plate inlet and outlet combination which is connected to the reducing electrode flow channel.
  • a silicon electrode plate is made of doped conductive crystalline silicon material, and has an internal cooling medium flow channel, a front reducing agent flow channel or a reverse oxidant flow channel, and the internal cooling medium flow channel and the front surface.
  • the reducing agent flow channel or the reverse oxidant flow channel is respectively provided with a silicon electrode plate inlet and outlet combination which is connected to the reducing electrode flow channel.
  • the silicon electrode plate includes two or more silicon wafers, wherein the silicon wafer has single-sided or double-sided flow channels; and a conductive material is used between the surface areas of the silicon wafers that do not cover the flow channels.
  • the composite connection is stacked as a whole, and an internal flow channel located inside the silicon electrode plate is formed through the composite connection, and the internal flow channel serves as the internal cooling medium flow channel; the flow on the non-stacked surface of the silicon wafer
  • the channel acts as a reducing agent channel or an oxidant channel.
  • the doped conductive crystalline silicon material is a monocrystalline or polycrystalline doped silicon wafer, and its resistivity is not higher than 0.1 ⁇ .cm.
  • the thickness of the silicon wafer ranges from 0.2 to 5 mm and the size ranges from 50 to 300 mm.
  • the reducing agent flow channel and / or the oxidizing agent flow channel have a depth ranging from 50 to 300 microns and a width ranging from 500 to 3000 microns.
  • the thickness of the conductive material used for the composite connection between the silicon wafers is in the micrometer range, which may be 1-100 micrometers or 1-50 micrometers or 1-20 micrometers. In material selection, it may be Conductive metal materials or conductive non-metallic materials such as conductive adhesives, because conductive non-metallic materials such as conductive adhesives are difficult to process to micron-level thicknesses, and organic solvents are usually excluded during the composite connection process, which is not conducive to the implementation of the process, so
  • the conductive material according to the present invention is a metal conductive material; in order to facilitate a good composite connection between the metal conductive materials and between them and the silicon wafer, further preferably, the conductive material according to the present invention uses silicon and silicon.
  • the material is a metal conductive material with eutectic bonding effect, that is, when the eutectic temperature is equal to or close to the eutectic temperature (the eutectic temperature in the present invention is the temperature during the eutectic reaction between silicon and the corresponding metal conductive material), the metal is conductive
  • the material and silicon can undergo a good eutectic reaction, so that the metal conductive material layer between the silicon wafers and the surface layer of the silicon wafers that are in contact with each other are melt-bonded to each other, and the shape is formed after cooling. It becomes a solid silicon metal conductive alloy composite structure with strong bonding, and finally achieves an excellent composite connection effect between silicon wafers.
  • these metal conductive materials may be: nickel Ni, gold Au, silver Ag, copper Cu Materials such as aluminum, aluminum, and aluminum; the eutectic temperature of silicon and these metal conductive materials is usually significantly lower than the melting temperature of silicon itself or the metal conductive material itself, and the eutectic temperature range is generally 500-1000 ° C, specifically the eutectic temperature with silicon It can be determined according to the type of metal conductive material actually used, and these can be obtained by consulting relevant related technical data.
  • the method for preparing a silicon electrode plate as described above uses an etching process, a laser process, or a screen printing process to process runners or import and export combinations on one or both sides of a silicon wafer; using conductive materials, two or Two or more silicon wafers are compositely connected and stacked as a whole, and an internal flow channel located inside the silicon electrode plate is formed through the composite connection, and the internal flow channel serves as the internal cooling medium flow channel.
  • a conductive material layer is formed on both sides of the first silicon wafer and the second silicon wafer;
  • the conductive material layer is also used as a mask layer, and a reverse first internal cooling medium flow path and a front reducing agent flow path are respectively formed on both sides of the first silicon wafer by an alkaline solution etching process on both sides of the first silicon wafer.
  • the front surface of the second internal cooling medium flow channel and the reverse surface oxidant flow channel are respectively produced on both sides of the second silicon wafer.
  • A40 using a laser process to make a first import and export combination and a second import and export combination on the first silicon wafer and the second silicon wafer, respectively;
  • the conductive material layers of the first silicon wafer and the second silicon wafer that are in contact with each other are melted, and the two silicon wafers are combined and integrated into one.
  • the first internal cooling medium flow channel and the second internal cooling medium flow channel are correspondingly matched and the internal cooling medium flow channel is formed through the composite connection;
  • the first inlet and outlet combination and the second inlet are correspondingly matched and form the silicon electrode plate inlet and outlet combinations through the composite connection.
  • A10 ' preparing a first silicon wafer and a second silicon wafer
  • A20 ′ respectively, by using a screen printing process, respectively forming a conductive material layer on one side of the first silicon wafer and on both sides of the second silicon wafer;
  • the conductive material layer is also used as a mask layer, and a front or reverse first internal cooling medium flow channel is produced on one side of the first silicon wafer through an alkali solution etching process, and the second silicon On the two sides of the sheet, a second internal cooling medium flow path and a front reducing agent flow path or a reverse oxidant flow path are respectively formed on the reverse or front side;
  • the conductive material layers of the first silicon wafer and the second silicon wafer that are in contact with each other are melted, and the two silicon wafers are compositely connected as Integrated; wherein the first internal cooling medium flow channel and the second internal cooling medium flow channel are correspondingly matched and the internal cooling medium flow channel is formed through the composite connection; the first inlet and outlet combination and the second The inlet and outlet combinations are correspondingly matched and form the silicon electrode plate inlet and outlet combinations through the composite connection.
  • the conductive material is a metal conductive material having a eutectic bonding effect with a silicon material, and the heating temperature for sintering at a high temperature is close to or equal to the eutectic temperature of the silicon material and the metal conductive material.
  • the fuel cell includes one or more fuel cell units; the fuel cell unit includes an anode plate, an anode electrode, an electrolyte separator, a cathode electrode, and a cathode that are sequentially stacked as a whole; Board; of which
  • the cathode plate and the anode plate are silicon electrode plates made of doped conductive crystalline silicon material
  • the silicon electrode plate is a silicon electrode plate as described above.
  • the silicon electrode plate can be used simultaneously as a cathode plate of a single fuel cell unit and an anode plate of a single fuel cell unit adjacent thereto.
  • a fuel cell stack structure wherein the stack structure includes fuel cell units connected to each other in series and stacked as a whole and having a number of not less than 3;
  • the fuel cell unit includes an anode plate, an anode electrode, an electrolyte separator, a cathode electrode, and a cathode plate which are sequentially stacked as a whole; wherein,
  • the cathode plate and the anode plate are silicon electrode plates made of doped conductive crystalline silicon material
  • the silicon electrode plate is a silicon electrode plate as described above.
  • the silicon electrode plate can be used simultaneously as a cathode plate of a single fuel cell unit and an anode plate of a single fuel cell unit adjacent thereto.
  • the output power of the stack structure is not less than 0.1KW.
  • the fuel cell includes a stack structure including an end fuel cell unit located at both ends in series and stacked as a whole, and one or more middle fuel cell units located in the middle, wherein,
  • the middle fuel cell unit includes a middle silicon electrode plate having an internal cooling medium flow channel, a front reducing agent flow channel, and a reverse oxidant flow channel; and the internal cooling medium flow channel, the front reducing agent flow channel, and a reverse surface
  • the oxidant flow channel is respectively provided with a silicon electrode plate inlet and outlet combination that communicates with it.
  • the end fuel cell includes an end silicon plate and the middle silicon plate; wherein the end silicon plate has an internal cooling medium flow channel, a front reducing agent flow channel, or a reverse oxidant flow channel.
  • the internal cooling medium flow channel, the front reducing agent flow channel or the reverse oxidizing agent flow channel are respectively provided with a silicon electrode plate inlet and outlet combination connected with the silicon electrode plate.
  • the middle silicon plate includes a first middle silicon wafer and a second middle silicon wafer, wherein the first middle silicon wafer has a first internal cooling medium flow channel on the reverse side, a reducing agent flow channel on the front side, and a first inlet.
  • An outlet combination the second middle silicon wafer has a front second internal cooling medium flow channel, a reverse oxidant flow channel and a second inlet and outlet combination; the first middle silicon wafer does not cover the first internal cooling medium flow channel
  • a conductive material composite connection is used to stack the back area and the front area of the second middle silicon wafer that does not cover the second internal cooling medium flow path.
  • the first internal cooling medium flow path and the second internal cooling medium are integrated as a whole.
  • the flow channels are correspondingly matched and the internal cooling medium flow channel is formed through the composite connection; the first inlet and outlet combinations and the second inlet and outlet combination are correspondingly matched and the silicon electrode plate inlet and outlet combination are formed through the composite connection, respectively. .
  • the end silicon wafer includes an end silicon wafer and a middle silicon wafer, wherein the end silicon wafer has a front or reverse first internal cooling medium flow channel and a first inlet and outlet combination, and the middle silicon wafer
  • the sheet has a reverse or front second internal cooling medium flow path, a front reducing agent flow path or a reverse oxidant flow path and a second inlet and outlet combination; the end silicon wafer does not cover the front or A conductive material composite connection and stacking is used as a whole between the reverse area and the middle silicon wafer that does not cover the reverse or front area of the second internal cooling medium flow path, and the first internal cooling medium flow path and the second internal cooling medium flow path are integrated as a whole.
  • the flow channels are correspondingly matched and the internal cooling medium flow channel is formed through the composite connection; the first inlet and outlet combinations and the second inlet and outlet combination are correspondingly matched and the silicon electrode plate inlet and outlet combination are formed through the composite connection, respectively. .
  • the reducing agent is hydrogen or natural gas or coal gas or purified gas or methanol
  • the oxidant is oxygen or air.
  • the positive electrode, the electrolyte separator, and the negative electrode use a MEA membrane electrode assembly, wherein the electrolyte separator is a proton exchange membrane.
  • the cooling medium is water.
  • a fuel cell includes a stack structure, a package insulation member, and an external mounting member, and the stack structure adopts the fuel cell stack structure described above.
  • a fuel cell application as described above is applied to a portable product, or a stationary power supply or heating device product, or a transportation product.
  • the present invention is based on the applicant's inventor's decades of research and analysis experience on silicon materials, and proposes to directly use doped conductive crystalline silicon materials as silicon electrode plates for fuel cells, and proposes the structure design of silicon electrode plates Specifically, two or more silicon wafers are stacked and compounded, and an internal flow channel is formed through the stacked composite processing, and the internal flow channel can be directly used as a cooling medium flow channel; the silicon electrode plate provided by the present invention is used as an internal fuel cell.
  • the skeletal structure can provide sufficient mechanical support force, and at the same time, the silicon electrode plate directly acts as a current collection plate for current transmission in the fuel cell stacking direction, not only does not need to provide an additional metal film layer, but also realizes the requirements of a fuel cell with a stack structure Multilayer stack structure; and the internal flow channel of the silicon electrode plate directly serves as the cooling medium flow channel, which further effectively transfers the heat generated during the working process of the fuel cell to the outside in time; therefore, the silicon electrode plate provided by the present invention can fully meet Good gas barrier function required by fuel cell bipolar plates; better thermal conductivity; lower body Resistance and contact resistance; strong corrosion resistance; light weight, high strength, suitable for batch processing, etc.
  • the silicon electrode proposed by the present invention has better advantages in life, cost, efficiency, and power density, which is undoubtedly of great significance and core role in promoting the mass industrialization of fuel cells.
  • the present invention further proposes a preferred method for preparing a silicon electrode plate.
  • a conductive material layer is prepared on the surface of a silicon wafer.
  • the conductive material layer is preferably a base metal material such as nickel or copper.
  • the conductive material layer of the present invention is used as a subsequent silicon wafer.
  • the mask layer structure in the etching process is also a transition bonding structure in which two silicon wafers are compositely connected and stacked into one. The process is the simplest and most effective, easy to implement, and has the lowest process cost, which is suitable for batch manufacturing applications.
  • the present invention further proposes a preferred conductive material for the composite connection between silicon wafers, and specifically proposes that a metal conductive material having a eutectic bonding effect with the silicon material is used as the composite material for connecting the silicon wafers at the eutectic temperature.
  • the sintering process is performed below to make the metal conductive material layers between the silicon wafers and the surface layer of the silicon wafers in contact with each other melt-bond. After cooling, a solid silicon metal conductive alloy composite structure is formed, and finally the silicon wafers are realized. Excellent composite connection effect.
  • the silicon electrode provided by the present invention is particularly suitable for the field of non-micro fuel cell products with a stack structure (especially for non-micro fuel cells with an output power of not less than 0.1 KW) due to the above excellent characteristics.
  • a stack structure especially for non-micro fuel cells with an output power of not less than 0.1 KW
  • silicon plates Compared with the prior art metal plates, graphite plates or composite material plates, it has better performance advantages; of course, those skilled in the art can directly apply silicon plates to the field of micro fuel cells according to actual needs. (Generally there are only 1-2 fuel cell units).
  • silicon As the existing micro fuel cells using silicon as the substrate of the electrode plate, it has some obvious technical advantages in terms of material cost, manufacturing process, mechanical strength and cooling performance. It should fall into the protection scope of the present invention.
  • the present invention needs to be particularly explained.
  • the expressions of the front and back sides appearing in the entire text of the present invention are only used to explain the positional relationship of various types of flow channels distributed on different sides of the silicon wafer.
  • the front and back sides are relative, the actual direction It is different depending on the reference object, and it is not intended to limit the specific direction of the present invention.
  • FIG. 1 is a schematic cross-sectional structure diagram of a stack structure 100 according to a specific embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional structure diagram of the middle fuel cell units 100b, 100c, 100d and the end fuel cell units 100a, 100e according to the first embodiment of the present invention
  • FIG. 3 is a schematic cross-sectional structure diagram of the middle silicon electrode plate 110 and the end silicon electrode plates 130 and 130 'according to the first embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a reducing agent flow channel 111 in a central silicon electrode plate 110 according to Embodiment 1 of the present invention
  • FIG. 5 is a flowchart of a manufacturing process of the central silicon electrode plate 110 according to the embodiment 1 of the present invention.
  • FIG. 6 is a flowchart of a manufacturing process of a central silicon electrode plate 210 according to Embodiment 2 of the present invention.
  • FIG. 7 is a flowchart of a manufacturing process of the central silicon electrode plate 310 in Embodiment 3 of the present invention.
  • FIG. 8 is a flowchart of a manufacturing process of a central silicon electrode plate 410 according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic cross-sectional structure diagram of a fuel cell unit 10 of a micro fuel cell in Embodiment 5 of the present invention.
  • FIG. 10 is a schematic cross-sectional structure diagram of a fuel cell unit 20a, 20b of a micro fuel cell in Embodiment 6 of the present invention.
  • the embodiment of the invention discloses a silicon electrode plate.
  • the silicon electrode plate is made of doped conductive crystalline silicon material, and has an internal cooling medium flow channel, a front reducing agent flow channel and a reverse oxidizing agent flow channel, and the internal cooling medium flow channel.
  • the front reducing agent flow channel and the reverse oxidizing agent flow channel are respectively provided with a silicon electrode plate inlet and outlet combination which communicates with it.
  • the embodiment of the invention also discloses a silicon electrode plate, which is made of doped conductive crystalline silicon material, and has an internal cooling medium flow channel, a front reducing agent flow channel or a reverse oxidizing agent flow channel, and the internal cooling medium flow Channel, front reducing agent flow channel or reverse oxidizing agent flow channel are respectively provided with a silicon electrode plate inlet and outlet combination connected with it.
  • an etching process or a laser process or a screen printing process is used to process runners or import and export combinations on one or both sides of a silicon wafer; two conductive materials are used to conduct the Or two or more silicon wafers are connected and stacked as a whole, and an internal flow channel located inside the silicon electrode plate is formed through the composite connection, and the internal flow channel is used as an internal cooling medium flow channel.
  • the embodiment of the invention discloses the application of silicon in a fuel cell.
  • the fuel cell includes one or more fuel cell units; the fuel cell unit includes an anode plate, an anode electrode, an electrolyte separator, a cathode electrode, and a cathode plate which are sequentially stacked as a whole;
  • the cathode plate and the anode plate are silicon electrode plates made of doped conductive crystalline silicon material; the silicon electrode plates are silicon electrode plates as described above.
  • An embodiment of the present invention also discloses a fuel cell stack structure.
  • the stack structure includes fuel cell units connected in series and stacked together, and the number of fuel cell units is not less than 3.
  • the fuel cell unit includes an anode plate sequentially stacked as a whole, The anode electrode, the electrolyte separator, the cathode electrode, and the cathode plate; wherein the cathode plate and the anode plate are made of a silicon electrode plate doped with a conductive crystalline silicon material; the silicon electrode plate is a silicon electrode plate as described above.
  • An embodiment of the present invention also discloses a fuel cell including a stack structure, a package insulation member, and an external mounting member.
  • the stack structure adopts the fuel cell stack structure described above.
  • the fuel cell application described in the embodiments of the present invention is applied to portable products, or fixed power supply or heating device products, or transportation products.
  • the stack structure 100 includes fuel cell units that are connected in series and stacked together and have a number of not less than three. Specifically, in this embodiment, the fuel The number of battery cells is five; preferably, the output power of the stack structure 100 is not less than 0.1 KW.
  • the stack structure of the first embodiment includes end fuel cell units 100 a and 100 e at both ends and three middle fuel cell units 100 b, 100 c, and 100 d at the middle.
  • Each fuel cell unit includes sequentially stacked ones. It is an integrated anode plate, anode electrode, electrolyte separator, cathode electrode, cathode plate.
  • the cathode plate and anode plate are made of silicon electrode plate doped with conductive crystalline silicon material. Among them, the silicon electrode plate is also used as a single fuel cell unit. Cathode plate and anode plate of a single fuel cell unit adjacent thereto;
  • the doped conductive crystalline silicon material is a single crystal or polycrystalline doped silicon wafer; preferably, in this embodiment, the resistivity of the silicon wafer is not higher than 0.1 ⁇ .cm, more preferably Ground, the resistivity range of the silicon wafer is 0.0005-0.05 ⁇ .cm;
  • a method for preparing a silicon electrode plate may be selected according to a specific type of crystalline silicon to which a silicon wafer belongs, which will be specifically described later in this article.
  • the thickness of the silicon wafer ranges from 0.2 to 5 mm, and the size ranges from 50 to 300 mm.
  • the shape of the silicon wafer may be a square shape, a circular shape, or other shapes as required. The specific implementation of the present invention does not specifically limit this;
  • the silicon wafers used are all N-type single-crystal phosphorus-doped silicon wafers, which have a square shape and a crystal orientation other than the ⁇ 111> crystal orientation, which can be specifically the ⁇ 100> crystal orientation or ⁇ 110> crystal orientation or other crystal orientations with a significant angle to the ⁇ 111> crystal orientation, which is beneficial to the subsequent use of an alkaline solution etching process in this embodiment;
  • the resistivity of the N-type single crystal phosphorus-doped silicon wafer is about 0.01 ⁇ .cm; silicon The thickness of the sheet is 0.5mm, and the size is about 150mm;
  • the silicon electrode plate has an internal cooling medium flow path, a front reducing agent flow path and / or a reverse oxidant flow path, and an internal cooling medium flow path, a front reducing agent flow path and / or a reverse oxidant
  • the flow channel is respectively provided with a silicon electrode plate inlet and outlet combination connected to it; preferably, the silicon electrode plate specifically includes two or more silicon wafers, wherein the silicon wafer has single-sided or double-sided flow channels; the silicon wafer is not
  • the surface area covering the flow channel is made of a conductive material composite connection and stacking, and an internal flow channel located inside the silicon electrode plate is formed through the composite connection.
  • the internal flow channel serves as an internal cooling medium flow channel;
  • the flow channel acts as a reducing agent flow channel or an oxidant flow channel;
  • the central fuel cell units 100b, 100c, and 100d include a central silicon electrode plate 110, and the central silicon electrode plate 110 is composed of two silicon wafers. It is processed and has internal cooling medium flow channel 112, front reducing agent flow channel 111, and reverse oxidant flow channel 113; and internal cooling medium flow channel 112, front reducing agent flow channel 111, and reverse oxidant flow channel 113 are respectively connected to it.
  • the silicon electrode plate import and export combination can be combined with reference to Figure 4
  • the silicon electrode plate import and export combination specifically, including three sets of silicon electrode plate import and export combination, respectively for the internal cooling medium flow channel 112, the front reducing agent flow channel 111 and the reverse side
  • the oxidant flow channels 113 communicate with each other.
  • the inlets of the three sets of silicon electrode plate inlet and outlet ports respectively pass the cooling medium, the reducing agent and the oxidant, and the outlets thereof are used to discharge the cooling medium, excess reducing agent and oxidant after passing through the respective flow channels. And their reaction products;
  • the reducing agent may be hydrogen or natural gas or coal gas or purified gas or methanol, and the oxidant may be oxygen or air.
  • oxidant type specifically, in this embodiment, the reducing agent is hydrogen, the oxidant is oxygen, and the reaction product is water, the positive electrode, the electrolyte separator, and the negative electrode use the MEA membrane electrode assembly 120, and the electrolyte separator is a proton exchange membrane,
  • the cooling medium is water, which is conducive to the efficiency, power density, and cost saving of the fuel cell stack structure provided by the present invention, and is easy to implement and implement.
  • reaction product in this embodiment is water, without any harmful substances, and is very environmentally friendly;
  • the MEA membrane electrode assembly 120 and the proton exchange membrane in this embodiment can directly adopt any of the existing technical solutions, and can be easily purchased in the market, which is a well-known technology with mature industrialization. No specific expansion instructions will be given;
  • the MEA membrane electrode assembly 120 of each fuel cell unit and its silicon electrode plate are provided with a certain safety packaging junction distance on both sides, and the distance is generally set to the millimeter level, such as 5-15mm;
  • the safety packaging junction distance is used for subsequent insulation packaging.
  • the silicon electrode plate import and export combination corresponding to the front reducing agent flow channel 111 includes the inlet 114a and the outlet 114a 'shown in FIG. 4 (the silicon electrode plate import and export combinations corresponding to the remaining flow channels).
  • the respective guide channels of the inlet 114a and the outlet 114a ' are the inlet guide channel 115a and the outlet guide channel 115a', respectively;
  • the shape design of the specific flow channels, inlets, and outlets on the central silicon electrode plate 110 in the embodiment of the present invention may refer to the design of FIG. 4, or any one of the prior art may be used, and the present invention is not particularly limited;
  • the middle silicon plate 110 includes a first middle silicon wafer and a second middle silicon wafer, wherein the first middle silicon wafer has a reverse first interior. Cooling medium flow channel, front reducing agent flow channel 111 and first inlet and outlet combination, the second middle silicon wafer has a front second internal cooling medium flow channel, reverse oxidant flow channel 113 and second inlet and outlet combination; the first middle silicon wafer A conductive material composite connection and stacking is used as a whole between the reverse area of the first internal cooling medium flow channel that is not covered and the front area of the second middle silicon wafer that does not cover the second internal cooling medium flow channel.
  • the second internal cooling medium flow channel on the front side is correspondingly matched and the internal cooling medium flow channel 112 is formed through composite connection; the first inlet and outlet combination and the second inlet and outlet combination are respectively matched and formed on the silicon electrode plate inlet and outlet combination through the composite connection.
  • the specific flow channel structure and shape of the first internal cooling medium flow channel on the reverse side, the second internal cooling medium flow channel on the front surface, and the reverse oxidant flow channel 113 in this embodiment can be directly referred to the front reducing agent flow channel 111 shown in FIG. 4, In order to save space, the description will not be repeated;
  • the reducing agent flow channel 111 and the oxidizing agent flow channel 113 have a depth range of 50-300 micrometers and a width range of 500-3000 micrometers; specifically, in the embodiment of the present invention, the reducing agent The depth of the flow channel 111 and the oxidant flow channel 113 is 100 ⁇ 10 micrometers and the width is 1000 ⁇ 100 micrometers; the depth and width of the first internal cooling medium flow channel and the second internal cooling medium flow channel design scheme and the reducing agent flow channel 111 The same as the oxidant flow channel 113;
  • the end fuel cell unit 100a includes an end silicon electrode plate 130, an MEA membrane electrode assembly 120, and a middle silicon electrode plate 110, and the end fuel cell unit 100e.
  • the end silicon electrode plate 130 ', the MEA membrane electrode assembly 120, and the middle silicon electrode plate 110 are used.
  • the end silicon electrode plate 130 is compositely processed from two silicon wafers, and has an internal cooling medium flow channel 131 and a reverse oxidant flow.
  • the internal cooling medium flow channel 131 and the reverse oxidant flow channel 132 are respectively provided with a silicon electrode plate inlet and outlet combination connected to them;
  • the end silicon electrode plate 130 ' is made of two silicon wafers and has internal cooling
  • the medium flow path 131 and the front reducing agent flow path 132 '; and the internal cooling medium flow path 131 and the front reducing agent flow path 132' are respectively provided with a silicon electrode plate inlet and outlet combination that communicates with them; the end silicon electrode of this embodiment
  • the silicon electrode plate import and export combination of the plates 130 and 130 ' uses the same technical scheme as the silicon electrode plate import and export combination of the central fuel cell units 100b, 100c, and 100d, and will not be described in detail.
  • the end silicon plate 130 includes an end silicon wafer and a middle silicon wafer, respectively, wherein the end silicon wafer has a reverse first internal cooling medium flow channel and a first inlet and outlet combination, and the middle silicon wafer has The front second internal cooling medium flow channel, the reverse oxidant flow channel 132, and the second inlet and outlet combination; the end silicon plate 130 'includes an end silicon wafer and a middle silicon wafer, respectively, wherein the end silicon wafer has a front first The internal cooling medium flow channel is combined with the first inlet and outlet.
  • the middle silicon wafer has a second internal cooling medium flow channel on the reverse side, a reducing agent flow channel 132 'on the front side, and a second inlet and outlet combination.
  • the end silicon wafer and the middle silicon wafer are electrically conductive.
  • Material composite connection and stacking as a whole, the first internal cooling medium flow channel and the second internal cooling medium flow channel are correspondingly matched and the internal cooling medium flow channel 131 is formed through the composite connection; the first inlet and outlet combination and the second inlet and outlet combination are correspondingly matched. And through the composite connection to form a silicon electrode plate import and export combination.
  • the typical method is: using an etching process or a laser process or a screen printing process to process runners or inlet and outlet combinations on one or both sides of the silicon wafer; and then use conductive materials
  • Two or more silicon wafers are compositely connected and stacked as a whole, and an internal flow channel located inside the silicon electrode plate is formed through the composite connection, and the internal flow channel serves as an internal cooling medium flow channel of the silicon electrode plate.
  • each fuel cell unit 100a, 100b, 100c, 100d, 100e in the fuel cell stack structure 100 of the present invention is connected in series and stacked as a whole, the stack structure of the present invention realizes current collection and transmission in the stacking direction, and In the stacking direction, the fuel cell units are matched through the corresponding silicon electrode plate inlet and outlet combinations.
  • the internal cooling medium flow channels 112, 131, reducing agent flow channels 111, 132 ', and oxidant flow channels 113, 132 of each fuel cell unit Connected separately in the stacking direction;
  • the thickness of the conductive material used for the composite connection between the silicon wafers is in the micrometer range.
  • it may be a conductive metal material or a conductive non-metal material such as a conductive glue; preferably, the conductive material is Metal conductive materials;
  • the conductive material of this embodiment uses a metal conductive material that has a eutectic bonding effect with the silicon material.
  • the eutectic temperature in the present invention is the temperature at which the eutectic reaction between silicon and the corresponding metal conductive material occurs
  • the metal conductive material and silicon can undergo a good eutectic reaction, so that the silicon wafer
  • the metal conductive material layer between them and the surface layer of the silicon wafer that is in contact with each other are fusion-bonded. After cooling, a solid silicon metal conductive alloy composite structure is formed, which finally achieves an excellent composite connection effect between the silicon wafers.
  • these metal conductive materials may specifically be materials such as nickel Ni, gold Au, silver Ag, copper Cu, aluminum Al and the like; silicon and these metal conductive materials
  • the eutectic temperature is usually significantly lower than the melting temperature of silicon itself or the metal conductive material itself.
  • the eutectic temperature range is generally 500-1000 ° C.
  • the specific eutectic temperature with silicon can be determined according to the type of metal conductive material actually used. These can be obtained by consulting relevant prior art data.
  • the expressions of the front side and the back side appearing in this embodiment are only to explain the positional distribution relationship of various types of flow channels distributed on different sides of the silicon wafer.
  • the front side and the back side are relative.
  • the actual direction varies according to different reference objects. It does not limit the specific direction of this embodiment.
  • Example 1 of the present invention also proposes a preferred preparation method.
  • the process is the simplest and most effective, easy to implement, and has the lowest process cost, as follows:
  • this embodiment 1 proposes a method for preparing the central silicon electrode plate 110 as described above, including the following operation steps:
  • A10) Prepare the first silicon wafer and the second silicon wafer.
  • the silicon wafer should be cleaned in advance. More specifically, the silicon wafer cut with diamond wire can be further chemically polished or mechanically polished to reduce surface roughness. , Conducive to the effect of the process of the subsequent steps;
  • a conductive material layer 116 is prepared on both sides of the first silicon wafer and the second silicon wafer through a screen printing process.
  • the thickness of the conductive material layer 116 is 1-15 microns, and the conductive material is the same as the silicon material.
  • the base metal conductive material with eutectic bonding effect requires an alkaline solution etching process to make the flow channel in this embodiment. Therefore, the conductive material of this embodiment 1 cannot be selected to react with the alkaline solution.
  • the conductive material may be nickel or copper. Specifically, the conductive material is nickel.
  • a noble metal conductive material may also be used, and other suitable conductive materials may also be used, which should not be regarded as limiting the present invention;
  • the conductive material layer 116 is also used as a mask layer, and the first internal cooling on the two sides of the first silicon wafer is respectively made on the two sides of the first silicon wafer by an alkali solution (specifically, a KOH solution or a NaOH solution or a tetramethyl ammonia solution) can be etched.
  • an alkali solution specifically, a KOH solution or a NaOH solution or a tetramethyl ammonia solution
  • FIG. 4 Please refer to FIG. 4 in combination, using a laser process to make a first import and export combination and a second import and export combination on the first silicon wafer and the second silicon wafer, respectively;
  • the first silicon wafer and the second silicon wafer are laminated and placed in a heating device and sintered at a high temperature.
  • the heating device can be passed an inert gas to achieve no Oxygen atmosphere; the heating temperature is selected to be close to or equal to the eutectic temperature of silicon and nickel, and the conductive material layers of the first silicon wafer and the second silicon wafer that are in contact with each other are melted, and the two silicon wafers are connected and stacked as a whole (at this time, The conductive material layer between the two silicon wafers and the silicon surface layer that is in contact with each other are fusion-bonded.
  • a solid silicon metal alloy composite structure After cooling, a solid silicon metal alloy composite structure is formed, which has a very good composite effect.
  • the first internal cooling on the reverse side The medium flow channel is correspondingly matched with the second internal cooling medium flow channel on the front side and the internal cooling medium flow channel 112 is formed through a composite connection; the first inlet and outlet combination and the second inlet and outlet combination are correspondingly matched and a silicon electrode inlet and outlet are formed through the composite connection. combination.
  • step A40) may be performed before step A30) or before step A20);
  • this embodiment 1 proposes the method for manufacturing the end silicon electrode plate 130 as described above, including the following operation steps:
  • A10 ' preparing a first silicon wafer and a second silicon wafer
  • the conductive material layer is also used as a mask layer, and the first internal cooling medium flow channel is formed on the single side of the first silicon wafer by the alkali solution etching process, and the front surface and the second Two internal cooling medium flow channels and reverse oxidant flow channels 132;
  • the first silicon wafer and the second silicon wafer are laminated and placed in a heating device and sintered at a high temperature.
  • the heating temperature is selected to be close to or equal to the eutectic temperature of silicon and nickel, and the first silicon wafer and the silicon wafer are in contact with each other.
  • the two silicon wafers are compositely connected and stacked as a whole; wherein the first internal cooling medium flow channel on the reverse side and the second internal cooling medium flow channel on the front side correspond to each other and form an internal cooling medium through the composite connection.
  • Flow channel; the first inlet and outlet combinations and the second inlet and outlet combinations respectively correspond to each other and form a silicon electrode plate inlet and outlet combination through composite connection.
  • step A40 ') may be performed before step A30') or before step A20 ');
  • the method for preparing the end silicon electrode plate 130 'in this embodiment 1 is the same as the method for preparing the end silicon electrode plate 130, and will not be repeated; the method for preparing the end silicon electrode plates 130, 130' in this embodiment and the central silicon
  • the preparation method and principle of the electrode plate 110 are basically the same, except that the end silicon electrode plates 130 and 130 'are located at the end and are connected to the external mounting end plate without having adjacent fuel cell units. Therefore, The end silicon wafer in the end silicon plate 130 no longer needs to be provided with a front reducing agent flow channel 132 ′, and the end silicon wafer in the end silicon plate 130 ′ does not need to be provided with a reverse oxidant flow channel 132, so in the preparation There will be slight differences in method as described above.
  • all or part of the middle silicon plate, and all or part of the middle silicon plate end silicon plate may also be made of more than two silicon wafers, such as three silicon wafers or four silicon wafers.
  • This can increase the effective area of the cooling medium flow channel 112, which is further beneficial to improving the heat dissipation effect of the fuel cell.
  • the application of a larger number of silicon wafers will cause the volume of the fuel cell stack structure to increase, which will lead to the power density.
  • those skilled in the art can specifically select the number of silicon wafers according to the characteristics of the fuel cell product used in practice, and finally achieve the best balance point of various performances.
  • Embodiment 1 also proposes a fuel cell, including a stack structure, a package insulation member (not shown), and an external mounting member (not shown).
  • the package insulation member is mainly used to implement a stack
  • the structural insulation package is then connected with the external mounting parts to facilitate the final fuel cell installation and power output.
  • the stack structure adopts the fuel cell stack structure 100 as described above; the package insulation member in the embodiment of the present invention and
  • the external mounting member can be directly combined with any kind of package insulation member and external mounting member in the prior art.
  • the package insulation member can be various insulators such as rubber, hot-melt adhesive, thermal cross-linking, and ultraviolet cross-linking. Since the part of the package insulation and the external mounting part does not belong to the innovative content of the present invention, the embodiments of the present invention will not be described in detail.
  • this embodiment 1 also proposes the fuel cell application as described above, which is applied to automotive products.
  • it can also be applied to portable products (such as various auxiliary power supply equipment), Or it can be applied to stationary power supply or thermal installation products (such as large-scale cogeneration units or continuous power supply units, etc.), or to other types of transportation products (such as various types of vehicles such as logistics vans).
  • the silicon wafer is a single crystal or polycrystalline silicon wafer doped with phosphorus or boron.
  • the resistivity range of the silicon wafer is 0.0005-0.05 ⁇ .cm; please refer to FIG. 6, the method for preparing the central silicon electrode plate 210 includes the following operation steps:
  • the first internal cooling medium flow channel, the front reducing agent flow channel 211, and the first inlet and outlet combination are respectively produced on both sides of the first silicon wafer by a laser process, and are separately produced on both sides of the second silicon wafer.
  • the first silicon wafer and the second silicon wafer are stacked and placed in a heating device and sintered at a high temperature.
  • the conductive material layers 216 of the first silicon wafer and the second silicon wafer that are in contact with each other are melted and the two silicon wafers are melted.
  • the composite connection is stacked as a whole; wherein the first internal cooling medium flow channel on the reverse side and the second internal cooling medium flow channel on the front side are correspondingly matched and the internal cooling medium flow channel 212 is formed through the composite connection; the first inlet and outlet combination and the second inlet and outlet combination
  • the silicon electrode plate import and export combination is correspondingly matched and formed through composite connection.
  • the difference between the end silicon plate and the middle silicon plate 210 in this embodiment is that the end silicon wafer no longer needs to be provided with a reducing agent flow or an oxidant flow channel. Therefore, those skilled in the art will implement When referring to the method for preparing the middle silicon plate 210 and the structural characteristics of the end silicon plate in this embodiment, the method for preparing the end silicon plate can be set, which does not require creative work, so this embodiment 2 will not be specifically developed. A method for preparing the end silicon electrode plate will be described.
  • the silicon wafer is a single crystal or polycrystalline silicon wafer doped with phosphorus or boron.
  • the resistivity range of the silicon wafer is 0.0005-0.05 ⁇ .cm; please refer to FIG. 7, the method for preparing the central silicon plate 310 includes the following steps:
  • a screen printing process also known as a male-plastic process
  • a conductive material layer 316 on both sides of the first silicon wafer and the second silicon wafer, respectively.
  • a screen printing process also known as a male-plastic process
  • the first silicon The sheet can directly form the first internal cooling medium flow channel and the front reducing agent flow channel 311 on the reverse side
  • the second silicon wafer can directly form the second internal cooling medium flow channel and the reverse oxidant flow channel 313 on the front side.
  • Materials used in the screen printing process Is a conductive material, which can be a silver paste material or an aluminum paste material;
  • step C30 using a laser process to make a first import and export combination and a second import and export combination on the first silicon wafer and the second silicon wafer, respectively; in other embodiments, step C30) may be performed before step C20);
  • the first silicon wafer and the second silicon wafer are laminated and placed in a heating device and sintered at a high temperature.
  • the heating temperature is set to a eutectic temperature of silicon and a conductive material, and the first silicon wafer and the first silicon wafer are in contact with each other.
  • the conductive material layer 316 of the second silicon wafer is melted, the two silicon wafers are compositely connected and stacked as a whole; wherein the first internal cooling medium flow channel on the reverse side and the second internal cooling medium flow channel on the front side correspond to each other and form internal cooling through the composite connection.
  • the medium flow channel 312; the first and second inlet and outlet combinations respectively correspond to each other and form silicon electrode plate inlet and outlet combinations through composite connection.
  • the material used in the screen printing process in step C20) may also be a carbon paste material. Due to the high melting point of carbon, Therefore, the shape of the flow channel can be effectively protected, but because carbon is not prone to eutectic reaction of silicon, in order to achieve effective high-temperature fusion recombination between silicon wafers, it is necessary to add a step of preparing a conductive material layer before step C40), and the process is the same Screen printing or other processes can be used to finally achieve the high-temperature sintering and fusion compounding in step C40).
  • the steps for making a conductive material layer in Example 1-3 which not only protects the flow channel, but also achieves Composite connections between silicon wafers, but obviously, the manufacturing process also becomes relatively complicated.
  • the difference between the end silicon plate and the middle silicon plate 310 in this embodiment is that the end silicon wafer no longer needs to be provided with a reducing agent flow or an oxidant flow channel. Therefore, those skilled in the art will implement When referring to the method for preparing the middle silicon plate 310 and the structural characteristics of the end silicon plate in this embodiment, the method for preparing the end silicon plate may be set, which does not require creative work, so this embodiment 3 will not be specifically expanded. A method for preparing the end silicon electrode plate will be described.
  • the method for preparing the central silicon electrode plate 410 includes the following operation steps:
  • step D40 The first import and export combination and the second import and export combination are made on the first silicon wafer and the second silicon wafer respectively by using a laser process.
  • step D40) may be before step D30) or D20) or After step D50) or D60) or D70);
  • the first internal cooling medium flow channel and the front reducing agent flow channel 411 on the two sides of the first silicon wafer are respectively produced, and the front two internal parts are respectively formed on both sides of the second silicon wafer. Cooling medium flow path and reverse oxidant flow path 413;
  • the first silicon wafer and the second silicon wafer are laminated and placed in a heating device and sintered at a high temperature.
  • the heating temperature is set to a eutectic temperature of silicon and a conductive material, and the first silicon wafer and the first silicon wafer are in contact with each other.
  • the conductive material layer 416 of the second silicon wafer is melted, the two silicon wafers are compositely connected and stacked as a whole.
  • the first internal cooling medium flow channel on the reverse side and the second internal cooling medium flow channel on the front side correspond to each other and form internal cooling through the composite connection.
  • Dielectric flow channel 412; the first and second inlet and outlet combinations are correspondingly matched, and the silicon electrode plate inlet and outlet combinations are formed through composite connection.
  • the difference between the end silicon plate and the middle silicon plate 410 in this embodiment is that the end silicon wafer no longer needs to be provided with a reducing agent flow or an oxidant flow channel. Therefore, those skilled in the art will implement When referring to the method for preparing the middle silicon plate 410 and the structural characteristics of the end silicon plate in this embodiment, the method for preparing the end silicon plate may be set, which does not require creative work, so this embodiment 4 will not be specifically expanded. A method for preparing the end silicon electrode plate will be described.
  • the step diagram before the two silicon wafers are compositely connected only shows a single silicon wafer. This is because two The step diagrams of the silicon wafers are exactly the same, so in order to save the explanation, only the step diagrams of a single silicon wafer are shown.
  • a silicon electrode plate as a silicon electrode plate of a fuel cell stack structure can completely meet the good gas barrier function required by a fuel cell bipolar plate; better thermal conductivity; lower Bulk resistance and contact resistance; strong corrosion resistance; light weight, high strength, suitable for batch processing, etc.
  • the present invention proposes Silicon plate has better advantages in life, cost, efficiency, and power density; in order to better illustrate the excellent performance achieved by the embodiment of the present invention, please refer to the fuel cell and the existing silicon plate applied in the invention shown in Table 1 below. Performance comparison of important technical indicators of various types of plate fuel cells:
  • silicon is the most abundant element in the earth. With the development of integrated circuits and photovoltaic industry, the price of crystalline silicon materials is getting cheaper and cheaper. As a fuel cell plate, silicon is already more expensive than stainless steel and graphite. And other materials have lower costs, and have more room to reduce material costs;
  • the present invention can greatly reduce the oxidant and reducing agent.
  • the depth and width of the flow channels further reduce the stress on the electrolyte separator, cathode, and anode in the fuel cell stack structure. Therefore, fuel cells can use thinner electrode materials and dielectric membrane materials, which increases oxidants and reducing agents and The diffusion transport speed of the reaction products in the electrode and reduces the diffusion length of ions in the dielectric membrane, thereby increasing the power generation current per unit area of the fuel cell, and indirectly and significantly reducing the cost per watt of the electrolyte separator, cathode and anode ;
  • the silicon electrode plate of the present invention can be used for a long time without failure.
  • the life of the silicon electrode fuel cell to which it is applied is determined by other components.
  • the life data performance given in Table 1 of the present invention is based on existing fuel cell data with long life performance. As the performance of other components is upgraded and optimized, The life of the silicon electrode plate fuel cell of the present invention will increase; on the other hand, the long life of the silicon electrode plate fuel cell further reduces the cost.
  • Silicon plate fuel cells can generate higher current density, thereby increasing the volume power density of the stack structure:
  • the silicon plate stack structure has the smallest Thickness; especially compared to the graphite electrode plate stack structure, the advantages of the silicon electrode plate stack structure are particularly obvious, so the silicon electrode plate stack structure has the largest volume power density;
  • Silicon materials have a lower weight density than metal materials and are thinner than graphite materials, so silicon electrode plate fuel cells have a higher weight power density.
  • the silicon electrode plate fuel cell of the present invention has a high energy density like a metal electrode plate fuel cell or even higher than a metal electrode plate fuel cell, and has excellent life performance such as a graphite electrode plate fuel cell, and the silicon electrode plate has low materials,
  • the simple production process makes silicon electrode fuel cells not only lower in cost than other material electrode fuel cells, but also has obvious advantages in the main technical indicators of fuel cells such as durability and power density.
  • the technical effect breakthrough brought by the present invention is unimaginable to those skilled in the fuel cell field, and at the same time, it is impossible to obtain any technical inspiration from the existing technical data to obtain the present invention. Therefore, there is no doubt that the present invention has great significance and a core promotion role for the mass industrialization of fuel cells.
  • the present invention can be applied to a fuel cell having a stack structure with a large number of fuel cell units, and of course, it can also be applied to a fuel cell (commonly referred to as a micro Fuel cell), specifically refer to Example 5 and Example 6 below:
  • the fuel cell includes a fuel cell unit 10, which includes an anode plate stacked in sequence, Anode electrode, electrolyte separator, cathode electrode, and cathode plate; among them, the cathode plate and anode plate are made of doped silicon electrode material, and the anode electrode, electrolyte separator, and cathode electrode use MEA membrane electrode assembly .
  • the fuel cell includes a first fuel cell unit 20a and a second fuel cell 20a connected in series and stacked together.
  • the fuel cell unit 20b, the first fuel cell unit 20a, and the second fuel cell unit 20b each include an anode plate, an anode electrode, an electrolyte separator, a cathode electrode, and a cathode plate which are sequentially stacked as a whole.
  • the anode electrode, the electrolyte separator, and the cathode electrode The MEA membrane electrode assembly is used; the anode plate of the first fuel cell unit 20a and the cathode plate of the second fuel cell unit 20b are both end silicon electrode plates made of doped conductive crystalline silicon material.
  • the cathode plate is a middle silicon electrode plate made of doped conductive crystalline silicon material, and the middle silicon electrode plate also serves as the anode plate of the second fuel cell unit 20b.
  • the fuel cells proposed in Embodiments 5 and 6 of the present invention are generally micro fuel cells with a small output power. Compared with the existing micro fuel cells using silicon as an electrode plate substrate, Embodiments 5 and 6 do not require An additional metal film layer is provided as the conductive layer, so the performance in terms of material cost and preparation process is more excellent, and in this embodiment 5 and 6, two silicon wafers are compounded to form a silicon electrode plate with internal flow channels.
  • the silicon electrode plate As the skeleton structure of the fuel cell, the mechanical strength is very good, and the internal flow channel can be directly used as the cooling medium flow channel, which further improves the cooling performance of the micro fuel cell and overcomes the inability of the micro fuel cell using silicon as a substrate in the prior art. Defective cooling.

Abstract

本发明公开了一种硅极板及其制备方法、硅在燃料电池的应用、燃料电池电堆结构、燃料电池和应用,所述硅极板采用掺杂导电的晶体硅材料制成,所述硅极板具有内部冷却介质流道、正面还原剂流道和/或反面氧化剂流道,且所述内部冷却介质流道、正面还原剂流道和/或反面氧化剂流道分别设有与其相连通的硅极板进出口组合;相比于现有技术中的金属极板、石墨极板或复合材料极板,本发明提出的硅极板在寿命、成本、效率以及功率密度上具有更佳的优势,对于燃料电池的大批量产业化进程无疑是具有重大意义和核心推进作用的。

Description

硅极板及其制备方法、硅在燃料电池的应用、燃料电池电堆结构、燃料电池和应用
本申请同时要求于2018年06月07日提交中国国家知识产权局专利局,申请号为201810577211.X、发明名称为“一种硅极板及其制备方法”、申请号为201810577217.7、发明名称为“硅在燃料电池的应用”以及申请号为201810577210.5、发明名称为“一种燃料电池电堆结构及其燃料电池和应用”的中国专利申请优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于燃料电池领域,具体涉及了硅极板及其制备方法,还涉及了该硅极板在燃料电池的应用,以及燃料电池电堆结构、燃料电池和应用
背景技术
燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。由于燃料电池是通过电化学反应把燃料的化学能中的吉布斯自由能部分转换成电能,不受卡诺循环效应的限制,能量转化率高;而且采用氢作为燃料的燃料电池反应产物为水,环境友好,理论上可实现零污染排放;另外,燃料电池没有机械传动部件,运动部件少,工作时噪音很低;而且燃料电池还具有比能量高,可靠性高,燃料范围广,启动时间短,体积小,携带方便等优点。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是目前最有发展前途的发电技术。
从结构上来说,燃料电池通常包括电极(Electrode)、电解质隔膜(Electrolyte Membrane)与集电器(Current Collector);其中,燃料电池的电极是燃料发生氧化反应以及氧化剂发生还原反应的电化学反应场所,为了促进反应的发生,一般在电极上还会设置催化剂;电解质隔膜的主要功能在分隔氧化剂与还原剂,并传导离子;而集电器通常又称作双极板(Bipolar Plate),是燃料电池电堆中重要的性能元件,双极板负责把燃料和空气分配到阴阳电极表面以及电池堆的散热,也是负责将单电池串联起来组成电池堆的关键部件,主要起分割氧化剂、还原剂和冷却剂以及收集电流的作用,对燃料电池堆质量、体积、成本、可靠性以及功率密度等方面影响占很大权重,其成本占据了整个燃料电池成本的20-60%。因此,高性能、低成本双极板材料的开发,对于燃料电池的大规模商业化应用具有重要的意义。目前双极板材料的研发占据了燃料电池研发费用的40-60%,从另一方面也证实了双极板是决定燃料电池能够产业化的核心关键因素。
经研究验证,双极板需具备的特点有:良好的阻气功能;较好的导热性能;较低的体电阻和接触电阻;耐腐蚀性强;质量轻、强度高、适于批量加工等特性。
现有技术中,燃料电池的双极板的种类主要有石墨板或金属板,其中石墨板主要是利用碳粉或石墨粉混合可石墨化树脂压制而得,其主要存在体积大、功率密度小以及强度小的缺点;金属板一般直接采用不锈钢、钛合金、铝合金等直接加工而成,其主要存在易被腐蚀的缺陷,一般需要进行各种表面改性,进而又带来了制备工艺复杂,成本高的问题;现已有一些采用复合板来作为双极板的技术方案,一种是采用多层复合型,采用以薄金属为分隔板,有孔薄碳板为流场板,以极薄导电胶粘合,制作非常繁琐,另一种是采用复合材料型,采用热塑或热固性树脂混合石墨粉增强纤维等形成预制料并固化、石墨化后成型,但其导电效果差,而且成本高。
因此,寻求一种合适的双极板材料作为燃料电池的双极板,并满足双极板所要求的良好的阻气功能;较好的导热性能;较低的体电阻和接触电阻;耐腐蚀性强;质量轻、强度高、适于批量加工等特性,对于燃料电池的大批量产业化进程无疑是具有重大意义和核心推进作用的。
发明内容
有鉴于此,本发明的目的在于提出硅极板及其制备方法、硅在燃料电池的应用、燃料电池电堆结构、燃料电池和应用,提出采用硅极板直接作为燃料电池的双极板,不仅满足了双极板所要求的良好的阻气功能;较好的导热性能;较低的体电阻和接触电阻;耐腐蚀性强;质量轻、强度高、适于批量加工等特性;而且本发明相比于现有技术中的金属极板、石墨极板或复合材料极板,在寿命、成本、效率以及功率密度上具有更佳的优势,对于燃料电池的大批量产业化进程无疑是具有重大意义和核心推进作用的。
在提出本发明技术方案之前,本申请人经过仔细批量检索,发现了一些与本发明疑似接近的现有技术方案,本申请人进行了仔细阅读和重点分析:
据有关期刊文献记载到:材料硅具有气体透过率低、导热系数高和加工容易等特点,是微型燃料电池制作中比较理想的基底材料,并且在硅的表面镀上金属(通常为贵金属),就能获得导电性能和更好的稳定性、抗腐蚀性能。2000年,Kelly和Meyers首先发表了以硅基制作微型燃料电池的相关文献。此后硅在微型燃料电池有了较大的发展。Kim用硅作为基底制作了微型燃料电池,其流道尺寸为400微米(宽)x230微米(深),并且在硅微双极板的背部加上了厚500微米的耐热玻璃,这样做的目的是加强其物理强度,克服硅片比较脆的缺点;并且在硅双极板上镀金,使其具有更好的稳定性,当输出电压为0.6V时,其实际功率密度为203mW/cm 2,最大功率密度可达261mW/cm 2,电池的体积比功率密度为360mW/cm 3.但是硅材料作为双极板材料也有一些不足之处,例如需镀上贵金属来收集电流,这就不仅增加了生产过程,也增加了材料成本。经申请人仔细分析发现,这些技术利用了硅的气密特性、传热性和易精细加工的特性,因此想到将硅片直接作为燃料电池的衬底,再在硅衬底上面制作用于收集电流的金属层,将电极产生的电流收集后 沿着平行于硅衬底表面的方向流出电池,该结构由于沿着金属层膜传导电流,因而只能做成面积较小的燃料电池,且不能多层地堆叠起来;同时,由于该硅衬底结构内部无法设置提供冷却介质流动的结构,这些原因最终导致了采用硅材料作为燃料电池极板衬底的技术方案长久以来仅能在微型燃料电池产品中应用。
如上所述,申请人经深入检索发现了疑似公开了采用硅材料应用到燃料电池的现有技术方案,为了对本发明技术方案进行更好地说明,申请人进一步特别列出了如下专利文献来结合说明这些技术方案与本发明的不同:
1、如授权公告号为CN100397687C的中国发明专利公开了自呼吸式微型质子交换膜燃料电池的阴极流场板及制作方法,采用MEMS技术加工的新结构,具体提出了:流场板的结构特点是在厚度为300-500微米左右的硅片材料上将阴极流场加工成双层复合镂空结构,该流场板靠近空气一侧,加工成垂直于硅片方向的镂空流道,在靠近膜电极的另一侧,对应于靠近空气侧的镂空流道处加工垂直于硅片的流道,使硅片贯穿;该方法的硅极板作为微型燃料电池的阴极衬底结构,不仅需要在硅衬底上设置贵金属导电层来实现极板结构要求的收集电流功能,制备工艺复杂,材料成本高,而且无法设置冷却水流道,只能制作微型燃料电池;
2、授权公告号为CN101894954B的发明专利公开了一种基于常温键合技术的微小型燃料电池封装方法,提出了阴极、阳极极板的制作方法,在<100>晶向双面抛硅片上用热氧化法两面生长50nm二氧化硅作为应力缓冲层,再LPCVD沉积160nm氮化硅作为掩蔽层,正面溅射20nm的Cr作为粘附层,再溅射0.2微米的Au作为电流收集层,然后光刻出流场结构图案后用反应离子刻蚀去除光刻暴露的氮化硅,去除光刻胶体;然后用KOH溶液加超声波腐蚀硅片,当两侧腐蚀面相遇,形成穿通的进出口和通孔后停止;最后用反应离子刻蚀去除正面暴露的氮化硅,用氢氟酸水溶液去除正面键合的二氧化硅;该方法的硅极板同样是作为微型燃料电池的极板衬底结构,不仅需要在硅衬底上设置贵金属导电层(Au或Pt,而且还需要设置Cr作为粘附层)来实现极板结构要求的收集电流功能,制备工艺复杂,材料成本高,而且无法设置冷却水流道,只能制作微型燃料电池;
3、公开号为CN101867052A的发明专利公开了轮辐式自呼吸微型燃料电池及其制备方法,采用硅片作为阴极、阳极极板,具体工艺为:清洗硅片,利用低压化学气相沉积法在硅片表面制备作为腐蚀掩模的氮化硅薄膜,利用光刻技术在薄膜上形成掩模图形,以实现选择腐蚀的目的;采用40%的KOH溶液对硅片进行各向异性腐蚀,利用反应离子刻蚀法去除硅片表面残留氮化硅薄膜,采用激光加工技术在硅片表面形成侧壁陡直的进出口通道,利用磁控溅射技术在硅片腐蚀面形成Ti/Au的金属层,用以收集和传导电流;同样地,该方法的硅极板同样是作为微型燃料电池的极板衬底结构,不仅需要在硅衬 底上设置贵金属导电层(Ti/Au)来实现极板结构要求的收集电流功能,制备工艺复杂,材料成本高,而且无法设置冷却水流道,只能制作微型燃料电池;
4、授权公告号为CN100483829C的发明专利公开了一种堆叠式硅基微型燃料电池组及其制作方法,采用了硅衬底,具体公开了硅极板的刻蚀方法,在<100>晶向双面抛硅片上用热氧化法两面生长二氧化硅,再LPCVD0.1微米氮化硅作为掩蔽层,光刻出流场结构图案后用反应离子刻蚀去除光刻暴露的氮化硅,去除光刻胶体;然后用KOH溶液加超声波腐蚀硅片,当两侧腐蚀面相遇,形成穿通的进出口和通孔后停止;同样地,该方法的硅极板同样是作为微型燃料电池的衬底结构,不仅需要在硅衬底上设置贵金属导电层(Ti/Pt)来实现极板结构要求的收集电流功能,制备工艺复杂,材料成本高,而且无法设置冷却水流道,只能制作微型燃料电池;
5、授权公告号为CN100369304C的发明专利公开了一种硅基微型直接甲醇燃料电池用催化电极的制备方法,具体公开了采用电阻率为0.012-0.013Ω.cm的P型或N型晶向为<100>的硅片,清洗后氧化生成1.0-1.5微米的二氧化硅层,采用光刻技术形成流场图形,然后采用湿法腐蚀技术在硅片上腐蚀沟道流场,腐蚀深度在150-240微米;最后通过电化学方法在硅片表面形成多孔硅,在上面淀积上催化剂后,多孔硅表面大大增加催化剂的有效反应面积。在此燃料电池中,硅片作为微型燃料电池的催化电极材料的载体,与本发明利用晶硅制作极板所要解决的技术问题以及采用的技术方案不同。
结合如上所述,这些现有疑似提出燃料电池采用硅材料的技术方案,申请人发现这些技术方案要么是仅将硅极板作为其极板部件的衬底支撑件,需要在硅极板上涂覆贵金属等材料来实际用于燃料电池极板部件的电流收集,如本文上述的期刊、以及1.CN100397687C、2.CN101894954B、3.CN101867052A、4、CN100483829C;要么就是将硅片制成多孔硅结构,作为燃料电池的催化剂载体和电极材料,如5.CN100483829C;而且这些现有技术还有一个共同特点,这些提出将硅作为极板衬底或电极材料的技术方案全部都是被限制应用于微型燃料电池,微型燃料电池均一般采用1个,最多2个的燃料电池单元,输出功率一般在毫瓦到几十瓦之间,且该硅衬底结构也无法设置冷却水流道,散热性能无法得到保证;申请人发现至今没有技术人员提出将此技术方案概念应用到非微型的规模工业用燃料电池中,经申请人深入分析后,发现这是由于将这些现有技术提出将硅片用来制作硅衬底的工艺方法的灵感均来自于电子行业中硅芯片加工技术,具体为MEMS加工技术,将该MEMS加工技术应用到微型燃料电池中用来制作硅衬底或多孔硅电极,而由于非微型的规模工业用燃料电池具有若干个燃料电池单元串联的电堆结构,首先硅衬底无法作为提供足够机械支撑力,其次还需要在硅极板衬底上电镀贵金属来实现收集电流功能,如果采用MEMS加工工艺制作非微型的规模工业用燃料电池会非常繁琐,成本也会过高,跟金属极板或石墨极板没有竞争优势; 更重要的是,如前文所述,这些技术方案是将电极产生的电流收集后沿着平行于硅衬底的方向流出电池,该结构由于沿着金属层膜传导电流,因而只能做成面积较小的燃料电池,且不能多层地堆叠起来;而且电堆结构由于输出功率高,工作过程中会产生热量,所以极板除了需要具有氧化剂和还原剂流道外,还需要设置冷却水流道。因此在此基础上,本领域技术人员不会有动机想到将硅材料应用到非微型的规模工业用燃料电池中。
而本申请发明人经过对燃料电池的了解,以及对于硅材料几十年的研究探索分析经验,发现硅材料通过特定选择和设计后是完全可以直接作为燃料电池的硅极板,而且相比于现有技术中的金属极板、石墨极板或复合材料极板,本发明的硅极板获得令人惊喜的突出技术效果,主要采用的技术方案如下:
一种硅极板,所述硅极板采用掺杂导电的晶体硅材料制成,具有内部冷却介质流道、正面还原剂流道和反面氧化剂流道,且所述内部冷却介质流道、正面还原剂流道和反面氧化剂流道分别设有与其相连通的硅极板进出口组合。
一种硅极板,所述硅极板采用掺杂导电的晶体硅材料制成,具有内部冷却介质流道、正面还原剂流道或反面氧化剂流道,且所述内部冷却介质流道、正面还原剂流道或反面氧化剂流道分别设有与其相连通的硅极板进出口组合。
优选地,所述硅极板包括2个或2个以上的硅片,其中,所述硅片具有单面或双面流道;所述硅片未覆盖流道的表面区域之间采用导电材料复合连接堆叠为一体,且通过所述复合连接形成位于所述硅极板内部的内部流道,所述内部流道作为所述内部冷却介质流道;位于所述硅片的非堆叠面的流道作为还原剂流道或氧化剂流道。
优选地,所述掺杂导电的晶体硅材料采用单晶体或多晶体掺杂硅片,且其电阻率不高于0.1Ω.cm。
优选地,所述硅片的厚度范围为0.2-5mm,尺寸范围在50-300mm。
优选地,还原剂流道和/或氧化剂流道的深度范围为50-300微米,宽度范围为500-3000微米。
优选地,在本发明中,用于硅片之间复合连接的导电材料的厚度范围在微米级,可以为1-100微米或1-50微米或1-20微米,在材料选择上,可以为导电金属材料或如导电胶等导电非金属材料,由于导电胶类的导电非金属材料难以加工到微米级厚度,而且在复合连接过程中,通常需要排除有机溶剂,这不利于工艺的实施,因此,优选地,本发明所述的导电材料采用金属导电材料;为了利于金属导电材料之间以及其与硅片之间的良好复合连接,进一优选地,本发明所述的导电材料采用与硅材料具有共晶键合效应的金属导电材料,也就是说在等于或接近共晶温度(本发明所述共晶温度就是硅和 该对应金属导电材料发生共晶反应时的温度)时,金属导电材料与硅可以发生良好共晶反应,使得硅片之间的金属导电材料层以及与其接触的硅片表面层互熔键合,冷却后形成了粘接牢固的一体硅金属导电合金复合结构,最终实现了硅片之间的优异复合连接效果;具体优选地,这些金属导电材料具体可以为:镍Ni、金Au、银Ag、铜Cu、铝Al等材料;硅和这些金属导电材料的共晶温度通常明显要低于硅本身或金属导电材料本身的熔融温度,共晶温度范围一般在500-1000℃,具体其与硅共晶温度可以根据实际采用的金属导电材料类型来确定,这些通过查阅相关现有技术资料就可以得到。
优选地,如上所述的硅极板的制备方法,采用刻蚀工艺或激光工艺或丝网印刷工艺在硅片单面或双面上加工流道或进出口组合;采用导电材料将2个或2个以上的硅片复合连接堆叠为一体,通过所述复合连接形成位于所述硅极板内部的内部流道,所述内部流道作为所述内部冷却介质流道。
优选地,包括如下操作步骤:
A10)、准备第一硅片和第二硅片;
A20)、通过丝网印刷工艺在所述第一硅片和第二硅片双面上分别制作导电材料层;
A30)、所述导电材料层同时作为掩膜层,通过碱溶液腐蚀工艺分别在所述第一硅片双面上分别制作反面第一内部冷却介质流道和正面还原剂流道,以及在所述第二硅片双面上分别制作正面第二内部冷却介质流道和反面氧化剂流道;
A40)、采用激光工艺分别在所述第一硅片和第二硅片上制作第一进出口组合和第二进出口组合;
A50)、将第一硅片和第二硅片叠压后在高温下烧结,相互接触的第一硅片和第二硅片的导电材料层熔融后将所述两个硅片复合连接为一体;其中,所述第一内部冷却介质流道与所述第二内部冷却介质流道对应配合且通过所述复合连接形成所述内部冷却介质流道;所述第一进出口组合和第二进出口组合分别对应配合且通过所述复合连接形成所述硅极板进出口组合。
优选地,包括如下操作步骤:
A10’)、准备第一硅片和第二硅片;
A20’)、通过丝网印刷工艺在所述第一硅片单面和第二硅片双面上分别制作导电材料层;
A30’)、所述导电材料层同时作为掩膜层,通过碱溶液腐蚀工艺分别在所述第一硅片单面上制作正面或反面第一内部冷却介质流道,以及在所述第二硅片双面上分别制作反面或正面第二内部冷却介质流道和正面还原剂流道或反面氧化剂流道;
A40’)、采用激光工艺分别在所述第一硅片和第二硅片上制作第一进出口组合和第二进出口组合;
A50’)、将第一硅片和第二硅片叠压后在高温下烧结,相互接触的第一硅片和第二硅片的导电材料层熔融后将所述两个硅片复合连接为一体;其中,所述第一内部冷却介质流道与所述第二内部冷却介质流道对应配合且通过所述复合连接形成所述内部冷却介质流道;所述第一进出口组合和第二进出口组合分别对应配合且通过所述复合连接形成所述硅极板进出口组合。
优选地,所述导电材料采用与硅材料具有共晶键合效应的金属导电材料,所述在高温下烧结的加热温度接近或等于所述硅材料与所述金属导电材料的共晶温度。
优选地,一种硅在燃料电池的应用,所述燃料电池包括1个或多个燃料电池单元;所述燃料电池单元包括依次堆叠为一体的阳极板、阳电极、电解质隔膜、阴电极、阴极板;其中,
所述阴极板和阳极板采用掺杂导电的晶体硅材料制成的硅极板;
所述硅极板采用如上所述的硅极板。
优选地,所述硅极板可同时作为单个燃料电池单元的阴极板和与其相邻单个燃料电池单元的阳极板。
优选地,一种燃料电池电堆结构,其中,所述电堆结构包括相互串联且堆叠为一体的且数量不少于3个的燃料电池单元;
所述燃料电池单元包括依次堆叠为一体的阳极板、阳电极、电解质隔膜、阴电极、阴极板;其中,
所述阴极板和阳极板采用掺杂导电的晶体硅材料制成的硅极板;
所述硅极板采用如上所述的硅极板。
优选地,所述硅极板可同时作为单个燃料电池单元的阴极板和与其相邻单个燃料电池单元的阳极板。
优选地,所述电堆结构的输出功率不低于0.1KW。
优选地,所述燃料电池包括电堆结构,所述电堆结构包括相互串联且堆叠为一体的、位于两端的端部燃料电池单元和位于中部的1个或多个中部燃料电池单元,其中,
中部燃料电池单元包括中部硅极板,所述中部硅极板具有内部冷却介质流道、正面还原剂流道和反面氧化剂流道;且所述内部冷却介质流道、正面还原剂流道和反面氧化剂流道分别设有与其相连通的硅极板进出口组合。
优选地,所述端部燃料电池单元包括端部硅极板和所述中部硅极板;其中,所述端部硅极板具有内部冷却介质流道、正面还原剂流道或反面氧化剂流道;且所述内部冷却介质流道、正面还原剂流道或反面氧化剂流道分别设有与其相连通的硅极板进出口组合。
优选地,所述中部硅极板包括第一中部硅片和第二中部硅片,其中,所述第一中部硅片具有反面第一内部冷却介质流道、正面还原剂流道和第一进出口组合,所述第二中部硅片具有正面第二内部冷却介质流道、反面氧化剂 流道和第二进出口组合;所述第一中部硅片未覆盖所述第一内部冷却介质流道的反面区域和第二中部硅片未覆盖所述第二内部冷却介质流道的正面区域之间采用导电材料复合连接堆叠为一体,所述第一内部冷却介质流道与所述第二内部冷却介质流道对应配合且通过所述复合连接形成所述内部冷却介质流道;所述第一进出口组合和第二进出口组合分别对应配合且通过所述复合连接形成所述硅极板进出口组合。
优选地,所述端部硅极板包括端部硅片和中部硅片,其中,所述端部硅片具有正面或反面第一内部冷却介质流道和第一进出口组合,所述中部硅片具有反面或正面第二内部冷却介质流道、正面还原剂流道或反面氧化剂流道和第二进出口组合;所述端部硅片未覆盖所述第一内部冷却介质流道的正面或反面区域和中部硅片未覆盖所述第二内部冷却介质流道的反面或正面区域之间采用导电材料复合连接堆叠为一体,所述第一内部冷却介质流道与所述第二内部冷却介质流道对应配合且通过所述复合连接形成所述内部冷却介质流道;所述第一进出口组合和第二进出口组合分别对应配合且通过所述复合连接形成所述硅极板进出口组合。
优选地,所述还原剂为氢气或天然气或煤气或净化气或甲醇,所述氧化剂为氧气或空气。
优选地,所述阳电极、电解质隔膜、阴电极采用MEA膜电极组件,其中,所述电解质隔膜为质子交换膜。
优选地,所述冷却介质为水。
优选地,一种燃料电池,包括电堆结构、封装绝缘件以及外部安装件,所述电堆结构采用如上所述的燃料电池电堆结构。
优选地,一种如上所述的燃料电池应用,应用于便携式产品,或应用于固定式的供电或热装置产品,或应用于交通运输产品。
本发明是鉴于本申请人发明人对于硅材料几十年的研究探索分析经验基础上提出了将掺杂导电的晶体硅材料直接作为燃料电池的硅极板,并提出了硅极板的结构设计,具体采用两个或两个以上硅片堆叠复合而成,通过该堆叠复合加工形成了内部流道,内部流道可直接作为冷却介质流道;本发明提供的硅极板作为燃料电池内部的骨架结构,可以提供足够机械支撑力,同时硅极板直接作为电流收集板进行燃料电池堆叠方向上的电流传输,不仅不需要额外设置金属膜层,而且实现了具有电堆结构的燃料电池所要求的多层堆叠结构;而且硅极板具有的内部流道直接作为冷却介质流道,进一步有效将燃料电池工作过程时产生的热量及时向外部输送;因此,本发明提供的硅极板完全能够满足燃料电池双极板所要求的良好的阻气功能;较好的导热性能;较低的体电阻和接触电阻;耐腐蚀性强;质量轻、强度高、适于批量加工等特性,相比于现有技术中的金属极板、石墨极板或复合材料极板,本发明提出的硅极板在寿命、成本、效率以及功率密度上具有更佳的优势,对于燃料 电池的大批量产业化进程无疑是具有重大意义和核心推进作用的。
本发明还进一步提出了优选的硅极板制备方法,采用在硅片表面上制作导电材料层,导电材料层优选如镍、铜等贱金属材料,本发明的该导电材料层既作为硅片后续腐蚀工艺中的掩模层结构,同时更是将两个硅片复合连接堆叠为一体的过渡粘接结构,工艺最为简单有效,易于实施,而且工艺成本最低,适合进行批量制造应用。
本发明还进一步提出了优选的用于硅片之间复合连接的导电材料,具体提出将与硅材料具有共晶键合效应的金属导电材料作为连接硅片之间的复合材料,在共晶温度下进行烧结,使得硅片之间的金属导电材料层以及与其接触的硅片表面层互熔键合,冷却后形成了粘接牢固的一体硅金属导电合金复合结构,最终实现了硅片之间的优异复合连接效果。
需要说明的是,本发明提供的硅极板由于具有以上优异特性,因此尤其适合应用于具有电堆结构的非微型燃料电池产品领域(尤其是输出功率不低于0.1KW的非微型燃料电池),相比于现有技术中的金属极板、石墨极板或复合材料极板具有更佳的性能优势;当然地,本领域技术人员可以根据实际需要把硅极板直接应用于微型燃料电池领域(一般只有1-2个燃料电池单元),其相对于现有将硅作为极板衬底的微型燃料电池在材料成本、制备工艺以及机械强度和冷却性能上具有一些明显的技术优势,这些同样应属于本发明的保护范围之内。
本发明需要特别说明的是,本发明全文出现的正面和反面的表述仅是为了说明各类流道是分布在硅片不同面的位置分布关系,正面和反面都是相对而言的,实际方向根据参照物不同而不同,其不作为本发明对具体方向的限定。
附图说明
附图1是本发明具体实施方式下电堆结构100的截面结构示意图;
附图2是本发明实施例1的中部燃料电池单元100b、100c、100d和端部燃料电池单元100a、100e的截面结构示意图;
附图3是本发明实施例1的中部硅极板110、端部硅极板130、130’的截面结构示意图;
附图4是本发明实施例1中部硅极板110中还原剂流道111的结构示意图;
附图5是本发明实施例1中部硅极板110的制备工艺流程图;
附图6是本发明实施例2中部硅极板210的制备工艺流程图;
附图7是本发明实施例3中部硅极板310的制备工艺流程图;
附图8是本发明实施例4中部硅极板410的制备工艺流程图;
附图9是本发明实施例5中微型燃料电池的燃料电池单元10的截面结构示意图;
附图10是本发明实施例6中微型燃料电池的燃料电池单元20a、20b的截面结构示意图。
具体实施方式
本发明实施例公开了一种硅极板,硅极板采用掺杂导电的晶体硅材料制成,具有内部冷却介质流道、正面还原剂流道和反面氧化剂流道,且内部冷却介质流道、正面还原剂流道和反面氧化剂流道分别设有与其相连通的硅极板进出口组合。
本发明实施例还公开了一种硅极板,硅极板采用掺杂导电的晶体硅材料制成,具有内部冷却介质流道、正面还原剂流道或反面氧化剂流道,且内部冷却介质流道、正面还原剂流道或反面氧化剂流道分别设有与其相连通的硅极板进出口组合。
本发明实施例如上所述的硅极板的制备方法,采用刻蚀工艺或激光工艺或丝网印刷工艺在硅片单面或双面上加工流道或进出口组合;采用导电材料将2个或2个以上的硅片复合连接堆叠为一体,通过复合连接形成位于硅极板内部的内部流道,内部流道作为内部冷却介质流道。
本发明实施例公开了硅在燃料电池的应用,燃料电池包括1个或多个燃料电池单元;燃料电池单元包括依次堆叠为一体的阳极板、阳电极、电解质隔膜、阴电极、阴极板;其中,阴极板和阳极板采用掺杂导电的晶体硅材料制成的硅极板;硅极板采用如上所述的硅极板。
本发明实施例还公开了一种燃料电池电堆结构,电堆结构包括相互串联且堆叠为一体的且数量不少于3个的燃料电池单元;燃料电池单元包括依次堆叠为一体的阳极板、阳电极、电解质隔膜、阴电极、阴极板;其中,阴极板和阳极板采用掺杂导电的晶体硅材料制成的硅极板;硅极板采用如上所述的硅极板。
本发明实施例还公开了一种燃料电池,包括电堆结构、封装绝缘件以及外部安装件,电堆结构采用如上所述的燃料电池电堆结构。
本发明实施例如上所述的燃料电池应用,应用于便携式产品,或应用于固定式的供电或热装置产品,或应用于交通运输产品。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
实施例1:
请参见图1所示的一种燃料电池电堆结构100,电堆结构100包括相互串联且堆叠为一体的且数量不少于3个的燃料电池单元,具体地,在本实施方式中,燃料电池单元的数量为5个;优选地,电堆结构100的输出功率不低于0.1KW,当然地,在本发明其他实施方式中,本领域技术人员完全可以根据 实际需要应用的产品领域的所需功率需要,来选择燃料电池单元的数量,本发明对此不做具体限定。
如图1所示,本实施例1的电堆结构包括位于两端的端部燃料电池单元100a、100e和位于中部的3个中部燃料电池单元100b、100c、100d,每个燃料电池单元包括依次堆叠为一体的阳极板、阳电极、电解质隔膜、阴电极、阴极板,阴极板和阳极板采用掺杂导电的晶体硅材料制成的硅极板,其中,硅极板同时作为单个燃料电池单元的阴极板和与其相邻单个燃料电池单元的阳极板;
优选地,在本实施方式中,掺杂导电的晶体硅材料采用单晶体或多晶体掺杂硅片;优选地,在本实施方式中,硅片的电阻率不高于0.1Ω.cm,更优选地,硅片的电阻率范围为0.0005-0.05Ω.cm;
需要说明的是,本发明在具体实施时可以根据具体选择的硅片所属晶体硅类型来选择硅极板的制备方法,本文后面会具体展开说明。
优选地,在本实施方式中,硅片的厚度范围为0.2-5mm,尺寸范围在50-300mm;硅片的形状可以为方型形状,也可以为圆型形状,也可以为其他需要的形状,本发明具体实施对此不做具体限定;
具体优选地,在本实施方式中,所采用的硅片均为N型单晶体掺磷硅片,呈方型形状,晶向为非<111>晶向,具体可以为<100>晶向或<110>晶向或其他与<111>晶向具有明显角度的晶向,这有利于本实施方式后续采用碱溶液腐蚀工艺;N型单晶体掺磷硅片的电阻率约为0.01Ω.cm;硅片的厚度为0.5mm,尺寸约为150mm;
优选地,在本发明实施例中,硅极板具有内部冷却介质流道、正面还原剂流道和/或反面氧化剂流道,且内部冷却介质流道、正面还原剂流道和/或反面氧化剂流道分别设有与其相连通的硅极板进出口组合;优选地,硅极板具体包括2个或2个以上的硅片,其中,硅片具有单面或双面流道;硅片未覆盖流道的表面区域之间采用导电材料复合连接堆叠为一体,且通过复合连接形成位于硅极板内部的内部流道,内部流道作为内部冷却介质流道;位于硅片的非堆叠面的流道则作为还原剂流道或氧化剂流道;
进一步具体优选地,在本实施例1中,请进一步参见图2和图3所示,中部燃料电池单元100b、100c、100d包括中部硅极板110,中部硅极板110采用两个硅片复合加工而成,具有内部冷却介质流道112、正面还原剂流道111和反面氧化剂流道113;且内部冷却介质流道112、正面还原剂流道111和反面氧化剂流道113分别设有与其相连通的硅极板进出口组合(可结合参考图4所示),具体地,包括三组硅极板进出口组合,分别用于与内部冷却介质流道112、正面还原剂流道111和反面氧化剂流道113连通,同时该三组硅极板进出口组合的进口分别通入冷却介质、还原剂和氧化剂,其出口分别用于排出经过各自流道后的冷却介质、多余的还原剂和氧化剂及它们的反应产 物;
在本发明实施时,还原剂可以为氢气或天然气或煤气或净化气或甲醇等,氧化剂可以为氧气或空气,本领域技术人员可以根据本发明的技术内容以及需要应用的领域来具体选择还原剂和氧化剂类型;具体优选地,在本实施方式中,还原剂为氢气,氧化剂为氧气,反应产物为水,阳电极、电解质隔膜、阴电极采用MEA膜电极组件120,电解质隔膜为质子交换膜,冷却介质为水,这有利于本发明提供燃料电池电堆结构的效率、功率密度以及节约成本,易于操作应用实施,而且本实施方式中的反应产物为水,没有任何危害物质产生,非常环保;其中,本实施例的MEA膜电极组件120以及质子交换膜可以直接采用现有技术中的任意一种技术方案,市场上可以容易购买得到,属于产业化较为成熟的公知技术,本发明对该部分不做具体展开说明;
为了确保本实施例燃料电池的绝缘安装的安全性,各燃料电池单元的MEA膜电极组件120与其硅极板两侧设有一定安全封装结缘距离,距离一般设置为毫米级别,如5-15mm;该安全封装结缘距离用于后续进行绝缘封装。
其中,请参见图4所示,为了实现这些进出口组合与对应连通的流道的导流唯一性,进出口组合与其对应连通的流道之间设有导流道,导流道可与流道在制备过程中一同制备而成,其中,正面还原剂流道111对应的硅极板进出口组合包括图4所示的进口114a和出口114a’(其余流道对应的硅极板进出口组合已示出但未标记,进口114a和出口114a’分别对应的导流道分别为进口导流道115a和出口导流道115a’;
本发明实施例的中部硅极板110上的具体流道、进口和出口的形状设计可以参考图4的设计,也可以采用现有技术中任意一种,本发明不做特别限定;
进一步具体来说,请进一步结合参见图5所示,在本实施方式中,中部硅极板110包括第一中部硅片和第二中部硅片,其中,第一中部硅片具有反面第一内部冷却介质流道、正面还原剂流道111和第一进出口组合,第二中部硅片具有正面第二内部冷却介质流道、反面氧化剂流道113和第二进出口组合;第一中部硅片未覆盖第一内部冷却介质流道的反面区域和第二中部硅片未覆盖第二内部冷却介质流道的正面区域之间采用导电材料复合连接堆叠为一体,反面第一内部冷却介质流道与正面第二内部冷却介质流道对应配合且通过复合连接形成内部冷却介质流道112;第一进出口组合和第二进出口组合分别对应配合且通过复合连接形成硅极板进出口组合。本实施例中的反面第一内部冷却介质流道、正面第二内部冷却介质流道以及反面氧化剂流道113的具体流道结构和形状可直接参考图4所示的正面还原剂流道111,为了节省篇幅,不再重复说明;
优选地,在本发明实施例中,还原剂流道111和氧化剂流道113的深度范围为50-300微米,宽度范围为500-3000微米;具体优选地,在本发明实 施方式中,还原剂流道111和氧化剂流道113的深度为100±10微米,宽度为1000±100微米;第一内部冷却介质流道、第二内部冷却介质流道的深度和宽度设计方案与还原剂流道111和氧化剂流道113相同;
在本实施例1中,请进一步参见图2和图3所示,端部燃料电池单元100a包括端部硅极板130、MEA膜电极组件120和中部硅极板110,端部燃料电池单元100e包括端部硅极板130’、MEA膜电极组件120和中部硅极板110,其中,端部硅极板130采用两个硅片复合加工而成,具有内部冷却介质流道131、反面氧化剂流道132;且内部冷却介质流道131、反面氧化剂流道132分别设有与其相连通的硅极板进出口组合;端部硅极板130’采用两个硅片复合加工而成,具有内部冷却介质流道131、正面还原剂流道132’;且内部冷却介质流道131、正面还原剂流道132’分别设有与其相连通的硅极板进出口组合;本实施例的端部硅极板130、130’的硅极板进出口组合采用与中部燃料电池单元100b、100c、100d的硅极板进出口组合相同的技术方案,具体不做展开说明;
进一步具体来说,端部硅极板130分别包括端部硅片和中部硅片,其中,其端部硅片具有反面第一内部冷却介质流道和第一进出口组合,其中部硅片具有正面第二内部冷却介质流道、反面氧化剂流道132和第二进出口组合;端部硅极板130’分别包括端部硅片和中部硅片,其中,其端部硅片具有正面第一内部冷却介质流道和第一进出口组合,其中部硅片具有反面第二内部冷却介质流道、正面还原剂流道132’和第二进出口组合;端部硅片和中部硅片采用导电材料复合连接堆叠为一体,第一内部冷却介质流道与第二内部冷却介质流道对应配合且通过复合连接形成内部冷却介质流道131;第一进出口组合和第二进出口组合分别对应配合且通过复合连接形成硅极板进出口组合。
在本发明实施方式中,根据中部硅极板110和端部硅极板130、130’的结构设计特性,本领域技术人员可以采用多种工艺路径来制备得到本发明实施例的中部硅极板110和端部硅极板130、130’,典型的方法为:采用刻蚀工艺或激光工艺或丝网印刷工艺在硅片单面或双面上加工流道或进出口组合;然后采用导电材料将2个或2个以上的硅片复合连接堆叠为一体,通过该复合连接形成位于硅极板内部的内部流道,内部流道作为硅极板的内部冷却介质流道。
由于本发明燃料电池电堆结构100中的每个燃料电池单元100a、100b、100c、100d、100e采用串联且堆叠为一体,因此本发明电堆结构实现了在堆叠方向上的电流收集传输、以及在堆叠方向上各燃料电池单元之间通过对应配合的硅极板进出口组合,各燃料电池单元的内部冷却介质流道112、131,还原剂流道111,132’和氧化剂流道113,132在堆叠方向上的分别连通;
在本实施例中,用于硅片之间复合连接的导电材料的厚度范围在微米级,在材料选择上,可以为导电金属材料或如导电胶等导电非金属材料;优选地, 导电材料采用金属导电材料;为了利于金属导电材料之间以及其与硅片之间的良好复合连接,进一优选地,本实施例的导电材料采用与硅材料具有共晶键合效应的金属导电材料,也就是说在等于或接近共晶温度(本发明所述共晶温度就是硅和该对应金属导电材料发生共晶反应时的温度)时,金属导电材料与硅可以发生良好共晶反应,使得硅片之间的金属导电材料层以及与其接触的硅片表面层互熔键合,冷却后形成了粘接牢固的一体硅金属导电合金复合结构,最终实现了硅片之间的优异复合连接效果;具体优选地,这些金属导电材料具体可以为:镍Ni、金Au、银Ag、铜Cu、铝Al等材料;硅和这些金属导电材料的共晶温度通常明显要低于硅本身或金属导电材料本身的熔融温度,共晶温度范围一般在500-1000℃,具体其与硅共晶温度可以根据实际采用的金属导电材料类型来确定,这些通过查阅相关现有技术资料就可以得到。
本实施例出现的正面和反面的表述仅是为了说明各类流道是分布在硅片不同面的位置分布关系,正面和反面都是相对而言的,实际方向根据参照物不同而不同,其不作为本实施例对具体方向的限定。
在这些多种工艺路径中,本发明实施例1还提出优选的制备方法,工艺最为简单有效,易于实施,而且工艺成本最低,具体如下:
具体优选地,请参见图5所示,本实施例1提出如上所述中部硅极板110的制备方法,包括如下操作步骤:
A10)、准备第一硅片和第二硅片,硅片应进行事先清洗,进一步具体优选地,采用金刚线切割的硅片,还可以进一步进行化学抛光或机械抛光,以减少表面粗燥度,利于后续步骤的工艺制备效果;
A20)、通过丝网印刷工艺在第一硅片和第二硅片双面上分别制作导电材料层116,优选地,导电材料层116的厚度为1-15微米,导电材料为与硅材料具有共晶键合效应的贱金属导电材料,由于本实施方式中需要采用碱溶液腐蚀工艺来制作流道,因此,本实施例1的导电材料在选择上不能与碱溶液发生反应,当然地,在其他采用激光工艺或丝网印刷工艺来加工制作流道的实施方式中,没有该条件限制;在本实施方式中,导电材料可以为镍或铜,具体地,导电材料采用镍,当然地,在本发明实施方式中,作为在成本上的次优选方案,也可以采用贵金属导电材料,也可以采用其他合适的导电材料,这些都不应视为对本发明的限定;
A30)、导电材料层116同时作为掩膜层,通过碱溶液(具体可选用KOH溶液或NaOH溶液或四甲基氨溶液)腐蚀工艺分别在第一硅片双面上分别制作反面第一内部冷却介质流道和正面还原剂流道111,以及在第二硅片双面上分别制作正面第二内部冷却介质流道和反面氧化剂流道113;
A40)、请结合参见图4所示,采用激光工艺分别在第一硅片和第二硅片上制作第一进出口组合和第二进出口组合;
A50)、将第一硅片和第二硅片叠压后置于加热设备中在高温下烧结,为了避免硅片在烧结过程中氧化而不利于复合连接,加热设备可通入惰性气体实现无氧氛围;加热温度选择在接近或等于硅与镍的共晶温度,相互接触的第一硅片和第二硅片的导电材料层熔融后将两个硅片复合连接堆叠为一体(此时,两个硅片之间的导电材料层以及与其接触的硅表面层互熔键合,冷却后形成了粘接牢固的一体硅金属合金复合结构,复合效果非常优异);其中,反面第一内部冷却介质流道与正面第二内部冷却介质流道对应配合且通过复合连接形成内部冷却介质流道112;第一进出口组合和第二进出口组合分别对应配合且通过复合连接形成硅极板进出口组合。
在本发明其他实施方式中,以上步骤A40)可以在步骤A30)前或在步骤A20)前进行;
具体优选地,本实施例1提出如上所述端部硅极板130的制备方法,包括如下操作步骤:
A10’)、准备第一硅片和第二硅片;
A20’)、通过丝网印刷工艺在第一硅片单面和第二硅片双面上分别制作导电材料层;
A30’)、导电材料层同时作为掩膜层,通过碱溶液腐蚀工艺分别在第一硅片单面上制作反面第一内部冷却介质流道,以及在第二硅片双面上分别制作正面第二内部冷却介质流道和反面氧化剂流道132;
A40’)、采用激光工艺分别在第一硅片和第二硅片上制作第一进出口组合和第二进出口组合;
A50’)、将第一硅片和第二硅片叠压后置于加热设备中在高温下烧结,加热温度选择在接近或等于硅与镍的共晶温度,相互接触的第一硅片和第二硅片的导电材料层熔融后将两个硅片复合连接堆叠为一体;其中,反面第一内部冷却介质流道与正面第二内部冷却介质流道对应配合且通过复合连接形成内部冷却介质流道;第一进出口组合和第二进出口组合分别对应配合且通过复合连接形成硅极板进出口组合。
在本发明其他实施方式中,以上步骤A40’)可以在步骤A30’)前或在步骤A20’)前进行;
本实施例1的端部硅极板130’的制备方法同端部硅极板130的制备方法,不再赘述;本实施例1的端部硅极板130、130’的制备方法与中部硅极板110的制备方法和原理基本相同,区别仅在于:由于端部硅极板130、130’位于端部,其与外部安装端板进行安装连接,不具有相邻的燃料电池单元,因此,端部硅极板130中的端部硅片不再需要设置正面还原剂流道132’,端部硅极板130’中的端部硅片不再需要设置反面氧化剂流道132,因此在制备方法上会有如上所述的细微差异。
在本发明其他实施方式中,全部或部分中部硅极板、全部或部分中部硅 极板端部硅极板也可以采用大于2个的硅片来制作,比如3个硅片或4个硅片,这样可以增加冷却介质流道112的有效面积,进一步有利于提高燃料电池的散热效果,但显然地,更多数量硅片的应用会造成燃料电池电堆结构的体积增加进而导致了功率密度的降低,因此,本领域技术人员可以根据实际应用燃料电池产品的特点来具体选择硅片的数量,最终取得各种性能表现的最佳平衡点。
优选地,本实施例1还提出了一种燃料电池,包括电堆结构、封装绝缘件(图未示出)以及外部安装件(图未示出),封装绝缘件主要用于实现对电堆结构的绝缘封装,然后与外部安装件连接配合,利于最终的燃料电池安装以及功率输出,其中,电堆结构采用如上所述的燃料电池电堆结构100;本发明实施方式中的封装绝缘件以及外部安装件可以直接结合现有技术的任意一种封装绝缘件以及外部安装件,具体地,封装绝缘件可以为橡胶类、热熔胶类、热交联类、紫外交联的各种绝缘体,由于封装绝缘件以及外部安装件的部分不属于本发明的创新内容,因此,本发明实施例不再具体展开说明。
优选地,本实施例1还提出了如上所述的燃料电池应用,应用于汽车产品,当然地,在本发明其他实施方式中,还可以应用于便携式产品(如各类辅助供电装装置),或应用于固定式的供电或热装置产品(如大型热电联产装置或连续供电电源装置等),或应用于其他类型的交通运输产品(如物流搬运车等各类交通工具)。
实施例2:
本实施例2的其余技术方案与实施例1相同,区别在于:在本实施例2中,硅片采用掺磷或掺硼的单晶体或多晶体硅片,优选地,硅片的电阻率范围为0.0005-0.05Ω.cm;请参见图6所示,中部硅极板210的制备方法,包括如下操作步骤:
B10)、准备第一硅片和第二硅片;
B20)、通过激光工艺分别在第一硅片双面上分别制作反面第一内部冷却介质流道、正面还原剂流道211以及第一进出口组合,以及在第二硅片双面上分别制作正面第二内部冷却介质流道、反面氧化剂流道213以及第二进出口组合;
B30)、采用丝网印刷工艺分别在第一硅片和第二硅片双面制作导电材料层216;
B40)、将第一硅片和第二硅片叠压后置于加热设备中在高温下烧结,相互接触的第一硅片和第二硅片的导电材料层216熔融后将两个硅片复合连接堆叠为一体;其中,反面第一内部冷却介质流道与正面第二内部冷却介质流道对应配合且通过复合连接形成内部冷却介质流道212;第一进出口组合和第二进出口组合分别对应配合且通过复合连接形成硅极板进出口组合。
与实施例1相同,本实施例中的端部硅极板与中部硅极板210区别仅在 于其端部硅片不再需要设置还原剂流通或氧化剂流道,因此,本领域技术人员在实施时可以参照本实施例中部硅极板210的制备方法以及端部硅极板结构特征来设定端部硅极板的制备方法,这些不需要付出创造性劳动,因此本实施例2不再具体展开说明端部硅极板的制备方法。
实施例3:
本实施例3的其余技术方案与实施例1相同,区别在于:在本实施例3中,硅片采用掺磷或掺硼的单晶体或多晶体硅片,优选地,硅片的电阻率范围为0.0005-0.05Ω.cm;请参见图7所示,中部硅极板310的制备方法,包括如下操作步骤:
C10)、准备第一硅片和第二硅片;
C20)、直接采用丝网印刷工艺(也可称为阳塑工艺)分别在第一硅片和第二硅片双面上制作导电材料层316,通过导电材料层316的形成,进而第一硅片可直接形成反面第一内部冷却介质流道和正面还原剂流道311,以及第二硅片可直接形成正面第二内部冷却介质流道和反面氧化剂流道313,丝网印刷工艺采用的材料为导电材料,具体可以为银浆材料或铝浆材料等;
C30)、采用激光工艺分别在第一硅片和第二硅片上制作第一进出口组合和第二进出口组合;在其他实施例中,步骤C30)可以在步骤C20)之前进行;
C40)、将第一硅片和第二硅片叠压后置于加热设备中在高温下烧结,优选地,加热温度设置为硅与导电材料的共晶温度,相互接触的第一硅片和第二硅片的导电材料层316熔融后将两个硅片复合连接堆叠为一体;其中,反面第一内部冷却介质流道与正面第二内部冷却介质流道对应配合且通过复合连接形成内部冷却介质流道312;第一进出口组合和第二进出口组合分别对应配合且通过复合连接形成硅极板进出口组合。
为了利于流道结构和形状在高温烧结时尽量不受到影响,在本发明其他实施方式中,在步骤C20)中丝网印刷工艺采用的材料也可以为碳浆材料,由于碳的熔融点高,因此可以有效保护流道的形状,但由于碳不易于硅发生共晶反应,为了实现硅片之间的有效高温熔融复合,因此需要在步骤C40)前增加制作导电材料层的步骤,其工艺同样可以采用丝网印刷工艺或其他工艺,来最终实现步骤C40)中的高温烧结熔融复合,具体可参考实施例1-3中的制作导电材料层的步骤,这样既保护了流道,又实现了硅片之间的复合连接,但显然的,制作工艺也变得相对复杂。
与实施例1相同,本实施例中的端部硅极板与中部硅极板310区别仅在于其端部硅片不再需要设置还原剂流通或氧化剂流道,因此,本领域技术人员在实施时可以参照本实施例中部硅极板310的制备方法以及端部硅极板结构特征来设定端部硅极板的制备方法,这些不需要付出创造性劳动,因此本实施例3不再具体展开说明端部硅极板的制备方法。
实施例4:
本实施例4的其余技术方案与实施例1相同,区别在于:在本实施例4中,请参见图8所示,中部硅极板410的制备方法,包括如下操作步骤:
D10)、准备第一硅片和第二硅片;
D20)、分别在第一硅片和第二硅片双面制作热氧化二氧化硅层414;
D30)、采用光刻工艺或激光工艺将热氧化二氧化硅层414设计成掩模层;
D40)、采用激光工艺分别在第一硅片和第二硅片上制作第一进出口组合和第二进出口组合;在其他实施例中,步骤D40)可以在步骤D30)或D20)之前或在步骤D50)或D60)或D70)之后进行;
D50)、采用碱溶液腐蚀工艺分别在第一硅片双面上分别制作反面第一内部冷却介质流道和正面还原剂流道411,以及在第二硅片双面上分别制作正面第二内部冷却介质流道和反面氧化剂流道413;
D60)、去除第一硅片和第二硅片上的剩余二氧化硅层;
D70)、采用丝网印刷工艺分别在第一硅片和第二硅片双面制作导电材料层416;
D80)、将第一硅片和第二硅片叠压后置于加热设备中在高温下烧结,优选地,加热温度设置为硅与导电材料的共晶温度,相互接触的第一硅片和第二硅片的导电材料层416熔融后将两个硅片复合连接堆叠为一体;其中,反面第一内部冷却介质流道与正面第二内部冷却介质流道对应配合且通过复合连接形成内部冷却介质流道412;第一进出口组合和第二进出口组合分别对应配合且通过复合连接形成硅极板进出口组合。
与实施例1相同,本实施例中的端部硅极板与中部硅极板410区别仅在于其端部硅片不再需要设置还原剂流通或氧化剂流道,因此,本领域技术人员在实施时可以参照本实施例中部硅极板410的制备方法以及端部硅极板结构特征来设定端部硅极板的制备方法,这些不需要付出创造性劳动,因此本实施例4不再具体展开说明端部硅极板的制备方法。
本发明只是列出来以上部分实施方式,本领域技术人员完全可以根据实际应用需要来选择具体的制备工艺以及做部分步骤的顺序更改得到其他实施方式,这些在制备工艺上的替换同样均属于本发明的保护范围内;由于本发明提出的具体制备工艺步骤本身(例如刻蚀工艺、光刻工艺、激光工艺以及丝网印刷工艺)均为现有技术,因此本领域技术人员可以根据实际情况来选择具体工艺步骤的相关技术参数,本发明实施例不具体列明。
还需要说明的是,本发明实施例中的图5-图8所示的制备工艺流程图中,在两个硅片复合连接之前的步骤图仅示出了单个硅片,这是由于两个硅片的步骤图是完全相同的,因此为了节省说明篇幅,仅示出了单个硅片的步骤图。
本发明经过大量实施例后验证了采用硅极板直接作为燃料电池电堆结构的硅极板,完全能够满足燃料电池双极板所要求的良好的阻气功能;较好的导热性能;较低的体电阻和接触电阻;耐腐蚀性强;质量轻、强度高、适于 批量加工等特性,同时相比于现有技术中的金属极板、石墨极板或复合材料极板,本发明提出的硅极板在寿命、成本、效率以及功率密度上具有更佳的优势;为了更好说明本发明实施例取得的优异表现,请参见下表1的发明硅极板应用的燃料电池与现有各类极板燃料电池的重要技术指标的表现对比:
表1
本发明硅极板燃料电池与现有各类极板燃料电池的重要技术指标的表现对比
技术指标 石墨极板 金属极板 硅极板
成本($/kW) 300 400 250
寿命(小时) 7000 5000 7000
体积功率密度(kW/L) 0.5-1.5 2-3.2 2-5
重量功率密度(kW/kg) 0.5-3 1.2-4 2-3.5
进一步补充说明:
1.关于成本:
首先,硅是地球中最丰富的一种元素,随着硅材料应用的集成电路和光伏行业的发展,晶体硅材料的价格愈来愈便宜,作为燃料电池的极板,硅已经比不锈钢、石墨等材料具有更低的成本,并有更多的降低材料成本的空间;
进一步来说,由于晶体硅具有非常优异的精细加工的特点(比如本发明提及的刻蚀工艺、光刻工艺、激光工艺以及丝网印刷工艺),因此本发明可以大大减小氧化剂和还原剂流道的深度和宽度,进而降低了燃料电池电堆结构中在电解质隔膜、阴极和阳极上的应力,因而,燃料电池可以采用更薄的电极材料和介质膜材料,增加了氧化剂和还原剂和反应产物在电极中的扩散输运速度,并减少了离子在介质膜中的扩散长度,从而增加单位面积燃料电池的发电电流,同时间接且显著地降低了电解质隔膜、阴极和阳极的每瓦成本;
2.关于寿命:
由于晶体硅材料在酸碱和电化学环境中都具有极好的化学稳定性,规避了金属极板燃料电池不耐腐蚀的缺点,因此,本发明硅极板本身可以长期使用而不会失效,通常来说,其应用的硅极板燃料电池寿命由其他部件决定,本发明表1给出的寿命数据表现是基于现有具有长寿命表现的燃料电池数据,随着其他部件的性能升级优化,本发明的硅极板燃料电池寿命还会增加;另一方面,硅极板燃料电池的长寿命进一步了降低了成本。
3.关于体积功率密度和重量功率密度:
硅极板燃料电池能产生较高的电流密度,从而增加电堆结构的体积功率密度:
由于晶体硅具有非常优异的精细加工的特点,可以采用较薄的硅极板来制备电堆结构;对于相同数量的单燃料电池单元堆叠成的电堆结构,硅极板电堆结构具有最小的厚度;尤其相比于石墨极板电堆结构,硅极板电堆结构的优势尤其明显,因而硅极板电堆结构具有最大的体积功率密度;
硅材料和金属材料相比具有更低的重量密度,和石墨材料相比更薄,因而硅极板燃料电池具有更高的重量功率密度。
本发明的硅极板燃料电池具有与如金属极板燃料电池甚至高于金属极板燃料电池的高能量密度,而且具有如石墨极板燃料电池的优异寿命表现,而且硅极板具有物料低廉、制作工艺简单的特点,这就使得硅极板燃料电池不仅在成本上低于其他材料极板燃料电池,而且在耐久性、功率密度等燃料电池的主要技术指标上具有明显的突出优势。本发明带来的技术效果突破是燃料电池领域中普通技术人员所无法想象的,同时从现有技术资料中也无法得到任何技术启示来获得本发明。因此毫无疑义,本发明对于燃料电池的大批量产业化进程具有重大意义和核心推进作用。
如前所述,本发明实施时可以应用于具有具有较多数量燃料电池单元的电堆结构的燃料电池,当然也可以应用于仅包括1至2个燃料电池单元的燃料电池(通常称为微型燃料电池),具体可参见下实施例5和实施例6:
实施例5:
本实施例5的其余技术方案与实施例1相同,区别在于:在本实施例5中,请参见图9所示,燃料电池包括1个燃料电池单元10,包括依次堆叠为一体的阳极板、阳电极、电解质隔膜、阴电极、阴极板;其中,阴极板和阳极板均采用掺杂导电的晶体硅材料制成的端部硅极板,阳电极、电解质隔膜、阴电极采用MEA膜电极组件。
实施例6:
本实施例6的其余技术方案与实施例1相同,区别在于:在本实施例6中,请参见图10所示,燃料电池包括相互串联且堆叠为一体的第一燃料电池单元20a和第二燃料电池单元20b,第一燃料电池单元20a和第二燃料电池单元20b分别包括依次堆叠为一体的阳极板、阳电极、电解质隔膜、阴电极、阴极板,其中,阳电极、电解质隔膜、阴电极采用MEA膜电极组件;第一燃料电池单元20a的阳极板和第二燃料电池单元20b的阴极板均采用掺杂导电的晶体硅材料制成的端部硅极板,第一燃料电池单元20a的阴极板采用掺杂导电的晶体硅材料制成的中部硅极板,该中部硅极板同时作为第二燃料电池单元20b的阳极板。
本发明实施例5和实施例6提出的燃料电池一般为输出功率较小的微型燃料电池,相对于现有将硅作为极板衬底的微型燃料电池,本实施例5和实施例6不需要设置额外金属膜层作为导电层,因而在材料成本、制备工艺上的表现更加优异,而且本实施例5和6采用两个硅片复合制作成具有内部流道的硅极板,该硅极板作为燃料电池的骨架结构,机械强度很好,而且内部流道可直接作为冷却介质流道,进一步提升了微型燃料电池的冷却性能,克服了现有技术中采用硅作为衬底的微型燃料电池无法进行冷却的缺陷。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节, 而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (23)

  1. 一种硅极板,其特征在于,所述硅极板采用掺杂导电的晶体硅材料制成,具有内部冷却介质流道、正面还原剂流道和反面氧化剂流道,且所述内部冷却介质流道、正面还原剂流道和反面氧化剂流道分别设有与其相连通的硅极板进出口组合。
  2. 一种硅极板,其特征在于,所述硅极板采用掺杂导电的晶体硅材料制成,具有内部冷却介质流道、正面还原剂流道或反面氧化剂流道,且所述内部冷却介质流道、正面还原剂流道或反面氧化剂流道分别设有与其相连通的硅极板进出口组合。
  3. 如权利要求1或2所述的硅极板,其特征在于,所述硅极板包括2个或2个以上的硅片,其中,所述硅片具有单面或双面流道;
    所述硅片未覆盖流道的表面区域之间采用导电材料复合连接堆叠为一体,且通过所述复合连接形成位于所述硅极板内部的内部流道,所述内部流道作为所述内部冷却介质流道;位于所述硅片的非堆叠面的流道作为还原剂流道或氧化剂流道。
  4. 如权利要求1或2所述的硅极板,其特征在于,所述掺杂导电的晶体硅材料采用单晶体或多晶体掺杂硅片,且其电阻率不高于0.1Ω.cm。
  5. 如权利要求4所述的硅极板,其特征在于,所述硅片的厚度范围为0.2-5mm,尺寸范围在50-300mm。
  6. 如权利要求3所述的硅极板,其特征在于,所述导电材料采用与硅材料具有共晶键合效应的金属导电材料。
  7. 如权利要求1-6之一所述的硅极板的制备方法,其特征在于,采用刻蚀工艺或激光工艺或丝网印刷工艺在硅片单面或双面上加工流道或进出口组合;采用导电材料将2个或2个以上的硅片复合连接堆叠为一体,通过所述复合连接形成位于所述硅极板内部的内部流道,所述内部流道作为所述内部冷却介质流道。
  8. 如权利要求1所述的硅极板的制备方法,其特征在于,包括如下操作步骤:
    A10)、准备第一硅片和第二硅片;
    A20)、通过丝网印刷工艺在所述第一硅片和第二硅片双面上分别制作导电材料层;
    A30)、所述导电材料层同时作为掩膜层,通过碱溶液腐蚀工艺分别在所述第一硅片双面上分别制作反面第一内部冷却介质流道和正面还原剂流道,以及在所述第二硅片双面上分别制作正面第二内部冷却介质流道和反面氧化剂流道;
    A40)、采用激光工艺分别在所述第一硅片和第二硅片上制作第一进出口 组合和第二进出口组合;
    A50)、将第一硅片和第二硅片叠压后在高温下烧结,相互接触的第一硅片和第二硅片的导电材料层熔融后将所述两个硅片复合连接为一体;其中,所述第一内部冷却介质流道与所述第二内部冷却介质流道对应配合且通过所述复合连接形成所述内部冷却介质流道;所述第一进出口组合和第二进出口组合分别对应配合且通过所述复合连接形成所述硅极板进出口组合。
  9. 如权利要求2所述的硅极板的制备方法,其特征在于,包括如下操作步骤:
    A10’)、准备第一硅片和第二硅片;
    A20’)、通过丝网印刷工艺在所述第一硅片单面和第二硅片双面上分别制作导电材料层;
    A30’)、所述导电材料层同时作为掩膜层,通过碱溶液腐蚀工艺分别在所述第一硅片单面上制作正面或反面第一内部冷却介质流道,以及在所述第二硅片双面上分别制作反面或正面第二内部冷却介质流道和正面还原剂流道或反面氧化剂流道;
    A40’)、采用激光工艺分别在所述第一硅片和第二硅片上制作第一进出口组合和第二进出口组合;
    A50’)、将第一硅片和第二硅片叠压后在高温下烧结,相互接触的第一硅片和第二硅片的导电材料层熔融后将所述两个硅片复合连接为一体;其中,所述第一内部冷却介质流道与所述第二内部冷却介质流道对应配合且通过所述复合连接形成所述内部冷却介质流道;所述第一进出口组合和第二进出口组合分别对应配合且通过所述复合连接形成所述硅极板进出口组合。
  10. 如权利要8或9所述的硅极板的制备方法,其特征在于,所述导电材料采用与硅材料具有共晶键合效应的金属导电材料,所述在高温下烧结的加热温度接近或等于所述硅材料与所述金属导电材料的共晶温度。
  11. 一种硅在燃料电池的应用,其特征在于,所述燃料电池包括1个或多个燃料电池单元;所述燃料电池单元包括依次堆叠为一体的阳极板、阳电极、电解质隔膜、阴电极、阴极板;其中,
    所述阴极板和阳极板采用掺杂导电的晶体硅材料制成的硅极板;
    所述硅极板采用如权利要求1-6之一所述的硅极板。
  12. 如权利要求11所述的硅在燃料电池的应用,其特征在于,所述硅极板可同时作为单个燃料电池单元的阴极板和与其相邻单个燃料电池单元的阳极板。
  13. 一种燃料电池电堆结构,其特征在于,所述电堆结构包括相互串联且堆叠为一体的且数量不少于3个的燃料电池单元;
    所述燃料电池单元包括依次堆叠为一体的阳极板、阳电极、电解质隔膜、阴电极、阴极板;其中,
    所述阴极板和阳极板采用掺杂导电的晶体硅材料制成的硅极板;
    所述硅极板采用如权利要求1-6之一所述的硅极板。
  14. 如权利要求13所述的燃料电池电堆结构,其特征在于,所述硅极板可同时作为单个燃料电池单元的阴极板和与其相邻单个燃料电池单元的阳极板。
  15. 如权利要求13或14所述的燃料电池电堆结构,其特征在于,所述燃料电池包括电堆结构,所述电堆结构包括相互串联且堆叠为一体的、位于两端的端部燃料电池单元和位于中部的1个或多个中部燃料电池单元,其中,
    中部燃料电池单元包括中部硅极板,所述中部硅极板具有内部冷却介质流道、正面还原剂流道和反面氧化剂流道;且所述内部冷却介质流道、正面还原剂流道和反面氧化剂流道分别设有与其相连通的硅极板进出口组合。
  16. 如权利要求15所述的燃料电池电堆结构,其特征在于,所述端部燃料电池单元包括端部硅极板和所述中部硅极板;其中,
    所述端部硅极板具有内部冷却介质流道、正面还原剂流道或反面氧化剂流道;且所述内部冷却介质流道、正面还原剂流道或反面氧化剂流道分别设有与其相连通的硅极板进出口组合。
  17. 如权利要求15所述的燃料电池电堆结构,其特征在于,所述中部硅极板包括第一中部硅片和第二中部硅片,其中,
    所述第一中部硅片具有反面第一内部冷却介质流道、正面还原剂流道和第一进出口组合,所述第二中部硅片具有正面第二内部冷却介质流道、反面氧化剂流道和第二进出口组合;
    所述第一中部硅片未覆盖所述第一内部冷却介质流道的反面区域和第二中部硅片未覆盖所述第二内部冷却介质流道的正面区域之间采用导电材料复合连接堆叠为一体,所述第一内部冷却介质流道与所述第二内部冷却介质流道对应配合且通过所述复合连接形成所述内部冷却介质流道;所述第一进出口组合和第二进出口组合分别对应配合且通过所述复合连接形成所述硅极板进出口组合。
  18. 如权利要求16所述的燃料电池电堆结构,其特征在于,所述端部硅极板包括端部硅片和中部硅片,其中,
    所述端部硅片具有正面或反面第一内部冷却介质流道和第一进出口组合,所述中部硅片具有反面或正面第二内部冷却介质流道、正面还原剂流道或反面氧化剂流道和第二进出口组合;
    所述端部硅片未覆盖所述第一内部冷却介质流道的正面或反面区域和中部硅片未覆盖所述第二内部冷却介质流道的反面或正面区域之间采用导电材料复合连接堆叠为一体,所述第一内部冷却介质流道与所述第二内部冷却介质流道对应配合且通过所述复合连接形成所述内部冷却介质流道;所述第一进出口组合和第二进出口组合分别对应配合且通过所述复合连接形成所述硅 极板进出口组合。
  19. 如权利要求13所述的燃料电池电堆结构,其特征在于,所述还原剂为氢气或天然气或煤气或净化气或甲醇,所述氧化剂为氧气或空气。
  20. 如权利要求13所述的燃料电池电堆结构,其特征在于,所述阳电极、电解质隔膜、阴电极采用MEA膜电极组件,其中,所述电解质隔膜为质子交换膜。
  21. 如权利要求13所述的燃料电池电堆结构,其特征在于,所述冷却介质为水。
  22. 一种燃料电池,包括电堆结构、封装绝缘件以及外部安装件,其特征在于,所述电堆结构采用如权利要求13-21之一所述的燃料电池电堆结构。
  23. 一种如权利要求22所述的燃料电池应用,其特征在于,应用于便携式产品,或应用于固定式的供电或热装置产品,或应用于交通运输产品。
PCT/CN2018/092793 2018-06-07 2018-06-26 硅极板及其制备方法、硅在燃料电池的应用、燃料电池电堆结构、燃料电池和应用 WO2019232835A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207029837A KR102515639B1 (ko) 2018-06-07 2018-06-26 규소 극판, 규소의 연료 전지에서의 응용, 연료 전지 스택 구조
JP2021508036A JP7268136B2 (ja) 2018-06-07 2018-06-26 シリコン電極板、燃料電池へのシリコンの応用、および燃料電池スタック構造
AU2018426555A AU2018426555B2 (en) 2018-06-07 2018-06-26 Silicon pole plate and preparation method therefor, use of silicon in fuel cell, fuel cell stack structure, fuel cell and use thereof
US17/042,959 US11799097B2 (en) 2018-06-07 2018-06-26 Silicon plate, application of silicon to fuel cell, and fuel cell stack structure
EP18922018.9A EP3806215A4 (en) 2018-06-07 2018-06-26 SILICON POLAR PLATE AND METHOD FOR PREPARING THEREOF, USE OF SILICON IN A FUEL CELL, FUEL CELL STACKING STRUCTURE, FUEL CELL AND USE THEREOF

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810577210.5A CN110581288B (zh) 2018-06-07 2018-06-07 一种燃料电池电堆结构及其燃料电池和应用
CN201810577211.XA CN110581290B (zh) 2018-06-07 2018-06-07 一种硅极板及其制备方法
CN201810577211.X 2018-06-07
CN201810577217.7 2018-06-07
CN201810577210.5 2018-06-07
CN201810577217.7A CN110581291B (zh) 2018-06-07 2018-06-07 硅在燃料电池的应用

Publications (1)

Publication Number Publication Date
WO2019232835A1 true WO2019232835A1 (zh) 2019-12-12

Family

ID=68770018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092793 WO2019232835A1 (zh) 2018-06-07 2018-06-26 硅极板及其制备方法、硅在燃料电池的应用、燃料电池电堆结构、燃料电池和应用

Country Status (6)

Country Link
US (1) US11799097B2 (zh)
EP (1) EP3806215A4 (zh)
JP (1) JP7268136B2 (zh)
KR (1) KR102515639B1 (zh)
AU (1) AU2018426555B2 (zh)
WO (1) WO2019232835A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230096772A (ko) * 2021-12-23 2023-06-30 한국기계연구원 화학적 처리 없는 나노트랜스퍼 수행 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000968A (zh) * 2007-01-19 2007-07-18 清华大学 堆叠式硅基微型燃料电池组及其制作方法
CN100369304C (zh) 2005-09-16 2008-02-13 哈尔滨工业大学 硅基微型直接甲醇燃料电池用催化电极的制备方法
CN100397687C (zh) 2006-08-25 2008-06-25 中国科学院上海微系统与信息技术研究所 自呼吸式微型质子交换膜燃料电池的阴极流场板及制作方法
CN101707254A (zh) * 2009-12-04 2010-05-12 昆山弗尔赛能源有限公司 一种质子交换膜燃料电池双极板及其制造方法
CN101867052A (zh) 2010-06-13 2010-10-20 哈尔滨工业大学 一种轮辐式自呼吸微型燃料电池及其制备方法
CN101894954A (zh) 2010-06-21 2010-11-24 清华大学 一种基于常温键合技术的微小型燃料电池封装方法
CN101931080A (zh) * 2010-08-05 2010-12-29 清华大学 基于mems的直接甲醇燃料电池被动式阳极及制作方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589682B1 (en) 2000-01-27 2003-07-08 Karen Fleckner Fuel cells incorporating nanotubes in fuel feed
AUPS076502A0 (en) 2002-02-26 2002-03-21 Ceramic Fuel Cells Limited A fuel cell gas separator plate
US6828055B2 (en) * 2001-07-27 2004-12-07 Hewlett-Packard Development Company, L.P. Bipolar plates and end plates for fuel cells and methods for making the same
CN1328811C (zh) 2002-01-29 2007-07-25 松下电器产业株式会社 具有燃料电池的半导体装置及其制造方法
US6827747B2 (en) 2002-02-11 2004-12-07 General Motors Corporation PEM fuel cell separator plate
US7655337B2 (en) 2003-06-27 2010-02-02 Ultracell Corporation Micro fuel cell thermal management
CN1645661A (zh) 2004-01-20 2005-07-27 布莱特·D·文森特 燃料电池系统
ITVA20050034A1 (it) * 2005-05-13 2006-11-14 St Microelectronics Srl Celle a combustibile realizzate in un singolo strato di silicio monocristallino e processo di fabbricazione
WO2007121336A2 (en) * 2006-04-14 2007-10-25 Applied Materials, Inc. Reliable fuel cell electrode design
JP6160877B2 (ja) 2015-04-13 2017-07-12 トヨタ自動車株式会社 燃料電池用セパレータの製造方法及び燃料電池用セパレータ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369304C (zh) 2005-09-16 2008-02-13 哈尔滨工业大学 硅基微型直接甲醇燃料电池用催化电极的制备方法
CN100397687C (zh) 2006-08-25 2008-06-25 中国科学院上海微系统与信息技术研究所 自呼吸式微型质子交换膜燃料电池的阴极流场板及制作方法
CN101000968A (zh) * 2007-01-19 2007-07-18 清华大学 堆叠式硅基微型燃料电池组及其制作方法
CN100483829C (zh) 2007-01-19 2009-04-29 清华大学 堆叠式硅基微型燃料电池组及其制作方法
CN101707254A (zh) * 2009-12-04 2010-05-12 昆山弗尔赛能源有限公司 一种质子交换膜燃料电池双极板及其制造方法
CN101867052A (zh) 2010-06-13 2010-10-20 哈尔滨工业大学 一种轮辐式自呼吸微型燃料电池及其制备方法
CN101894954A (zh) 2010-06-21 2010-11-24 清华大学 一种基于常温键合技术的微小型燃料电池封装方法
CN101931080A (zh) * 2010-08-05 2010-12-29 清华大学 基于mems的直接甲醇燃料电池被动式阳极及制作方法

Also Published As

Publication number Publication date
AU2018426555B2 (en) 2022-06-02
US11799097B2 (en) 2023-10-24
KR20200138279A (ko) 2020-12-09
JP7268136B2 (ja) 2023-05-02
EP3806215A4 (en) 2022-03-16
KR102515639B1 (ko) 2023-03-29
AU2018426555A1 (en) 2020-11-26
EP3806215A1 (en) 2021-04-14
US20210151778A1 (en) 2021-05-20
JP2021518989A (ja) 2021-08-05

Similar Documents

Publication Publication Date Title
CN201781448U (zh) 一种薄膜温差发电装置
TWI481056B (zh) 太陽能電池之製備方法
TWI481050B (zh) 太陽能電池
CN101447583A (zh) 一种燃料电池一体化单元模块及其电堆
WO2019232835A1 (zh) 硅极板及其制备方法、硅在燃料电池的应用、燃料电池电堆结构、燃料电池和应用
CN110581291B (zh) 硅在燃料电池的应用
TW201327863A (zh) 太陽能電池
Zhang et al. A preliminary study of a miniature planar 6-cell PEMFC stack combined with a small hydrogen storage canister
CN110581288B (zh) 一种燃料电池电堆结构及其燃料电池和应用
CN110581290B (zh) 一种硅极板及其制备方法
JP5916648B2 (ja) 平管型固体酸化物単位セル
CN213583872U (zh) 一种燃料电池双极板
CN212676307U (zh) 一种燃料电池用多孔金属复合双极板
CN115172836A (zh) 一种单段多室兆瓦级燃料电池堆
JP2003282089A (ja) マイクロ燃料電池
CN209401747U (zh) 一种组合式采电板
CN111326763A (zh) 一种类蜂巢形流场的金属双极板
CN110676353B (zh) 镀膜装置、制造异质结太阳能电池片和叠瓦组件的方法
US20070254202A1 (en) Cathode flow field board for fuel cell
CN213519993U (zh) 光伏组件
CN101390231A (zh) 包括微型碳导流板的微型燃料电池
CN112002919A (zh) 一种燃料电池双极板
TWI398036B (zh) Direct methanol fuel cell and its making method
CN116936837A (zh) 液流电池用双极板、液流电池以及电池堆
CN102738471A (zh) 燃料电池单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207029837

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021508036

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018426555

Country of ref document: AU

Date of ref document: 20180626

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018922018

Country of ref document: EP

Effective date: 20210111